Sample records for distributed block virtualization

  1. SU-F-T-436: A Method to Evaluate Dosimetric Properties of SFGRT in Eclipse TPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, M; Tobias, R; Pankuch, M

    Purpose: The objective was to develop a method for dose distribution calculation of spatially-fractionated-GRID-radiotherapy (SFGRT) in Eclipse treatment-planning-system (TPS). Methods: Patient treatment-plans with SFGRT for bulky tumors were generated in Varian Eclipse version11. A virtual structure based on the GRID pattern was created and registered to a patient CT image dataset. The virtual GRID structure was positioned on the iso-center level together with matching beam geometries to simulate a commercially available GRID block made of brass. This method overcame the difficulty in treatment-planning and dose-calculation due to the lack o-the option to insert a GRID block add-on in Eclipse TPS.more » The patient treatment-planning displayed GRID effects on the target, critical structures, and dose distribution. The dose calculations were compared to the measurement results in phantom. Results: The GRID block structure was created to follow the beam divergence to the patient CT images. The inserted virtual GRID block made it possible to calculate the dose distributions and profiles at various depths in Eclipse. The virtual GRID block was added as an option to TPS. The 3D representation of the isodose distribution of the spatially-fractionated beam was generated in axial, coronal, and sagittal planes. Physics of GRID can be different from that for fields shaped by regular blocks because the charge-particle-equilibrium cannot be guaranteed for small field openings. Output factor (OF) measurement was required to calculate the MU to deliver the prescribed dose. The calculated OF based on the virtual GRID agreed well with the measured OF in phantom. Conclusion: The method to create the virtual GRID block has been proposed for the first time in Eclipse TPS. The dosedistributions, in-plane and cross-plane profiles in PTV can be displayed in 3D-space. The calculated OF’s based on the virtual GRID model compare well to the measured OF’s for SFGRT clinical use.« less

  2. World Virtual Observatory Organization

    NASA Astrophysics Data System (ADS)

    Ignatyev, Mikhail; Pinigin, Gennadij

    On the base of experience of our Unoversity and Observatory we investigate the seven blocks model of virtual organization for consolidation of resources. This model consists of the next blocks: 1.Population-scientists students robots and agents. 2.Aspiration of population groups. 3.Territory. 4.Production. 5.Ecology and safety. 6.Finance. 7. External relations - input and output flows of population information resources.The world virtual observatory is the virtual world which consists of three groups of variables - appearances essences and structured uncertainty which defines the number and distribution of arbitrary coefficients in equivalent equations. The consolodation of recources permit to create the large telescopes with distributed structure on our planet and cosmos. Virtual instruments can have the best characteristics by means of collective effects which have investigated in our paper.

  3. New database for improving virtual system “body-dress”

    NASA Astrophysics Data System (ADS)

    Yan, J. Q.; Zhang, S. C.; Kuzmichev, V. E.; Adolphe, D. C.

    2017-10-01

    The aim of this exploration is to develop a new database of solid algorithms and relations between the dress fit and the fabric mechanical properties, the pattern block construction for improving the reality of virtual system “body-dress”. In virtual simulation, the system “body-clothing” sometimes shown distinct results with reality, especially when important changes in pattern block and fabrics were involved. In this research, to enhance the simulation process, diverse fit parameters were proposed: bottom height of dress, angle of front center contours, air volume and its distribution between dress and dummy. Measurements were done and optimized by ruler, camera, 3D body scanner image processing software and 3D modeling software. In the meantime, pattern block indexes were measured and fabric properties were tested by KES. Finally, the correlation and linear regression equations between indexes of fabric properties, pattern blocks and fit parameters were investigated. In this manner, new database could be extended in programming modules of virtual design for more realistic results.

  4. Cognitive load in distributed and massed practice in virtual reality mastoidectomy simulation.

    PubMed

    Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten

    2016-02-01

    Cognitive load theory states that working memory is limited. This has implications for learning and suggests that reducing cognitive load (CL) could promote learning and skills acquisition. This study aims to explore the effect of repeated practice and simulator-integrated tutoring on CL in virtual reality (VR) mastoidectomy simulation. Prospective trial. Forty novice medical students performed 12 repeated virtual mastoidectomy procedures in the Visible Ear Simulator: 21 completed distributed practice with practice blocks spaced in time and 19 participants completed massed practice (all practices performed in 1 day). Participants were randomized for tutoring with the simulator-integrated tutor function. Cognitive load was estimated by measuring reaction time in a secondary task. Data were analyzed using linear mixed models for repeated measurements. The mean reaction time increased by 37% during the procedure compared with baseline, demonstrating that the procedure placed substantial cognitive demands. Repeated practice significantly lowered CL in the distributed practice group but not in massed practice group. In addition, CL was found to be further increased by 10.3% in the later and more complex stages of the procedure. The simulator-integrated tutor function did not have an impact on CL. Distributed practice decreased CL in repeated VR mastoidectomy training more consistently than was seen in massed practice. This suggests a possible effect of skills and memory consolidation occurring over time. To optimize technical skills learning, training should be organized as time-distributed practice rather than as a massed block of practice, which is common in skills-training courses. N/A. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  5. Pacemaker rate and depolarization block in nigral dopamine neurons: a somatic sodium channel balancing act

    PubMed Central

    Tucker, Kristal R.; Huertas, Marco A.; Horn, John P.; Canavier, Carmen C.; Levitan, Edwin S.

    2012-01-01

    Midbrain dopamine (DA) neurons are slow intrinsic pacemakers that undergo depolarization (DP) block upon moderate stimulation. Understanding DP block is important because it has been correlated with the clinical efficacy of chronic antipsychotic drug treatment. Here we describe how voltage-gated sodium (NaV) channels regulate DP block and pacemaker activity in DA neurons of the substantia nigra using rat brain slices. The distribution, density and gating of NaV currents were manipulated by blocking native channels with tetrodotoxin and by creating virtual channels and anti-channels with dynamic clamp. Although action potentials initiate in the axon initial segment (AIS) and NaV channels are distributed in multiple dendrites, selective reduction of NaV channel activity in the soma was sufficient to decrease pacemaker frequency and increase susceptibility to DP block. Conversely, increasing somatic NaV current density raised pacemaker frequency and lowered susceptibility to DP block. Finally, when NaV currents were restricted to the soma, pacemaker activity occurred at abnormally high rates due to excessive local subthreshold NaV current. Together with computational simulations, these data show that both the slow pacemaker rate and the sensitivity to DP block that characterizes DA neurons result from the low density of somatic NaV channels. More generally, we conclude that the somatodendritic distribution of NaV channels is a major determinant of repetitive spiking frequency. PMID:23077037

  6. Chemical Reactions of Metal-Metal Bonded Compounds of the Transition Elements.

    DTIC Science & Technology

    1981-05-18

    distribution is unlimited. 17. DISTRIBUTION STATEMENT (of the absttrec entered In Block 20, It different from Report) IS. SUPPLEMENTARY NOTES 19. KEY WORDS... matter of opinion. It is therefore quite likely that in certain cases we have inappropriately or mistakenly grouped certain reactions together...made. These triumphs of molecular orbital theory now appear in virtual- ly every freshman level chemistry text and it surely will not be long before

  7. SPECT System Optimization Against A Discrete Parameter Space

    PubMed Central

    Meng, L. J.; Li, N.

    2013-01-01

    In this paper, we present an analytical approach for optimizing the design of a static SPECT system or optimizing the sampling strategy with a variable/adaptive SPECT imaging hardware against an arbitrarily given set of system parameters. This approach has three key aspects. First, it is designed to operate over a discretized system parameter space. Second, we have introduced an artificial concept of virtual detector as the basic building block of an imaging system. With a SPECT system described as a collection of the virtual detectors, one can convert the task of system optimization into a process of finding the optimum imaging time distribution (ITD) across all virtual detectors. Thirdly, the optimization problem (finding the optimum ITD) could be solved with a block-iterative approach or other non-linear optimization algorithms. In essence, the resultant optimum ITD could provide a quantitative measure of the relative importance (or effectiveness) of the virtual detectors and help to identify the system configuration or sampling strategy that leads to an optimum imaging performance. Although we are using SPECT imaging as a platform to demonstrate the system optimization strategy, this development also provides a useful framework for system optimization problems in other modalities, such as positron emission tomography (PET) and X-ray computed tomography (CT) [1, 2]. PMID:23587609

  8. MISR Center Block Time Tool

    Atmospheric Science Data Center

    2013-04-01

      MISR Center Block Time Tool The misr_time tool calculates the block center times for MISR Level 1B2 files. This is ... version of the IDL package or by using the IDL Virtual Machine application. The IDL Virtual Machine is bundled with IDL and is ...

  9. RAID Unbound: Storage Fault Tolerance in a Distributed Environment

    NASA Technical Reports Server (NTRS)

    Ritchie, Brian

    1996-01-01

    Mirroring, data replication, backup, and more recently, redundant arrays of independent disks (RAID) are all technologies used to protect and ensure access to critical company data. A new set of problems has arisen as data becomes more and more geographically distributed. Each of the technologies listed above provides important benefits; but each has failed to adapt fully to the realities of distributed computing. The key to data high availability and protection is to take the technologies' strengths and 'virtualize' them across a distributed network. RAID and mirroring offer high data availability, which data replication and backup provide strong data protection. If we take these concepts at a very granular level (defining user, record, block, file, or directory types) and them liberate them from the physical subsystems with which they have traditionally been associated, we have the opportunity to create a highly scalable network wide storage fault tolerance. The network becomes the virtual storage space in which the traditional concepts of data high availability and protection are implemented without their corresponding physical constraints.

  10. A virtual reality-based system integrated with fmri to study neural mechanisms of action observation-execution: A proof of concept study

    PubMed Central

    Adamovich, S.V.; August, K.; Merians, A.; Tunik, E.

    2017-01-01

    Purpose Emerging evidence shows that interactive virtual environments (VEs) may be a promising tool for studying sensorimotor processes and for rehabilitation. However, the potential of VEs to recruit action observation-execution neural networks is largely unknown. For the first time, a functional MRI-compatible virtual reality system (VR) has been developed to provide a window into studying brain-behavior interactions. This system is capable of measuring the complex span of hand-finger movements and simultaneously streaming this kinematic data to control the motion of representations of human hands in virtual reality. Methods In a blocked fMRI design, thirteen healthy subjects observed, with the intent to imitate (OTI), finger sequences performed by the virtual hand avatar seen in 1st person perspective and animated by pre-recorded kinematic data. Following this, subjects imitated the observed sequence while viewing the virtual hand avatar animated by their own movement in real-time. These blocks were interleaved with rest periods during which subjects viewed static virtual hand avatars and control trials in which the avatars were replaced with moving non-anthropomorphic objects. Results We show three main findings. First, both observation with intent to imitate and imitation with real-time virtual avatar feedback, were associated with activation in a distributed frontoparietal network typically recruited for observation and execution of real-world actions. Second, we noted a time-variant increase in activation in the left insular cortex for observation with intent to imitate actions performed by the virtual avatar. Third, imitation with virtual avatar feedback (relative to the control condition) was associated with a localized recruitment of the angular gyrus, precuneus, and extrastriate body area, regions which are (along with insular cortex) associated with the sense of agency. Conclusions Our data suggest that the virtual hand avatars may have served as disembodied training tools in the observation condition and as embodied “extensions” of the subject’s own body (pseudo-tools) in the imitation. These data advance our understanding of the brain-behavior interactions when performing actions in VE and have implications in the development of observation- and imitation-based VR rehabilitation paradigms. PMID:19531876

  11. Synchronizing Self and Object Movement: How Child and Adult Cyclists Intercept Moving Gaps in a Virtual Environment

    ERIC Educational Resources Information Center

    Chihak, Benjamin J.; Plumert, Jodie M.; Ziemer, Christine J.; Babu, Sabarish; Grechkin, Timofey; Cremer, James F.; Kearney, Joseph K.

    2010-01-01

    Two experiments examined how 10- and 12-year-old children and adults intercept moving gaps while bicycling in an immersive virtual environment. Participants rode an actual bicycle along a virtual roadway. At 12 test intersections, participants attempted to pass through a gap between 2 moving, car-sized blocks without stopping. The blocks were…

  12. Detector Position Estimation for PET Scanners.

    PubMed

    Pierce, Larry; Miyaoka, Robert; Lewellen, Tom; Alessio, Adam; Kinahan, Paul

    2012-06-11

    Physical positioning of scintillation crystal detector blocks in Positron Emission Tomography (PET) scanners is not always exact. We test a proof of concept methodology for the determination of the six degrees of freedom for detector block positioning errors by utilizing a rotating point source over stepped axial intervals. To test our method, we created computer simulations of seven Micro Crystal Element Scanner (MiCES) PET systems with randomized positioning errors. The computer simulations show that our positioning algorithm can estimate the positions of the block detectors to an average of one-seventh of the crystal pitch tangentially, and one-third of the crystal pitch axially. Virtual acquisitions of a point source grid and a distributed phantom show that our algorithm improves both the quantitative and qualitative accuracy of the reconstructed objects. We believe this estimation algorithm is a practical and accurate method for determining the spatial positions of scintillation detector blocks.

  13. Global Software Development with Cloud Platforms

    NASA Astrophysics Data System (ADS)

    Yara, Pavan; Ramachandran, Ramaseshan; Balasubramanian, Gayathri; Muthuswamy, Karthik; Chandrasekar, Divya

    Offshore and outsourced distributed software development models and processes are facing challenges, previously unknown, with respect to computing capacity, bandwidth, storage, security, complexity, reliability, and business uncertainty. Clouds promise to address these challenges by adopting recent advances in virtualization, parallel and distributed systems, utility computing, and software services. In this paper, we envision a cloud-based platform that addresses some of these core problems. We outline a generic cloud architecture, its design and our first implementation results for three cloud forms - a compute cloud, a storage cloud and a cloud-based software service- in the context of global distributed software development (GSD). Our ”compute cloud” provides computational services such as continuous code integration and a compile server farm, ”storage cloud” offers storage (block or file-based) services with an on-line virtual storage service, whereas the on-line virtual labs represent a useful cloud service. We note some of the use cases for clouds in GSD, the lessons learned with our prototypes and identify challenges that must be conquered before realizing the full business benefits. We believe that in the future, software practitioners will focus more on these cloud computing platforms and see clouds as a means to supporting a ecosystem of clients, developers and other key stakeholders.

  14. Evidence of Blocking with Geometric Cues in a Virtual Watermaze

    ERIC Educational Resources Information Center

    Redhead, Edward S.; Hamilton, Derek A.

    2009-01-01

    Three computer based experiments, testing human participants in a non-immersive virtual watermaze task, used a blocking design to assess whether two sets of geometric cues would compete in a manner described by associative models of learning. In stage 1, participants were required to discriminate between visually distinct platforms. In stage 2,…

  15. A virtual tour of virtual reality

    NASA Astrophysics Data System (ADS)

    Harris, Margaret

    2018-03-01

    Virtual-reality glasses might still be on the starting blocks, but plenty of companies are working on the technology. Margaret Harris tries on some examples at the Photonics West show in San Francisco

  16. Crosstalk-aware virtual network embedding over inter-datacenter optical networks with few-mode fibers

    NASA Astrophysics Data System (ADS)

    Huang, Haibin; Guo, Bingli; Li, Xin; Yin, Shan; Zhou, Yu; Huang, Shanguo

    2017-12-01

    Virtualization of datacenter (DC) infrastructures enables infrastructure providers (InPs) to provide novel services like virtual networks (VNs). Furthermore, optical networks have been employed to connect the metro-scale geographically distributed DCs. The synergistic virtualization of the DC infrastructures and optical networks enables the efficient VN service over inter-DC optical networks (inter-DCONs). While the capacity of the used standard single-mode fiber (SSMF) is limited by their nonlinear characteristics. Thus, mode-division multiplexing (MDM) technology based on few-mode fibers (FMFs) could be employed to increase the capacity of optical networks. Whereas, modal crosstalk (XT) introduced by optical fibers and components deployed in the MDM optical networks impacts the performance of VN embedding (VNE) over inter-DCONs with FMFs. In this paper, we propose a XT-aware VNE mechanism over inter-DCONs with FMFs. The impact of XT is considered throughout the VNE procedures. The simulation results show that the proposed XT-aware VNE can achieves better performances of blocking probability and spectrum utilization compared to conventional VNE mechanisms.

  17. Virtual Plant Tissue: Building Blocks for Next-Generation Plant Growth Simulation

    PubMed Central

    De Vos, Dirk; Dzhurakhalov, Abdiravuf; Stijven, Sean; Klosiewicz, Przemyslaw; Beemster, Gerrit T. S.; Broeckhove, Jan

    2017-01-01

    Motivation: Computational modeling of plant developmental processes is becoming increasingly important. Cellular resolution plant tissue simulators have been developed, yet they are typically describing physiological processes in an isolated way, strongly delimited in space and time. Results: With plant systems biology moving toward an integrative perspective on development we have built the Virtual Plant Tissue (VPTissue) package to couple functional modules or models in the same framework and across different frameworks. Multiple levels of model integration and coordination enable combining existing and new models from different sources, with diverse options in terms of input/output. Besides the core simulator the toolset also comprises a tissue editor for manipulating tissue geometry and cell, wall, and node attributes in an interactive manner. A parameter exploration tool is available to study parameter dependence of simulation results by distributing calculations over multiple systems. Availability: Virtual Plant Tissue is available as open source (EUPL license) on Bitbucket (https://bitbucket.org/vptissue/vptissue). The project has a website https://vptissue.bitbucket.io. PMID:28523006

  18. Using Hierarchical Virtual Screening To Combat Drug Resistance of the HIV-1 Protease.

    PubMed

    Li, Nan; Ainsworth, Richard I; Ding, Bo; Hou, Tingjun; Wang, Wei

    2015-07-27

    Human immunodeficiency virus (HIV) protease inhibitors (PIs) are important components of highly active anti-retroviral therapy (HAART) that block the catalytic site of HIV protease, thus preventing maturation of the HIV virion. However, with two decades of PI prescriptions in clinical practice, drug-resistant HIV mutants have now been found for all of the PI drugs. Therefore, the continuous development of new PI drugs is crucial both to combat the existing drug-resistant HIV strains and to provide treatments for future patients. Here we purpose an HIV PI drug design strategy to select candidate PIs with binding energy distributions dominated by interactions with conserved protease residues in both wild-type and various drug-resistant mutants. On the basis of this strategy, we have constructed a virtual screening pipeline including combinatorial library construction, combinatorial docking, MM/GBSA-based rescoring, and reranking on the basis of the binding energy distribution. We have tested our strategy on lopinavir by modifying its two functional groups. From an initial 751 689 candidate molecules, 18 candidate inhibitors were selected using the pipeline for experimental validation. IC50 measurements and drug resistance predictions successfully identified two ligands with both HIV protease inhibitor activity and an improved drug resistance profile on 2382 HIV mutants. This study provides a proof of concept for the integration of MM/GBSA energy analysis and drug resistance information at the stage of virtual screening and sheds light on future HIV drug design and the use of virtual screening to combat drug resistance.

  19. Chimeric Plastics : a new class of thermoplastic

    NASA Astrophysics Data System (ADS)

    Sonnenschein, Mark

    A new class of thermoplastics (dubbed ``Chimerics'') is described that exhibits a high temperature glass transition followed by high performance elastomer properties, prior to melting. These transparent materials are comprised of co-continuous phase-separated block copolymers. One block is an amorphous glass with a high glass transition temperature, and the second is a higher temperature phase transition block creating virtual thermoreversible crosslinks. The material properties are highly influenced by phase separation on the order of 10-30 nanometers. At lower temperatures the polymer reflects the sum of the block copolymer properties. As the amorphous phase glass transition is exceeded, the virtual crosslinks of the higher temperature second phase dominate the plastic properties, resulting in rubber-like elasticity.

  20. Transition of a dental histology course from light to virtual microscopy.

    PubMed

    Weaker, Frank J; Herbert, Damon C

    2009-10-01

    The transition of the dental histology course at the University of Texas Health Science Center at San Antonio Dental School was completed gradually over a five-year period. A pilot project was initially conducted to study the feasibility of integrating virtual microscopy into a traditional light microscopic lecture and laboratory course. Because of the difficulty of procuring quality calcified and decalcified sections of teeth, slides from the student loan collection in the oral histology block of the course were outsourced for conversion to digital images and placed on DVDs along with a slide viewer. The slide viewer mimicked the light microscope, allowing horizontal and vertical movement and changing of magnification, and, in addition, a feature to capture static images. In a survey, students rated the ease of use of the software, quality of the images, maneuverability of the images, and questions regarding use of the software, effective use of laboratory, and faculty time. Because of the positive support from the students, our entire student loan collection of 153 glass slides was subsequently converted to virtual images and distributed on an Apricorn pocket external hard drive. Students were asked to assess the virtual microscope over a four-year period. As a result of the surveys, light microscopes have been totally eliminated, and microscope exams have been replaced with project slide examinations. In the future, we plan to expand our virtual slides and incorporate computer testing.

  1. A fast three-dimensional gamma evaluation using a GPU utilizing texture memory for on-the-fly interpolations.

    PubMed

    Persoon, Lucas C G G; Podesta, Mark; van Elmpt, Wouter J C; Nijsten, Sebastiaan M J J G; Verhaegen, Frank

    2011-07-01

    A widely accepted method to quantify differences in dose distributions is the gamma (gamma) evaluation. Currently, almost all gamma implementations utilize the central processing unit (CPU). Recently, the graphics processing unit (GPU) has become a powerful platform for specific computing tasks. In this study, we describe the implementation of a 3D gamma evaluation using a GPU to improve calculation time. The gamma evaluation algorithm was implemented on an NVIDIA Tesla C2050 GPU using the compute unified device architecture (CUDA). First, several cubic virtual phantoms were simulated. These phantoms were tested with varying dose cube sizes and set-ups, introducing artificial dose differences. Second, to show applicability in clinical practice, five patient cases have been evaluated using the 3D dose distribution from a treatment planning system as the reference and the delivered dose determined during treatment as the comparison. A calculation time comparison between the CPU and GPU was made with varying thread-block sizes including the option of using texture or global memory. A GPU over CPU speed-up of 66 +/- 12 was achieved for the virtual phantoms. For the patient cases, a speed-up of 57 +/- 15 using the GPU was obtained. A thread-block size of 16 x 16 performed best in all cases. The use of texture memory improved the total calculation time, especially when interpolation was applied. Differences between the CPU and GPU gammas were negligible. The GPU and its features, such as texture memory, decreased the calculation time for gamma evaluations considerably without loss of accuracy.

  2. A direct observation method for auditing large urban centers using stratified sampling, mobile GIS technology and virtual environments.

    PubMed

    Lafontaine, Sean J V; Sawada, M; Kristjansson, Elizabeth

    2017-02-16

    With the expansion and growth of research on neighbourhood characteristics, there is an increased need for direct observational field audits. Herein, we introduce a novel direct observational audit method and systematic social observation instrument (SSOI) for efficiently assessing neighbourhood aesthetics over large urban areas. Our audit method uses spatial random sampling stratified by residential zoning and incorporates both mobile geographic information systems technology and virtual environments. The reliability of our method was tested in two ways: first, in 15 Ottawa neighbourhoods, we compared results at audited locations over two subsequent years, and second; we audited every residential block (167 blocks) in one neighbourhood and compared the distribution of SSOI aesthetics index scores with results from the randomly audited locations. Finally, we present interrater reliability and consistency results on all observed items. The observed neighbourhood average aesthetics index score estimated from four or five stratified random audit locations is sufficient to characterize the average neighbourhood aesthetics. The SSOI was internally consistent and demonstrated good to excellent interrater reliability. At the neighbourhood level, aesthetics is positively related to SES and physical activity and negatively correlated with BMI. The proposed approach to direct neighbourhood auditing performs sufficiently and has the advantage of financial and temporal efficiency when auditing a large city.

  3. The effects of game-based virtual reality movement therapy plus mental practice on upper extremity function in chronic stroke patients with hemiparesis: a randomized controlled trial.

    PubMed

    Park, Jin-Hyuck; Park, Ji-Hyuk

    2016-03-01

    [Purpose] The purpose of this study was to investigate the effects of game-based virtual reality movement therapy plus mental practice on upper extremity function in chronic stroke patients with hemiparesis. [Subjects] The subjects were chronic stroke patients with hemiparesis. [Methods] Thirty subjects were randomly assigned to either the control group or experimental group. All subjects received 20 sessions (5 days in a week) of virtual reality movement therapy using the Nintendo Wii. In addition to Wii-based virtual reality movement therapy, experimental group subjects performed mental practice consisting of 5 minutes of relaxation, Wii games imagination, and normalization phases before the beginning of Wii games. To compare the two groups, the upper extremity subtest of the Fugl-Meyer Assessment, Box and Block Test, and quality of movement subscale of the Motor Activity Log were performed. [Results] Both groups showed statistically significant improvement in the Fugl-Meyer Assessment, Box and Block Test, and quality of the movement subscale of Motor Activity Log after the interventions. Also, there were significant differences in the Fugl-Meyer Assessment, Box and Block Test, and quality of movement subscale of the Motor Activity Log between the two groups. [Conclusion] Game-based virtual reality movement therapy alone may be helpful to improve functional recovery of the upper extremity, but the addition of MP produces a lager improvement.

  4. Toward a comprehensive hybrid physical-virtual reality simulator of peripheral anesthesia with ultrasound and neurostimulator guidance.

    PubMed

    Samosky, Joseph T; Allen, Pete; Boronyak, Steve; Branstetter, Barton; Hein, Steven; Juhas, Mark; Nelson, Douglas A; Orebaugh, Steven; Pinto, Rohan; Smelko, Adam; Thompson, Mitch; Weaver, Robert A

    2011-01-01

    We are developing a simulator of peripheral nerve block utilizing a mixed-reality approach: the combination of a physical model, an MRI-derived virtual model, mechatronics and spatial tracking. Our design uses tangible (physical) interfaces to simulate surface anatomy, haptic feedback during needle insertion, mechatronic display of muscle twitch corresponding to the specific nerve stimulated, and visual and haptic feedback for the injection syringe. The twitch response is calculated incorporating the sensed output of a real neurostimulator. The virtual model is isomorphic with the physical model and is derived from segmented MRI data. This model provides the subsurface anatomy and, combined with electromagnetic tracking of a sham ultrasound probe and a standard nerve block needle, supports simulated ultrasound display and measurement of needle location and proximity to nerves and vessels. The needle tracking and virtual model also support objective performance metrics of needle targeting technique.

  5. Social pressure-induced craving in patients with alcohol dependence: application of virtual reality to coping skill training.

    PubMed

    Lee, Jung Suk; Namkoong, Kee; Ku, Jeonghun; Cho, Sangwoo; Park, Ji Yeon; Choi, You Kyong; Kim, Jae-Jin; Kim, In Young; Kim, Sun I; Jung, Young-Chul

    2008-12-01

    This study was conducted to assess the interaction between alcohol cues and social pressure in the induction of alcohol craving. Fourteen male patients with alcohol dependence and 14 age-matched social drinkers completed a virtual reality coping skill training program composed of four blocks according to the presence of alcohol cues (x2) and social pressure (x2). Before and after each block, the craving levels were measured using a visual analogue scale. Patients with alcohol dependence reported extremely high levels of craving immediately upon exposure to a virtual environment with alcohol cues, regardless of social pressure. In contrast, the craving levels of social drinkers were influenced by social pressure from virtual avatars. Our findings imply that an alcohol cue-laden environment should interfere with the ability to use coping skills against social pressure in real-life situations.

  6. De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks.

    PubMed

    Schneider, G; Lee, M L; Stahl, M; Schneider, P

    2000-07-01

    An evolutionary algorithm was developed for fragment-based de novo design of molecules (TOPAS, TOPology-Assigning System). This stochastic method aims at generating a novel molecular structure mimicking a template structure. A set of approximately 25,000 fragment structures serves as the building block supply, which were obtained by a straightforward fragmentation procedure applied to 36,000 known drugs. Eleven reaction schemes were implemented for both fragmentation and building block assembly. This combination of drug-derived building blocks and a restricted set of reaction schemes proved to be a key for the automatic development of novel, synthetically tractable structures. In a cyclic optimization process, molecular architectures were generated from a parent structure by virtual synthesis, and the best structure of a generation was selected as the parent for the subsequent TOPAS cycle. Similarity measures were used to define 'fitness', based on 2D-structural similarity or topological pharmacophore distance between the template molecule and the variants. The concept of varying library 'diversity' during a design process was consequently implemented by using adaptive variant distributions. The efficiency of the design algorithm was demonstrated for the de novo construction of potential thrombin inhibitors mimicking peptide and non-peptide template structures.

  7. Retention of Mastoidectomy Skills After Virtual Reality Simulation Training.

    PubMed

    Andersen, Steven Arild Wuyts; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten

    2016-07-01

    The ultimate goal of surgical training is consolidated skills with a consistently high performance. However, surgical skills are heterogeneously retained and depend on a variety of factors, including the task, cognitive demands, and organization of practice. Virtual reality (VR) simulation is increasingly being used in surgical skills training, including temporal bone surgery, but there is a gap in knowledge on the retention of mastoidectomy skills after VR simulation training. To determine the retention of mastoidectomy skills after VR simulation training with distributed and massed practice and to investigate participants' cognitive load during retention procedures. A prospective 3-month follow-up study of a VR simulation trial was conducted from February 6 to September 19, 2014, at an academic teaching hospital among 36 medical students: 19 from a cohort trained with distributed practice and 17 from a cohort trained with massed practice. Participants performed 2 virtual mastoidectomies in a VR simulator a mean of 3.2 months (range, 2.4-5.0 months) after completing initial training with 12 repeated procedures. Practice blocks were spaced apart in time (distributed), or all procedures were performed in 1 day (massed). Performance of the virtual mastoidectomy as assessed by 2 masked senior otologists using a modified Welling scale, as well as cognitive load as estimated by reaction time to perform a secondary task. Among 36 participants, mastoidectomy final-product skills were largely retained at 3 months (mean change in score, 0.1 points; P = .89) regardless of practice schedule, but the group trained with massed practice took more time to complete the task. The performance of the massed practice group increased significantly from the first to the second retention procedure (mean change, 1.8 points; P = .001), reflecting that skills were less consolidated. For both groups, increases in reaction times in the secondary task (distributed practice group: mean pretraining relative reaction time, 1.42 [95% CI, 1.37-1.47]; mean end of training relative reaction time, 1.24 [95% CI, 1.16-1.32]; and mean retention relative reaction time, 1.36 [95% CI, 1.30-1.42]; massed practice group: mean pretraining relative reaction time, 1.34 [95% CI, 1.28-1.40]; mean end of training relative reaction time, 1.31 [95% CI, 1.21-1.42]; and mean retention relative reaction time, 1.39 [95% CI, 1.31-1.46]) indicated that cognitive load during the virtual procedures had returned to the pretraining level. Mastoidectomy skills acquired under time-distributed practice conditions were retained better than skills acquired under massed practice conditions. Complex psychomotor skills should be regularly reinforced to consolidate both motor and cognitive aspects. Virtual reality simulation training provides the opportunity for such repeated training and should be integrated into training curricula.

  8. Open multi-agent control architecture to support virtual-reality-based man-machine interfaces

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen; Brasch, Marcel

    2001-10-01

    Projective Virtual Reality is a new and promising approach to intuitively operable man machine interfaces for the commanding and supervision of complex automation systems. The user interface part of Projective Virtual Reality heavily builds on latest Virtual Reality techniques, a task deduction component and automatic action planning capabilities. In order to realize man machine interfaces for complex applications, not only the Virtual Reality part has to be considered but also the capabilities of the underlying robot and automation controller are of great importance. This paper presents a control architecture that has proved to be an ideal basis for the realization of complex robotic and automation systems that are controlled by Virtual Reality based man machine interfaces. The architecture does not just provide a well suited framework for the real-time control of a multi robot system but also supports Virtual Reality metaphors and augmentations which facilitate the user's job to command and supervise a complex system. The developed control architecture has already been used for a number of applications. Its capability to integrate sensor information from sensors of different levels of abstraction in real-time helps to make the realized automation system very responsive to real world changes. In this paper, the architecture will be described comprehensively, its main building blocks will be discussed and one realization that is built based on an open source real-time operating system will be presented. The software design and the features of the architecture which make it generally applicable to the distributed control of automation agents in real world applications will be explained. Furthermore its application to the commanding and control of experiments in the Columbus space laboratory, the European contribution to the International Space Station (ISS), is only one example which will be described.

  9. Blocking of Goal-Location Learning Based on Shape

    ERIC Educational Resources Information Center

    Alexander, Tim; Wilson, Stuart P.; Wilson, Paul N.

    2009-01-01

    Using desktop, computer-simulated virtual environments (VEs), the authors conducted 5 experiments to investigate blocking of learning about a goal location based on Shape B as a consequence of preliminary training to locate that goal using Shape A. The shapes were large 2-dimensional horizontal figures on the ground. Blocking of spatial learning…

  10. Skill training in multimodal virtual environments.

    PubMed

    Gopher, Daniel

    2012-01-01

    Multimodal, immersive, virtual reality (VR) techniques open new perspectives for perceptual-motor skill trainers. They also introduce new risks and dangers. This paper describes the benefits and pitfalls of multimodal training and the cognitive building blocks of a multimodal, VR training simulators.

  11. Virtual Machine Language

    NASA Technical Reports Server (NTRS)

    Grasso, Christopher; Page, Dennis; O'Reilly, Taifun; Fteichert, Ralph; Lock, Patricia; Lin, Imin; Naviaux, Keith; Sisino, John

    2005-01-01

    Virtual Machine Language (VML) is a mission-independent, reusable software system for programming for spacecraft operations. Features of VML include a rich set of data types, named functions, parameters, IF and WHILE control structures, polymorphism, and on-the-fly creation of spacecraft commands from calculated values. Spacecraft functions can be abstracted into named blocks that reside in files aboard the spacecraft. These named blocks accept parameters and execute in a repeatable fashion. The sizes of uplink products are minimized by the ability to call blocks that implement most of the command steps. This block approach also enables some autonomous operations aboard the spacecraft, such as aerobraking, telemetry conditional monitoring, and anomaly response, without developing autonomous flight software. Operators on the ground write blocks and command sequences in a concise, high-level, human-readable programming language (also called VML ). A compiler translates the human-readable blocks and command sequences into binary files (the operations products). The flight portion of VML interprets the uplinked binary files. The ground subsystem of VML also includes an interactive sequence- execution tool hosted on workstations, which runs sequences at several thousand times real-time speed, affords debugging, and generates reports. This tool enables iterative development of blocks and sequences within times of the order of seconds.

  12. Effect of virtual reality-based rehabilitation on upper-extremity function in patients with brain tumor: controlled trial.

    PubMed

    Yoon, Jisun; Chun, Min Ho; Lee, Sook Joung; Kim, Bo Ryun

    2015-06-01

    The aim of this study was to evaluate the benefit of virtual reality-based rehabilitation on upper-extremity function in patients with brain tumor. Patients with upper-extremity dysfunction were divided into age-matched and tumor type-matched two groups. The intervention group performed the virtual reality program 30 mins per session for 9 sessions and conventional occupational therapy 30 mins per session for 6 sessions for 3 wks, whereas the control group received conventional occupational therapy alone 30 mins per session for 15 sessions for 3 wks. The Box and Block test, the Manual Function test, and the Fugl-Meyer scale were used to evaluate upper-extremity function. The Korean version of the Modified Barthel Index was used to assess activities of daily living. Forty patients completed the study (20 for each group). Each group exhibited significant posttreatment improvements in the Box and Block test, Manual Function test, Fugl-Meyer scale, and Korean version of the Modified Barthel Index scores. The Box and Block test, the Fugl-Meyer scale, and the Manual Function test showed greater improvements in shoulder/elbow/forearm function in the intervention group and hand function in the control group. Virtual reality-based rehabilitation combined with conventional occupational therapy may be more effective than conventional occupational therapy, especially for proximal upper-extremity function in patients with brain tumor. Further studies considering hand function, such as use of virtual reality programs that targeting hand use, are required.

  13. The effects of game-based virtual reality movement therapy plus mental practice on upper extremity function in chronic stroke patients with hemiparesis: a randomized controlled trial

    PubMed Central

    Park, Jin-Hyuck; Park, Ji-Hyuk

    2016-01-01

    [Purpose] The purpose of this study was to investigate the effects of game-based virtual reality movement therapy plus mental practice on upper extremity function in chronic stroke patients with hemiparesis. [Subjects] The subjects were chronic stroke patients with hemiparesis. [Methods] Thirty subjects were randomly assigned to either the control group or experimental group. All subjects received 20 sessions (5 days in a week) of virtual reality movement therapy using the Nintendo Wii. In addition to Wii-based virtual reality movement therapy, experimental group subjects performed mental practice consisting of 5 minutes of relaxation, Wii games imagination, and normalization phases before the beginning of Wii games. To compare the two groups, the upper extremity subtest of the Fugl-Meyer Assessment, Box and Block Test, and quality of movement subscale of the Motor Activity Log were performed. [Results] Both groups showed statistically significant improvement in the Fugl-Meyer Assessment, Box and Block Test, and quality of the movement subscale of Motor Activity Log after the interventions. Also, there were significant differences in the Fugl-Meyer Assessment, Box and Block Test, and quality of movement subscale of the Motor Activity Log between the two groups. [Conclusion] Game-based virtual reality movement therapy alone may be helpful to improve functional recovery of the upper extremity, but the addition of MP produces a lager improvement. PMID:27134363

  14. Anesthesiology training using 3D imaging and virtual reality

    NASA Astrophysics Data System (ADS)

    Blezek, Daniel J.; Robb, Richard A.; Camp, Jon J.; Nauss, Lee A.

    1996-04-01

    Current training for regional nerve block procedures by anesthesiology residents requires expert supervision and the use of cadavers; both of which are relatively expensive commodities in today's cost-conscious medical environment. We are developing methods to augment and eventually replace these training procedures with real-time and realistic computer visualizations and manipulations of the anatomical structures involved in anesthesiology procedures, such as nerve plexus injections (e.g., celiac blocks). The initial work is focused on visualizations: both static images and rotational renderings. From the initial results, a coherent paradigm for virtual patient and scene representation will be developed.

  15. Linear triangular optimization technique and pricing scheme in residential energy management systems

    NASA Astrophysics Data System (ADS)

    Anees, Amir; Hussain, Iqtadar; AlKhaldi, Ali Hussain; Aslam, Muhammad

    2018-06-01

    This paper presents a new linear optimization algorithm for power scheduling of electric appliances. The proposed system is applied in a smart home community, in which community controller acts as a virtual distribution company for the end consumers. We also present a pricing scheme between community controller and its residential users based on real-time pricing and likely block rates. The results of the proposed optimization algorithm demonstrate that by applying the anticipated technique, not only end users can minimise the consumption cost, but it can also reduce the power peak to an average ratio which will be beneficial for the utilities as well.

  16. Accuracy Validation of Large-scale Block Adjustment without Control of ZY3 Images over China

    NASA Astrophysics Data System (ADS)

    Yang, Bo

    2016-06-01

    Mapping from optical satellite images without ground control is one of the goals of photogrammetry. Using 8802 three linear array stereo images (a total of 26406 images) of ZY3 over China, we propose a large-scale and non-control block adjustment method of optical satellite images based on the RPC model, in which a single image is regarded as an adjustment unit to be organized. To overcome the block distortion caused by unstable adjustment without ground control and the excessive accumulation of errors, we use virtual control points created by the initial RPC model of the images as the weighted observations and add them into the adjustment model to refine the adjustment. We use 8000 uniformly distributed high precision check points to evaluate the geometric accuracy of the DOM (Digital Ortho Model) and DSM (Digital Surface Model) production, for which the standard deviations of plane and elevation are 3.6 m and 4.2 m respectively. The geometric accuracy is consistent across the whole block and the mosaic accuracy of neighboring DOM is within a pixel, thus, the seamless mosaic could take place. This method achieves the goal of an accuracy of mapping without ground control better than 5 m for the whole China from ZY3 satellite images.

  17. Experimental and numeric stress analysis of titanium and zirconia one-piece dental implants.

    PubMed

    Mobilio, Nicola; Stefanoni, Filippo; Contiero, Paolo; Mollica, Francesco; Catapano, Santo

    2013-01-01

    To compare the stress in bone around zirconia and titanium implants under loading. A one-piece zirconia implant and a replica of the same implant made of commercially pure titanium were embedded in two self-curing acrylic resin blocks. To measure strain, a strain gauge was applied on the surface of the two samples. Loads of 50, 100, and 150 N, with orientations of 30, 45, and 60 degrees with respect to the implant axis were applied on the implant. Strain under all loading conditions on both samples was measured. Three-dimensional virtual replicas of both the implants were reproduced using the finite element method and inserted into a virtual acrylic resin block. All the materials were considered isotropic, linear, and elastic. The same geometry and loading conditions of the experimental setup were used to realize two new models, with the implants embedded within a virtual bone block. Very close values of strain in the two implants embedded in acrylic resin were obtained both experimentally and numerically. The stress states generated by the implants embedded in virtual bone were also very similar, even if the two implants moved differently. Moreover, the stress levels were higher on cortical bone than on trabecular bone. The stress levels in bone, generated by the two implants, appeared to be very similar. From a mechanical point of view, zirconia is a feasible substitute for titanium.

  18. Scalable, High-performance 3D Imaging Software Platform: System Architecture and Application to Virtual Colonoscopy

    PubMed Central

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli; Brett, Bevin

    2013-01-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. In this work, we have developed a software platform that is designed to support high-performance 3D medical image processing for a wide range of applications using increasingly available and affordable commodity computing systems: multi-core, clusters, and cloud computing systems. To achieve scalable, high-performance computing, our platform (1) employs size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D image processing algorithms; (2) supports task scheduling for efficient load distribution and balancing; and (3) consists of a layered parallel software libraries that allow a wide range of medical applications to share the same functionalities. We evaluated the performance of our platform by applying it to an electronic cleansing system in virtual colonoscopy, with initial experimental results showing a 10 times performance improvement on an 8-core workstation over the original sequential implementation of the system. PMID:23366803

  19. A Blueprint for Effectively Using RTI Intervention Block Time

    ERIC Educational Resources Information Center

    Higgins Averill, Orla; Baker, Diana; Rinaldi, Claudia

    2014-01-01

    Many schools have adopted schoolwide intervention blocks as a component of response-to-intervention (RTI) implementation to ensure that students who need intervention are receiving it. However, virtually no peer-reviewed guidance exists for helping teachers manage this time effectively. This article presents a blueprint for organizing intervention…

  20. The Impact of Virtual Collaboration and Collaboration Technologies on Knowledge Transfer and Team Performance in Distributed Organizations

    ERIC Educational Resources Information Center

    Ngoma, Ngoma Sylvestre

    2013-01-01

    Virtual teams are increasingly viewed as a powerful determinant of competitive advantage in geographically distributed organizations. This study was designed to provide insights into the interdependencies between virtual collaboration, collaboration technologies, knowledge transfer, and virtual team performance in an effort to understand whether…

  1. Distributed virtual environment for emergency medical training

    NASA Astrophysics Data System (ADS)

    Stytz, Martin R.; Banks, Sheila B.; Garcia, Brian W.; Godsell-Stytz, Gayl M.

    1997-07-01

    In many professions where individuals must work in a team in a high stress environment to accomplish a time-critical task, individual and team performance can benefit from joint training using distributed virtual environments (DVEs). One professional field that lacks but needs a high-fidelity team training environment is the field of emergency medicine. Currently, emergency department (ED) medical personnel train by using words to create a metal picture of a situation for the physician and staff, who then cooperate to solve the problems portrayed by the word picture. The need in emergency medicine for realistic virtual team training is critical because ED staff typically encounter rarely occurring but life threatening situations only once in their careers and because ED teams currently have no realistic environment in which to practice their team skills. The resulting lack of experience and teamwork makes diagnosis and treatment more difficult. Virtual environment based training has the potential to redress these shortfalls. The objective of our research is to develop a state-of-the-art virtual environment for emergency medicine team training. The virtual emergency room (VER) allows ED physicians and medical staff to realistically prepare for emergency medical situations by performing triage, diagnosis, and treatment on virtual patients within an environment that provides them with the tools they require and the team environment they need to realistically perform these three tasks. There are several issues that must be addressed before this vision is realized. The key issues deal with distribution of computations; the doctor and staff interface to the virtual patient and ED equipment; the accurate simulation of individual patient organs' response to injury, medication, and treatment; and an accurate modeling of the symptoms and appearance of the patient while maintaining a real-time interaction capability. Our ongoing work addresses all of these issues. In this paper we report on our prototype VER system and its distributed system architecture for an emergency department distributed virtual environment for emergency medical staff training. The virtual environment enables emergency department physicians and staff to develop their diagnostic and treatment skills using the virtual tools they need to perform diagnostic and treatment tasks. Virtual human imagery, and real-time virtual human response are used to create the virtual patient and present a scenario. Patient vital signs are available to the emergency department team as they manage the virtual case. The work reported here consists of the system architectures we developed for the distributed components of the virtual emergency room. The architectures we describe consist of the network level architecture as well as the software architecture for each actor within the virtual emergency room. We describe the role of distributed interactive simulation and other enabling technologies within the virtual emergency room project.

  2. Digitization of Blocks and Virtual Anastylosis of AN Antique Facade in Pont-Sainte (france)

    NASA Astrophysics Data System (ADS)

    Alby, E.; Grussenmeyer, P.; Bitard, L.; Guillemin, S.; Brunet-Gaston, V.; Gaston, C.; Rougier, R.

    2017-08-01

    This paper is dedicated to the digitization of blocks and virtual anastylosis of an antique façade in Pont-Sainte-Maxence (France). In 2014 during the construction of a shopping center, the National Institute for Preventive Archaeological Research (INRAP) discovered a Gallo-Roman site from the 2nd century AD. The most interesting part of the site for the study is a façade of 70 meters long by nearly 10 meters high. The state of the conservation of the blocks of the façade makes them exceptional due to the question raised by the collapse. Representative and symbolic blocks of this building have been selected for a virtual anastylosis study. The blocks discovered belong to different types: decorated architectural blocks, monumental statuary elements and details of very fine decorations. The digital reproduction of the façade will facilitate the formulation of hypothesis for the collapse of the structure. The Photogrammetry and Geomatics Group from INSA Strasbourg is in charge of the digitization, the anastylosis and the development of exploratory methods for understanding the ruin of the façade. To develop the three-dimensional model of the facade, approximately 70 blocks of various dimensions were chosen by the archaeologists. The choice of the digitization technique is made according to the following pragmatic criterion: the movable objects are acquired with a scan-arm or a hand-held scanner in the laboratory and the largest blocks are recorded by photogrammetry at the repository near Paris. The expected types of deliverables are multiple: very accurate 3D models with the most faithful representation to document the objects in the best way and with optimized size model allowing easy handling during anastylosis tests. The visual aspect of the models is also a very important issue. Indeed, textures from photos are an excellent way to bring about the realism of the virtual model, but fine details of the object are sometimes blurred by the uniformity of the color of the original material. Acquisition by hand-held scanner does not provide the textures (they must be acquired according to a complementary process). The data types are therefore different depending on the acquisition. The type of rendering of the models depends therefore on precise choices to be defined optimally. After the acquisition, hypothesis for the construction of the façade must be validated and / or adapted by the anastylosis of the digitized blocks. Different cases must be taken into account. First, the reconstruction of broken blocks is done by adjusting the recovered fragments. If all the fragments discovered are close to the initial shape of the block, the process is assimilated to a puzzle of complex surfaces. If the fragments have no contact but are an integral part of the block, the proportion of hypotheses in relation to the contact pieces is changed. And finally, if the blocks are to be assembled together by superposition and thanks to a common plan, as assumed during the construction, the restitution could be based on the positions of discoveries and hypotheses based on the architectural knowledge of this period. Each of these three methods of reconstruction involves different processes. The three-dimensional model will be validated by the positioning of the blocks and extended according to the actual dimensions of the façade. Different collapse scenarios will result from this study.

  3. Revolutionizing Education: The Promise of Virtual Reality

    ERIC Educational Resources Information Center

    Gadelha, Rene

    2018-01-01

    Virtual reality (VR) has the potential to revolutionize education, as it immerses students in their learning more than any other available medium. By blocking out visual and auditory distractions in the classroom, it has the potential to help students deeply connect with the material they are learning in a way that has never been possible before.…

  4. Teaching Mathematics to Young Children through the Use of Concrete and Virtual Manipulatives

    ERIC Educational Resources Information Center

    D'Angelo, Frank; Iliev, Nevin

    2012-01-01

    The use of manipulatives is an essential key to teaching mathematics to young children. Throughout history, different types of manipulatives have been used to aid in comprehension of mathematical concepts including quipu, abaci and pattern blocks. Today, concrete and virtual manipulatives are the tools that early childhood teachers are using in…

  5. Virtual time and time warp on the JPL hypercube. [operating system implementation for distributed simulation

    NASA Technical Reports Server (NTRS)

    Jefferson, David; Beckman, Brian

    1986-01-01

    This paper describes the concept of virtual time and its implementation in the Time Warp Operating System at the Jet Propulsion Laboratory. Virtual time is a distributed synchronization paradigm that is appropriate for distributed simulation, database concurrency control, real time systems, and coordination of replicated processes. The Time Warp Operating System is targeted toward the distributed simulation application and runs on a 32-node JPL Mark II Hypercube.

  6. Column generation algorithms for virtual network embedding in flexi-grid optical networks.

    PubMed

    Lin, Rongping; Luo, Shan; Zhou, Jingwei; Wang, Sheng; Chen, Bin; Zhang, Xiaoning; Cai, Anliang; Zhong, Wen-De; Zukerman, Moshe

    2018-04-16

    Network virtualization provides means for efficient management of network resources by embedding multiple virtual networks (VNs) to share efficiently the same substrate network. Such virtual network embedding (VNE) gives rise to a challenging problem of how to optimize resource allocation to VNs and to guarantee their performance requirements. In this paper, we provide VNE algorithms for efficient management of flexi-grid optical networks. We provide an exact algorithm aiming to minimize the total embedding cost in terms of spectrum cost and computation cost for a single VN request. Then, to achieve scalability, we also develop a heuristic algorithm for the same problem. We apply these two algorithms for a dynamic traffic scenario where many VN requests arrive one-by-one. We first demonstrate by simulations for the case of a six-node network that the heuristic algorithm obtains very close blocking probabilities to exact algorithm (about 0.2% higher). Then, for a network of realistic size (namely, USnet) we demonstrate that the blocking probability of our new heuristic algorithm is about one magnitude lower than a simpler heuristic algorithm, which was a component of an earlier published algorithm.

  7. An adaptive mesh refinement-multiphase lattice Boltzmann flux solver for simulation of complex binary fluid flows

    NASA Astrophysics Data System (ADS)

    Yuan, H. Z.; Wang, Y.; Shu, C.

    2017-12-01

    This paper presents an adaptive mesh refinement-multiphase lattice Boltzmann flux solver (AMR-MLBFS) for effective simulation of complex binary fluid flows at large density ratios. In this method, an AMR algorithm is proposed by introducing a simple indicator on the root block for grid refinement and two possible statuses for each block. Unlike available block-structured AMR methods, which refine their mesh by spawning or removing four child blocks simultaneously, the present method is able to refine its mesh locally by spawning or removing one to four child blocks independently when the refinement indicator is triggered. As a result, the AMR mesh used in this work can be more focused on the flow region near the phase interface and its size is further reduced. In each block of mesh, the recently proposed MLBFS is applied for the solution of the flow field and the level-set method is used for capturing the fluid interface. As compared with existing AMR-lattice Boltzmann models, the present method avoids both spatial and temporal interpolations of density distribution functions so that converged solutions on different AMR meshes and uniform grids can be obtained. The proposed method has been successfully validated by simulating a static bubble immersed in another fluid, a falling droplet, instabilities of two-layered fluids, a bubble rising in a box, and a droplet splashing on a thin film with large density ratios and high Reynolds numbers. Good agreement with the theoretical solution, the uniform-grid result, and/or the published data has been achieved. Numerical results also show its effectiveness in saving computational time and virtual memory as compared with computations on uniform meshes.

  8. Earthquakes: Recurrence and Interoccurrence Times

    NASA Astrophysics Data System (ADS)

    Abaimov, S. G.; Turcotte, D. L.; Shcherbakov, R.; Rundle, J. B.; Yakovlev, G.; Goltz, C.; Newman, W. I.

    2008-04-01

    The purpose of this paper is to discuss the statistical distributions of recurrence times of earthquakes. Recurrence times are the time intervals between successive earthquakes at a specified location on a specified fault. Although a number of statistical distributions have been proposed for recurrence times, we argue in favor of the Weibull distribution. The Weibull distribution is the only distribution that has a scale-invariant hazard function. We consider three sets of characteristic earthquakes on the San Andreas fault: (1) The Parkfield earthquakes, (2) the sequence of earthquakes identified by paleoseismic studies at the Wrightwood site, and (3) an example of a sequence of micro-repeating earthquakes at a site near San Juan Bautista. In each case we make a comparison with the applicable Weibull distribution. The number of earthquakes in each of these sequences is too small to make definitive conclusions. To overcome this difficulty we consider a sequence of earthquakes obtained from a one million year “Virtual California” simulation of San Andreas earthquakes. Very good agreement with a Weibull distribution is found. We also obtain recurrence statistics for two other model studies. The first is a modified forest-fire model and the second is a slider-block model. In both cases good agreements with Weibull distributions are obtained. Our conclusion is that the Weibull distribution is the preferred distribution for estimating the risk of future earthquakes on the San Andreas fault and elsewhere.

  9. Integrating multiple scientific computing needs via a Private Cloud infrastructure

    NASA Astrophysics Data System (ADS)

    Bagnasco, S.; Berzano, D.; Brunetti, R.; Lusso, S.; Vallero, S.

    2014-06-01

    In a typical scientific computing centre, diverse applications coexist and share a single physical infrastructure. An underlying Private Cloud facility eases the management and maintenance of heterogeneous use cases such as multipurpose or application-specific batch farms, Grid sites catering to different communities, parallel interactive data analysis facilities and others. It allows to dynamically and efficiently allocate resources to any application and to tailor the virtual machines according to the applications' requirements. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques; for example, rolling updates can be performed easily and minimizing the downtime. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 site and a dynamically expandable PROOF-based Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The Private Cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem (used in two different configurations for worker- and service-class hypervisors) and the OpenWRT Linux distribution (used for network virtualization). A future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and by using mainstream contextualization tools like CloudInit.

  10. Numerical Solutions of One Reduced Bethe-Salpeter Equation for the Coulombic Bound States Composed of Virtual Constituents

    NASA Astrophysics Data System (ADS)

    Chen, Jiao-Kai

    2018-04-01

    We present one reduction of the Bethe-Salpeter equation for the bound states composed of two off-mass-shell constituents. Both the relativistic effects and the virtuality effects can be considered in the obtained spinless virtuality distribution equation. The eigenvalues of the spinless virtuality distribution equation are perturbatively calculated and the bound states e+e-, μ+μ-, τ+τ-, μ+e-, and τ+e- are discussed.

  11. Shared protection based virtual network mapping in space division multiplexing optical networks

    NASA Astrophysics Data System (ADS)

    Zhang, Huibin; Wang, Wei; Zhao, Yongli; Zhang, Jie

    2018-05-01

    Space Division Multiplexing (SDM) has been introduced to improve the capacity of optical networks. In SDM optical networks, there are multiple cores/modes in each fiber link, and spectrum resources are multiplexed in both frequency and core/modes dimensions. Enabled by network virtualization technology, one SDM optical network substrate can be shared by several virtual networks operators. Similar with point-to-point connection services, virtual networks (VN) also need certain survivability to guard against network failures. Based on customers' heterogeneous requirements on the survivability of their virtual networks, this paper studies the shared protection based VN mapping problem and proposes a Minimum Free Frequency Slots (MFFS) mapping algorithm to improve spectrum efficiency. Simulation results show that the proposed algorithm can optimize SDM optical networks significantly in terms of blocking probability and spectrum utilization.

  12. Learning Curves of Virtual Mastoidectomy in Distributed and Massed Practice.

    PubMed

    Andersen, Steven Arild Wuyts; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten

    2015-10-01

    Repeated and deliberate practice is crucial in surgical skills training, and virtual reality (VR) simulation can provide self-directed training of basic surgical skills to meet the individual needs of the trainee. Assessment of the learning curves of surgical procedures is pivotal in understanding skills acquisition and best-practice implementation and organization of training. To explore the learning curves of VR simulation training of mastoidectomy and the effects of different practice sequences with the aim of proposing the optimal organization of training. A prospective trial with a 2 × 2 design was conducted at an academic teaching hospital. Participants included 43 novice medical students. Of these, 21 students completed time-distributed practice from October 14 to November 29, 2013, and a separate group of 19 students completed massed practice on May 16, 17, or 18, 2014. Data analysis was performed from June 6, 2014, to March 3, 2015. Participants performed 12 repeated virtual mastoidectomies using a temporal bone surgical simulator in either a distributed (practice blocks spaced in time) or massed (all practice in 1 day) training program with randomization for simulator-integrated tutoring during the first 5 sessions. Performance was assessed using a modified Welling Scale for final product analysis by 2 blinded senior otologists. Compared with the 19 students in the massed practice group, the 21 students in the distributed practice group were older (mean age, 25.1 years), more often male (15 [62%]), and had slightly higher mean gaming frequency (2.3 on a 1-5 Likert scale). Learning curves were established and distributed practice was found to be superior to massed practice, reported as mean end score (95% CI) of 15.7 (14.4-17.0) in distributed practice vs. 13.0 (11.9-14.1) with massed practice (P = .002). Simulator-integrated tutoring accelerated the initial performance, with mean score for tutored sessions of 14.6 (13.9-15.2) vs. 13.4 (12.8-14.0) for corresponding nontutored sessions (P < .01) but at the cost of a drop in performance once tutoring ceased. The performance drop was less with distributed practice, suggesting a protective effect when acquired skills were consolidated over time. The mean performance of the nontutored participants in the distributed practice group plateaued on a score of 16.0 (15.3-16.7) at approximately the ninth repetition, but the individual learning curves were highly variable. Novices can acquire basic mastoidectomy competencies with self-directed VR simulation training. Training should be organized with distributed practice, and simulator-integrated tutoring can be useful to accelerate the initial learning curve. Practice should be deliberate and toward a standard set level of proficiency that remains to be defined rather than toward the mean learning curve plateau.

  13. Evolving virtual creatures and catapults.

    PubMed

    Chaumont, Nicolas; Egli, Richard; Adami, Christoph

    2007-01-01

    We present a system that can evolve the morphology and the controller of virtual walking and block-throwing creatures (catapults) using a genetic algorithm. The system is based on Sims' work, implemented as a flexible platform with an off-the-shelf dynamics engine. Experiments aimed at evolving Sims-type walkers resulted in the emergence of various realistic gaits while using fairly simple objective functions. Due to the flexibility of the system, drastically different morphologies and functions evolved with only minor modifications to the system and objective function. For example, various throwing techniques evolved when selecting for catapults that propel a block as far as possible. Among the strategies and morphologies evolved, we find the drop-kick strategy, as well as the systematic invention of the principle behind the wheel, when allowing mutations to the projectile.

  14. [Distribution of virtual water of crops in Beijing].

    PubMed

    Wang, Hong-Rui; Dong, Yan-Yan; Wang, Jun-Hong; Wang, Yan; Han, Zhao-Xing

    2007-11-01

    Virtual water content of grains and vegetables in Beijing's districts is calculated and analyzed for many years by irrigating water quota method, which is compared with the distribution and exploitation of groundwater in Beijing. The results indicate the virtual water content of grains shows a downward trend in all the districts, but the grain production in Yanqing district brings great pressure to the local groundwater. Secondly, the virtual water content of vegetables shows an upward trend in Shunyi District, Daxing district and Pinggu District and is accounting for more and more gradually. Thirdly, the total virtual water volume of grains is decreasing, and the total virtual water volume of vegetables is increasing and the total virtual water volume of crops in Beijing is reducing in recent years, which corresponds with the structural adjustment of policies.

  15. Full Parallel Implementation of an All-Electron Four-Component Dirac-Kohn-Sham Program.

    PubMed

    Rampino, Sergio; Belpassi, Leonardo; Tarantelli, Francesco; Storchi, Loriano

    2014-09-09

    A full distributed-memory implementation of the Dirac-Kohn-Sham (DKS) module of the program BERTHA (Belpassi et al., Phys. Chem. Chem. Phys. 2011, 13, 12368-12394) is presented, where the self-consistent field (SCF) procedure is replicated on all the parallel processes, each process working on subsets of the global matrices. The key feature of the implementation is an efficient procedure for switching between two matrix distribution schemes, one (integral-driven) optimal for the parallel computation of the matrix elements and another (block-cyclic) optimal for the parallel linear algebra operations. This approach, making both CPU-time and memory scalable with the number of processors used, virtually overcomes at once both time and memory barriers associated with DKS calculations. Performance, portability, and numerical stability of the code are illustrated on the basis of test calculations on three gold clusters of increasing size, an organometallic compound, and a perovskite model. The calculations are performed on a Beowulf and a BlueGene/Q system.

  16. Experiential Virtual Scenarios With Real-Time Monitoring (Interreality) for the Management of Psychological Stress: A Block Randomized Controlled Trial

    PubMed Central

    Pallavicini, Federica; Morganti, Luca; Serino, Silvia; Scaratti, Chiara; Briguglio, Marilena; Crifaci, Giulia; Vetrano, Noemi; Giulintano, Annunziata; Bernava, Giuseppe; Tartarisco, Gennaro; Pioggia, Giovanni; Raspelli, Simona; Cipresso, Pietro; Vigna, Cinzia; Grassi, Alessandra; Baruffi, Margherita; Wiederhold, Brenda; Riva, Giuseppe

    2014-01-01

    Background The recent convergence between technology and medicine is offering innovative methods and tools for behavioral health care. Among these, an emerging approach is the use of virtual reality (VR) within exposure-based protocols for anxiety disorders, and in particular posttraumatic stress disorder. However, no systematically tested VR protocols are available for the management of psychological stress. Objective Our goal was to evaluate the efficacy of a new technological paradigm, Interreality, for the management and prevention of psychological stress. The main feature of Interreality is a twofold link between the virtual and the real world achieved through experiential virtual scenarios (fully controlled by the therapist, used to learn coping skills and improve self-efficacy) with real-time monitoring and support (identifying critical situations and assessing clinical change) using advanced technologies (virtual worlds, wearable biosensors, and smartphones). Methods The study was designed as a block randomized controlled trial involving 121 participants recruited from two different worker populations—teachers and nurses—that are highly exposed to psychological stress. Participants were a sample of teachers recruited in Milan (Block 1: n=61) and a sample of nurses recruited in Messina, Italy (Block 2: n=60). Participants within each block were randomly assigned to the (1) Experimental Group (EG): n=40; B1=20, B2=20, which received a 5-week treatment based on the Interreality paradigm; (2) Control Group (CG): n=42; B1=22, B2=20, which received a 5-week traditional stress management training based on cognitive behavioral therapy (CBT); and (3) the Wait-List group (WL): n=39, B1=19, B2=20, which was reassessed and compared with the two other groups 5 weeks after the initial evaluation. Results Although both treatments were able to significantly reduce perceived stress better than WL, only EG participants reported a significant reduction (EG=12% vs CG=0.5%) in chronic “trait” anxiety. A similar pattern was found for coping skills: both treatments were able to significantly increase most coping skills, but only EG participants reported a significant increase (EG=14% vs CG=0.3%) in the Emotional Support skill. Conclusions Our findings provide initial evidence that the Interreality protocol yields better outcomes than the traditionally accepted gold standard for psychological stress treatment: CBT. Consequently, these findings constitute a sound foundation and rationale for the importance of continuing future research in technology-enhanced protocols for psychological stress management. Trial Registration ClinicalTrials.gov: NCT01683617; http://clinicaltrials.gov/show/NCT01683617 (Archived by WebCite at http://www.webcitation.org/6QnziHv3h). PMID:25004803

  17. NASA Team Collaboration Pilot: Enabling NASA's Virtual Teams

    NASA Technical Reports Server (NTRS)

    Prahst, Steve

    2003-01-01

    Most NASA projects and work activities are accomplished by teams of people. These teams are often geographically distributed - across NASA centers and NASA external partners, both domestic and international. NASA "virtual" teams are stressed by the challenge of getting team work done - across geographic boundaries and time zones. To get distributed work done, teams rely on established methods - travel, telephones, Video Teleconferencing (NASA VITS), and email. Time is our most critical resource - and team members are hindered by the overhead of travel and the difficulties of coordinating work across their virtual teams. Modern, Internet based team collaboration tools offer the potential to dramatically improve the ability of virtual teams to get distributed work done.

  18. Productive High Performance Parallel Programming with Auto-tuned Domain-Specific Embedded Languages

    DTIC Science & Technology

    2013-01-02

    Compilation JVM Java Virtual Machine KB Kilobyte KDT Knowledge Discovery Toolbox LAPACK Linear Algebra Package LLVM Low-Level Virtual Machine LOC Lines...different starting points. Leo Meyerovich also helped solidify some of the ideas here in discussions during Par Lab retreats. I would also like to thank...multi-timestep computations by blocking in both time and space. 88 Implementation Output Approx DSL Type Language Language Parallelism LoC Graphite

  19. Mineral mapping in the Maherabad area, eastern Iran, using the HyMap remote sensing data

    NASA Astrophysics Data System (ADS)

    Molan, Yusuf Eshqi; Refahi, Davood; Tarashti, Ali Hoseinmardi

    2014-04-01

    This study applies matched filtering on the HyMap airborne hyperspectral data to obtain the distribution map of alteration minerals in the Maherabad area and uses virtual verification to verify the results. This paper also introduces "moving threshold" which tries to find an appropriate threshold value to convert gray scale images, produced by mapping methods, to target and background pixels. The Maherabad area, located in the eastern part of the Lut block, is a Cu-Au porphyry system in which quartz-sericite-pyrite, argillic and propylitic alteration are most common. Minimum noise fraction transform coupled with a pixel purity index was applied on the HyMap images to extract the endmembers of the alteration minerals, including kaolinite, montmorillonite, sericite (muscovite/illite), calcite, chlorite, epidote, and goethite. Since there was no access to any portable spectrometer and/or lab spectral measurements for the verification of the remote sensing imagery results, virtual verification achieved using the USGS spectral library and showed an agreement of 83.19%. The comparison between the results of the matched filtering and X-ray diffraction (XRD) analyses also showed an agreement of 56.13%.

  20. Managing a tier-2 computer centre with a private cloud infrastructure

    NASA Astrophysics Data System (ADS)

    Bagnasco, Stefano; Berzano, Dario; Brunetti, Riccardo; Lusso, Stefano; Vallero, Sara

    2014-06-01

    In a typical scientific computing centre, several applications coexist and share a single physical infrastructure. An underlying Private Cloud infrastructure eases the management and maintenance of such heterogeneous applications (such as multipurpose or application-specific batch farms, Grid sites, interactive data analysis facilities and others), allowing dynamic allocation resources to any application. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques. Such infrastructures are being deployed in some large centres (see e.g. the CERN Agile Infrastructure project), but with several open-source tools reaching maturity this is becoming viable also for smaller sites. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 centre, an Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The private cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem and the OpenWRT Linux distribution (used for network virtualization); a future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and OCCI.

  1. Analysis of scalability of high-performance 3D image processing platform for virtual colonoscopy

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli

    2014-03-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. For this purpose, we previously developed a software platform for high-performance 3D medical image processing, called HPC 3D-MIP platform, which employs increasingly available and affordable commodity computing systems such as the multicore, cluster, and cloud computing systems. To achieve scalable high-performance computing, the platform employed size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D-MIP algorithms, supported task scheduling for efficient load distribution and balancing, and consisted of a layered parallel software libraries that allow image processing applications to share the common functionalities. We evaluated the performance of the HPC 3D-MIP platform by applying it to computationally intensive processes in virtual colonoscopy. Experimental results showed a 12-fold performance improvement on a workstation with 12-core CPUs over the original sequential implementation of the processes, indicating the efficiency of the platform. Analysis of performance scalability based on the Amdahl's law for symmetric multicore chips showed the potential of a high performance scalability of the HPC 3DMIP platform when a larger number of cores is available.

  2. Performance Analysis of Ivshmem for High-Performance Computing in Virtual Machines

    NASA Astrophysics Data System (ADS)

    Ivanovic, Pavle; Richter, Harald

    2018-01-01

    High-Performance computing (HPC) is rarely accomplished via virtual machines (VMs). In this paper, we present a remake of ivshmem which can change this. Ivshmem was a shared memory (SHM) between virtual machines on the same server, with SHM-access synchronization included, until about 5 years ago when newer versions of Linux and its virtualization library libvirt evolved. We restored that SHM-access synchronization feature because it is indispensable for HPC and made ivshmem runnable with contemporary versions of Linux, libvirt, KVM, QEMU and especially MPICH, which is an implementation of MPI - the standard HPC communication library. Additionally, MPICH was transparently modified by us to get ivshmem included, resulting in a three to ten times performance improvement compared to TCP/IP. Furthermore, we have transparently replaced MPI_PUT, a single-side MPICH communication mechanism, by an own MPI_PUT wrapper. As a result, our ivshmem even surpasses non-virtualized SHM data transfers for block lengths greater than 512 KBytes, showing the benefits of virtualization. All improvements were possible without using SR-IOV.

  3. Improvement of two-way continuous-variable quantum key distribution with virtual photon subtraction

    NASA Astrophysics Data System (ADS)

    Zhao, Yijia; Zhang, Yichen; Li, Zhengyu; Yu, Song; Guo, Hong

    2017-08-01

    We propose a method to improve the performance of two-way continuous-variable quantum key distribution protocol by virtual photon subtraction. The virtual photon subtraction implemented via non-Gaussian post-selection not only enhances the entanglement of two-mode squeezed vacuum state but also has advantages in simplifying physical operation and promoting efficiency. In two-way protocol, virtual photon subtraction could be applied on two sources independently. Numerical simulations show that the optimal performance of renovated two-way protocol is obtained with photon subtraction only used by Alice. The transmission distance and tolerable excess noise are improved by using the virtual photon subtraction with appropriate parameters. Moreover, the tolerable excess noise maintains a high value with the increase in distance so that the robustness of two-way continuous-variable quantum key distribution system is significantly improved, especially at long transmission distance.

  4. Generation of 3D synthetic breast tissue

    NASA Astrophysics Data System (ADS)

    Elangovan, Premkumar; Dance, David R.; Young, Kenneth C.; Wells, Kevin

    2016-03-01

    Virtual clinical trials are an emergent approach for the rapid evaluation and comparison of various breast imaging technologies and techniques using computer-based modeling tools. A fundamental requirement of this approach for mammography is the use of realistic looking breast anatomy in the studies to produce clinically relevant results. In this work, a biologically inspired approach has been used to simulate realistic synthetic breast phantom blocks for use in virtual clinical trials. A variety of high and low frequency features (including Cooper's ligaments, blood vessels and glandular tissue) have been extracted from clinical digital breast tomosynthesis images and used to simulate synthetic breast blocks. The appearance of the phantom blocks was validated by presenting a selection of simulated 2D and DBT images interleaved with real images to a team of experienced readers for rating using an ROC paradigm. The average areas under the curve for 2D and DBT images were 0.53+/-.04 and 0.55+/-.07 respectively; errors are the standard errors of the mean. The values indicate that the observers had difficulty in differentiating the real images from simulated images. The statistical properties of simulated images of the phantom blocks were evaluated by means of power spectrum analysis. The power spectrum curves for real and simulated images closely match and overlap indicating good agreement.

  5. Cooperative storage of shared files in a parallel computing system with dynamic block size

    DOEpatents

    Bent, John M.; Faibish, Sorin; Grider, Gary

    2015-11-10

    Improved techniques are provided for parallel writing of data to a shared object in a parallel computing system. A method is provided for storing data generated by a plurality of parallel processes to a shared object in a parallel computing system. The method is performed by at least one of the processes and comprises: dynamically determining a block size for storing the data; exchanging a determined amount of the data with at least one additional process to achieve a block of the data having the dynamically determined block size; and writing the block of the data having the dynamically determined block size to a file system. The determined block size comprises, e.g., a total amount of the data to be stored divided by the number of parallel processes. The file system comprises, for example, a log structured virtual parallel file system, such as a Parallel Log-Structured File System (PLFS).

  6. Rapid prototyping, astronaut training, and experiment control and supervision: distributed virtual worlds for COLUMBUS, the European Space Laboratory module

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen

    2002-02-01

    In 2004, the European COLUMBUS Module is to be attached to the International Space Station. On the way to the successful planning, deployment and operation of the module, computer generated and animated models are being used to optimize performance. Under contract of the German Space Agency DLR, it has become IRF's task to provide a Projective Virtual Reality System to provide a virtual world built after the planned layout of the COLUMBUS module let astronauts and experimentators practice operational procedures and the handling of experiments. The key features of the system currently being realized comprise the possibility for distributed multi-user access to the virtual lab and the visualization of real-world experiment data. Through the capabilities to share the virtual world, cooperative operations can be practiced easily, but also trainers and trainees can work together more effectively sharing the virtual environment. The capability to visualize real-world data will be used to introduce measured data of experiments into the virtual world online in order to realistically interact with the science-reference model hardware: The user's actions in the virtual world are translated into corresponding changes of the inputs of the science reference model hardware; the measured data is than in turn fed back into the virtual world. During the operation of COLUMBUS, the capabilities for distributed access and the capabilities to visualize measured data through the use of metaphors and augmentations of the virtual world may be used to provide virtual access to the COLUMBUS module, e.g. via Internet. Currently, finishing touches are being put to the system. In November 2001 the virtual world shall be operational, so that besides the design and the key ideas, first experimental results can be presented.

  7. Full State Feedback Control for Virtual Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jay Tillay

    This report presents an object-oriented implementation of full state feedback control for virtual power plants (VPP). The components of the VPP full state feedback control are (1) objectoriented high-fidelity modeling for all devices in the VPP; (2) Distribution System Distributed Quasi-Dynamic State Estimation (DS-DQSE) that enables full observability of the VPP by augmenting actual measurements with virtual, derived and pseudo measurements and performing the Quasi-Dynamic State Estimation (QSE) in a distributed manner, and (3) automated formulation of the Optimal Power Flow (OPF) in real time using the output of the DS-DQSE, and solving the distributed OPF to provide the optimalmore » control commands to the DERs of the VPP.« less

  8. Exploiting virtual synchrony in distributed systems

    NASA Technical Reports Server (NTRS)

    Birman, Kenneth P.; Joseph, Thomas A.

    1987-01-01

    Applications of a virtually synchronous environment are described for distributed programming, which underlies a collection of distributed programming tools in the ISIS2 system. A virtually synchronous environment allows processes to be structured into process groups, and makes events like broadcasts to the group as an entity, group membership changes, and even migration of an activity from one place to another appear to occur instantaneously, in other words, synchronously. A major advantage to this approach is that many aspects of a distributed application can be treated independently without compromising correctness. Moreover, user code that is designed as if the system were synchronous can often be executed concurrently. It is argued that this approach to building distributed and fault tolerant software is more straightforward, more flexible, and more likely to yield correct solutions than alternative approaches.

  9. Multi-Block Parallel Navier-Stokes Simulation of Unsteady Wind Tunnel and Ground Interference Effects

    DTIC Science & Technology

    2001-09-01

    coefficient and propulsive efficiency showed that these parameters are virtually the same for both TE conditions (cT 0 40 and η 0 21). As a conclusion...difference in the way the two codes work, they yielded virtually the same solution. This shows that, for a reasonably small time step, whether the boundary... Biblioteca Sao Jose dos Campos - SP - Brazil iab@bibl.ita.cta.br 5. Prof. Max F. Platzer Chair, Department of Aeronautics & Astronautics - Naval

  10. Direct comparison of the impact of head tracking, reverberation, and individualized head-related transfer functions on the spatial perception of a virtual speech source

    NASA Technical Reports Server (NTRS)

    Begault, D. R.; Wenzel, E. M.; Anderson, M. R.

    2001-01-01

    A study of sound localization performance was conducted using headphone-delivered virtual speech stimuli, rendered via HRTF-based acoustic auralization software and hardware, and blocked-meatus HRTF measurements. The independent variables were chosen to evaluate commonly held assumptions in the literature regarding improved localization: inclusion of head tracking, individualized HRTFs, and early and diffuse reflections. Significant effects were found for azimuth and elevation error, reversal rates, and externalization.

  11. A Study Comparing the Pedagogical Effectiveness of Virtual Worlds and of Classical Methods

    DTIC Science & Technology

    2014-08-01

    Approved for public release; distribution is unlimited. A Study Comparing the Pedagogical Effectiveness of Virtual Worlds and of Classical Methods...ABSTRACT A Study Comparing the Pedagogical Effectiveness of Virtual Worlds and of Classical Methods Report Title This experiment tests whether a virtual... PEDAGOGICAL EFFECTIVENESS OF VIRTUAL WORLDS AND OF TRADITIONAL TRAINING METHODS A Thesis by BENJAMIN PETERS

  12. Efficacy of virtual block objects in reducing the lung dose in helical tomotherapy planning for cervical oesophageal cancer: a planning study.

    PubMed

    Ito, Makoto; Shimizu, Hidetoshi; Aoyama, Takahiro; Tachibana, Hiroyuki; Tomita, Natsuo; Makita, Chiyoko; Koide, Yutaro; Kato, Daiki; Ishiguchi, Tsuneo; Kodaira, Takeshi

    2018-04-04

    Intensity-modulated radiotherapy is useful for cervical oesophageal carcinoma (CEC); however, increasing low-dose exposure to the lung may lead to radiation pneumonitis. Nevertheless, an irradiation technique that avoids the lungs has never been examined due to the high difficulty of dose optimization. In this study, we examined the efficacy of helical tomotherapy that can restrict beamlets passing virtual blocks during dose optimization computing (block plan) in reducing the lung dose. Fifteen patients with CEC were analysed. The primary/nodal lesion and prophylactic nodal region with adequate margins were defined as the planning target volume (PTV)-60 Gy and PTV-48 Gy, respectively. Nineteen plans per patient were made and compared (total: 285 plans), including non-block and block plans with several shapes and sizes. The most appropriate block model was semi-circular, 8 cm outside of the tracheal bifurcation, with a significantly lower lung dose compared to that of non-block plans; the mean lung volumes receiving 5 Gy, 10 Gy, 20 Gy, and the mean lung dose were 31.3% vs. 48.0% (p <  0.001), 22.4% vs. 39.4% (p <  0.001), 13.2% vs. 16.0% (p = 0.028), and 7.1 Gy vs. 9.6 Gy (p <  0.001), respectively. Both the block and non-block plans were comparable in terms of the homogeneity and conformity indexes of PTV-60 Gy: 0.05 vs. 0.04 (p = 0.100) and 0.82 vs. 0.85 (p = 0.616), respectively. The maximum dose of the spinal cord planning risk volume increased slightly (49.4 Gy vs. 47.9 Gy, p = 0.002). There was no significant difference in the mean doses to the heart and the thyroid gland. Prolongation of the delivery time was less than 1 min (5.6 min vs. 4.9 min, p = 0.010). The block plan for CEC could significantly reduce the lung dose, with acceptable increment in the spinal dose and a slightly prolonged delivery time.

  13. Parallel implementation of D-Phylo algorithm for maximum likelihood clusters.

    PubMed

    Malik, Shamita; Sharma, Dolly; Khatri, Sunil Kumar

    2017-03-01

    This study explains a newly developed parallel algorithm for phylogenetic analysis of DNA sequences. The newly designed D-Phylo is a more advanced algorithm for phylogenetic analysis using maximum likelihood approach. The D-Phylo while misusing the seeking capacity of k -means keeps away from its real constraint of getting stuck at privately conserved motifs. The authors have tested the behaviour of D-Phylo on Amazon Linux Amazon Machine Image(Hardware Virtual Machine)i2.4xlarge, six central processing unit, 122 GiB memory, 8  ×  800 Solid-state drive Elastic Block Store volume, high network performance up to 15 processors for several real-life datasets. Distributing the clusters evenly on all the processors provides us the capacity to accomplish a near direct speed if there should arise an occurrence of huge number of processors.

  14. Scheduling from the perspective of the application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, F.; Wolski, R.

    1996-12-31

    Metacomputing is the aggregation of distributed and high-performance resources on coordinated networks. With careful scheduling, resource-intensive applications can be implemented efficiently on metacomputing systems at the sizes of interest to developers and users. In this paper we focus on the problem of scheduling applications on metacomputing systems. We introduce the concept of application-centric scheduling in which everything about the system is evaluated in terms of its impact on the application. Application-centric scheduling is used by virtually all metacomputer programmers to achieve performance on metacomputing systems. We describe two successful metacomputing applications to illustrate this approach, and describe AppLeS scheduling agentsmore » which generalize the application-centric scheduling approach. Finally, we show preliminary results which compare AppLeS-derived schedules with conventional strip and blocked schedules for a two-dimensional Jacobi code.« less

  15. Guidelines for developing distributed virtual environment applications

    NASA Astrophysics Data System (ADS)

    Stytz, Martin R.; Banks, Sheila B.

    1998-08-01

    We have conducted a variety of projects that served to investigate the limits of virtual environments and distributed virtual environment (DVE) technology for the military and medical professions. The projects include an application that allows the user to interactively explore a high-fidelity, dynamic scale model of the Solar System and a high-fidelity, photorealistic, rapidly reconfigurable aircraft simulator. Additional projects are a project for observing, analyzing, and understanding the activity in a military distributed virtual environment, a project to develop a distributed threat simulator for training Air Force pilots, a virtual spaceplane to determine user interface requirements for a planned military spaceplane system, and an automated wingman for use in supplementing or replacing human-controlled systems in a DVE. The last two projects are a virtual environment user interface framework; and a project for training hospital emergency department personnel. In the process of designing and assembling the DVE applications in support of these projects, we have developed rules of thumb and insights into assembling DVE applications and the environment itself. In this paper, we open with a brief review of the applications that were the source for our insights and then present the lessons learned as a result of these projects. The lessons we have learned fall primarily into five areas. These areas are requirements development, software architecture, human-computer interaction, graphical database modeling, and construction of computer-generated forces.

  16. Laboratory E-Notebooks: A Learning Object-Based Repository

    ERIC Educational Resources Information Center

    Abari, Ilior; Pierre, Samuel; Saliah-Hassane, Hamadou

    2006-01-01

    During distributed virtual laboratory experiment sessions, a major problem is to be able to collect, store, manage and share heterogeneous data (intermediate results, analysis, annotations, etc) manipulated simultaneously by geographically distributed teammates composing a virtual team. The electronic notebook is a possible response to this…

  17. An optimization method of VON mapping for energy efficiency and routing in elastic optical networks

    NASA Astrophysics Data System (ADS)

    Liu, Huanlin; Xiong, Cuilian; Chen, Yong; Li, Changping; Chen, Derun

    2018-03-01

    To improve resources utilization efficiency, network virtualization in elastic optical networks has been developed by sharing the same physical network for difference users and applications. In the process of virtual nodes mapping, longer paths between physical nodes will consume more spectrum resources and energy. To address the problem, we propose a virtual optical network mapping algorithm called genetic multi-objective optimize virtual optical network mapping algorithm (GM-OVONM-AL), which jointly optimizes the energy consumption and spectrum resources consumption in the process of virtual optical network mapping. Firstly, a vector function is proposed to balance the energy consumption and spectrum resources by optimizing population classification and crowding distance sorting. Then, an adaptive crossover operator based on hierarchical comparison is proposed to improve search ability and convergence speed. In addition, the principle of the survival of the fittest is introduced to select better individual according to the relationship of domination rank. Compared with the spectrum consecutiveness-opaque virtual optical network mapping-algorithm and baseline-opaque virtual optical network mapping algorithm, simulation results show the proposed GM-OVONM-AL can achieve the lowest bandwidth blocking probability and save the energy consumption.

  18. The building blocks of the full body ownership illusion

    PubMed Central

    Maselli, Antonella; Slater, Mel

    2013-01-01

    Previous work has reported that it is not difficult to give people the illusion of ownership over an artificial body, providing a powerful tool for the investigation of the neural and cognitive mechanisms underlying body perception and self consciousness. We present an experimental study that uses immersive virtual reality (IVR) focused on identifying the perceptual building blocks of this illusion. We systematically manipulated visuotactile and visual sensorimotor contingencies, visual perspective, and the appearance of the virtual body in order to assess their relative role and mutual interaction. Consistent results from subjective reports and physiological measures showed that a first person perspective over a fake humanoid body is essential for eliciting a body ownership illusion. We found that the illusion of ownership can be generated when the virtual body has a realistic skin tone and spatially substitutes the real body seen from a first person perspective. In this case there is no need for an additional contribution of congruent visuotactile or sensorimotor cues. Additionally, we found that the processing of incongruent perceptual cues can be modulated by the level of the illusion: when the illusion is strong, incongruent cues are not experienced as incorrect. Participants exposed to asynchronous visuotactile stimulation can experience the ownership illusion and perceive touch as originating from an object seen to contact the virtual body. Analogously, when the level of realism of the virtual body is not high enough and/or when there is no spatial overlap between the two bodies, then the contribution of congruent multisensory and/or sensorimotor cues is required for evoking the illusion. On the basis of these results and inspired by findings from neurophysiological recordings in the monkey, we propose a model that accounts for many of the results reported in the literature. PMID:23519597

  19. Direction of Arrival Estimation for MIMO Radar via Unitary Nuclear Norm Minimization

    PubMed Central

    Wang, Xianpeng; Huang, Mengxing; Wu, Xiaoqin; Bi, Guoan

    2017-01-01

    In this paper, we consider the direction of arrival (DOA) estimation issue of noncircular (NC) source in multiple-input multiple-output (MIMO) radar and propose a novel unitary nuclear norm minimization (UNNM) algorithm. In the proposed method, the noncircular properties of signals are used to double the virtual array aperture, and the real-valued data are obtained by utilizing unitary transformation. Then a real-valued block sparse model is established based on a novel over-complete dictionary, and a UNNM algorithm is formulated for recovering the block-sparse matrix. In addition, the real-valued NC-MUSIC spectrum is used to design a weight matrix for reweighting the nuclear norm minimization to achieve the enhanced sparsity of solutions. Finally, the DOA is estimated by searching the non-zero blocks of the recovered matrix. Because of using the noncircular properties of signals to extend the virtual array aperture and an additional real structure to suppress the noise, the proposed method provides better performance compared with the conventional sparse recovery based algorithms. Furthermore, the proposed method can handle the case of underdetermined DOA estimation. Simulation results show the effectiveness and advantages of the proposed method. PMID:28441770

  20. Electrophysiological characterization of 14-benzoyltalatisamine, a selective blocker of the delayed rectifier K+ channel found in virtual screening.

    PubMed

    Song, Ming-Ke; Liu, Hong; Jiang, Hua-Liang; Yue, Jian-Min; Hu, Guo-Yuan

    2006-02-15

    14-Benzoyltalatisamine is a potent and selective blocker of the delayed rectifier K+ channel found in a computational virtual screening study. The compound was found to block the K+ channel from the extracellular side. However, it is unclear whether 14-benzoyltalatisamine shares the same block mechanism with tetraethylammonium (TEA). In order to elucidate how the hit compound found by the virtual screening interacts with the outer vestibule of the K+ channel, the effects of 14-benzoyltalatisamine and TEA on the delayed rectifier K+ current of rat dissociated hippocampal neurons were compared using whole-cell voltage-clamp recording. External application of 14-benzoyltalatisamine and TEA reversibly inhibited the current with IC50 values of 10.1+/-2.2 microM and 1.05+/-0.21 mM, respectively. 14-Benzoyltalatisamine exerted voltage-dependent inhibition, markedly accelerated the decay of the current, and caused a significant hyperpolarizing shift of the steady-state activation curve, whereas TEA caused voltage-independent inhibition, without affecting the kinetic parameters of the current. The blockade by 14-benzoyltalatisamine, but not by TEA, was significantly diminished in a high K+ (60 mM) external solution. The potency of 14-benzoyltalatisamine was markedly reduced in the presence of 15 mM TEA. The results suggest that 14-benzoyltalatisamine bind to the external pore entry of the delayed rectifier K+ channel with partial insertion into the selectivity filter, which is in conformity with that predicted by the molecular docking model in the virtual screening.

  1. Design of virtual display and testing system for moving mass electromechanical actuator

    NASA Astrophysics Data System (ADS)

    Gao, Zhigang; Geng, Keda; Zhou, Jun; Li, Peng

    2015-12-01

    Aiming at the problem of control, measurement and movement virtual display of moving mass electromechanical actuator(MMEA), the virtual testing system of MMEA was developed based on the PC-DAQ architecture and the software platform of LabVIEW, and the comprehensive test task such as drive control of MMEA, tests of kinematic parameter, measurement of centroid position and virtual display of movement could be accomplished. The system could solve the alignment for acquisition time between multiple measurement channels in different DAQ cards, then on this basis, the researches were focused on the dynamic 3D virtual display by the LabVIEW, and the virtual display of MMEA were realized by the method of calling DLL and the method of 3D graph drawing controls. Considering the collaboration with the virtual testing system, including the hardware drive, the measurement software of data acquisition, and the 3D graph drawing controls method was selected, which could obtained the synchronization measurement, control and display. The system can measure dynamic centroid position and kinematic position of movable mass block while controlling the MMEA, and the interface of 3D virtual display has realistic effect and motion smooth, which can solve the problem of display and playback about MMEA in the closed shell.

  2. SU-E-T-243: MonteCarlo Simulation Study of Polymer and Radiochromic Gel for Three-Dimensional Proton Dose Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Jung, H; Kim, G

    2014-06-01

    Purpose: To estimate the three dimensional dose distributions in a polymer gel and a radiochromic gel by comparing with the virtual water phantom exposed to proton beams by applying Monte Carlo simulation. Methods: The polymer gel dosimeter is the compositeness material of gelatin, methacrylic acid, hydroquinone, tetrakis, and distilled water. The radiochromic gel is PRESAGE product. The densities of polymer and radiochromic gel were 1.040 and 1.0005 g/cm3, respectively. The shape of water phantom was a hexahedron with the size of 13 × 13 × 15 cm3. The proton beam energies of 72 and 116 MeV were used in themore » simulation. Proton beam was directed to the top of the phantom with Z-axis and the shape of beam was quadrangle with 10 × 10 cm2 dimension. The Percent depth dose and the dose distribution were evaluated for estimating the dose distribution of proton particle in two gel dosimeters, and compared with the virtual water phantom. Results: The Bragg-peak for proton particles in two gel dosimeters was similar to the virtual water phantom. Bragg-peak regions of polymer gel, radiochromic gel, and virtual water phantom were represented in the identical region (4.3 cm) for 72 MeV proton beam. For 116 MeV proton beam, the Bragg-peak regions of polymer gel, radiochromic gel, and virtual water phantom were represented in 9.9, 9.9 and 9.7 cm, respectively. The dose distribution of proton particles in polymer gel, radiochromic gel, and virtual water phantom was approximately identical in the case of 72 and 116 MeV energies. The errors for the simulation were under 10%. Conclusion: This work indicates the evaluation of three dimensional dose distributions by exposing proton particles to polymer and radiochromic gel dosimeter by comparing with the water phantom. The polymer gel and the radiochromic gel dosimeter show similar dose distributions for the proton beams.« less

  3. Holding-time-aware asymmetric spectrum allocation in virtual optical networks

    NASA Astrophysics Data System (ADS)

    Lyu, Chunjian; Li, Hui; Liu, Yuze; Ji, Yuefeng

    2017-10-01

    Virtual optical networks (VONs) have been considered as a promising solution to support current high-capacity dynamic traffic and achieve rapid applications deployment. Since most of the network services (e.g., high-definition video service, cloud computing, distributed storage) in VONs are provisioned by dedicated data centers, needing different amount of bandwidth resources in both directions, the network traffic is mostly asymmetric. The common strategy, symmetric provisioning of traffic in optical networks, leads to a waste of spectrum resources in such traffic patterns. In this paper, we design a holding-time-aware asymmetric spectrum allocation module based on SDON architecture and an asymmetric spectrum allocation algorithm based on the module is proposed. For the purpose of reducing spectrum resources' waste, the algorithm attempts to reallocate the idle unidirectional spectrum slots in VONs, which are generated due to the asymmetry of services' bidirectional bandwidth. This part of resources can be exploited by other requests, such as short-time non-VON requests. We also introduce a two-dimensional asymmetric resource model for maintaining idle spectrum resources information of VON in spectrum and time domains. Moreover, a simulation is designed to evaluate the performance of the proposed algorithm, and results show that our proposed asymmetric spectrum allocation algorithm can improve the resource waste and reduce blocking probability.

  4. Effects of virtual reality training with modified constraint-induced movement therapy on upper extremity function in acute stage stroke: a preliminary study.

    PubMed

    Ji, Eun-Kyu; Lee, Sang-Heon

    2016-11-01

    [Purpose] The purpose of this study was to investigate the effects of virtual reality training combined with modified constraint-induced movement therapy on upper extremity motor function recovery in acute stage stroke patients. [Subjects and Methods] Four acute stage stroke patients participated in the study. A multiple baseline single subject experimental design was utilized. Modified constraint-induced movement therapy was used according to the EXplaining PLastICITy after stroke protocol during baseline sessions. Virtual reality training with modified constraint-induced movement therapy was applied during treatment sessions. The Manual Function Test and the Box and Block Test were used to measure upper extremity function before every session. [Results] The subjects' upper extremity function improved during the intervention period. [Conclusion] Virtual reality training combined with modified constraint-induced movement is effective for upper extremity function recovery in acute stroke patients.

  5. Virtual gonio-spectrophotometer for validation of BRDF designs

    NASA Astrophysics Data System (ADS)

    Mihálik, Andrej; Ďurikovič, Roman

    2011-10-01

    Measurement of the appearance of an object consists of a group of measurements to characterize the color and surface finish of the object. This group of measurements involves the spectral energy distribution of propagated light measured in terms of reflectance and transmittance, and the spatial energy distribution of that light measured in terms of the bidirectional reflectance distribution function (BRDF). In this article we present the virtual gonio-spectrophotometer, a device that measures flux (power) as a function of illumination and observation. Virtual gonio-spectrophotometer measurements allow the determination of the scattering profile of specimens that can be used to verify the physical characteristics of the computer model used to simulate the scattering profile. Among the characteristics that we verify is the energy conservation of the computer model. A virtual gonio-spectrophotometer is utilized to find the correspondence between industrial measurements obtained from gloss meters and the parameters of a computer reflectance model.

  6. Improved block copolymer domain dispersity on chemical patterns via homopolymer-blending and molecular transfer printing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Guoliang; Nealey, Paul F.

    Herein we have investigated the domain width distributions of block copolymers and their ternary blends after directed assembly on chemically patterned surfaces with and without density multiplication. On chemical patterns with density multiplication, the width of the interpolated block copolymer domains was bimodal. Once blended with the corresponding homopolymers, the block copolymers exhibited unimodal distributions of domain width due to the redistribution of homopolymers in the block copolymer domains. When the block copolymers were blended with hydroxyl-terminated homopolymers, the homopolymers with functional end-groups healed the chemical patterns and facilitated the formation of nanostructures with further improved domain width distributions. Lastly,more » it is demonstrated that the block copolymers achieved the most improved domain width distributions when directed to assemble without density multiplication on one-to-one chemical patterns generated by molecular transfer printing.« less

  7. Distributed computing environments for future space control systems

    NASA Technical Reports Server (NTRS)

    Viallefont, Pierre

    1993-01-01

    The aim of this paper is to present the results of a CNES research project on distributed computing systems. The purpose of this research was to study the impact of the use of new computer technologies in the design and development of future space applications. The first part of this study was a state-of-the-art review of distributed computing systems. One of the interesting ideas arising from this review is the concept of a 'virtual computer' allowing the distributed hardware architecture to be hidden from a software application. The 'virtual computer' can improve system performance by adapting the best architecture (addition of computers) to the software application without having to modify its source code. This concept can also decrease the cost and obsolescence of the hardware architecture. In order to verify the feasibility of the 'virtual computer' concept, a prototype representative of a distributed space application is being developed independently of the hardware architecture.

  8. Distributed collaborative environments for virtual capability-based planning

    NASA Astrophysics Data System (ADS)

    McQuay, William K.

    2003-09-01

    Distributed collaboration is an emerging technology that will significantly change how decisions are made in the 21st century. Collaboration involves two or more geographically dispersed individuals working together to share and exchange data, information, knowledge, and actions. The marriage of information, collaboration, and simulation technologies provides the decision maker with a collaborative virtual environment for planning and decision support. This paper reviews research that is focusing on the applying open standards agent-based framework with integrated modeling and simulation to a new Air Force initiative in capability-based planning and the ability to implement it in a distributed virtual environment. Virtual Capability Planning effort will provide decision-quality knowledge for Air Force resource allocation and investment planning including examining proposed capabilities and cost of alternative approaches, the impact of technologies, identification of primary risk drivers, and creation of executable acquisition strategies. The transformed Air Force business processes are enabled by iterative use of constructive and virtual modeling, simulation, and analysis together with information technology. These tools are applied collaboratively via a technical framework by all the affected stakeholders - warfighter, laboratory, product center, logistics center, test center, and primary contractor.

  9. A virtual data language and system for scientific workflow management in data grid environments

    NASA Astrophysics Data System (ADS)

    Zhao, Yong

    With advances in scientific instrumentation and simulation, scientific data is growing fast in both size and analysis complexity. So-called Data Grids aim to provide high performance, distributed data analysis infrastructure for data- intensive sciences, where scientists distributed worldwide need to extract information from large collections of data, and to share both data products and the resources needed to produce and store them. However, the description, composition, and execution of even logically simple scientific workflows are often complicated by the need to deal with "messy" issues like heterogeneous storage formats and ad-hoc file system structures. We show how these difficulties can be overcome via a typed workflow notation called virtual data language, within which issues of physical representation are cleanly separated from logical typing, and by the implementation of this notation within the context of a powerful virtual data system that supports distributed execution. The resulting language and system are capable of expressing complex workflows in a simple compact form, enacting those workflows in distributed environments, monitoring and recording the execution processes, and tracing the derivation history of data products. We describe the motivation, design, implementation, and evaluation of the virtual data language and system, and the application of the virtual data paradigm in various science disciplines, including astronomy, cognitive neuroscience.

  10. Chain end distribution of block copolymer in two-dimensional microphase-separated structure studied by scanning near-field optical microscopy.

    PubMed

    Sekine, Ryojun; Aoki, Hiroyuki; Ito, Shinzaburo

    2009-10-01

    The chain end distribution of a block copolymer in a two-dimensional microphase-separated structure was studied by scanning near-field optical microscopy (SNOM). In the monolayer of poly(octadecyl methacrylate)-block-poly(isobutyl methacrylate) (PODMA-b-PiBMA), the free end of the PiBMA subchain was directly observed by SNOM, and the spatial distributions of the whole block and the chain end are examined and compared with the convolution of the point spread function of the microscope and distribution function of the model structures. It was found that the chain end distribution of the block copolymer confined in two dimensions has a peak near the domain center, being concentrated in the narrower region, as compared with three-dimensional systems.

  11. Running a distributed virtual observatory: U.S. Virtual Astronomical Observatory operations

    NASA Astrophysics Data System (ADS)

    McGlynn, Thomas A.; Hanisch, Robert J.; Berriman, G. Bruce; Thakar, Aniruddha R.

    2012-09-01

    Operation of the US Virtual Astronomical Observatory shares some issues with modern physical observatories, e.g., intimidating data volumes and rapid technological change, and must also address unique concerns like the lack of direct control of the underlying and scattered data resources, and the distributed nature of the observatory itself. In this paper we discuss how the VAO has addressed these challenges to provide the astronomical community with a coherent set of science-enabling tools and services. The distributed nature of our virtual observatory-with data and personnel spanning geographic, institutional and regime boundaries-is simultaneously a major operational headache and the primary science motivation for the VAO. Most astronomy today uses data from many resources. Facilitation of matching heterogeneous datasets is a fundamental reason for the virtual observatory. Key aspects of our approach include continuous monitoring and validation of VAO and VO services and the datasets provided by the community, monitoring of user requests to optimize access, caching for large datasets, and providing distributed storage services that allow user to collect results near large data repositories. Some elements are now fully implemented, while others are planned for subsequent years. The distributed nature of the VAO requires careful attention to what can be a straightforward operation at a conventional observatory, e.g., the organization of the web site or the collection and combined analysis of logs. Many of these strategies use and extend protocols developed by the international virtual observatory community. Our long-term challenge is working with the underlying data providers to ensure high quality implementation of VO data access protocols (new and better 'telescopes'), assisting astronomical developers to build robust integrating tools (new 'instruments'), and coordinating with the research community to maximize the science enabled.

  12. Selective structural source identification

    NASA Astrophysics Data System (ADS)

    Totaro, Nicolas

    2018-04-01

    In the field of acoustic source reconstruction, the inverse Patch Transfer Function (iPTF) has been recently proposed and has shown satisfactory results whatever the shape of the vibrating surface and whatever the acoustic environment. These two interesting features are due to the virtual acoustic volume concept underlying the iPTF methods. The aim of the present article is to show how this concept of virtual subsystem can be used in structures to reconstruct the applied force distribution. Some virtual boundary conditions can be applied on a part of the structure, called virtual testing structure, to identify the force distribution applied in that zone regardless of the presence of other sources outside the zone under consideration. In the present article, the applicability of the method is only demonstrated on planar structures. However, the final example show how the method can be applied to a complex shape planar structure with point welded stiffeners even in the tested zone. In that case, if the virtual testing structure includes the stiffeners the identified force distribution only exhibits the positions of external applied forces. If the virtual testing structure does not include the stiffeners, the identified force distribution permits to localize the forces due to the coupling between the structure and the stiffeners through the welded points as well as the ones due to the external forces. This is why this approach is considered here as a selective structural source identification method. It is demonstrated that this approach clearly falls in the same framework as the Force Analysis Technique, the Virtual Fields Method or the 2D spatial Fourier transform. Even if this approach has a lot in common with these latters, it has some interesting particularities like its low sensitivity to measurement noise.

  13. ChemScreener: A Distributed Computing Tool for Scaffold based Virtual Screening.

    PubMed

    Karthikeyan, Muthukumarasamy; Pandit, Deepak; Vyas, Renu

    2015-01-01

    In this work we present ChemScreener, a Java-based application to perform virtual library generation combined with virtual screening in a platform-independent distributed computing environment. ChemScreener comprises a scaffold identifier, a distinct scaffold extractor, an interactive virtual library generator as well as a virtual screening module for subsequently selecting putative bioactive molecules. The virtual libraries are annotated with chemophore-, pharmacophore- and toxicophore-based information for compound prioritization. The hits selected can then be further processed using QSAR, docking and other in silico approaches which can all be interfaced within the ChemScreener framework. As a sample application, in this work scaffold selectivity, diversity, connectivity and promiscuity towards six important therapeutic classes have been studied. In order to illustrate the computational power of the application, 55 scaffolds extracted from 161 anti-psychotic compounds were enumerated to produce a virtual library comprising 118 million compounds (17 GB) and annotated with chemophore, pharmacophore and toxicophore based features in a single step which would be non-trivial to perform with many standard software tools today on libraries of this size.

  14. Ambient clumsiness in virtual environments

    NASA Astrophysics Data System (ADS)

    Ruzanka, Silvia; Behar, Katherine

    2010-01-01

    A fundamental pursuit of Virtual Reality is the experience of a seamless connection between the user's body and actions within the simulation. Virtual worlds often mediate the relationship between the physical and virtual body through creating an idealized representation of the self in an idealized space. This paper argues that the very ubiquity of the medium of virtual environments, such as the massively popular Second Life, has now made them mundane, and that idealized representations are no longer appropriate. In our artwork we introduce the attribute of clumsiness to Second Life by creating and distributing scripts that cause users' avatars to exhibit unpredictable stumbling, tripping, and momentary poor coordination, thus subtly and unexpectedly intervening with, rather than amplifying, a user's intent. These behaviors are publicly distributed, and manifest only occasionally - rather than intentional, conscious actions, they are involuntary and ambient. We suggest that the physical human body is itself an imperfect interface, and that the continued blurring of distinctions between the physical body and virtual representations calls for the introduction of these mundane, clumsy elements.

  15. Anomalous neural circuit function in schizophrenia during a virtual Morris water task.

    PubMed

    Folley, Bradley S; Astur, Robert; Jagannathan, Kanchana; Calhoun, Vince D; Pearlson, Godfrey D

    2010-02-15

    Previous studies have reported learning and navigation impairments in schizophrenia patients during virtual reality allocentric learning tasks. The neural bases of these deficits have not been explored using functional MRI despite well-explored anatomic characterization of these paradigms in non-human animals. Our objective was to characterize the differential distributed neural circuits involved in virtual Morris water task performance using independent component analysis (ICA) in schizophrenia patients and controls. Additionally, we present behavioral data in order to derive relationships between brain function and performance, and we have included a general linear model-based analysis in order to exemplify the incremental and differential results afforded by ICA. Thirty-four individuals with schizophrenia and twenty-eight healthy controls underwent fMRI scanning during a block design virtual Morris water task using hidden and visible platform conditions. Independent components analysis was used to deconstruct neural contributions to hidden and visible platform conditions for patients and controls. We also examined performance variables, voxel-based morphometry and hippocampal subparcellation, and regional BOLD signal variation. Independent component analysis identified five neural circuits. Mesial temporal lobe regions, including the hippocampus, were consistently task-related across conditions and groups. Frontal, striatal, and parietal circuits were recruited preferentially during the visible condition for patients, while frontal and temporal lobe regions were more saliently recruited by controls during the hidden platform condition. Gray matter concentrations and BOLD signal in hippocampal subregions were associated with task performance in controls but not patients. Patients exhibited impaired performance on the hidden and visible conditions of the task, related to negative symptom severity. While controls showed coupling between neural circuits, regional neuroanatomy, and behavior, patients activated different task-related neural circuits, not associated with appropriate regional neuroanatomy. GLM analysis elucidated several comparable regions, with the exception of the hippocampus. Inefficient allocentric learning and memory in patients may be related to an inability to recruit appropriate task-dependent neural circuits. Copyright 2009 Elsevier Inc. All rights reserved.

  16. A virtual size-variable pinhole for single photon confocal microscopy

    NASA Astrophysics Data System (ADS)

    Gao, Guangjun; Khoobehi, Bahram

    2013-03-01

    Pinhole is a critical device in single photon confocal microscopy (SPCM) owning to its ability to block the background noise scattered from back and forth of the focal plane. Without pinhole, the sectioning ability of SPCM will be degraded and many background noise signals will occurred together with useful signals, and sometimes these bad noises can submerge the details that we are interested in. However a pinhole with too small diameter will block both background noises and part of signals and decrease the intensity of the image. Therefore in many cases pinhole size should be selected carefully. Unfortunately because of constrains in mechanics, a pinhole that can change its size continuously, for example from 10 μm to 100 μm, is unavailable. For most commercial confocal microscopies, only several discrete pinhole sizes are provided, such as 10 μm, 30 μm, 60 μm etc. Things will be even harder for some imaging systems which use the input interface of a single mode fiber as the pinhole of SPCM, and then the pinhole size of these systems will be fixed, which far limit the optimization of systems' performance. In this paper, we design a size-variable pinhole setup that can offer a virtual pinhole with its diameter adjustable, which includes a physical pinhole (or single mode fiber) and a fine designed zoom relay (ZR) optical system. The magnification ratio of this ZR can vary smoothly while keeping the conjugation distance unchanged. The aberrations of the ZR are well balanced and diffraction-limited image performance are obtained so that the virtual pinhole can block background scattering noise and pass the in-focus signal effectively and accurately. Simulation results are also provided and discussed.

  17. Cousins Virtual Jane and Virtual Joe, Extraordinary Virtual Helpers

    ERIC Educational Resources Information Center

    Blignaut, Seugnet; Nagel, Lynette

    2009-01-01

    Higher education institutions deliver web-based learning with varied success. The success rate of distributed online courses remains low. Factors such as ineffective course facilitation and insufficient communication contribute to the unfulfilled promises of web-based learning. Students consequently feel unmotivated. Instructor control and in the…

  18. Inferred Lunar Boulder Distributions at Decimeter Scales

    NASA Technical Reports Server (NTRS)

    Baloga, S. M.; Glaze, L. S.; Spudis, P. D.

    2012-01-01

    Block size distributions of impact deposits on the Moon are diagnostic of the impact process and environmental effects, such as target lithology and weathering. Block size distributions are also important factors in trafficability, habitability, and possibly the identification of indigenous resources. Lunar block sizes have been investigated for many years for many purposes [e.g., 1-3]. An unresolved issue is the extent to which lunar block size distributions can be extrapolated to scales smaller than limits of resolution of direct measurement. This would seem to be a straightforward statistical application, but it is complicated by two issues. First, the cumulative size frequency distribution of observable boulders rolls over due to resolution limitations at the small end. Second, statistical regression provides the best fit only around the centroid of the data [4]. Confidence and prediction limits splay away from the best fit at the endpoints resulting in inferences in the boulder density at the CPR scale that can differ by many orders of magnitude [4]. These issues were originally investigated by Cintala and McBride [2] using Surveyor data. The objective of this study was to determine whether the measured block size distributions from Lunar Reconnaissance Orbiter Camera - Narrow Angle Camera (LROC-NAC) images (m-scale resolution) can be used to infer the block size distribution at length scales comparable to Mini-RF Circular Polarization Ratio (CPR) scales, nominally taken as 10 cm. This would set the stage for assessing correlations of inferred block size distributions with CPR returns [6].

  19. Virtual aluminum castings: An industrial application of ICME

    NASA Astrophysics Data System (ADS)

    Allison, John; Li, Mei; Wolverton, C.; Su, Xuming

    2006-11-01

    The automotive product design and manufacturing community is continually besieged by Hercule an engineering, timing, and cost challenges. Nowhere is this more evident than in the development of designs and manufacturing processes for cast aluminum engine blocks and cylinder heads. Increasing engine performance requirements coupled with stringent weight and packaging constraints are pushing aluminum alloys to the limits of their capabilities. To provide high-quality blocks and heads at the lowest possible cost, manufacturing process engineers are required to find increasingly innovative ways to cast and heat treat components. Additionally, to remain competitive, products and manufacturing methods must be developed and implemented in record time. To bridge the gaps between program needs and engineering reality, the use of robust computational models in up-front analysis will take on an increasingly important role. This article describes just such a computational approach, the Virtual Aluminum Castings methodology, which was developed and implemented at Ford Motor Company and demonstrates the feasibility and benefits of integrated computational materials engineering.

  20. Intelligent distributed medical image management

    NASA Astrophysics Data System (ADS)

    Garcia, Hong-Mei C.; Yun, David Y.

    1995-05-01

    The rapid advancements in high performance global communication have accelerated cooperative image-based medical services to a new frontier. Traditional image-based medical services such as radiology and diagnostic consultation can now fully utilize multimedia technologies in order to provide novel services, including remote cooperative medical triage, distributed virtual simulation of operations, as well as cross-country collaborative medical research and training. Fast (efficient) and easy (flexible) retrieval of relevant images remains a critical requirement for the provision of remote medical services. This paper describes the database system requirements, identifies technological building blocks for meeting the requirements, and presents a system architecture for our target image database system, MISSION-DBS, which has been designed to fulfill the goals of Project MISSION (medical imaging support via satellite integrated optical network) -- an experimental high performance gigabit satellite communication network with access to remote supercomputing power, medical image databases, and 3D visualization capabilities in addition to medical expertise anywhere and anytime around the country. The MISSION-DBS design employs a synergistic fusion of techniques in distributed databases (DDB) and artificial intelligence (AI) for storing, migrating, accessing, and exploring images. The efficient storage and retrieval of voluminous image information is achieved by integrating DDB modeling and AI techniques for image processing while the flexible retrieval mechanisms are accomplished by combining attribute- based and content-based retrievals.

  1. Mentally simulated movements in virtual reality: does Fitts's law hold in motor imagery?

    PubMed

    Decety, J; Jeannerod, M

    1995-12-14

    This study was designed to investigate mentally simulated actions in a virtual reality environment. Naive human subjects (n = 15) were instructed to imagine themselves walking in a three-dimensional virtual environment toward gates of different apparent widths placed at three different apparent distances. Each subject performed nine blocks of six trials in a randomised order. The response time (reaction time and mental walking time) was measured as the duration between an acoustic go signal and a motor signal produced by the subject. There was a combined effect on response time of both gate width and distance. Response time increased for decreasing apparent gate widths when the gate was placed at different distances. These results support the notion that mentally simulated actions are governed by central motor rules.

  2. Staghorn: An Automated Large-Scale Distributed System Analysis Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabert, Kasimir; Burns, Ian; Elliott, Steven

    2016-09-01

    Conducting experiments on large-scale distributed computing systems is becoming significantly easier with the assistance of emulation. Researchers can now create a model of a distributed computing environment and then generate a virtual, laboratory copy of the entire system composed of potentially thousands of virtual machines, switches, and software. The use of real software, running at clock rate in full virtual machines, allows experiments to produce meaningful results without necessitating a full understanding of all model components. However, the ability to inspect and modify elements within these models is bound by the limitation that such modifications must compete with the model,more » either running in or alongside it. This inhibits entire classes of analyses from being conducted upon these models. We developed a mechanism to snapshot an entire emulation-based model as it is running. This allows us to \\freeze time" and subsequently fork execution, replay execution, modify arbitrary parts of the model, or deeply explore the model. This snapshot includes capturing packets in transit and other input/output state along with the running virtual machines. We were able to build this system in Linux using Open vSwitch and Kernel Virtual Machines on top of Sandia's emulation platform Firewheel. This primitive opens the door to numerous subsequent analyses on models, including state space exploration, debugging distributed systems, performance optimizations, improved training environments, and improved experiment repeatability.« less

  3. Using Immersive Virtual Reality for Electrical Substation Training

    ERIC Educational Resources Information Center

    Tanaka, Eduardo H.; Paludo, Juliana A.; Cordeiro, Carlúcio S.; Domingues, Leonardo R.; Gadbem, Edgar V.; Euflausino, Adriana

    2015-01-01

    Usually, distribution electricians are called upon to solve technical problems found in electrical substations. In this project, we apply problem-based learning to a training program for electricians, with the help of a virtual reality environment that simulates a real substation. Using this virtual substation, users may safely practice maneuvers…

  4. Developing a Hybrid Virtualization Platform Design for Cyber Warfare Training and Education

    DTIC Science & Technology

    2010-06-01

    CYBER WARFARE TRAINING AND EDUCATION THESIS Kyle E. Stewart 2nd...Government. AFIT/GCE/ENG/10-06 DEVELOPING A HYBRID VIRTUALIZATION PLATFORM DESIGN FOR CYBER WARFARE TRAINING...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT/GCE/ENG/10-06 DEVELOPING A HYBRID VIRTUALIZATION PLATFORM DESIGN FOR CYBER WARFARE

  5. Models and algorithm of optimization launch and deployment of virtual network functions in the virtual data center

    NASA Astrophysics Data System (ADS)

    Bolodurina, I. P.; Parfenov, D. I.

    2017-10-01

    The goal of our investigation is optimization of network work in virtual data center. The advantage of modern infrastructure virtualization lies in the possibility to use software-defined networks. However, the existing optimization of algorithmic solutions does not take into account specific features working with multiple classes of virtual network functions. The current paper describes models characterizing the basic structures of object of virtual data center. They including: a level distribution model of software-defined infrastructure virtual data center, a generalized model of a virtual network function, a neural network model of the identification of virtual network functions. We also developed an efficient algorithm for the optimization technology of containerization of virtual network functions in virtual data center. We propose an efficient algorithm for placing virtual network functions. In our investigation we also generalize the well renowned heuristic and deterministic algorithms of Karmakar-Karp.

  6. Distributed Drug Discovery, Part 2: Global Rehearsal of Alkylating Agents for the Synthesis of Resin-Bound Unnatural Amino Acids and Virtual D3 Catalog Construction

    PubMed Central

    2008-01-01

    Distributed Drug Discovery (D3) proposes solving large drug discovery problems by breaking them into smaller units for processing at multiple sites. A key component of the synthetic and computational stages of D3 is the global rehearsal of prospective reagents and their subsequent use in the creation of virtual catalogs of molecules accessible by simple, inexpensive combinatorial chemistry. The first section of this article documents the feasibility of the synthetic component of Distributed Drug Discovery. Twenty-four alkylating agents were rehearsed in the United States, Poland, Russia, and Spain, for their utility in the synthesis of resin-bound unnatural amino acids 1, key intermediates in many combinatorial chemistry procedures. This global reagent rehearsal, coupled to virtual library generation, increases the likelihood that any member of that virtual library can be made. It facilitates the realistic integration of worldwide virtual D3 catalog computational analysis with synthesis. The second part of this article describes the creation of the first virtual D3 catalog. It reports the enumeration of 24 416 acylated unnatural amino acids 5, assembled from lists of either rehearsed or well-precedented alkylating and acylating reagents, and describes how the resulting catalog can be freely accessed, searched, and downloaded by the scientific community. PMID:19105725

  7. Simplified Virtualization in a HEP/NP Environment with Condor

    NASA Astrophysics Data System (ADS)

    Strecker-Kellogg, W.; Caramarcu, C.; Hollowell, C.; Wong, T.

    2012-12-01

    In this work we will address the development of a simple prototype virtualized worker node cluster, using Scientific Linux 6.x as a base OS, KVM and the libvirt API for virtualization, and the Condor batch software to manage virtual machines. The discussion in this paper provides details on our experience with building, configuring, and deploying the various components from bare metal, including the base OS, creation and distribution of the virtualized OS images and the integration of batch services with the virtual machines. Our focus was on simplicity and interoperability with our existing architecture.

  8. Grids, virtualization, and clouds at Fermilab

    DOE PAGES

    Timm, S.; Chadwick, K.; Garzoglio, G.; ...

    2014-06-11

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture andmore » the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). Lastly, this work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.« less

  9. Grids, virtualization, and clouds at Fermilab

    NASA Astrophysics Data System (ADS)

    Timm, S.; Chadwick, K.; Garzoglio, G.; Noh, S.

    2014-06-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture and the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). This work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.

  10. Exploiting Virtual Synchrony in Distributed Systems

    DTIC Science & Technology

    1987-02-01

    for distributed systems yield the best performance relative to the level of synchronization guaranteed by the primitive . A pro- grammer could then... synchronization facility. Semaphores Replicated binary and general semaphores . Monitors Monitor lock, condition variables and signals. Deadlock detection...We describe applications of a new software abstraction called the virtually synchronous process group. Such a group consists of a set of processes

  11. CPU-GPU mixed implementation of virtual node method for real-time interactive cutting of deformable objects using OpenCL.

    PubMed

    Jia, Shiyu; Zhang, Weizhong; Yu, Xiaokang; Pan, Zhenkuan

    2015-09-01

    Surgical simulators need to simulate interactive cutting of deformable objects in real time. The goal of this work was to design an interactive cutting algorithm that eliminates traditional cutting state classification and can work simultaneously with real-time GPU-accelerated deformation without affecting its numerical stability. A modified virtual node method for cutting is proposed. Deformable object is modeled as a real tetrahedral mesh embedded in a virtual tetrahedral mesh, and the former is used for graphics rendering and collision, while the latter is used for deformation. Cutting algorithm first subdivides real tetrahedrons to eliminate all face and edge intersections, then splits faces, edges and vertices along cutting tool trajectory to form cut surfaces. Next virtual tetrahedrons containing more than one connected real tetrahedral fragments are duplicated, and connectivity between virtual tetrahedrons is updated. Finally, embedding relationship between real and virtual tetrahedral meshes is updated. Co-rotational linear finite element method is used for deformation. Cutting and collision are processed by CPU, while deformation is carried out by GPU using OpenCL. Efficiency of GPU-accelerated deformation algorithm was tested using block models with varying numbers of tetrahedrons. Effectiveness of our cutting algorithm under multiple cuts and self-intersecting cuts was tested using a block model and a cylinder model. Cutting of a more complex liver model was performed, and detailed performance characteristics of cutting, deformation and collision were measured and analyzed. Our cutting algorithm can produce continuous cut surfaces when traditional minimal element creation algorithm fails. Our GPU-accelerated deformation algorithm remains stable with constant time step under multiple arbitrary cuts and works on both NVIDIA and AMD GPUs. GPU-CPU speed ratio can be as high as 10 for models with 80,000 tetrahedrons. Forty to sixty percent real-time performance and 100-200 Hz simulation rate are achieved for the liver model with 3,101 tetrahedrons. Major bottlenecks for simulation efficiency are cutting, collision processing and CPU-GPU data transfer. Future work needs to improve on these areas.

  12. Increase in specific density of levobupivacaine and fentanyl solution ensures lower incidence of inadequate block.

    PubMed

    Djeno, Ivana Tudorić; Duzel, Viktor; Ajduk, Marko; Oremus, Zrinka Safarić; Zupcić, Miroslav; Dusper, Silva; Jukić, Dubravko; Husedzinović, Ino

    2012-06-01

    The clinical presentation of a subarachnoid block (SAB) is dependent upon the intrathecal spread of local anesthetic (LA). Intrathecal distribution depends on the chemical and physical characteristics of LA, puncture site, technique used, patient anatomical characteristics and hydrodynamic properties of cerebrospinal fluid. We tried to determine whether a combined glucose/LA solution can render a clinically significant difference in sensory block distribution and motor block intensity.This was a controlled, randomized and double blinded study. The surgical procedures were stripping of the great or small saphenous vein and extirpation of remaining varicose veins. The study included 110 patients distributed into two groups: Hyperbaric (7.5 mg levobupivacaine (1.5 ml 0.5% Chirocaine) + 50 microg Fentanyl (0.5 ml Fentanil) and 1 ml 10% glucose (Pliva)) vs. Hypobaric (7.5 mg levobupivacaine (1.5 ml 0.5% Chirocaine) + 50 microg Fentanyl (0.5 ml Fentanil) and 1 ml 0.9% NaCl (Pliva, Zagreb)) adding to a total volume of 3.5 ml per solution. Spinal puncture was at L3-L4 level. Spinal block distribution was assessed in five minute intervals and intensity of motor block was assessed according to the modified Bromage scale. Pain was assessed with the Visual Analogue Scale. A statistically significant difference in sensory block distribution, motor block intensity and recovery time was established between hyperbaric and hypobaric solutions. By increasing the specific density of anesthetic solution, a higher sensory block, with lesser variability, a diminished influence of Body Mass Index, decreased motor block intensity and faster recovery time may be achieved.

  13. The National Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Hanisch, Robert J.

    2001-06-01

    The National Virtual Observatory is a distributed computational facility that will provide access to the ``virtual sky''-the federation of astronomical data archives, object catalogs, and associated information services. The NVO's ``virtual telescope'' is a common framework for requesting, retrieving, and manipulating information from diverse, distributed resources. The NVO will make it possible to seamlessly integrate data from the new all-sky surveys, enabling cross-correlations between multi-Terabyte catalogs and providing transparent access to the underlying image or spectral data. Success requires high performance computational systems, high bandwidth network services, agreed upon standards for the exchange of metadata, and collaboration among astronomers, astronomical data and information service providers, information technology specialists, funding agencies, and industry. International cooperation at the onset will help to assure that the NVO simultaneously becomes a global facility. .

  14. Distributing Variable Star Data to the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Kinne, Richard C.; Templeton, M. R.; Henden, A. A.; Zografou, P.; Harbo, P.; Evans, J.; Rots, A. H.; LAZIO, J.

    2013-01-01

    Effective distribution of data is a core element of effective astronomy today. The AAVSO is the home of several different unique databases. The AAVSO International Database (AID) contains over a century of photometric and time-series data on thousands of individual variable stars comprising over 22 million observations. The AAVSO Photometric All-Sky Survey (APASS) is a new photometric catalog containing calibrated photometry in Johnson B, V and Sloan g', r' and i' filters for stars with magnitudes of 10 < V < 17. The AAVSO is partnering with researchers and technologists at the Virtual Astronomical Observatory (VAO) to solve the data distribution problem for these datasets by making them available via various VO tools. We give specific examples of how these data can be accessed through Virtual Observatory (VO) toolsets and utilized for astronomical research.

  15. High-Frequency Stimulation of Dorsal Column Axons: Potential Underlying Mechanism of Paresthesia-Free Neuropathic Pain Relief.

    PubMed

    Arle, Jeffrey E; Mei, Longzhi; Carlson, Kristen W; Shils, Jay L

    2016-06-01

    Spinal cord stimulation (SCS) treats neuropathic pain through retrograde stimulation of dorsal column axons and their inhibitory effects on wide dynamic range (WDR) neurons. Typical SCS uses frequencies from 50-100 Hz. Newer stimulation paradigms use high-frequency stimulation (HFS) up to 10 kHz and produce pain relief but without paresthesia. Our hypothesis is that HFS preferentially blocks larger diameter axons (12-15 µm) based on dynamics of ion channel gates and the electric potential gradient seen along the axon, resulting in inhibition of WDR cells without paresthesia. We input field potential values from a finite element model of SCS into an active axon model with ion channel subcomponents for fiber diameters 1-20 µm and simulated dynamics on a 0.001 msec time scale. Assuming some degree of wave rectification seen at the axon, action potential (AP) blockade occurs as hypothesized, preferentially in larger over smaller diameters with blockade in most medium and large diameters occurring between 4.5 and 10 kHz. Simulations show both ion channel gate and virtual anode dynamics are necessary. At clinical HFS frequencies and pulse widths, HFS preferentially blocks larger-diameter fibers and concomitantly recruits medium and smaller fibers. These effects are a result of interaction between ion gate dynamics and the "activating function" (AF) deriving from current distribution over the axon. The larger fibers that cause paresthesia in low-frequency simulation are blocked, while medium and smaller fibers are recruited, leading to paresthesia-free neuropathic pain relief by inhibiting WDR cells. © 2016 International Neuromodulation Society.

  16. Fast evaluation of scaled opposite spin second-order Møller-Plesset correlation energies using auxiliary basis expansions and exploiting sparsity.

    PubMed

    Jung, Yousung; Shao, Yihan; Head-Gordon, Martin

    2007-09-01

    The scaled opposite spin Møller-Plesset method (SOS-MP2) is an economical way of obtaining correlation energies that are computationally cheaper, and yet, in a statistical sense, of higher quality than standard MP2 theory, by introducing one empirical parameter. But SOS-MP2 still has a fourth-order scaling step that makes the method inapplicable to very large molecular systems. We reduce the scaling of SOS-MP2 by exploiting the sparsity of expansion coefficients and local integral matrices, by performing local auxiliary basis expansions for the occupied-virtual product distributions. To exploit sparsity of 3-index local quantities, we use a blocking scheme in which entire zero-rows and columns, for a given third global index, are deleted by comparison against a numerical threshold. This approach minimizes sparse matrix book-keeping overhead, and also provides sufficiently large submatrices after blocking, to allow efficient matrix-matrix multiplies. The resulting algorithm is formally cubic scaling, and requires only moderate computational resources (quadratic memory and disk space) and, in favorable cases, is shown to yield effective quadratic scaling behavior in the size regime we can apply it to. Errors associated with local fitting using the attenuated Coulomb metric and numerical thresholds in the blocking procedure are found to be insignificant in terms of the predicted relative energies. A diverse set of test calculations shows that the size of system where significant computational savings can be achieved depends strongly on the dimensionality of the system, and the extent of localizability of the molecular orbitals. Copyright 2007 Wiley Periodicals, Inc.

  17. Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-14-2-0150 TITLE: Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool PRINCIPAL...AND SUBTITLE Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The proposed study will implement and evaluate a novel, low-cost, Virtual Reality (VR

  18. Using Virtual Manipulatives with Pre-Service Mathematics Teachers to Create Representational Models

    ERIC Educational Resources Information Center

    Cooper, Thomas E.

    2012-01-01

    In mathematics education, physical manipulatives such as algebra tiles, pattern blocks, and two-colour counters are commonly used to provide concrete models of abstract concepts. With these traditional manipulatives, people can communicate with the tools only in one another's presence. This limitation poses difficulties concerning assessment and…

  19. The virtual-casing principle and Helmholtz's theorem

    DOE PAGES

    Hanson, J. D.

    2015-09-10

    The virtual-casing principle is used in plasma physics to convert a Biot–Savart integration over a current distribution into a surface integral over a surface that encloses the current. In many circumstances, use of virtual casing can significantly speed up the computation of magnetic fields. In this paper, a virtual-casing principle is derived for a general vector field with arbitrary divergence and curl. This form of the virtual-casing principle is thus applicable to both magnetostatic fields and electrostatic fields. The result is then related to Helmholtz's theorem.

  20. The virtual-casing principle and Helmholtz’s theorem

    DOE PAGES

    Hanson, J. D.

    2015-09-10

    The virtual-casing principle is used in plasma physics to convert a Biot–Savart integration over a current distribution into a surface integral over a surface that encloses the current. In many circumstances, use of virtual casing can significantly speed up the computation of magnetic fields. In this paper, a virtual-casing principle is derived for a general vector field with arbitrary divergence and curl. This form of the virtual-casing principle is thus applicable to both magnetostatic fields and electrostatic fields. The result is then related to Helmholtz’s theorem.

  1. Hybrid Cloud Computing Environment for EarthCube and Geoscience Community

    NASA Astrophysics Data System (ADS)

    Yang, C. P.; Qin, H.

    2016-12-01

    The NSF EarthCube Integration and Test Environment (ECITE) has built a hybrid cloud computing environment to provides cloud resources from private cloud environments by using cloud system software - OpenStack and Eucalyptus, and also manages public cloud - Amazon Web Service that allow resource synchronizing and bursting between private and public cloud. On ECITE hybrid cloud platform, EarthCube and geoscience community can deploy and manage the applications by using base virtual machine images or customized virtual machines, analyze big datasets by using virtual clusters, and real-time monitor the virtual resource usage on the cloud. Currently, a number of EarthCube projects have deployed or started migrating their projects to this platform, such as CHORDS, BCube, CINERGI, OntoSoft, and some other EarthCube building blocks. To accomplish the deployment or migration, administrator of ECITE hybrid cloud platform prepares the specific needs (e.g. images, port numbers, usable cloud capacity, etc.) of each project in advance base on the communications between ECITE and participant projects, and then the scientists or IT technicians in those projects launch one or multiple virtual machines, access the virtual machine(s) to set up computing environment if need be, and migrate their codes, documents or data without caring about the heterogeneity in structure and operations among different cloud platforms.

  2. Visual appearance of a virtual upper limb modulates the temperature of the real hand: a thermal imaging study in Immersive Virtual Reality.

    PubMed

    Tieri, Gaetano; Gioia, Annamaria; Scandola, Michele; Pavone, Enea F; Aglioti, Salvatore M

    2017-05-01

    To explore the link between Sense of Embodiment (SoE) over a virtual hand and physiological regulation of skin temperature, 24 healthy participants were immersed in virtual reality through a Head Mounted Display and had their real limb temperature recorded by means of a high-sensitivity infrared camera. Participants observed a virtual right upper limb (appearing either normally, or with the hand detached from the forearm) or limb-shaped non-corporeal control objects (continuous or discontinuous wooden blocks) from a first-person perspective. Subjective ratings of SoE were collected in each observation condition, as well as temperatures of the right and left hand, wrist and forearm. The observation of these complex, body and body-related virtual scenes resulted in increased real hand temperature when compared to a baseline condition in which a 3d virtual ball was presented. Crucially, observation of non-natural appearances of the virtual limb (discontinuous limb) and limb-shaped non-corporeal objects elicited high increase in real hand temperature and low SoE. In contrast, observation of the full virtual limb caused high SoE and low temperature changes in the real hand with respect to the other conditions. Interestingly, the temperature difference across the different conditions occurred according to a topographic rule that included both hands. Our study sheds new light on the role of an external hand's visual appearance and suggests a tight link between higher-order bodily self-representations and topographic regulation of skin temperature. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Achievement of Virtual and Real Objects Using a Short-Term Motor Learning Protocol in People with Duchenne Muscular Dystrophy: A Crossover Randomized Controlled Trial.

    PubMed

    Massetti, Thais; Fávero, Francis Meire; Menezes, Lilian Del Ciello de; Alvarez, Mayra Priscila Boscolo; Crocetta, Tânia Brusque; Guarnieri, Regiani; Nunes, Fátima L S; Monteiro, Carlos Bandeira de Mello; Silva, Talita Dias da

    2018-04-01

    To evaluate whether people with Duchenne muscular dystrophy (DMD) practicing a task in a virtual environment could improve performance given a similar task in a real environment, as well as distinguishing whether there is transference between performing the practice in virtual environment and then a real environment and vice versa. Twenty-two people with DMD were evaluated and divided into two groups. The goal was to reach out and touch a red cube. Group A began with the real task and had to touch a real object, and Group B began with the virtual task and had to reach a virtual object using the Kinect system. ANOVA showed that all participants decreased the movement time from the first (M = 973 ms) to the last block of acquisition (M = 783 ms) in both virtual and real tasks and motor learning could be inferred by the short-term retention and transfer task (with increasing distance of the target). However, the evaluation of task performance demonstrated that the virtual task provided an inferior performance when compared to the real task in all phases of the study, and there was no effect for sequence. Both virtual and real tasks promoted improvement of performance in the acquisition phase, short-term retention, and transfer. However, there was no transference of learning between environments. In conclusion, it is recommended that the use of virtual environments for individuals with DMD needs to be considered carefully.

  4. Manuscript Architect: a Web application for scientific writing in virtual interdisciplinary groups

    PubMed Central

    Pietrobon, Ricardo; Nielsen, Karen C; Steele, Susan M; Menezes, Andreia P; Martins, Henrique; Jacobs, Danny O

    2005-01-01

    Background Although scientific writing plays a central role in the communication of clinical research findings and consumes a significant amount of time from clinical researchers, few Web applications have been designed to systematically improve the writing process. This application had as its main objective the separation of the multiple tasks associated with scientific writing into smaller components. It was also aimed at providing a mechanism where sections of the manuscript (text blocks) could be assigned to different specialists. Manuscript Architect was built using Java language in conjunction with the classic lifecycle development method. The interface was designed for simplicity and economy of movements. Manuscripts are divided into multiple text blocks that can be assigned to different co-authors by the first author. Each text block contains notes to guide co-authors regarding the central focus of each text block, previous examples, and an additional field for translation when the initial text is written in a language different from the one used by the target journal. Usability was evaluated using formal usability tests and field observations. Results The application presented excellent usability and integration with the regular writing habits of experienced researchers. Workshops were developed to train novice researchers, presenting an accelerated learning curve. The application has been used in over 20 different scientific articles and grant proposals. Conclusion The current version of Manuscript Architect has proven to be very useful in the writing of multiple scientific texts, suggesting that virtual writing by interdisciplinary groups is an effective manner of scientific writing when interdisciplinary work is required. PMID:15960855

  5. Calcium Channel Block by Cadmium in Chicken Sensory Neurons

    NASA Astrophysics Data System (ADS)

    Swandulla, D.; Armstrong, C. M.

    1989-03-01

    Cadmium block of calcium channels was studied in chicken dorsal root ganglion cells by a whole-cell patch clamp that provides high time resolution. Barium ion was the current carrier, and the channel type studied had a high threshold of activation and fast deactivation (type FD). Block of these channels by 20 μ M external Cd2+ is voltage dependent. Cd2+ ions can be cleared from blocked channels by stepping the membrane voltage (Vm) to a negative value. Clearing the channels is progressively faster and more complete as Vm is made more negative. Once cleared of Cd2+, the channels conduct transiently on reopening but reequilibrate with Cd2+ and become blocked within a few milliseconds. Cd2+ equilibrates much more slowly with closed channels, but at a holding potential of -80 mV virtually all channels are blocked at equilibrium. Cd2+ does not slow closing of the channels, as would be expected if it were necessary for Cd2+ to leave the channels before closing occurred. Instead, the data show unambiguously that the channel gate can close when the channel is Cd2+ occupied.

  6. Pion distribution amplitude and quasidistributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radyushkin, Anatoly V.

    2017-03-27

    We extend our analysis of quasidistributions onto the pion distribution amplitude. Using the formalism of parton virtuality distribution amplitudes, we establish a connection between the pion transverse momentum dependent distribution amplitude Ψ(x,k 2 ⊥) and the pion quasidistribution amplitude (QDA) Q π(y,p 3). We build models for the QDAs from the virtuality-distribution-amplitude-based models for soft transverse momentum dependent distribution amplitudes, and analyze the p3 dependence of the resulting QDAs. As there are many models claimed to describe the primordial shape of the pion distribution amplitude, we present the p 3-evolution patterns for models producing some popular proposals: Chernyak-Zhitnitsky, flat, andmore » asymptotic distribution amplitude. Finally, our results may be used as a guide for future studies of the pion distribution amplitude on the lattice using the quasidistribution approach.« less

  7. Block distributions on the lunar surface: A comparison between measurements obtained from surface and orbital photography

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.; Mcbride, Kathleen M.

    1995-01-01

    Among the hazards that must be negotiated by lunar-landing spacecraft are blocks on the surface of the Moon. Unfortunately, few data exist that can be used to evaluate the threat posed by such blocks to landing spacecraft. Perhaps the best information is that obtained from Surveyor photographs, but those data do not extend to the dimensions of the large blocks that would pose the greatest hazards. Block distributions in the vicinities of the Surveyor 1, 3, 6, and 7 sites have been determined from Lunar Orbiter photography and are presented here. Only large (i.e., greater than or equal to 2.5 m) blocks are measurable in these pictures, resulting in a size gap between the Surveyor and Lunar Orbiter distributions. Nevertheless, the orbital data are self-consistent, a claim supported by the similarity in behavior between the subsets of data from the Surveyor 1, 3, and 6 sites and by the good agreement in position (if not slopes) between the data obtained from the Surveyor 3 photography and those derived from the Lunar Orbiter photographs. Confidence in the results is also justified by the well-behaved distribution of large blocks at the surveyor site. Comparisons between the Surveyor distributions and those derived from the orbital photography permit these observations: (1) in all cases but that for Surveyor 3, the density of large blocks is overestimated by extrapolation of the Surveyor-derived trends; (2) the slopes of the Surveyor-derived distributions are consistently lower than those determined for the large blocks; and (3) these apparent disagreements could be mitigated if the overall shapes of the cumulative lunar block populations were nonlinear, allowing for different slopes over different size intervals. The relatively large gaps between the Surveyor-derived and Orbiter-derived data sets, however, do not permit a determination of those shapes.

  8. New trends in the virtualization of hospitals--tools for global e-Health.

    PubMed

    Graschew, Georgi; Roelofs, Theo A; Rakowsky, Stefan; Schlag, Peter M; Heinzlreiter, Paul; Kranzlmüller, Dieter; Volkert, Jens

    2006-01-01

    The development of virtual hospitals and digital medicine helps to bridge the digital divide between different regions of the world and enables equal access to high-level medical care. Pre-operative planning, intra-operative navigation and minimally-invasive surgery require a digital and virtual environment supporting the perception of the physician. As data and computing resources in a virtual hospital are distributed over many sites the concept of the Grid should be integrated with other communication networks and platforms. A promising approach is the implementation of service-oriented architectures for an invisible grid, hiding complexity for both application developers and end-users. Examples of promising medical applications of Grid technology are the real-time 3D-visualization and manipulation of patient data for individualized treatment planning and the creation of distributed intelligent databases of medical images.

  9. Misattribution of movement agency following right parietal TMS.

    PubMed

    Preston, Catherine; Newport, Roger

    2008-03-01

    Single pulse transcranial magnetic stimulation (TMS) was used to disrupt the right inferior parietal lobe (rIPL) whilst neurologically intact participants made self/other judgments about whole arm reaching movements. Visual feedback of a physically coincident virtual hand was perturbed or left unperturbed (randomly) while TMS was delivered to either the rIPL or the vertex (blocked). Visual feedback of the virtual hand was veridical until the hand became occluded by a virtual bar approximately half way through the movement. TMS was delivered on 50% of trials at random during occlusion of the hand. The position of the virtual hand relative to the real hand was also perturbed during occlusion of the virtual hand on 50% of trials at random. At the end of the reach participants were required to make a verbal judgment as to whether the movement they had seen was self (unperturbed) or other (perturbed). The results revealed that when TMS was applied over rIPL, participants were more likely to misattribute agency to the computer, making more other responses for both perturbed and unperturbed trials. These findings highlight the role of a parietal neural comparator as a low-level mechanism in the experience of agency.

  10. Inhibitors of Helicobacter pylori Protease HtrA Found by ‘Virtual Ligand’ Screening Combat Bacterial Invasion of Epithelia

    PubMed Central

    Schneider, Petra; Hoy, Benjamin; Wessler, Silja; Schneider, Gisbert

    2011-01-01

    Background The human pathogen Helicobacter pylori (H. pylori) is a main cause for gastric inflammation and cancer. Increasing bacterial resistance against antibiotics demands for innovative strategies for therapeutic intervention. Methodology/Principal Findings We present a method for structure-based virtual screening that is based on the comprehensive prediction of ligand binding sites on a protein model and automated construction of a ligand-receptor interaction map. Pharmacophoric features of the map are clustered and transformed in a correlation vector (‘virtual ligand’) for rapid virtual screening of compound databases. This computer-based technique was validated for 18 different targets of pharmaceutical interest in a retrospective screening experiment. Prospective screening for inhibitory agents was performed for the protease HtrA from the human pathogen H. pylori using a homology model of the target protein. Among 22 tested compounds six block E-cadherin cleavage by HtrA in vitro and result in reduced scattering and wound healing of gastric epithelial cells, thereby preventing bacterial infiltration of the epithelium. Conclusions/Significance This study demonstrates that receptor-based virtual screening with a permissive (‘fuzzy’) pharmacophore model can help identify small bioactive agents for combating bacterial infection. PMID:21483848

  11. Reports on block rotations, fault domains and crustal deformation

    NASA Technical Reports Server (NTRS)

    Nur, Amos

    1990-01-01

    Studies of block rotations, fault domains and crustal deformation in the western United States, Israel, and China are discussed. Topics include a three-dimensional model of crustal fracture by distributed fault sets, distributed deformation and block rotation in 3D, stress field rotation, and multiple strike slip fault sets.

  12. Blocking performance of the hose model and the pipe model for VPN service provisioning over WDM optical networks

    NASA Astrophysics Data System (ADS)

    Wang, Haibo; Swee Poo, Gee

    2004-08-01

    We study the provisioning of virtual private network (VPN) service over WDM optical networks. For this purpose, we investigate the blocking performance of the hose model versus the pipe model for the provisioning. Two techniques are presented: an analytical queuing model and a discrete event simulation. The queuing model is developed from the multirate reduced-load approximation technique. The simulation is done with the OPNET simulator. Several experimental situations were used. The blocking probabilities calculated from the two approaches show a close match, indicating that the multirate reduced-load approximation technique is capable of predicting the blocking performance for the pipe model and the hose model in WDM networks. A comparison of the blocking behavior of the two models shows that the hose model has superior blocking performance as compared with pipe model. By and large, the blocking probability of the hose model is better than that of the pipe model by a few orders of magnitude, particularly at low load regions. The flexibility of the hose model allowing for the sharing of resources on a link among all connections accounts for its superior performance.

  13. Calculating a checksum with inactive networking components in a computing system

    DOEpatents

    Aho, Michael E; Chen, Dong; Eisley, Noel A; Gooding, Thomas M; Heidelberger, Philip; Tauferner, Andrew T

    2014-12-16

    Calculating a checksum utilizing inactive networking components in a computing system, including: identifying, by a checksum distribution manager, an inactive networking component, wherein the inactive networking component includes a checksum calculation engine for computing a checksum; sending, to the inactive networking component by the checksum distribution manager, metadata describing a block of data to be transmitted by an active networking component; calculating, by the inactive networking component, a checksum for the block of data; transmitting, to the checksum distribution manager from the inactive networking component, the checksum for the block of data; and sending, by the active networking component, a data communications message that includes the block of data and the checksum for the block of data.

  14. Calculating a checksum with inactive networking components in a computing system

    DOEpatents

    Aho, Michael E; Chen, Dong; Eisley, Noel A; Gooding, Thomas M; Heidelberger, Philip; Tauferner, Andrew T

    2015-01-27

    Calculating a checksum utilizing inactive networking components in a computing system, including: identifying, by a checksum distribution manager, an inactive networking component, wherein the inactive networking component includes a checksum calculation engine for computing a checksum; sending, to the inactive networking component by the checksum distribution manager, metadata describing a block of data to be transmitted by an active networking component; calculating, by the inactive networking component, a checksum for the block of data; transmitting, to the checksum distribution manager from the inactive networking component, the checksum for the block of data; and sending, by the active networking component, a data communications message that includes the block of data and the checksum for the block of data.

  15. Impact of distributions on the archetypes and prototypes in heterogeneous nanoparticle ensembles.

    PubMed

    Fernandez, Michael; Wilson, Hugh F; Barnard, Amanda S

    2017-01-05

    The magnitude and complexity of the structural and functional data available on nanomaterials requires data analytics, statistical analysis and information technology to drive discovery. We demonstrate that multivariate statistical analysis can recognise the sets of truly significant nanostructures and their most relevant properties in heterogeneous ensembles with different probability distributions. The prototypical and archetypal nanostructures of five virtual ensembles of Si quantum dots (SiQDs) with Boltzmann, frequency, normal, Poisson and random distributions are identified using clustering and archetypal analysis, where we find that their diversity is defined by size and shape, regardless of the type of distribution. At the complex hull of the SiQD ensembles, simple configuration archetypes can efficiently describe a large number of SiQDs, whereas more complex shapes are needed to represent the average ordering of the ensembles. This approach provides a route towards the characterisation of computationally intractable virtual nanomaterial spaces, which can convert big data into smart data, and significantly reduce the workload to simulate experimentally relevant virtual samples.

  16. The Integrated Distributed Virtual Research Network: An Introduction

    DTIC Science & Technology

    2014-06-01

    Tom Kile , Theron Trout, and Gary Cohn for their extensive contribution to this document to include reviews, comments, and edits, which contributed...to the quality of the document. The ARL Integrated Distributed Virtual Research Testbed (IDVRT) team, consisting of Alex Tarantin, Khoa Bui, Tom Kile ...n. Network Engineer (non-voting member) Tom Kile o. Network Engineer (non-voting member) Theron Trout p. Non-voting members (serving at the

  17. Modeling of luminance distribution in CAVE-type virtual reality systems

    NASA Astrophysics Data System (ADS)

    Meironke, Michał; Mazikowski, Adam

    2017-08-01

    At present, one of the most advanced virtual reality systems are CAVE-type (Cave Automatic Virtual Environment) installations. Such systems are usually consisted of four, five or six projection screens and in case of six screens arranged in form of a cube. Providing the user with a high level of immersion feeling in such systems is largely dependent of optical properties of the system. The modeling of physical phenomena plays nowadays a huge role in the most fields of science and technology. It allows to simulate work of device without a need to make any changes in the physical constructions. In this paper distribution of luminance in CAVE-type virtual reality systems were modelled. Calculations were performed for the model of 6-walled CAVE-type installation, based on Immersive 3D Visualization Laboratory, situated at the Faculty of Electronics, Telecommunications and Informatics at the Gdańsk University of Technology. Tests have been carried out for two different scattering distribution of the screen material in order to check how these characteristicinfluence on the luminance distribution of the whole CAVE. The basis assumption and simplification of modeled CAVE-type installation and results were presented. The brief discussion about the results and usefulness of developed model were also carried out.

  18. Target-induced formation of neuraminidase inhibitors from in vitro virtual combinatorial libraries

    PubMed Central

    Hochgürtel, Matthias; Kroth, Heiko; Piecha, Dorothea; Hofmann, Michael W.; Nicolau, Claude; Krause, Sonja; Schaaf, Otmar; Sonnenmoser, Gabriele; Eliseev, Alexey V.

    2002-01-01

    Neuraminidase, a key enzyme responsible for influenza virus propagation, has been used as a template for selective synthesis of small subsets of its own inhibitors from theoretically highly diverse dynamic combinatorial libraries. We show that the library building blocks, aldehydes and amines, form significant amounts of the library components resulting from their coupling by reductive amination only in the presence of the enzyme. The target amplifies the best hits at least 120-fold. The dynamic libraries synthesized and screened in such an in vitro virtual mode form the components that possess high inhibitory activity, as confirmed by enzyme assays with independently synthesized individual compounds. PMID:11891312

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, J. D.

    The virtual-casing principle is used in plasma physics to convert a Biot–Savart integration over a current distribution into a surface integral over a surface that encloses the current. In many circumstances, use of virtual casing can significantly speed up the computation of magnetic fields. In this paper, a virtual-casing principle is derived for a general vector field with arbitrary divergence and curl. This form of the virtual-casing principle is thus applicable to both magnetostatic fields and electrostatic fields. The result is then related to Helmholtz's theorem.

  20. Constructing Virtual Training Demonstrations

    DTIC Science & Technology

    2008-12-01

    virtual environments have been shown to be effective for training, and distributed game -based architectures contribute an added benefit of wide...investigation of how a demonstration authoring toolset can be constructed from existing virtual training environments using 3-D multiplayer gaming ...intelligent agents project to create AI middleware for simulations and videogames . The result was SimBionic®, which enables users to graphically author

  1. 36 Views of Mount Rainier

    ERIC Educational Resources Information Center

    Fortune, Tracy

    2011-01-01

    Look for ways to take students on virtual journeys to faraway places, and then connect the experience to something they can relate to on a more personal level. In this article, the author describes a block-printing unit inspired by Japanese printmaker, Katsushika Hokusai (1760-1849), and his series of art prints, "Thirty-six Views of Mount…

  2. Using Linguistics in the Teaching of Developmental and Remedial Algebra.

    ERIC Educational Resources Information Center

    Lesnak, Richard J.

    Basic algebra at Robert Morris College (RMC) in Pittsburgh, Pennsylvania, is a remedial course for students with virtually no algebra background, and for students whose previous experiences with algebra have created math blocks and math anxiety. A study was conducted in an effort to measure quantitatively the benefits of using linguistic methods…

  3. Default Parallels Plesk Panel Page

    Science.gov Websites

    services that small businesses want and need. Our software includes key building blocks of cloud service virtualized servers Service Provider Products Parallels® Automation Hosting, SaaS, and cloud computing , the leading hosting automation software. You see this page because there is no Web site at this

  4. A Measurement and Simulation Based Methodology for Cache Performance Modeling and Tuning

    NASA Technical Reports Server (NTRS)

    Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    We present a cache performance modeling methodology that facilitates the tuning of uniprocessor cache performance for applications executing on shared memory multiprocessors by accurately predicting the effects of source code level modifications. Measurements on a single processor are initially used for identifying parts of code where cache utilization improvements may significantly impact the overall performance. Cache simulation based on trace-driven techniques can be carried out without gathering detailed address traces. Minimal runtime information for modeling cache performance of a selected code block includes: base virtual addresses of arrays, virtual addresses of variables, and loop bounds for that code block. Rest of the information is obtained from the source code. We show that the cache performance predictions are as reliable as those obtained through trace-driven simulations. This technique is particularly helpful to the exploration of various "what-if' scenarios regarding the cache performance impact for alternative code structures. We explain and validate this methodology using a simple matrix-matrix multiplication program. We then apply this methodology to predict and tune the cache performance of two realistic scientific applications taken from the Computational Fluid Dynamics (CFD) domain.

  5. Structure-based virtual screening and characterization of a novel IL-6 antagonistic compound from synthetic compound database.

    PubMed

    Wang, Jing; Qiao, Chunxia; Xiao, He; Lin, Zhou; Li, Yan; Zhang, Jiyan; Shen, Beifen; Fu, Tinghuan; Feng, Jiannan

    2016-01-01

    According to the three-dimensional (3D) complex structure of (hIL-6⋅hIL-6R⋅gp 130) 2 and the binding orientation of hIL-6, three compounds with high affinity to hIL-6R and bioactivity to block hIL-6 in vitro were screened theoretically from the chemical databases, including 3D-Available Chemicals Directory (ACD) and MDL Drug Data Report (MDDR), by means of the computer-guided virtual screening method. Using distance geometry, molecular modeling and molecular dynamics trajectory analysis methods, the binding mode and binding energy of the three compounds were evaluated theoretically. Enzyme-linked immunosorbent assay analysis demonstrated that all the three compounds could block IL-6 binding to IL-6R specifically. However, only compound 1 could effectively antagonize the function of hIL-6 and inhibit the proliferation of XG-7 cells in a dose-dependent manner, whereas it showed no cytotoxicity to SP2/0 or L929 cells. These data demonstrated that the compound 1 could be a promising candidate of hIL-6 antagonist.

  6. Virtual network embedding in cross-domain network based on topology and resource attributes

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Zhang, Zhizhong; Feng, Linlin; Liu, Lilan

    2018-03-01

    Aiming at the network architecture ossification and the diversity of access technologies issues, this paper researches the cross-domain virtual network embedding algorithm. By analysing the topological attribute from the local and global perspective of nodes in the virtual network and the physical network, combined with the local network resource property, we rank the embedding priority of the nodes with PCA and TOPSIS methods. Besides, the link load distribution is considered. Above all, We proposed an cross-domain virtual network embedding algorithm based on topology and resource attributes. The simulation results depicts that our algorithm increases the acceptance rate of multi-domain virtual network requests, compared with the existing virtual network embedding algorithm.

  7. Distributed interactive virtual environments for collaborative experiential learning and training independent of distance over Internet2.

    PubMed

    Alverson, Dale C; Saiki, Stanley M; Jacobs, Joshua; Saland, Linda; Keep, Marcus F; Norenberg, Jeffrey; Baker, Rex; Nakatsu, Curtis; Kalishman, Summers; Lindberg, Marlene; Wax, Diane; Mowafi, Moad; Summers, Kenneth L; Holten, James R; Greenfield, John A; Aalseth, Edward; Nickles, David; Sherstyuk, Andrei; Haines, Karen; Caudell, Thomas P

    2004-01-01

    Medical knowledge and skills essential for tomorrow's healthcare professionals continue to change faster than ever before creating new demands in medical education. Project TOUCH (Telehealth Outreach for Unified Community Health) has been developing methods to enhance learning by coupling innovations in medical education with advanced technology in high performance computing and next generation Internet2 embedded in virtual reality environments (VRE), artificial intelligence and experiential active learning. Simulations have been used in education and training to allow learners to make mistakes safely in lieu of real-life situations, learn from those mistakes and ultimately improve performance by subsequent avoidance of those mistakes. Distributed virtual interactive environments are used over distance to enable learning and participation in dynamic, problem-based, clinical, artificial intelligence rules-based, virtual simulations. The virtual reality patient is programmed to dynamically change over time and respond to the manipulations by the learner. Participants are fully immersed within the VRE platform using a head-mounted display and tracker system. Navigation, locomotion and handling of objects are accomplished using a joy-wand. Distribution is managed via the Internet2 Access Grid using point-to-point or multi-casting connectivity through which the participants can interact. Medical students in Hawaii and New Mexico (NM) participated collaboratively in problem solving and managing of a simulated patient with a closed head injury in VRE; dividing tasks, handing off objects, and functioning as a team. Students stated that opportunities to make mistakes and repeat actions in the VRE were extremely helpful in learning specific principles. VRE created higher performance expectations and some anxiety among VRE users. VRE orientation was adequate but students needed time to adapt and practice in order to improve efficiency. This was also demonstrated successfully between Western Australia and UNM. We successfully demonstrated the ability to fully immerse participants in a distributed virtual environment independent of distance for collaborative team interaction in medical simulation designed for education and training. The ability to make mistakes in a safe environment is well received by students and has a positive impact on their understanding, as well as memory of the principles involved in correcting those mistakes. Bringing people together as virtual teams for interactive experiential learning and collaborative training, independent of distance, provides a platform for distributed "just-in-time" training, performance assessment and credentialing. Further validation is necessary to determine the potential value of the distributed VRE in knowledge transfer, improved future performance and should entail training participants to competence in using these tools.

  8. Toward a Virtual Solar Observatory: Starting Before the Petabytes Fall

    NASA Technical Reports Server (NTRS)

    Gurman, J. B.; Fisher, Richard R. (Technical Monitor)

    2002-01-01

    NASA is currently engaged in the study phase of a modest effort to establish a Virtual Solar Observatory (VSO). The VSO would serve ground- and space-based solar physics data sets from a distributed network of archives through a small number of interfaces to the scientific community. The basis of this approach, as of all planned virtual observatories, is the translation of metadata from the various sources via source-specific dictionaries so the user will not have to distinguish among keyword usages. A single Web interface should give access to all the distributed data. We present the current status of the VSO, its initial scope, and its relation to the European EGSO effort.

  9. Research on the control strategy of distributed energy resources inverter based on improved virtual synchronous generator.

    PubMed

    Gao, Changwei; Liu, Xiaoming; Chen, Hai

    2017-08-22

    This paper focus on the power fluctuations of the virtual synchronous generator(VSG) during the transition process. An improved virtual synchronous generator(IVSG) control strategy based on feed-forward compensation is proposed. Adjustable parameter of the compensation section can be modified to achieve the goal of reducing the order of the system. It can effectively suppress the power fluctuations of the VSG in transient process. To verify the effectiveness of the proposed control strategy for distributed energy resources inverter, the simulation model is set up in MATLAB/SIMULINK platform and physical experiment platform is established. Simulation and experiment results demonstrate the effectiveness of the proposed IVSG control strategy.

  10. Tomography for two-dimensional gas temperature distribution based on TDLAS

    NASA Astrophysics Data System (ADS)

    Luo, Can; Wang, Yunchu; Xing, Fei

    2018-03-01

    Based on tunable diode laser absorption spectroscopy (TDLAS), the tomography is used to reconstruct the combustion gas temperature distribution. The effects of number of rays, number of grids, and spacing of rays on the temperature reconstruction results for parallel ray are researched. The reconstruction quality is proportional to the ray number. The quality tends to be smoother when the ray number exceeds a certain value. The best quality is achieved when η is between 0.5 and 1. A virtual ray method combined with the reconstruction algorithms is tested. It is found that virtual ray method is effective to improve the accuracy of reconstruction results, compared with the original method. The linear interpolation method and cubic spline interpolation method, are used to improve the calculation accuracy of virtual ray absorption value. According to the calculation results, cubic spline interpolation is better. Moreover, the temperature distribution of a TBCC combustion chamber is used to validate those conclusions.

  11. RoBlock: a prototype autonomous manufacturing cell

    NASA Astrophysics Data System (ADS)

    Baekdal, Lars K.; Balslev, Ivar; Eriksen, Rene D.; Jensen, Soren P.; Jorgensen, Bo N.; Kirstein, Brian; Kristensen, Bent B.; Olsen, Martin M.; Perram, John W.; Petersen, Henrik G.; Petersen, Morten L.; Ruhoff, Peter T.; Skjolstrup, Carl E.; Sorensen, Anders S.; Wagenaar, Jeroen M.

    2000-10-01

    RoBlock is the first phase of an internally financed project at the Institute aimed at building a system in which two industrial robots suspended from a gantry, as shown below, cooperate to perform a task specified by an external user, in this case, assembling an unstructured collection of colored wooden blocks into a specified 3D pattern. The blocks are identified and localized using computer vision and grasped with a suction cup mechanism. Future phases of the project will involve other processes such as grasping and lifting, as well as other types of robot such as autonomous vehicles or variable geometry trusses. Innovative features of the control software system include: The use of an advanced trajectory planning system which ensures collision avoidance based on a generalization of the method of artificial potential fields, the use of a generic model-based controller which learns the values of parameters, including static and kinetic friction, of a detailed mechanical model of itself by comparing actual with planned movements, the use of fast, flexible, and robust pattern recognition and 3D-interpretation strategies, integration of trajectory planning and control with the sensor systems in a distributed Java application running on a network of PC's attached to the individual physical components. In designing this first stage, the aim was to build in the minimum complexity necessary to make the system non-trivially autonomous and to minimize the technological risks. The aims of this project, which is planned to be operational during 2000, are as follows: To provide a platform for carrying out experimental research in multi-agent systems and autonomous manufacturing systems, to test the interdisciplinary cooperation architecture of the Maersk Institute, in which researchers in the fields of applied mathematics (modeling the physical world), software engineering (modeling the system) and sensor/actuator technology (relating the virtual and real worlds) could collaborate with systems integrators to construct intelligent, autonomous systems, and to provide a showpiece demonstrator in the entrance hall of the Institute's new building.

  12. 17 CFR 240.16a-7 - Transactions effected in connection with a distribution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... good faith in the distribution of such block of securities; or (ii) A security purchased in good faith... the transaction is engaged in the business of distributing securities and is participating in good faith, in the ordinary course of such business, in the distribution of such block of securities; and (2...

  13. LVC interaction within a mixed-reality training system

    NASA Astrophysics Data System (ADS)

    Pollock, Brice; Winer, Eliot; Gilbert, Stephen; de la Cruz, Julio

    2012-03-01

    The United States military is increasingly pursuing advanced live, virtual, and constructive (LVC) training systems for reduced cost, greater training flexibility, and decreased training times. Combining the advantages of realistic training environments and virtual worlds, mixed reality LVC training systems can enable live and virtual trainee interaction as if co-located. However, LVC interaction in these systems often requires constructing immersive environments, developing hardware for live-virtual interaction, tracking in occluded environments, and an architecture that supports real-time transfer of entity information across many systems. This paper discusses a system that overcomes these challenges to empower LVC interaction in a reconfigurable, mixed reality environment. This system was developed and tested in an immersive, reconfigurable, and mixed reality LVC training system for the dismounted warfighter at ISU, known as the Veldt, to overcome LVC interaction challenges and as a test bed for cuttingedge technology to meet future U.S. Army battlefield requirements. Trainees interact physically in the Veldt and virtually through commercial and developed game engines. Evaluation involving military trained personnel found this system to be effective, immersive, and useful for developing the critical decision-making skills necessary for the battlefield. Procedural terrain modeling, model-matching database techniques, and a central communication server process all live and virtual entity data from system components to create a cohesive virtual world across all distributed simulators and game engines in real-time. This system achieves rare LVC interaction within multiple physical and virtual immersive environments for training in real-time across many distributed systems.

  14. Closed-loop dialog model of face-to-face communication with a photo-real virtual human

    NASA Astrophysics Data System (ADS)

    Kiss, Bernadette; Benedek, Balázs; Szijárto, Gábor; Takács, Barnabás

    2004-01-01

    We describe an advanced Human Computer Interaction (HCI) model that employs photo-realistic virtual humans to provide digital media users with information, learning services and entertainment in a highly personalized and adaptive manner. The system can be used as a computer interface or as a tool to deliver content to end-users. We model the interaction process between the user and the system as part of a closed loop dialog taking place between the participants. This dialog, exploits the most important characteristics of a face-to-face communication process, including the use of non-verbal gestures and meta communication signals to control the flow of information. Our solution is based on a Virtual Human Interface (VHI) technology that was specifically designed to be able to create emotional engagement between the virtual agent and the user, thus increasing the efficiency of learning and/or absorbing any information broadcasted through this device. The paper reviews the basic building blocks and technologies needed to create such a system and discusses its advantages over other existing methods.

  15. In silico-based identification of human α-enolase inhibitors to block cancer cell growth metabolically

    PubMed Central

    Lung, Jrhau; Chen, Kuan-Liang; Hung, Chien-Hui; Chen, Chih-Cheng; Hung, Ming-Szu; Lin, Yu-Ching; Wu, Ching-Yuan; Lee, Kuan-Der; Shih, Neng-Yao; Tsai, Ying Huang

    2017-01-01

    Unlimited growth of cancer cells requires an extensive nutrient supply. To meet this demand, cancer cells drastically upregulate glucose uptake and metabolism compared to normal cells. This difference has made the blocking of glycolysis a fascinating strategy to treat this malignant disease. α-enolase is not only one of the most upregulated glycolytic enzymes in cancer cells, but also associates with many cellular processes or conditions important to cancer cell survival, such as cell migration, invasion, and hypoxia. Targeting α-enolase could simultaneously disturb cancer cells in multiple ways and, therefore, is a good target for anticancer drug development. In the current study, more than 22 million chemical structures meeting the criteria of Lipinski’s rule of five from the ZINC database were docked to α-enolase by virtual screening. Twenty-four chemical structures with docking scores better than that of the enolase substrate, 2-phosphoglycerate, were further screened by the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties prediction. Four of them were classified as non-mutagenic, non-carcinogenic, and capable of oral administration where they showed steady interactions to α-enolase that were comparable, even superior, to the currently available inhibitors in molecular dynamics (MD) simulation. These compounds may be considered promising leads for further development of the α-enolase inhibitors and could help fight cancer metabolically. PMID:29180852

  16. [Virtual water content of livestock products in China].

    PubMed

    Wang, Hong-rui; Wang, Jun-hong

    2006-04-01

    The paper expatiated the virtual water content concept of livestock products and the study meaning on developing virtual water trade of livestock products in China, then summarized the calculation methods on virtual water and virtual water trade of livestock products. Based on these, the paper analyzed and researched every province virtual water content of livestock products in details, then elicited various situation of every province virtual water content of livestock products in China by year. Moreover, it compared virtual water content of livestock products with local water resources. The study indicated the following results: (1) The virtual water content of livestock products is increasing rapidly in China recently, especially poultry eggs and pork. (2) The distribution of virtual water content of livestock products is not balanced, mainly lies in North China, East China and so on; (3) The increasing production of livestock in Beijing City, Tianjin City, Hebei, Nei Monggol, Liaononing, Jilin, Shandong, Henan and Ningxia province and autonom ous region will bring pressure to local water shortage.

  17. Addressing data privacy in matched studies via virtual pooling.

    PubMed

    Saha-Chaudhuri, P; Weinberg, C R

    2017-09-07

    Data confidentiality and shared use of research data are two desirable but sometimes conflicting goals in research with multi-center studies and distributed data. While ideal for straightforward analysis, confidentiality restrictions forbid creation of a single dataset that includes covariate information of all participants. Current approaches such as aggregate data sharing, distributed regression, meta-analysis and score-based methods can have important limitations. We propose a novel application of an existing epidemiologic tool, specimen pooling, to enable confidentiality-preserving analysis of data arising from a matched case-control, multi-center design. Instead of pooling specimens prior to assay, we apply the methodology to virtually pool (aggregate) covariates within nodes. Such virtual pooling retains most of the information used in an analysis with individual data and since individual participant data is not shared externally, within-node virtual pooling preserves data confidentiality. We show that aggregated covariate levels can be used in a conditional logistic regression model to estimate individual-level odds ratios of interest. The parameter estimates from the standard conditional logistic regression are compared to the estimates based on a conditional logistic regression model with aggregated data. The parameter estimates are shown to be similar to those without pooling and to have comparable standard errors and confidence interval coverage. Virtual data pooling can be used to maintain confidentiality of data from multi-center study and can be particularly useful in research with large-scale distributed data.

  18. A Virtual Object-Location Task for Children: Gender and Videogame Experience Influence Navigation; Age Impacts Memory and Completion Time.

    PubMed

    Rodriguez-Andres, David; Mendez-Lopez, Magdalena; Juan, M-Carmen; Perez-Hernandez, Elena

    2018-01-01

    The use of virtual reality-based tasks for studying memory has increased considerably. Most of the studies that have looked at child population factors that influence performance on such tasks have been focused on cognitive variables. However, little attention has been paid to the impact of non-cognitive skills. In the present paper, we tested 52 typically-developing children aged 5-12 years in a virtual object-location task. The task assessed their spatial short-term memory for the location of three objects in a virtual city. The virtual task environment was presented using a 3D application consisting of a 120″ stereoscopic screen and a gamepad interface. Measures of learning and displacement indicators in the virtual environment, 3D perception, satisfaction, and usability were obtained. We assessed the children's videogame experience, their visuospatial span, their ability to build blocks, and emotional and behavioral outcomes. The results indicate that learning improved with age. Significant effects on the speed of navigation were found favoring boys and those more experienced with videogames. Visuospatial skills correlated mainly with ability to recall object positions, but the correlation was weak. Longer paths were related with higher scores of withdrawal behavior, attention problems, and a lower visuospatial span. Aggressiveness and experience with the device used for interaction were related with faster navigation. However, the correlations indicated only weak associations among these variables.

  19. Experimental and numerical modeling research of rubber material during microwave heating process

    NASA Astrophysics Data System (ADS)

    Chen, Hailong; Li, Tao; Li, Kunling; Li, Qingling

    2018-05-01

    This paper aims to investigate the heating behaviors of block rubber by experimental and simulated method. The COMSOL Multiphysics 5.0 software was utilized in numerical simulation work. The effects of microwave frequency, power and sample size on temperature distribution are examined. The effect of frequency on temperature distribution is obvious. The maximum and minimum temperatures of block rubber increase first and then decrease with frequency increasing. The microwave heating efficiency is maximum in the microwave frequency of 2450 MHz. However, more uniform temperature distribution is presented in other microwave frequencies. The influence of microwave power on temperature distribution is also remarkable. The smaller the power, the more uniform the temperature distribution on the block rubber. The effect of power on microwave heating efficiency is not obvious. The effect of sample size on temperature distribution is evidently found. The smaller the sample size, the more uniform the temperature distribution on the block rubber. However, the smaller the sample size, the lower the microwave heating efficiency. The results can serve as references for the research on heating rubber material by microwave technology.

  20. Web Service Distributed Management Framework for Autonomic Server Virtualization

    NASA Astrophysics Data System (ADS)

    Solomon, Bogdan; Ionescu, Dan; Litoiu, Marin; Mihaescu, Mircea

    Virtualization for the x86 platform has imposed itself recently as a new technology that can improve the usage of machines in data centers and decrease the cost and energy of running a high number of servers. Similar to virtualization, autonomic computing and more specifically self-optimization, aims to improve server farm usage through provisioning and deprovisioning of instances as needed by the system. Autonomic systems are able to determine the optimal number of server machines - real or virtual - to use at a given time, and add or remove servers from a cluster in order to achieve optimal usage. While provisioning and deprovisioning of servers is very important, the way the autonomic system is built is also very important, as a robust and open framework is needed. One such management framework is the Web Service Distributed Management (WSDM) system, which is an open standard of the Organization for the Advancement of Structured Information Standards (OASIS). This paper presents an open framework built on top of the WSDM specification, which aims to provide self-optimization for applications servers residing on virtual machines.

  1. Virtual reality as a tool for cross-cultural communication: an example from military team training

    NASA Astrophysics Data System (ADS)

    Downes-Martin, Stephen; Long, Mark; Alexander, Joanna R.

    1992-06-01

    A major problem with communication across cultures, whether professional or national, is that simple language translation if often insufficient to communicate the concepts. This is especially true when the communicators come from highly specialized fields of knowledge or from national cultures with long histories of divergence. This problem becomes critical when the goal of the communication is national negotiation dealing with such high risk items as arms negotiation or trade wars. Virtual Reality technology has considerable potential for facilitating communication across cultures, by immersing the communicators within multiple visual representations of the concepts, and providing control over those representations. Military distributed team training provides a model for virtual reality suitable for cross cultural communication such as negotiation. In both team training and negotiation, the participants must cooperate, agree on a set of goals, and achieve mastery over the concepts being negotiated. Team training technologies suitable for supporting cross cultural negotiation exist (branch wargaming, computer image generation and visualization, distributed simulation), and have developed along different lines than traditional virtual reality technology. Team training de-emphasizes the realism of physiological interfaces between the human and the virtual reality, and emphasizes the interaction of humans with each other and with intelligent simulated agents within the virtual reality. This approach to virtual reality is suggested as being more fruitful for future work.

  2. Technologies for network-centric C4ISR

    NASA Astrophysics Data System (ADS)

    Dunkelberger, Kirk A.

    2003-07-01

    Three technologies form the heart of any network-centric command, control, communication, intelligence, surveillance, and reconnaissance (C4ISR) system: distributed processing, reconfigurable networking, and distributed resource management. Distributed processing, enabled by automated federation, mobile code, intelligent process allocation, dynamic multiprocessing groups, check pointing, and other capabilities creates a virtual peer-to-peer computing network across the force. Reconfigurable networking, consisting of content-based information exchange, dynamic ad-hoc routing, information operations (perception management) and other component technologies forms the interconnect fabric for fault tolerant inter processor and node communication. Distributed resource management, which provides the means for distributed cooperative sensor management, foe sensor utilization, opportunistic collection, symbiotic inductive/deductive reasoning and other applications provides the canonical algorithms for network-centric enterprises and warfare. This paper introduces these three core technologies and briefly discusses a sampling of their component technologies and their individual contributions to network-centric enterprises and warfare. Based on the implied requirements, two new algorithms are defined and characterized which provide critical building blocks for network centricity: distributed asynchronous auctioning and predictive dynamic source routing. The first provides a reliable, efficient, effective approach for near-optimal assignment problems; the algorithm has been demonstrated to be a viable implementation for ad-hoc command and control, object/sensor pairing, and weapon/target assignment. The second is founded on traditional dynamic source routing (from mobile ad-hoc networking), but leverages the results of ad-hoc command and control (from the contributed auctioning algorithm) into significant increases in connection reliability through forward prediction. Emphasis is placed on the advantages gained from the closed-loop interaction of the multiple technologies in the network-centric application environment.

  3. Association of pKi-67 with satellite DNA of the human genome in early G1 cells.

    PubMed

    Bridger, J M; Kill, I R; Lichter, P

    1998-01-01

    pKi-67 is a nucleolar antigen that provides a specific marker for proliferating cells. It has been shown previously that pKi-67's distribution varies in a cell cycle-dependent manner: it coats all chromosomes during mitosis, accumulates in nuclear foci during G1 phase (type I distribution) and localizes within nucleoli in late G1 S and G2 phase (type II distribution). Although no function has as yet been ascribed to pKi-67, it has been found associated with centromeres in G1. In the present study the distribution pattern of pKi-67 during G1 in human dermal fibroblasts (HDFs) was analysed in more detail. Synchronization experiments show that in very early G1 cells pKi-67 coincides with virtually all satellite regions analysed, i.e. with centromeric (alpha-satellite), telomeric (minisatellite) and heterochromatic blocks (satellite III) on chromosomes 1 and Y (type Ia distribution). In contrast, later in the G1 phase, a smaller fraction of satellite DNA regions are found collocalized with pKi-67 foci (type Ib distribution). When all pKi-67 becomes localized within nucleoli, even fewer satellite regions remain associated with the pKi-67 staining. However, all centromeric and short arm regions of the acrocentric chromosomes, which are in very close proximity to or even contain the rRNA genes, are collocalized with anti-pKi-67 staining throughout the remaining interphase of the cell cycle. Thus, our data demonstrate that during post-mitotic reformation and nucleogenesis there is a progressive decline in the fraction of specific satellite regions of DNA that remain associated with pKi-67. This may be relevant to nucleolar reformation following mitosis.

  4. "Science SQL" as a Building Block for Flexible, Standards-based Data Infrastructures

    NASA Astrophysics Data System (ADS)

    Baumann, Peter

    2016-04-01

    We have learnt to live with the pain of separating data and metadata into non-interoperable silos. For metadata, we enjoy the flexibility of databases, be they relational, graph, or some other NoSQL. Contrasting this, users still "drown in files" as an unstructured, low-level archiving paradigm. It is time to bridge this chasm which once was technologically induced, but today can be overcome. One building block towards a common re-integrated information space is to support massive multi-dimensional spatio-temporal arrays. These "datacubes" appear as sensor, image, simulation, and statistics data in all science and engineering domains, and beyond. For example, 2-D satellilte imagery, 2-D x/y/t image timeseries and x/y/z geophysical voxel data, and 4-D x/y/z/t climate data contribute to today's data deluge in the Earth sciences. Virtual observatories in the Space sciences routinely generate Petabytes of such data. Life sciences deal with microarray data, confocal microscopy, human brain data, which all fall into the same category. The ISO SQL/MDA (Multi-Dimensional Arrays) candidate standard is extending SQL with modelling and query support for n-D arrays ("datacubes") in a flexible, domain-neutral way. This heralds a new generation of services with new quality parameters, such as flexibility, ease of access, embedding into well-known user tools, and scalability mechanisms that remain completely transparent to users. Technology like the EU rasdaman ("raster data manager") Array Database system can support all of the above examples simultaneously, with one technology. This is practically proven: As of today, rasdaman is in operational use on hundreds of Terabytes of satellite image timeseries datacubes, with transparent query distribution across more than 1,000 nodes. Therefore, Array Databases offering SQL/MDA constitute a natural common building block for next-generation data infrastructures. Being initiator and editor of the standard we present principles, implementation facets, and application examples as a basis for further discussion. Further, we highlight recent implementation progress in parallelization, data distribution, and query optimization showing their effects on real-life use cases.

  5. Deeply Virtual Exclusive Processes and Generalized Parton Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ,

    2011-06-01

    The goal of the comprehensive program in Deeply Virtual Exclusive Scattering at Jefferson Laboratory is to create transverse spatial images of quarks and gluons as a function of their longitudinal momentum fraction in the proton, the neutron, and in nuclei. These functions are the Generalized Parton Distributions (GPDs) of the target nucleus. Cross section measurements of the Deeply Virtual Compton Scattering (DVCS) reaction ep {yields} ep{gamma} in Hall A support the QCD factorization of the scattering amplitude for Q^2 {>=} 2 GeV^2. Quasi-free neutron-DVCS measurements on the Deuteron indicate sensitivity to the quark angular momentum sum rule. Fully exclusive H(e,more » e'p{gamma} ) measurements have been made in a wide kinematic range in CLAS with polarized beam, and with both unpolarized and longitudinally polarized targets. Existing models are qualitatively consistent with the JLab data, but there is a clear need for less constrained models. Deeply virtual vector meson production is studied in CLAS. The 12 GeV upgrade will be essential for for these channels. The {rho} and {omega} channels reactions offer the prospect of flavor sensitivity to the quark GPDs, while the {phi}-production channel is dominated by the gluon distribution.« less

  6. New developments in digital pathology: from telepathology to virtual pathology laboratory.

    PubMed

    Kayser, Klaus; Kayser, Gian; Radziszowski, Dominik; Oehmann, Alexander

    2004-01-01

    To analyse the present status and future development of computerized diagnostic pathology in terms of work-flow integrative telepathology and virtual laboratory. Telepathology has left its childhood. The technical development of telepathology is mature, in contrast to that of virtual pathology. Two kinds of virtual pathology laboratories are emerging: a) those with distributed pathologists and distributed (>=1) laboratories associated to individual biopsy stations/surgical theatres, and b) distributed pathologists working in a centralized laboratory. Both are under technical development. Telepathology can be used for e-learning and e-training in pathology, as exemplarily demonstrated on Digital Lung Pathology Pathology (www.pathology-online.org). A virtual pathology institution (mode a) accepts a complete case with the patient's history, clinical findings, and (pre-selected) images for first diagnosis. The diagnostic responsibility is that of a conventional institution. The internet serves as platform for information transfer, and an open server such as the iPATH (http://telepath.patho.unibas.ch) for coordination and performance of the diagnostic procedure. The size of images has to be limited, and usual different magnifications have to be used. A group of pathologists is "on duty", or selects one member for a predefined duty period. The diagnostic statement of the pathologist(s) on duty is retransmitted to the sender with full responsibility. First experiences of a virtual pathology institution group working with the iPATH server (Dr. L. Banach, Dr. G. Haroske, Dr. I. Hurwitz, Dr. K. Kayser, Dr. K.D. Kunze, Dr. M. Oberholzer,) working with a small hospital of the Salomon islands are promising. A centralized virtual pathology institution (mode b) depends upon the digitalisation of a complete slide, and the transfer of large sized images to different pathologists working in one institution. The technical performance of complete slide digitalisation is still under development and does not completely fulfil the requirements of a conventional pathology institution at present. VIRTUAL PATHOLOGY AND E-LEARNING: At present, e-learning systems are "stand-alone" solutions distributed on CD or via internet. A characteristic example is the Digital Lung Pathology CD (www.pathology-online.org), which includes about 60 different rare and common lung diseases and internet access to scientific library systems (PubMed), distant measurement servers (EuroQuant), or electronic journals (Elec J Pathol Histol). A new and complete data base based upon this CD will combine e-learning and e-teaching with the actual workflow in a virtual pathology institution (mode a). The technological problems are solved and do not depend upon technical constraints such as slide scanning systems. Telepathology serves as promotor for a new landscape in diagnostic pathology, the so-called virtual pathology institution. Industrial and scientific efforts will probably allow an implementation of this technique within the next two years.

  7. Environmental and Water Quality Operational Studies. Environmental Guidelines for Dike Fields.

    DTIC Science & Technology

    1984-09-01

    public release; distribution unlimited. I. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report) IS. SUPPLEMENTARY NOTES...necessary and identify by block number) Aquatic biology--Environmental aspects. (LC) Dikes (Engineering)--Design and construction--Environmental...w ad Idenwify by block number) ’The environmental guidelines for dike fields-contained within this report consist of environmental objectives, design

  8. Virtual Collaboration Readiness Measurement a Case Study in the Automobile Industry

    NASA Astrophysics Data System (ADS)

    Ziarati, Koorush; Khayami, Raouf; Parvinnia, Elham; Afroozi Milani, Ghazal

    In end of the last century information and communication technology caused a veritable evolution in the world of business and commerce. Globalization has changed all the commerce equations and business plans. Old companies have to change their strategies if they want to survive after this technological revolution. A new form of collaboration between the distributed and networked organizations has emerged as the "Virtual Organization" paradigm. A company can not join a virtual organization before obtaining a virtual maturity. This maturity shows the readiness of the company to begin a virtual collaboration. In this paper, based on the coherent and formal definition of virtual organizations, the criteria for measuring the readiness of companies are proposed. Our criteria are confirmed, modified or combined by using the factor analysis method on a sufficient number of virtual companies in the automobile manufacturing industry.

  9. Attentional Demand of a Virtual Reality-Based Reaching Task in Nondisabled Older Adults.

    PubMed

    Chen, Yi-An; Chung, Yu-Chen; Proffitt, Rachel; Wade, Eric; Winstein, Carolee

    2015-12-01

    Attention during exercise is known to affect performance; however, the attentional demand inherent to virtual reality (VR)-based exercise is not well understood. We used a dual-task paradigm to compare the attentional demands of VR-based and non-VR-based (conventional, real-world) exercise: 22 non-disabled older adults performed a primary reaching task to virtual and real targets in a counterbalanced block order while verbally responding to an unanticipated auditory tone in one third of the trials. The attentional demand of the primary reaching task was inferred from the voice response time (VRT) to the auditory tone. Participants' engagement level and task experience were also obtained using questionnaires. The virtual target condition was more attention demanding (significantly longer VRT) than the real target condition. Secondary analyses revealed a significant interaction between engagement level and target condition on attentional demand. For participants who were highly engaged, attentional demand was high and independent of target condition. However, for those who were less engaged, attentional demand was low and depended on target condition (i.e., virtual > real). These findings add important knowledge to the growing body of research pertaining to the development and application of technology-enhanced exercise for elders and for rehabilitation purposes.

  10. Attentional Demand of a Virtual Reality-Based Reaching Task in Nondisabled Older Adults

    PubMed Central

    Chen, Yi-An; Chung, Yu-Chen; Proffitt, Rachel; Wade, Eric; Winstein, Carolee

    2015-01-01

    Attention during exercise is known to affect performance; however, the attentional demand inherent to virtual reality (VR)-based exercise is not well understood. We used a dual-task paradigm to compare the attentional demands of VR-based and non-VR-based (conventional, real-world) exercise: 22 non-disabled older adults performed a primary reaching task to virtual and real targets in a counterbalanced block order while verbally responding to an unanticipated auditory tone in one third of the trials. The attentional demand of the primary reaching task was inferred from the voice response time (VRT) to the auditory tone. Participants' engagement level and task experience were also obtained using questionnaires. The virtual target condition was more attention demanding (significantly longer VRT) than the real target condition. Secondary analyses revealed a significant interaction between engagement level and target condition on attentional demand. For participants who were highly engaged, attentional demand was high and independent of target condition. However, for those who were less engaged, attentional demand was low and depended on target condition (i.e., virtual > real). These findings add important knowledge to the growing body of research pertaining to the development and application of technology-enhanced exercise for elders and for rehabilitation purposes. PMID:27004233

  11. A Virtual Rat for Simulating Environmental and Exertional Heat Stress

    DTIC Science & Technology

    2014-10-02

    unsuitable for accurately determin- ing the spatiotemporal temperature distribution in the animal due to heat stress and for performing mechanistic analysis ...possible in the original experiments. Finally, we performed additional simu- lations using the virtual rat to facilitate comparative analysis of the...capability of the virtual rat to account for the circadian rhythmicity in core temperatures during an in- crease in the external temperature from 22

  12. Distributed Virtual System (DIVIRS) Project

    NASA Technical Reports Server (NTRS)

    Schorr, Herbert; Neuman, B. Clifford

    1993-01-01

    As outlined in our continuation proposal 92-ISI-50R (revised) on contract NCC 2-539, we are (1) developing software, including a system manager and a job manager, that will manage available resources and that will enable programmers to program parallel applications in terms of a virtual configuration of processors, hiding the mapping to physical nodes; (2) developing communications routines that support the abstractions implemented in item one; (3) continuing the development of file and information systems based on the virtual system model; and (4) incorporating appropriate security measures to allow the mechanisms developed in items 1 through 3 to be used on an open network. The goal throughout our work is to provide a uniform model that can be applied to both parallel and distributed systems. We believe that multiprocessor systems should exist in the context of distributed systems, allowing them to be more easily shared by those that need them. Our work provides the mechanisms through which nodes on multiprocessors are allocated to jobs running within the distributed system and the mechanisms through which files needed by those jobs can be located and accessed.

  13. DIstributed VIRtual System (DIVIRS) project

    NASA Technical Reports Server (NTRS)

    Schorr, Herbert; Neuman, B. Clifford

    1994-01-01

    As outlined in our continuation proposal 92-ISI-. OR (revised) on NASA cooperative agreement NCC2-539, we are (1) developing software, including a system manager and a job manager, that will manage available resources and that will enable programmers to develop and execute parallel applications in terms of a virtual configuration of processors, hiding the mapping to physical nodes; (2) developing communications routines that support the abstractions implemented in item one; (3) continuing the development of file and information systems based on the Virtual System Model; and (4) incorporating appropriate security measures to allow the mechanisms developed in items 1 through 3 to be used on an open network. The goal throughout our work is to provide a uniform model that can be applied to both parallel and distributed systems. We believe that multiprocessor systems should exist in the context of distributed systems, allowing them to be more easily shared by those that need them. Our work provides the mechanisms through which nodes on multiprocessors are allocated to jobs running within the distributed system and the mechanisms through which files needed by those jobs can be located and accessed.

  14. DIstributed VIRtual System (DIVIRS) project

    NASA Technical Reports Server (NTRS)

    Schorr, Herbert; Neuman, Clifford B.

    1995-01-01

    As outlined in our continuation proposal 92-ISI-50R (revised) on NASA cooperative agreement NCC2-539, we are (1) developing software, including a system manager and a job manager, that will manage available resources and that will enable programmers to develop and execute parallel applications in terms of a virtual configuration of processors, hiding the mapping to physical nodes; (2) developing communications routines that support the abstractions implemented in item one; (3) continuing the development of file and information systems based on the Virtual System Model; and (4) incorporating appropriate security measures to allow the mechanisms developed in items 1 through 3 to be used on an open network. The goal throughout our work is to provide a uniform model that can be applied to both parallel and distributed systems. We believe that multiprocessor systems should exist in the context of distributed systems, allowing them to be more easily shared by those that need them. Our work provides the mechanisms through which nodes on multiprocessors are allocated to jobs running within the distributed system and the mechanisms through which files needed by those jobs can be located and accessed.

  15. Distributed Virtual System (DIVIRS) project

    NASA Technical Reports Server (NTRS)

    Schorr, Herbert; Neuman, B. Clifford

    1993-01-01

    As outlined in the continuation proposal 92-ISI-50R (revised) on NASA cooperative agreement NCC 2-539, the investigators are developing software, including a system manager and a job manager, that will manage available resources and that will enable programmers to develop and execute parallel applications in terms of a virtual configuration of processors, hiding the mapping to physical nodes; developing communications routines that support the abstractions implemented; continuing the development of file and information systems based on the Virtual System Model; and incorporating appropriate security measures to allow the mechanisms developed to be used on an open network. The goal throughout the work is to provide a uniform model that can be applied to both parallel and distributed systems. The authors believe that multiprocessor systems should exist in the context of distributed systems, allowing them to be more easily shared by those that need them. The work provides the mechanisms through which nodes on multiprocessors are allocated to jobs running within the distributed system and the mechanisms through which files needed by those jobs can be located and accessed.

  16. A comparative analysis of dynamic grids vs. virtual grids using the A3pviGrid framework.

    PubMed

    Shankaranarayanan, Avinas; Amaldas, Christine

    2010-11-01

    With the proliferation of Quad/Multi-core micro-processors in mainstream platforms such as desktops and workstations; a large number of unused CPU cycles can be utilized for running virtual machines (VMs) as dynamic nodes in distributed environments. Grid services and its service oriented business broker now termed cloud computing could deploy image based virtualization platforms enabling agent based resource management and dynamic fault management. In this paper we present an efficient way of utilizing heterogeneous virtual machines on idle desktops as an environment for consumption of high performance grid services. Spurious and exponential increases in the size of the datasets are constant concerns in medical and pharmaceutical industries due to the constant discovery and publication of large sequence databases. Traditional algorithms are not modeled at handing large data sizes under sudden and dynamic changes in the execution environment as previously discussed. This research was undertaken to compare our previous results with running the same test dataset with that of a virtual Grid platform using virtual machines (Virtualization). The implemented architecture, A3pviGrid utilizes game theoretic optimization and agent based team formation (Coalition) algorithms to improve upon scalability with respect to team formation. Due to the dynamic nature of distributed systems (as discussed in our previous work) all interactions were made local within a team transparently. This paper is a proof of concept of an experimental mini-Grid test-bed compared to running the platform on local virtual machines on a local test cluster. This was done to give every agent its own execution platform enabling anonymity and better control of the dynamic environmental parameters. We also analyze performance and scalability of Blast in a multiple virtual node setup and present our findings. This paper is an extension of our previous research on improving the BLAST application framework using dynamic Grids on virtualization platforms such as the virtual box.

  17. Dynamic Fragmentation of Jointed Rock Blocks During Rockslide-Avalanches: Insights From Discrete Element Analyses

    NASA Astrophysics Data System (ADS)

    Zhao, Tao; Crosta, Giovanni Battista; Dattola, Giuseppe; Utili, Stefano

    2018-04-01

    The dynamic fragmentation of jointed rock blocks during rockslide avalanches has been investigated by discrete element method simulations for a multiple arrangement of a rock block sliding over a simple slope geometry. The rock blocks are released along an inclined sliding plane and subsequently collide onto a flat horizontal plane at a sharp kink point. The contact force chains generated by the impact appear initially at the bottom frontal corner of the rock block and then propagate radially upward to the top rear part of the block. The jointed rock blocks exhibit evident contact force concentration and discontinuity of force wave propagation near the joint, associating with high energy dissipation of granular dynamics. The corresponding force wave propagation velocity can be less than 200 m/s, which is much smaller than that of an intact rock (1,316 m/s). The concentration of contact forces at the bottom leads to high rock fragmentation intensity and momentum boosts, facilitating the spreading of many fine fragments to the distal ends. However, the upper rock block exhibits very low rock fragmentation intensity but high energy dissipation due to intensive friction and damping, resulting in the deposition of large fragments near the slope toe. The size and shape of large fragments are closely related to the orientation and distribution of the block joints. The cumulative fragment size distribution can be well fitted by the Weibull's distribution function, with very gentle and steep curvatures at the fine and coarse size ranges, respectively. The numerical results of fragment size distribution can match well some experimental and field observations.

  18. Second diastolic pulmonary venous flow and isolated late diastolic mitral valve regurgitation in first-degree atrioventricular block.

    PubMed

    Leibundgut, Gregor; Bernheim, Alain M

    2010-04-01

    The authors report the case of a 77-year-old male patient with sinus rhythm and a first-degree atrioventricular (AV) block who was referred for echocardiographic follow-up 18 years after aortic valve replacement. Left ventricular systolic function as well as the function of the aortic prosthesis was normal. Systolic mitral regurgitation (MR) was virtually absent, but isolated late diastolic MR was detected by colour Doppler imaging. Coincidental to the occurrence of diastolic MR, a second late diastolic forward flow in the pulmonary veins was observed. Therefore, during the prolonged left atrial relaxation caused by first-degree AV block, the left atrial pressure drops below the pressure in both adjacent chambers in late diastole, resulting in both late diastolic MR and a second diastolic pulmonary venous forward flow.

  19. A general method for the derivation of the functional forms of the effective energy terms in coarse-grained energy functions of polymers. I. Backbone potentials of coarse-grained polypeptide chains

    NASA Astrophysics Data System (ADS)

    Sieradzan, Adam K.; Makowski, Mariusz; Augustynowicz, Antoni; Liwo, Adam

    2017-03-01

    A general and systematic method for the derivation of the functional expressions for the effective energy terms in coarse-grained force fields of polymer chains is proposed. The method is based on the expansion of the potential of mean force of the system studied in the cluster-cumulant series and expanding the all-atom energy in the Taylor series in the squares of interatomic distances about the squares of the distances between coarse-grained centers, to obtain approximate analytical expressions for the cluster cumulants. The primary degrees of freedom to average about are the angles for collective rotation of the atoms contained in the coarse-grained interaction sites about the respective virtual-bond axes. The approach has been applied to the revision of the virtual-bond-angle, virtual-bond-torsional, and backbone-local-and-electrostatic correlation potentials for the UNited RESidue (UNRES) model of polypeptide chains, demonstrating the strong dependence of the torsional and correlation potentials on virtual-bond angles, not considered in the current UNRES. The theoretical considerations are illustrated with the potentials calculated from the ab initio potential-energy surface of terminally blocked alanine by numerical integration and with the statistical potentials derived from known protein structures. The revised torsional potentials correctly indicate that virtual-bond angles close to 90° result in the preference for the turn and helical structures, while large virtual-bond angles result in the preference for polyproline II and extended backbone geometry. The revised correlation potentials correctly reproduce the preference for the formation of β-sheet structures for large values of virtual-bond angles and for the formation of α-helical structures for virtual-bond angles close to 90°.

  20. The Evolution of Constructivist Learning Environments: Immersion in Distributed, Virtual Worlds.

    ERIC Educational Resources Information Center

    Dede, Chris

    1995-01-01

    Discusses the evolution of constructivist learning environments and examines the collaboration of simulated software models, virtual environments, and evolving mental models via immersion in artificial realities. A sidebar gives a realistic example of a student navigating through cyberspace. (JMV)

  1. A Proposal for the Distribution of Federal Block Grant Funds in Illinois.

    ERIC Educational Resources Information Center

    Hickrod, G. Alan; And Others

    It is proposed that federal block grants to Illinois be distributed to school districts according to four characteristics of those districts. Funds will be distributed inversely proportional to property valuation per pupil, directly proportional to percentage of minority children, directly proportional to percentage of poverty children (Title I…

  2. A novel resource sharing algorithm based on distributed construction for radiant enclosure problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finzell, Peter; Bryden, Kenneth M.

    This study demonstrates a novel approach to solving inverse radiant enclosure problems based on distributed construction. Specifically, the problem of determining the temperature distribution needed on the heater surfaces to achieve a desired design surface temperature profile is recast as a distributed construction problem in which a shared resource, temperature, is distributed by computational agents moving blocks. The sharing of blocks between agents enables them to achieve their desired local state, which in turn achieves the desired global state. Each agent uses the current state of their local environment and a simple set of rules to determine when to exchangemore » blocks, each block representing a discrete unit of temperature change. This algorithm is demonstrated using the established two-dimensional inverse radiation enclosure problem. The temperature profile on the heater surfaces is adjusted to achieve a desired temperature profile on the design surfaces. The resource sharing algorithm was able to determine the needed temperatures on the heater surfaces to obtain the desired temperature distribution on the design surfaces in the nine cases examined.« less

  3. A novel resource sharing algorithm based on distributed construction for radiant enclosure problems

    DOE PAGES

    Finzell, Peter; Bryden, Kenneth M.

    2017-03-06

    This study demonstrates a novel approach to solving inverse radiant enclosure problems based on distributed construction. Specifically, the problem of determining the temperature distribution needed on the heater surfaces to achieve a desired design surface temperature profile is recast as a distributed construction problem in which a shared resource, temperature, is distributed by computational agents moving blocks. The sharing of blocks between agents enables them to achieve their desired local state, which in turn achieves the desired global state. Each agent uses the current state of their local environment and a simple set of rules to determine when to exchangemore » blocks, each block representing a discrete unit of temperature change. This algorithm is demonstrated using the established two-dimensional inverse radiation enclosure problem. The temperature profile on the heater surfaces is adjusted to achieve a desired temperature profile on the design surfaces. The resource sharing algorithm was able to determine the needed temperatures on the heater surfaces to obtain the desired temperature distribution on the design surfaces in the nine cases examined.« less

  4. Maintaining Traceability in an Evolving Distributed Computing Environment

    NASA Astrophysics Data System (ADS)

    Collier, I.; Wartel, R.

    2015-12-01

    The management of risk is fundamental to the operation of any distributed computing infrastructure. Identifying the cause of incidents is essential to prevent them from re-occurring. In addition, it is a goal to contain the impact of an incident while keeping services operational. For response to incidents to be acceptable this needs to be commensurate with the scale of the problem. The minimum level of traceability for distributed computing infrastructure usage is to be able to identify the source of all actions (executables, file transfers, pilot jobs, portal jobs, etc.) and the individual who initiated them. In addition, sufficiently fine-grained controls, such as blocking the originating user and monitoring to detect abnormal behaviour, are necessary for keeping services operational. It is essential to be able to understand the cause and to fix any problems before re-enabling access for the user. The aim is to be able to answer the basic questions who, what, where, and when concerning any incident. This requires retaining all relevant information, including timestamps and the digital identity of the user, sufficient to identify, for each service instance, and for every security event including at least the following: connect, authenticate, authorize (including identity changes) and disconnect. In traditional grid infrastructures (WLCG, EGI, OSG etc.) best practices and procedures for gathering and maintaining the information required to maintain traceability are well established. In particular, sites collect and store information required to ensure traceability of events at their sites. With the increased use of virtualisation and private and public clouds for HEP workloads established procedures, which are unable to see 'inside' running virtual machines no longer capture all the information required. Maintaining traceability will at least involve a shift of responsibility from sites to Virtual Organisations (VOs) bringing with it new requirements for their logging infrastructures. VOs indeed need to fulfil a new operational role and become fully active participants in the incident response process. We present an analysis of the changing requirements to maintain traceability for virtualised and cloud based workflows with particular reference to the work of the WLCG Traceability Working Group.

  5. Recent evolution of China's virtual water trade: analysis of selected crops and considerations for policy

    NASA Astrophysics Data System (ADS)

    Shi, J.; Liu, J.; Pinter, L.

    2014-04-01

    China has dramatically increased its virtual water import over recent years. Many studies have focused on the quantity of traded virtual water, but very few go into analysing geographic distribution and the properties of China's virtual water trade network. This paper provides a calculation and analysis of the crop-related virtual water trade network of China based on 27 major primary crops between 1986 and 2009. The results show that China is a net importer of virtual water from water-abundant areas of North America and South America, and a net virtual water exporter to water-stressed areas of Asia, Africa, and Europe. Virtual water import is far larger than virtual water export, and in both import and export a small number of trade partners control the supply chain. Grain crops are the major contributors to virtual water trade, and among grain crops, soybeans, mostly imported from the US, Brazil and Argentina, are the most significant. In order to mitigate water scarcity and secure the food supply, virtual water should actively be incorporated into national water management strategies. And the sources of virtual water import need to be further diversified to reduce supply chain risks and increase resilience.

  6. Constraints on the H˜ generalized parton distribution from deep virtual Compton scattering measured at HERMES

    NASA Astrophysics Data System (ADS)

    Guidal, M.

    2010-09-01

    We have analyzed the longitudinally polarized proton target asymmetry data of the Deep Virtual Compton process recently published by the HERMES Collaboration in terms of Generalized Parton Distributions. We have fitted these new data in a largely model-independent fashion and the procedure results in numerical constraints on the accent="true">H˜Im Compton Form Factor. We present its t- and ξ-dependencies. We also find improvement on the determination of two other Compton Form Factors, HRe and HIm.

  7. The Organization and Management of the Virtual Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Berriman, G. Bruce; Hanisch, Robert J.; Lazio, T. Joseph W.; Szalay, Alexander; Fabbiano, Giussepina

    2012-01-01

    The U.S. Virtual Astronomical Observatory (VAO; http://www.us-vao.org/) has been in operation since May 2010. Its goal is to enable new science through efficient integration of distributed multi-wavelength data. This paper describes the management and organization of the VAO, and emphasizes the techniques used to ensure efficiency in a distributed organization. Management methods include using an annual program plan as the basis for establishing contracts with member organizations, regular communication, and monitoring of processes.

  8. The organization and management of the Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Berriman, G. Bruce; Hanisch, Robert J.; Lazio, T. Joseph W.; Szalay, Alexander; Fabbiano, Giuseppina

    2012-09-01

    The U.S. Virtual Astronomical Observatory (VAO; http://www.us-vao.org/) has been in operation since May 2010. Its goal is to enable new science through efficient integration of distributed multi-wavelength data. This paper describes the management and organization of the VAO, and emphasizes the techniques used to ensure efficiency in a distributed organization. Management methods include using an annual program plan as the basis for establishing contracts with member organizations, regular communication, and monitoring of processes.

  9. Drift-insensitive distributed calibration of probe microscope scanner in nanometer range: Virtual mode

    NASA Astrophysics Data System (ADS)

    Lapshin, Rostislav V.

    2016-08-01

    A method of distributed calibration of a probe microscope scanner is suggested. The main idea consists in a search for a net of local calibration coefficients (LCCs) in the process of automatic measurement of a standard surface, whereby each point of the movement space of the scanner can be characterized by a unique set of scale factors. Feature-oriented scanning (FOS) methodology is used as a basis for implementation of the distributed calibration permitting to exclude in situ the negative influence of thermal drift, creep and hysteresis on the obtained results. Possessing the calibration database enables correcting in one procedure all the spatial systematic distortions caused by nonlinearity, nonorthogonality and spurious crosstalk couplings of the microscope scanner piezomanipulators. To provide high precision of spatial measurements in nanometer range, the calibration is carried out using natural standards - constants of crystal lattice. One of the useful modes of the developed calibration method is a virtual mode. In the virtual mode, instead of measurement of a real surface of the standard, the calibration program makes a surface image ;measurement; of the standard, which was obtained earlier using conventional raster scanning. The application of the virtual mode permits simulation of the calibration process and detail analysis of raster distortions occurring in both conventional and counter surface scanning. Moreover, the mode allows to estimate the thermal drift and the creep velocities acting while surface scanning. Virtual calibration makes possible automatic characterization of a surface by the method of scanning probe microscopy (SPM).

  10. Multi-Agent Framework for Virtual Learning Spaces.

    ERIC Educational Resources Information Center

    Sheremetov, Leonid; Nunez, Gustavo

    1999-01-01

    Discussion of computer-supported collaborative learning, distributed artificial intelligence, and intelligent tutoring systems focuses on the concept of agents, and describes a virtual learning environment that has a multi-agent system. Describes a model of interactions in collaborative learning and discusses agents for Web-based virtual…

  11. DWTP: a basis for networked VR on the Internet

    NASA Astrophysics Data System (ADS)

    Broll, Wolfgang; Schick, Daniel

    1998-04-01

    Shared virtual worlds are one of today's major research topics. While limited to particular application areas and high speed networks in the past, they become more and more available to a large number of users. One reason for this development was the introduction of VRML (the Virtual Reality Modeling Language), which has been established as a standard of the exchange of 3D worlds on the Internet. Although a number of prototype systems have been developed to realize shared multi-user worlds based on VRML, no suitable network protocol to support the demands of such environments has yet been established. In this paper we will introduce our approach of a network protocol for shared virtual environments: DWTP--the Distributed Worlds Transfer and communication Protocol. We will show how DWTP meets the demands of shared virtual environments on the Internet. We will further present SmallView, our prototype of a distributed multi-user VR system, to show how DWTP can be used to realize shared worlds.

  12. Distributed attitude synchronization of formation flying via consensus-based virtual structure

    NASA Astrophysics Data System (ADS)

    Cong, Bing-Long; Liu, Xiang-Dong; Chen, Zhen

    2011-06-01

    This paper presents a general framework for synchronized multiple spacecraft rotations via consensus-based virtual structure. In this framework, attitude control systems for formation spacecrafts and virtual structure are designed separately. Both parametric uncertainty and external disturbance are taken into account. A time-varying sliding mode control (TVSMC) algorithm is designed to improve the robustness of the actual attitude control system. As for the virtual attitude control system, a behavioral consensus algorithm is presented to accomplish the attitude maneuver of the entire formation and guarantee a consistent attitude among the local virtual structure counterparts during the attitude maneuver. A multiple virtual sub-structures (MVSSs) system is introduced to enhance current virtual structure scheme when large amounts of spacecrafts are involved in the formation. The attitude of spacecraft is represented by modified Rodrigues parameter (MRP) for its non-redundancy. Finally, a numerical simulation with three synchronization situations is employed to illustrate the effectiveness of the proposed strategy.

  13. Agreements in Virtual Organizations

    NASA Astrophysics Data System (ADS)

    Pankowska, Malgorzata

    This chapter is an attempt to explain the important impact that contract theory delivers with respect to the concept of virtual organization. The author believes that not enough research has been conducted in order to transfer theoretical foundations for networking to the phenomena of virtual organizations and open autonomic computing environment to ensure the controllability and management of them. The main research problem of this chapter is to explain the significance of agreements for virtual organizations governance. The first part of this chapter comprises explanations of differences among virtual machines and virtual organizations for further descriptions of the significance of the first ones to the development of the second. Next, the virtual organization development tendencies are presented and problems of IT governance in highly distributed organizational environment are discussed. The last part of this chapter covers analysis of contracts and agreements management for governance in open computing environments.

  14. Using PVM to host CLIPS in distributed environments

    NASA Technical Reports Server (NTRS)

    Myers, Leonard; Pohl, Kym

    1994-01-01

    It is relatively easy to enhance CLIPS (C Language Integrated Production System) to support multiple expert systems running in a distributed environment with heterogeneous machines. The task is minimized by using the PVM (Parallel Virtual Machine) code from Oak Ridge Labs to provide the distributed utility. PVM is a library of C and FORTRAN subprograms that supports distributive computing on many different UNIX platforms. A PVM deamon is easily installed on each CPU that enters the virtual machine environment. Any user with rsh or rexec access to a machine can use the one PVM deamon to obtain a generous set of distributed facilities. The ready availability of both CLIPS and PVM makes the combination of software particularly attractive for budget conscious experimentation of heterogeneous distributive computing with multiple CLIPS executables. This paper presents a design that is sufficient to provide essential message passing functions in CLIPS and enable the full range of PVM facilities.

  15. Performance Studies on Distributed Virtual Screening

    PubMed Central

    Krüger, Jens; de la Garza, Luis; Kohlbacher, Oliver; Nagel, Wolfgang E.

    2014-01-01

    Virtual high-throughput screening (vHTS) is an invaluable method in modern drug discovery. It permits screening large datasets or databases of chemical structures for those structures binding possibly to a drug target. Virtual screening is typically performed by docking code, which often runs sequentially. Processing of huge vHTS datasets can be parallelized by chunking the data because individual docking runs are independent of each other. The goal of this work is to find an optimal splitting maximizing the speedup while considering overhead and available cores on Distributed Computing Infrastructures (DCIs). We have conducted thorough performance studies accounting not only for the runtime of the docking itself, but also for structure preparation. Performance studies were conducted via the workflow-enabled science gateway MoSGrid (Molecular Simulation Grid). As input we used benchmark datasets for protein kinases. Our performance studies show that docking workflows can be made to scale almost linearly up to 500 concurrent processes distributed even over large DCIs, thus accelerating vHTS campaigns significantly. PMID:25032219

  16. A Virtual Object-Location Task for Children: Gender and Videogame Experience Influence Navigation; Age Impacts Memory and Completion Time

    PubMed Central

    Rodriguez-Andres, David; Mendez-Lopez, Magdalena; Juan, M.-Carmen; Perez-Hernandez, Elena

    2018-01-01

    The use of virtual reality-based tasks for studying memory has increased considerably. Most of the studies that have looked at child population factors that influence performance on such tasks have been focused on cognitive variables. However, little attention has been paid to the impact of non-cognitive skills. In the present paper, we tested 52 typically-developing children aged 5–12 years in a virtual object-location task. The task assessed their spatial short-term memory for the location of three objects in a virtual city. The virtual task environment was presented using a 3D application consisting of a 120″ stereoscopic screen and a gamepad interface. Measures of learning and displacement indicators in the virtual environment, 3D perception, satisfaction, and usability were obtained. We assessed the children’s videogame experience, their visuospatial span, their ability to build blocks, and emotional and behavioral outcomes. The results indicate that learning improved with age. Significant effects on the speed of navigation were found favoring boys and those more experienced with videogames. Visuospatial skills correlated mainly with ability to recall object positions, but the correlation was weak. Longer paths were related with higher scores of withdrawal behavior, attention problems, and a lower visuospatial span. Aggressiveness and experience with the device used for interaction were related with faster navigation. However, the correlations indicated only weak associations among these variables. PMID:29674988

  17. Basic Skills Resource Center. Part 2

    DTIC Science & Technology

    1985-05-01

    side if neceseary and Identify by block number) Basic Skills Education Curriculum Development Learning Strategies Reading Comprehension Motivational ... Motivational Skills Training for Military Technical Training Students ...... Barbara L. McCombs 25 Problem 27 Purpose 27 Approach 28 - Phase 1 28 - Phase...and Learning ...... John J. Hedl , Jr. 53 Purpose of Project 55 Description of Work 55 V Products 56 Virtual Videodisc Software Requirements ...... J.D

  18. Managing the Net-Enabled Weapons Kill Chain Testing in a Live-Virtual-Constructive Environment

    DTIC Science & Technology

    2009-01-01

    Data Link UHFSATCOM • In Inventory 385 Block IV ‐109E High Priority Pop-Up Target • TACTOM is already launched to a preplanned ATO target • Intel...of FS Results of Maneuver CDR’s Intent ROE OPLANS OPORDS M ovement & Operatio nal Co nstraintsTask/Missio n Constraints Environment FS Systems

  19. GED® Collapse: Ohio Needs Launch Pads, Not Barricades. Executive Summary

    ERIC Educational Resources Information Center

    Halbert, Hannah

    2016-01-01

    The number of people attempting and passing the GED has plummeted. The Ohio economy is tough on low-wage workers with limited formal education. Without a high school diploma, it is virtually impossible to get a family-supporting job. But the GED has become a barricade, blocking Ohio workers from career goals, instead of a launching pad. Employers…

  20. GED® Collapse in Ohio: State Needs Launch Pads, Not Barricades. Workforce Development

    ERIC Educational Resources Information Center

    Halbert, Hannah

    2016-01-01

    The number of people attempting and passing the GED has plummeted. The Ohio economy is tough on low-wage workers with limited formal education. Without a high school diploma, it is virtually impossible to get a family-supporting job. But the GED has become a barricade, blocking Ohio workers from career goals, instead of a launching pad. Employers…

  1. Automatic-repeat-request error control schemes

    NASA Technical Reports Server (NTRS)

    Lin, S.; Costello, D. J., Jr.; Miller, M. J.

    1983-01-01

    Error detection incorporated with automatic-repeat-request (ARQ) is widely used for error control in data communication systems. This method of error control is simple and provides high system reliability. If a properly chosen code is used for error detection, virtually error-free data transmission can be attained. Various types of ARQ and hybrid ARQ schemes, and error detection using linear block codes are surveyed.

  2. Performance evaluation of data center service localization based on virtual resource migration in software defined elastic optical network.

    PubMed

    Yang, Hui; Zhang, Jie; Ji, Yuefeng; Tan, Yuanlong; Lin, Yi; Han, Jianrui; Lee, Young

    2015-09-07

    Data center interconnection with elastic optical network is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented cross stratum optimization of optical network and application stratums resources that allows to accommodate data center services. In view of this, this study extends the data center resources to user side to enhance the end-to-end quality of service. We propose a novel data center service localization (DCSL) architecture based on virtual resource migration in software defined elastic data center optical network. A migration evaluation scheme (MES) is introduced for DCSL based on the proposed architecture. The DCSL can enhance the responsiveness to the dynamic end-to-end data center demands, and effectively reduce the blocking probability to globally optimize optical network and application resources. The overall feasibility and efficiency of the proposed architecture are experimentally verified on the control plane of our OpenFlow-based enhanced SDN testbed. The performance of MES scheme under heavy traffic load scenario is also quantitatively evaluated based on DCSL architecture in terms of path blocking probability, provisioning latency and resource utilization, compared with other provisioning scheme.

  3. Optical granulometric analysis of sedimentary deposits by color segmentation-based software: OPTGRAN-CS

    NASA Astrophysics Data System (ADS)

    Chávez, G. Moreno; Sarocchi, D.; Santana, E. Arce; Borselli, L.

    2015-12-01

    The study of grain size distribution is fundamental for understanding sedimentological environments. Through these analyses, clast erosion, transport and deposition processes can be interpreted and modeled. However, grain size distribution analysis can be difficult in some outcrops due to the number and complexity of the arrangement of clasts and matrix and their physical size. Despite various technological advances, it is almost impossible to get the full grain size distribution (blocks to sand grain size) with a single method or instrument of analysis. For this reason development in this area continues to be fundamental. In recent years, various methods of particle size analysis by automatic image processing have been developed, due to their potential advantages with respect to classical ones; speed and final detailed content of information (virtually for each analyzed particle). In this framework, we have developed a novel algorithm and software for grain size distribution analysis, based on color image segmentation using an entropy-controlled quadratic Markov measure field algorithm and the Rosiwal method for counting intersections between clast and linear transects in the images. We test the novel algorithm in different sedimentary deposit types from 14 varieties of sedimentological environments. The results of the new algorithm were compared with grain counts performed manually by the same Rosiwal methods applied by experts. The new algorithm has the same accuracy as a classical manual count process, but the application of this innovative methodology is much easier and dramatically less time-consuming. The final productivity of the new software for analysis of clasts deposits after recording field outcrop images can be increased significantly.

  4. Can virtual reality be used to conduct mass prophylaxis clinic training? A pilot program.

    PubMed

    Yellowlees, Peter; Cook, James N; Marks, Shayna L; Wolfe, Daniel; Mangin, Elanor

    2008-03-01

    To create and evaluate a pilot bioterrorism defense training environment using virtual reality technology. The present pilot project used Second Life, an internet-based virtual world system, to construct a virtual reality environment to mimic an actual setting that might be used as a Strategic National Stockpile (SNS) distribution site for northern California in the event of a bioterrorist attack. Scripted characters were integrated into the system as mock patients to analyze various clinic workflow scenarios. Users tested the virtual environment over two sessions. Thirteen users who toured the environment were asked to complete an evaluation survey. Respondents reported that the virtual reality system was relevant to their practice and had potential as a method of bioterrorism defense training. Computer simulations of bioterrorism defense training scenarios are feasible with existing personal computer technology. The use of internet-connected virtual environments holds promise for bioterrorism defense training. Recommendations are made for public health agencies regarding the implementation and benefits of using virtual reality for mass prophylaxis clinic training.

  5. Investigation on Consumers’ Behaviour towards Energy Saving through Utilisation of Virtual SED (Smart Energy Displays) in Residential Building

    NASA Astrophysics Data System (ADS)

    Adlisia Puspa Harani, Sandhika

    2018-05-01

    The study is conducted by gathering data from interviews an in-home experiment, to examine the impacts of both virtual and physical SED toward user engagement. Business opportunity and benefits of virtual SED for stake holders are also discussed in this study. The research was conducted by interviewing method to respondens in Nottingham, UK. By comparing consumers’ energy saving behaviour from physical and virtual SED users, virtual SED shows similar level of effectiveness as physical SED, but there is no evidence that the virtual versions are better than the physical ones in terms of reducing energy consumption. Nevertheless, virtual SED can be more beneficial for consumers who can get easier access. They also help educating users to be more concern about energy issue. Energy suppliers get benefits by having virtual versions of SED, in which they can reduce production and distribution costs, as well as diminishing waste from physical SED.

  6. Shared virtual environments for aerospace training

    NASA Technical Reports Server (NTRS)

    Loftin, R. Bowen; Voss, Mark

    1994-01-01

    Virtual environments have the potential to significantly enhance the training of NASA astronauts and ground-based personnel for a variety of activities. A critical requirement is the need to share virtual environments, in real or near real time, between remote sites. It has been hypothesized that the training of international astronaut crews could be done more cheaply and effectively by utilizing such shared virtual environments in the early stages of mission preparation. The Software Technology Branch at NASA's Johnson Space Center has developed the capability for multiple users to simultaneously share the same virtual environment. Each user generates the graphics needed to create the virtual environment. All changes of object position and state are communicated to all users so that each virtual environment maintains its 'currency.' Examples of these shared environments will be discussed and plans for the utilization of the Department of Defense's Distributed Interactive Simulation (DIS) protocols for shared virtual environments will be presented. Finally, the impact of this technology on training and education in general will be explored.

  7. Unraveling the Agglomeration Mechanism in Charged Block Copolymer and Surfactant Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.

    Here, we report a molecular dynamics simulation investigation of self-assembly and complex formation of charged-neutral double hydrophilic and hydrophobic-hydrophilic block copolymers (BCP) with oppositely charged surfactants. Furthermore, the structure of the surfactant micelles and the BCP aggregation on the micelle surface is systematically studied for five different BCP volume fractions that also mimics a reduction of the surfactant concentration. The local electrostatic interactions between the oppositely charged species encourage the formation of core-shell structures between the surfactant micelles where the surfactants form the cores and the charged blocks of the BCP form the corona. The emergent morphologies of these aggregatesmore » are contingent upon the nature of the BCP neutral blocks. The hydrophilic neutral blocks agglomerate with the micelles as hairy colloidal structures while the hydrophobic neutrals agglomerate in lamellar structures with the surfactant micelles. The distribution of counterion charges along the simulation box show a close-to-normal density distribution for the hydrophilic neutral blocks and a binodal distribution for hydrophobic neutral blocks. No specific surfactant concentration dependent scaling relation is observed as opposed to the simpler case of homo-polyelectrolytes.« less

  8. Unraveling the Agglomeration Mechanism in Charged Block Copolymer and Surfactant Complexes

    DOE PAGES

    Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.; ...

    2017-01-27

    Here, we report a molecular dynamics simulation investigation of self-assembly and complex formation of charged-neutral double hydrophilic and hydrophobic-hydrophilic block copolymers (BCP) with oppositely charged surfactants. Furthermore, the structure of the surfactant micelles and the BCP aggregation on the micelle surface is systematically studied for five different BCP volume fractions that also mimics a reduction of the surfactant concentration. The local electrostatic interactions between the oppositely charged species encourage the formation of core-shell structures between the surfactant micelles where the surfactants form the cores and the charged blocks of the BCP form the corona. The emergent morphologies of these aggregatesmore » are contingent upon the nature of the BCP neutral blocks. The hydrophilic neutral blocks agglomerate with the micelles as hairy colloidal structures while the hydrophobic neutrals agglomerate in lamellar structures with the surfactant micelles. The distribution of counterion charges along the simulation box show a close-to-normal density distribution for the hydrophilic neutral blocks and a binodal distribution for hydrophobic neutral blocks. No specific surfactant concentration dependent scaling relation is observed as opposed to the simpler case of homo-polyelectrolytes.« less

  9. On validating remote sensing simulations using coincident real data

    NASA Astrophysics Data System (ADS)

    Wang, Mingming; Yao, Wei; Brown, Scott; Goodenough, Adam; van Aardt, Jan

    2016-05-01

    The remote sensing community often requires data simulation, either via spectral/spatial downsampling or through virtual, physics-based models, to assess systems and algorithms. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) model is one such first-principles, physics-based model for simulating imagery for a range of modalities. Complex simulation of vegetation environments subsequently has become possible, as scene rendering technology and software advanced. This in turn has created questions related to the validity of such complex models, with potential multiple scattering, bidirectional distribution function (BRDF), etc. phenomena that could impact results in the case of complex vegetation scenes. We selected three sites, located in the Pacific Southwest domain (Fresno, CA) of the National Ecological Observatory Network (NEON). These sites represent oak savanna, hardwood forests, and conifer-manzanita-mixed forests. We constructed corresponding virtual scenes, using airborne LiDAR and imaging spectroscopy data from NEON, ground-based LiDAR data, and field-collected spectra to characterize the scenes. Imaging spectroscopy data for these virtual sites then were generated using the DIRSIG simulation environment. This simulated imagery was compared to real AVIRIS imagery (15m spatial resolution; 12 pixels/scene) and NEON Airborne Observation Platform (AOP) data (1m spatial resolution; 180 pixels/scene). These tests were performed using a distribution-comparison approach for select spectral statistics, e.g., established the spectra's shape, for each simulated versus real distribution pair. The initial comparison results of the spectral distributions indicated that the shapes of spectra between the virtual and real sites were closely matched.

  10. Ancestral Components of Admixed Genomes in a Mexican Cohort

    PubMed Central

    Johnson, Nicholas A.; Coram, Marc A.; Shriver, Mark D.; Romieu, Isabelle; Barsh, Gregory S.; London, Stephanie J.; Tang, Hua

    2011-01-01

    For most of the world, human genome structure at a population level is shaped by interplay between ancient geographic isolation and more recent demographic shifts, factors that are captured by the concepts of biogeographic ancestry and admixture, respectively. The ancestry of non-admixed individuals can often be traced to a specific population in a precise region, but current approaches for studying admixed individuals generally yield coarse information in which genome ancestry proportions are identified according to continent of origin. Here we introduce a new analytic strategy for this problem that allows fine-grained characterization of admixed individuals with respect to both geographic and genomic coordinates. Ancestry segments from different continents, identified with a probabilistic model, are used to construct and study “virtual genomes” of admixed individuals. We apply this approach to a cohort of 492 parent–offspring trios from Mexico City. The relative contributions from the three continental-level ancestral populations—Africa, Europe, and America—vary substantially between individuals, and the distribution of haplotype block length suggests an admixing time of 10–15 generations. The European and Indigenous American virtual genomes of each Mexican individual can be traced to precise regions within each continent, and they reveal a gradient of Amerindian ancestry between indigenous people of southwestern Mexico and Mayans of the Yucatan Peninsula. This contrasts sharply with the African roots of African Americans, which have been characterized by a uniform mixing of multiple West African populations. We also use the virtual European and Indigenous American genomes to search for the signatures of selection in the ancestral populations, and we identify previously known targets of selection in other populations, as well as new candidate loci. The ability to infer precise ancestral components of admixed genomes will facilitate studies of disease-related phenotypes and will allow new insight into the adaptive and demographic history of indigenous people. PMID:22194699

  11. Games as Distributed Teaching and Learning Systems

    ERIC Educational Resources Information Center

    Gee, Elisabeth; Gee, James Paul

    2017-01-01

    Background: Videogames and virtual worlds have frequently been studied as learning environments in isolation; that is, scholars have focused on understanding the features of games or virtual worlds as separate from or different than "real world" environments for learning. Although more recently, scholars have explored the teaching and…

  12. Virtual Teaming: Faculty Collaboration in Online Spaces

    ERIC Educational Resources Information Center

    Almjeld, Jen; Rybas, Natalia; Rybas, Sergey

    2013-01-01

    This collaborative article chronicles the experiences of three faculty at three universities utilizing wiki technology to transform themselves and their students into a virtual team. Rooted in workplace approaches to distributed teaming, the project expands notions of classroom collaboration to include planning, administration, and assessment of a…

  13. Layer 1 VPN services in distributed next-generation SONET/SDH networks with inverse multiplexing

    NASA Astrophysics Data System (ADS)

    Ghani, N.; Muthalaly, M. V.; Benhaddou, D.; Alanqar, W.

    2006-05-01

    Advances in next-generation SONET/SDH along with GMPLS control architectures have enabled many new service provisioning capabilities. In particular, a key services paradigm is the emergent Layer 1 virtual private network (L1 VPN) framework, which allows multiple clients to utilize a common physical infrastructure and provision their own 'virtualized' circuit-switched networks. This precludes expensive infrastructure builds and increases resource utilization for carriers. Along these lines, a novel L1 VPN services resource management scheme for next-generation SONET/SDH networks is proposed that fully leverages advanced virtual concatenation and inverse multiplexing features. Additionally, both centralized and distributed GMPLS-based implementations are also tabled to support the proposed L1 VPN services model. Detailed performance analysis results are presented along with avenues for future research.

  14. Parallel-distributed mobile robot simulator

    NASA Astrophysics Data System (ADS)

    Okada, Hiroyuki; Sekiguchi, Minoru; Watanabe, Nobuo

    1996-06-01

    The aim of this project is to achieve an autonomous learning and growth function based on active interaction with the real world. It should also be able to autonomically acquire knowledge about the context in which jobs take place, and how the jobs are executed. This article describes a parallel distributed movable robot system simulator with an autonomous learning and growth function. The autonomous learning and growth function which we are proposing is characterized by its ability to learn and grow through interaction with the real world. When the movable robot interacts with the real world, the system compares the virtual environment simulation with the interaction result in the real world. The system then improves the virtual environment to match the real-world result more closely. This the system learns and grows. It is very important that such a simulation is time- realistic. The parallel distributed movable robot simulator was developed to simulate the space of a movable robot system with an autonomous learning and growth function. The simulator constructs a virtual space faithful to the real world and also integrates the interfaces between the user, the actual movable robot and the virtual movable robot. Using an ultrafast CG (computer graphics) system (FUJITSU AG series), time-realistic 3D CG is displayed.

  15. Slip-Size Distribution and Self-Organized Criticality in Block-Spring Models with Quenched Randomness

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Kadowaki, Shuntaro

    2017-07-01

    We study slowly pulling block-spring models in random media. Second-order phase transitions exist in a model pulled by a constant force in the case of velocity-strengthening friction. If external forces are slowly increased, nearly critical states are self-organized. Slips of various sizes occur, and the probability distributions of slip size roughly obey power laws. The exponent is close to that in the quenched Edwards-Wilkinson model. Furthermore, the slip-size distributions are investigated in cases of Coulomb friction, velocity-weakening friction, and two-dimensional block-spring models.

  16. WarpEngine, a Flexible Platform for Distributed Computing Implemented in the VEGA Program and Specially Targeted for Virtual Screening Studies.

    PubMed

    Pedretti, Alessandro; Mazzolari, Angelica; Vistoli, Giulio

    2018-05-21

    The manuscript describes WarpEngine, a novel platform implemented within the VEGA ZZ suite of software for performing distributed simulations both in local and wide area networks. Despite being tailored for structure-based virtual screening campaigns, WarpEngine possesses the required flexibility to carry out distributed calculations utilizing various pieces of software, which can be easily encapsulated within this platform without changing their source codes. WarpEngine takes advantages of all cheminformatics features implemented in the VEGA ZZ program as well as of its largely customizable scripting architecture thus allowing an efficient distribution of various time-demanding simulations. To offer an example of the WarpEngine potentials, the manuscript includes a set of virtual screening campaigns based on the ACE data set of the DUD-E collections using PLANTS as the docking application. Benchmarking analyses revealed a satisfactory linearity of the WarpEngine performances, the speed-up values being roughly equal to the number of utilized cores. Again, the computed scalability values emphasized that a vast majority (i.e., >90%) of the performed simulations benefit from the distributed platform presented here. WarpEngine can be freely downloaded along with the VEGA ZZ program at www.vegazz.net .

  17. A graph-based approach to construct target-focused libraries for virtual screening.

    PubMed

    Naderi, Misagh; Alvin, Chris; Ding, Yun; Mukhopadhyay, Supratik; Brylinski, Michal

    2016-01-01

    Due to exorbitant costs of high-throughput screening, many drug discovery projects commonly employ inexpensive virtual screening to support experimental efforts. However, the vast majority of compounds in widely used screening libraries, such as the ZINC database, will have a very low probability to exhibit the desired bioactivity for a given protein. Although combinatorial chemistry methods can be used to augment existing compound libraries with novel drug-like compounds, the broad chemical space is often too large to be explored. Consequently, the trend in library design has shifted to produce screening collections specifically tailored to modulate the function of a particular target or a protein family. Assuming that organic compounds are composed of sets of rigid fragments connected by flexible linkers, a molecule can be decomposed into its building blocks tracking their atomic connectivity. On this account, we developed eSynth, an exhaustive graph-based search algorithm to computationally synthesize new compounds by reconnecting these building blocks following their connectivity patterns. We conducted a series of benchmarking calculations against the Directory of Useful Decoys, Enhanced database. First, in a self-benchmarking test, the correctness of the algorithm is validated with the objective to recover a molecule from its building blocks. Encouragingly, eSynth can efficiently rebuild more than 80 % of active molecules from their fragment components. Next, the capability to discover novel scaffolds is assessed in a cross-benchmarking test, where eSynth successfully reconstructed 40 % of the target molecules using fragments extracted from chemically distinct compounds. Despite an enormous chemical space to be explored, eSynth is computationally efficient; half of the molecules are rebuilt in less than a second, whereas 90 % take only about a minute to be generated. eSynth can successfully reconstruct chemically feasible molecules from molecular fragments. Furthermore, in a procedure mimicking the real application, where one expects to discover novel compounds based on a small set of already developed bioactives, eSynth is capable of generating diverse collections of molecules with the desired activity profiles. Thus, we are very optimistic that our effort will contribute to targeted drug discovery. eSynth is freely available to the academic community at www.brylinski.org/content/molecular-synthesis.Graphical abstractAssuming that organic compounds are composed of sets of rigid fragments connected by flexible linkers, a molecule can be decomposed into its building blocks tracking their atomic connectivity. Here, we developed eSynth, an automated method to synthesize new compounds by reconnecting these building blocks following the connectivity patterns via an exhaustive graph-based search algorithm. eSynth opens up a possibility to rapidly construct virtual screening libraries for targeted drug discovery.

  18. Distributed Pervasive Worlds: The Case of Exergames

    ERIC Educational Resources Information Center

    Laine, Teemu H.; Sedano, Carolina Islas

    2015-01-01

    Pervasive worlds are computing environments where a virtual world converges with the physical world through context-aware technologies such as sensors. In pervasive worlds, technology is distributed among entities that may be distributed geographically. We explore the concept, possibilities, and challenges of distributed pervasive worlds in a case…

  19. ViRPET--combination of virtual reality and PET brain imaging

    DOEpatents

    Majewski, Stanislaw; Brefczynski-Lewis, Julie

    2017-05-23

    Various methods, systems and apparatus are provided for brain imaging during virtual reality stimulation. In one example, among others, a system for virtual ambulatory environment brain imaging includes a mobile brain imager configured to obtain positron emission tomography (PET) scans of a subject in motion, and a virtual reality (VR) system configured to provide one or more stimuli to the subject during the PET scans. In another example, a method for virtual ambulatory environment brain imaging includes providing stimulation to a subject through a virtual reality (VR) system; and obtaining a positron emission tomography (PET) scan of the subject while moving in response to the stimulation from the VR system. The mobile brain imager can be positioned on the subject with an array of imaging photodetector modules distributed about the head of the subject.

  20. Markerless client-server augmented reality system with natural features

    NASA Astrophysics Data System (ADS)

    Ning, Shuangning; Sang, Xinzhu; Chen, Duo

    2017-10-01

    A markerless client-server augmented reality system is presented. In this research, the more extensive and mature virtual reality head-mounted display is adopted to assist the implementation of augmented reality. The viewer is provided an image in front of their eyes with the head-mounted display. The front-facing camera is used to capture video signals into the workstation. The generated virtual scene is merged with the outside world information received from the camera. The integrated video is sent to the helmet display system. The distinguishing feature and novelty is to realize the augmented reality with natural features instead of marker, which address the limitations of the marker, such as only black and white, the inapplicability of different environment conditions, and particularly cannot work when the marker is partially blocked. Further, 3D stereoscopic perception of virtual animation model is achieved. The high-speed and stable socket native communication method is adopted for transmission of the key video stream data, which can reduce the calculation burden of the system.

  1. Sensorimotor Learning during a Marksmanship Task in Immersive Virtual Reality

    PubMed Central

    Rao, Hrishikesh M.; Khanna, Rajan; Zielinski, David J.; Lu, Yvonne; Clements, Jillian M.; Potter, Nicholas D.; Sommer, Marc A.; Kopper, Regis; Appelbaum, Lawrence G.

    2018-01-01

    Sensorimotor learning refers to improvements that occur through practice in the performance of sensory-guided motor behaviors. Leveraging novel technical capabilities of an immersive virtual environment, we probed the component kinematic processes that mediate sensorimotor learning. Twenty naïve subjects performed a simulated marksmanship task modeled after Olympic Trap Shooting standards. We measured movement kinematics and shooting performance as participants practiced 350 trials while receiving trial-by-trial feedback about shooting success. Spatiotemporal analysis of motion tracking elucidated the ballistic and refinement phases of hand movements. We found systematic changes in movement kinematics that accompanied improvements in shot accuracy during training, though reaction and response times did not change over blocks. In particular, we observed longer, slower, and more precise ballistic movements that replaced effort spent on corrections and refinement. Collectively, these results leverage developments in immersive virtual reality technology to quantify and compare the kinematics of movement during early learning of full-body sensorimotor orienting. PMID:29467693

  2. A Downloadable Three-Dimensional Virtual Model of the Visible Ear

    PubMed Central

    Wang, Haobing; Merchant, Saumil N.; Sorensen, Mads S.

    2008-01-01

    Purpose To develop a three-dimensional (3-D) virtual model of a human temporal bone and surrounding structures. Methods A fresh-frozen human temporal bone was serially sectioned and digital images of the surface of the tissue block were recorded (the ‘Visible Ear’). The image stack was resampled at a final resolution of 50 × 50 × 50/100 µm/voxel, registered in custom software and segmented in PhotoShop® 7.0. The segmented image layers were imported into Amira® 3.1 to generate smooth polygonal surface models. Results The 3-D virtual model presents the structures of the middle, inner and outer ears in their surgically relevant surroundings. It is packaged within a cross-platform freeware, which allows for full rotation, visibility and transparency control, as well as the ability to slice the 3-D model open at any section. The appropriate raw image can be superimposed on the cleavage plane. The model can be downloaded at https://research.meei.harvard.edu/Otopathology/3dmodels/ PMID:17124433

  3. The Fold Analysis Challenge: A virtual globe-based educational resource

    NASA Astrophysics Data System (ADS)

    De Paor, Declan G.; Dordevic, Mladen M.; Karabinos, Paul; Tewksbury, Barbara J.; Whitmeyer, Steven J.

    2016-04-01

    We present an undergraduate structural geology laboratory exercise using the Google Earth virtual globe with COLLADA models, optionally including an interactive stereographic projection and JavaScript controls. The learning resource challenges students to identify bedding traces and estimate bedding orientation at several locations on a fold, to fit the fold axis and axial plane to stereographic projection data, and to fit a doubly-plunging fold model to the large-scale structure. The chosen fold is the Sheep Mountain Anticline, a Laramide uplift in the Big Horn Basin of Wyoming. We take an education research-based approach, guiding students through three levels of difficulty. The exercise aims to counter common student misconceptions and stumbling blocks regarding penetrative structures. It can be used in preparation for an in-person field trip, for post-trip reinforcement, or as a virtual field experience in an online-only course. Our KML scripts can be easily transferred to other fold structures around the globe.

  4. Towards Transparent Throughput Elasticity for IaaS Cloud Storage: Exploring the Benefits of Adaptive Block-Level Caching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolae, Bogdan; Riteau, Pierre; Keahey, Kate

    Storage elasticity on IaaS clouds is a crucial feature in the age of data-intensive computing, especially when considering fluctuations of I/O throughput. This paper provides a transparent solution that automatically boosts I/O bandwidth during peaks for underlying virtual disks, effectively avoiding over-provisioning without performance loss. The authors' proposal relies on the idea of leveraging short-lived virtual disks of better performance characteristics (and thus more expensive) to act during peaks as a caching layer for the persistent virtual disks where the application data is stored. Furthermore, they introduce a performance and cost prediction methodology that can be used both independently tomore » estimate in advance what trade-off between performance and cost is possible, as well as an optimization technique that enables better cache size selection to meet the desired performance level with minimal cost. The authors demonstrate the benefits of their proposal both for microbenchmarks and for two real-life applications using large-scale experiments.« less

  5. How the continents deform: The evidence from tectonic geodesy

    USGS Publications Warehouse

    Thatcher, Wayne R.

    2009-01-01

    Space geodesy now provides quantitative maps of the surface velocity field within tectonically active regions, supplying constraints on the spatial distribution of deformation, the forces that drive it, and the brittle and ductile properties of continental lithosphere. Deformation is usefully described as relative motions among elastic blocks and is block-like because major faults are weaker than adjacent intact crust. Despite similarities, continental block kinematics differs from global plate tectonics: blocks are much smaller, typically ∼100–1000 km in size; departures from block rigidity are sometimes measurable; and blocks evolve over ∼1–10 Ma timescales, particularly near their often geometrically irregular boundaries. Quantitatively relating deformation to the forces that drive it requires simplifying assumptions about the strength distribution in the lithosphere. If brittle/elastic crust is strongest, interactions among blocks control the deformation. If ductile lithosphere is the stronger, its flow properties determine the surface deformation, and a continuum approach is preferable.

  6. Blocking probability in the hose-model optical VPN with different number of wavelengths

    NASA Astrophysics Data System (ADS)

    Roslyakov, Alexander V.

    2017-04-01

    Connection setup with guaranteed quality of service (QoS) in the optical virtual private network (OVPN) is a major goal for the network providers. In order to support this we propose a QoS based OVPN connection set up mechanism over WDM network to the end customer. The proposed WDM network model can be specified in terms of QoS parameter such as blocking probability. We estimated this QoS parameter based on the hose-model OVPN. In this mechanism the OVPN connections also can be created or deleted according to the availability of the wavelengths in the optical path. In this paper we have considered the impact of the number of wavelengths on the computation of blocking probability. The goal of the work is to dynamically provide a best OVPN connection during frequent arrival of connection requests with QoS requirements.

  7. Knowledge Building by Full Integration with Virtual Reality Environments and Its Effects on Personal and Social Life.

    ERIC Educational Resources Information Center

    Fialho, Francisco Antonio Pereira; Catapan, Araci Hack

    1999-01-01

    Argues that the creation of distributed environments for constructivist learning is a challenge which requires a multidisciplinary development and support team. Outlines recommended strategies for the collective creation of virtual worlds which can improve learning. Contains 11 references. (Author/WRM)

  8. Networked Experiments and Scientific Resource Sharing in Cooperative Knowledge Spaces

    ERIC Educational Resources Information Center

    Cikic, Sabine; Jeschke, Sabina; Ludwig, Nadine; Sinha, Uwe; Thomsen, Christian

    2007-01-01

    Cooperative knowledge spaces create new potentials for the experimental fields in natural sciences and engineering because they enhance the accessibility of experimental setups through virtual laboratories and remote technology, opening them for collaborative and distributed usage. A concept for extending existing virtual knowledge spaces for the…

  9. Using a Virtual Population to Authentically Teach Epidemiology and Biostatistics

    ERIC Educational Resources Information Center

    Dunn, Peter K.; Donnison, Sharn; Cole, Rachel; Bulmer, Michael

    2017-01-01

    Epidemiology is the study of the distribution of disease in human populations. This means that authentically teaching primary data collection in epidemiology is difficult as students cannot easily access suitable human populations. Using an action research methodology, this paper studied the use of a virtual human population (called "The…

  10. Distributed Cognition in a Virtual World

    ERIC Educational Resources Information Center

    Gillen, Julia; Ferguson, Rebecca; Peachey, Anna; Twining, Peter

    2012-01-01

    Over a 13-month period, the Schome Park Programme operated the first "closed" (i.e. protected) Teen Second Life project in Europe. The project organised diverse educational events that centred on use of a virtual world and an associated asynchronous forum and wiki. Students and staff together exploited the affordances of the environment…

  11. Phases and Patterns of Group Development in Virtual Learning Teams

    ERIC Educational Resources Information Center

    Yoon, Seung Won; Johnson, Scott D.

    2008-01-01

    With the advancement of Internet communication technologies, distributed work groups have great potential for remote collaboration and use of collective knowledge. Adopting the Complex Adaptive System (CAS) perspective (McGrath, Arrow, & Berdhal, "Personal Soc Psychol Rev" 4 (2000) 95), which views virtual learning teams as an adaptive and…

  12. Clinically Normal Stereopsis Does Not Ensure Performance Benefit from Stereoscopic 3D Depth Cues

    DTIC Science & Technology

    2014-10-28

    Stereopsis, Binocular Vision, Optometry , Depth Perception, 3D vision, 3D human factors, Stereoscopic displays, S3D, Virtual environment 16...Binocular Vision, Optometry , Depth Perception, 3D vision, 3D human factors, Stereoscopic displays, S3D, Virtual environment 1 Distribution A: Approved

  13. Field-theoretic simulations of block copolymer nanocomposites in a constant interfacial tension ensemble.

    PubMed

    Koski, Jason P; Riggleman, Robert A

    2017-04-28

    Block copolymers, due to their ability to self-assemble into periodic structures with long range order, are appealing candidates to control the ordering of functionalized nanoparticles where it is well-accepted that the spatial distribution of nanoparticles in a polymer matrix dictates the resulting material properties. The large parameter space associated with block copolymer nanocomposites makes theory and simulation tools appealing to guide experiments and effectively isolate parameters of interest. We demonstrate a method for performing field-theoretic simulations in a constant volume-constant interfacial tension ensemble (nVγT) that enables the determination of the equilibrium properties of block copolymer nanocomposites, including when the composites are placed under tensile or compressive loads. Our approach is compatible with the complex Langevin simulation framework, which allows us to go beyond the mean-field approximation. We validate our approach by comparing our nVγT approach with free energy calculations to determine the ideal domain spacing and modulus of a symmetric block copolymer melt. We analyze the effect of numerical and thermodynamic parameters on the efficiency of the nVγT ensemble and subsequently use our method to investigate the ideal domain spacing, modulus, and nanoparticle distribution of a lamellar forming block copolymer nanocomposite. We find that the nanoparticle distribution is directly linked to the resultant domain spacing and is dependent on polymer chain density, nanoparticle size, and nanoparticle chemistry. Furthermore, placing the system under tension or compression can qualitatively alter the nanoparticle distribution within the block copolymer.

  14. Commencement Bay Studies Phase II, Environmental Impacts Assessment.

    DTIC Science & Technology

    1983-10-01

    Approved for public release, distribution unlimited. 17. DISTRIBUTION STATEMENT (of the absirct entered In Block 20. If dlfforent from Report) IS...Matrix (Appendix D). 19. KEY WORDS (Continue n reveres side itnecsewy and identify by block number) Salmonids Wetlands Aesthetics City of Tacoma Marine...Water Quality Land and Water Use Port of Tacoma t AEINACr (Cm as ,.verem ebb N c evesey a - fdoswif by block n mbs) ames and Moore assessed the

  15. Seawalls, Bulkheads and Quaywalls. Design Manual 25.4.

    DTIC Science & Technology

    1981-07-01

    slopes, such as concrete block revetment , also can result in a large quantity of water overtopping the wall. Where overtopping is a serious problem...small precast units such as the concrete block revetment shown in Figure 1, type D and the precast stepped walls shown in Figure 1, types E and G, should...16. DISTRIBUTION STATEMENT (of this Report) Unclassified/Unlimited ..... 17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different

  16. Discovery of Selective Inhibitors of Imidazoleglycerol-Phosphate Dehydratase from Mycobacterium tuberculosis by Virtual Screening

    NASA Astrophysics Data System (ADS)

    Podshivalov, D.; Mandzhieva, Yu. B.; Sidorov-Biryukov, D. D.; Timofeev, V. I.; Kuranova, I. P.

    2018-01-01

    Bacterial imidazoleglycerol-phosphate dehydratase from Mycobacterium tuberculosis (HisB- Mt) is a convenient target for the discovery of selective inhibitors as potential antituberculosis drugs. The virtual screening was performed to find compounds suitable for the design of selective inhibitors of HisB- Mt. The positions of four ligands, which were selected based on the docking scoring function and docked to the activesite region of the enzyme, were refined by molecular dynamics simulation. The nearest environment of the ligands was determined. These compounds selectively bind to functionally essential active-site residues, thus blocking access of substrates to the active site of the enzyme, and can be used as lead compounds for the design of selective inhibitors of HisB- M.

  17. Discovery of novel inhibitors of the NorA multidrug transporter of Staphylococcus aureus.

    PubMed

    Brincat, Jean Pierre; Carosati, Emanuele; Sabatini, Stefano; Manfroni, Giuseppe; Fravolini, Arnaldo; Raygada, Jose L; Patel, Diixa; Kaatz, Glenn W; Cruciani, Gabriele

    2011-01-13

    Four novel inhibitors of the NorA efflux pump of Staphylococcus aureus, discovered through a virtual screening process, are reported. The four compounds belong to different chemical classes and were tested for their in vitro ability to block the efflux of a well-known NorA substrate, as well as for their ability to potentiate the effect of ciprofloxacin (CPX) on several strains of S. aureus, including a NorA overexpressing strain. Additionally, the MIC values of each of the compounds individually are reported. A structure-activity relationship study was also performed on these novel chemotypes, revealing three new compounds that are also potent NorA inhibitors. The virtual screening procedure employed FLAP, a new methodology based on GRID force field descriptors.

  18. KNBD: A Remote Kernel Block Server for Linux

    NASA Technical Reports Server (NTRS)

    Becker, Jeff

    1999-01-01

    I am developing a prototype of a Linux remote disk block server whose purpose is to serve as a lower level component of a parallel file system. Parallel file systems are an important component of high performance supercomputers and clusters. Although supercomputer vendors such as SGI and IBM have their own custom solutions, there has been a void and hence a demand for such a system on Beowulf-type PC Clusters. Recently, the Parallel Virtual File System (PVFS) project at Clemson University has begun to address this need (1). Although their system provides much of the functionality of (and indeed was inspired by) the equivalent file systems in the commercial supercomputer market, their system is all in user-space. Migrating their 10 services to the kernel could provide a performance boost, by obviating the need for expensive system calls. Thanks to Pavel Machek, the Linux kernel has provided the network block device (2) with kernels 2.1.101 and later. You can configure this block device to redirect reads and writes to a remote machine's disk. This can be used as a building block for constructing a striped file system across several nodes.

  19. Block correlated second order perturbation theory with a generalized valence bond reference function.

    PubMed

    Xu, Enhua; Li, Shuhua

    2013-11-07

    The block correlated second-order perturbation theory with a generalized valence bond (GVB) reference (GVB-BCPT2) is proposed. In this approach, each geminal in the GVB reference is considered as a "multi-orbital" block (a subset of spin orbitals), and each occupied or virtual spin orbital is also taken as a single block. The zeroth-order Hamiltonian is set to be the summation of the individual Hamiltonians of all blocks (with explicit two-electron operators within each geminal) so that the GVB reference function and all excited configuration functions are its eigenfunctions. The GVB-BCPT2 energy can be directly obtained without iteration, just like the second order Mo̸ller-Plesset perturbation method (MP2), both of which are size consistent. We have applied this GVB-BCPT2 method to investigate the equilibrium distances and spectroscopic constants of 7 diatomic molecules, conformational energy differences of 8 small molecules, and bond-breaking potential energy profiles in 3 systems. GVB-BCPT2 is demonstrated to have noticeably better performance than MP2 for systems with significant multi-reference character, and provide reasonably accurate results for some systems with large active spaces, which are beyond the capability of all CASSCF-based methods.

  20. Generalized parton distributions from deep virtual compton scattering at CLAS

    DOE PAGES

    Guidal, M.

    2010-04-24

    Here, we have analyzed the beam spin asymmetry and the longitudinally polarized target spin asymmetry of the Deep Virtual Compton Scattering process, recently measured by the Jefferson Lab CLAS collaboration. Our aim is to extract information about the Generalized Parton Distributions of the proton. By fitting these data, in a largely model-independent procedure, we are able to extract numerical values for the two Compton Form Factorsmore » $$H_{Im}$$ and $$\\tilde{H}_{Im}$$ with uncertainties, in average, of the order of 30%.« less

  1. Two-Player Partnered Exergame for Obesity Prevention: Using Discrepancy in Players’ Abilities as a Strategy to Motivate Physical Activity

    PubMed Central

    Feltz, Deborah L.; Irwin, Brandon; Kerr, Norbert

    2012-01-01

    Background Physical inactivity is associated with obesity and type 2 diabetes. A key obstacle to physical activity is lack of motivation. Although some interactive exercise games (i.e., exergames—video games that require physical exertion in order to play) motivate players to exercise more, few games take advantage of group dynamics to motivate players’ duration of exercise. In a test of the Köhler motivation gain effect, this study varied the ability level of a virtually presented partner in an interactive exergame that focused on abdominal strength to identify effects on a subject’s (S’) persistence with the task. Method Male (n = 63) and female (n = 72) undergraduate students were randomly assigned to one of four conditions (individual control or low-, moderate-, or high- partner discrepancy) in a conditions × gender factorial design and tested on a series of isometric abdominal exercises using PlayStation 2 EyeToy: Kinetic software. They performed the first series of five exercises alone (trial block 1), and after a rest period, those in the partner conditions performed remaining trials (trial block 2) with a same-sex virtually presented partner whom they could observe during their performance, while those in the individual control condition performed the remaining trials alone. In the partner conditions, the partner’s performance was manipulated to be always better than the S’s, the exact difference depending on the discrepancy condition. The partnered tasks were conjunctive; that is, success in the game depended on the performance of the weaker team member. Persistence, the outcome measure for this study, consisted of the total number of seconds the S held the exercise position. Results Using planned orthogonal contrasts on difference scores between blocks 1 and 2, results showed that persistence was significantly (p < .001) greater in all experimental conditions with a virtually presented partner (M = 33.59 s) than in the individual control condition (M = -49.04 s). Subjects demonstrated more persistence in the moderate-discrepancy condition (M = 51.36 s) than in the low-discrepancy condition (M = 22.52 s) or the high-discrepancy condition (M = 26.89 s). A significant quadratic trend confirmed the expected inverted-U function relating partner discrepancy and persistence (p = .025). Although Ss persisted longer and had higher heart rate in partnered conditions, they did not perceive their exertion to be any higher than those in the individual condition. Conclusions Virtually presented partners who are moderately more capable than participants are the most effective at improving persistence in exergame tasks. PMID:22920808

  2. Two-player partnered exergame for obesity prevention: using discrepancy in players' abilities as a strategy to motivate physical activity.

    PubMed

    Feltz, Deborah L; Irwin, Brandon; Kerr, Norbert

    2012-07-01

    Physical inactivity is associated with obesity and type 2 diabetes. A key obstacle to physical activity is lack of motivation. Although some interactive exercise games (i.e., exergames--video games that require physical exertion in order to play) motivate players to exercise more, few games take advantage of group dynamics to motivate players' duration of exercise. In a test of the Köhler motivation gain effect, this study varied the ability level of a virtually presented partner in an interactive exergame that focused on abdominal strength to identify effects on a subject's (S') persistence with the task. Male (n = 63) and female (n = 72) undergraduate students were randomly assigned to one of four conditions (individual control or low-, moderate-, or high- partner discrepancy) in a conditions × gender factorial design and tested on a series of isometric abdominal exercises using PlayStation 2 EyeToy: Kinetic software. They performed the first series of five exercises alone (trial block 1), and after a rest period, those in the partner conditions performed remaining trials (trial block 2) with a same-sex virtually presented partner whom they could observe during their performance, while those in the individual control condition performed the remaining trials alone. In the partner conditions, the partner's performance was manipulated to be always better than the S's, the exact difference depending on the discrepancy condition. The partnered tasks were conjunctive; that is, success in the game depended on the performance of the weaker team member. Persistence, the outcome measure for this study, consisted of the total number of seconds the S held the exercise position. Using planned orthogonal contrasts on difference scores between blocks 1 and 2, results showed that persistence was significantly (p < .001) greater in all experimental conditions with a virtually presented partner (M = 33.59 s) than in the individual control condition (M = -49.04 s). Subjects demonstrated more persistence in the moderate-discrepancy condition (M = 51.36 s) than in the low-discrepancy condition (M = 22.52 s) or the high-discrepancy condition (M = 26.89 s). A significant quadratic trend confirmed the expected inverted-U function relating partner discrepancy and persistence (p = .025). Although Ss persisted longer and had higher heart rate in partnered conditions, they did not perceive their exertion to be any higher than those in the individual condition. Virtually presented partners who are moderately more capable than participants are the most effective at improving persistence in exergame tasks. © 2012 Diabetes Technology Society.

  3. Memory access in shared virtual memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berrendorf, R.

    1992-01-01

    Shared virtual memory (SVM) is a virtual memory layer with a single address space on top of a distributed real memory on parallel computers. We examine the behavior and performance of SVM running a parallel program with medium-grained, loop-level parallelism on top of it. A simulator for the underlying parallel architecture can be used to examine the behavior of SVM more deeply. The influence of several parameters, such as the number of processors, page size, cold or warm start, and restricted page replication, is studied.

  4. Memory access in shared virtual memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berrendorf, R.

    1992-09-01

    Shared virtual memory (SVM) is a virtual memory layer with a single address space on top of a distributed real memory on parallel computers. We examine the behavior and performance of SVM running a parallel program with medium-grained, loop-level parallelism on top of it. A simulator for the underlying parallel architecture can be used to examine the behavior of SVM more deeply. The influence of several parameters, such as the number of processors, page size, cold or warm start, and restricted page replication, is studied.

  5. Virtual Collaborative Simulation Environment for Integrated Product and Process Development

    NASA Technical Reports Server (NTRS)

    Gulli, Michael A.

    1997-01-01

    Deneb Robotics is a leader in the development of commercially available, leading edge three- dimensional simulation software tools for virtual prototyping,, simulation-based design, manufacturing process simulation, and factory floor simulation and training applications. Deneb has developed and commercially released a preliminary Virtual Collaborative Engineering (VCE) capability for Integrated Product and Process Development (IPPD). This capability allows distributed, real-time visualization and evaluation of design concepts, manufacturing processes, and total factory and enterprises in one seamless simulation environment.

  6. Model-Atmosphere Spectra of Central Stars of Planetary Nebulae - Access via the Virtual Observatory Service TheoSSA

    NASA Astrophysics Data System (ADS)

    Rauch, T.; Reindl, N.

    2014-04-01

    In the framework of the Virtual Observatory (VO), the German Astrophysical Virtual Observatory GAVO project provides easy access to theoretical spectral energy distributions (SEDs) within the registered GAVO service TheoSSA (http://dc.g-vo.org/theossa). TheoSSA is based on the well established Tübingen NLTE Model-Atmosphere Package (TMAP) for hot, compact stars. This includes central stars of planetary nebulae. We show examples of TheoSSA in operation.

  7. Spectral Analysis within the Virtual Observatory: The GAVO Service TheoSSA

    NASA Astrophysics Data System (ADS)

    Ringat, E.

    2012-03-01

    In the last decade, numerous Virtual Observatory organizations were established. One of these is the German Astrophysical Virtual Observatory (GAVO) that e.g. provides access to spectral energy distributions via the service TheoSSA. In a pilot phase, these are based on the Tübingen NLTE Model-Atmosphere Package (TMAP) and suitable for hot, compact stars. We demonstrate the power of TheoSSA in an application to the sdOB primary of AA Doradus by comparison with a “classical” spectral analysis.

  8. Virtual Prototyping for Personal Protective Equipment and Workplaces

    DTIC Science & Technology

    1999-03-01

    Basket Weave Kevlar-29 Fabric Loosely Draped over 20% Ordnance Gelatin Block Subject to Non-Perforating Impact by .38 Special (130-grain FMJ...Fabric and fabric-like materials are very difficult to model because of the dynamic properties of folding, draping , and stretching. How these...Targets Bare Targets with Insitu Instrumentation V7 Instrumented Targets with Loosely Draped Clothing SL Instrumented Targets with Body Armor

  9. Utility of Automatic Lighting Design in 3-D Virtual Training Environment

    DTIC Science & Technology

    2004-01-01

    Many training environments have emphasized realism . Although realism may be important for many training applications, it is not essential for...achieving presence, attention, and emotional engagement (Zimmons, 2004). Also, realism is not always in conflict with providing atmosphere or mood, as...applied to the scene to heighten the audience’s emotional experience, while maintaining the perceived realism of the environment portrayed (Block, 2001

  10. Tunisia: Islam as a Political Force

    DTIC Science & Technology

    1992-06-18

    Program Element Number Project No. Task Work Unit Accession No. II Title (Include Security Classification) Tunisia : Islam as a Political Force 12...necessary and identify by block number) Tunisia , Islam, Habib Bourguiba, Colonial France, Zine ben Ali, Rachid Ghannouchi, North Africa, L;.S./Tunisian...vernments o•l these countries. In Tunisia , the government has virtually halted its promised democratic reforms claimig that the Islamists will use

  11. NAVO MSRC Navigator. Fall 2001

    DTIC Science & Technology

    2001-01-01

    of the CAVE. A view from the VR Juggler simulator . The particles indicate snow (white) & ice (blue). Rainfall is shown on the terrain, and clouds as...the Cover: Virtual environment built by the NAVO MSRC Visualization Center for the Concurrent Computing Laboratory for Materials Simulation at...Louisiana State University. This application allows the researchers to visualize a million atom simulation of an indentor puncturing a block of gallium

  12. Solar-Terrestrial Ontology Development

    NASA Astrophysics Data System (ADS)

    McGuinness, D.; Fox, P.; Middleton, D.; Garcia, J.; Cinquni, L.; West, P.; Darnell, J. A.; Benedict, J.

    2005-12-01

    The development of an interdisciplinary virtual observatory (the Virtual Solar-Terrestrial Observatory; VSTO) as a scalable environment for searching, integrating, and analyzing databases distributed over the Internet requires a higher level of semantic interoperability than here-to-fore required by most (if not all) distributed data systems or discipline specific virtual observatories. The formalization of semantics using ontologies and their encodings for the internet (e.g. OWL - the Web Ontology Language), as well as the use of accompanying tools, such as reasoning, inference and explanation, open up both a substantial leap in options for interoperability and in the need for formal development principles to guide ontology development and use within modern, multi-tiered network data environments. In this presentation, we outline the formal methodologies we utilize in the VSTO project, the currently developed use-cases, ontologies and their relation to existing ontologies (such as SWEET).

  13. Long Range Spoil Disposal Study. Part 3. Sub-Study 2. Nature, Source, and Cause of Shoal

    DTIC Science & Technology

    1973-09-01

    Report) Prepared for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, if different from Report) IS...SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necseseey and identify by block number) Delaware River River Channel Delaware Estuary...Marcus Hook, Pa. Dredging Hydraulic Dredge Spoil Disposal Sediment transport 2o ABSTRACT r -ciftue a r verse - i- - n a eay amd ideai fy by block

  14. Quantum partial search for uneven distribution of multiple target items

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Korepin, Vladimir

    2018-06-01

    Quantum partial search algorithm is an approximate search. It aims to find a target block (which has the target items). It runs a little faster than full Grover search. In this paper, we consider quantum partial search algorithm for multiple target items unevenly distributed in a database (target blocks have different number of target items). The algorithm we describe can locate one of the target blocks. Efficiency of the algorithm is measured by number of queries to the oracle. We optimize the algorithm in order to improve efficiency. By perturbation method, we find that the algorithm runs the fastest when target items are evenly distributed in database.

  15. A workout for virtual bodybuilders (design issues for embodiment in multi-actor virtual environments)

    NASA Technical Reports Server (NTRS)

    Benford, Steve; Bowers, John; Fahlen, Lennart E.; Greenhalgh, Chris; Snowdon, Dave

    1994-01-01

    This paper explores the issue of user embodiment within collaborative virtual environments. By user embodiment we mean the provision of users with appropriate body images so as to represent them to others and also to themselves. By collaborative virtual environments we mean multi-user virtual reality systems which support cooperative work (although we argue that the results of our exploration may also be applied to other kinds of collaborative systems). The main part of the paper identifies a list of embodiment design issues including: presence, location, identity, activity, availability, history of activity, viewpoint, action point, gesture, facial expression, voluntary versus involuntary expression, degree of presence, reflecting capabilities, manipulating the user's view of others, representation across multiple media, autonomous and distributed body parts, truthfulness and efficiency. Following this, we show how these issues are reflected in our own DIVE and MASSIVE prototype collaborative virtual environments.

  16. A virtual water network of the Roman world

    NASA Astrophysics Data System (ADS)

    Dermody, B. J.; van Beek, R. P. H.; Meeks, E.; Klein Goldewijk, K.; Scheidel, W.; van der Velde, Y.; Bierkens, M. F. P.; Wassen, M. J.; Dekker, S. C.

    2014-12-01

    The Romans were perhaps the most impressive exponents of water resource management in preindustrial times with irrigation and virtual water trade facilitating unprecedented urbanization and socioeconomic stability for hundreds of years in a region of highly variable climate. To understand Roman water resource management in response to urbanization and climate variability, a Virtual Water Network of the Roman World was developed. Using this network we find that irrigation and virtual water trade increased Roman resilience to interannual climate variability. However, urbanization arising from virtual water trade likely pushed the Empire closer to the boundary of its water resources, led to an increase in import costs, and eroded its resilience to climate variability in the long term. In addition to improving our understanding of Roman water resource management, our cost-distance-based analysis illuminates how increases in import costs arising from climatic and population pressures are likely to be distributed in the future global virtual water network.

  17. A virtual water network of the Roman world

    NASA Astrophysics Data System (ADS)

    Dermody, B. J.; van Beek, R. P. H.; Meeks, E.; Klein Goldewijk, K.; Scheidel, W.; van der Velde, Y.; Bierkens, M. F. P.; Wassen, M. J.; Dekker, S. C.

    2014-06-01

    The Romans were perhaps the most impressive exponents of water resource management in preindustrial times with irrigation and virtual water trade facilitating unprecedented urbanisation and socioeconomic stability for hundreds of years in a region of highly variable climate. To understand Roman water resource management in response to urbanisation and climate variability, a Virtual Water Network of the Roman World was developed. Using this network we find that irrigation and virtual water trade increased Roman resilience to climate variability in the short term. However, urbanisation arising from virtual water trade likely pushed the Empire closer to the boundary of its water resources, led to an increase in import costs, and reduced its resilience to climate variability in the long-term. In addition to improving our understanding of Roman water resource management, our cost-distance based analysis illuminates how increases in import costs arising from climatic and population pressures are likely to be distributed in the future global virtual water network.

  18. Adaptation of a Multi-Block Structured Solver for Effective Use in a Hybrid CPU/GPU Massively Parallel Environment

    NASA Astrophysics Data System (ADS)

    Gutzwiller, David; Gontier, Mathieu; Demeulenaere, Alain

    2014-11-01

    Multi-Block structured solvers hold many advantages over their unstructured counterparts, such as a smaller memory footprint and efficient serial performance. Historically, multi-block structured solvers have not been easily adapted for use in a High Performance Computing (HPC) environment, and the recent trend towards hybrid GPU/CPU architectures has further complicated the situation. This paper will elaborate on developments and innovations applied to the NUMECA FINE/Turbo solver that have allowed near-linear scalability with real-world problems on over 250 hybrid GPU/GPU cluster nodes. Discussion will focus on the implementation of virtual partitioning and load balancing algorithms using a novel meta-block concept. This implementation is transparent to the user, allowing all pre- and post-processing steps to be performed using a simple, unpartitioned grid topology. Additional discussion will elaborate on developments that have improved parallel performance, including fully parallel I/O with the ADIOS API and the GPU porting of the computationally heavy CPUBooster convergence acceleration module. Head of HPC and Release Management, Numeca International.

  19. Aging specifically impairs switching to an allocentric navigational strategy

    PubMed Central

    Harris, Mathew A.; Wiener, Jan M.; Wolbers, Thomas

    2012-01-01

    Navigation abilities decline with age, partly due to deficits in numerous component processes. Impaired switching between these various processes (i.e., switching navigational strategies) is also likely to contribute to age-related navigational impairments. We tested young and old participants on a virtual plus maze task (VPM), expecting older participants to exhibit a specific strategy switching deficit, despite unimpaired learning of allocentric (place) and egocentric (response) strategies following reversals within each strategy. Our initial results suggested that older participants performed worse during place trial blocks but not response trial blocks, as well as in trial blocks following a strategy switch but not those following a reversal. However, we then separated trial blocks by both strategy and change type, revealing that these initial results were due to a more specific deficit in switching to the place strategy. Place reversals and switches to response, as well as response reversals, were unaffected. We argue that this specific “switch-to-place” deficit could account for apparent impairments in both navigational strategy switching and allocentric processing and contributes more generally to age-related decline in navigation. PMID:23125833

  20. Aging specifically impairs switching to an allocentric navigational strategy.

    PubMed

    Harris, Mathew A; Wiener, Jan M; Wolbers, Thomas

    2012-01-01

    Navigation abilities decline with age, partly due to deficits in numerous component processes. Impaired switching between these various processes (i.e., switching navigational strategies) is also likely to contribute to age-related navigational impairments. We tested young and old participants on a virtual plus maze task (VPM), expecting older participants to exhibit a specific strategy switching deficit, despite unimpaired learning of allocentric (place) and egocentric (response) strategies following reversals within each strategy. Our initial results suggested that older participants performed worse during place trial blocks but not response trial blocks, as well as in trial blocks following a strategy switch but not those following a reversal. However, we then separated trial blocks by both strategy and change type, revealing that these initial results were due to a more specific deficit in switching to the place strategy. Place reversals and switches to response, as well as response reversals, were unaffected. We argue that this specific "switch-to-place" deficit could account for apparent impairments in both navigational strategy switching and allocentric processing and contributes more generally to age-related decline in navigation.

  1. The Integration of CloudStack and OCCI/OpenNebula with DIRAC

    NASA Astrophysics Data System (ADS)

    Méndez Muñoz, Víctor; Fernández Albor, Víctor; Graciani Diaz, Ricardo; Casajús Ramo, Adriàn; Fernández Pena, Tomás; Merino Arévalo, Gonzalo; José Saborido Silva, Juan

    2012-12-01

    The increasing availability of Cloud resources is arising as a realistic alternative to the Grid as a paradigm for enabling scientific communities to access large distributed computing resources. The DIRAC framework for distributed computing is an easy way to efficiently access to resources from both systems. This paper explains the integration of DIRAC with two open-source Cloud Managers: OpenNebula (taking advantage of the OCCI standard) and CloudStack. These are computing tools to manage the complexity and heterogeneity of distributed data center infrastructures, allowing to create virtual clusters on demand, including public, private and hybrid clouds. This approach has required to develop an extension to the previous DIRAC Virtual Machine engine, which was developed for Amazon EC2, allowing the connection with these new cloud managers. In the OpenNebula case, the development has been based on the CernVM Virtual Software Appliance with appropriate contextualization, while in the case of CloudStack, the infrastructure has been kept more general, which permits other Virtual Machine sources and operating systems being used. In both cases, CernVM File System has been used to facilitate software distribution to the computing nodes. With the resulting infrastructure, the cloud resources are transparent to the users through a friendly interface, like the DIRAC Web Portal. The main purpose of this integration is to get a system that can manage cloud and grid resources at the same time. This particular feature pushes DIRAC to a new conceptual denomination as interware, integrating different middleware. Users from different communities do not need to care about the installation of the standard software that is available at the nodes, nor the operating system of the host machine which is transparent to the user. This paper presents an analysis of the overhead of the virtual layer, doing some tests to compare the proposed approach with the existing Grid solution. License Notice: Published under licence in Journal of Physics: Conference Series by IOP Publishing Ltd.

  2. Architectural Principles and Experimentation of Distributed High Performance Virtual Clusters

    ERIC Educational Resources Information Center

    Younge, Andrew J.

    2016-01-01

    With the advent of virtualization and Infrastructure-as-a-Service (IaaS), the broader scientific computing community is considering the use of clouds for their scientific computing needs. This is due to the relative scalability, ease of use, advanced user environment customization abilities, and the many novel computing paradigms available for…

  3. PROVIDE: A Pedagogical Reference Oracle for Virtual IntegrateD E-ducation

    ERIC Educational Resources Information Center

    Narasimhan, V. Lakshmi; Zhao, Shuxin; Liang, Hailong; Zhang, Shuangyi

    2006-01-01

    This paper presents an interactive educational environment for use over both "in situ" and distance-based modalities of teaching. Several technological issues relating to the design and development of the distributed virtual learning environment have also been raised. The PROVIDE framework proposed in this paper is a seamless distributed…

  4. Open Distribution of Virtual Containers as a Key Framework for Open Educational Resources and STEAM Subjects

    ERIC Educational Resources Information Center

    Corbi, Alberto; Burgos, Daniel

    2017-01-01

    This paper presents how virtual containers enhance the implementation of STEAM (science, technology, engineering, arts, and math) subjects as Open Educational Resources (OER). The publication initially summarizes the limitations of delivering open rich learning contents and corresponding assignments to students in college level STEAM areas. The…

  5. The Tale of Two Virtual Teacher Professional Development Modules

    ERIC Educational Resources Information Center

    Keown, Paul

    2009-01-01

    Virtual communities of practice (VCoP) have been advocated for some time as a promising means of taking professional development to teachers in widely distributed locations. However, geography, and indeed education literature as a whole, contains very few examples where this has been achieved. This paper reports on two VCoP professional…

  6. 75 FR 8322 - EPIC Merchant Energy NJ/PA, LP, SESCO Enterprises, LLC, Coaltrain Energy, LP, Complainants, v...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... Respondent is improperly allocating physical transmission line losses to virtual transactions and also distributing over-collected transmission line losses in a manner that discriminates against virtual Market... , using the ``eLibrary'' link and is available for review in the Commission's Public Reference Room in...

  7. Pursuing the Panderer: An Analysis of "United States v. Williams"

    ERIC Educational Resources Information Center

    McGrain, Patrick N.; Moore, Jennifer L.

    2010-01-01

    In May 2008, the Supreme Court addressed whether the government can regulate the ownership and distribution of virtual child pornography. "U.S. v. Williams" marked the first time the Court directly addressed the concept of pandering virtual child pornography. This article examines the Court's decision in "U.S. v. Williams" and…

  8. Integration of the SSPM and STAGE with the MPACT Virtual Facility Distributed Test Bed.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cipiti, Benjamin B.; Shoman, Nathan

    The Material Protection Accounting and Control Technologies (MPACT) program within DOE NE is working toward a 2020 milestone to demonstrate a Virtual Facility Distributed Test Bed. The goal of the Virtual Test Bed is to link all MPACT modeling tools, technology development, and experimental work to create a Safeguards and Security by Design capability for fuel cycle facilities. The Separation and Safeguards Performance Model (SSPM) forms the core safeguards analysis tool, and the Scenario Toolkit and Generation Environment (STAGE) code forms the core physical security tool. These models are used to design and analyze safeguards and security systems and generatemore » performance metrics. Work over the past year has focused on how these models will integrate with the other capabilities in the MPACT program and specific model changes to enable more streamlined integration in the future. This report describes the model changes and plans for how the models will be used more collaboratively. The Virtual Facility is not designed to integrate all capabilities into one master code, but rather to maintain stand-alone capabilities that communicate results between codes more effectively.« less

  9. Microleakage of composite crowns luted on CAD/CAM-milled human molars: a new method for standardized in vitro tests.

    PubMed

    Schlenz, Maximiliane Amelie; Schmidt, Alexander; Rehmann, Peter; Niem, Thomas; Wöstmann, Bernd

    2018-04-24

    To investigate debonding of full crowns made of CAD/CAM composites, CAD/CAM technology was applied to manufacture standardized test abutments to increase the reproducibility of human teeth used in in vitro studies. A virtual test abutment and the corresponding virtual crown were designed and two STL data sets were generated. Sixty-four human third molars and CAD/CAM blocks were milled using a CNC machine. Crowns of four different composite blocks (Lava Ultimate (LU), Brilliant Crios (BC), Cerasmart (CS), Experimental (EX)) were adhesively bonded with their corresponding luting system (LU: Scotchbond Universal/RelyX Ultimate; BC: One Coat 7 Universal/DuoCem; CS: G-PremioBond/G-Cem LinkForce; EX: Experimental-Bond/Experimental-Luting-Cement). Half of the specimens were chemical-cured (CC) and the others were light-cured (LC). Afterwards, specimens were artificially aged in a chewing simulator (WL-tec, 1 million cycles, 50-500 N, 2 Hz, 37 °C). Finally, a dye penetration test was used to detect debonding. For inspection, the specimens were sliced, and penetration depth was measured with a digital microscope. Data were analyzed with the Mann-Whitney U test. No cases of total debonding were observed after cyclic loading. However, the LC specimens showed a significantly lower amount of leakage than the CC ones (p < 0.05). Furthermore, the CC specimens exhibited broad scattering. Only the LC-EX blocks showed no debonding. The CC-CS blocks showed the highest leakage and scattering of all tested specimens. Natural human teeth can be manufactured by CAD/CAM technology in highly standardized test abutments for in vitro testing. For CAD/CAM composites, light curing should be performed. The success of a restoration depends on the long-term sealing ability of the luting materials, which avoids debonding along with microleakage. For CAD/CAM composites, separate light curing of the adhesive and luting composite is highly recommended.

  10. Distribution of Injectate and Sensory-Motor Blockade After Adductor Canal Block.

    PubMed

    Gautier, Philippe E; Hadzic, Admir; Lecoq, Jean-Pierre; Brichant, Jean Francois; Kuroda, Maxine M; Vandepitte, Catherine

    2016-01-01

    The analgesic efficacy reported for the adductor canal block may be related to the spread of local anesthetic outside the adductor canal. Fifteen patients undergoing knee surgery received ultrasound-guided injections of local anesthetic at the level of the adductor hiatus. Sensory-motor block and spread of contrast solution were assessed. Sensation was rated as "markedly diminished" or "absent" in the saphenous nerve distribution and "slightly diminished" in the sciatic nerve territory without motor deficits. Contrast solution was found in the popliteal fossa. The spread of injectate to the popliteal fossa may contribute to the analgesic efficacy of adductor canal block.

  11. Block distributions on the lunar surface: A comparison between measurements obtained from surface and orbital photography

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.; Mcbride, Kathleen M.

    1994-01-01

    Enlargements of Lunar-Orbiter photography were used in conjunction with a digitizing tablet to collect the locations and dimensions of blocks surrounding the Surveyor 1, 3, 6, and 7 landing sites. Data were reduced to the location and the major axis of the visible portion of each block. Shadows sometimes made it difficult to assess whether the visible major axis corresponded with the actual principal dimension. These data were then correlated with the locations of major craters in the study areas, thus subdividing the data set into blocks obviously associated with craters and those in intercrater areas. A block was arbitrarily defined to be associated with a crater when its location was within 1.1 crater radii of the crater's center. Since this study was commissioned for the ultimate purpose of determining hazards to landing spacecraft, such a definition was deemed appropriate in defining block-related hazards associated with craters. Size distributions of smaller fragments as determined from Surveyor photography were obtained as measurements from graphical data. Basic comparisons were performed through use of cumulative frequency distributions identical to those applied to studies of crater-count data.

  12. Analytical approach of laser beam propagation in the hollow polygonal light pipe.

    PubMed

    Zhu, Guangzhi; Zhu, Xiao; Zhu, Changhong

    2013-08-10

    An analytical method of researching the light distribution properties on the output end of a hollow n-sided polygonal light pipe and a light source with a Gaussian distribution is developed. The mirror transformation matrices and a special algorithm of removing void virtual images are created to acquire the location and direction vector of each effective virtual image on the entrance plane. The analytical method is demonstrated by Monte Carlo ray tracing. At the same time, four typical cases are discussed. The analytical results indicate that the uniformity of light distribution varies with the structural and optical parameters of the hollow n-sided polygonal light pipe and light source with a Gaussian distribution. The analytical approach will be useful to design and choose the hollow n-sided polygonal light pipe, especially for high-power laser beam homogenization techniques.

  13. Distributed computing methodology for training neural networks in an image-guided diagnostic application.

    PubMed

    Plagianakos, V P; Magoulas, G D; Vrahatis, M N

    2006-03-01

    Distributed computing is a process through which a set of computers connected by a network is used collectively to solve a single problem. In this paper, we propose a distributed computing methodology for training neural networks for the detection of lesions in colonoscopy. Our approach is based on partitioning the training set across multiple processors using a parallel virtual machine. In this way, interconnected computers of varied architectures can be used for the distributed evaluation of the error function and gradient values, and, thus, training neural networks utilizing various learning methods. The proposed methodology has large granularity and low synchronization, and has been implemented and tested. Our results indicate that the parallel virtual machine implementation of the training algorithms developed leads to considerable speedup, especially when large network architectures and training sets are used.

  14. Large-scale P2P network based distributed virtual geographic environment (DVGE)

    NASA Astrophysics Data System (ADS)

    Tan, Xicheng; Yu, Liang; Bian, Fuling

    2007-06-01

    Virtual Geographic Environment has raised full concern as a kind of software information system that helps us understand and analyze the real geographic environment, and it has also expanded to application service system in distributed environment--distributed virtual geographic environment system (DVGE), and gets some achievements. However, limited by the factor of the mass data of VGE, the band width of network, as well as numerous requests and economic, etc. DVGE still faces some challenges and problems which directly cause the current DVGE could not provide the public with high-quality service under current network mode. The Rapid development of peer-to-peer network technology has offered new ideas of solutions to the current challenges and problems of DVGE. Peer-to-peer network technology is able to effectively release and search network resources so as to realize efficient share of information. Accordingly, this paper brings forth a research subject on Large-scale peer-to-peer network extension of DVGE as well as a deep study on network framework, routing mechanism, and DVGE data management on P2P network.

  15. Evolution of A Distributed Live, Virtual, Constructive Environment for Human in the Loop Unmanned Aircraft Testing

    NASA Technical Reports Server (NTRS)

    Murphy, James R.; Otto, Neil M.

    2017-01-01

    NASA's Unmanned Aircraft Systems Integration in the National Airspace System Project is conducting human in the loop simulations and flight testing intended to reduce barriers associated with enabling routine airspace access for unmanned aircraft. The primary focus of these tests is interaction of the unmanned aircraft pilot with the display of detect and avoid alerting and guidance information. The project's integrated test and evaluation team was charged with developing the test infrastructure. As with any development effort, compromises in the underlying system architecture and design were made to allow for the rapid prototyping and open-ended nature of the research. In order to accommodate these design choices, a distributed test environment was developed incorporating Live, Virtual, Constructive, (LVC) concepts. The LVC components form the core infrastructure support simulation of UAS operations by integrating live and virtual aircraft in a realistic air traffic environment. This LVC infrastructure enables efficient testing by leveraging the use of existing assets distributed across multiple NASA Centers. Using standard LVC concepts enable future integration with existing simulation infrastructure.

  16. Evolution of A Distributed Live, Virtual, Constructive Environment for Human in the Loop Unmanned Aircraft Testing

    NASA Technical Reports Server (NTRS)

    Murphy, Jim; Otto, Neil

    2017-01-01

    NASA's Unmanned Aircraft Systems Integration in the National Airspace System Project is conducting human in the loop simulations and flight testing intended to reduce barriers associated with enabling routine airspace access for unmanned aircraft. The primary focus of these tests is interaction of the unmanned aircraft pilot with the display of detect and avoid alerting and guidance information. The projects integrated test and evaluation team was charged with developing the test infrastructure. As with any development effort, compromises in the underlying system architecture and design were made to allow for the rapid prototyping and open-ended nature of the research. In order to accommodate these design choices, a distributed test environment was developed incorporating Live, Virtual, Constructive, (LVC) concepts. The LVC components form the core infrastructure support simulation of UAS operations by integrating live and virtual aircraft in a realistic air traffic environment. This LVC infrastructure enables efficient testing by leveraging the use of existing assets distributed across multiple NASA Centers. Using standard LVC concepts enable future integration with existing simulation infrastructure.

  17. From telepathology to virtual pathology institution: the new world of digital pathology.

    PubMed

    Kayser, K; Kayser, G; Radziszowski, D; Oehmann, A

    Telepathology has left its childhood. Its technical development is mature, and its use for primary (frozen section) and secondary (expert consultation) diagnosis has been expanded to a great amount. This is in contrast to a virtual pathology laboratory, which is still under technical constraints. Similar to telepathology, which can also be used for e-learning and e-training in pathology, as exemplarily is demonstrated on Digital Lung Pathology (Klaus.Kayser@charite.de) at least two kinds of virtual pathology laboratories will be implemented in the near future: a) those with distributed pathologists and distributed (> or = 1) laboratories associated to individual biopsy stations/surgical theatres, and b) distributed pathologists (usually situated in one institution) and a centralized laboratory, which digitizes complete histological slides. Both scenarios are under intensive technical investigations. The features of virtual pathology comprise a virtual pathology institution (mode a) that accepts a complete case with the patient's history, clinical findings, and (pre-selected) images for first diagnosis. The diagnostic responsibility is that of a conventional institution. The Internet serves as platform for information transfer, and an open server such as the iPATH (http://telepath.patho.unibas.ch) for coordination and performance of the diagnostic procedure. The size and number of transferred images have to be limited, and usual different magnifications have to be used. The sender needs to possess experiences in image sampling techniques, which present with the most significant information. A group of pathologists is "on duty", or selects one member for a predefined duty period. The diagnostic statement of the pathologist(s) on duty is retransmitted to the sender with full responsibility. The first experiences of a virtual pathology institution group working with the iPATH server working with a small hospital of the Salomon islands are promising. A centralized virtual pathology institution (mode b) depends upon the digitalization of a complete slide, and the transfer of large sized images to different pathologists working in one institution. The technical performance of complete slide digitalization is still under development. Virtual pathology can be combined with e-learning and e-training, that will serve for a powerful daily-work-integrated pathology system. At present, e-learning systems are "stand-alone" solutions distributed on CD or via Internet. A characteristic example is the Digital Lung Pathology CD, which includes about 60 different rare and common lung diseases with some features of electronic communication. These features include access to scientific library systems (PubMed), distant measurement servers (EuroQuant), automated immunohisto-chemistry measurements, or electronic journals (Elec J Pathol Histol, www.pathology-online.org). It combines e-learning and e-training with some acoustic support. A new and complete database based upon this CD will combine e-learning and e-teaching with the actual workflow in a virtual pathology institution (mode a). The technological problems are solved and do not depend upon technical constraints such as slide scanning systems. At present, telepathology serves as promoter for a complete new landscape in diagnostic pathology, the so-called virtual pathology institution. Industrial and scientific efforts will probably allow an implementation of this technique within the next two years with exciting diagnostic and scientific perspectives.

  18. Virtual Reality simulator for dental anesthesia training in the inferior alveolar nerve block.

    PubMed

    Corrêa, Cléber Gimenez; Machado, Maria Aparecida de Andrade Moreira; Ranzini, Edith; Tori, Romero; Nunes, Fátima de Lourdes Santos

    2017-01-01

    This study shows the development and validation of a dental anesthesia-training simulator, specifically for the inferior alveolar nerve block (IANB). The system developed provides the tactile sensation of inserting a real needle in a human patient, using Virtual Reality (VR) techniques and a haptic device that can provide a perceived force feedback in the needle insertion task during the anesthesia procedure. To simulate a realistic anesthesia procedure, a Carpule syringe was coupled to a haptic device. The Volere method was used to elicit requirements from users in the Dentistry area; Repeated Measures Two-Way ANOVA (Analysis of Variance), Tukey post-hoc test and averages for the results' analysis. A questionnaire-based subjective evaluation method was applied to collect information about the simulator, and 26 people participated in the experiments (12 beginners, 12 at intermediate level, and 2 experts). The questionnaire included profile, preferences (number of viewpoints, texture of the objects, and haptic device handler), as well as visual (appearance, scale, and position of objects) and haptic aspects (motion space, tactile sensation, and motion reproduction). The visual aspect was considered appropriate and the haptic feedback must be improved, which the users can do by calibrating the virtual tissues' resistance. The evaluation of visual aspects was influenced by the participants' experience, according to ANOVA test (F=15.6, p=0.0002, with p<0.01). The user preferences were the simulator with two viewpoints, objects with texture based on images and the device with a syringe coupled to it. The simulation was considered thoroughly satisfactory for the anesthesia training, considering the needle insertion task, which includes the correct insertion point and depth, as well as the perception of tissues resistances during the insertion.

  19. QSAR-Driven Design and Discovery of Novel Compounds With Antiplasmodial and Transmission Blocking Activities.

    PubMed

    Lima, Marilia N N; Melo-Filho, Cleber C; Cassiano, Gustavo C; Neves, Bruno J; Alves, Vinicius M; Braga, Rodolpho C; Cravo, Pedro V L; Muratov, Eugene N; Calit, Juliana; Bargieri, Daniel Y; Costa, Fabio T M; Andrade, Carolina H

    2018-01-01

    Malaria is a life-threatening infectious disease caused by parasites of the genus Plasmodium , affecting more than 200 million people worldwide every year and leading to about a half million deaths. Malaria parasites of humans have evolved resistance to all current antimalarial drugs, urging for the discovery of new effective compounds. Given that the inhibition of deoxyuridine triphosphatase of Plasmodium falciparum ( Pf dUTPase) induces wrong insertions in plasmodial DNA and consequently leading the parasite to death, this enzyme is considered an attractive antimalarial drug target. Using a combi-QSAR (quantitative structure-activity relationship) approach followed by virtual screening and in vitro experimental evaluation, we report herein the discovery of novel chemical scaffolds with in vitro potency against asexual blood stages of both P. falciparum multidrug-resistant and sensitive strains and against sporogonic development of P. berghei . We developed 2D- and 3D-QSAR models using a series of nucleosides reported in the literature as Pf dUTPase inhibitors. The best models were combined in a consensus approach and used for virtual screening of the ChemBridge database, leading to the identification of five new virtual Pf dUTPase inhibitors. Further in vitro testing on P. falciparum multidrug-resistant (W2) and sensitive (3D7) parasites showed that compounds LabMol-144 and LabMol-146 demonstrated fair activity against both strains and presented good selectivity versus mammalian cells. In addition, LabMol-144 showed good in vitro inhibition of P. berghei ookinete formation, demonstrating that hit-to-lead optimization based on this compound may also lead to new antimalarials with transmission blocking activity.

  20. Factors to keep in mind when introducing virtual microscopy.

    PubMed

    Glatz-Krieger, Katharina; Spornitz, Udo; Spatz, Alain; Mihatsch, Michael J; Glatz, Dieter

    2006-03-01

    Digitization of glass slides and delivery of so-called virtual slides (VS) emulating a real microscope over the Internet have become reality due to recent improvements in technology. We have implemented a virtual microscope for instruction of medical students and for continuing medical education. Up to 30,000 images per slide are captured using a microscope with an automated stage. The images are post-processed and then served by a plain hypertext transfer protocol (http)-server. A virtual slide client (vMic) based on Macromedia's Flash MX, a highly accepted technology available on every modern Web browser, has been developed. All necessary virtual slide parameters are stored in an XML file together with the image. Evaluation of the courses by questionnaire indicated that most students and many but not all pathologists regard virtual slides as an adequate replacement for traditional slides. All our virtual slides are publicly accessible over the World Wide Web (WWW) at http://vmic.unibas.ch . Recently, several commercially available virtual slide acquisition systems (VSAS) have been developed that use various technologies to acquire and distribute virtual slides. These systems differ in speed, image quality, compatibility, viewer functionalities and price. This paper gives an overview of the factors to keep in mind when introducing virtual microscopy.

  1. Inputs and spatial distribution patterns of Cr in Jiaozhou Bay

    NASA Astrophysics Data System (ADS)

    Yang, Dongfang; Miao, Zhenqing; Huang, Xinmin; Wei, Linzhen; Feng, Ming

    2018-03-01

    Cr pollution in marine bays has been one of the critical environmental issues, and understanding the input and spatial distribution patterns is essential to pollution control. In according to the source strengths of the major pollution sources, the input patterns of pollutants to marine bay include slight, moderate and heavy, and the spatial distribution are corresponding to three block models respectively. This paper analyzed input patterns and distributions of Cr in Jiaozhou Bay, eastern China based on investigation on Cr in surface waters during 1979-1983. Results showed that the input strengths of Cr in Jiaozhou Bay could be classified as moderate input and slight input, and the input strengths were 32.32-112.30 μg L-1 and 4.17-19.76 μg L-1, respectively. The input patterns of Cr included two patterns of moderate input and slight input, and the horizontal distributions could be defined by means of Block Model 2 and Block Model 3, respectively. In case of moderate input pattern via overland runoff, Cr contents were decreasing from the estuaries to the bay mouth, and the distribution pattern was parallel. In case of moderate input pattern via marine current, Cr contents were decreasing from the bay mouth to the bay, and the distribution pattern was parallel to circular. The Block Models were able to reveal the transferring process of various pollutants, and were helpful to understand the distributions of pollutants in marine bay.

  2. Research on distributed virtual reality system in electronic commerce

    NASA Astrophysics Data System (ADS)

    Xue, Qiang; Wang, Jiening; Sun, Jizhou

    2004-03-01

    In this paper, Distributed Virtual Reality (DVR) technology applied in Electronical Commerce (EC) is discussed. DVR has the capability of providing a new means for human being to recognize, analyze and resolve the large scale, complex problems, which makes it develop quickly in EC fields. The technology of CSCW (Computer Supported Cooperative Work) and middleware is introduced into the development of EC-DVR system to meet the need of a platform which can provide the necessary cooperation and communication services to avoid developing the basic module repeatedly. Finally, the paper gives a platform structure of EC-DVR system.

  3. Awareware: Narrowcasting Attributes for Selective Attention, Privacy, and Multipresence

    NASA Astrophysics Data System (ADS)

    Cohen, Michael; Newton Fernando, Owen Noel

    The domain of cscw, computer-supported collaborative work, and DSC, distributed synchronous collaboration, spans real-time interactive multiuser systems, shared information spaces, and applications for teleexistence and artificial reality, including collaborative virtual environments ( cves) (Benford et al., 2001). As presence awareness systems emerge, it is important to develop appropriate interfaces and architectures for managing multimodal multiuser systems. Especially in consideration of the persistent connectivity enabled by affordable networked communication, shared distributed environments require generalized control of media streams, techniques to control source → sink transmissions in synchronous groupware, including teleconferences and chatspaces, online role-playing games, and virtual concerts.

  4. Airport Simulations Using Distributed Computational Resources

    NASA Technical Reports Server (NTRS)

    McDermott, William J.; Maluf, David A.; Gawdiak, Yuri; Tran, Peter; Clancy, Daniel (Technical Monitor)

    2002-01-01

    The Virtual National Airspace Simulation (VNAS) will improve the safety of Air Transportation. In 2001, using simulation and information management software running over a distributed network of super-computers, researchers at NASA Ames, Glenn, and Langley Research Centers developed a working prototype of a virtual airspace. This VNAS prototype modeled daily operations of the Atlanta airport by integrating measured operational data and simulation data on up to 2,000 flights a day. The concepts and architecture developed by NASA for this prototype are integral to the National Airspace Simulation to support the development of strategies improving aviation safety, identifying precursors to component failure.

  5. Scaffold architecture and pharmacophoric properties of natural products and trade drugs: application in the design of natural product-based combinatorial libraries.

    PubMed

    Lee, M L; Schneider, G

    2001-01-01

    Natural products were analyzed to determine whether they contain appealing novel scaffold architectures for potential use in combinatorial chemistry. Ring systems were extracted and clustered on the basis of structural similarity. Several such potential scaffolds for combinatorial chemistry were identified that are not present in current trade drugs. For one of these scaffolds a virtual combinatorial library was generated. Pharmacophoric properties of natural products, trade drugs, and the virtual combinatorial library were assessed using a self-organizing map. Obviously, current trade drugs and natural products have several topological pharmacophore patterns in common. These features can be systematically explored with selected combinatorial libraries based on a combination of natural product-derived and synthetic molecular building blocks.

  6. Statistical molecular design of building blocks for combinatorial chemistry.

    PubMed

    Linusson, A; Gottfries, J; Lindgren, F; Wold, S

    2000-04-06

    The reduction of the size of a combinatorial library can be made in two ways, either base the selection on the building blocks (BB's) or base it on the full set of virtually constructed products. In this paper we have investigated the effects of applying statistical designs to BB sets compared to selections based on the final products. The two sets of BB's and the virtually constructed library were described by structural parameters, and the correlation between the two characterizations was investigated. Three different selection approaches were used both for the BB sets and for the products. In the first two the selection algorithms were applied directly to the data sets (D-optimal design and space-filling design), while for the third a cluster analysis preceded the selection (cluster-based design). The selections were compared using visual inspection, the Tanimoto coefficient, the Euclidean distance, the condition number, and the determinant of the resulting data matrix. No difference in efficiency was found between selections made in the BB space and in the product space. However, it is of critical importance to investigate the BB space carefully and to select an appropriate number of BB's to result in an adequate diversity. An example from the pharmaceutical industry is then presented, where selection via BB's was made using a cluster-based design.

  7. Tracing Success: Graphical Methods for Analysing Successful Collaborative Problem Solving

    ERIC Educational Resources Information Center

    Joiner, Richard; Issroff, Kim

    2003-01-01

    The aim of this paper is to evaluate the use of trace diagrams for analysing collaborative problem solving. The paper describes a study where trace diagrams were used to analyse joint navigation in a virtual environment. Ten pairs of undergraduates worked together on a distributed virtual task to collect five flowers using two bees with each…

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirillov, A. A.; Savelova, E. P., E-mail: ka98@mail.ru

    The problem of free-particle scattering on virtual wormholes is considered. It is shown that, for all types of relativistic fields, this scattering leads to the appearance of additional very heavy particles, which play the role of auxiliary fields in the invariant scheme of Pauli–Villars regularization. A nonlinear correction that describes the back reaction of particles to the vacuum distribution of virtual wormholes is also obtained.

  9. Pinpoint Delivery of Molecules by Using Electron Beam Addressing Virtual Cathode Display.

    PubMed

    Hoshino, Takayuki; Yoshioka, Moto; Wagatsuma, Akira; Miyazako, Hiroki; Mabuchi, Kunihiko

    2018-03-01

    Electroporation, a physical transfection method to introduce genomic molecules in selective living cells, could be implemented by microelectrode devices. A local electric field generated by a finer electrode can induces cytomembrane poration in the electrode vicinity. To employ fine, high-speed scanning electrodes, we developed a fine virtual cathode pattern, which was generated on a cell adhesive surface of 100-nm-thick SiN membrane by inverted-electron beam lithography. The SiN membrane works as both a vacuum barrier and the display screen of the virtual cathode. The kinetic energy of the incident primary electrons to the SiN membrane was completely blocked, whereas negative charges and leaking electric current appeared on the surface of the dielectric SiN membrane within a region of 100 nm. Locally controlled transmembrane molecular delivery was demonstrated on adhered C2C12 myoblast cells in a culturing medium with fluorescent dye propidium iodide (PI). Increasing fluorescence of pre-diluted PI indicated local poration and transmembrane inflow at the virtual cathode position, as well as intracellular diffusion. The transmembrane inflows depended on beam duration time and acceleration voltage. At the post-molecular delivery, a slight decrease in intracellular PI fluorescence intensity indicates membrane recovery from the poration. Cell viability was confirmed by time-lapse cell imaging of post-exposure cell migration.

  10. Characterization of a small Terfenol-D transducer in mechanically blocked configuration

    NASA Astrophysics Data System (ADS)

    Faidley, LeAnn E.; Dapino, Marcelo J.; Flatau, Alison B.

    2001-08-01

    In numerous applications, smart material transducers are employed to actuate upon virtually immovable structures, that is, structures whose stiffness approaches infinity in comparison with that of the transducer itself. Such mechanically blocked transducer configurations can be found in applications ranging from seismic testing and isolation of civil structures, to clamping mechanisms in linear or rotational inchworm motors. In addition to providing high blocking forces, smart materials for this type of applications must often be small in size and lightweight in order for design constraints to be met. This paper provides a characterization of the force produced by a 0.9 cm (0.35 in) diameter, 2.0 cm (0.79i in) long Terfenol-D operated under mechanically blocked conditions. Experimental results are shown for several mechanical preloads as well as various magnetic field intensities, waveforms, and frequencies. Optimal levels are deduced and discussed and the results are compared to published data for a PZT transducer of similar size operated in mechanically blocked configuration. The comparison reveals that the Terfenol-D rod provides higher blocking forces than its PZT counterpart. It is thus feasible to employ small magnetostrictive drivers in applications involving zero or near-zero displacement, particularly those based on hybrid magnetostrictive/piezoelectric designs in which high efficiencies are achieved by driving the two electrically complementary transducer materials at electrical resonance.

  11. Algorithm and Application of Gcp-Independent Block Adjustment for Super Large-Scale Domestic High Resolution Optical Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Sun, Y. S.; Zhang, L.; Xu, B.; Zhang, Y.

    2018-04-01

    The accurate positioning of optical satellite image without control is the precondition for remote sensing application and small/medium scale mapping in large abroad areas or with large-scale images. In this paper, aiming at the geometric features of optical satellite image, based on a widely used optimization method of constraint problem which is called Alternating Direction Method of Multipliers (ADMM) and RFM least-squares block adjustment, we propose a GCP independent block adjustment method for the large-scale domestic high resolution optical satellite image - GISIBA (GCP-Independent Satellite Imagery Block Adjustment), which is easy to parallelize and highly efficient. In this method, the virtual "average" control points are built to solve the rank defect problem and qualitative and quantitative analysis in block adjustment without control. The test results prove that the horizontal and vertical accuracy of multi-covered and multi-temporal satellite images are better than 10 m and 6 m. Meanwhile the mosaic problem of the adjacent areas in large area DOM production can be solved if the public geographic information data is introduced as horizontal and vertical constraints in the block adjustment process. Finally, through the experiments by using GF-1 and ZY-3 satellite images over several typical test areas, the reliability, accuracy and performance of our developed procedure will be presented and studied in this paper.

  12. A spring-block analogy for the dynamics of stock indexes

    NASA Astrophysics Data System (ADS)

    Sándor, Bulcsú; Néda, Zoltán

    2015-06-01

    A spring-block chain placed on a running conveyor belt is considered for modeling stylized facts observed in the dynamics of stock indexes. Individual stocks are modeled by the blocks, while the stock-stock correlations are introduced via simple elastic forces acting in the springs. The dragging effect of the moving belt corresponds to the expected economic growth. The spring-block system produces collective behavior and avalanche like phenomena, similar to the ones observed in stock markets. An artificial index is defined for the spring-block chain, and its dynamics is compared with the one measured for the Dow Jones Industrial Average. For certain parameter regions the model reproduces qualitatively well the dynamics of the logarithmic index, the logarithmic returns, the distribution of the logarithmic returns, the avalanche-size distribution and the distribution of the investment horizons. A noticeable success of the model is that it is able to account for the gain-loss asymmetry observed in the inverse statistics. Our approach has mainly a pedagogical value, bridging between a complex socio-economic phenomena and a basic (mechanical) model in physics.

  13. Intelligent web agents for a 3D virtual community

    NASA Astrophysics Data System (ADS)

    Dave, T. M.; Zhang, Yanqing; Owen, G. S. S.; Sunderraman, Rajshekhar

    2003-08-01

    In this paper, we propose an Avatar-based intelligent agent technique for 3D Web based Virtual Communities based on distributed artificial intelligence, intelligent agent techniques, and databases and knowledge bases in a digital library. One of the goals of this joint NSF (IIS-9980130) and ACM SIGGRAPH Education Committee (ASEC) project is to create a virtual community of educators and students who have a common interest in comptuer graphics, visualization, and interactive techniqeus. In this virtual community (ASEC World) Avatars will represent the educators, students, and other visitors to the world. Intelligent agents represented as specially dressed Avatars will be available to assist the visitors to ASEC World. The basic Web client-server architecture of the intelligent knowledge-based avatars is given. Importantly, the intelligent Web agent software system for the 3D virtual community is implemented successfully.

  14. A Rendering System Independent High Level Architecture Implementation for Networked Virtual Environments

    DTIC Science & Technology

    2002-09-01

    Management .........................15 5. Time Management ..............................16 6. Data Distribution Management .................16 D...50 b. Ownership Management .....................51 c. Data Distribution Management .............51 2. Additional Objects and Interactions...16 Figure 6. Data Distribution Management . (From: ref. 2) ...16 Figure 7. RTI and Federate Code Responsibilities. (From: ref. 2

  15. Managing Distributed Innovation Processes in Virtual Organizations by Applying the Collaborative Network Relationship Analysis

    NASA Astrophysics Data System (ADS)

    Eschenbächer, Jens; Seifert, Marcus; Thoben, Klaus-Dieter

    Distributed innovation processes are considered as a new option to handle both the complexity and the speed in which new products and services need to be prepared. Indeed most research on innovation processes was focused on multinational companies with an intra-organisational perspective. The phenomena of innovation processes in networks - with an inter-organisational perspective - have been almost neglected. Collaborative networks present a perfect playground for such distributed innovation processes whereas the authors highlight in specific Virtual Organisation because of their dynamic behaviour. Research activities supporting distributed innovation processes in VO are rather new so that little knowledge about the management of such research is available. With the presentation of the collaborative network relationship analysis this gap will be addressed. It will be shown that a qualitative planning of collaboration intensities can support real business cases by proving knowledge and planning data.

  16. Maintaining consistency in distributed systems

    NASA Technical Reports Server (NTRS)

    Birman, Kenneth P.

    1991-01-01

    In systems designed as assemblies of independently developed components, concurrent access to data or data structures normally arises within individual programs, and is controlled using mutual exclusion constructs, such as semaphores and monitors. Where data is persistent and/or sets of operation are related to one another, transactions or linearizability may be more appropriate. Systems that incorporate cooperative styles of distributed execution often replicate or distribute data within groups of components. In these cases, group oriented consistency properties must be maintained, and tools based on the virtual synchrony execution model greatly simplify the task confronting an application developer. All three styles of distributed computing are likely to be seen in future systems - often, within the same application. This leads us to propose an integrated approach that permits applications that use virtual synchrony with concurrent objects that respect a linearizability constraint, and vice versa. Transactional subsystems are treated as a special case of linearizability.

  17. Virtual Sensor Web Architecture

    NASA Astrophysics Data System (ADS)

    Bose, P.; Zimdars, A.; Hurlburt, N.; Doug, S.

    2006-12-01

    NASA envisions the development of smart sensor webs, intelligent and integrated observation network that harness distributed sensing assets, their associated continuous and complex data sets, and predictive observation processing mechanisms for timely, collaborative hazard mitigation and enhanced science productivity and reliability. This paper presents Virtual Sensor Web Infrastructure for Collaborative Science (VSICS) Architecture for sustained coordination of (numerical and distributed) model-based processing, closed-loop resource allocation, and observation planning. VSICS's key ideas include i) rich descriptions of sensors as services based on semantic markup languages like OWL and SensorML; ii) service-oriented workflow composition and repair for simple and ensemble models; event-driven workflow execution based on event-based and distributed workflow management mechanisms; and iii) development of autonomous model interaction management capabilities providing closed-loop control of collection resources driven by competing targeted observation needs. We present results from initial work on collaborative science processing involving distributed services (COSEC framework) that is being extended to create VSICS.

  18. The tissue micro-array data exchange specification: a web based experience browsing imported data

    PubMed Central

    Nohle, David G; Hackman, Barbara A; Ayers, Leona W

    2005-01-01

    Background The AIDS and Cancer Specimen Resource (ACSR) is an HIV/AIDS tissue bank consortium sponsored by the National Cancer Institute (NCI) Division of Cancer Treatment and Diagnosis (DCTD). The ACSR offers to approved researchers HIV infected biologic samples and uninfected control tissues including tissue cores in micro-arrays (TMA) accompanied by de-identified clinical data. Researchers interested in the type and quality of TMA tissue cores and the associated clinical data need an efficient method for viewing available TMA materials. Because each of the tissue samples within a TMA has separate data including a core tissue digital image and clinical data, an organized, standard approach to producing, navigating and publishing such data is necessary. The Association for Pathology Informatics (API) extensible mark-up language (XML) TMA data exchange specification (TMA DES) proposed in April 2003 provides a common format for TMA data. Exporting TMA data into the proposed format offers an opportunity to implement the API TMA DES. Using our public BrowseTMA tool, we created a web site that organizes and cross references TMA lists, digital "virtual slide" images, TMA DES export data, linked legends and clinical details for researchers. Microsoft Excel® and Microsoft Word® are used to convert tabular clinical data and produce an XML file in the TMA DES format. The BrowseTMA tool contains Extensible Stylesheet Language Transformation (XSLT) scripts that convert XML data into Hyper-Text Mark-up Language (HTML) web pages with hyperlinks automatically added to allow rapid navigation. Results Block lists, virtual slide images, legends, clinical details and exports have been placed on the ACSR web site for 14 blocks with 1623 cores of 2.0, 1.0 and 0.6 mm sizes. Our virtual microscope can be used to view and annotate these TMA images. Researchers can readily navigate from TMA block lists to TMA legends and to clinical details for a selected tissue core. Exports for 11 blocks with 3812 cores from three other institutions were processed with the BrowseTMA tool. Fifty common data elements (CDE) from the TMA DES were used and 42 more created for site-specific data. Researchers can download TMA clinical data in the TMA DES format. Conclusion Virtual TMAs with clinical data can be viewed on the Internet by interested researchers using the BrowseTMA tool. We have organized our approach to producing, sorting, navigating and publishing TMA information to facilitate such review. We have converted Excel TMA data into TMA DES XML, and imported it and TMA DES XML from another institution into BrowseTMA to produce web pages that allow us to browse through the merged data. We proposed enhancements to the TMA DES as a result of this experience. We implemented improvements to the API TMA DES as a result of using exported data from several institutions. A document type definition was written for the API TMA DES (that optionally includes proposed enhancements). Independent validators can be used to check exports against the DTD (with or without the proposed enhancements). Linking tissue core images to readily navigable clinical data greatly improves the value of the TMA. PMID:16086837

  19. Comparative study on collaborative interaction in non-immersive and immersive systems

    NASA Astrophysics Data System (ADS)

    Shahab, Qonita M.; Kwon, Yong-Moo; Ko, Heedong; Mayangsari, Maria N.; Yamasaki, Shoko; Nishino, Hiroaki

    2007-09-01

    This research studies the Virtual Reality simulation for collaborative interaction so that different people from different places can interact with one object concurrently. Our focus is the real-time handling of inputs from multiple users, where object's behavior is determined by the combination of the multiple inputs. Issues addressed in this research are: 1) The effects of using haptics on a collaborative interaction, 2) The possibilities of collaboration between users from different environments. We conducted user tests on our system in several cases: 1) Comparison between non-haptics and haptics collaborative interaction over LAN, 2) Comparison between non-haptics and haptics collaborative interaction over Internet, and 3) Analysis of collaborative interaction between non-immersive and immersive display environments. The case studies are the interaction of users in two cases: collaborative authoring of a 3D model by two users, and collaborative haptic interaction by multiple users. In Virtual Dollhouse, users can observe physics law while constructing a dollhouse using existing building blocks, under gravity effects. In Virtual Stretcher, multiple users can collaborate on moving a stretcher together while feeling each other's haptic motions.

  20. STS-88 crew use simulators and virtual reality in preflight training

    NASA Image and Video Library

    1998-04-08

    S98-05075 (8 Apr. 1998) --- Astronaut Nancy J. Currie, assigned as a mission specialist for the mission, uses hardware in the virtual reality lab at the Johnson Space Center (JSC) to train for her duties aboard the Space Shuttle Endeavour. This type computer interface paired with virtual reality training hardware for the assigned space-walking astronauts -- in this case, Jerry L. Ross and James H. Newman -- helps to prepare the entire team for dealing with International Space Station (ISS) elements. One of those elements will be the Functional Cargo Block (FGB), which will have been launched a couple of weeks prior to STS-88. Once the FGB is captured using the Remote Manipulator System (RMS) of the Endeavour, Currie will maneuver the robot arm to dock the FGB to the conical mating adapter at the top of Node 1, to be carried in the Endeavour?s cargo bay. In ensuing days, three Extravehicular Activity?s (EVA) by Ross and Newman will be performed to make power, data and utility connections between the two modules.

  1. Euro-VO-Coordination of virtual observatory activities in Europe

    NASA Astrophysics Data System (ADS)

    Genova, Françoise; Allen, Mark G.; Arviset, Christophe; Lawrence, Andy; Pasian, Fabio; Solano, Enrique; Wambsganss, Joachim

    2015-06-01

    The European Virtual Observatory Euro-VO has been coordinating European VO activities through a series of projects co-funded by the European Commission over the last 15 years. The bulk of VO work in Europe is ensured by the national VO initiatives and those of intergovernmental agencies. VO activities at the European level coordinate the work in support of the three "pillars" of the Virtual Observatory: support to the scientific community, take-up by the data providers, and technological activities. Several Euro-VO projects have also provided direct support to selected developments and prototyping. This paper explains the methodology used by Euro-VO over the years. It summarises the activities which were performed and their evolutions at different stages of the development of the VO, explains the Euro-VO role with respect to the international and national levels of VO activities, details the lessons learnt for best practices for the coordination of the VO building blocks, and the liaison with other European initiatives, documenting the added-value of European coordination. Finally, the current status and next steps of Euro-VO are briefly addressed.

  2. Dynamic routing and spectrum assignment based on multilayer virtual topology and ant colony optimization in elastic software-defined optical networks

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Liu, Bo; Zhang, Lijia; Zhang, Qi; Tian, Qinghua; Tian, Feng; Rao, Lan; Xin, Xiangjun

    2017-07-01

    Elastic software-defined optical networks greatly improve the flexibility of the optical switching network while it has brought challenges to the routing and spectrum assignment (RSA). A multilayer virtual topology model is proposed to solve RSA problems. Two RSA algorithms based on the virtual topology are proposed, which are the ant colony optimization (ACO) algorithm of minimum consecutiveness loss and the ACO algorithm of maximum spectrum consecutiveness. Due to the computing power of the control layer in the software-defined network, the routing algorithm avoids the frequent link-state information between routers. Based on the effect of the spectrum consecutiveness loss on the pheromone in the ACO, the path and spectrum of the minimal impact on the network are selected for the service request. The proposed algorithms have been compared with other algorithms. The results show that the proposed algorithms can reduce the blocking rate by at least 5% and perform better in spectrum efficiency. Moreover, the proposed algorithms can effectively decrease spectrum fragmentation and enhance available spectrum consecutiveness.

  3. LHCb experience with running jobs in virtual machines

    NASA Astrophysics Data System (ADS)

    McNab, A.; Stagni, F.; Luzzi, C.

    2015-12-01

    The LHCb experiment has been running production jobs in virtual machines since 2013 as part of its DIRAC-based infrastructure. We describe the architecture of these virtual machines and the steps taken to replicate the WLCG worker node environment expected by user and production jobs. This relies on the uCernVM system for providing root images for virtual machines. We use the CernVM-FS distributed filesystem to supply the root partition files, the LHCb software stack, and the bootstrapping scripts necessary to configure the virtual machines for us. Using this approach, we have been able to minimise the amount of contextualisation which must be provided by the virtual machine managers. We explain the process by which the virtual machine is able to receive payload jobs submitted to DIRAC by users and production managers, and how this differs from payloads executed within conventional DIRAC pilot jobs on batch queue based sites. We describe our operational experiences in running production on VM based sites managed using Vcycle/OpenStack, Vac, and HTCondor Vacuum. Finally we show how our use of these resources is monitored using Ganglia and DIRAC.

  4. Late Pleistocene granodiorite source for recycled zircon and phenocrysts in rhyodacite lava at Crater Lake, Oregon

    USGS Publications Warehouse

    Bacon, C.R.; Lowenstern, J. B.

    2005-01-01

    Rhyodacite tephra and three lavas erupted ???27 ka, interpreted to be early leaks from the climactic magma chamber of Mount Mazama, contain ubiquitous resorbed crystals (antecrysts) that were recycled from young granodiorite and related plutonic rocks of the same magmatic system. The shallow composite pluton is represented by blocks ejected in the 7.7-ka climactic eruption that formed Crater Lake caldera. Plagioclase crystals in both rhyodacite and granodiorites commonly have cores with crystallographically oriented Fe-oxide needles exsolved at subsolidus conditions. At least 80% of plagioclase crystals in the rhyodacite are antecrysts derived from plutonic rocks. Other crystals in the rhyodacite, notably zircon, also were recycled. SIMS 238U- 230Th dating indicates that zircons in 4 granodiorite blocks crystallized at various times between ???20 ka and ???300 ka with concentrations of analyses near 50-70, ???110, and ???200 ka that correspond to periods of dacitic volcanism dated by K- Ar. U-Th ages of zircon from a rhyodacite sample yield similar results. No analyzed zircons from the granodiorite or rhyodacite are pre-Quaternary. Zircon minimum ages in blocks from different locations around the caldera reflect ages of nearby volcanic vents and may map the distribution of intrusions within a composite pluton. Survival of zircon in zircon-undersaturated hydrous magma and of Fe-oxide needles in plagioclase suggests that little time elapsed from entrainment of antecrysts to the ???27-ka eruption of the rhyodacite. The ???27-ka rhyodacite is an example of young silicic magma that preserved unstable antecrysts from a known source early during growth of a large high-level magma chamber. In contrast, the voluminous 7.7-ka climactic rhyodacite pumice is virtually lacking in zircon, indicating dissolution of any granodioritic debris in the intervening period. Mineralogical evidence of assimilation may be destroyed in hot, vigorously growing silicic magma bodies such as ultimately produced the climactic eruption of Mount Mazama. ?? 2005 Elsevier B.V. All rights reserved.

  5. Augmented effects of EMG biofeedback interfaced with virtual reality on neuromuscular control and movement coordination during reaching in children with cerebral palsy.

    PubMed

    Yoo, Ji Won; Lee, Dong Ryul; Cha, Young Joo; You, Sung Hyun

    2017-01-01

    The purpose of the present study was to compare therapeutic effects of an electromyography (EMG) biofeedback augmented by virtual reality (VR) and EMG biofeedback alone on the triceps and biceps (T:B) muscle activity imbalance and elbow joint movement coordination during a reaching motor taskOBJECTIVE: To compare therapeutic effects of an electromyography (EMG) biofeedback augmented by virtual reality (VR) and EMG biofeedback alone on the triceps and biceps muscle activity imbalance and elbow joint movement coordination during a reaching motor task in normal children and children with spastic cerebral palsy (CP). 18 children with spastic CP (2 females; mean±standard deviation = 9.5 ± 1.96 years) and 8 normal children (3 females; mean ± standard deviation = 9.75 ± 2.55 years) were recruited from a local community center. All children with CP first underwent one intensive session of EMG feedback (30 minutes), followed by one session of the EMG-VR feedback (30 minutes) after a 1-week washout period. Clinical tests included elbow extension range of motion (ROM), biceps muscle strength, and box and block test. EMG triceps and biceps (T:B) muscle activity imbalance and reaching movement acceleration coordination were concurrently determined by EMG and 3-axis accelerometer measurements respectively. Independent t-test and one-way repeated analysis of variance (ANOVA) were performed at p < 0.05. The one-way repeated ANOVA was revealed to be significantly effective in elbow extension ROM (p = 0.01), biceps muscle strength (p = 0.01), and box and block test (p = 0.03). The one-way repeated ANOVA also revealed to be significantly effective in the peak triceps muscle activity (p = 0.01). However, one-way repeated ANOVA produced no statistical significance in the composite 3-dimensional movement acceleration coordination data (p = 0.12). The present study is a first clinical trial that demonstrated the superior benefits of the EMG biofeedback when augmented by virtual reality exercise games in children with spastic CP. The augmented EMG and VR feedback produced better neuromuscular balance control in the elbow joint than the EMG biofeedback alone.

  6. Development, Deployment, and Assessment of Dynamic Geological and Geophysical Models Using the Google Earth APP and API: Implications for Undergraduate Education in the Earth and Planetary Sciences

    NASA Astrophysics Data System (ADS)

    de Paor, D. G.; Whitmeyer, S. J.; Gobert, J.

    2009-12-01

    We previously reported on innovative techniques for presenting data on virtual globes such as Google Earth using emergent Collada models that reveal subsurface geology and geophysics. We here present several new and enhanced models and linked lesson plans to aid deployment in undergraduate geoscience courses, along with preliminary results from our assessment of their effectiveness. The new Collada models are created with Google SketchUp, Bonzai3D, and MeshLab software, and are grouped to cover (i) small scale field mapping areas; (ii) regional scale studies of the North Atlantic Ocean Basin, the Appalachian Orogen, and the Pacific Ring of Fire; and (iii) global scale studies of terrestrial planets, moons, and asteroids. Enhancements include emergent block models with three-dimensional surface topography; models that conserve structural orientation data; interactive virtual specimens; models that animate plate movements on the virtual globe; exploded 3-D views of planetary mantles and cores; and server-generated dynamic KML. We tested volunteer students and professors using Silverback monitoring software, think-aloud verbalizations, and questionnaires designed to assess their understanding of the underlying geo-scientific phenomena. With the aid of a cohort of instructors across the U.S., we are continuing to assess areas in which users encounter difficulties with both the software and geoscientific concepts. Preliminary results suggest that it is easy to overestimate the computer expertise of novice users even when they are content knowledge experts (i.e., instructors), and that a detailed introduction to virtual globe manipulation is essential before moving on to geoscience applications. Tasks that seem trivial to developers may present barriers to non-technical users and technicalities that challenge instructors may block adoption in the classroom. We have developed new models using the Google Earth API which permits enhanced interaction and dynamic feedback and are assessing their relative merits versus the Google Earth APP. Overall, test students and professors value the models very highly. There are clear pedagogical opportunities for using materials such as these to create engaging in-course research opportunities for undergraduates.

  7. The art and science of data curation: Lessons learned from constructing a virtual collection

    NASA Astrophysics Data System (ADS)

    Bugbee, Kaylin; Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick

    2018-03-01

    A digital, or virtual, collection is a value added service developed by libraries that curates information and resources around a topic, theme or organization. Adoption of the virtual collection concept as an Earth science data service improves the discoverability, accessibility and usability of data both within individual data centers but also across data centers and disciplines. In this paper, we introduce a methodology for systematically and rigorously curating Earth science data and information into a cohesive virtual collection. This methodology builds on the geocuration model of searching, selecting and synthesizing Earth science data, metadata and other information into a single and useful collection. We present our experiences curating a virtual collection for one of NASA's twelve Distributed Active Archive Centers (DAACs), the Global Hydrology Resource Center (GHRC), and describe lessons learned as a result of this curation effort. We also provide recommendations and best practices for data centers and data providers who wish to curate virtual collections for the Earth sciences.

  8. Dynamic shared state maintenance in distributed virtual environments

    NASA Astrophysics Data System (ADS)

    Hamza-Lup, Felix George

    Advances in computer networks and rendering systems facilitate the creation of distributed collaborative environments in which the distribution of information at remote locations allows efficient communication. Particularly challenging are distributed interactive Virtual Environments (VE) that allow knowledge sharing through 3D information. The purpose of this work is to address the problem of latency in distributed interactive VE and to develop a conceptual model for consistency maintenance in these environments based on the participant interaction model. An area that needs to be explored is the relationship between the dynamic shared state and the interaction with the virtual entities present in the shared scene. Mixed Reality (MR) and VR environments must bring the human participant interaction into the loop through a wide range of electronic motion sensors, and haptic devices. Part of the work presented here defines a novel criterion for categorization of distributed interactive VE and introduces, as well as analyzes, an adaptive synchronization algorithm for consistency maintenance in such environments. As part of the work, a distributed interactive Augmented Reality (AR) testbed and the algorithm implementation details are presented. Currently the testbed is part of several research efforts at the Optical Diagnostics and Applications Laboratory including 3D visualization applications using custom built head-mounted displays (HMDs) with optical motion tracking and a medical training prototype for endotracheal intubation and medical prognostics. An objective method using quaternion calculus is applied for the algorithm assessment. In spite of significant network latency, results show that the dynamic shared state can be maintained consistent at multiple remotely located sites. In further consideration of the latency problems and in the light of the current trends in interactive distributed VE applications, we propose a hybrid distributed system architecture for sensor-based distributed VE that has the potential to improve the system real-time behavior and scalability. (Abstract shortened by UMI.)

  9. The StratusLab cloud distribution: Use-cases and support for scientific applications

    NASA Astrophysics Data System (ADS)

    Floros, E.

    2012-04-01

    The StratusLab project is integrating an open cloud software distribution that enables organizations to setup and provide their own private or public IaaS (Infrastructure as a Service) computing clouds. StratusLab distribution capitalizes on popular infrastructure virtualization solutions like KVM, the OpenNebula virtual machine manager, Claudia service manager and SlipStream deployment platform, which are further enhanced and expanded with additional components developed within the project. The StratusLab distribution covers the core aspects of a cloud IaaS architecture, namely Computing (life-cycle management of virtual machines), Storage, Appliance management and Networking. The resulting software stack provides a packaged turn-key solution for deploying cloud computing services. The cloud computing infrastructures deployed using StratusLab can support a wide range of scientific and business use cases. Grid computing has been the primary use case pursued by the project and for this reason the initial priority has been the support for the deployment and operation of fully virtualized production-level grid sites; a goal that has already been achieved by operating such a site as part of EGI's (European Grid Initiative) pan-european grid infrastructure. In this area the project is currently working to provide non-trivial capabilities like elastic and autonomic management of grid site resources. Although grid computing has been the motivating paradigm, StratusLab's cloud distribution can support a wider range of use cases. Towards this direction, we have developed and currently provide support for setting up general purpose computing solutions like Hadoop, MPI and Torque clusters. For what concerns scientific applications the project is collaborating closely with the Bioinformatics community in order to prepare VM appliances and deploy optimized services for bioinformatics applications. In a similar manner additional scientific disciplines like Earth Science can take advantage of StratusLab cloud solutions. Interested users are welcomed to join StratusLab's user community by getting access to the reference cloud services deployed by the project and offered to the public.

  10. Optimal Regulation of Virtual Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall Anese, Emiliano; Guggilam, Swaroop S.; Simonetto, Andrea

    This paper develops a real-time algorithmic framework for aggregations of distributed energy resources (DERs) in distribution networks to provide regulation services in response to transmission-level requests. Leveraging online primal-dual-type methods for time-varying optimization problems and suitable linearizations of the nonlinear AC power-flow equations, we believe this work establishes the system-theoretic foundation to realize the vision of distribution-level virtual power plants. The optimization framework controls the output powers of dispatchable DERs such that, in aggregate, they respond to automatic-generation-control and/or regulation-services commands. This is achieved while concurrently regulating voltages within the feeder and maximizing customers' and utility's performance objectives. Convergence andmore » tracking capabilities are analytically established under suitable modeling assumptions. Simulations are provided to validate the proposed approach.« less

  11. Recent evolution of China's virtual water trade: analysis of selected crops and considerations for policy

    NASA Astrophysics Data System (ADS)

    Shi, J.; Liu, J.; Pinter, L.

    2013-09-01

    China has dramatically increased its virtual water import unconsciously for recent years. Many studies have focused on the quantity of traded virtual water but very few go into analysing geographic distribution and the properties of China's virtual water trade network. This paper provides a calculation and analysis of the crop-related virtual water trade network of China based on 27 major primary crops between 1986 and 2009. The results show that China is a net importer of virtual water from water-abundant areas of North and South America, and a net virtual water exporter to water-stressed areas of Asia, Africa, and Europe. Virtual water import is far larger than virtual water export and in both import and export a small number of trade partners control the supply chain. Grain crops are the major contributors to virtual water trade, and among grain crops soybeans, mostly imported from the US, Brazil and Argentina are the most significant. As crop yield and crop water productivity in North and South America are generally higher than those in Asia and Africa, the effect of China's crop-related virtual water trade positively contributes to optimizing crop water use efficiency at the global scale. In order to mitigate water scarcity and secure the food supply, virtual water should be actively incorporated into national water management strategies. From the national perspective, China should reduce the export and increase the import of water-intensive crops. But the sources of virtual water import need to be further diversified to reduce supply chain risks and increase resilience.

  12. Spatial organization and drivers of the virtual water trade: a community-structure analysis

    NASA Astrophysics Data System (ADS)

    D'Odorico, Paolo; Carr, Joel; Laio, Francesco; Ridolfi, Luca

    2012-09-01

    The trade of agricultural commodities can be associated with a virtual transfer of the local freshwater resources used for the production of these goods. Thus, trade of food products virtually transfers large amounts of water from areas of food production to far consumption regions, a process termed the ‘globalization of water’. We consider the (time-varying) community structure of the virtual water network for the years 1986-2008. The communities are groups of countries with dense internal connections, while the connections are sparser among different communities. Between 1986 and 2008, the ratio between virtual water flows within communities and the total global trade of virtual water has continuously increased, indicating the existence of well defined clusters of virtual water transfers. In some cases (e.g. Central and North America and Europe in recent years) the virtual water communities correspond to geographically coherent regions, suggesting the occurrence of an ongoing process of regionalization of water resources. However, most communities also include countries located on different ‘sides’ of the world. As such, geographic proximity only partly explains the community structure of virtual water trade. Similarly, the global distribution of people and wealth, whose effect on the virtual water trade is expressed through simple ‘gravity models’, is unable to explain the strength of virtual water communities observed in the past few decades. A gravity model based on the availability of and demand for virtual water in different countries has higher explanatory power, but the drivers of the virtual water fluxes are yet to be adequately identified.

  13. Molecular dynamics study of the encapsulation capability of a PCL-PEO based block copolymer for hydrophobic drugs with different spatial distributions of hydrogen bond donors and acceptors.

    PubMed

    Patel, Sarthak K; Lavasanifar, Afsaneh; Choi, Phillip

    2010-03-01

    Molecular dynamics simulation was used to study the potential of using a block copolymer containing three poly(epsilon-caprolactone) (PCL) blocks of equal length connected to one end of a poly(ethylene oxide) (PEO) block, designated as PEO-b-3PCL, to encapsulate two classes of hydrophobic drugs with distinctively different molecular structures. In particular, the first class of drugs consisted of two cucurbitacin drugs (CuB and CuI) that contain multiple hydrogen bond donors and acceptors evenly distributed on their molecules while the other class of drugs (fenofibrate and nimodipine) contain essentially only clustered hydrogen bond acceptors. In the case of cucurbitacin drugs, the results showed that PEO-b-3PCL lowered the Flory-Huggins interaction parameters (chi) considerably (i.e., increased the drug solubility) compared to the linear di-block copolymer PEO-b-PCL with the same PCL/PEO (w/w) ratio of 1.0. However, the opposite effect was observed for fenofibrate and nimodipine. Analysis of the intermolecular interactions indicates that the number of hydrogen bonds formed between the three PCL blocks and cucurbitacin drugs is significantly higher than that of the linear di-block copolymer. On the other hand, owing to the absence of hydrogen bond donors and the clustering of the hydrogen bond acceptors on the fenofibrate and nimodipine molecules, this significantly reduces the number of hydrogen bonds formed in the multi-PCL block environment, leading to unfavourable chi values. The findings of the present work suggest that multi-hydrophobic block architecture could potentially increase the drug loading for hydrophobic drugs with structures containing evenly distributed multiple hydrogen bond donors and acceptors. (c) 2009 Elsevier Ltd. All rights reserved.

  14. Main rotor-body action for virtual blades model

    NASA Astrophysics Data System (ADS)

    Kusyumov, Alexander; Kusyumov, Sergey; Mikhailov, Sergey; Romanova, Elena; Phayzullin, Konstantin; Lopatin, Evgeny; Barakos, G.

    2018-06-01

    This research aims to investigate a virtual blade model and assess rotor influence on helicopter fuselage aerodynamics. The rotor disk is discretized in the azimuthal direction, and a time-varied pressure jump is applied in regions occupied by the blades. To obtain the pressure jump, an actuator disk is employed using uniform and non-uniform blade load distribution, based on momentum theory.

  15. Next Generation Online: Advancing Learning through Dynamic Design, Virtual and Web 2.0 Technologies, and Instructor "Attitude"

    ERIC Educational Resources Information Center

    O'Connor, Eileen

    2013-01-01

    With the advent of web 2.0 and virtual technologies and new understandings about learning within a global, networked environment, online course design has moved beyond the constraints of text readings, papers, and discussion boards. This next generation of online courses needs to dynamically and actively integrate the wide-ranging distribution of…

  16. Live Virtual Constructive Distributed Test Environment Characterization Report

    NASA Technical Reports Server (NTRS)

    Murphy, Jim; Kim, Sam K.

    2013-01-01

    This report documents message latencies observed over various Live, Virtual, Constructive, (LVC) simulation environment configurations designed to emulate possible system architectures for the Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project integrated tests. For each configuration, four scenarios with progressively increasing air traffic loads were used to determine system throughput and bandwidth impacts on message latency.

  17. Dopant profile modeling by rare event enhanced domain-following molecular dynamics

    DOEpatents

    Beardmore, Keith M.; Jensen, Niels G.

    2002-01-01

    A computer-implemented molecular dynamics-based process simulates a distribution of ions implanted in a semiconductor substrate. The properties of the semiconductor substrate and ion dose to be simulated are first initialized, including an initial set of splitting depths that contain an equal number of virtual ions implanted in each substrate volume determined by the splitting depths. A first ion with selected velocity is input onto an impact position of the substrate that defines a first domain for the first ion during a first timestep, where the first domain includes only those atoms of the substrate that exert a force on the ion. A first position and velocity of the first ion is determined after the first timestep and a second domain of the first ion is formed at the first position. The first ion is split into first and second virtual ions if the first ion has passed through a splitting interval. The process then follows each virtual ion until all of the virtual ions have come to rest. A new ion is input to the surface and the process repeats until all of the ion dose has been input. The resulting ion rest positions form the simulated implant distribution.

  18. [Sectional structure of a tree. Model analysis of the vertical biomass distribution].

    PubMed

    Galitskiĭ, V V

    2010-01-01

    A model has been proposed for the architecture of a tree in which virtual trees appear rhythmically on the treetop. Each consecutive virtual tree is a part of the previous tree. The difference between two adjacent virtual trees is a section--an element of the real tree structure. In case of a spruce, the section represents a verticil of a stem with the corresponding internode. Dynamics of a photosynthesizing part of the physiologically active biomass of each section differ from the corresponding dynamics of the virtual trees and the whole real tree. If the tree biomass dynamics has a sigma-shaped form, then the section dynamics have to be bell-shaped. It means that the lower stem should accordingly become bare, which is typically observed in nature. Model analysis reveals the limiting, in the age, form of trees to be an "umbrella". It can be observed in nature and is an outcome of physical limitation of the tree height combined with the sigma-shaped form of the tree biomass dynamics. Variation of model parameters provides for various forms of the tree biomass distribution along the height, which can be associated with certain biological species of trees.

  19. Iris: Constructing and Analyzing Spectral Energy Distributions with the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Laurino, O.; Budynkiewicz, J.; Busko, I.; Cresitello-Dittmar, M.; D'Abrusco, R.; Doe, S.; Evans, J.; Pevunova, O.

    2014-05-01

    We present Iris 2.0, the latest release of the Virtual Astronomical Observatory application for building and analyzing Spectral Energy Distributions (SEDs). With Iris, users may read in and display SEDs inspect and edit any selection of SED data, fit models to SEDs in arbitrary spectral ranges, and calculate confidence limits on best-fit parameters. SED data may be loaded into the application from VOTable and FITS files compliant with the International Virtual Observatoy Alliance interoperable data models, or retrieved directly from NED or the Italian Space Agency Science Data Center; data in non-standard formats may also be converted within the application. Users may seamlessy exchange data between Iris and other Virtual Observatoy tools using the Simple Application Messaging Protocol. Iris 2.0 also provides a tool for redshifting, interpolating, and measuring integratd fluxes, and allows simple aperture corrections for individual points and SED segments. Custom Python functions, template models and template libraries may be imported into Iris for fitting SEDs. Iris may be extended through Java plugins; users can install third-party packages, or develop their own plugin using Iris' Software Development Kit. Iris 2.0 is available for Linux and Mac OS X systems.

  20. Desktop supercomputer: what can it do?

    NASA Astrophysics Data System (ADS)

    Bogdanov, A.; Degtyarev, A.; Korkhov, V.

    2017-12-01

    The paper addresses the issues of solving complex problems that require using supercomputers or multiprocessor clusters available for most researchers nowadays. Efficient distribution of high performance computing resources according to actual application needs has been a major research topic since high-performance computing (HPC) technologies became widely introduced. At the same time, comfortable and transparent access to these resources was a key user requirement. In this paper we discuss approaches to build a virtual private supercomputer available at user's desktop: a virtual computing environment tailored specifically for a target user with a particular target application. We describe and evaluate possibilities to create the virtual supercomputer based on light-weight virtualization technologies, and analyze the efficiency of our approach compared to traditional methods of HPC resource management.

  1. Evaluating small-body landing hazards due to blocks

    NASA Astrophysics Data System (ADS)

    Ernst, C.; Rodgers, D.; Barnouin, O.; Murchie, S.; Chabot, N.

    2014-07-01

    Introduction: Landed missions represent a vital stage of spacecraft exploration of planetary bodies. Landed science allows for a wide variety of measurements essential to unraveling the origin and evolution of a body that are not possible remotely, including but not limited to compositional measurements, microscopic grain characterization, and the physical properties of the regolith. To date, two spacecraft have performed soft landings on the surface of a small body. In 2001, the Near Earth Asteroid Rendezvous (NEAR) mission performed a controlled descent and landing on (433) Eros following the completion of its mission [1]; in 2005, the Hayabusa spacecraft performed two touch-and-go maneuvers at (25143) Itokawa [2]. Both landings were preceded by rendezvous spacecraft reconnaissance, which enabled selection of a safe landing site. Three current missions have plans to land on small bodies (Rosetta, Hayabusa 2, and OSIRIS-REx); several other mission concepts also include small-body landings. Small-body landers need to land at sites having slopes and block abundances within spacecraft design limits. Due to the small scale of the potential hazards, it can be difficult or impossible to fully characterize a landing surface before the arrival of the spacecraft at the body. Although a rendezvous mission phase can provide global reconnaissance from which a landing site can be chosen, reasonable a priori assurance that a safe landing site exists is needed to validate the design approach for the spacecraft. Method: Many robotic spacecraft have landed safely on the Moon and Mars. Images of these landing sites, as well as more recent, extremely high-resolution orbital datasets, have enabled the comparison of orbital block observations to the smaller blocks that pose hazards to landers. Analyses of the Surveyor [3], Viking 1 and 2, Mars Pathfinder, Phoenix, Spirit, Opportunity, and Curiosity landing sites [4--8] have indicated that for a reasonable difference in size (a factor of several to ten), the size-frequency distribution of blocks can be modeled, allowing extrapolation from large block distributions to estimate small block densities. From that estimate, the probability of a lander encountering hazardous blocks can be calculated for a given lander design. Such calculations are used routinely to vet candidate sites for Mars landers [5--8]. Application to Small Bodies: To determine whether a similar approach will work for small bodies, we must determine if the large and small block populations can be linked. To do so, we analyze the comprehensive block datasets for the intermediate-sized Eros [9,10] and the small Itokawa [11,12]. Global and local block size-frequency distributions for Eros and Itokawa have power-law slopes on the order of -3 and match reasonably well between larger block sizes (from lower-resolution images) and smaller block sizes (from higher-resolution images). Although absolute block densities differ regionally on each asteroid, the slopes match reasonably well between Itokawa and Eros, with the geologic implications of this result discussed in [10]. For Eros and Itokawa, the approach of extending the size-frequency distribution from large, tens-of-meter-sized blocks down to small, tens-of-centimeter-sized blocks using a power-law fit to the large population yields reasonable estimates of small block populations. It is important to note that geologic context matters for the absolute block density --- if the global counts include multiple geologic settings, they will not directly extend to local areas containing only one setting [10]. A small number of high-resolution images of Phobos are sufficient for measuring blocks. These images are concentrated in the area outside of Stickney crater, which is thought to be the source of most of the observed blocks [13]. Block counts by Thomas et al. [13] suggest a power-law slope similar to those of Eros [9] and Itokawa global counts, with the absolute density of blocks similar to that of global Eros. Because blocks tend to be more numerous proximal to large, young craters (e.g., Stickney on Phobos, Shoemaker on Eros), the block density across most of Phobos is likely to be lower than that observed in the available high-resolution images. We suggest that a power-law extrapolation of Eros or Phobos large-block distributions provides upper limits for assessing the block landing hazards faced by a Phobos lander.

  2. Welfare Impact of Virtual Trading on Wholesale Electricity Markets

    NASA Astrophysics Data System (ADS)

    Giraldo, Juan S.

    Virtual bidding has become a standard feature of multi-settlement wholesale electricity markets in the United States. Virtual bids are financial instruments that allow market participants to take financial positions in the Day-Ahead (DA) market that are automatically reversed/closed in the Real-Time (RT) market. Most U.S. wholesale electricity markets only have two types of virtual bids: a decrement bid (DEC), which is virtual load, and an increment offer (INC), which is virtual generation. In theory, financial participants create benefits by seeking out profitable bidding opportunities through arbitrage or speculation. Benefits have been argued to take the form of increased competition, price convergence, increased market liquidity, and a more efficient dispatch of generation resources. Studies have found that price convergence between the DA and RT markets improved following the introduction of virtual bidding into wholesale electricity markets. The improvement in price convergence was taken as evidence that market efficiency had increased and many of the theoretical benefits realized. Persistent price differences between the DA and RT markets have led to calls to further expand virtual bidding as a means to address remaining market inefficiencies. However, the argument that price convergence is beneficial is extrapolated from the study of commodity and financial markets and the role of futures for increasing market efficiency in that context. This viewpoint largely ignores details that differentiate wholesale electricity markets from other commodity markets. This dissertation advances the understanding of virtual bidding by evaluating the impact of virtual bidding based on the standard definition of economic efficiency which is social welfare. In addition, an examination of the impacts of another type of virtual bid, up-to-congestion (UTC) transactions is presented. This virtual product significantly increased virtual bidding activity in the PJM interconnection market since it became available to be used by financial traders in September 2010. Stylized models are used to determine the optimal bidding strategy for the different virtual bids under different scenarios. The welfare analysis shows that the main impact of virtual bidding is surplus reallocation and that the impact on market efficiency is small by comparison. The market structure is such that it is more likely to see surplus transfers from consumers to producers. The results also show that outcomes with greater price convergence as a result of virtual bidding activity were not necessarily more efficient, nor do they always correct surplus distribution distortions that result from bias in the DA expectation of RT load. Compared to INCs and DECs, the UTC analysis showed that UTCs do not have the same self-corrective incentives towards price convergence and are less likely to lead to nodal price convergence or correct for surplus distribution distortions caused by uncertainty and bias in the DA expectation of RT load. Additionally, the analysis showed that UTCs allow financial traders to engage in low risk high volume trading strategies that, while profitable, may have little to no impact on price convergence or market efficiency.

  3. iRODS: A Distributed Data Management Cyberinfrastructure for Observatories

    NASA Astrophysics Data System (ADS)

    Rajasekar, A.; Moore, R.; Vernon, F.

    2007-12-01

    Large-scale and long-term preservation of both observational and synthesized data requires a system that virtualizes data management concepts. A methodology is needed that can work across long distances in space (distribution) and long-periods in time (preservation). The system needs to manage data stored on multiple types of storage systems including new systems that become available in the future. This concept is called infrastructure independence, and is typically implemented through virtualization mechanisms. Data grids are built upon concepts of data and trust virtualization. These concepts enable the management of collections of data that are distributed across multiple institutions, stored on multiple types of storage systems, and accessed by multiple types of clients. Data virtualization ensures that the name spaces used to identify files, users, and storage systems are persistent, even when files are migrated onto future technology. This is required to preserve authenticity, the link between the record and descriptive and provenance metadata. Trust virtualization ensures that access controls remain invariant as files are moved within the data grid. This is required to track the chain of custody of records over time. The Storage Resource Broker (http://www.sdsc.edu/srb) is one such data grid used in a wide variety of applications in earth and space sciences such as ROADNet (roadnet.ucsd.edu), SEEK (seek.ecoinformatics.org), GEON (www.geongrid.org) and NOAO (www.noao.edu). Recent extensions to data grids provide one more level of virtualization - policy or management virtualization. Management virtualization ensures that execution of management policies can be automated, and that rules can be created that verify assertions about the shared collections of data. When dealing with distributed large-scale data over long periods of time, the policies used to manage the data and provide assurances about the authenticity of the data become paramount. The integrated Rule-Oriented Data System (iRODS) (http://irods.sdsc.edu) provides the mechanisms needed to describe not only management policies, but also to track how the policies are applied and their execution results. The iRODS data grid maps management policies to rules that control the execution of the remote micro-services. As an example, a rule can be created that automatically creates a replica whenever a file is added to a specific collection, or extracts its metadata automatically and registers it in a searchable catalog. For the replication operation, the persistent state information consists of the replica location, the creation date, the owner, the replica size, etc. The mechanism used by iRODS for providing policy virtualization is based on well-defined functions, called micro-services, which are chained into alternative workflows using rules. A rule engine, based on the event-condition-action paradigm executes the rule-based workflows after an event. Rules can be deferred to a pre-determined time or executed on a periodic basis. As the data management policies evolve, the iRODS system can implement new rules, new micro-services, and new state information (metadata content) needed to manage the new policies. Each sub- collection can be managed using a different set of policies. The discussion of the concepts in rule-based policy virtualization and its application to long-term and large-scale data management for observatories such as ORION and NEON will be the basis of the paper.

  4. Exponential blocking-temperature distribution in ferritin extracted from magnetization measurements

    NASA Astrophysics Data System (ADS)

    Lee, T. H.; Choi, K.-Y.; Kim, G.-H.; Suh, B. J.; Jang, Z. H.

    2014-11-01

    We developed a direct method to extract the zero-field zero-temperature anisotropy energy barrier distribution of magnetic particles in the form of a blocking-temperature distribution. The key idea is to modify measurement procedures slightly to make nonequilibrium magnetization calculations (including the time evolution of magnetization) easier. We applied this method to the biomagnetic molecule ferritin and successfully reproduced field-cool magnetization by using the extracted distribution. We find that the resulting distribution is more like an exponential type and that the distribution cannot be correlated simply to the widely known log-normal particle-size distribution. The method also allows us to determine the values of the zero-temperature coercivity and Bloch coefficient, which are in good agreement with those determined from other techniques.

  5. [The virtual university in medicine. Context, concepts, specifications, users' manual].

    PubMed

    Duvauferrier, R; Séka, L P; Rolland, Y; Rambeau, M; Le Beux, P; Morcet, N

    1998-09-01

    The widespread use of Web servers, with the emergence of interactive functions and the possibility of credit card payment via Internet, together with the requirement for continuing education and the subsequent need for a computer to link into the health care network have incited the development of a virtual university scheme on Internet. The Virtual University of Radiology is not only a computer-assisted teaching tool with a set of attractive features, but also a powerful engine allowing the organization, distribution and control of medical knowledge available in the www.server. The scheme provides patient access to general information, a secretary's office for enrollment and the Virtual University itself, with its library, image database, a forum for subspecialties and clinical case reports, an evaluation module and various guides and help tools for diagnosis, prescription and indexing. Currently the Virtual University of Radiology offers diagnostic imaging, but can also be used by other specialties and for general practice.

  6. A virtual fluoroscopy system to verify seed positioning accuracy during prostate permanent seed implants.

    PubMed

    Sarkar, V; Gutierrez, A N; Stathakis, S; Swanson, G P; Papanikolaou, N

    2009-01-01

    The purpose of this project was to develop a software platform to produce a virtual fluoroscopic image as an aid for permanent prostate seed implants. Seed location information from a pre-plan was extracted and used as input to in-house developed software to produce a virtual fluoroscopic image. In order to account for differences in patient positioning on the day of treatment, the user was given the ability to make changes to the virtual image. The system has been shown to work as expected for all test cases. The system allows for quick (on average less than 10 sec) generation of a virtual fluoroscopic image of the planned seed pattern. The image can be used as a verification tool to aid the physician in evaluating how close the implant is to the planned distribution throughout the procedure and enable remedial action should a large deviation be observed.

  7. Distribution and abundance of birds wintering in Maryland, 1988-1993

    USGS Publications Warehouse

    Hatfield, J.S.; Ricciardi, S.A.; Gough, G.A.; Bystrak, D.; Droege, S.; Robbins, C.S.

    1994-01-01

    A winter bird survey was conducted throughout Maryland, primarily by volunteers, during the 6 winters of 1988 to 1993 between the dates of 10 Jan and 10 Feb. The state of Maryland is covered by 1231 blocks (9.5 sq. miles each), each comprising one-sixth of the standard U.S.G.S. 7.5 minute topographic quadrangle, and 548 of these blocks (44.5%) were surveyed for winter birds. Blocks were chosen in a systematic pattern with eventually almost every other block in the state having been surveyed as of Feb, 1993. Volunteers conducted each 4-hour survey by walking a 4-6 mile route chosen by the volunteer to sample habitats in proportion to their availability in the block. Surveys began around sunrise (~7:30 a.m.) and all birds seen or heard during the 4 hours were recorded on data sheets. The data were then used to create maps representing the distribution and relative abundance of each species of wintering bird found in at least 10 blocks in the state.

  8. Distributed event-triggered consensus tracking of second-order multi-agent systems with a virtual leader

    NASA Astrophysics Data System (ADS)

    Jie, Cao; Zhi-Hai, Wu; Li, Peng

    2016-05-01

    This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which is intermittently examined at constant sampling instants. Only partial neighbor information and local measurements are required for event detection. Then the corresponding event-triggered consensus tracking protocol is presented to guarantee second-order multi-agent systems to achieve consensus tracking. Numerical simulations are given to illustrate the effectiveness of the proposed strategy. Project supported by the National Natural Science Foundation of China (Grant Nos. 61203147, 61374047, and 61403168).

  9. Shipping Science Worldwide with Open Source Containers

    NASA Astrophysics Data System (ADS)

    Molineaux, J. P.; McLaughlin, B. D.; Pilone, D.; Plofchan, P. G.; Murphy, K. J.

    2014-12-01

    Scientific applications often present difficult web-hosting needs. Their compute- and data-intensive nature, as well as an increasing need for high-availability and distribution, combine to create a challenging set of hosting requirements. In the past year, advancements in container-based virtualization and related tooling have offered new lightweight and flexible ways to accommodate diverse applications with all the isolation and portability benefits of traditional virtualization. This session will introduce and demonstrate an open-source, single-interface, Platform-as-a-Serivce (PaaS) that empowers application developers to seamlessly leverage geographically distributed, public and private compute resources to achieve highly-available, performant hosting for scientific applications.

  10. Gluon tomography from deeply virtual Compton scattering at small x

    DOE PAGES

    Hatta, Yoshitaka; Xiao, Bo-Wen; Yuan, Feng

    2017-06-29

    We present a full evaluation of the deeply virtual Compton scattering cross section in the dipole framework in the small-x region. The result features the cosφ and cos2φ azimuthal angular correlations, which have been missing in previous studies based on the dipole model. In particular, the cos2φ term is generated by the elliptic gluon Wigner distribution of which the measurement at the planned electron-ion collider provides important information about the gluon tomography at small x. Here, we also show the consistency with the standard collinear factorization approach based on the quark and gluon generalized parton distributions.

  11. A Distributed Parallel Genetic Algorithm of Placement Strategy for Virtual Machines Deployment on Cloud Platform

    PubMed Central

    Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong

    2014-01-01

    The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform. PMID:25097872

  12. Generalized Parton Distributions of the nucleon from exclusive lepto- and photo-production of lepton pairs

    NASA Astrophysics Data System (ADS)

    Boer, Marie

    2017-09-01

    Generalized Parton Distributions (GPDs) contain the correlation between the parton's longitudinal momentum and their transverse distribution. They are accessed through hard exclusive processes such as exclusive Compton processes, where two photons are exchanged with a quark of the nucleon, and at least one of them has a high virtuality. Exclusive Compton processes are considered ``golden'' channels, as the only non-perturbative part of the process corresponds to the GPDs. Deeply Virtual Compton Scattering (DVCS) corresponds to the lepto-production of a real photon and has been intensively studied in the past decade. We propose to access GPDs with the two other cases of exclusive Compton processes: Timelike Compton Scattering (TCS) corresponds to the photo-production of a lepton pair, and Double Deeply Virtual Compton Scattering (DDVCS) corresponds to the lepto-production of a lepton pair. The study of these two reactions is complementary to DVCS and will bring new constraints on our understanding of the nucleon structure, in particular for a tomographic interpretation of GPDs. We will discuss the interest of TCS and DDVCS in terms of GPD studies, and present the efforts held at Jefferson Lab for new experiments aiming at measuring TCS and DDVCS.

  13. A distributed parallel genetic algorithm of placement strategy for virtual machines deployment on cloud platform.

    PubMed

    Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong

    2014-01-01

    The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform.

  14. Continuous-variable measurement-device-independent quantum key distribution with virtual photon subtraction

    NASA Astrophysics Data System (ADS)

    Zhao, Yijia; Zhang, Yichen; Xu, Bingjie; Yu, Song; Guo, Hong

    2018-04-01

    The method of improving the performance of continuous-variable quantum key distribution protocols by postselection has been recently proposed and verified. In continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) protocols, the measurement results are obtained from untrusted third party Charlie. There is still not an effective method of improving CV-MDI QKD by the postselection with untrusted measurement. We propose a method to improve the performance of coherent-state CV-MDI QKD protocol by virtual photon subtraction via non-Gaussian postselection. The non-Gaussian postselection of transmitted data is equivalent to an ideal photon subtraction on the two-mode squeezed vacuum state, which is favorable to enhance the performance of CV-MDI QKD. In CV-MDI QKD protocol with non-Gaussian postselection, two users select their own data independently. We demonstrate that the optimal performance of the renovated CV-MDI QKD protocol is obtained with the transmitted data only selected by Alice. By setting appropriate parameters of the virtual photon subtraction, the secret key rate and tolerable excess noise are both improved at long transmission distance. The method provides an effective optimization scheme for the application of CV-MDI QKD protocols.

  15. Research on Collaborative Technology in Distributed Virtual Reality System

    NASA Astrophysics Data System (ADS)

    Lei, ZhenJiang; Huang, JiJie; Li, Zhao; Wang, Lei; Cui, JiSheng; Tang, Zhi

    2018-01-01

    Distributed virtual reality technology applied to the joint training simulation needs the CSCW (Computer Supported Cooperative Work) terminal multicast technology to display and the HLA (high-level architecture) technology to ensure the temporal and spatial consistency of the simulation, in order to achieve collaborative display and collaborative computing. In this paper, the CSCW’s terminal multicast technology has been used to modify and expand the implementation framework of HLA. During the simulation initialization period, this paper has used the HLA statement and object management service interface to establish and manage the CSCW network topology, and used the HLA data filtering mechanism for each federal member to establish the corresponding Mesh tree. During the simulation running period, this paper has added a new thread for the RTI and the CSCW real-time multicast interactive technology into the RTI, so that the RTI can also use the window message mechanism to notify the application update the display screen. Through many applications of submerged simulation training in substation under the operation of large power grid, it is shown that this paper has achieved satisfactory training effect on the collaborative technology used in distributed virtual reality simulation.

  16. TIGGERC: Turbomachinery Interactive Grid Generator for 2-D Grid Applications and Users Guide

    NASA Technical Reports Server (NTRS)

    Miller, David P.

    1994-01-01

    A two-dimensional multi-block grid generator has been developed for a new design and analysis system for studying multiple blade-row turbomachinery problems. TIGGERC is a mouse driven, interactive grid generation program which can be used to modify boundary coordinates and grid packing and generates surface grids using a hyperbolic tangent or algebraic distribution of grid points on the block boundaries. The interior points of each block grid are distributed using a transfinite interpolation approach. TIGGERC can generate a blocked axisymmetric H-grid, C-grid, I-grid or O-grid for studying turbomachinery flow problems. TIGGERC was developed for operation on Silicon Graphics workstations. Detailed discussion of the grid generation methodology, menu options, operational features and sample grid geometries are presented.

  17. A Distributed Operating System Design and Dictionary/Directory for the Stock Point Logistics Integrated Communications Environment.

    DTIC Science & Technology

    1983-11-01

    transmission, FM(R) will only have to hold one message. 3. Program Control Block (PCB) The PCB ( Deitel 82] will be maintained by the Executive in...and Use of Kernel to Process Interrupts 35 10. Layered Operating System Design 38 11. Program Control Block Table 43 12. Ready List Data Structure 45 13...examples of fully distributed systems in operation. An objective of the NPS research program for SPLICE is to advance our knowledge of distributed

  18. A novel modular ANN architecture for efficient monitoring of gases/odours in real-time

    NASA Astrophysics Data System (ADS)

    Mishra, A.; Rajput, N. S.

    2018-04-01

    Data pre-processing is tremendously used for enhanced classification of gases. However, it suppresses the concentration variances of different gas samples. A classical solution of using single artificial neural network (ANN) architecture is also inefficient and renders degraded quantification. In this paper, a novel modular ANN design has been proposed to provide an efficient and scalable solution in real–time. Here, two separate ANN blocks viz. classifier block and quantifier block have been used to provide efficient and scalable gas monitoring in real—time. The classifier ANN consists of two stages. In the first stage, the Net 1-NDSRT has been trained to transform raw sensor responses into corresponding virtual multi-sensor responses using normalized difference sensor response transformation (NDSRT). These responses have been fed to the second stage (i.e., Net 2-classifier ). The Net 2-classifier has been trained to classify various gas samples to their respective class. Further, the quantifier block has parallel ANN modules, multiplexed to quantify each gas. Therefore, the classifier ANN decides class and quantifier ANN decides the exact quantity of the gas/odor present in the respective sample of that class.

  19. Photogrammetric Recording and Reconstruction of Town Scale Models - the Case of the Plan-Relief of Strasbourg

    NASA Astrophysics Data System (ADS)

    Macher, H.; Grussenmeyer, P.; Landes, T.; Halin, G.; Chevrier, C.; Huyghe, O.

    2017-08-01

    The French collection of Plan-Reliefs, scale models of fortified towns, constitutes a precious testimony of the history of France. The aim of the URBANIA project is the valorisation and the diffusion of this Heritage through the creation of virtual models. The town scale model of Strasbourg at 1/600 currently exhibited in the Historical Museum of Strasbourg was selected as a case study. In this paper, the photogrammetric recording of this scale model is first presented. The acquisition protocol as well as the data post-processing are detailed. Then, the modelling of the city and more specially building blocks is investigated. Based on point clouds of the scale model, the extraction of roof elements is considered. It deals first with the segmentation of the point cloud into building blocks. Then, for each block, points belonging to roofs are identified and the extraction of chimney point clouds as well as roof ridges and roof planes is performed. Finally, the 3D parametric modelling of the building blocks is studied by considering roof polygons and polylines describing chimneys as input. In a future works section, the semantically enrichment and the potential usage scenarios of the scale model are envisaged.

  20. Geospatial-enabled Data Exploration and Computation through Data Infrastructure Building Blocks

    NASA Astrophysics Data System (ADS)

    Song, C. X.; Biehl, L. L.; Merwade, V.; Villoria, N.

    2015-12-01

    Geospatial data are present everywhere today with the proliferation of location-aware computing devices and sensors. This is especially true in the scientific community where large amounts of data are driving research and education activities in many domains. Collaboration over geospatial data, for example, in modeling, data analysis and visualization, must still overcome the barriers of specialized software and expertise among other challenges. The GABBs project aims at enabling broader access to geospatial data exploration and computation by developing spatial data infrastructure building blocks that leverage capabilities of end-to-end application service and virtualized computing framework in HUBzero. Funded by NSF Data Infrastructure Building Blocks (DIBBS) initiative, GABBs provides a geospatial data architecture that integrates spatial data management, mapping and visualization and will make it available as open source. The outcome of the project will enable users to rapidly create tools and share geospatial data and tools on the web for interactive exploration of data without requiring significant software development skills, GIS expertise or IT administrative privileges. This presentation will describe the development of geospatial data infrastructure building blocks and the scientific use cases that help drive the software development, as well as seek feedback from the user communities.

  1. Polydispersity-Driven Block Copolymer Amphiphile Self-Assembly into Prolate-Spheroid Micelles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, Andrew L.; Repollet-Pedrosa, Milton H.; Mahanthappa, Mahesh K.

    The aqueous self-assembly behavior of polydisperse poly(ethylene oxide-b-1,4-butadiene-b-ethylene oxide) (OBO) macromolecular triblock amphiphiles is examined to discern the implications of continuous polydispersity in the hydrophobic block on the resulting aqueous micellar morphologies of otherwise monodisperse polymer surfactants. The chain length polydispersity and implicit composition polydispersity of these samples furnishes a distribution of preferred interfacial curvatures, resulting in dilute aqueous block copolymer dispersions exhibiting coexisting spherical and rod-like micelles with vesicles in a single sample with a O weight fraction, w{sub O}, of 0.18. At higher w{sub O} = 0.51-0.68, the peak in the interfacial curvature distribution shifts and we observemore » the formation of only American football-shaped micelles. We rationalize the formation of these anisotropically shaped aggregates based on the intrinsic distribution of preferred curvatures adopted by the polydisperse copolymer amphiphiles and on the relief of core block chain stretching by chain-length-dependent intramicellar segregation.« less

  2. The State of Human Anatomy Teaching in the Medical Schools of Gulf Cooperation Council Countries: Present and future perspectives.

    PubMed

    Habbal, Omar

    2009-04-01

    Available literature on medical education charts an emerging trend in the field of anatomy. In the past decade, assisted by innovations in informatics and the paradigm shift in medical education, the hands-on experience of cadaver dissection has progressively become a relic of the past. Within the context of the situation in Gulf Cooperation Council countries, this paper compares the traditional teaching approach with the modern one that tends to emphasise technical gadgetry, virtual reality and plastic models rather than hands-on-experience to impart knowledge and skill. However, cadaver-based learning is an important building block for the future physician and surgeon since clinical astuteness is likely to rely on skills gained from hands-on experience rather than the tendency to learning through virtual reality found in modern curricula.

  3. Virtual Reality Simulation of the International Space Welding Experiment

    NASA Technical Reports Server (NTRS)

    Phillips, James A.

    1996-01-01

    Virtual Reality (VR) is a set of breakthrough technologies that allow a human being to enter and fully experience a 3-dimensional, computer simulated environment. A true virtual reality experience meets three criteria: (1) It involves 3-dimensional computer graphics; (2) It includes real-time feedback and response to user actions; and (3) It must provide a sense of immersion. Good examples of a virtual reality simulator are the flight simulators used by all branches of the military to train pilots for combat in high performance jet fighters. The fidelity of such simulators is extremely high -- but so is the price tag, typically millions of dollars. Virtual reality teaching and training methods are manifestly effective, and we have therefore implemented a VR trainer for the International Space Welding Experiment. My role in the development of the ISWE trainer consisted of the following: (1) created texture-mapped models of the ISWE's rotating sample drum, technology block, tool stowage assembly, sliding foot restraint, and control panel; (2) developed C code for control panel button selection and rotation of the sample drum; (3) In collaboration with Tim Clark (Antares Virtual Reality Systems), developed a serial interface box for the PC and the SGI Indigo so that external control devices, similar to ones actually used on the ISWE, could be used to control virtual objects in the ISWE simulation; (4) In collaboration with Peter Wang (SFFP) and Mark Blasingame (Boeing), established the interference characteristics of the VIM 1000 head-mounted-display and tested software filters to correct the problem; (5) In collaboration with Peter Wang and Mark Blasingame, established software and procedures for interfacing the VPL DataGlove and the Polhemus 6DOF position sensors to the SGI Indigo serial ports. The majority of the ISWE modeling effort was conducted on a PC-based VR Workstation, described below.

  4. Development of visual 3D virtual environment for control software

    NASA Technical Reports Server (NTRS)

    Hirose, Michitaka; Myoi, Takeshi; Amari, Haruo; Inamura, Kohei; Stark, Lawrence

    1991-01-01

    Virtual environments for software visualization may enable complex programs to be created and maintained. A typical application might be for control of regional electric power systems. As these encompass broader computer networks than ever, construction of such systems becomes very difficult. Conventional text-oriented environments are useful in programming individual processors. However, they are obviously insufficient to program a large and complicated system, that includes large numbers of computers connected to each other; such programming is called 'programming in the large.' As a solution for this problem, the authors are developing a graphic programming environment wherein one can visualize complicated software in virtual 3D world. One of the major features of the environment is the 3D representation of concurrent process. 3D representation is used to supply both network-wide interprocess programming capability (capability for 'programming in the large') and real-time programming capability. The authors' idea is to fuse both the block diagram (which is useful to check relationship among large number of processes or processors) and the time chart (which is useful to check precise timing for synchronization) into a single 3D space. The 3D representation gives us a capability for direct and intuitive planning or understanding of complicated relationship among many concurrent processes. To realize the 3D representation, a technology to enable easy handling of virtual 3D object is a definite necessity. Using a stereo display system and a gesture input device (VPL DataGlove), our prototype of the virtual workstation has been implemented. The workstation can supply the 'sensation' of the virtual 3D space to a programmer. Software for the 3D programming environment is implemented on the workstation. According to preliminary assessments, a 50 percent reduction of programming effort is achieved by using the virtual 3D environment. The authors expect that the 3D environment has considerable potential in the field of software engineering.

  5. Using mixed methods to evaluate efficacy and user expectations of a virtual reality-based training system for upper-limb recovery in patients after stroke: a study protocol for a randomised controlled trial.

    PubMed

    Schuster-Amft, Corina; Eng, Kynan; Lehmann, Isabelle; Schmid, Ludwig; Kobashi, Nagisa; Thaler, Irène; Verra, Martin L; Henneke, Andrea; Signer, Sandra; McCaskey, Michael; Kiper, Daniel

    2014-09-06

    In recent years, virtual reality has been introduced to neurorehabilitation, in particular with the intention of improving upper-limb training options and facilitating motor function recovery. The proposed study incorporates a quantitative part and a qualitative part, termed a mixed-methods approach: (1) a quantitative investigation of the efficacy of virtual reality training compared to conventional therapy in upper-limb motor function are investigated, (2a) a qualitative investigation of patients' experiences and expectations of virtual reality training and (2b) a qualitative investigation of therapists' experiences using the virtual reality training system in the therapy setting. At three participating clinics, 60 patients at least 6 months after stroke onset will be randomly allocated to an experimental virtual reality group (EG) or to a control group that will receive conventional physiotherapy or occupational therapy (16 sessions, 45 minutes each, over the course of 4 weeks). Using custom data gloves, patients' finger and arm movements will be displayed in real time on a monitor, and they will move and manipulate objects in various virtual environments. A blinded assessor will test patients' motor and cognitive performance twice before, once during, and twice after the 4-week intervention. The primary outcome measure is the Box and Block Test. Secondary outcome measures are the Chedoke-McMaster Stroke Assessments (hand, arm and shoulder pain subscales), the Chedoke-McMaster Arm and Hand Activity Inventory, the Line Bisection Test, the Stroke Impact Scale, the MiniMentalState Examination and the Extended Barthel Index. Semistructured face-to-face interviews will be conducted with patients in the EG after intervention finalization with a focus on the patients' expectations and experiences regarding the virtual reality training. Therapists' perspectives on virtual reality training will be reviewed in three focus groups comprising four to six occupational therapists and physiotherapists. The interviews will help to gain a deeper understanding of the phenomena under investigation to provide sound recommendations for the implementation of the virtual reality training system for routine use in neurorehabilitation complementing the quantitative clinical assessments. Cliniclatrials.gov Identifier: NCT01774669 (15 January 2013).

  6. Measuring sense of presence and user characteristics to predict effective training in an online simulated virtual environment.

    PubMed

    De Leo, Gianluca; Diggs, Leigh A; Radici, Elena; Mastaglio, Thomas W

    2014-02-01

    Virtual-reality solutions have successfully been used to train distributed teams. This study aimed to investigate the correlation between user characteristics and sense of presence in an online virtual-reality environment where distributed teams are trained. A greater sense of presence has the potential to make training in the virtual environment more effective, leading to the formation of teams that perform better in a real environment. Being able to identify, before starting online training, those user characteristics that are predictors of a greater sense of presence can lead to the selection of trainees who would benefit most from the online simulated training. This is an observational study with a retrospective postsurvey of participants' user characteristics and degree of sense of presence. Twenty-nine members from 3 Air Force National Guard Medical Service expeditionary medical support teams participated in an online virtual environment training exercise and completed the Independent Television Commission-Sense of Presence Inventory survey, which measures sense of presence and user characteristics. Nonparametric statistics were applied to determine the statistical significance of user characteristics to sense of presence. Comparing user characteristics to the 4 scales of the Independent Television Commission-Sense of Presence Inventory using Kendall τ test gave the following results: the user characteristics "how often you play video games" (τ(26)=-0.458, P<0.01) and "television/film production knowledge" (τ(27)=-0.516, P<0.01) were significantly related to negative effects. Negative effects refer to adverse physiologic reactions owing to the virtual environment experience such as dizziness, nausea, headache, and eyestrain. The user characteristic "knowledge of virtual reality" was significantly related to engagement (τ(26)=0.463, P<0.01) and negative effects (τ(26)=-0.404, P<0.05). Individuals who have knowledge about virtual environments and experience with gaming environments report a higher sense of presence that indicates that they will likely benefit more from online virtual training. Future research studies could include a larger population of expeditionary medical support, and the results obtained could be used to create a model that predicts the level of presence based on the user characteristics. To maximize results and minimize costs, only those individuals who, based on their characteristics, are supposed to have a higher sense of presence and less negative effects could be selected for online simulated virtual environment training.

  7. Distribution of the Crustal Magnetic Field in Sichuan-Yunnan Region, Southwest China

    PubMed Central

    Bai, Chunhua; Kang, Guofa; Gao, Guoming

    2014-01-01

    Based on the new and higher degree geomagnetic model NGDC-720-V3, we have investigated the spatial distribution, the altitude decay characteristics of the crustal magnetic anomaly, the contributions from different wavelength bands to the anomaly, and the relationship among the anomaly, the geological structure, and the geophysical field in Sichuan-Yunnan region of China. It is noted that the most outstanding feature in this area is the strong positive magnetic anomaly in Sichuan Basin, a geologically stable block. Contrasting with this feature, a strong negative anomaly can be seen nearby in Longmen Mountain block, an active block. This contradiction implies a possible relationship between the magnetic field and the geological activity. Completely different feature in magnetic field distribution is seen in the central Yunnan block, another active region, where positive and negative anomalies distribute alternatively, showing a complex magnetic anomaly map. Some fault belts, such as the Longmen Mountain fault, Lijiang-Xiaojinhe fault, and the Red River fault, are the transitional zones of strong and weak or negative and positive anomalies. The corresponding relationship between the magnetic anomaly and the geophysical fields was confirmed. PMID:25243232

  8. Rethinking Traffic Management: Design of Optimizable Networks

    DTIC Science & Technology

    2008-06-01

    Though this paper used optimization theory to design and analyze DaVinci , op- timization theory is one of many possible tools to enable a grounded...dynamically allocate bandwidth shares. The distributed protocols can be implemented using DaVinci : Dynamically Adaptive VIrtual Networks for a Customized...Internet. In DaVinci , each virtual network runs traffic-management protocols optimized for a traffic class, and link bandwidth is dynamically allocated

  9. Supporting Distributed Team Working in 3D Virtual Worlds: A Case Study in Second Life

    ERIC Educational Resources Information Center

    Minocha, Shailey; Morse, David R.

    2010-01-01

    Purpose: The purpose of this paper is to report on a study into how a three-dimensional (3D) virtual world (Second Life) can facilitate socialisation and team working among students working on a team project at a distance. This models the situation in many commercial sectors where work is increasingly being conducted across time zones and between…

  10. Blocking Strategies for Performing Entity Resolution in a Distributed Computing Environment

    ERIC Educational Resources Information Center

    Wang, Pei

    2016-01-01

    Entity resolution (ER) is an O(n[superscript 2]) problem where n is the number of records to be processed. The pair-wise nature of ER makes it impractical to perform on large datasets without the use of a technique called blocking. In blocking the records are separated into groups (called blocks) in such a way the records most likely to match are…

  11. Changes in the Intensity and Frequency of Atmospheric Blocking and Associated Heat Waves During Northern Summer Over Eurasia in the CMIP5 Model Simulations

    NASA Technical Reports Server (NTRS)

    Kim, Kyu-Myong; Lau, K. M.; Wu, H. T.; Kim, Maeng-Ki; Cho, Chunho

    2012-01-01

    The Russia heat wave and wild fires of the summer of 2010 was the most extreme weather event in the history of the country. Studies show that the root cause of the 2010 Russia heat wave/wild fires was an atmospheric blocking event which started to develop at the end of June and peaked around late July and early August. Atmospheric blocking in the summer of 2010 was anomalous in terms of the size, duration, and the location, which shifted to the east from the normal location. This and other similar continental scale severe summertime heat waves and blocking events in recent years have raised the question of whether such events are occurring more frequently and with higher intensity in a warmer climate induced by greenhouse gases. We studied the spatial and temporal distributions of the occurrence and intensity of atmospheric blocking and associated heat waves for northern summer over Eurasia based on CMIPS model simulations. To examine the global warming induced change of atmospheric blocking and heat waves, experiments for a high emissions scenario (RCP8.S) and a medium mitigation scenario (RCP4.S) are compared to the 20th century simulations (historical). Most models simulate the mean distributions of blockings reasonably well, including major blocking centers over Eurasia, northern Pacific, and northern Atlantic. However, the models tend to underestimate the number of blockings compared to MERRA and NCEPIDOE reanalysis, especially in western Siberia. Models also reproduced associated heat waves in terms of the shifting in the probability distribution function of near surface temperature. Seven out of eight models used in this study show that the frequency of atmospheric blocking over the Europe will likely decrease in a warmer climate, but slightly increase over the western Siberia. This spatial pattern resembles the blocking in the summer of 2010, indicating the possibility of more frequent occurrences of heat waves in western Siberia. In this talk, we will also discuss the potential effect of atmosphere-land feedback, particularly how the wetter spring affects the frequency and intensity of atmospheric blocking and heat wave during summer.

  12. Surface plasmon enhanced cell microscopy with blocked random spatial activation

    NASA Astrophysics Data System (ADS)

    Son, Taehwang; Oh, Youngjin; Lee, Wonju; Yang, Heejin; Kim, Donghyun

    2016-03-01

    We present surface plasmon enhanced fluorescence microscopy with random spatial sampling using patterned block of silver nanoislands. Rigorous coupled wave analysis was performed to confirm near-field localization on nanoislands. Random nanoislands were fabricated in silver by temperature annealing. By analyzing random near-field distribution, average size of localized fields was found to be on the order of 135 nm. Randomly localized near-fields were used to spatially sample F-actin of J774 cells (mouse macrophage cell-line). Image deconvolution algorithm based on linear imaging theory was established for stochastic estimation of fluorescent molecular distribution. The alignment between near-field distribution and raw image was performed by the patterned block. The achieved resolution is dependent upon factors including the size of localized fields and estimated to be 100-150 nm.

  13. Ephedrine fails to accelerate the onset of neuromuscular block by vecuronium.

    PubMed

    Komatsu, Ryu; Nagata, Osamu; Ozaki, Makoto; Sessler, Daniel I

    2003-08-01

    The onset time of neuromuscular blocking drugs is partially determined by circulatory factors, including muscle blood flow and cardiac output. We thus tested the hypothesis that a bolus of ephedrine accelerates the onset of vecuronium neuromuscular block by increasing cardiac output. A prospective, randomized study was conducted in 53 patients scheduled for elective surgery. After the induction of anesthesia, the ulnar nerve was stimulated supramaximally every 10 s, and the evoked twitch response of the adductor pollicis was recorded with accelerometry. Patients were maintained under anesthesia with continuous infusion of propofol for 10 min and then randomly assigned to ephedrine 210 microg/kg (n = 27) or an equivalent volume of saline (n = 26). The test solution was given 1 min before the administration of 0.1 mg/kg of vecuronium. Cardiac output was monitored with impedance cardiography. Ephedrine, but not saline, increased cardiac index (17%; P = 0.003). Nonetheless, the onset of 90% neuromuscular block was virtually identical in the patients given ephedrine (183 +/- 41 s) and saline (181 +/- 47 s). There was no correlation between cardiac index and onset of the blockade. We conclude that the onset of the vecuronium-induced neuromuscular block is primarily determined by factors other than cardiac output. The combination of ephedrine and vecuronium thus cannot be substituted for rapid-acting nondepolarizing muscle relaxants. Ephedrine increased cardiac index but failed to speed onset of neuromuscular block with vecuronium. We conclude that ephedrine administration does not shorten the onset time of vecuronium.

  14. Longitudinal target-spin asymmetries for deeply virtual compton scattering.

    PubMed

    Seder, E; Biselli, A; Pisano, S; Niccolai, S; Smith, G D; Joo, K; Adhikari, K; Amaryan, M J; Anderson, M D; Anefalos Pereira, S; Avakian, H; Battaglieri, M; Bedlinskiy, I; Bono, J; Boiarinov, S; Bosted, P; Briscoe, W; Brock, J; Brooks, W K; Bültmann, S; Burkert, V D; Carman, D S; Carlin, C; Celentano, A; Chandavar, S; Charles, G; Colaneri, L; Cole, P L; Contalbrigo, M; Crabb, D; Crede, V; D'Angelo, A; Dashyan, N; De Vita, R; De Sanctis, E; Deur, A; Djalali, C; Doughty, D; Dupre, R; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Fegan, S; Filippi, A; Fleming, J A; Fradi, A; Garillon, B; Garçon, M; Gevorgyan, N; Ghandilyan, Y; Giovanetti, K L; Girod, F X; Goetz, J T; Gohn, W; Gothe, R W; Griffioen, K A; Guegan, B; Guidal, M; Guo, L; Hafidi, K; Hakobyan, H; Hanretty, C; Harrison, N; Hattawy, M; Hirlinger Saylor, N; Holtrop, M; Hughes, S M; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Jo, H S; Joosten, S; Keith, C D; Keller, D; Khachatryan, G; Khandaker, M; Kim, A; Kim, W; Klein, A; Klein, F J; Koirala, S; Kubarovsky, V; Kuhn, S E; Lenisa, P; Livingston, K; Lu, H Y; MacGregor, I J D; Markov, N; Mayer, M; McKinnon, B; Meekins, D G; Mineeva, T; Mirazita, M; Mokeev, V; Montgomery, R; Moody, C I; Moutarde, H; Movsisyan, A; Munoz Camacho, C; Nadel-Turonski, P; Niculescu, I; Osipenko, M; Ostrovidov, A I; Paolone, M; Pappalardo, L L; Park, K; Park, S; Pasyuk, E; Peng, P; Phelps, W; Pogorelko, O; Price, J W; Prok, Y; Protopopescu, D; Puckett, A J R; Ripani, M; Rizzo, A; Rosner, G; Rossi, P; Roy, P; Sabatié, F; Salgado, C; Schott, D; Schumacher, R A; Senderovich, I; Simonyan, A; Skorodumina, I; Sokhan, D; Sparveris, N; Stepanyan, S; Stoler, P; Strakovsky, I I; Strauch, S; Sytnik, V; Taiuti, M; Tang, W; Tian, Y; Ungaro, M; Voskanyan, H; Voutier, E; Walford, N K; Watts, D P; Wei, X; Weinstein, L B; Wood, M H; Zachariou, N; Zana, L; Zhang, J; Zonta, I

    2015-01-23

    A measurement of the electroproduction of photons off protons in the deeply inelastic regime was performed at Jefferson Lab using a nearly 6 GeV electron beam, a longitudinally polarized proton target, and the CEBAF Large Acceptance Spectrometer. Target-spin asymmetries for ep→e^{'}p^{'}γ events, which arise from the interference of the deeply virtual Compton scattering and the Bethe-Heitler processes, were extracted over the widest kinematics in Q^{2}, x_{B}, t, and ϕ, for 166 four-dimensional bins. In the framework of generalized parton distributions, at leading twist the t dependence of these asymmetries provides insight into the spatial distribution of the axial charge of the proton, which appears to be concentrated in its center. These results also bring important and necessary constraints for the existing parametrizations of chiral-even generalized parton distributions.

  15. Longitudinal Target-Spin Asymmetries for Deeply Virtual Compton Scattering

    NASA Astrophysics Data System (ADS)

    Seder, E.; Biselli, A.; Pisano, S.; Niccolai, S.; Smith, G. D.; Joo, K.; Adhikari, K.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Battaglieri, M.; Bedlinskiy, I.; Bono, J.; Boiarinov, S.; Bosted, P.; Briscoe, W.; Brock, J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Carlin, C.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crabb, D.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Garçon, M.; Gevorgyan, N.; Ghandilyan, Y.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hirlinger Saylor, N.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joosten, S.; Keith, C. D.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Meekins, D. G.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R.; Moody, C. I.; Moutarde, H.; Movsisyan, A.; Munoz Camacho, C.; Nadel-Turonski, P.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Pappalardo, L. L.; Park, K.; Park, S.; Pasyuk, E.; Peng, P.; Phelps, W.; Pogorelko, O.; Price, J. W.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Senderovich, I.; Simonyan, A.; Skorodumina, I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tang, W.; Tian, Y.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zonta, I.; CLAS Collaboration

    2015-01-01

    A measurement of the electroproduction of photons off protons in the deeply inelastic regime was performed at Jefferson Lab using a nearly 6 GeV electron beam, a longitudinally polarized proton target, and the CEBAF Large Acceptance Spectrometer. Target-spin asymmetries for e p →e'p'γ events, which arise from the interference of the deeply virtual Compton scattering and the Bethe-Heitler processes, were extracted over the widest kinematics in Q2 , xB, t , and ϕ , for 166 four-dimensional bins. In the framework of generalized parton distributions, at leading twist the t dependence of these asymmetries provides insight into the spatial distribution of the axial charge of the proton, which appears to be concentrated in its center. These results also bring important and necessary constraints for the existing parametrizations of chiral-even generalized parton distributions.

  16. Virtual Solar Observatory Distributed Query Construction

    NASA Technical Reports Server (NTRS)

    Gurman, J. B.; Dimitoglou, G.; Bogart, R.; Davey, A.; Hill, F.; Martens, P.

    2003-01-01

    Through a prototype implementation (Tian et al., this meeting) the VSO has already demonstrated the capability of unifying geographically distributed data sources following the Web Services paradigm and utilizing mechanisms such as the Simple Object Access Protocol (SOAP). So far, four participating sites (Stanford, Montana State University, National Solar Observatory and the Solar Data Analysis Center) permit Web-accessible, time-based searches that allow browse access to a number of diverse data sets. Our latest work includes the extension of the simple, time-based queries to include numerous other searchable observation parameters. For VSO users, this extended functionality enables more refined searches. For the VSO, it is a proof of concept that more complex, distributed queries can be effectively constructed and that results from heterogeneous, remote sources can be synthesized and presented to users as a single, virtual data product.

  17. A Virtual Hosting Environment for Distributed Online Gaming

    NASA Astrophysics Data System (ADS)

    Brossard, David; Prieto Martinez, Juan Luis

    With enterprise boundaries becoming fuzzier, it’s become clear that businesses need to share resources, expose services, and interact in many different ways. In order to achieve such a distribution in a dynamic, flexible, and secure way, we have designed and implemented a virtual hosting environment (VHE) which aims at integrating business services across enterprise boundaries and virtualising the ICT environment within which these services operate in order to exploit economies of scale for the businesses as well as achieve shorter concept-to-market time scales. To illustrate the relevance of the VHE, we have applied it to the online gaming world. Online gaming is an early adopter of distributed computing and more than 30% of gaming developer companies, being aware of the shift, are focusing on developing high performance platforms for the new online trend.

  18. Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants

    NASA Astrophysics Data System (ADS)

    Morstyn, Thomas; Farrell, Niall; Darby, Sarah J.; McCulloch, Malcolm D.

    2018-02-01

    Power networks are undergoing a fundamental transition, with traditionally passive consumers becoming `prosumers' — proactive consumers with distributed energy resources, actively managing their consumption, production and storage of energy. A key question that remains unresolved is: how can we incentivize coordination between vast numbers of distributed energy resources, each with different owners and characteristics? Virtual power plants and peer-to-peer (P2P) energy trading offer different sources of value to prosumers and the power network, and have been proposed as different potential structures for future prosumer electricity markets. In this Perspective, we argue they can be combined to capture the benefits of both. We thus propose the concept of the federated power plant, a virtual power plant formed through P2P transactions between self-organizing prosumers. This addresses social, institutional and economic issues faced by top-down strategies for coordinating virtual power plants, while unlocking additional value for P2P energy trading.

  19. Virtual-system-coupled adaptive umbrella sampling to compute free-energy landscape for flexible molecular docking.

    PubMed

    Higo, Junichi; Dasgupta, Bhaskar; Mashimo, Tadaaki; Kasahara, Kota; Fukunishi, Yoshifumi; Nakamura, Haruki

    2015-07-30

    A novel enhanced conformational sampling method, virtual-system-coupled adaptive umbrella sampling (V-AUS), was proposed to compute 300-K free-energy landscape for flexible molecular docking, where a virtual degrees of freedom was introduced to control the sampling. This degree of freedom interacts with the biomolecular system. V-AUS was applied to complex formation of two disordered amyloid-β (Aβ30-35 ) peptides in a periodic box filled by an explicit solvent. An interpeptide distance was defined as the reaction coordinate, along which sampling was enhanced. A uniform conformational distribution was obtained covering a wide interpeptide distance ranging from the bound to unbound states. The 300-K free-energy landscape was characterized by thermodynamically stable basins of antiparallel and parallel β-sheet complexes and some other complex forms. Helices were frequently observed, when the two peptides contacted loosely or fluctuated freely without interpeptide contacts. We observed that V-AUS converged to uniform distribution more effectively than conventional AUS sampling did. © 2015 Wiley Periodicals, Inc.

  20. The architecture of a virtual grid GIS server

    NASA Astrophysics Data System (ADS)

    Wu, Pengfei; Fang, Yu; Chen, Bin; Wu, Xi; Tian, Xiaoting

    2008-10-01

    The grid computing technology provides the service oriented architecture for distributed applications. The virtual Grid GIS server is the distributed and interoperable enterprise application GIS architecture running in the grid environment, which integrates heterogeneous GIS platforms. All sorts of legacy GIS platforms join the grid as members of GIS virtual organization. Based on Microkernel we design the ESB and portal GIS service layer, which compose Microkernel GIS. Through web portals, portal GIS services and mediation of service bus, following the principle of SoC, we separate business logic from implementing logic. Microkernel GIS greatly reduces the coupling degree between applications and GIS platforms. The enterprise applications are independent of certain GIS platforms, and making the application developers to pay attention to the business logic. Via configuration and orchestration of a set of fine-grained services, the system creates GIS Business, which acts as a whole WebGIS request when activated. In this way, the system satisfies a business workflow directly and simply, with little or no new code.

  1. Virtual worlds to support patient group communication? A questionnaire study investigating potential for virtual world focus group use by respiratory patients.

    PubMed

    Taylor, Michael J; Taylor, Dave; Vlaev, Ivo; Elkin, Sarah

    2017-01-01

    Recent advances in communication technologies enable potential provision of remote education for patients using computer-generated environments known as virtual worlds. Previous research has revealed highly variable levels of patient receptiveness to using information technologies for healthcare-related purposes. This preliminary study involved implementing a questionnaire investigating attitudes and access to computer technologies of respiratory outpatients, in order to assess potential for use of virtual worlds to facilitate health-related education for this sample. Ninety-four patients with a chronic respiratory condition completed surveys, which were distributed at a Chest Clinic. In accordance with our prediction, younger participants were more likely to be able to use, and have access to a computer and some patients were keen to explore use virtual worlds for healthcare-related purposes: Of those with access to computer facilities, 14.50% expressed a willingness to attend a virtual world focus group. Results indicate future virtual world health education facilities should be designed to cater for younger patients, because this group are most likely to accept and use such facilities. Within the study sample, this is likely to comprise of people diagnosed with asthma. Future work could investigate the potential of creating a virtual world asthma education facility.

  2. Building interactive virtual environments for simulated training in medicine using VRML and Java/JavaScript.

    PubMed

    Korocsec, D; Holobar, A; Divjak, M; Zazula, D

    2005-12-01

    Medicine is a difficult thing to learn. Experimenting with real patients should not be the only option; simulation deserves a special attention here. Virtual Reality Modelling Language (VRML) as a tool for building virtual objects and scenes has a good record of educational applications in medicine, especially for static and animated visualisations of body parts and organs. However, to create computer simulations resembling situations in real environments the required level of interactivity and dynamics is difficult to achieve. In the present paper we describe some approaches and techniques which we used to push the limits of the current VRML technology further toward dynamic 3D representation of virtual environments (VEs). Our demonstration is based on the implementation of a virtual baby model, whose vital signs can be controlled from an external Java application. The main contributions of this work are: (a) outline and evaluation of the three-level VRML/Java implementation of the dynamic virtual environment, (b) proposal for a modified VRML Timesensor node, which greatly improves the overall control of system performance, and (c) architecture of the prototype distributed virtual environment for training in neonatal resuscitation comprising the interactive virtual newborn, active bedside monitor for vital signs and full 3D representation of the surgery room.

  3. Virtual worlds to support patient group communication? A questionnaire study investigating potential for virtual world focus group use by respiratory patients

    PubMed Central

    Taylor, Michael J.; Taylor, Dave; Vlaev, Ivo; Elkin, Sarah

    2015-01-01

    Recent advances in communication technologies enable potential provision of remote education for patients using computer-generated environments known as virtual worlds. Previous research has revealed highly variable levels of patient receptiveness to using information technologies for healthcare-related purposes. This preliminary study involved implementing a questionnaire investigating attitudes and access to computer technologies of respiratory outpatients, in order to assess potential for use of virtual worlds to facilitate health-related education for this sample. Ninety-four patients with a chronic respiratory condition completed surveys, which were distributed at a Chest Clinic. In accordance with our prediction, younger participants were more likely to be able to use, and have access to a computer and some patients were keen to explore use virtual worlds for healthcare-related purposes: Of those with access to computer facilities, 14.50% expressed a willingness to attend a virtual world focus group. Results indicate future virtual world health education facilities should be designed to cater for younger patients, because this group are most likely to accept and use such facilities. Within the study sample, this is likely to comprise of people diagnosed with asthma. Future work could investigate the potential of creating a virtual world asthma education facility. PMID:28239187

  4. Megatux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-09-25

    The Megatux platform enables the emulation of large scale (multi-million node) distributed systems. In particular, it allows for the emulation of large-scale networks interconnecting a very large number of emulated computer systems. It does this by leveraging virtualization and associated technologies to allow hundreds of virtual computers to be hosted on a single moderately sized server or workstation. Virtualization technology provided by modern processors allows for multiple guest OSs to run at the same time, sharing the hardware resources. The Megatux platform can be deployed on a single PC, a small cluster of a few boxes or a large clustermore » of computers. With a modest cluster, the Megatux platform can emulate complex organizational networks. By using virtualization, we emulate the hardware, but run actual software enabling large scale without sacrificing fidelity.« less

  5. Strain-energy release rate analysis of a laminate with a postbuckled delamination

    NASA Technical Reports Server (NTRS)

    Whitcomb, John D.; Shivakumar, K. N.

    1987-01-01

    The objectives are to present the derivation of the new virtual crack closure technique, evaluate the accuracy of the technique, and finally to present the results of a limited parametric study of laminates with a postbuckled delamination. Although the new virtual crack closure technique is general, only homogeneous, isotropic laminates were analyzed. This was to eliminate the variation of flexural stiffness with orientation, which occurs even for quasi-isotropic laminates. This made it easier to identify the effect of geometrical parameters on G. The new virtual crack closure technique is derived. Then the specimen configurations are described. Next, the stress analyses is discussed. Finally, the virtual crack closure technique is evaluated and then used to calculate the distribution of G along the delamination front of several laminates with a postbuckled delamination.

  6. Wave field synthesis of moving virtual sound sources with complex radiation properties.

    PubMed

    Ahrens, Jens; Spors, Sascha

    2011-11-01

    An approach to the synthesis of moving virtual sound sources with complex radiation properties in wave field synthesis is presented. The approach exploits the fact that any stationary sound source of finite spatial extent radiates spherical waves at sufficient distance. The angular dependency of the radiation properties of the source under consideration is reflected by the amplitude and phase distribution on the spherical wave fronts. The sound field emitted by a uniformly moving monopole source is derived and the far-field radiation properties of the complex virtual source under consideration are incorporated in order to derive a closed-form expression for the loudspeaker driving signal. The results are illustrated via numerical simulations of the synthesis of the sound field of a sample moving complex virtual source.

  7. Ultrasound-guided genicular nerve block for pain control after total knee replacement: Preliminary case series and technical note.

    PubMed

    González Sotelo, V; Maculé, F; Minguell, J; Bergé, R; Franco, C; Sala-Blanch, X

    2017-12-01

    Total knee arthroplasty (TKA) is an operation with moderate to severe postoperative pain. The Fast-Track models employ local infiltration techniques with anaesthetics at high volumes (100-150ml). We proposed a genicular nerve block with low volume of local anaesthetic. The aim of our study is to evaluate the periarticular distribution of these blocks in a fresh cadaver model and to describe the technique in a preliminary group of patients submitted to TKA. In the anatomical phase, 4 genicular nerves (superior medial, superior lateral, inferior medial and inferior lateral) were blocked with 4ml of local anaesthetic with iodinated contrast and methylene blue in each (16ml in total). It was performed on a fresh cadaver and the distribution of the injected medium was evaluated by means of a CT-scan and coronal anatomical sections on both knees. The clinical phase included 12 patients scheduled for TKA. Ultrasound-guided block of the 4 genicular nerves was performed preoperatively and their clinical efficacy evaluated by assessing pain after the reversal of the spinal block and at 12h after the block. Pain was measured using the numerical scale and the need for rescue analgesia was evaluated. A wide periarticular distribution of contrast was observed by CT-scan, which was later evaluated in the coronal sections. The distribution followed the joint capsule without entering the joint, both in the femur and in the tibia. The pain after the reversal of the subarachnoid block was 2±1, requiring rescue analgesia in 42% of the patients. At 12h, the pain according to the numerical scale was 4±1, 33% required rescue analgesia. The administration of 4ml of local anaesthetic at the level of the 4 genicular nerves of the knee produces a wide periarticular distribution. Our preliminary data in a series of 12 patients undergoing TKA seems to be clinically effective. Nevertheless, extensive case series and comparative studies with local infiltration techniques with anaesthetics are needed to support these encouraging results. Copyright © 2017 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. A digital atlas of breast histopathology: an application of web based virtual microscopy

    PubMed Central

    Lundin, M; Lundin, J; Helin, H; Isola, J

    2004-01-01

    Aims: To develop an educationally useful atlas of breast histopathology, using advanced web based virtual microscopy technology. Methods: By using a robotic microscope and software adopted and modified from the aerial and satellite imaging industry, a virtual microscopy system was developed that allows fully automated slide scanning and image distribution via the internet. More than 150 slides were scanned at high resolution with an oil immersion ×40 objective (numerical aperture, 1.3) and archived on an image server residing in a high speed university network. Results: A publicly available website was constructed, http://www.webmicroscope.net/breastatlas, which features a comprehensive virtual slide atlas of breast histopathology according to the World Health Organisation 2003 classification. Users can view any part of an entire specimen at any magnification within a standard web browser. The virtual slides are supplemented with concise textual descriptions, but can also be viewed without diagnostic information for self assessment of histopathology skills. Conclusions: Using the technology described here, it is feasible to develop clinically and educationally useful virtual microscopy applications. Web based virtual microscopy will probably become widely used at all levels in pathology teaching. PMID:15563669

  9. The Virtual Climate Data Server (vCDS): An iRODS-Based Data Management Software Appliance Supporting Climate Data Services and Virtualization-as-a-Service in the NASA Center for Climate Simulation

    NASA Technical Reports Server (NTRS)

    Schnase, John L.; Tamkin, Glenn S.; Ripley, W. David III; Stong, Savannah; Gill, Roger; Duffy, Daniel Q.

    2012-01-01

    Scientific data services are becoming an important part of the NASA Center for Climate Simulation's mission. Our technological response to this expanding role is built around the concept of a Virtual Climate Data Server (vCDS), repetitive provisioning, image-based deployment and distribution, and virtualization-as-a-service. The vCDS is an iRODS-based data server specialized to the needs of a particular data-centric application. We use RPM scripts to build vCDS images in our local computing environment, our local Virtual Machine Environment, NASA s Nebula Cloud Services, and Amazon's Elastic Compute Cloud. Once provisioned into one or more of these virtualized resource classes, vCDSs can use iRODS s federation capabilities to create an integrated ecosystem of managed collections that is scalable and adaptable to changing resource requirements. This approach enables platform- or software-asa- service deployment of vCDS and allows the NCCS to offer virtualization-as-a-service: a capacity to respond in an agile way to new customer requests for data services.

  10. Modeling the response of normal and ischemic cardiac tissue to electrical stimulation

    NASA Astrophysics Data System (ADS)

    Kandel, Sunil Mani

    Heart disease, the leading cause of death worldwide, is often caused by ventricular fibrillation. A common treatment for this lethal arrhythmia is defibrillation: a strong electrical shock that resets the heart to its normal rhythm. To design better defibrillators, we need a better understanding of both fibrillation and defibrillation. Fundamental mysteries remain regarding the mechanism of how the heart responds to a shock, particularly anodal shocks and the resultant hyperpolarization. Virtual anodes play critical roles in defibrillation, and one cannot build better defibrillators until these mechanisms are understood. We are using mathematical modeling to numerically simulate observed phenomena, and are exploring fundamental mechanisms responsible for the heart's electrical behavior. Such simulations clarify mechanisms and identify key parameters. We investigate how systolic tissue responds to an anodal shock and how refractory tissue reacts to hyperpolarization by studying the dip in the anodal strength-interval curve. This dip is due to electrotonic interaction between regions of depolarization and hyperpolarization following a shock. The dominance of the electrotonic mechanism over calcium interactions implies the importance of the spatial distribution of virtual electrodes. We also investigate the response of localized ischemic tissue to an anodal shock by modeling a regional elevation of extracellular potassium concentration. This heterogeneity leads to action potential instability, 2:1 conduction block (alternans), and reflection-like reentry at the boarder of the normal and ischemic regions. This kind of reflection (reentry) occurs due to the delay between proximal and distal segments to re-excite the proximal segment. Our numerical simulations are based on the bidomain model, the state-of-the-art mathematical description of how cardiac tissue responds to shocks. The dynamic LuoRudy model describes the active properties of the membrane. To model ischemia, the Luo-Rudy model is modified by adding ischemic-related ion currents and concentrations to mimic conditions during the initial phase of ischemia. The stimulus is applied through a unipolar electrode that induces a complicated spatial distribution of transmembrane potential, including adjacent regions of depolarization and hyperpolarization. This research is significant because it uncovers basic properties of excitation that are fundamental for understanding cardiac pacing and defibrillation.

  11. Tail Biting Trellis Representation of Codes: Decoding and Construction

    NASA Technical Reports Server (NTRS)

    Shao. Rose Y.; Lin, Shu; Fossorier, Marc

    1999-01-01

    This paper presents two new iterative algorithms for decoding linear codes based on their tail biting trellises, one is unidirectional and the other is bidirectional. Both algorithms are computationally efficient and achieves virtually optimum error performance with a small number of decoding iterations. They outperform all the previous suboptimal decoding algorithms. The bidirectional algorithm also reduces decoding delay. Also presented in the paper is a method for constructing tail biting trellises for linear block codes.

  12. Distributed deformation and block rotation in 3D

    NASA Technical Reports Server (NTRS)

    Scotti, Oona; Nur, Amos; Estevez, Raul

    1990-01-01

    The authors address how block rotation and complex distributed deformation in the Earth's shallow crust may be explained within a stationary regional stress field. Distributed deformation is characterized by domains of sub-parallel fault-bounded blocks. In response to the contemporaneous activity of neighboring domains some domains rotate, as suggested by both structural and paleomagnetic evidence. Rotations within domains are achieved through the contemporaneous slip and rotation of the faults and of the blocks they bound. Thus, in regions of distributed deformation, faults must remain active in spite of their poor orientation in the stress field. The authors developed a model that tracks the orientation of blocks and their bounding faults during rotation in a 3D stress field. In the model, the effective stress magnitudes of the principal stresses (sigma sub 1, sigma sub 2, and sigma sub 3) are controlled by the orientation of fault sets in each domain. Therefore, adjacent fault sets with differing orientations may be active and may display differing faulting styles, and a given set of faults may change its style of motion as it rotates within a stationary stress regime. The style of faulting predicted by the model depends on a dimensionless parameter phi = (sigma sub 2 - sigma sub 3)/(sigma sub 1 - sigma sub 3). Thus, the authors present a model for complex distributed deformation and complex offset history requiring neither geographical nor temporal changes in the stress regime. They apply the model to the Western Transverse Range domain of southern California. There, it is mechanically feasible for blocks and faults to have experienced up to 75 degrees of clockwise rotation in a phi = 0.1 strike-slip stress regime. The results of the model suggest that this domain may first have accommodated deformation along preexisting NNE-SSW faults, reactivated as normal faults. After rotation, these same faults became strike-slip in nature.

  13. Novel single photon sources for new generation of quantum communications

    DTIC Science & Technology

    2017-06-13

    be used as building blocks for quantum cryptography and quantum key distribution There were numerous important achievements for the projects in the...single photon sources that will be used as build- ing blocks for quantum cryptography and quantum key distribution There were numerous im- portant...and enable absolutely secured information transfer between distant nodes – key prerequisite for quantum cryptography . Experiment: the experimental

  14. RandomSpot: A web-based tool for systematic random sampling of virtual slides.

    PubMed

    Wright, Alexander I; Grabsch, Heike I; Treanor, Darren E

    2015-01-01

    This paper describes work presented at the Nordic Symposium on Digital Pathology 2014, Linköping, Sweden. Systematic random sampling (SRS) is a stereological tool, which provides a framework to quickly build an accurate estimation of the distribution of objects or classes within an image, whilst minimizing the number of observations required. RandomSpot is a web-based tool for SRS in stereology, which systematically places equidistant points within a given region of interest on a virtual slide. Each point can then be visually inspected by a pathologist in order to generate an unbiased sample of the distribution of classes within the tissue. Further measurements can then be derived from the distribution, such as the ratio of tumor to stroma. RandomSpot replicates the fundamental principle of traditional light microscope grid-shaped graticules, with the added benefits associated with virtual slides, such as facilitated collaboration and automated navigation between points. Once the sample points have been added to the region(s) of interest, users can download the annotations and view them locally using their virtual slide viewing software. Since its introduction, RandomSpot has been used extensively for international collaborative projects, clinical trials and independent research projects. So far, the system has been used to generate over 21,000 sample sets, and has been used to generate data for use in multiple publications, identifying significant new prognostic markers in colorectal, upper gastro-intestinal and breast cancer. Data generated using RandomSpot also has significant value for training image analysis algorithms using sample point coordinates and pathologist classifications.

  15. Virtual Vision

    NASA Astrophysics Data System (ADS)

    Terzopoulos, Demetri; Qureshi, Faisal Z.

    Computer vision and sensor networks researchers are increasingly motivated to investigate complex multi-camera sensing and control issues that arise in the automatic visual surveillance of extensive, highly populated public spaces such as airports and train stations. However, they often encounter serious impediments to deploying and experimenting with large-scale physical camera networks in such real-world environments. We propose an alternative approach called "Virtual Vision", which facilitates this type of research through the virtual reality simulation of populated urban spaces, camera sensor networks, and computer vision on commodity computers. We demonstrate the usefulness of our approach by developing two highly automated surveillance systems comprising passive and active pan/tilt/zoom cameras that are deployed in a virtual train station environment populated by autonomous, lifelike virtual pedestrians. The easily reconfigurable virtual cameras distributed in this environment generate synthetic video feeds that emulate those acquired by real surveillance cameras monitoring public spaces. The novel multi-camera control strategies that we describe enable the cameras to collaborate in persistently observing pedestrians of interest and in acquiring close-up videos of pedestrians in designated areas.

  16. Embodying self-compassion within virtual reality and its effects on patients with depression.

    PubMed

    Falconer, Caroline J; Rovira, Aitor; King, John A; Gilbert, Paul; Antley, Angus; Fearon, Pasco; Ralph, Neil; Slater, Mel; Brewin, Chris R

    2016-01-01

    Self-criticism is a ubiquitous feature of psychopathology and can be combatted by increasing levels of self-compassion. However, some patients are resistant to self-compassion. To investigate whether the effects of self-identification with virtual bodies within immersive virtual reality could be exploited to increase self-compassion in patients with depression. We developed an 8-minute scenario in which 15 patients practised delivering compassion in one virtual body and then experienced receiving it from themselves in another virtual body. In an open trial, three repetitions of this scenario led to significant reductions in depression severity and self-criticism, as well as to a significant increase in self-compassion, from baseline to 4-week follow-up. Four patients showed clinically significant improvement. The results indicate that interventions using immersive virtual reality may have considerable clinical potential and that further development of these methods preparatory to a controlled trial is now warranted. None. © The Royal College of Psychiatrists 2016. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) licence.

  17. Spatial Distribution of the Metabolically Active Microbiota within Italian PDO Ewes' Milk Cheeses

    PubMed Central

    De Pasquale, Ilaria; Di Cagno, Raffaella; Buchin, Solange; De Angelis, Maria; Gobbetti, Marco

    2016-01-01

    Italian PDO (Protected Designation of Origin) Fiore Sardo (FS), Pecorino Siciliano (PS) and Pecorino Toscano (PT) ewes’ milk cheeses were chosen as hard cheese model systems to investigate the spatial distribution of the metabolically active microbiota and the related effects on proteolysis and synthesis of volatile components (VOC). Cheese slices were divided in nine sub-blocks, each one separately subjected to analysis and compared to whole cheese slice (control). Gradients for moisture, and concentrations of salt, fat and protein distinguished sub-blocks, while the cell density of the main microbial groups did not differ. Secondary proteolysis differed between sub-blocks of each cheese, especially when the number and area of hydrophilic and hydrophobic peptide peaks were assessed. The concentration of free amino acids (FAA) agreed with these data. As determined through Purge and Trap (PT) coupled with Gas Chromatography-Mass Spectrometry (PT-GC/MS), and regardless of the cheese variety, the profile with the lowest level of VOC was restricted to the region identified by the letter E defined as core. As shown through pyrosequencing of the 16S rRNA targeting RNA, the spatial distribution of the metabolically active microbiota agreed with the VOC distribution. Differences were highlighted between core and the rest of the cheese. Top and bottom under rind sub-blocks of all three cheeses harbored the widest biodiversity. The cheese sub-block analysis revealed the presence of a microbiota statistically correlated with secondary proteolysis events and/or synthesis of VOC. PMID:27073835

  18. Virtual detector theory for strong-field atomic ionization

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Tian, Justin; Eberly, J. H.

    2018-04-01

    A virtual detector (VD) is an imaginary device located at a fixed position in space that extracts information from the wave packet passing through it. By recording the particle momentum and the corresponding probability current at each time, the VDs can accumulate and build the differential momentum distribution of the particle, in a way that resembles real experiments. A mathematical proof is given for the equivalence of the differential momentum distribution obtained by the VD method and by Fourier transforming the wave function. In addition to being a tool for reducing the computational load, VDs have also been found useful in interpreting the ultrafast strong-field ionization process, especially the controversial quantum tunneling process.

  19. Virtual Collaborative Environments for System of Systems Engineering and Applications for ISAT

    NASA Technical Reports Server (NTRS)

    Dryer, David A.

    2002-01-01

    This paper describes an system of systems or metasystems approach and models developed to help prepare engineering organizations for distributed engineering environments. These changes in engineering enterprises include competition in increasingly global environments; new partnering opportunities caused by advances in information and communication technologies, and virtual collaboration issues associated with dispersed teams. To help address challenges and needs in this environment, a framework is proposed that can be customized and adapted for NASA to assist in improved engineering activities conducted in distributed, enhanced engineering environments. The approach is designed to prepare engineers for such distributed collaborative environments by learning and applying e-engineering methods and tools to a real-world engineering development scenario. The approach consists of two phases: an e-engineering basics phase and e-engineering application phase. The e-engineering basics phase addresses skills required for e-engineering. The e-engineering application phase applies these skills in a distributed collaborative environment to system development projects.

  20. OBSIFRAC: database-supported software for 3D modeling of rock mass fragmentation

    NASA Astrophysics Data System (ADS)

    Empereur-Mot, Luc; Villemin, Thierry

    2003-03-01

    Under stress, fractures in rock masses tend to form fully connected networks. The mass can thus be thought of as a 3D series of blocks produced by fragmentation processes. A numerical model has been developed that uses a relational database to describe such a mass. The model, which assumes the fractures to be plane, allows data from natural networks to test theories concerning fragmentation processes. In the model, blocks are bordered by faces that are composed of edges and vertices. A fracture can originate from a seed point, its orientation being controlled by the stress field specified by an orientation matrix. Alternatively, it can be generated from a discrete set of given orientations and positions. Both kinds of fracture can occur together in a model. From an original simple block, a given fracture produces two simple polyhedral blocks, and the original block becomes compound. Compound and simple blocks created throughout fragmentation are stored in the database. Several fragmentation processes have been studied. In one scenario, a constant proportion of blocks is fragmented at each step of the process. The resulting distribution appears to be fractal, although seed points are random in each fragmented block. In a second scenario, division affects only one random block at each stage of the process, and gives a Weibull volume distribution law. This software can be used for a large number of other applications.

  1. [Study on the effect of vertebrae semi-dislocation on the stress distribution in facet joint and interuertebral disc of patients with cervical syndrome based on the three dimensional finite element model].

    PubMed

    Zhang, Ming-cai; Lü, Si-zhe; Cheng, Ying-wu; Gu, Li-xu; Zhan, Hong-sheng; Shi, Yin-yu; Wang, Xiang; Huang, Shi-rong

    2011-02-01

    To study the effect of vertebrae semi-dislocation on the stress distribution in facet joint and interuertebral disc of patients with cervical syndrome using three dimensional finite element model. A patient with cervical spondylosis was randomly chosen, who was male, 28 years old, and diagnosed as cervical vertebra semidislocation by dynamic and static palpation and X-ray, and scanned from C(1) to C(7) by 0.75 mm slice thickness of CT. Based on the CT data, the software was used to construct the three dimensional finite element model of cervical vertebra semidislocation (C(4)-C(6)). Based on the model,virtual manipulation was used to correct the vertebra semidislocation by the software, and the stress distribution was analyzed. The result of finite element analysis showed that the stress distribution of C(5-6) facet joint and intervertebral disc changed after virtual manipulation. The vertebra semidislocation leads to the abnormal stress distribution of facet joint and intervertebral disc.

  2. Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-14-2-0150 TITLE: Improving Balance in TBI Using a Low- Cost Customized Virtual Reality Rehabilitation Tool PRINCIPAL...PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for Public ...DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per

  3. An Analysis of Hardware-Assisted Virtual Machine Based Rootkits

    DTIC Science & Technology

    2014-06-01

    certain aspects of TPM implementation just to name a few. HyperWall is an architecture proposed by Szefer and Lee to protect guest VMs from...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) The use of virtual machine (VM) technology has expanded rapidly since AMD and Intel implemented ...Intel VT-x implementations of Blue Pill to identify commonalities in the respective versions’ attack methodologies from both a functional and technical

  4. Time Warp Operating System, Version 2.5.1

    NASA Technical Reports Server (NTRS)

    Bellenot, Steven F.; Gieselman, John S.; Hawley, Lawrence R.; Peterson, Judy; Presley, Matthew T.; Reiher, Peter L.; Springer, Paul L.; Tupman, John R.; Wedel, John J., Jr.; Wieland, Frederick P.; hide

    1993-01-01

    Time Warp Operating System, TWOS, is special purpose computer program designed to support parallel simulation of discrete events. Complete implementation of Time Warp software mechanism, which implements distributed protocol for virtual synchronization based on rollback of processes and annihilation of messages. Supports simulations and other computations in which both virtual time and dynamic load balancing used. Program utilizes underlying resources of operating system. Written in C programming language.

  5. 75 FR 5561 - Notice of Funds Availability (NOFA) Inviting Applications for the Specialty Crop Block Grant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... Availability (NOFA) Inviting Applications for the Specialty Crop Block Grant Program--Farm Bill (SCBGP-FB... entities in the specialty crop distribution chain in developing ``Good Agricultural Practices'', ``Good... on a previous Specialty Crop Block Grant Program (SCBGP) or SCBGP-FB project, indicate clearly how...

  6. 76 FR 312 - Notice of Funds Availability (NOFA) Inviting Applications for the Specialty Crop Block Grant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... Specialty Crop Block Grant Program-Farm Bill (SCBGP-FB) AGENCY: Agricultural Marketing Service, USDA. ACTION... systems; assisting all entities in the specialty crop distribution chain in developing ``Good Agricultural... Crop Block Grant Program (SCBGP). Identify by project title if an award was made to either a socially...

  7. Flexible binding simulation by a novel and improved version of virtual-system coupled adaptive umbrella sampling

    NASA Astrophysics Data System (ADS)

    Dasgupta, Bhaskar; Nakamura, Haruki; Higo, Junichi

    2016-10-01

    Virtual-system coupled adaptive umbrella sampling (VAUS) enhances sampling along a reaction coordinate by using a virtual degree of freedom. However, VAUS and regular adaptive umbrella sampling (AUS) methods are yet computationally expensive. To decrease the computational burden further, improvements of VAUS for all-atom explicit solvent simulation are presented here. The improvements include probability distribution calculation by a Markov approximation; parameterization of biasing forces by iterative polynomial fitting; and force scaling. These when applied to study Ala-pentapeptide dimerization in explicit solvent showed advantage over regular AUS. By using improved VAUS larger biological systems are amenable.

  8. Application of new technologies in the virtual library: Seminars in Turkey, Portugal, and Spain

    NASA Technical Reports Server (NTRS)

    Hunter, Judy F.; Cotter, Gladys A.

    1994-01-01

    This paper focuses on the technologies that are available today to support the concept of a virtual library. The concept of a 'virtual library' or a 'library without walls' is meant to convey the idea that information in any format should be available to the end-user from the desktop as if it were located on the local workstation. Discussed here are the background, trends, technology enablers, end-user requirements, and the NASA Access Mechanism (NAM) system, one example of how it is possible to apply existing technologies to the client server architecture to logically centralize geographically distributed applications and information.

  9. Advanced compilation techniques in the PARADIGM compiler for distributed-memory multicomputers

    NASA Technical Reports Server (NTRS)

    Su, Ernesto; Lain, Antonio; Ramaswamy, Shankar; Palermo, Daniel J.; Hodges, Eugene W., IV; Banerjee, Prithviraj

    1995-01-01

    The PARADIGM compiler project provides an automated means to parallelize programs, written in a serial programming model, for efficient execution on distributed-memory multicomputers. .A previous implementation of the compiler based on the PTD representation allowed symbolic array sizes, affine loop bounds and array subscripts, and variable number of processors, provided that arrays were single or multi-dimensionally block distributed. The techniques presented here extend the compiler to also accept multidimensional cyclic and block-cyclic distributions within a uniform symbolic framework. These extensions demand more sophisticated symbolic manipulation capabilities. A novel aspect of our approach is to meet this demand by interfacing PARADIGM with a powerful off-the-shelf symbolic package, Mathematica. This paper describes some of the Mathematica routines that performs various transformations, shows how they are invoked and used by the compiler to overcome the new challenges, and presents experimental results for code involving cyclic and block-cyclic arrays as evidence of the feasibility of the approach.

  10. High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Bai, ZengLiang; Wang, XuYang; Yang, ShenShen; Li, YongMin

    2016-01-01

    Efficient reconciliation is a crucial step in continuous variable quantum key distribution. The progressive-edge-growth (PEG) algorithm is an efficient method to construct relatively short block length low-density parity-check (LDPC) codes. The qua-sicyclic construction method can extend short block length codes and further eliminate the shortest cycle. In this paper, by combining the PEG algorithm and qua-si-cyclic construction method, we design long block length irregular LDPC codes with high error-correcting capacity. Based on these LDPC codes, we achieve high-efficiency Gaussian key reconciliation with slice recon-ciliation based on multilevel coding/multistage decoding with an efficiency of 93.7%.

  11. Dynamic virtual optical network embedding in spectral and spatial domains over elastic optical networks with multicore fibers

    NASA Astrophysics Data System (ADS)

    Zhu, Ruijie; Zhao, Yongli; Yang, Hui; Tan, Yuanlong; Chen, Haoran; Zhang, Jie; Jue, Jason P.

    2016-08-01

    Network virtualization can eradicate the ossification of the infrastructure and stimulate innovation of new network architectures and applications. Elastic optical networks (EONs) are ideal substrate networks for provisioning flexible virtual optical network (VON) services. However, as network traffic continues to increase exponentially, the capacity of EONs will reach the physical limitation soon. To further increase network flexibility and capacity, the concept of EONs is extended into the spatial domain. How to map the VON onto substrate networks by thoroughly using the spectral and spatial resources is extremely important. This process is called VON embedding (VONE).Considering the two kinds of resources at the same time during the embedding process, we propose two VONE algorithms, the adjacent link embedding algorithm (ALEA) and the remote link embedding algorithm (RLEA). First, we introduce a model to solve the VONE problem. Then we design the embedding ability measurement of network elements. Based on the network elements' embedding ability, two VONE algorithms were proposed. Simulation results show that the proposed VONE algorithms could achieve better performance than the baseline algorithm in terms of blocking probability and revenue-to-cost ratio.

  12. STS-88 crew use simulators and virtual reality in preflight training

    NASA Image and Video Library

    1998-04-08

    S98-05078 (8 Apr. 1998) --- With crew mates looking on, astronaut Nancy J. Currie, mission specialist, uses hardware in the virtual reality lab at the Johnson Space Center (JSC) to train for her duties aboard the Space Shuttle Endeavour. She is flanked by astronaut Robert Cabana (left), commander; and Frederick W. Sturckow (right), pilot. This type computer interface paired with virtual reality training hardware for the assigned space-walking astronauts -- Jerry L. Ross and James H. Newman -- helps to prepare the entire team for dealing with International Space Station (ISS) elements. One of those elements will be the Functional Cargo Block (FGB), which will have been launched a couple of weeks prior to STS-88. Once the FGB is captured using the Remote Manipulator System (RMS) of the Endeavour, Currie will maneuver the robot arm to dock the FGB to the conical mating adapter at the top of Node 1, to be carried in the Endeavour's cargo bay. In ensuing days, three Extravehicular Activity?s (EVA) by Ross and Newman will be performed to make power, data and utility connections between the two modules. Looking on is Scott A. Bleisath (behind Currie), with the EVA Systems Group at JSC.

  13. STS-88 crew use simulators and virtual reality in preflight training

    NASA Image and Video Library

    1998-04-08

    S98-05077 (8 Apr. 1998) --- With crew mates looking on, astronaut Nancy J. Currie, mission specialist, uses hardware in the virtual reality lab at the Johnson Space Center (JSC) to train for her duties aboard the Space Shuttle Endeavour. She is flanked by astronaut Robert Cabana (left), commander; and Frederick W. Sturckow (right), pilot. This type computer interface paired with virtual reality training hardware for the assigned space-walking astronauts -- Jerry L. Ross and James H. Newman -- helps to prepare the entire team for dealing with International Space Station (ISS) elements. One of those elements will be the Functional Cargo Block (FGB), which will have been launched a couple of weeks prior to STS-88. Once the FGB is captured using the Remote Manipulator System (RMS) of the Endeavour, Currie will maneuver the robot arm to dock the FGB to the conical mating adapter at the top of Node 1, to be carried in the Endeavour's cargo bay. In ensuing days, three Extravehicular Activity?s (EVA) by Ross and Newman will be performed to make power, data and utility connections between the two modules. Looking on is Scott A. Bleisath (behind Currie), with the EVA Systems Group at JSC.

  14. Exploring the simulation requirements for virtual regional anesthesia training

    NASA Astrophysics Data System (ADS)

    Charissis, V.; Zimmer, C. R.; Sakellariou, S.; Chan, W.

    2010-01-01

    This paper presents an investigation towards the simulation requirements for virtual regional anaesthesia training. To this end we have developed a prototype human-computer interface designed to facilitate Virtual Reality (VR) augmenting educational tactics for regional anaesthesia training. The proposed interface system, aims to compliment nerve blocking techniques methods. The system is designed to operate in real-time 3D environment presenting anatomical information and enabling the user to explore the spatial relation of different human parts without any physical constrains. Furthermore the proposed system aims to assist the trainee anaesthetists so as to build a mental, three-dimensional map of the anatomical elements and their depictive relationship to the Ultra-Sound imaging which is used for navigation of the anaesthetic needle. Opting for a sophisticated approach of interaction, the interface elements are based on simplified visual representation of real objects, and can be operated through haptic devices and surround auditory cues. This paper discusses the challenges involved in the HCI design, introduces the visual components of the interface and presents a tentative plan of future work which involves the development of realistic haptic feedback and various regional anaesthesia training scenarios.

  15. Heuristic and optimal policy computations in the human brain during sequential decision-making.

    PubMed

    Korn, Christoph W; Bach, Dominik R

    2018-01-23

    Optimal decisions across extended time horizons require value calculations over multiple probabilistic future states. Humans may circumvent such complex computations by resorting to easy-to-compute heuristics that approximate optimal solutions. To probe the potential interplay between heuristic and optimal computations, we develop a novel sequential decision-making task, framed as virtual foraging in which participants have to avoid virtual starvation. Rewards depend only on final outcomes over five-trial blocks, necessitating planning over five sequential decisions and probabilistic outcomes. Here, we report model comparisons demonstrating that participants primarily rely on the best available heuristic but also use the normatively optimal policy. FMRI signals in medial prefrontal cortex (MPFC) relate to heuristic and optimal policies and associated choice uncertainties. Crucially, reaction times and dorsal MPFC activity scale with discrepancies between heuristic and optimal policies. Thus, sequential decision-making in humans may emerge from integration between heuristic and optimal policies, implemented by controllers in MPFC.

  16. Virtual screening of selective inhibitors of phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis

    NASA Astrophysics Data System (ADS)

    Podshivalov, D. D.; Timofeev, V. I.; Sidorov-Biryukov, D. D.; Kuranova, I. P.

    2017-05-01

    Bacterial phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis (PPAT Mt) is a convenient target protein for the directed search for selective inhibitors as potent antituberculosis drugs. Four compounds suitable for the detailed investigation of their interactions with PPAT Mt were found by virtual screening. The active-site region of the enzyme was chosen as the ligand-binding site. The positions of the ligands found by the docking were refined by molecular dynamics simulation. The nearest environment of the ligands, the positions of which in the active site of the enzyme were found in a computational experiment, was analyzed. The compounds under consideration were shown to directly interact with functionally important active-site amino-acid residues and block access of substrates to the active site. Therefore, these compounds can be used for the design of selective inhibitors of PPAT Mt as potent antituberculosis drugs.

  17. Associative programming language and virtual associative access manager

    NASA Technical Reports Server (NTRS)

    Price, C.

    1978-01-01

    APL provides convenient associative data manipulation functions in a high level language. Six statements were added to PL/1 via a preprocessor: CREATE, INSERT, FIND, FOR EACH, REMOVE, and DELETE. They allow complete control of all data base operations. During execution, data base management programs perform the functions required to support the APL language. VAAM is the data base management system designed to support the APL language. APL/VAAM is used by CADANCE, an interactive graphic computer system. VAAM is designed to support heavily referenced files. Virtual memory files, which utilize the paging mechanism of the operating system, are used. VAAM supports a full network data structure. The two basic blocks in a VAAM file are entities and sets. Entities are the basic information element and correspond to PL/1 based structures defined by the user. Sets contain the relationship information and are implemented as arrays.

  18. 48 CFR 50.203 - General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... management protections for sellers of QATTs and others in the supply and distribution chain. (b) The SAFETY... website are block designations and block certifications granted by DHS. [72 FR 63030, Nov. 7, 2007, as...

  19. 48 CFR 50.203 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... management protections for sellers of QATTs and others in the supply and distribution chain. (b) The SAFETY... website are block designations and block certifications granted by DHS. [72 FR 63030, Nov. 7, 2007, as...

  20. 48 CFR 50.203 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... management protections for sellers of QATTs and others in the supply and distribution chain. (b) The SAFETY... website are block designations and block certifications granted by DHS. [72 FR 63030, Nov. 7, 2007, as...

  1. 48 CFR 50.203 - General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... management protections for sellers of QATTs and others in the supply and distribution chain. (b) The SAFETY... website are block designations and block certifications granted by DHS. [72 FR 63030, Nov. 7, 2007, as...

  2. The effect of distributed virtual reality simulation training on cognitive load during subsequent dissection training.

    PubMed

    Andersen, Steven Arild Wuyts; Konge, Lars; Sørensen, Mads Sølvsten

    2018-05-07

    Complex tasks such as surgical procedures can induce excessive cognitive load (CL), which can have a negative effect on learning, especially for novices. To investigate if repeated and distributed virtual reality (VR) simulation practice induces a lower CL and higher performance in subsequent cadaveric dissection training. In a prospective, controlled cohort study, 37 residents in otorhinolaryngology received VR simulation training either as additional distributed practice prior to course participation (intervention) (9 participants) or as standard practice during the course (control) (28 participants). Cognitive load was estimated as the relative change in secondary-task reaction time during VR simulation and cadaveric procedures. Structured distributed VR simulation practice resulted in lower mean reaction times (32% vs. 47% for the intervention and control group, respectively, p < 0.01) as well as a superior final-product performance during subsequent cadaveric dissection training. Repeated and distributed VR simulation causes a lower CL to be induced when the learning situation is increased in complexity. A suggested mechanism is the formation of mental schemas and reduction of the intrinsic CL. This has potential implications for surgical skills training and suggests that structured, distributed training be systematically implemented in surgical training curricula.

  3. How Much Volume of Local Anesthesia and How Long Should You Wait After Injection for an Effective Wrist Median Nerve Block?

    PubMed

    Lovely, Lyndsay M; Chishti, Yasmin Z; Woodland, Jennifer L; Lalonde, Donald H

    2018-05-01

    Many surgeons and emergentologists use non-ultrasound-guided wrist nerve blocks. There is little evidence to guide the ideal volume of local anesthesia or how long we should wait after injection before performing pain-free procedures. This pilot study examined time to maximal anesthesia to painful needle stick in 14 volunteer participants receiving bilateral wrist blocks of 6 versus 11 mL of local. One surgeon performed all 14 bilateral wrist median nerve blocks in participants who remained blinded until after bandages were applied to their wrist. No one could see which wrist received the larger 11-mL volume injection versus the 6-mL block. Blinded sensory assessors then measured perceived maximal numbness time and numbness to needle stick pain in the fingertips of the median nerve distribution. Failure to get a complete median nerve block occurred in seven of fourteen 6-mL wrist blocks versus failure in only one of fourteen 11-mL blocks. Perceived maximal numbness occurred at roughly 40 minutes after injection, but actual numbness to painful needle stick took around 100 minutes. Incomplete median nerve numbness occurred with both 6- and 11-mL non-ultrasound-guided blocks at the wrist. In those with complete blocks, it took a surprisingly long time of 100 minutes for maximal anesthesia to occur to painful needle stick stimuli to the fingertips of the median nerve distribution. Non-ultrasound-guided median nerve blocks at the wrist as described in this article lack reliability and take too long to work.

  4. Mechanistic Basis for Biological Polymer Stability, Electron Transfer and Molecular Sensing in Extreme Environments

    DTIC Science & Technology

    2015-12-02

    electrically driven CO2 fixation. Many different types of extremophiles are known that are robust and resistant to heat or DISTRIBUTION A: Distribution...Metabolic and photosynthetic consequences of blocking starch biosynthesis in the green alga Chlamydomonas reinhardtii sta6 mutant. Plant Journal 81...photosynthetic consequences of blocking starch biosynthesis in the green alga Chlamydomonas reinhardtii sta6 mutant. Plant Journal 81, 947-960

  5. Virtualizing access to scientific applications with the Application Hosting Environment

    NASA Astrophysics Data System (ADS)

    Zasada, S. J.; Coveney, P. V.

    2009-12-01

    The growing power and number of high performance computing resources made available through computational grids present major opportunities as well as a number of challenges to the user. At issue is how these resources can be accessed and how their power can be effectively exploited. In this paper we first present our views on the usability of contemporary high-performance computational resources. We introduce the concept of grid application virtualization as a solution to some of the problems with grid-based HPC usability. We then describe a middleware tool that we have developed to realize the virtualization of grid applications, the Application Hosting Environment (AHE), and describe the features of the new release, AHE 2.0, which provides access to a common platform of federated computational grid resources in standard and non-standard ways. Finally, we describe a case study showing how AHE supports clinical use of whole brain blood flow modelling in a routine and automated fashion. Program summaryProgram title: Application Hosting Environment 2.0 Catalogue identifier: AEEJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Public Licence, Version 2 No. of lines in distributed program, including test data, etc.: not applicable No. of bytes in distributed program, including test data, etc.: 1 685 603 766 Distribution format: tar.gz Programming language: Perl (server), Java (Client) Computer: x86 Operating system: Linux (Server), Linux/Windows/MacOS (Client) RAM: 134 217 728 (server), 67 108 864 (client) bytes Classification: 6.5 External routines: VirtualBox (server), Java (client) Nature of problem: The middleware that makes grid computing possible has been found by many users to be too unwieldy, and presents an obstacle to use rather than providing assistance [1,2]. Such problems are compounded when one attempts to harness the power of a grid, or a federation of different grids, rather than just a single resource on the grid. Solution method: To address the above problem, we have developed AHE, a lightweight interface, designed to simplify the process of running scientific codes on a grid of HPC and local resources. AHE does this by introducing a layer of middleware between the user and the grid, which encapsulates much of the complexity associated with launching grid applications. Unusual features: The server is distributed as a VirtualBox virtual machine. VirtualBox ( http://www.virtualbox.org) must be downloaded and installed in order to run the AHE server virtual machine. Details of how to do this are given in the AHE 2.0 Quick Start Guide. Running time: Not applicable References:J. Chin, P.V. Coveney, Towards tractable toolkits for the grid: A plea for lightweight, useable middleware, NeSC Technical Report, 2004, http://nesc.ac.uk/technical_papers/UKeS-2004-01.pdf. P.V. Coveney, R.S. Saksena, S.J. Zasada, M. McKeown, S. Pickles, The Application Hosting Environment: Lightweight middleware for grid-based computational science, Computer Physics Communications 176 (2007) 406-418.

  6. Extraction of Generalized Parton Distributions from combined Deeply Virtual Compton Scattering and Timelike Compton scattering fits

    NASA Astrophysics Data System (ADS)

    Boer, Marie

    2017-09-01

    Generalized Parton Distributions (GPDs) contain the correlation between the parton's longitudinal momentum and their transverse distribution. They are accessed through hard exclusive processes, such as Deeply Virtual Compton Scattering (DVCS). DVCS has already been measured in several experiments and several models allow for extracting GPDs from these measurements. Timelike Compton Scattering (TCS) is, at leading order, the time-reversal equivalent process to DVCS and accesses GPDs at the same kinematics. Comparing GPDs extracted from DVCS and TCS is a unique way for proving GPD universality. Combining fits from the two processes will also allow for better constraining the GPDs. We will present our method for extracting GPDs from DVCS and TCS pseudo-data. We will compare fit results from the two processes in similar conditions and present what can be expected in term of contraints on GPDs from combined fits.

  7. NASA Virtual Glovebox: An Immersive Virtual Desktop Environment for Training Astronauts in Life Science Experiments

    NASA Technical Reports Server (NTRS)

    Twombly, I. Alexander; Smith, Jeffrey; Bruyns, Cynthia; Montgomery, Kevin; Boyle, Richard

    2003-01-01

    The International Space Station will soon provide an unparalleled research facility for studying the near- and longer-term effects of microgravity on living systems. Using the Space Station Glovebox Facility - a compact, fully contained reach-in environment - astronauts will conduct technically challenging life sciences experiments. Virtual environment technologies are being developed at NASA Ames Research Center to help realize the scientific potential of this unique resource by facilitating the experimental hardware and protocol designs and by assisting the astronauts in training. The Virtual GloveboX (VGX) integrates high-fidelity graphics, force-feedback devices and real- time computer simulation engines to achieve an immersive training environment. Here, we describe the prototype VGX system, the distributed processing architecture used in the simulation environment, and modifications to the visualization pipeline required to accommodate the display configuration.

  8. SmallTool - a toolkit for realizing shared virtual environments on the Internet

    NASA Astrophysics Data System (ADS)

    Broll, Wolfgang

    1998-09-01

    With increasing graphics capabilities of computers and higher network communication speed, networked virtual environments have become available to a large number of people. While the virtual reality modelling language (VRML) provides users with the ability to exchange 3D data, there is still a lack of appropriate support to realize large-scale multi-user applications on the Internet. In this paper we will present SmallTool, a toolkit to support shared virtual environments on the Internet. The toolkit consists of a VRML-based parsing and rendering library, a device library, and a network library. This paper will focus on the networking architecture, provided by the network library - the distributed worlds transfer and communication protocol (DWTP). DWTP provides an application-independent network architecture to support large-scale multi-user environments on the Internet.

  9. Managing distributed software development in the Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Evans, Janet D.; Plante, Raymond L.; Boneventura, Nina; Busko, Ivo; Cresitello-Dittmar, Mark; D'Abrusco, Raffaele; Doe, Stephen; Ebert, Rick; Laurino, Omar; Pevunova, Olga; Refsdal, Brian; Thomas, Brian

    2012-09-01

    The U.S. Virtual Astronomical Observatory (VAO) is a product-driven organization that provides new scientific research capabilities to the astronomical community. Software development for the VAO follows a lightweight framework that guides development of science applications and infrastructure. Challenges to be overcome include distributed development teams, part-time efforts, and highly constrained schedules. We describe the process we followed to conquer these challenges while developing Iris, the VAO application for analysis of 1-D astronomical spectral energy distributions (SEDs). Iris was successfully built and released in less than a year with a team distributed across four institutions. The project followed existing International Virtual Observatory Alliance inter-operability standards for spectral data and contributed a SED library as a by-product of the project. We emphasize lessons learned that will be folded into future development efforts. In our experience, a well-defined process that provides guidelines to ensure the project is cohesive and stays on track is key to success. Internal product deliveries with a planned test and feedback loop are critical. Release candidates are measured against use cases established early in the process, and provide the opportunity to assess priorities and make course corrections during development. Also key is the participation of a stakeholder such as a lead scientist who manages the technical questions, advises on priorities, and is actively involved as a lead tester. Finally, frequent scheduled communications (for example a bi-weekly tele-conference) assure issues are resolved quickly and the team is working toward a common vision.

  10. Separating twin images and locating the center of a microparticle in dense suspensions using correlations among reconstructed fields of two parallel holograms.

    PubMed

    Ling, Hangjian; Katz, Joseph

    2014-09-20

    This paper deals with two issues affecting the application of digital holographic microscopy (DHM) for measuring the spatial distribution of particles in a dense suspension, namely discriminating between real and virtual images and accurate detection of the particle center. Previous methods to separate real and virtual fields have involved applications of multiple phase-shifted holograms, combining reconstructed fields of multiple axially displaced holograms, and analysis of intensity distributions of weakly scattering objects. Here, we introduce a simple approach based on simultaneously recording two in-line holograms, whose planes are separated by a short distance from each other. This distance is chosen to be longer than the elongated trace of the particle. During reconstruction, the real images overlap, whereas the virtual images are displaced by twice the distance between hologram planes. Data analysis is based on correlating the spatial intensity distributions of the two reconstructed fields to measure displacement between traces. This method has been implemented for both synthetic particles and a dense suspension of 2 μm particles. The correlation analysis readily discriminates between real and virtual images of a sample containing more than 1300 particles. Consequently, we can now implement DHM for three-dimensional tracking of particles when the hologram plane is located inside the sample volume. Spatial correlations within the same reconstructed field are also used to improve the detection of the axial location of the particle center, extending previously introduced procedures to suspensions of microscopic particles. For each cross section within a particle trace, we sum the correlations among intensity distributions in all planes located symmetrically on both sides of the section. This cumulative correlation has a sharp peak at the particle center. Using both synthetic and recorded particle fields, we show that the uncertainty in localizing the axial location of the center is reduced to about one particle's diameter.

  11. Block rotations, fault domains and crustal deformation in the western US

    NASA Technical Reports Server (NTRS)

    Nur, Amos

    1990-01-01

    The aim of the project was to develop a 3D model of crustal deformation by distributed fault sets and to test the model results in the field. In the first part of the project, Nur's 2D model (1986) was generalized to 3D. In Nur's model the frictional strength of rocks and faults of a domain provides a tight constraint on the amount of rotation that a fault set can undergo during block rotation. Domains of fault sets are commonly found in regions where the deformation is distributed across a region. The interaction of each fault set causes the fault bounded blocks to rotate. The work that has been done towards quantifying the rotation of fault sets in a 3D stress field is briefly summarized. In the second part of the project, field studies were carried out in Israel, Nevada and China. These studies combined both paleomagnetic and structural information necessary to test the block rotation model results. In accordance with the model, field studies demonstrate that faults and attending fault bounded blocks slip and rotate away from the direction of maximum compression when deformation is distributed across fault sets. Slip and rotation of fault sets may continue as long as the earth's crustal strength is not exceeded. More optimally oriented faults must form, for subsequent deformation to occur. Eventually the block rotation mechanism may create a complex pattern of intersecting generations of faults.

  12. Bondable Fluoropolymer Film as a Water Block/Acoustic Window for Environmentally Isolating Acoustic Devices

    DTIC Science & Technology

    2005-11-30

    titanium 2 I foil which is wrapped around a polyurethane molded acoustic 2 device and local preamplifier for the purpose of water-proofing 3 and...typical sonar signals transmitted through the 14 films 12 and 14. Therefore, the film 12 can be added to 15 traditional acoustic window designs to...4 virtually no effect on typical sonar signals yet eliminates an 5 otherwise costly and relatively thick rubber or polymer skin that 6 can be

  13. Esthetic considerations for the treatment of the edentulous maxilla based on current informatic alternatives: a case report.

    PubMed

    Rodríguez-Tizcareño, Mario H; Barajas, Lizbeth; Pérez-Gásque, Marisol; Gómez, Salvador

    2012-06-01

    This report presents a protocol used to transfer the virtual treatment plan data to the surgical and prosthetic reality and its clinical application, bone site augmentation with computer-custom milled bovine bone graft blocks to their ideal architecture form, implant insertion based on image-guided stent fabrication, and the restorative manufacturing process through computed tomography-based software programs and navigation systems and the computer-aided design and manufacturing techniques for the treatment of the edentulous maxilla.

  14. Nebulization Reflux Concentrator

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Collins, V. G.

    1986-01-01

    Nebulization reflux concentrator extracts and concentrates trace quantities of water-soluble gases for subsequent chemical analysis. Hydrophobic membrane and nebulizing nozzles form scrubber for removing trace quantities of soluble gases or other contaminants from atmosphere. Although hydrophobic membrane virtually blocks all transport of droplets, it offers little resistance to gas flow; hence, device permits relatively large volumes of gas scrubbed efficiently with very small volumes of liquid. This means analyzable quantities of contaminants concentrate in extracting solutions in much shorter times than with conventional techniques.

  15. Design of an Intelligent Front-End Signal Conditioning Circuit for IR Sensors

    NASA Astrophysics Data System (ADS)

    de Arcas, G.; Ruiz, M.; Lopez, J. M.; Gutierrez, R.; Villamayor, V.; Gomez, L.; Montojo, Mª. T.

    2008-02-01

    This paper presents the design of an intelligent front-end signal conditioning system for IR sensors. The system has been developed as an interface between a PbSe IR sensor matrix and a TMS320C67x digital signal processor. The system architecture ensures its scalability so it can be used for sensors with different matrix sizes. It includes an integrator based signal conditioning circuit, a data acquisition converter block, and a FPGA based advanced control block that permits including high level image preprocessing routines such as faulty pixel detection and sensor calibration in the signal conditioning front-end. During the design phase virtual instrumentation technologies proved to be a very valuable tool for prototyping when choosing the best A/D converter type for the application. Development time was significantly reduced due to the use of this technology.

  16. Aberrant ligand-induced activation of G protein-coupled estrogen receptor 1 (GPER) results in developmental malformations during vertebrate embryogenesis.

    PubMed

    Jayasinghe, B Sumith; Volz, David C

    2012-01-01

    G protein-coupled estrogen receptor 1 (GPER) is a G protein-coupled receptor (GPCR) unrelated to nuclear estrogen receptors but strongly activated by 17β-estradiol in both mammals and fish. To date, the distribution and functional characterization of GPER within reproductive and nonreproductive vertebrate organs have been restricted to juvenile and adult animals. In contrast, virtually nothing is known about the spatiotemporal distribution and function of GPER during vertebrate embryogenesis. Using zebrafish as an animal model, we investigated the potential functional role and expression of GPER during embryogenesis. Based on real-time PCR and whole-mount in situ hybridization, gper was expressed as early as 1 h postfertilization (hpf) and exhibited strong stage-dependent expression patterns during embryogenesis. At 26 and 38 hpf, gper mRNA was broadly distributed throughout the body, whereas from 50 to 98 hpf, gper expression was increasingly localized to the heart, brain, neuromasts, craniofacial region, and somite boundaries of developing zebrafish. Continuous exposure to a selective GPER agonist (G-1)-but not continuous exposure to a selective GPER antagonist (G-15)-from 5 to 96 hpf, or within three developmental windows ranging from 10 to 72 hpf, resulted in adverse concentration-dependent effects on survival, gross morphology, and somite formation within the trunk of developing zebrafish embryos. Importantly, based on co-exposure studies, G-15 blocked severe G-1-induced developmental toxicity, suggesting that G-1 toxicity is mediated via aberrant activation of GPER. Overall, our findings suggest that xenobiotic-induced GPER activation represents a potentially novel and understudied mechanism of toxicity for environmentally relevant chemicals that affect vertebrate embryogenesis.

  17. The addition of a regional block team to the orthopedic operating rooms does not improve anesthesia-controlled times and turnover time in the setting of long turnover times.

    PubMed

    Eappen, Sunil; Flanagan, Hugh; Lithman, Rachel; Bhattacharyya, Neil

    2007-03-01

    To determine whether a regional block team with a dedicated space for performance of regional anesthetics would decrease turnover time and shorten the working day in a busy orthopedic practice with lengthy turnover times. Prospective, randomized study. Tertiary-care teaching hospital. 927 orthopedic procedures over a three-month period. The randomized placement of a regional block team to the orthopedic operating room (OR) suite. We evaluated the differences in anesthesia-controlled times, first-case start times, turnover times, and OR end times using a computerized OR information system. We also surveyed the surgeons regarding their perceptions of changes in turnover time and anesthesia-controlled times during the study period. Standard descriptive statistics were computed. Of a total of 927 cases, 398 cases were cared for by a regional block team and 529 cases received care in the usual manner, with the OR team providing the regional block. There was no difference between the study and control groups for on-time, first-case starts (57.73% vs 42.27%), induction time (13.2 vs 14.2 min), emergence time (8.1 vs 9.0 min), turnover time (70.3 vs 77.8 min), and OR end times. Most of the surgeons surveyed felt that the regional block team reduced turnover time significantly. A regional block team in this environment does not reduce anesthesia-controlled times and turnover times in an orthopedic OR suite with long turnover times, and it would be virtually impossible to recover the associated extra cost. The surgeons' perspective of turnover time is inaccurate.

  18. Urology residents training in laparoscopic surgery. Development of a virtual reality model.

    PubMed

    Gutiérrez-Baños, J L; Ballestero-Diego, R; Truan-Cacho, D; Aguilera-Tubet, C; Villanueva-Peña, A; Manuel-Palazuelos, J C

    2015-11-01

    The training and learning of residents in laparoscopic surgery has legal, financial and technological limitations. Simulation is an essential tool in the training of residents as a supplement to their training in laparoscopic surgery. The training should be structured in an appropriate environment, with previously established and clear objectives, taught by professionals with clinical and teaching experience in simulation. The training should be conducted with realistic models using animals and ex-vivo tissue from animals. It is essential to incorporate mechanisms to assess the objectives during the residents' training progress. We present the training model for laparoscopic surgery for urology residents at the University Hospital Valdecilla. The training is conducted at the Virtual Hospital Valdecilla, which is associated with the Center for Medical Simulation in Boston and is accredited by the American College of Surgeons. The model is designed in 3 blocks, basic for R1, intermediate for R2-3 and advanced for R4-5, with 9 training modules. The training is conducted in 4-hour sessions for 4 afternoons, for 3 weeks per year of residence. Residents therefore perform 240 hours of simulated laparoscopic training by the end of the course. For each module, we use structured objective assessments to measure each resident's training progress. Since 2003, 9 urology residents have been trained, in addition to the 5 who are currently in training. The model has undergone changes according to the needs expressed in the student feedback. The acquisition of skills in a virtual reality model has enabled the safe transfer of those skills to actual practice. A laparoscopic surgery training program designed in structured blocks and with progressive complexity provides appropriate training for transferring the skills acquired using this model to an actual scenario while maintaining patient safety. Copyright © 2015 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Modeling the response of small myelinated axons in a compound nerve to kilohertz frequency signals

    NASA Astrophysics Data System (ADS)

    Pelot, N. A.; Behrend, C. E.; Grill, W. M.

    2017-08-01

    Objective. There is growing interest in electrical neuromodulation of peripheral nerves, particularly autonomic nerves, to treat various diseases. Electrical signals in the kilohertz frequency (KHF) range can produce different responses, including conduction block. For example, EnteroMedics’ vBloc® therapy for obesity delivers 5 kHz stimulation to block the abdominal vagus nerves, but the mechanisms of action are unclear. Approach. We developed a two-part computational model, coupling a 3D finite element model of a cuff electrode around the human abdominal vagus nerve with biophysically-realistic electrical circuit equivalent (cable) model axons (1, 2, and 5.7 µm in diameter). We developed an automated algorithm to classify conduction responses as subthreshold (transmission), KHF-evoked activity (excitation), or block. We quantified neural responses across kilohertz frequencies (5-20 kHz), amplitudes (1-8 mA), and electrode designs. Main results. We found heterogeneous conduction responses across the modeled nerve trunk, both for a given parameter set and across parameter sets, although most suprathreshold responses were excitation, rather than block. The firing patterns were irregular near transmission and block boundaries, but otherwise regular, and mean firing rates varied with electrode-fibre distance. Further, we identified excitation responses at amplitudes above block threshold, termed ‘re-excitation’, arising from action potentials initiated at virtual cathodes. Excitation and block thresholds decreased with smaller electrode-fibre distances, larger fibre diameters, and lower kilohertz frequencies. A point source model predicted a larger fraction of blocked fibres and greater change of threshold with distance as compared to the realistic cuff and nerve model. Significance. Our findings of widespread asynchronous KHF-evoked activity suggest that conduction block in the abdominal vagus nerves is unlikely with current clinical parameters. Our results indicate that compound neural or downstream muscle force recordings may be unreliable as quantitative measures of neural activity for in vivo studies or as biomarkers in closed-loop clinical devices.

  20. Modeling the response of small myelinated axons in a compound nerve to kilohertz frequency signals.

    PubMed

    Pelot, N A; Behrend, C E; Grill, W M

    2017-08-01

    There is growing interest in electrical neuromodulation of peripheral nerves, particularly autonomic nerves, to treat various diseases. Electrical signals in the kilohertz frequency (KHF) range can produce different responses, including conduction block. For example, EnteroMedics' vBloc ® therapy for obesity delivers 5 kHz stimulation to block the abdominal vagus nerves, but the mechanisms of action are unclear. We developed a two-part computational model, coupling a 3D finite element model of a cuff electrode around the human abdominal vagus nerve with biophysically-realistic electrical circuit equivalent (cable) model axons (1, 2, and 5.7 µm in diameter). We developed an automated algorithm to classify conduction responses as subthreshold (transmission), KHF-evoked activity (excitation), or block. We quantified neural responses across kilohertz frequencies (5-20 kHz), amplitudes (1-8 mA), and electrode designs. We found heterogeneous conduction responses across the modeled nerve trunk, both for a given parameter set and across parameter sets, although most suprathreshold responses were excitation, rather than block. The firing patterns were irregular near transmission and block boundaries, but otherwise regular, and mean firing rates varied with electrode-fibre distance. Further, we identified excitation responses at amplitudes above block threshold, termed 're-excitation', arising from action potentials initiated at virtual cathodes. Excitation and block thresholds decreased with smaller electrode-fibre distances, larger fibre diameters, and lower kilohertz frequencies. A point source model predicted a larger fraction of blocked fibres and greater change of threshold with distance as compared to the realistic cuff and nerve model. Our findings of widespread asynchronous KHF-evoked activity suggest that conduction block in the abdominal vagus nerves is unlikely with current clinical parameters. Our results indicate that compound neural or downstream muscle force recordings may be unreliable as quantitative measures of neural activity for in vivo studies or as biomarkers in closed-loop clinical devices.

  1. Fully automated three-dimensional microscopy system

    NASA Astrophysics Data System (ADS)

    Kerschmann, Russell L.

    2000-04-01

    Tissue-scale structures such as vessel networks are imaged at micron resolution with the Virtual Tissue System (VT System). VT System imaging of cubic millimeters of tissue and other material extends the capabilities of conventional volumetric techniques such as confocal microscopy, and allows for the first time the integrated 2D and 3D analysis of important tissue structural relationships. The VT System eliminates the need for glass slide-mounted tissue sections and instead captures images directly from the surface of a block containing a sample. Tissues are en bloc stained with fluorochrome compounds, embedded in an optically conditioned polymer that suppresses image signals form dep within the block , and serially sectioned for imaging. Thousands of fully registered 2D images are automatically captured digitally to completely convert tissue samples into blocks of high-resolution information. The resulting multi gigabyte data sets constitute the raw material for precision visualization and analysis. Cellular function may be seen in a larger anatomical context. VT System technology makes tissue metrics, accurate cell enumeration and cell cycle analyses possible while preserving full histologic setting.

  2. Research on virtual network load balancing based on OpenFlow

    NASA Astrophysics Data System (ADS)

    Peng, Rong; Ding, Lei

    2017-08-01

    The Network based on OpenFlow technology separate the control module and data forwarding module. Global deployment of load balancing strategy through network view of control plane is fast and of high efficiency. This paper proposes a Weighted Round-Robin Scheduling algorithm for virtual network and a load balancing plan for server load based on OpenFlow. Load of service nodes and load balancing tasks distribution algorithm will be taken into account.

  3. Liberating Virtual Machines from Physical Boundaries through Execution Knowledge

    DTIC Science & Technology

    2015-12-01

    trivial infrastructures such as VM distribution networks, clients need to wait for an extended period of time before launching a VM. In cloud settings...hardware support. MobiDesk [28] efficiently supports virtual desktops in mobile environments by decou- pling the user’s workload from host systems and...experiment set-up. VMs are migrated between a pair of source and destination hosts, which are connected through a backend 10 Gbps network for

  4. Fiberglass distribution poles: A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, M.F.; Hosford, G.S.; Boozer, J.F. III

    1995-01-01

    This paper addresses the design considerations and manufacturing techniques along with mechanical test results of fiberglass reinforced composite (FRC) primary distribution poles. With it`s light weight, and virtually no maintenance it offers a viable alternative for use in remote and inaccessible locations. This paper also discusses a case study where seventy five FRC primary distribution poles have been installed on a distribution system in a remote area accessible only by foot and helicopter.

  5. Shifty: A Weight-Shifting Dynamic Passive Haptic Proxy to Enhance Object Perception in Virtual Reality.

    PubMed

    Zenner, Andre; Kruger, Antonio

    2017-04-01

    We define the concept of Dynamic Passive Haptic Feedback (DPHF) for virtual reality by introducing the weight-shifting physical DPHF proxy object Shifty. This concept combines actuators known from active haptics and physical proxies known from passive haptics to construct proxies that automatically adapt their passive haptic feedback. We describe the concept behind our ungrounded weight-shifting DPHF proxy Shifty and the implementation of our prototype. We then investigate how Shifty can, by automatically changing its internal weight distribution, enhance the user's perception of virtual objects interacted with in two experiments. In a first experiment, we show that Shifty can enhance the perception of virtual objects changing in shape, especially in length and thickness. Here, Shifty was shown to increase the user's fun and perceived realism significantly, compared to an equivalent passive haptic proxy. In a second experiment, Shifty is used to pick up virtual objects of different virtual weights. The results show that Shifty enhances the perception of weight and thus the perceived realism by adapting its kinesthetic feedback to the picked-up virtual object. In the same experiment, we additionally show that specific combinations of haptic, visual and auditory feedback during the pick-up interaction help to compensate for visual-haptic mismatch perceived during the shifting process.

  6. Flying Cassini with Virtual Operations Teams

    NASA Technical Reports Server (NTRS)

    Dodd, Suzanne; Gustavson, Robert

    1998-01-01

    The Cassini Program's challenge is to fly a large, complex mission with a reduced operations budget. A consequence of the reduced budget is elimination of the large, centrally located group traditionally used for uplink operations. Instead, responsibility for completing parts of the uplink function is distributed throughout the Program. A critical strategy employed to handle this challenge is the use of Virtual Uplink Operations Teams. A Virtual Team is comprised of a group of people with the necessary mix of engineering and science expertise who come together for the purpose of building a specific uplink product. These people are drawn from throughout the Cassini Program and participate across a large geographical area (from Germany to the West coast of the USA), covering ten time zones. The participants will often split their time between participating in the Virtual Team and accomplishing their core responsibilities, requiring significant planning and time management. When the particular uplink product task is complete, the Virtual Team disbands and the members turn back to their home organization element for future work assignments. This time-sharing of employees is used on Cassini to build mission planning products, via the Mission Planning Virtual Team, and sequencing products and monitoring of the sequence execution, via the Sequence Virtual Team. This challenging, multitasking approach allows efficient use of personnel in a resource constrained environment.

  7. A Robust, Low-Cost Virtual Archive for Science Data

    NASA Technical Reports Server (NTRS)

    Lynnes, Christopher; Vollmer, Bruce

    2005-01-01

    Despite their expense tape silos are still often the only affordable option for petabytescale science data archives, particularly when other factors such as data reliability, floor space, power and cooling load are accounted for. However, the complexity, management software, hardware reliability and access latency of tape silos make online data storage ever more attractive. Drastic reductions in low-cost mass-market PC disk drivers help to make this more affordable (approx. 1$/GB), but are challenging to scale to the petabyte range and of questionable reliability for archival use, On the other hand, if much of the science archive could be "virtualized", i.e., produced on demand when requested by users, we would need store only a fraction of the data online, perhaps bringing an online-only system into in affordable range. Radiance data from the satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS) instrument provides a good opportunity for such a virtual archive: the raw data amount to 140 GB/day, but these are small relative to the 550 GB/day making up the radiance products. These data are routinely processed as inputs for geophysical parameter products and then archived on tape at the Goddard Earth Sciences Distributed Active Archive (GES DAAC) for distributing to users. Virtualizing them would be an immediate and signifcant reduction in the amount of data being stored in the tape archives and provide more customizable products. A prototype of such a virtual archive is being developed to prove the concept and develop ways of incorporating the robustness that a science data archive requires.

  8. SimITK: visual programming of the ITK image-processing library within Simulink.

    PubMed

    Dickinson, Andrew W L; Abolmaesumi, Purang; Gobbi, David G; Mousavi, Parvin

    2014-04-01

    The Insight Segmentation and Registration Toolkit (ITK) is a software library used for image analysis, visualization, and image-guided surgery applications. ITK is a collection of C++ classes that poses the challenge of a steep learning curve should the user not have appropriate C++ programming experience. To remove the programming complexities and facilitate rapid prototyping, an implementation of ITK within a higher-level visual programming environment is presented: SimITK. ITK functionalities are automatically wrapped into "blocks" within Simulink, the visual programming environment of MATLAB, where these blocks can be connected to form workflows: visual schematics that closely represent the structure of a C++ program. The heavily templated C++ nature of ITK does not facilitate direct interaction between Simulink and ITK; an intermediary is required to convert respective data types and allow intercommunication. As such, a SimITK "Virtual Block" has been developed that serves as a wrapper around an ITK class which is capable of resolving the ITK data types to native Simulink data types. Part of the challenge surrounding this implementation involves automatically capturing and storing the pertinent class information that need to be refined from an initial state prior to being reflected within the final block representation. The primary result from the SimITK wrapping procedure is multiple Simulink block libraries. From these libraries, blocks are selected and interconnected to demonstrate two examples: a 3D segmentation workflow and a 3D multimodal registration workflow. Compared to their pure-code equivalents, the workflows highlight ITK usability through an alternative visual interpretation of the code that abstracts away potentially confusing technicalities.

  9. Spatial Distribution of Partner-Seeking Men Who Have Sex With Men Using Geosocial Networking Apps: Epidemiologic Study

    PubMed Central

    Algarin, Angel B; Ward, Patrick J; Christian, W Jay; Rudolph, Abby E; Holloway, Ian W

    2018-01-01

    Background Geosocial networking apps have made sexual partner-seeking easier for men who have sex with men, raising both challenges and opportunities for human immunodeficiency virus and sexually transmitted infection prevention and research. Most studies on men who have sex with men geosocial networking app use have been conducted in large urban areas, despite research indicating similar patterns of online- and app-based sex-seeking among men who have sex with men in rural and midsize cities. Objective The goal of our research was to examine the spatial distribution of geosocial networking app usage and characterize areas with increasing numbers of partner-seeking men who have sex with men in a midsize city in the South. Methods Data collection points (n=62) were spaced in 2-mile increments along 9 routes (112 miles) covering the county encompassing the city. At each point, staff logged into 3 different geosocial networking apps to record the number of geosocial networking app users within a 1-mile radius. Data were collected separately during weekday daytime (9:00 AM to 4:00 PM) and weekend nighttime (8:00 PM to 12:00 AM) hours. Empirical Bayesian kriging was used to create a raster estimating the number of app users throughout the county. Raster values were summarized for each of the county's 208 Census block groups and used as the outcome measure (ie, geosocial networking app usage). Negative binomial regression and Wilcoxon signed rank sum tests were used to examine Census block group variables (eg, median income, median age) associated with geosocial networking app usage and temporal differences in app usage, respectively. Results The number of geosocial networking app users within a 1-mile radius of the data collection points ranged from 0 to 36 during weekday daytime hours and 0 to 39 during weekend nighttime hours. In adjusted analyses, Census block group median income and percent Hispanic ethnicity were negatively associated with geosocial networking app usage for all 3 geosocial networking apps during weekday daytime and weekend nighttime hours. Population density and the presence of businesses were positively associated with geosocial networking app usage for all 3 geosocial networking apps during both times. Conclusions In this midsize city, geosocial networking app usage was highest in areas that were more population-dense, were lower income, and had more businesses. This research is an example of how geosocial networking apps’ geospatial capabilities can be used to better understand patterns of virtual partner-seeking among men who have sex with men. PMID:29853441

  10. Asymmetric training using virtual reality reflection equipment and the enhancement of upper limb function in stroke patients: a randomized controlled trial.

    PubMed

    Lee, DongJin; Lee, MyungMo; Lee, KyoungJin; Song, ChangHo

    2014-07-01

    Asymmetric movements with both hands contributed to the improvement of spatially coupled motion. Thus, the aim of this study was to investigate the effects of an asymmetric training program using virtual reality reflection equipment on upper limb function in stroke patients. Twenty-four stroke patients were randomly allocated to an experimental group (n=12) or a control group (n=12). Both groups participated in conventional physical therapy for 2×30 min/d, 5 d/wk, for 4 weeks. The experimental group also participated in an asymmetric training program using virtual reality reflection equipment, and the control group participated in a symmetric training program. Both asymmetric and symmetric programs were conducted for 30 min/d, 5 d/wk, for 4 weeks. To compare upper limb function before and after intervention, the Fugl-Meyer Assessment (FMA), the Box and Block Test (BBT), grip strength, range of motion (ROM), and spasticity were assessed. Both groups showed significant increases in upper limb function, excepting spasticity, after intervention (P<.05, 1-way repeated-measures analysis of variance [ANOVA]). A significant group-time interaction was demonstrated only for shoulder/elbow/wrist items of FMA, BBT, grip strength, and ROM of wrist flexion, extension, and ulnar deviation (P<.05, 2-way repeated-measures ANOVA). This study confirms that the asymmetric training program using virtual reality reflection equipment is an effective intervention method for improving upper limb function in stroke patients. We consider that an additional study based on a program using virtual reflection, which is more functional than performing simple tasks, and consisting of tasks relevant to the activities of daily living be conducted. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  11. Commencement Bay Study. Volume II. Land and Water Use.

    DTIC Science & Technology

    1981-12-31

    DISTRISUTION STATEMENT (of We Report) Approved for public release, distribution unlimited 17. DISTRIBUTION STATEMENT (e1 the obearle nteed he Block ...the study area boundaries. With the exception of commercially zoned (C-1) lands extending for one-half block on the west side of Pearl Street from...ASARCO to cool slag and as noncontact cooling water in plant processes. While ASARCO uses more marine water than potable water, most other local

  12. Self-Assembly of a Modular Polypeptide Based on Blocks of Silk-Mimetic and Elastin-Mimetic Sequences

    DTIC Science & Technology

    2002-04-01

    Silk -Mimetic and Elastin-Mimetic Sequences DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following...724 © 2002 Materials Research Society N3.8 Self-Assembly of a Modular Polypeptide based on Blocks of Silk -Mimetic and Elastin- Mimetic Sequences...Chrystelle S. Cazalis, and Vincent P. Conticello* Department of Chemistry, Emory University, Atlanta, GA 30322 ABSTRACT Spider dragline silk fiber displays

  13. Phase Equilibria and Transition in Mixtures of a Homopolymer and a Block Copolymer. I. Small-Angle X-Ray Scattering Study.

    DTIC Science & Technology

    1983-03-08

    tlh repow ) !Unclassified lie. DECLASSI FICATION/ DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT ( of this Report) Distribution Unlimited, Approved for...a block copolymer can sometimes be transformed into a homogeneous, disordered structure. The tem- perature of the transition depends on the degree of ...probably that the morphology is gradually transformed from spherical to cylindrical and eventually to lamellar packing. There is, however, no evidence of

  14. Numerical modelling of distributed vibration sensor based on phase-sensitive OTDR

    NASA Astrophysics Data System (ADS)

    Masoudi, A.; Newson, T. P.

    2017-04-01

    A Distributed Vibration Sensor Based on Phase-Sensitive OTDR is numerically modeled. The advantage of modeling the building blocks of the sensor individually and combining the blocks to analyse the behavior of the sensing system is discussed. It is shown that the numerical model can accurately imitate the response of the experimental setup to dynamic perturbations a signal processing procedure similar to that used to extract the phase information from sensing setup.

  15. Derivation of an eigenvalue probability density function relating to the Poincaré disk

    NASA Astrophysics Data System (ADS)

    Forrester, Peter J.; Krishnapur, Manjunath

    2009-09-01

    A result of Zyczkowski and Sommers (2000 J. Phys. A: Math. Gen. 33 2045-57) gives the eigenvalue probability density function for the top N × N sub-block of a Haar distributed matrix from U(N + n). In the case n >= N, we rederive this result, starting from knowledge of the distribution of the sub-blocks, introducing the Schur decomposition and integrating over all variables except the eigenvalues. The integration is done by identifying a recursive structure which reduces the dimension. This approach is inspired by an analogous approach which has been recently applied to determine the eigenvalue probability density function for random matrices A-1B, where A and B are random matrices with entries standard complex normals. We relate the eigenvalue distribution of the sub-blocks to a many-body quantum state, and to the one-component plasma, on the pseudosphere.

  16. No Additional Benefits of Block- Over Evenly-Distributed High-Intensity Interval Training within a Polarized Microcycle

    PubMed Central

    McGawley, Kerry; Juudas, Elisabeth; Kazior, Zuzanna; Ström, Kristoffer; Blomstrand, Eva; Hansson, Ola; Holmberg, Hans-Christer

    2017-01-01

    Introduction: The current study aimed to investigate the responses to block- versus evenly-distributed high-intensity interval training (HIT) within a polarized microcycle. Methods: Twenty well-trained junior cross-country skiers (10 males, age 17.6 ± 1.5 and 10 females, age 17.3 ± 1.5) completed two, 3-week periods of training (EVEN and BLOCK) in a randomized, crossover-design study. In EVEN, 3 HIT sessions (5 × 4-min of diagonal-stride roller-skiing) were completed at a maximal sustainable intensity each week while low-intensity training (LIT) was distributed evenly around the HIT. In BLOCK, the same 9 HIT sessions were completed in the second week while only LIT was completed in the first and third weeks. Heart rate (HR), session ratings of perceived exertion (sRPE), and perceived recovery (pREC) were recorded for all HIT and LIT sessions, while distance covered was recorded for each HIT interval. The recovery-stress questionnaire for athletes (RESTQ-Sport) was completed weekly. Before and after EVEN and BLOCK, resting saliva and muscle samples were collected and an incremental test and 600-m time-trial (TT) were completed. Results: Pre- to post-testing revealed no significant differences between EVEN and BLOCK for changes in resting salivary cortisol, testosterone, or IgA, or for changes in muscle capillary density, fiber area, fiber composition, enzyme activity (CS, HAD, and PFK) or the protein content of VEGF or PGC-1α. Neither were any differences observed in the changes in skiing economy, V˙O2max or 600-m time-trial performance between interventions. These findings were coupled with no significant differences between EVEN and BLOCK for distance covered during HIT, summated HR zone scores, total sRPE training load, overall pREC or overall recovery-stress state. However, 600-m TT performance improved from pre- to post-training, irrespective of intervention (P = 0.003), and a number of hormonal and muscle biopsy markers were also significantly altered post-training (P < 0.05). Discussion: The current study shows that well-trained junior cross-country skiers are able to complete 9 HIT sessions within 1 week without compromising total work done and without experiencing greater stress or reduced recovery over a 3-week polarized microcycle. However, the findings do not support block-distributed HIT as a superior method to a more even distribution of HIT in terms of enhancing physiological or performance adaptions. PMID:28659826

  17. No Additional Benefits of Block- Over Evenly-Distributed High-Intensity Interval Training within a Polarized Microcycle.

    PubMed

    McGawley, Kerry; Juudas, Elisabeth; Kazior, Zuzanna; Ström, Kristoffer; Blomstrand, Eva; Hansson, Ola; Holmberg, Hans-Christer

    2017-01-01

    Introduction: The current study aimed to investigate the responses to block- versus evenly-distributed high-intensity interval training (HIT) within a polarized microcycle. Methods: Twenty well-trained junior cross-country skiers (10 males, age 17.6 ± 1.5 and 10 females, age 17.3 ± 1.5) completed two, 3-week periods of training (EVEN and BLOCK) in a randomized, crossover-design study. In EVEN, 3 HIT sessions (5 × 4-min of diagonal-stride roller-skiing) were completed at a maximal sustainable intensity each week while low-intensity training (LIT) was distributed evenly around the HIT. In BLOCK, the same 9 HIT sessions were completed in the second week while only LIT was completed in the first and third weeks. Heart rate (HR), session ratings of perceived exertion (sRPE), and perceived recovery (pREC) were recorded for all HIT and LIT sessions, while distance covered was recorded for each HIT interval. The recovery-stress questionnaire for athletes (RESTQ-Sport) was completed weekly. Before and after EVEN and BLOCK, resting saliva and muscle samples were collected and an incremental test and 600-m time-trial (TT) were completed. Results: Pre- to post-testing revealed no significant differences between EVEN and BLOCK for changes in resting salivary cortisol, testosterone, or IgA, or for changes in muscle capillary density, fiber area, fiber composition, enzyme activity (CS, HAD, and PFK) or the protein content of VEGF or PGC-1α. Neither were any differences observed in the changes in skiing economy, [Formula: see text] or 600-m time-trial performance between interventions. These findings were coupled with no significant differences between EVEN and BLOCK for distance covered during HIT, summated HR zone scores, total sRPE training load, overall pREC or overall recovery-stress state. However, 600-m TT performance improved from pre- to post-training, irrespective of intervention ( P = 0.003), and a number of hormonal and muscle biopsy markers were also significantly altered post-training ( P < 0.05). Discussion: The current study shows that well-trained junior cross-country skiers are able to complete 9 HIT sessions within 1 week without compromising total work done and without experiencing greater stress or reduced recovery over a 3-week polarized microcycle. However, the findings do not support block-distributed HIT as a superior method to a more even distribution of HIT in terms of enhancing physiological or performance adaptions.

  18. A Virtual Bioinformatics Knowledge Environment for Early Cancer Detection

    NASA Technical Reports Server (NTRS)

    Crichton, Daniel; Srivastava, Sudhir; Johnsey, Donald

    2003-01-01

    Discovery of disease biomarkers for cancer is a leading focus of early detection. The National Cancer Institute created a network of collaborating institutions focused on the discovery and validation of cancer biomarkers called the Early Detection Research Network (EDRN). Informatics plays a key role in enabling a virtual knowledge environment that provides scientists real time access to distributed data sets located at research institutions across the nation. The distributed and heterogeneous nature of the collaboration makes data sharing across institutions very difficult. EDRN has developed a comprehensive informatics effort focused on developing a national infrastructure enabling seamless access, sharing and discovery of science data resources across all EDRN sites. This paper will discuss the EDRN knowledge system architecture, its objectives and its accomplishments.

  19. Source imaging of drums in the APNEA system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensley, D.

    1995-12-31

    The APNea System is a neutron assay device utilizing both a passive mode and a differential-dieaway active mode. The total detection efficiency is not spatially uniform, even for an empty chamber, and a drum matrix in the chamber can severely distort this response. In order to achieve a response which is independent of the way the source material is distributed in a drum, an imaging procedure has been developed which treats the drum as a number of virtual (sub)volumes. Since each virtual volume of source material is weighted with the appropriate instrument parameters (detection efficiency and thermal flux), the finalmore » assay result is essentially independent of the actual distribution of the source material throughout the drum and its matrix.« less

  20. Logistics Supply of the Distributed Air Wing

    DTIC Science & Technology

    2014-09-01

    distribution is unlimited LOGISTICS SUPPLY OF THE DISTRIBUTED AIR WING Chee Siong Ong Civilian, Defence Science and Technology Agency B.Eng., Nanyang... Technological University, 2004 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN MODELING, VIRTUAL...Department, for his advice on the Marine Aviation Logistics Supply Program. Finally, I am very grateful to my company, Defence Science and Technology

  1. Procedure for assessing the performance of a rockfall fragmentation model

    NASA Astrophysics Data System (ADS)

    Matas, Gerard; Lantada, Nieves; Corominas, Jordi; Gili, Josep Antoni; Ruiz-Carulla, Roger; Prades, Albert

    2017-04-01

    A Rockfall is a mass instability process frequently observed in road cuts, open pit mines and quarries, steep slopes and cliffs. It is frequently observed that the detached rock mass becomes fragmented when it impacts with the slope surface. The consideration of the fragmentation of the rockfall mass is critical for the calculation of block's trajectories and their impact energies, to further assess their potential to cause damage and design adequate preventive structures. We present here the performance of the RockGIS model. It is a GIS-Based tool that simulates stochastically the fragmentation of the rockfalls, based on a lumped mass approach. In RockGIS, the fragmentation initiates by the disaggregation of the detached rock mass through the pre-existing discontinuities just before the impact with the ground. An energy threshold is defined in order to determine whether the impacting blocks break or not. The distribution of the initial mass between a set of newly generated rock fragments is carried out stochastically following a power law. The trajectories of the new rock fragments are distributed within a cone. The model requires the calibration of both the runout of the resultant blocks and the spatial distribution of the volumes of fragments generated by breakage during their propagation. As this is a coupled process which is controlled by several parameters, a set of performance criteria to be met by the simulation have been defined. The criteria includes: position of the centre of gravity of the whole block distribution, histogram of the runout of the blocks, extent and boundaries of the young debris cover over the slope surface, lateral dispersion of trajectories, total number of blocks generated after fragmentation, volume distribution of the generated fragments, the number of blocks and volume passages past a reference line and the maximum runout distance Since the number of parameters to fit increases significantly when considering fragmentation, the final parameters selected after the calibration process are a compromise which meet all considered criteria. This methodology has been tested in some recent rockfall where high fragmentation was observed. The RockGIS tool and the fragmentation laws using data collected from recent rockfall have been developed within the RockRisk project (2014-2016, BIA2013-42582-P). This project was funded by the Spanish Ministerio de Economía y Competitividad.

  2. Low loss jammed-array wideband sawtooth filter based on a finite reflection virtually imaged array

    NASA Astrophysics Data System (ADS)

    Tan, Zhongwei; Cao, Dandan; Ding, Zhichao

    2018-03-01

    An edge filter is a potential technology in the fiber Bragg grating interrogation that has the advantages of fast response speed and suitability for dynamic measurement. To build a low loss, wideband jammed-array wideband sawtooth (JAWS) filter, a finite reflection virtually imaged array (FRVIA) is proposed and demonstrated. FRVIA is different from the virtually imaged phased array in that it has a low reflective front end. This change will lead to many differences in the device's performance in output optical intensity distribution, spectral resolution, output aperture, and tolerance of the manufacture errors. A low loss, wideband JAWS filter based on an FRVIA can provide an edge filter for each channel, respectively.

  3. Impact of Machine Virtualization on Timing Precision for Performance-critical Tasks

    NASA Astrophysics Data System (ADS)

    Karpov, Kirill; Fedotova, Irina; Siemens, Eduard

    2017-07-01

    In this paper we present a measurement study to characterize the impact of hardware virtualization on basic software timing, as well as on precise sleep operations of an operating system. We investigated how timer hardware is shared among heavily CPU-, I/O- and Network-bound tasks on a virtual machine as well as on the host machine. VMware ESXi and QEMU/KVM have been chosen as commonly used examples of hypervisor- and host-based models. Based on statistical parameters of retrieved distributions, our results provide a very good estimation of timing behavior. It is essential for real-time and performance-critical applications such as image processing or real-time control.

  4. Creating virtual humans for simulation-based training and planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stansfield, S.; Sobel, A.

    1998-05-12

    Sandia National Laboratories has developed a distributed, high fidelity simulation system for training and planning small team Operations. The system provides an immersive environment populated by virtual objects and humans capable of displaying complex behaviors. The work has focused on developing the behaviors required to carry out complex tasks and decision making under stress. Central to this work are techniques for creating behaviors for virtual humans and for dynamically assigning behaviors to CGF to allow scenarios without fixed outcomes. Two prototype systems have been developed that illustrate these capabilities: MediSim, a trainer for battlefield medics and VRaptor, a system formore » planning, rehearsing and training assault operations.« less

  5. The Virtual Space Telescope: A New Class of Science Missions

    NASA Technical Reports Server (NTRS)

    Shah, Neerav; Calhoun, Philip

    2016-01-01

    Many science investigations proposed by GSFC require two spacecraft alignment across a long distance to form a virtual space telescope. Forming a Virtual Space telescope requires advances in Guidance, Navigation, and Control (GNC) enabling the distribution of monolithic telescopes across multiple space platforms. The capability to align multiple spacecraft to an intertial target is at a low maturity state and we present a roadmap to advance the system-level capability to be flight ready in preparation of various science applications. An engineering proof of concept, called the CANYVAL-X CubeSat MIssion is presented. CANYVAL-X's advancement will decrease risk for a potential starshade mission that would fly with WFIRST.

  6. Virtual IED sensor at an rf-biased electrode in low-pressure plasma

    NASA Astrophysics Data System (ADS)

    Bogdanova, Maria; Lopaev, Dmitry; Zyryanov, Sergey; Rakhimov, Alexander

    2016-09-01

    The majority of present-day technologies resort to ion-assisted processes in rf low-pressure plasma. In order to control the process precisely, the energy distribution of ions (IED) bombarding the sample placed on the rf-biased electrode should be tracked. In this work the ``Virtual IED sensor'' concept is considered. The idea is to obtain the IED ``virtually'' from the plasma sheath model including a set of externally measurable discharge parameters. The applicability of the ``Virtual IED sensor'' concept was studied for dual-frequency asymmetric ICP and CCP discharges. The IED measurements were carried out in Ar and H2 plasmas in a wide range of conditions. The calculated IEDs were compared to those measured by the Retarded Field Energy Analyzer. To calibrate the ``Virtual IED sensor'', the ion flux was measured by the pulsed self-bias method and then compared to plasma density measurements by Langmuir and hairpin probes. It is shown that if there is a reliable calibration procedure, the ``Virtual IED sensor'' can be successfully realized on the basis of analytical and semianalytical plasma sheath models including measurable discharge parameters. This research is supported by Russian Science Foundation (RSF) Grant 14-12-01012.

  7. The communication in industrialised building system (IBS) construction project: Virtual environment

    NASA Astrophysics Data System (ADS)

    Pozin, Mohd Affendi Ahmad; Nawi, Mohd Nasrun Mohd

    2017-10-01

    Large portion of numbers team organization in the IBS construction sector is known are being fragmented. That is contributed from a segregation of construction activity thus create team working in virtually. Virtual team are the nature when teams are working in distributed area, across culture and time. Therefore, teams can be respond to the task without relocating to the site project and settle down a problem through information and communication technology (ICT). The emergence of virtual team are carry out by advancements in communication technologies as a medium to improve project team communication in project delivery process on IBS construction. Based on literature review from previous study and data collected from interviewing, this paper aim to identified communication challenges among project team members according to current project development practices in IBS construction project. Hence, in attempt to develop effective communication through the advantages of virtual team approach for IBS construction project. In order to ensure the data is gathered comprehensively and accurately, the data was collected from project managers by using semi structured interview method. It was found that virtual team approach could be enable competitive challenges on complexity in the construction project management process.

  8. Studies of the field-of-view resolution tradeoff in virtual-reality systems

    NASA Technical Reports Server (NTRS)

    Piantanida, Thomas P.; Boman, Duane; Larimer, James; Gille, Jennifer; Reed, Charles

    1992-01-01

    Most virtual-reality systems use LCD-based displays that achieve a large field-of-view at the expense of resolution. A typical display will consist of approximately 86,000 pixels uniformly distributed over an 80-degree by 60-degree image. Thus, each pixel subtends about 13 minutes of arc at the retina; about the same as the resolvable features of the 20/200 line of a Snellen Eye Chart. The low resolution of LCD-based systems limits task performance in some applications. We have examined target-detection performance in a low-resolution virtual world. Our synthesized three-dimensional virtual worlds consisted of target objects that could be positioned at a fixed distance from the viewer, but at random azimuth and constrained elevation. A virtual world could be bounded by chromatic walls or by wire-frame, or it could be unbounded. Viewers scanned these worlds and indicated by appropriate gestures when they had detected the target object. By manipulating the viewer's field size and the chromatic and luminance contrast of annuli surrounding the field-of-view, we were able to assess the effect of field size on the detection of virtual objects in low-resolution synthetic worlds.

  9. Embodying self-compassion within virtual reality and its effects on patients with depression

    PubMed Central

    Falconer, Caroline J.; Rovira, Aitor; King, John A.; Gilbert, Paul; Antley, Angus; Fearon, Pasco; Ralph, Neil; Slater, Mel

    2016-01-01

    Background Self-criticism is a ubiquitous feature of psychopathology and can be combatted by increasing levels of self-compassion. However, some patients are resistant to self-compassion. Aims To investigate whether the effects of self-identification with virtual bodies within immersive virtual reality could be exploited to increase self-compassion in patients with depression. Method We developed an 8-minute scenario in which 15 patients practised delivering compassion in one virtual body and then experienced receiving it from themselves in another virtual body. Results In an open trial, three repetitions of this scenario led to significant reductions in depression severity and self-criticism, as well as to a significant increase in self-compassion, from baseline to 4-week follow-up. Four patients showed clinically significant improvement. Conclusions The results indicate that interventions using immersive virtual reality may have considerable clinical potential and that further development of these methods preparatory to a controlled trial is now warranted. Declaration of interest None. Copyright and usage © The Royal College of Psychiatrists 2016. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) licence. PMID:27703757

  10. Virtual reality intervention for older women with breast cancer.

    PubMed

    Schneider, Susan M; Ellis, Mathew; Coombs, William T; Shonkwiler, Erin L; Folsom, Linda C

    2003-06-01

    This study examined the effects of a virtual reality distraction intervention on chemotherapy-related symptom distress levels in 16 women aged 50 and older. A cross-over design was used to answer the following research questions: (1) Is virtual reality an effective distraction intervention for reducing chemotherapy-related symptom distress levels in older women with breast cancer? (2) Does virtual reality have a lasting effect? Chemotherapy treatments are intensive and difficult to endure. One way to cope with chemotherapy-related symptom distress is through the use of distraction. For this study, a head-mounted display (Sony PC Glasstron PLM - S700) was used to display encompassing images and block competing stimuli during chemotherapy infusions. The Symptom Distress Scale (SDS), Revised Piper Fatigue Scale (PFS), and the State Anxiety Inventory (SAI) were used to measure symptom distress. For two matched chemotherapy treatments, one pre-test and two post-test measures were employed. Participants were randomly assigned to receive the VR distraction intervention during one chemotherapy treatment and received no distraction intervention (control condition) during an alternate chemotherapy treatment. Analysis using paired t-tests demonstrated a significant decrease in the SAI (p = 0.10) scores immediately following chemotherapy treatments when participants used VR. No significant changes were found in SDS or PFS values. There was a consistent trend toward improved symptoms on all measures 48 h following completion of chemotherapy. Evaluation of the intervention indicated that women thought the head mounted device was easy to use, they experienced no cybersickness, and 100% would use VR again.

  11. Journey to the centre of the cell: Virtual reality immersion into scientific data.

    PubMed

    Johnston, Angus P R; Rae, James; Ariotti, Nicholas; Bailey, Benjamin; Lilja, Andrew; Webb, Robyn; Ferguson, Charles; Maher, Sheryl; Davis, Thomas P; Webb, Richard I; McGhee, John; Parton, Robert G

    2018-02-01

    Visualization of scientific data is crucial not only for scientific discovery but also to communicate science and medicine to both experts and a general audience. Until recently, we have been limited to visualizing the three-dimensional (3D) world of biology in 2 dimensions. Renderings of 3D cells are still traditionally displayed using two-dimensional (2D) media, such as on a computer screen or paper. However, the advent of consumer grade virtual reality (VR) headsets such as Oculus Rift and HTC Vive means it is now possible to visualize and interact with scientific data in a 3D virtual world. In addition, new microscopic methods provide an unprecedented opportunity to obtain new 3D data sets. In this perspective article, we highlight how we have used cutting edge imaging techniques to build a 3D virtual model of a cell from serial block-face scanning electron microscope (SBEM) imaging data. This model allows scientists, students and members of the public to explore and interact with a "real" cell. Early testing of this immersive environment indicates a significant improvement in students' understanding of cellular processes and points to a new future of learning and public engagement. In addition, we speculate that VR can become a new tool for researchers studying cellular architecture and processes by populating VR models with molecular data. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Developmental gender differences in children in a virtual spatial memory task.

    PubMed

    León, Irene; Cimadevilla, José Manuel; Tascón, Laura

    2014-07-01

    Behavioral achievements are the product of brain maturation. During postnatal development, the medial temporal lobe completes its maturation, and children acquire new memory abilities. In recent years, virtual reality-based tasks have been introduced in the neuropsychology field to assess different cognitive functions. In this work, desktop virtual reality tasks are combined with classic psychometric tests to assess spatial abilities in 4- to 10-year-old children. Fifty boys and 50 girls 4-10-years of age participated in this study. Spatial reference memory and spatial working memory were assessed using a desktop virtual reality-based task. Other classic psychometric tests were also included in this work (e.g., the Corsi Block Tapping Test, digit tests, 10/36 Spatial Recall Test). In general terms, 4- and 5-year-old groups showed poorer performance than the older groups. However, 5-year-old children showed basic spatial navigation abilities with little difficulty. In addition, boys outperformed girls from the 6-8-year-old groups. Gender differences only emerged in the reference-memory version of the spatial task, whereas both sexes displayed similar performances in the working-memory version. There was general improvement in the performance of different tasks in children older than 5 years. However, results also suggest that brain regions involved in allocentric memory are functional even at the age of 5. In addition, the brain structures underlying reference memory mature later in girls than those required for the working memory.

  13. The role of intellectual property in creating, sharing and repurposing virtual patients.

    PubMed

    Campbell, Gabrielle; Miller, Angela; Balasubramaniam, Chara

    2009-08-01

    Medical schools are integrating more technology into the training of health care practitioners. Electronic Virtual Patients (VPs) provide interactive simulations to facilitate learning. The time, cost and effort required to create robust VPs on an individual school basis are significant; sharing of VPs by medical schools allows for access to a broad range of VPs across a variety of disciplines with lower investment. When this digital content is shared with other schools and distributed widely, digital copyright issues come into play. Unless all intellectual property rights (IPRs) and plans of the authors regarding the VP are confirmed upfront, the ability of the school to share the VP may be inhibited. Schools should also identify under what licensing/sharing model they plan to distribute the VPs - how do you plan to share the VPs and what will allow users to do with the VPs in the context of IPRs? This article highlights the role of IPRs in VPs and discusses a case-study of a European Virtual Patient collaboration to demonstrate how IPRs were managed.

  14. ETARA - EVENT TIME AVAILABILITY, RELIABILITY ANALYSIS

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1994-01-01

    The ETARA system was written to evaluate the performance of the Space Station Freedom Electrical Power System, but the methodology and software can be modified to simulate any system that can be represented by a block diagram. ETARA is an interactive, menu-driven reliability, availability, and maintainability (RAM) simulation program. Given a Reliability Block Diagram representation of a system, the program simulates the behavior of the system over a specified period of time using Monte Carlo methods to generate block failure and repair times as a function of exponential and/or Weibull distributions. ETARA can calculate availability parameters such as equivalent availability, state availability (percentage of time at a particular output state capability), continuous state duration and number of state occurrences. The program can simulate initial spares allotment and spares replenishment for a resupply cycle. The number of block failures are tabulated both individually and by block type. ETARA also records total downtime, repair time, and time waiting for spares. Maintenance man-hours per year and system reliability, with or without repair, at or above a particular output capability can also be calculated. The key to using ETARA is the development of a reliability or availability block diagram. The block diagram is a logical graphical illustration depicting the block configuration necessary for a function to be successfully accomplished. Each block can represent a component, a subsystem, or a system. The function attributed to each block is considered for modeling purposes to be either available or unavailable; there are no degraded modes of block performance. A block does not have to represent physically connected hardware in the actual system to be connected in the block diagram. The block needs only to have a role in contributing to an available system function. ETARA can model the RAM characteristics of systems represented by multilayered, nesting block diagrams. There are no restrictions on the number of total blocks or on the number of blocks in a series, parallel, or M-of-N parallel subsystem. In addition, the same block can appear in more than one subsystem if such an arrangement is necessary for an accurate model. ETARA 3.3 is written in APL2 for IBM PC series computers or compatibles running MS-DOS and the APL2 interpreter. Hardware requirements for the APL2 system include 640K of RAM, 2Mb of extended memory, and an 80386 or 80486 processor with an 80x87 math co-processor. The standard distribution medium for this package is a set of two 5.25 inch 360K MS-DOS format diskettes. A sample executable is included. The executable contains licensed material from the APL2 for the IBM PC product which is program property of IBM; Copyright IBM Corporation 1988 - All rights reserved. It is distributed with IBM's permission. The contents of the diskettes are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. ETARA was developed in 1990 and last updated in 1991.

  15. Time Warp Operating System (TWOS)

    NASA Technical Reports Server (NTRS)

    Bellenot, Steven F.

    1993-01-01

    Designed to support parallel discrete-event simulation, TWOS is complete implementation of Time Warp mechanism - distributed protocol for virtual time synchronization based on process rollback and message annihilation.

  16. Method and apparatus for determining two-phase flow in rock fracture

    DOEpatents

    Persoff, Peter; Pruess, Karsten; Myer, Larry

    1994-01-01

    An improved method and apparatus as disclosed for measuring the permeability of multiple phases through a rock fracture. The improvement in the method comprises delivering the respective phases through manifolds to uniformly deliver and collect the respective phases to and from opposite edges of the rock fracture in a distributed manner across the edge of the fracture. The improved apparatus comprises first and second manifolds comprising bores extending within porous blocks parallel to the rock fracture for distributing and collecting the wetting phase to and from surfaces of the porous blocks, which respectively face the opposite edges of the rock fracture. The improved apparatus further comprises other manifolds in the form of plenums located adjacent the respective porous blocks for uniform delivery of the non-wetting phase to parallel grooves disposed on the respective surfaces of the porous blocks facing the opposite edges of the rock fracture and generally perpendicular to the rock fracture.

  17. Security model for VM in cloud

    NASA Astrophysics Data System (ADS)

    Kanaparti, Venkataramana; Naveen K., R.; Rajani, S.; Padmvathamma, M.; Anitha, C.

    2013-03-01

    Cloud computing is a new approach emerged to meet ever-increasing demand for computing resources and to reduce operational costs and Capital Expenditure for IT services. As this new way of computation allows data and applications to be stored away from own corporate server, it brings more issues in security such as virtualization security, distributed computing, application security, identity management, access control and authentication. Even though Virtualization forms the basis for cloud computing it poses many threats in securing cloud. As most of Security threats lies at Virtualization layer in cloud we proposed this new Security Model for Virtual Machine in Cloud (SMVC) in which every process is authenticated by Trusted-Agent (TA) in Hypervisor as well as in VM. Our proposed model is designed to with-stand attacks by unauthorized process that pose threat to applications related to Data Mining, OLAP systems, Image processing which requires huge resources in cloud deployed on one or more VM's.

  18. Probabilistic motor sequence learning in a virtual reality serial reaction time task.

    PubMed

    Sense, Florian; van Rijn, Hedderik

    2018-01-01

    The serial reaction time task is widely used to study learning and memory. The task is traditionally administered by showing target positions on a computer screen and collecting responses using a button box or keyboard. By comparing response times to random or sequenced items or by using different transition probabilities, various forms of learning can be studied. However, this traditional laboratory setting limits the number of possible experimental manipulations. Here, we present a virtual reality version of the serial reaction time task and show that learning effects emerge as expected despite the novel way in which responses are collected. We also show that response times are distributed as expected. The current experiment was conducted in a blank virtual reality room to verify these basic principles. For future applications, the technology can be used to modify the virtual reality environment in any conceivable way, permitting a wide range of previously impossible experimental manipulations.

  19. Design and Development of ChemInfoCloud: An Integrated Cloud Enabled Platform for Virtual Screening.

    PubMed

    Karthikeyan, Muthukumarasamy; Pandit, Deepak; Bhavasar, Arvind; Vyas, Renu

    2015-01-01

    The power of cloud computing and distributed computing has been harnessed to handle vast and heterogeneous data required to be processed in any virtual screening protocol. A cloud computing platorm ChemInfoCloud was built and integrated with several chemoinformatics and bioinformatics tools. The robust engine performs the core chemoinformatics tasks of lead generation, lead optimisation and property prediction in a fast and efficient manner. It has also been provided with some of the bioinformatics functionalities including sequence alignment, active site pose prediction and protein ligand docking. Text mining, NMR chemical shift (1H, 13C) prediction and reaction fingerprint generation modules for efficient lead discovery are also implemented in this platform. We have developed an integrated problem solving cloud environment for virtual screening studies that also provides workflow management, better usability and interaction with end users using container based virtualization, OpenVz.

  20. A constraint optimization based virtual network mapping method

    NASA Astrophysics Data System (ADS)

    Li, Xiaoling; Guo, Changguo; Wang, Huaimin; Li, Zhendong; Yang, Zhiwen

    2013-03-01

    Virtual network mapping problem, maps different virtual networks onto the substrate network is an extremely challenging work. This paper proposes a constraint optimization based mapping method for solving virtual network mapping problem. This method divides the problem into two phases, node mapping phase and link mapping phase, which are all NP-hard problems. Node mapping algorithm and link mapping algorithm are proposed for solving node mapping phase and link mapping phase, respectively. Node mapping algorithm adopts the thinking of greedy algorithm, mainly considers two factors, available resources which are supplied by the nodes and distance between the nodes. Link mapping algorithm is based on the result of node mapping phase, adopts the thinking of distributed constraint optimization method, which can guarantee to obtain the optimal mapping with the minimum network cost. Finally, simulation experiments are used to validate the method, and results show that the method performs very well.

  1. Distribution of short block copolymer chains in Binary Blends of Block Copolymers Having Hydrogen Bonding

    NASA Astrophysics Data System (ADS)

    Kwak, Jongheon; Han, Sunghyun; Kim, Jin Kon

    2014-03-01

    A binary mixture of two block copolymers whose blocks are capable of forming the hydrogen bonding allows one to obtain various microdomains that could not be expected for neat block copolymer. For instance, the binary blend of symmetric polystyrene-block-poly(2-vinylpyridine) copolymer (PS-b-P2VP) and polystyrene-block-polyhydroxystyrene copolymer (PS-b-PHS) blends where the hydrogen bonding occurred between P2VP and PHS showed hexagonally packed (HEX) cylindrical and body centered cubic (BCC) spherical microdomains. To know the exact location of short block copolymer chains at the interface, we synthesized deuterated polystyrene-block-polyhydroxystyrene copolymer (dPS-b-PHS) and prepared a binary mixture with PS-b-P2VP. We investigate, via small angle X-ray scattering (SAXS) and neutron reflectivity (NR), the exact location of shorter dPS block chain near the interface of the microdomains.

  2. Paleoclimatic insights from mapping the global distribution of non-glacial cryogenic landforms in sub-humid montane environments.

    NASA Astrophysics Data System (ADS)

    Slee, Adrian; Shulmeister, James

    2015-04-01

    Much of the 'periglacial' literature is based on landforms and observations from either high mountains or continental environments dominated by strong winter cooling and/or permafrost conditions. Cryogenic conditions occur in many other settings and some of the most widespread are montane landscapes in mid- to low latitudes. In Australia observations of 'periglacial' landforms have traditionally been limited to higher elevation regions of the Australian Alps and central Tasmania. However, the distribution of relict cryogenic landforms is much wider and extends well into sub-tropical latitudes along the eastern highlands of Australia. Here we map the distribution of relict block deposits (block streams and block fields) of known cryogenic origin so as to delineate the limits of 'periglacial' climatic conditions during cold phases in the Late Quaternary. The mapping is based on image analyses supported by extensive and intensive ground truthing. Three distinct regimes are recognised - a high elevation winter wet regime (Mt Kosciuszko style); a temperate maritime westerly regime (Tasmania style) and, unexpectedly, an east coast (sub-tropical) regime (New England style). We utilise bio-climatic modelling to derive modern climate parameters from the distribution of the block deposits so as to map regions affected by cryogenic conditions in late Quaternary cold periods. We assumed that relative changes in mean cooling and precipitation would be shared by other mid-latitude climate locales worldwide and predicted the likely distribution of block deposits in these areas. A literature review confirms the presence of 'periglacial' style block deposits in the predicted regions, including part of the Iberian Peninsula, the Atlas and Drakensburg Mountains of Africa, the Mediterranean island of Sardinia, the higher volcanoes of Mexico and parts of China, all of which have mean annual precipitation similar to the New England area. However, we also note that many of these areas have winter wet (Mediterranean) climates and when seasonality of precipitation is included, winter dry New England becomes an anomaly. We conclude that in addition to significant cooling, winter moisture balance was more positive, in northern New South Wales during cooler climate periods.

  3. Performance Analysis of Live-Virtual-Constructive and Distributed Virtual Simulations: Defining Requirements in Terms of Temporal Consistency

    DTIC Science & Technology

    2009-12-01

    events. Work associated with aperiodic tasks have the same statistical behavior and the same timing requirements. The timing deadlines are soft. • Sporadic...answers, but it is possible to calculate how precise the estimates are. Simulation-based performance analysis of a model includes a statistical ...to evaluate all pos- sible states in a timely manner. This is the principle reason for resorting to simulation and statistical analysis to evaluate

  4. The Streambank Erosion Control Evaluation and Demonstration Act of 1974, Section 32, Public Law 93-251. Appendix G. Demonstration Projects on Other Streams, Nationwide. Volume 1.

    DTIC Science & Technology

    1981-12-01

    Haverhill, a gabion mattress ( revet - ment) underlaid with filter fabric was placed on the bank. (2) Concrete Blocks . Precast concrete blocks with filter... revetment - precast cellular concrete block mattress, used auto tire wall and used auto tire mattress. All three revetment panels included vegetative...DISTRIBUTION STATEMENT A NOV 81982 Approved fog public release; ,.* Diatribuatofl UnlimitedB - A. B .4. R ock roe With Tie-Backs Precast Block Paving

  5. Block copolymer adhesion promoters via ring-opening metathesis polymerization

    DOEpatents

    Kent, M.S.; Saunders, R.

    1997-02-18

    Coupling agents are disclosed based on functionalized block copolymers for bonding thermoset polymers to solid materials. These are polymers which possess at least two types of functional groups, one which is able to attach to and react with solid surfaces, and another which can react with a thermoset resin, which are incorporated as pendant groups in monomers distributed in blocks (typically two) along the backbone of the chain. The block copolymers in this invention are synthesized by living ring-opening metathesis polymerization. 18 figs.

  6. Block copolymer adhesion promoters via ring-opening metathesis polymerization

    DOEpatents

    Kent, Michael S.; Saunders, Randall

    1997-01-01

    Coupling agents based on functionalized block copolymers for bonding thermoset polymers to solid materials. These are polymers which possess at least two types of functional groups, one which is able to attach to and react with solid surfaces, and another which can react with a thermoset resin, which are incorporated as pendant groups in monomers distributed in blocks (typically two) along the backbone of the chain. The block copolymers in this invention are synthesized by living ring-opening metathesis polymerization.

  7. Development of CXCR4 modulators by virtual HTS of a novel amide-sulfamide compound library.

    PubMed

    Bai, Renren; Shi, Qi; Liang, Zhongxing; Yoon, Younghyoun; Han, Yiran; Feng, Amber; Liu, Shuangping; Oum, Yoonhyeun; Yun, C Chris; Shim, Hyunsuk

    2017-01-27

    CXCR4 plays a crucial role in recruitment of inflammatory cells to inflammation sites at the beginning of the disease process. Modulating CXCR4 functions presents a new avenue for anti-inflammatory strategies. However, using CXCR4 antagonists for a long term usage presents potential serious side effect due to their stem cell mobilizing property. We have been developing partial CXCR4 antagonists without such property. A new computer-aided drug design program, the FRESH workflow, was used for anti-CXCR4 lead compound discovery and optimization, which coupled both compound library building and CXCR4 docking screens in one campaign. Based on the designed parent framework, 30 prioritized amide-sulfamide structures were obtained after systemic filtering and docking screening. Twelve compounds were prepared from the top-30 list. Most synthesized compounds exhibited good to excellent binding affinity to CXCR4. Compounds Ig and Im demonstrated notable in vivo suppressive activity against xylene-induced mouse ear inflammation (with 56% and 54% inhibition). Western blot analyses revealed that Ig significantly blocked CXCR4/CXCL12-mediated phosphorylation of Akt. Moreover, Ig attenuated the amount of TNF-α secreted by pathogenic E. coli-infected macrophages. More importantly, Ig had no observable cytotoxicity. Our results demonstrated that FRESH virtual high throughput screening program of targeted chemical class could successfully find potent lead compounds, and the amide-sulfamide pharmacophore was a novel and effective framework blocking CXCR4 function. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Distribution of radiodense contrast medium after perineural injection of the palmar and palmar metacarpal nerves (low 4-point nerve block): an in vivo and ex vivo study in horses.

    PubMed

    Nagy, A; Bodò, G; Dyson, S J; Compostella, F; Barr, A R S

    2010-09-01

    Evidence-based information is limited on distribution of local anaesthetic solution following perineural analgesia of the palmar (Pa) and palmar metacarpal (PaM) nerves in the distal aspect of the metacarpal (Mc) region ('low 4-point nerve block'). To demonstrate the potential distribution of local anaesthetic solution after a low 4-point nerve block using a radiographic contrast model. A radiodense contrast medium was injected subcutaneously over the medial or the lateral Pa nerve at the junction of the proximal three-quarters and distal quarter of the Mc region (Pa injection) and over the ipsilateral PaM nerve immediately distal to the distal aspect of the second or fourth Mc bones (PaM injection) in both forelimbs of 10 mature horses free from lameness. Radiographs were obtained 0, 10 and 20 min after injection and analysed subjectively and objectively. Methylene blue and a radiodense contrast medium were injected in 20 cadaver limbs using the same techniques. Radiographs were obtained and the limbs dissected. After 31/40 (77.5%) Pa injections, the pattern of the contrast medium suggested distribution in the neurovascular bundle. There was significant proximal diffusion with time, but the main contrast medium patch never progressed proximal to the mid-Mc region. The radiological appearance of 2 limbs suggested that contrast medium was present in the digital flexor tendon sheath (DFTS). After PaM injections, the contrast medium was distributed diffusely around the injection site in the majority of the limbs. In cadaver limbs, after Pa injections, the contrast medium and the dye were distributed in the neurovascular bundle in 8/20 (40%) limbs and in the DFTS in 6/20 (30%) of limbs. After PaM injections, the contrast and dye were distributed diffusely around the injection site in 9/20 (45%) limbs and showed diffuse and tubular distribution in 11/20 (55%) limbs. Proximal diffusion of local anaesthetic solution after a low 4-point nerve block is unlikely to be responsible for decreasing lameness caused by pain in the proximal Mc region. The DFTS may be penetrated inadvertently when performing a low 4-point nerve block.

  9. Perceptual Integration and Differentiation of Directions in Moving Patterns

    DTIC Science & Technology

    1981-08-01

    ceBssay and identify by block numnbe,) o ~ b 20 ABSTRACT (Continue oil rel’erse side II necosary aid idonlty, by block number) F . A- 1981. (-7 ATTACHED...process, are discussed. REFERENCES Mather, G. and Moulden, B . A simultaneous shift in apparent direction: Further evidence for a "distribution- shift" model...summing process, are discussed. REFERENCES Mather, G. and Moulden, B . A simultaneous shift in apparent direction: Further evidence for a "distribution

  10. Quantification of hepatic flow distribution using particle tracking for patient specific virtual Fontan surgery

    NASA Astrophysics Data System (ADS)

    Yang, Weiguang; Vignon-Clementel, Irene; Troianowski, Guillaume; Shadden, Shawn; Mohhan Reddy, V.; Feinstein, Jeffrey; Marsden, Alison

    2010-11-01

    The Fontan surgery is the third and final stage in a palliative series to treat children with single ventricle heart defects. In the extracardiac Fontan procedure, the inferior vena cava (IVC) is connected to the pulmonary arteries via a tube-shaped Gore-tex graft. Clinical observations have shown that the absence of a hepatic factor, carried in the IVC flow, can cause pulmonary arteriovenous malformations. Although it is clear that hepatic flow distribution is an important determinant of Fontan performance, few studies have quantified its relation to Fontan design. In this study, we virtually implanted three types of grafts (T-junction, offset and Y-graft) into 5 patient specific models of the Glenn (stage 2) anatomy. We then performed 3D time-dependent simulations and systematically compared the IVC flow distribution, energy loss, and pressure levels in different surgical designs. A robustness test is performed to evaluate the sensitivity of hepatic distribution to pulmonary flow split. Results show that the Y-graft design effectively improves the IVC flow distribution, compared to traditional designs and that surgical designs could be customized on a patient-by-patient basis.

  11. Novel Directional Protection Scheme for the FREEDM Smart Grid System

    NASA Astrophysics Data System (ADS)

    Sharma, Nitish

    This research primarily deals with the design and validation of the protection system for a large scale meshed distribution system. The large scale system simulation (LSSS) is a system level PSCAD model which is used to validate component models for different time-scale platforms, to provide a virtual testing platform for the Future Renewable Electric Energy Delivery and Management (FREEDM) system. It is also used to validate the cases of power system protection, renewable energy integration and storage, and load profiles. The protection of the FREEDM system against any abnormal condition is one of the important tasks. The addition of distributed generation and power electronic based solid state transformer adds to the complexity of the protection. The FREEDM loop system has a fault current limiter and in addition, the Solid State Transformer (SST) limits the fault current at 2.0 per unit. Former students at ASU have developed the protection scheme using fiber-optic cable. However, during the NSF-FREEDM site visit, the National Science Foundation (NSF) team regarded the system incompatible for the long distances. Hence, a new protection scheme with a wireless scheme is presented in this thesis. The use of wireless communication is extended to protect the large scale meshed distributed generation from any fault. The trip signal generated by the pilot protection system is used to trigger the FID (fault isolation device) which is an electronic circuit breaker operation (switched off/opening the FIDs). The trip signal must be received and accepted by the SST, and it must block the SST operation immediately. A comprehensive protection system for the large scale meshed distribution system has been developed in PSCAD with the ability to quickly detect the faults. The validation of the protection system is performed by building a hardware model using commercial relays at the ASU power laboratory.

  12. Educational Production and the Distribution of Teachers in Uruguay

    ERIC Educational Resources Information Center

    Luschei, Thomas F.; Carnoy, Martin

    2010-01-01

    In this paper we discuss results from an analysis of a large dataset that includes virtually all sixth-grade students in Uruguay in 1996. We analyze the relationship between teacher attributes and student achievement scores and we explore the distribution of teachers according to characteristics identified as important by this analysis. We find…

  13. VLab: A Science Gateway for Distributed First Principles Calculations in Heterogeneous High Performance Computing Systems

    ERIC Educational Resources Information Center

    da Silveira, Pedro Rodrigo Castro

    2014-01-01

    This thesis describes the development and deployment of a cyberinfrastructure for distributed high-throughput computations of materials properties at high pressures and/or temperatures--the Virtual Laboratory for Earth and Planetary Materials--VLab. VLab was developed to leverage the aggregated computational power of grid systems to solve…

  14. The Importance of Distributed Broadband Networks to Academic Biomedical Research and Education Programs

    ERIC Educational Resources Information Center

    Yellowlees, Peter M.; Hogarth, Michael; Hilty, Donald M.

    2006-01-01

    Objective: This article highlights the importance of distributed broadband networks as part of the core infrastructure necessary to deliver academic research and education programs. Method: The authors review recent developments in the field and present the University of California, Davis, environment as a case study of a future virtual regional…

  15. Cross-Cultural Management Learning through Innovative Pedagogy: An Exploratory Study of Globally Distributed Student Teams

    ERIC Educational Resources Information Center

    Bartel-Radic, Anne; Moos, J. Chris; Long, Suzanna K.

    2015-01-01

    This article presents an innovative pedagogy based on student participation in globally distributed project teams. The study questions the link between student learning of intercultural competence and the global teaming experience. Data was collected from 115 students participating in 22 virtual intercultural teams. Results revealed that students…

  16. Authoring Effective Demonstrations

    DTIC Science & Technology

    2007-06-22

    Battle Focused Training. Washington, DC: Department of the Army. Fu, D., Jensen, R., & Hinkelman, E . (2007). “Evaluating Game Technologies for...Stottler Henke Associates, Inc. Univ. of Central Florida Elizabeth Hinkelman Don Lampton Galactic Village Games , LLC. Army Research Institute...training, and distributed game -based architectures contribute an added benefit of wide accessibility. Reusable and distributable virtual training

  17. An approach for access differentiation design in medical distributed applications built on databases.

    PubMed

    Shoukourian, S K; Vasilyan, A M; Avagyan, A A; Shukurian, A K

    1999-01-01

    A formalized "top to bottom" design approach was described in [1] for distributed applications built on databases, which were considered as a medium between virtual and real user environments for a specific medical application. Merging different components within a unified distributed application posits new essential problems for software. Particularly protection tools, which are sufficient separately, become deficient during the integration due to specific additional links and relationships not considered formerly. E.g., it is impossible to protect a shared object in the virtual operating room using only DBMS protection tools, if the object is stored as a record in DB tables. The solution of the problem should be found only within the more general application framework. Appropriate tools are absent or unavailable. The present paper suggests a detailed outline of a design and testing toolset for access differentiation systems (ADS) in distributed medical applications which use databases. The appropriate formal model as well as tools for its mapping to a DMBS are suggested. Remote users connected via global networks are considered too.

  18. Methodology for finding and evaluating safe landing sites on small bodies

    NASA Astrophysics Data System (ADS)

    Rodgers, Douglas J.; Ernst, Carolyn M.; Barnouin, Olivier S.; Murchie, Scott L.; Chabot, Nancy L.

    2016-12-01

    Here we develop and demonstrate a three-step strategy for finding a safe landing ellipse for a legged spacecraft on a small body such as an asteroid or planetary satellite. The first step, acquisition of a high-resolution terrain model of a candidate landing region, is simulated using existing statistics on block abundances measured at Phobos, Eros, and Itokawa. The synthetic terrain model is generated by randomly placing hemispheric shaped blocks with the empirically determined size-frequency distribution. The resulting terrain is much rockier than typical lunar or martian landing sites. The second step, locating a landing ellipse with minimal hazards, is demonstrated for an assumed approach to landing that uses Autonomous Landing and Hazard Avoidance Technology. The final step, determination of the probability distribution for orientation of the landed spacecraft, is demonstrated for cases of differing regional slope. The strategy described here is both a prototype for finding a landing site during a flight mission and provides tools for evaluating the design of small-body landers. We show that for bodies with Eros-like block distributions, there may be >99% probability of landing stably at a low tilt without blocks impinging on spacecraft structures so as to pose a survival hazard.

  19. Dynamic Load-Balancing for Distributed Heterogeneous Computing of Parallel CFD Problems

    NASA Technical Reports Server (NTRS)

    Ecer, A.; Chien, Y. P.; Boenisch, T.; Akay, H. U.

    2000-01-01

    The developed methodology is aimed at improving the efficiency of executing block-structured algorithms on parallel, distributed, heterogeneous computers. The basic approach of these algorithms is to divide the flow domain into many sub- domains called blocks, and solve the governing equations over these blocks. Dynamic load balancing problem is defined as the efficient distribution of the blocks among the available processors over a period of several hours of computations. In environments with computers of different architecture, operating systems, CPU speed, memory size, load, and network speed, balancing the loads and managing the communication between processors becomes crucial. Load balancing software tools for mutually dependent parallel processes have been created to efficiently utilize an advanced computation environment and algorithms. These tools are dynamic in nature because of the chances in the computer environment during execution time. More recently, these tools were extended to a second operating system: NT. In this paper, the problems associated with this application will be discussed. Also, the developed algorithms were combined with the load sharing capability of LSF to efficiently utilize workstation clusters for parallel computing. Finally, results will be presented on running a NASA based code ADPAC to demonstrate the developed tools for dynamic load balancing.

  20. Internet-based distributed collaborative environment for engineering education and design

    NASA Astrophysics Data System (ADS)

    Sun, Qiuli

    2001-07-01

    This research investigates the use of the Internet for engineering education, design, and analysis through the presentation of a Virtual City environment. The main focus of this research was to provide an infrastructure for engineering education, test the concept of distributed collaborative design and analysis, develop and implement the Virtual City environment, and assess the environment's effectiveness in the real world. A three-tier architecture was adopted in the development of the prototype, which contains an online database server, a Web server as well as multi-user servers, and client browsers. The environment is composed of five components, a 3D virtual world, multiple Internet-based multimedia modules, an online database, a collaborative geometric modeling module, and a collaborative analysis module. The environment was designed using multiple Intenet-based technologies, such as Shockwave, Java, Java 3D, VRML, Perl, ASP, SQL, and a database. These various technologies together formed the basis of the environment and were programmed to communicate smoothly with each other. Three assessments were conducted over a period of three semesters. The Virtual City is open to the public at www.vcity.ou.edu. The online database was designed to manage the changeable data related to the environment. The virtual world was used to implement 3D visualization and tie the multimedia modules together. Students are allowed to build segments of the 3D virtual world upon completion of appropriate undergraduate courses in civil engineering. The end result is a complete virtual world that contains designs from all of their coursework and is viewable on the Internet. The environment is a content-rich educational system, which can be used to teach multiple engineering topics with the help of 3D visualization, animations, and simulations. The concept of collaborative design and analysis using the Internet was investigated and implemented. Geographically dispersed users can build the same geometric model simultaneously over the Internet and communicate with each other through a chat room. They can also conduct finite element analysis collaboratively on the same object over the Internet. They can mesh the same object, apply and edit the same boundary conditions and forces, obtain the same analysis results, and then discuss the results through the Internet.

  1. Virtual Astronomy: The Legacy of the Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Hanisch, Robert J.; Berriman, G. B.; Lazio, J.; Szalay, A. S.; Fabbiano, G.; Plante, R. L.; McGlynn, T. A.; Evans, J.; Emery Bunn, S.; Claro, M.; VAO Project Team

    2014-01-01

    Over the past ten years, the Virtual Astronomical Observatory (VAO, http://usvao.org) and its predecessor, the National Virtual Observatory (NVO), have developed and operated a software infrastructure consisting of standards and protocols for data and science software applications. The Virtual Observatory (VO) makes it possible to develop robust software for the discovery, access, and analysis of astronomical data. Every major publicly funded research organization in the US and worldwide has deployed at least some components of the VO infrastructure; tens of thousands of VO-enabled queries for data are invoked daily against catalog, image, and spectral data collections; and groups within the community have developed tools and applications building upon the VO infrastructure. Further, NVO and VAO have helped ensure access to data internationally by co-founding the International Virtual Observatory Alliance (IVOA, http://ivoa.net). The products of the VAO are being archived in a publicly accessible repository. Several science tools developed by the VAO will continue to be supported by the organizations that developed them: the Iris spectral energy distribution package (SAO), the Data Discovery Tool (STScI/MAST, HEASARC), and the scalable cross-comparison service (IPAC). The final year of VAO is focused on development of the data access protocol for data cubes, creation of Python language bindings to VO services, and deployment of a cloud-like data storage service that links to VO data discovery tools (SciDrive). We encourage the community to make use of these tools and services, to extend and improve them, and to carry on with the vision for virtual astronomy: astronomical research enabled by easy access to distributed data and computational resources. Funding for VAO development and operations has been provided jointly by NSF and NASA since May 2010. NSF funding will end in September 2014, though with the possibility of competitive solicitations for VO-based tool development. NASA intends to maintain core VO services such as the resource registry (the index of VO-accessible data collections), monitoring services, and a website as part of the remit of HEASARC, IPAC (IRSA, NED), and MAST.

  2. Nerve Blocks

    MedlinePlus

    ... turn off" a pain signal along a specific distribution of nerve. Imaging guidance may be used to place the needle in the most appropriate location for maximum benefit. A nerve block may allow a damaged nerve time to heal, provide temporary pain relief and help ...

  3. Virtual Sensor Test Instrumentation

    NASA Technical Reports Server (NTRS)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of functions. The sensor data is processed in a distributed fashion across the network, providing a large pool of resources in real time to meet stringent latency requirements.

  4. Quantitative assessment of anatomical change using a virtual proton depth radiograph for adaptive head and neck proton therapy.

    PubMed

    Wang, Peng; Yin, Lingshu; Zhang, Yawei; Kirk, Maura; Song, Gang; Ahn, Peter H; Lin, Alexander; Gee, James; Dolney, Derek; Solberg, Timothy D; Maughan, Richard; McDonough, James; Teo, Boon-Keng Kevin

    2016-03-08

    The aim of this work is to demonstrate the feasibility of using water-equivalent thickness (WET) and virtual proton depth radiographs (PDRs) of intensity corrected cone-beam computed tomography (CBCT) to detect anatomical change and patient setup error to trigger adaptive head and neck proton therapy. The planning CT (pCT) and linear accelerator (linac) equipped CBCTs acquired weekly during treatment of a head and neck patient were used in this study. Deformable image registration (DIR) was used to register each CBCT with the pCT and map Hounsfield units (HUs) from the planning CT (pCT) onto the daily CBCT. The deformed pCT is referred as the corrected CBCT (cCBCT). Two dimensional virtual lateral PDRs were generated using a ray-tracing technique to project the cumulative WET from a virtual source through the cCBCT and the pCT onto a virtual plane. The PDRs were used to identify anatomic regions with large variations in the proton range between the cCBCT and pCT using a threshold of 3 mm relative difference of WET and 3 mm search radius criteria. The relationship between PDR differences and dose distribution is established. Due to weight change and tumor response during treatment, large variations in WETs were observed in the relative PDRs which corresponded spatially with an increase in the number of failing points within the GTV, especially in the pharynx area. Failing points were also evident near the posterior neck due to setup variations. Differences in PDRs correlated spatially to differences in the distal dose distribution in the beam's eye view. Virtual PDRs generated from volumetric data, such as pCTs or CBCTs, are potentially a useful quantitative tool in proton therapy. PDRs and WET analysis may be used to detect anatomical change from baseline during treatment and trigger further analysis in adaptive proton therapy.

  5. Addressing security issues related to virtual institute distributed activities

    NASA Astrophysics Data System (ADS)

    Stytz, Martin R.; Banks, Sheila B.

    2008-03-01

    One issue confounding the development and experimentation of distributed modeling and simulation environments is the inability of the project team to identify and collaborate with resources, both human and technical, from outside the United States. This limitation is especially significant within the human behavior representation area where areas such as cultural effects research and joint command team behavior modeling require the participation of various cultural and national representatives. To address this limitation, as well as other human behavior representation research issues, NATO Research and Technology Organization initiated a project to develop a NATO virtual institute that enables more effective and more collaborative research into human behavior representation. However, in building and operating a virtual institute one of the chief concerns must be the cyber security of the institute. Because the institute "exists" in cyberspace, all of its activities are susceptible to cyberattacks, subterfuge, denial of service and all of the vulnerabilities that networked computers must face. In our opinion, for the concept of virtual institutes to be successful and useful, their operations and services must be protected from the threats in the cyber environment. A key to developing the required protection is the development and promulgation of standards for cyber security. In this paper, we discuss the types of cyber standards that are required, how new internet technologies can be exploited and can benefit the promulgation, development, maintenance, and robustness of the standards. This paper is organized as follows. Section One introduces the concept of the virtual institutes, the expected benefits, and the motivation for our research and for research in this area. Section Two presents background material and a discussion of topics related to VIs, uman behavior and cultural modeling, and network-centric warfare. Section Three contains a discussion of the security challenges that face the virtual institute and the characteristics of the standards that must be employed. Section Four contains our proposal for documentation of the cybersecurity standards. Section Five contains the conclusion and suggestions for further work.

  6. Catchment virtual observatory for sharing flow and transport models outputs: using residence time distribution to compare contrasting catchments

    NASA Astrophysics Data System (ADS)

    Thomas, Zahra; Rousseau-Gueutin, Pauline; Kolbe, Tamara; Abbott, Ben; Marcais, Jean; Peiffer, Stefan; Frei, Sven; Bishop, Kevin; Le Henaff, Geneviève; Squividant, Hervé; Pichelin, Pascal; Pinay, Gilles; de Dreuzy, Jean-Raynald

    2017-04-01

    The distribution of groundwater residence time in a catchment provides synoptic information about catchment functioning (e.g. nutrient retention and removal, hydrograph flashiness). In contrast with interpreted model results, which are often not directly comparable between studies, residence time distribution is a general output that could be used to compare catchment behaviors and test hypotheses about landscape controls on catchment functioning. In this goal, we created a virtual observatory platform called Catchment Virtual Observatory for Sharing Flow and Transport Model Outputs (COnSOrT). The main goal of COnSOrT is to collect outputs from calibrated groundwater models from a wide range of environments. By comparing a wide variety of catchments from different climatic, topographic and hydrogeological contexts, we expect to enhance understanding of catchment connectivity, resilience to anthropogenic disturbance, and overall functioning. The web-based observatory will also provide software tools to analyze model outputs. The observatory will enable modelers to test their models in a wide range of catchment environments to evaluate the generality of their findings and robustness of their post-processing methods. Researchers with calibrated numerical models can benefit from observatory by using the post-processing methods to implement a new approach to analyzing their data. Field scientists interested in contributing data could invite modelers associated with the observatory to test their models against observed catchment behavior. COnSOrT will allow meta-analyses with community contributions to generate new understanding and identify promising pathways forward to moving beyond single catchment ecohydrology. Keywords: Residence time distribution, Models outputs, Catchment hydrology, Inter-catchment comparison

  7. Simple display system of mechanical properties of cells and their dispersion.

    PubMed

    Shimizu, Yuji; Kihara, Takanori; Haghparast, Seyed Mohammad Ali; Yuba, Shunsuke; Miyake, Jun

    2012-01-01

    The mechanical properties of cells are unique indicators of their states and functions. Though, it is difficult to recognize the degrees of mechanical properties, due to small size of the cell and broad distribution of the mechanical properties. Here, we developed a simple virtual reality system for presenting the mechanical properties of cells and their dispersion using a haptic device and a PC. This system simulates atomic force microscopy (AFM) nanoindentation experiments for floating cells in virtual environments. An operator can virtually position the AFM spherical probe over a round cell with the haptic handle on the PC monitor and feel the force interaction. The Young's modulus of mesenchymal stem cells and HEK293 cells in the floating state was measured by AFM. The distribution of the Young's modulus of these cells was broad, and the distribution complied with a log-normal pattern. To represent the mechanical properties together with the cell variance, we used log-normal distribution-dependent random number determined by the mode and variance values of the Young's modulus of these cells. The represented Young's modulus was determined for each touching event of the probe surface and the cell object, and the haptic device-generating force was calculated using a Hertz model corresponding to the indentation depth and the fixed Young's modulus value. Using this system, we can feel the mechanical properties and their dispersion in each cell type in real time. This system will help us not only recognize the degrees of mechanical properties of diverse cells but also share them with others.

  8. Evaluating statistical cloud schemes: What can we gain from ground-based remote sensing?

    NASA Astrophysics Data System (ADS)

    Grützun, V.; Quaas, J.; Morcrette, C. J.; Ament, F.

    2013-09-01

    Statistical cloud schemes with prognostic probability distribution functions have become more important in atmospheric modeling, especially since they are in principle scale adaptive and capture cloud physics in more detail. While in theory the schemes have a great potential, their accuracy is still questionable. High-resolution three-dimensional observational data of water vapor and cloud water, which could be used for testing them, are missing. We explore the potential of ground-based remote sensing such as lidar, microwave, and radar to evaluate prognostic distribution moments using the "perfect model approach." This means that we employ a high-resolution weather model as virtual reality and retrieve full three-dimensional atmospheric quantities and virtual ground-based observations. We then use statistics from the virtual observation to validate the modeled 3-D statistics. Since the data are entirely consistent, any discrepancy occurring is due to the method. Focusing on total water mixing ratio, we find that the mean ratio can be evaluated decently but that it strongly depends on the meteorological conditions as to whether the variance and skewness are reliable. Using some simple schematic description of different synoptic conditions, we show how statistics obtained from point or line measurements can be poor at representing the full three-dimensional distribution of water in the atmosphere. We argue that a careful analysis of measurement data and detailed knowledge of the meteorological situation is necessary to judge whether we can use the data for an evaluation of higher moments of the humidity distribution used by a statistical cloud scheme.

  9. Simple Display System of Mechanical Properties of Cells and Their Dispersion

    PubMed Central

    Shimizu, Yuji; Kihara, Takanori; Haghparast, Seyed Mohammad Ali; Yuba, Shunsuke; Miyake, Jun

    2012-01-01

    The mechanical properties of cells are unique indicators of their states and functions. Though, it is difficult to recognize the degrees of mechanical properties, due to small size of the cell and broad distribution of the mechanical properties. Here, we developed a simple virtual reality system for presenting the mechanical properties of cells and their dispersion using a haptic device and a PC. This system simulates atomic force microscopy (AFM) nanoindentation experiments for floating cells in virtual environments. An operator can virtually position the AFM spherical probe over a round cell with the haptic handle on the PC monitor and feel the force interaction. The Young's modulus of mesenchymal stem cells and HEK293 cells in the floating state was measured by AFM. The distribution of the Young's modulus of these cells was broad, and the distribution complied with a log-normal pattern. To represent the mechanical properties together with the cell variance, we used log-normal distribution-dependent random number determined by the mode and variance values of the Young's modulus of these cells. The represented Young's modulus was determined for each touching event of the probe surface and the cell object, and the haptic device-generating force was calculated using a Hertz model corresponding to the indentation depth and the fixed Young's modulus value. Using this system, we can feel the mechanical properties and their dispersion in each cell type in real time. This system will help us not only recognize the degrees of mechanical properties of diverse cells but also share them with others. PMID:22479595

  10. Real-time, rapidly updating severe weather products for virtual globes

    NASA Astrophysics Data System (ADS)

    Smith, Travis M.; Lakshmanan, Valliappa

    2011-01-01

    It is critical that weather forecasters are able to put severe weather information from a variety of observational and modeling platforms into a geographic context so that warning information can be effectively conveyed to the public, emergency managers, and disaster response teams. The availability of standards for the specification and transport of virtual globe data products has made it possible to generate spatially precise, geo-referenced images and to distribute these centrally created products via a web server to a wide audience. In this paper, we describe the data and methods for enabling severe weather threat analysis information inside a KML framework. The method of creating severe weather diagnosis products that are generated and translating them to KML and image files is described. We illustrate some of the practical applications of these data when they are integrated into a virtual globe display. The availability of standards for interoperable virtual globe clients has not completely alleviated the need for custom solutions. We conclude by pointing out several of the limitations of the general-purpose virtual globe clients currently available.

  11. The routing, modulation level, and spectrum allocation algorithm in the virtual optical network mapping

    NASA Astrophysics Data System (ADS)

    Wang, Yunyun; Li, Hui; Liu, Yuze; Ji, Yuefeng; Li, Hongfa

    2017-10-01

    With the development of large video services and cloud computing, the network is increasingly in the form of services. In SDON, the SDN controller holds the underlying physical resource information, thus allocating the appropriate resources and bandwidth to the VON service. However, for some services that require extremely strict QoT (quality of transmission), the shortest distance path algorithm is often unable to meet the requirements because it does not take the link spectrum resources into account. And in accordance with the choice of the most unoccupied links, there may be more spectrum fragments. So here we propose a new RMLSA (the routing, modulation Level, and spectrum allocation) algorithm to reduce the blocking probability. The results show about 40% less blocking probability than the shortest-distance algorithm and the minimum usage of the spectrum priority algorithm. This algorithm is used to satisfy strict request of QoT for demands.

  12. Sexual orientation and spatial memory.

    PubMed

    Cánovas, Ma Rosa; Cimadevilla, José Manuel

    2011-11-01

    The present study aimed at determining the influence of sexual orientation in human spatial learning and memory. Participants performed the Boxes Room, a virtual reality version of the Holeboard. In Experiment I, a reference memory task, the position of the hidden rewards remained constant during the whole experiment. In Experiment II, a working memory task, the position of rewards changed between blocks. Each block consisted of two trials: One trial for acquisition and another for retrieval. The results of Experiment I showed that heterosexual men performed better than homosexual men and heterosexual women. They found the rewarded boxes faster. Moreover, homosexual participants committed more errors than heterosexuals. Experiment II showed that working memory abilities are the same in groups of different sexual orientation. These results suggest that sexual orientation is related to spatial navigation abilities, but mostly in men, and limited to reference memory, which depends more on the function of the hippocampal system.

  13. Climatic and morphological controls on post-glacial lake and river valley evolution in the Weichselian belt - an example from the Wda valley, Northern Poland

    NASA Astrophysics Data System (ADS)

    Kramkowski, M. A.; Błaszkiewicz, M.; Piotrowski, J. A.; Brauer, A.; Gierszewski, P.; Kordowski, J.; Lamparski, P.; Lorenz, S.; Noryśkiewicz, A. M.; Ott, F.; Slowinski, M. M.; Tyszkowski, S.

    2014-12-01

    The River Wda valley is a classical example of a polygenetic valley, consisting of former lake basins joined by erosive gap sections. In its middle section, which was the subject of our research, a fragment of an abandoned Lateglacial river valley is preserved, which is unique for the Weichselian moraine belt in the Central European Lowlands. The analysis of the relationship between the lacustrine and fluvial sediments and landforms enabled the authors to report many evolutionary connections between the initial period of the river system formation and the emergence of lakes during the Weichselian Lateglacial. The surface drainage essentially determined the progress of melting of dead ice blocks buried in the glacial depressions, which finally led to lake formation there. Most of the lake basins in the study area were formed during the Bølling-Allerød period. However, one section of the subglacial channel was not exposed to the thermokarst conditions and was therefore preserved with dead ice blocks throughout the entire Lateglacial. The dead ice decay at the beginning of the Holocene, as well as the emergence of another lake, created a lower base level of erosion in the close vicinity of the abandoned valley and induced a change of the river's course. Both fluvial and lacustrine deposits and landforms distributed in the central section of the River Wda valley indicate two processes, which proceeded simultaneously: (1) emergence of fluvially joined lake basins within a glacial channel, (2) degradation of the river bed in the gap sections interfering between the lakes. The processes described for the central section of the River Wda channel indicate a very dynamic river valley development during the Weichselian Lateglacial and the early Holocene. The valley formation was tightly interwoven with the morphogenesis of the primary basins within the valley, mainly with the melting of the buried blocks of dead ice and the development of lakes. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution (ICLEA) of the Helmholtz Association and the research project no. 2011/01/B/ST10/07367 Polish Ministry of Science and Higher Education.

  14. Microbial Communities in Long-Term, Water-Flooded Petroleum Reservoirs with Different in situ Temperatures in the Huabei Oilfield, China

    PubMed Central

    Tang, Yue-Qin; Li, Yan; Zhao, Jie-Yu; Chi, Chang-Qiao; Huang, Li-Xin; Dong, Han-Ping; Wu, Xiao-Lei

    2012-01-01

    The distribution of microbial communities in the Menggulin (MGL) and Ba19 blocks in the Huabei Oilfield, China, were studied based on 16S rRNA gene analysis. The dominant microbes showed obvious block-specific characteristics, and the two blocks had substantially different bacterial and archaeal communities. In the moderate-temperature MGL block, the bacteria were mainly Epsilonproteobacteria and Alphaproteobacteria, and the archaea were methanogens belonging to Methanolinea, Methanothermobacter, Methanosaeta, and Methanocella. However, in the high-temperature Ba19 block, the predominant bacteria were Gammaproteobacteria, and the predominant archaea were Methanothermobacter and Methanosaeta. In spite of shared taxa in the blocks, differences among wells in the same block were obvious, especially for bacterial communities in the MGL block. Compared to the bacterial communities, the archaeal communities were much more conserved within blocks and were not affected by the variation in the bacterial communities. PMID:22432032

  15. Comparison of the post-operative analgesic effect of paravertebral block, pectoral nerve block and local infiltration in patients undergoing modified radical mastectomy: A randomised double-blind trial

    PubMed Central

    Syal, Kartik; Chandel, Ankita

    2017-01-01

    Background and Aims: Paravertebral block, pectoral nerve (Pecs) block and wound infiltration are three modalities for post-operative analgesia following breast surgery. This study compares the analgesic efficacy of these techniques for post-operative analgesia. Methods: Sixty-five patients with American Society of Anesthesiologists’ physical status 1 or 2 undergoing modified radical mastectomy with axillary dissection were recruited for the study. All patients received 21 mL 0.5% bupivacaine with adrenaline in the technique which was performed at the end of the surgery prior to extubation. Patients in Group 1 (local anaesthetic [LA], n = 22) received infiltration at the incision site after surgery, Group 2 patients (paravertebral block [PVB], n = 22) received ultrasound-guided ipsilateral paravertebral block while Group 3 patients [PECT] (n = 21) received ultrasound-guided ipsilateral Pecs blocks I and II. Patients were evaluated for pain scores at 0, 2, 4, 6, 12 and 24 h, duration of post-operative analgesia and rescue analgesic doses required. Non-normally distributed data were analysed using the Kruskal-Wallis test and Analysis of variance for normal distribution. Results: The post-operative visual analogue scale scores were lower in PVB group compared with others at 0, 2, 4, 12 and 24 h (P < 0.05). Mean duration of analgesia was significantly prolonged in PVB group (P < 0.001) with lesser rescue analgesic consumption up to 24 h. Conclusion: Ultrasound-guided paravertebral block reduces post-operative pain scores, prolongs the duration of analgesia and decreases demands for rescue analgesics in the first 24 h of post-operative period compared to ultrasound-guided Pecs block and local infiltration block. PMID:28890559

  16. Comparison of the post-operative analgesic effect of paravertebral block, pectoral nerve block and local infiltration in patients undergoing modified radical mastectomy: A randomised double-blind trial.

    PubMed

    Syal, Kartik; Chandel, Ankita

    2017-08-01

    Paravertebral block, pectoral nerve (Pecs) block and wound infiltration are three modalities for post-operative analgesia following breast surgery. This study compares the analgesic efficacy of these techniques for post-operative analgesia. Sixty-five patients with American Society of Anesthesiologists' physical status 1 or 2 undergoing modified radical mastectomy with axillary dissection were recruited for the study. All patients received 21 mL 0.5% bupivacaine with adrenaline in the technique which was performed at the end of the surgery prior to extubation. Patients in Group 1 (local anaesthetic [LA], n = 22) received infiltration at the incision site after surgery, Group 2 patients (paravertebral block [PVB], n = 22) received ultrasound-guided ipsilateral paravertebral block while Group 3 patients [PECT] ( n = 21) received ultrasound-guided ipsilateral Pecs blocks I and II. Patients were evaluated for pain scores at 0, 2, 4, 6, 12 and 24 h, duration of post-operative analgesia and rescue analgesic doses required. Non-normally distributed data were analysed using the Kruskal-Wallis test and Analysis of variance for normal distribution. The post-operative visual analogue scale scores were lower in PVB group compared with others at 0, 2, 4, 12 and 24 h ( P < 0.05). Mean duration of analgesia was significantly prolonged in PVB group ( P < 0.001) with lesser rescue analgesic consumption up to 24 h. Ultrasound-guided paravertebral block reduces post-operative pain scores, prolongs the duration of analgesia and decreases demands for rescue analgesics in the first 24 h of post-operative period compared to ultrasound-guided Pecs block and local infiltration block.

  17. Simulating the decentralized processes of the human immune system in a virtual anatomy model.

    PubMed

    Sarpe, Vladimir; Jacob, Christian

    2013-01-01

    Many physiological processes within the human body can be perceived and modeled as large systems of interacting particles or swarming agents. The complex processes of the human immune system prove to be challenging to capture and illustrate without proper reference to the spatial distribution of immune-related organs and systems. Our work focuses on physical aspects of immune system processes, which we implement through swarms of agents. This is our first prototype for integrating different immune processes into one comprehensive virtual physiology simulation. Using agent-based methodology and a 3-dimensional modeling and visualization environment (LINDSAY Composer), we present an agent-based simulation of the decentralized processes in the human immune system. The agents in our model - such as immune cells, viruses and cytokines - interact through simulated physics in two different, compartmentalized and decentralized 3-dimensional environments namely, (1) within the tissue and (2) inside a lymph node. While the two environments are separated and perform their computations asynchronously, an abstract form of communication is allowed in order to replicate the exchange, transportation and interaction of immune system agents between these sites. The distribution of simulated processes, that can communicate across multiple, local CPUs or through a network of machines, provides a starting point to build decentralized systems that replicate larger-scale processes within the human body, thus creating integrated simulations with other physiological systems, such as the circulatory, endocrine, or nervous system. Ultimately, this system integration across scales is our goal for the LINDSAY Virtual Human project. Our current immune system simulations extend our previous work on agent-based simulations by introducing advanced visualizations within the context of a virtual human anatomy model. We also demonstrate how to distribute a collection of connected simulations over a network of computers. As a future endeavour, we plan to use parameter tuning techniques on our model to further enhance its biological credibility. We consider these in silico experiments and their associated modeling and optimization techniques as essential components in further enhancing our capabilities of simulating a whole-body, decentralized immune system, to be used both for medical education and research as well as for virtual studies in immunoinformatics.

  18. The spatiotemporal variation analysis of virtual water for agriculture and livestock husbandry: A study for Jilin Province in China.

    PubMed

    Ma, Xiaolei; Ma, Yanji

    2017-05-15

    With the rapid development of economic, water crisis is becoming more and more serious and would be an important obstacle to the sustainable development of society. Virtual water theory and its applications in agriculture can provide important strategies for realizing the reasonable utilization and sustainable development of water resources. Using the Penman-Monteith model and Theil index combining the CROPWAT software, this work takes Jilin Province as study area quantifying the virtual water content of agriculture and livestock husbandry and giving a comprehensive evaluation of their spatiotemporal structure evolution. This study aims to help make clear the water consumption of agriculture and livestock husbandry, and offer advice on rational water utilization and agricultural structure adjustment. The results show that the total virtual water (TVW) proportion of agriculture presents a gradual growth trend while that of livestock husbandry reduces during the study period. In space, central Jilin shows the highest virtual water content of agriculture as well as livestock husbandry, the TVW in central Jilin is about 35.8billionm 3 . The TVW of maize is highest among six studied crops, and the cattle shows the highest TVW in the four kinds of animals. The distribution of TVW calculated by us and the distribution of actual water resources have remarkable difference, which leads to the increase of water consumption and cost of agricultural production. Finally, we discuss the driving force of the spatiotemporal variation of the TVW for agriculture and livestock husbandry, and also give some advises for the planting structural adjustment. This work is helpful for the sustainable development of agricultural and livestock husbandry and realizing efficient utilization of water resources. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Distributed analysis at LHCb

    NASA Astrophysics Data System (ADS)

    Williams, Mike; Egede, Ulrik; Paterson, Stuart; LHCb Collaboration

    2011-12-01

    The distributed analysis experience to date at LHCb has been positive: job success rates are high and wait times for high-priority jobs are low. LHCb users access the grid using the GANGA job-management package, while the LHCb virtual organization manages its resources using the DIRAC package. This clear division of labor has benefitted LHCb and its users greatly; it is a major reason why distributed analysis at LHCb has been so successful. The newly formed LHCb distributed analysis support team has also proved to be a success.

  20. Using Virtual Observatory Services in Sky View

    NASA Technical Reports Server (NTRS)

    McGlynn, Thomas A.

    2007-01-01

    For over a decade Skyview has provided astronomers and the public with easy access to survey and imaging data from all wavelength regimes. SkyView has pioneered many of the concepts that underlie the Virtual Observatory. Recently SkyView has been released as a distributable package which uses VO protocols to access image and catalog services. This chapter describes how to use the Skyview as a local service and how to customize it to access additional VO services and local data.

Top