Science.gov

Sample records for distributed bragg reflector

  1. Distributed Bragg Reflectors With Reduced Optical Absorption

    DOEpatents

    Klem, John F.

    2005-08-16

    A new class of distributed Bragg reflectors has been developed. These distributed Bragg reflectors comprise interlayers positioned between sets of high-index and low-index quarter-wave plates. The presence of these interlayers is to reduce photon absorption resulting from spatially indirect photon-assisted electronic transitions between the high-index and low-index quarter wave plates. The distributed Bragg reflectors have applications for use in vertical-cavity surface-emitting lasers for use at 1.55 .mu.m and at other wavelengths of interest.

  2. Tunable hollow waveguide distributed Bragg reflectors with variable air core

    NASA Astrophysics Data System (ADS)

    Sakurai, Yasuki; Koyama, Fumio

    2004-06-01

    We demonstrate a tunable hollow waveguide distributed Bragg reflector consisting of a grating loaded slab hollow waveguide with a variable air-core. The modeling shows that a change in an air-core thickness enables a large shift of several tens of nanometers in Bragg wavelength due to a change of several percents in a propagation constant. We fabricated a slab hollow waveguide Bragg reflector with 620 μm long and, 190 nm deep 1st-order circular grating composed of SiO2, exhibiting strong Bragg reflection at 1558 nm with an air-core thickness of 10 μm for TM mode. The peak reflectivity is 65% including fiber coupling losses, the 3-dB bandwidth is 2.8 nm and the grating-induced loss is less than 0.5 dB. We demonstrate a 3 nm wavelength tuning of the fabricated hollow waveguide Bragg reflector by changing an air-core thickness from 10 μm to 7.9 μm.

  3. Proposal of Tunable Hollow Waveguide Distributed Bragg Reflectors

    NASA Astrophysics Data System (ADS)

    Sakurai, Yasuki; Koyama, Fumio

    2004-05-01

    We propose a novel tunable distributed Bragg reflector (DBR) consisting of a grating loaded slab hollow waveguide with a variable air core. A change in an air core thickness of the tunable hollow waveguide gives us a large shift of over 100 nm in Bragg wavelength due to a change of several percents in a propagation constant. In order to obtain the high reflectivity and wide tunability of the tunable hollow waveguide DBR, the optimisation of the grating depth and grating length is carried out with minimizing radiation loss and distortion of reflection spectra induced by the corrugation. The modelling result shows a possibility of wide tunability of several tens nm with maintaining a high reflectivity of more than 90% without noticeable radiation loss and distortion of reflection spectra. We expect various device applications of the proposed tunable hollow waveguide DBR, which may include tunable band-pass filters, gain equalizers and dispersion compensators.

  4. Distributed bragg reflector using AIGaN/GaN

    DOEpatents

    Waldrip, Karen E.; Lee, Stephen R.; Han, Jung

    2004-08-10

    A supported distributed Bragg reflector or superlattice structure formed from a substrate, a nucleation layer deposited on the substrate, and an interlayer deposited on the nucleation layer, followed by deposition of (Al,Ga,B)N layers or multiple pairs of (Al,Ga,B)N/(Al,Ga,B)N layers, where the interlayer is a material selected from AlN, Al.sub.x Ga.sub.1-x N, and AlBN with a thickness of approximately 20 to 1000 angstroms. The interlayer functions to reduce or eliminate the initial tensile growth stress, thereby reducing cracking in the structure. Multiple interlayers utilized in an AlGaN/GaN DBR structure can eliminate cracking and produce a structure with a reflectivity value greater than 0.99.

  5. Widely Tunable Distributed Bragg Reflectors Integrated into Nanowire Waveguides.

    PubMed

    Fu, Anthony; Gao, Hanwei; Petrov, Petar; Yang, Peidong

    2015-10-14

    Periodic structures with dimensions on the order of the wavelength of light can tailor and improve the performance of optical components, and they can enable the creation of devices with new functionalities. For example, distributed Bragg reflectors (DBRs), which are created by periodic modulations in a structure's dielectric medium, are essential in dielectric mirrors, vertical cavity surface emitting lasers, fiber Bragg gratings, and single-frequency laser diodes. This work introduces nanoscale DBRs integrated directly into gallium nitride (GaN) nanowire waveguides. Photonic band gaps that are tunable across the visible spectrum are demonstrated by precisely controlling the grating's parameters. Numerical simulations indicate that in-wire DBRs have significantly larger reflection coefficients in comparison with the nanowire's end facet. By comparing the measured spectra with the simulated spectra, the index of refraction of the GaN nanowire waveguides was extracted to facilitate the design of photonic coupling structures that are sensitive to phase-matching conditions. This work indicates the potential to design nanowire-based devices with improved performance for optical resonators and optical routing.

  6. UV distributed Bragg reflectors build from porous silicon multilayers

    NASA Astrophysics Data System (ADS)

    Morales, F.; Garcia, G.; Luna, A.; Lopez, R.; Rosendo, E.; Diaz, T.; Juarez, H.

    2015-03-01

    UV Distributed Bragg reflectors were fabricated by a two-step thermal oxidation process over porous silicon multilayers (PS-ML), which were prepared by room-temperature electrochemical anodization of silicon wafers. The optical behavior of the PS-ML before and after oxidation was studied by reflectance measurements. It was observed an UV shift from 430 to 300 nm in the peak of the reflectance spectrum after oxidation of the PS-ML. This was attributed to the presence of silicon oxide over the surface of the silicon filaments. Such oxide also reduced the refractive index of each porous silicon monolayer. The bandgap of the PS-ML was calculated by the Kubelka-Munk approximation, which showed an increase in the bandgap from 3.11 to 4.36 eV after the thermal oxidation process. It was suggested that the observed optical response could opens the possibility of fabrication of UV optoelectronic devices based entirely in the silicon technology.

  7. Apparatus For Linewidth Reduction in Distributed Feedback or Distributed Bragg Reflector Semiconductor Lasers Using Vertical Emission

    NASA Technical Reports Server (NTRS)

    Cook, Anthony L. (Inventor); Hendricks, Herbert D. (Inventor)

    2000-01-01

    The linewidth of a distributed feedback semiconductor laser or a distributed Bragg reflector laser having one or more second order gratings is reduced by using an external cavity to couple the vertical emission back into the laser. This method and device prevent disturbance of the main laser beam, provide unobstructed access to laser emission for the formation of the external cavity, and do not require a very narrow heat sink. Any distributed Bragg reflector semiconductor laser or distributed feedback semiconductor laser that can produce a vertical emission through the epitaxial material and through a window in the top metallization can be used. The external cavity can be formed with an optical fiber or with a lens and a mirror or grating.

  8. Tunneling times of acoustic phonon packets through a distributed Bragg reflector

    PubMed Central

    2014-01-01

    The longwave phenomenological model is used to make simple and precise calculations of various physical quantities such as the vibrational energy density, the vibrational energy, the relative mechanical displacement, and the one-dimensional stress tensor of a porous silicon distributed Bragg reflector. From general principles such as invariance under time reversal, invariance under space reflection, and conservation of energy density flux, the equivalence of the tunneling times for both transmission and reflection is demonstrated. Here, we study the tunneling times of acoustic phonon packets through a distributed Bragg reflector in porous silicon multilayer structures, and we report the possibility that a phenomenon called Hartman effect appears in these structures. PMID:25237288

  9. High power singlemode GaInAs lasers with distributed Bragg reflectors

    NASA Technical Reports Server (NTRS)

    O'Brien, S.; Parke, R.; Welch, D. F.; Mehuys, D.; Scifres, D.

    1992-01-01

    High power singlemode strained GaInAs lasers have been fabricated which use buried second order gratings as distributed Bragg reflectors. The lasers operate in an edge emitting fashion with CW powers in excess of 110 mW with single longitudinal and transverse mode operation at 971.9 nm up to 42 mW.

  10. Distributed feedback laser diode integrated with distributed Bragg reflector for continuous-wave terahertz generation.

    PubMed

    Kim, Namje; Han, Sang-Pil; Ryu, Han-Cheol; Ko, Hyunsung; Park, Jeong-Woo; Lee, Donghun; Jeon, Min Yong; Park, Kyung Hyun

    2012-07-30

    A widely tunable dual mode laser diode with a single cavity structure is demonstrated. This novel device consists of a distributed feedback (DFB) laser diode and distributed Bragg reflector (DBR). Micro-heaters are integrated on the top of each section for continuous and independent wavelength tuning of each mode. By using a single gain medium in the DFB section, an effective common optical cavity and common modes are realized. The laser diode shows a wide tunability of the optical beat frequency, from 0.48 THz to over 2.36 THz. Continuous wave THz radiation is also successfully generated with low-temperature grown InGaAs photomixers from 0.48 GHz to 1.5 THz.

  11. High-power distributed Bragg reflector ridge-waveguide diode laser with very small spectral linewidth.

    PubMed

    Paschke, K; Spiessberger, S; Kaspari, C; Feise, D; Fiebig, C; Blume, G; Wenzel, H; Wicht, A; Erbert, G

    2010-02-01

    We manufactured and investigated distributed Bragg reflector ridge-waveguide diode lasers having sixth-order surface gratings and an emission wavelength around 974 nm. The single-mode output power of the lasers with a total length of 4 mm exceeded 1 W. A very small spectral linewidth of 1.4 MHz (3 dB) consisting of a Lorentzian part of 146 kHz and a Gaussian part of 1308 MHz was measured using a self-delayed heterodyne measurement technique.

  12. Enhanced random lasing from distributed Bragg reflector assisted Au-ZnO nanowire Schottky diode

    NASA Astrophysics Data System (ADS)

    Bashar, Sunayna B.; Suja, Mohammad; Shi, Wenhao; Liu, Jianlin

    2016-11-01

    An electrically pumped ultraviolet random laser based on an Au-ZnO nanowire Schottky junction on top of a SiO2/SiNx distributed Bragg reflector (DBR) has been fabricated. Electrical characterization shows typical Schottky diode current-voltage characteristics. Evident random lasing behavior is observed from electroluminescence measurement at room temperature. In comparison with a reference device having similar nanowire morphology but no DBR, this laser demonstrates almost 1.8 times reduction in threshold current and 4 times enhancement in output power. The performance enhancement originates from the incorporation of the DBR structure, which provides high reflectivity in the designed wavelength range.

  13. Giant enhancement of second harmonic generation in nonlinear photonic crystals with distributed Bragg reflector mirrors.

    PubMed

    Ren, Ming-Liang; Li, Zhi-Yuan

    2009-08-17

    We theoretically investigate second harmonic generation (SHG) in one-dimensional multilayer nonlinear photonic crystal (NPC) structures with distributed Bragg reflector (DBR) as mirrors. The NPC structures have periodic modulation on both the linear and second-order susceptibility. Three major physical mechanisms, quasi-phase matching (QPM) effect, slow light effect at photonic band gap edges, and cavity effect induced by DBR mirrors can be harnessed to enhance SHG. Selection of appropriate structural parameters can facilitate coexistence of these mechanisms to act collectively and constructively to create very high SHG conversion efficiency with an enhancement by up to seven orders of magnitude compared with the ordinary NPC where only QPM works.

  14. Quantum efficiency enhancement in selectively transparent silicon thin film solar cells by distributed Bragg reflectors.

    PubMed

    Kuo, M Y; Hsing, J Y; Chiu, T T; Li, C N; Kuo, W T; Lay, T S; Shih, M H

    2012-11-05

    This work demonstrated a-Si:H thin-film solar cells with backside TiO(2)/ SiO(2) distributed Bragg reflectors (DBRs) for applications involving building-integrated photovoltaics (BIPVs). Selectively transparent solar cells are formed by adjusting the positions of the DBR stop bands to allow the transmission of certain parts of light through the solar cells. Measurement and simulation results indicate that the transmission of blue light (430 ~500 nm) with the combination of three DBR mirrors has the highest increase in conversion efficiency.

  15. Quantum efficiency enhancement in selectively transparent silicon thin film solar cells by distributed Bragg reflectors.

    PubMed

    Kuo, M Y; Hsing, J Y; Chiu, T T; Li, C N; Kuo, W T; Lay, T S; Shih, M H

    2012-11-05

    This work demonstrated a-Si:H thin-film solar cells with backside TiO(2) / SiO(2) distributed Bragg reflectors (DBRs) for applications involving building-integrated photovoltaics (BIPVs). Selectively transparent solar cells are formed by adjusting the positions of the DBR stop bands to allow the transmission of certain parts of light through the solar cells. Measurement and simulation results indicate that the transmission of blue light (430 ~500 nm) with the combination of three DBR mirrors has the highest increase in conversion efficiency.

  16. Method and Apparatus for Linewidth Reduction in Distributed Feedback or Distributed Bragg Reflector Semiconductor Lasers using Vertical Emission

    NASA Technical Reports Server (NTRS)

    Cook, Anthony L. (Inventor); Hendricks, Herbert D. (Inventor)

    1998-01-01

    The linewidth of a distributed feedback semiconductor laser or a distributed Bragg reflector laser having one or more second order gratings is reduced by using an external cavity to couple the vertical emission back into the laser. This method and device prevent disturbance of the main laser beam. provide unobstructed access to laser emission for the formation of the external cavity. and do not require a very narrow heat sink. Any distributed Bragg reflector semiconductor laser or distributed feedback semiconductor laser that can produce a vertical emission through the epitaxial material and through a window in the top metallization can be used. The external cavity can be formed with an optical fiber or with a lens and a mirror of grating.

  17. High reflectivity III-nitride UV-C distributed Bragg reflectors for vertical cavity emitting lasers

    NASA Astrophysics Data System (ADS)

    Franke, A.; Hoffmann, M. P.; Kirste, R.; Bobea, M.; Tweedie, J.; Kaess, F.; Gerhold, M.; Collazo, R.; Sitar, Z.

    2016-10-01

    UV-C distributed Bragg reflectors (DBRs) for vertical cavity surface emitting laser applications and polariton lasers are presented. The structural integrity of up to 25 layer pairs of AlN/Al0.65Ga0.35N DBRs is maintained by balancing the tensile and compressive strain present between the single layers of the multilayer stack grown on top of an Al0.85Ga0.35N template. By comparing the structural and optical properties for DBRs grown on low dislocation density AlN and AlGaN templates, the criteria for plastic relaxation by cracking thick nitride Bragg reflectors are deduced. The critical thickness is found to be limited mainly by the accumulated strain energy during the DBR growth and is only negligibly affected by the dislocations. A reflectance of 97.7% at 273 nm is demonstrated. The demonstrated optical quality and an ability to tune the resonance wavelength of our resonators and microcavity structures open new opportunities for UV-C vertical emitters.

  18. High performance near-ultraviolet flip-chip light-emitting diodes with distributed Bragg reflector

    NASA Astrophysics Data System (ADS)

    Choi, Il-Gyun; Jin, Geun-Mo; Park, Jun-Cheon; Jeon, Soo-Kun; Park, Eun-Hyun

    2015-09-01

    We have fabricated the near-ultraviolet (NUV) flip-chip (FC) light-emitting diodes (LEDs) with the high external quantum efficiency (EQE) using distributed Bragg reflectors (DBRs) and compared with conventional FC-LED using silver (Ag) reflector. Reflectance of Ag is very high (90 ~ 95 %) at visible spectrum region, but sharply decrease at NUV region. Therefore we used DBR composed of two different materials which have high-index contrast, such as TiO2 and SiO2. However, to achieve high-performance NUV flip-chip LEDs, we used Ta2O5 instead of TiO2 that absorbs lights of NUV region. Thus, we have designed a DBR composed of twenty pairs of Ta2O5 and SiO2 using optical coating design software. The DBR designed by our group achieves a reflectance of ~99 % in the NUV region (350 ~ 500 nm), which is much better than Ag reflector. Optical power is higher than the Ag-LED up to 22 % @ 390 nm.

  19. High power GaInAs lasers with distributed Bragg reflectors

    NASA Technical Reports Server (NTRS)

    O'Brien, S.; Parke, R.; Welch, D. F.; Mehuys, D.; Scifres, D.

    1992-01-01

    Single-mode strained-layer lasers have been fabricated which use buried second-order gratings for distributed Bragg reflectors. The lasers contain a strained GaInAs quantum well in the active region and operate in an edge emitting fashion with CW powers in excess of 110 mW. Single longitudinal and transverse mode operation is maintained at about 971.9 nm up to 42 mW. Total power conversion efficiencies as high as 28 percent have been observed. The longitudinal and transverse mode behavior is stable under 90 percent amplitude modulation with 50 percent duty cycle pulses at 10 kHz and 10 MHz. Preliminary life-test data at 40 C also indicate room temperature lifetimes in excess of 45,000 hours.

  20. Etched distributed Bragg reflectors as three-dimensional photonic crystals: photonic bands and density of states.

    PubMed

    Pavarini, E; Andreani, L C

    2002-09-01

    The photonic band dispersion and density of states (DOS) are calculated for the three-dimensional (3D) hexagonal structure corresponding to a distributed Bragg reflector patterned with a 2D triangular lattice of circular holes. Results for the Si/SiO(2) and GaAs/Al(x)Ga(1-x)As systems determine the optimal parameters for which a gap in the 2D plane occurs and overlaps the 1D gap of the multilayer. The DOS is considerably reduced in correspondence with the overlap of 2D and 1D gaps. Also, the local density of states (i.e., the DOS weighted with the squared electric field at a given point) has strong variations depending on the position. Both results imply substantial changes of spontaneous emission rates and patterns for a local emitter embedded in the structure and make this system attractive for the fabrication of a 3D photonic crystal with controlled radiative properties.

  1. Optical absorptions in ZnO/a-Si distributed Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Chen, Aqing; Chen, Zhian; Zhu, Kaigui; Ji, Zhenguo

    2017-01-01

    The distributed Bragg reflectors (DBRs) consisting of alternating layers of ZnO and heavy doped amorphous silicon (a-Si) have been fabricated by magnetron sputtering. It is novel to find that the optical absorptions exist in the stopband of the DBRs, and that many discrete strong optical absorption peaks exist in the wavelength range of visible to near-infrared. The calculated results by FDTD show that the absorptions in the stopband mainly exist in the first a-Si layer, and that the light absorbed by other a-Si layers inside contributes to the two absorption peaks in near-infrared range. The strong absorptions ranged from visible to infrared open new possibilities to the enhancement of the performance of amorphous silicon solar cells.

  2. Deep ultraviolet distributed Bragg reflectors based on graded composition AlGaN alloys

    SciTech Connect

    Brummer, Gordie; Nothern, Denis; Nikiforov, A. Yu.; Moustakas, T. D.

    2015-06-01

    Distributed Bragg reflectors (DBRs) with peak reflectivity at approximately 280 nm, based on compositionally graded Al{sub x}Ga{sub 1−x}N alloys, were grown on 6H-SiC substrates by plasma-assisted molecular beam epitaxy. DBRs with square, sinusoidal, triangular, and sawtooth composition profiles were designed with the transfer matrix method. The crystal structure of these DBRs was studied with high-resolution x-ray diffraction of the (1{sup ¯}015) reciprocal lattice point. The periodicity of the DBR profiles was confirmed with cross-sectional Z-contrast scanning transmission electron microscopy. The peak reflectance of these DBRs with 15.5 periods varies from 77% to 56% with corresponding full width at half maximum of 17–14 nm. Coupled mode analysis was used to explain the dependence of the reflectivity characteristics on the profile of the graded composition.

  3. Performance Enhancement in Plasmonic Photoconductive Terahertz Electronics by Incorporating Distributed Bragg Reflectors

    NASA Astrophysics Data System (ADS)

    Hemmati, Soroosh

    Terahertz optoelectronics have shown significant promise in the development and enhancement of technologies in chemical identification, biological sensing, and medical imaging. The practical advancement of such devices, however, has been hindered by the characteristics of the frequency range, 0.3 to 3 THz in the electromagnetic radiation spectrum. Presented here is a demonstration of the significant advancements possible in creating efficient and ultra-fast plasmonic THz sources by incorporating an optical cavity using a distributed Bragg reflector (DBR). Plasmonic electrodes enable increased transmission of photons into a GaAs photo-absorbing substrate, and the DBR enhances the quantum efficiency of the device by creating an optical cavity which allows for nearly 100% of the incoming light getting absorbed in the active GaAs layer.

  4. A high-quality factor hybrid plasmonic nanocavity based on distributed Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Tu, Linlin; Zhang, Chi; Huang, Zhong; Yau, Jason; Zhan, Peng; Wang, Zhenlin

    2016-09-01

    Herein, we propose a high-quality (Q) factor hybrid plasmonic nanocavity based on distributed Bragg reflectors (DBRs) with low propagation loss and extremely strong mode confinement. This hybrid plasmonic nanocavity is composed of a high-index cylindrical nanowire separated from a metal surface possessing shallow DBRs gratings by a sufficiently thin low-index dielectric layer. The hybrid plasmonic nanocavity possesses advantages such as a high Purcell factor (Fp) of up to nearly 20000 and a gain threshold approaching 266 cm-1 at 1550 nm, promising a greater potential in deep sub-wavelength lasing applications. Project supported by the National Key Basic Research Special Foundation of China (Grant Nos. 2012CB921501 and 2013CB632703) and the National Natural Science Foundation of China (Grant Nos. 11274160, 91221206, and 51271092).

  5. Realization of a Distributed Bragg Reflector for Propagating Guided Matter Waves

    SciTech Connect

    Fabre, C. M.; Cheiney, P.; Gattobigio, G. L.; Vermersch, F.; Faure, S.; Mathevet, R.; Lahaye, T.; Guery-Odelin, D.

    2011-12-02

    We report on the experimental study of a Bragg reflector for guided, propagating Bose-Einstein condensates. A one-dimensional attractive optical lattice of finite length created by red-detuned laser beams selectively reflects some velocity components of the incident matter wave packet. We find quantitative agreement between the experimental data and one-dimensional numerical simulations and show that the Gaussian envelope of the optical lattice has a major influence on the properties of the reflector. In particular, it gives rise to multiple reflections of the wave packet between two symmetric locations where Bragg reflection occurs. Our results are a further step towards integrated atom-optics setups for quasi-cw matter waves.

  6. Observation of Significant Quantum Efficiency Enhancement from a Polarized Photocathode with Distributed Bragg Reflector

    SciTech Connect

    Zhang, Shukui; Poelker, Matthew; Stutzman, Marcy L.; Chen, Yiqiao; Moy, Aaron

    2015-09-01

    Polarized photocathodes with higher Quantum efficiency (QE) would help to reduce the technological challenge associated with producing polarized beams at milliampere levels, because less laser light would be required, which simplifies photocathode cooling requirements. And for a given amount of available laser power, higher QE would extend the photogun operating lifetime. The distributed Bragg reflector (DBR) concept was proposed to enhance the QE of strained-superlattice photocathodes by increasing the absorption of the incident photons using a Fabry-Perot cavity formed between the front surface of the photocathode and the substrate that includes a DBR, without compromising electron polarization. Here we present recent results showing QE enhancement of a GaAs/GaAsP strained-superlattice photocathode made with a DBR structure. Typically, a GaAs/GaAsP strained-superlattice photocathode without DBR provides a QE of 1%, at a laser wavelength corresponding to peak polarization. In comparison, the GaAs/GaAsP strained-superlattice photocathodes with DBR exhibited an enhancement of over 2 when the incident laser wavelength was tuned to meet the resonant condition for the Fabry-Perot resonator.

  7. Ultra-thin distributed Bragg reflectors via stacked single-crystal silicon nanomembranes

    SciTech Connect

    Cho, Minkyu; Seo, Jung-Hun; Lee, Jaeseong; Mi, Hongyi; Kim, Munho; Ma, Zhenqiang; Zhao, Deyin; Zhou, Weidong; Yin, Xin; Wang, Xudong

    2015-05-04

    In this paper, we report ultra-thin distributed Bragg reflectors (DBRs) via stacked single-crystal silicon (Si) nanomembranes (NMs). Mesh hole-free single-crystal Si NMs were released from a Si-on-insulator substrate and transferred to quartz and Si substrates. Thermal oxidation was applied to the transferred Si NM to form high-quality SiO{sub 2} and thus a Si/SiO{sub 2} pair with uniform and precisely controlled thicknesses. The Si/SiO{sub 2} layers, as smooth as epitaxial grown layers, minimize scattering loss at the interface and in between the layers. As a result, a reflection of 99.8% at the wavelength range from 1350 nm to 1650 nm can be measured from a 2.5-pair DBR on a quartz substrate and 3-pair DBR on a Si substrate with thickness of 0.87 μm and 1.14 μm, respectively. The high reflection, ultra-thin DBRs developed here, which can be applied to almost any devices and materials, holds potential for application in high performance optoelectronic devices and photonics applications.

  8. A wet etching technique for accurate etching of GaAs/AlAs distributed Bragg reflectors

    SciTech Connect

    Bacher, K.; Harris, J.S. Jr.

    1995-07-01

    The authors have demonstrated a wet etching technique capable of producing accurate and uniform etch depths in distributed Bragg reflectors (DBRs) and other GaAs/AlAs superlattice structures. The process utilizes two selective etchants, citric acid/hydrogen peroxide in a 4:1 ratio and phosphoric acid/hydrogen peroxide/water in a 3:1:50 ratio, to sequentially etch away each pair of superlattice layers. The authors have used this technique to expose a 680 {angstrom} thick conduction GaAs layer buried beneath a 15 period, 2.1 {micro}m thick, undoped GaAs/AlAs DBR mirror. Transmission line measurements pads were formed on the exposed layer to determine the contact and sheet resistance. Comparison with a similar layer on the surface of the wafer reveals that the exposed layer is easily contacted with only a slight increase in sheet resistance indicating less than 125 {angstrom} of overetching, 0.6% of the total etch depth.

  9. Mid-infrared quantum cascade laser integrated with distributed Bragg reflector

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Hiroyuki; Hashimoto, Jun-ichi; Mori, Hiroki; Tsuji, Yukihiro; Murata, Makoto; Ekawa, Mitsuru; Katsuyama, Tsukuru

    2016-02-01

    Quantum cascade lasers (QCLs) are promising as compact light sources in the mid-infrared region. In order to put them into a practical use, their relatively high threshold currents should be reduced. Facet reflectivity increase by distributed Bragg reflector (DBR) is effective for this purpose, but there have been few reports on DBR-integrated QCLs (DBRQCLs). In this paper, we report a successful operation of a DBR-QCL in 7 μm wavelength region. With the fabrication, an n-InP buffer layer, a core region consisting of AlInAs/GaInAs superlattices, an n-InP cladding layer, and an n-GaInAs contact layer were successively grown on an n-InP substrate using OMVPE in the first growth. Then, the wafer was processed into a mesa-stripe, and it was buried by an Fe-doped InP current-blocking layer to form a buriedheterostructure (BH) waveguide. After that, a DBR in which semiconductor-walls and air-gaps were alternately arranged was formed at the front or end of the cavity by dry-etching the epitaxial layers of the air-gap regions, and thus a DBRQCL was fabricated. A DBR-QCL chip (Mesa-width:10 μm, Cavity-legth:2 mm) which had a DBR-structure consisting of 1 pair of a 3λ/4-thick semiconductor-wall/3λ/4-thick air-gap at the front end and a high reflective facet at the rear end oscillated successfully under continuous-wave condition at 15°C. This is the first report on the InP-based DBR-QCL to our knowledge. The facet reflectivity at the DBR was 66%, which was about two times larger than that of the cleaved facet. This result clearly shows that the DBR-structure is effective for threshold current reduction of QCL.

  10. Design of chirped distributed Bragg reflector for octave-spanning frequency group velocity dispersion compensation in terahertz quantum cascade laser.

    PubMed

    Xu, Chao; Ban, Dayan

    2016-06-13

    The strategies and approaches of designing chirped Distributed Bragg Reflector for group velocity compensation in metal-metal waveguide terahertz quantum cascade laser are investigated through 1D and 3D models. The results show the depth of the corrugation periods plays an important role on achieving broad-band group velocity compensation in terahertz range. However, the deep corrugation also brings distortion to the group delay behavior. A two-section chirped DBR is proposed to provide smoother group delay compensation while still maintain the broad frequency range (octave) operation within 2 THz to 4 THz.

  11. High-spectral-radiance, red-emitting tapered diode lasers with monolithically integrated distributed Bragg reflector surface gratings.

    PubMed

    Feise, David; John, Wilfred; Bugge, Frank; Fiebig, Christian; Blume, Gunnar; Paschke, Katrin

    2012-10-08

    A red-emitting tapered diode laser with a monolithically integrated distributed Bragg reflector grating is presented. The device is able to emit up to 1 W of spectrally stabilized optical output power at 5°C. Depending on the period of the tenth order surface grating the emission wavelengths of these devices from the same gain material are 635 nm, 637 nm, and 639 nm. The emission is as narrow as 9 pm (FWHM) at 637.6 nm. The lateral beam quality is M(2)(1/e(2)) = 1.2. Therefore, these devices simplify techniques such as wavelength multiplexing and fiber coupling dedicating them as light sources for µ-Raman spectroscopy, absolute distance interferometry, and holographic imaging.

  12. Light extraction improvement of blue light-emitting diodes with a Metal-distributed Bragg reflector current blocking layer

    NASA Astrophysics Data System (ADS)

    Liu, Na; Yi, Xiaoyan; Wang, Li; Sun, Xuejiao; Liu, Lei; Liu, Zhiqiang; Wang, Junxi; Li, Jinmin

    2015-03-01

    The p-electrode of blue light-emitting diodes (LED) chips has a low transmittance on the blue light spectrum. The blue light emitted from the quantum wells under the p-electrode will be severely absorbed by p-electrode, which cause a decrease in blue light extraction efficiency (LEE). In this study, we first designed a current blocking layer (CBL) structure with the blue light reflection through the simulation software. The simulation results show that this structure can effectively improve blue LEE, and then, this structure was verified by experiment. Electroluminescence measurement results show that LED with Metal-distributed Bragg reflector (M-DBR) CBL exhibited better optical performance than the LED with SiO2 CBL and DBR CBL. It was found that M-DBR CBL can effectively increase the blue light reflectivity and prevent the light absorption from the metal p-electrode to improve LED' blue LEE.

  13. Metamorphic distributed Bragg reflectors for the 1440–1600 nm spectral range: Epitaxy, formation, and regrowth of mesa structures

    SciTech Connect

    Egorov, A. Yu. Karachinsky, L. Ya.; Novikov, I. I.; Babichev, A. V.; Berezovskaya, T. N.; Nevedomskiy, V. N.

    2015-10-15

    It is shown that metamorphic In{sub 0.3}Ga{sub 0.7}As/In{sub 0.3}Al{sub 0.7}As distributed Bragg reflectors (DBRs) with a reflection band at 1440–1600 nm and a reflectance of no less than 0.999 can be fabricated by molecular beam epitaxy (MBE) on a GaAs substrate. It is demonstrated that mesa structures formed from metamorphic DBRs on a GaAs substrate can be regrown by MBE and microcavities can be locally formed in two separate epitaxial processes. The results obtained can find wide application in the fabrication of vertical-cavity surface-emitting lasers (VCSELs) with a buried tunnel junction.

  14. GaAsP tunable distributed Bragg reflector laser with indium tin oxide thin-film heater

    NASA Astrophysics Data System (ADS)

    Uemukai, Masahiro; Suhara, Toshiaki

    2016-08-01

    A GaAsP quantum well tunable distributed Bragg reflector (DBR) laser with a thin-film heater above a DBR grating was designed and fabricated. As a result of the optimization of the DBR grating to obtain both high reflectivity and sharp wavelength selectivity, single-mode lasing with an output power of 54 mW and a side-mode suppression ratio of 43 dB was obtained. By forming the transparent thin-film heater at a distance of 0.1 µm above the DBR grating, the DBR grating was heated locally and efficiently, and a wide wavelength tuning range of 5.2 nm was achieved by heating with a heater power as low as 160 mW.

  15. A study of distributed dielectric bragg reflectors for vertically emitting lasers of the near-IR range

    NASA Astrophysics Data System (ADS)

    Blokhin, S. A.; Bobrov, M. A.; Kuzmenkov, A. G.; Blokhin, A. A.; Vasil'ev, A. P.; Guseva, Yu. A.; Kulagina, M. M.; Karpovsky, I. O.; Zadiranov, Yu. M.; Troshkov, S. I.; Prasolov, N. D.; Brunkov, P. N.; Levitsky, V. S.; Lisak, V.; Maleev, N. A.; Ustinov, V. M.

    2016-10-01

    Studies aimed at optimization of the design of a dielectric distributed Bragg reflector (DBR) produced by the reactive magnetron sputtering method for applications in near-IR vertical-cavity surface-emitting lasers with intracavity contacts (ICC-VCSELs) are carried out. It is shown that the reflectivity of the dielectric DBRs based on SiO2/TiO2 decreases due to the polycrystalline structure of the TiO2 layers, which causes diffusive scattering of light. In contrast, amorphous Ta2O5 layers is characterized by a low surface roughness and low fluctuation in the refractive index. Single-mode ICC-VCSELs in the 980-nm spectral range with dielectric DBR based on SiO2/Ta2O5 with a threshold current less than 0.27 mA, electric resistance of less than 200 Ω, and differential efficiency of more than 0.8 W/A are demonstrated.

  16. Discretely swept optical coherence tomography system using super-structure grating distributed Bragg reflector lasers at 1561-1639nm

    NASA Astrophysics Data System (ADS)

    Choi, D.; Yoshimura, R.; Hiro-Oka, H.; Furukawa, H.; Goto, A.; Satoh, N.; Igarashi, A.; Nakanishi, M.; Shimizu, K.; Ohbayashi, K.

    2012-01-01

    We have developed swept source optical coherence tomography (OCT) system with an optical comb swept source system. The swept source system comprised of two super-structured grating distributed Bragg reflector lasers covering a wavelength range from 1561-1693 nm. A method to scan these lasers to obtain an interference signal without stitching noises, which are inherent in these lasers, and to connect two lasers without concatenation noise is explained. Method to reduce optical aliasing noises in this optical comb swept laser OCT is explained and demonstrated based on the characteristic of the optical aliasing noises in this particular OCT system. By reduction of those noises, a sensitivity of 124 dB was realized. The A-scan rate, resolution and depth range were 3.1 kHz, 16 μm (in air) and 12 mm, respectively. Deep imaging penetration into tissue is demonstrated for two selected samples.

  17. Transmission comb of a distributed Bragg reflector with two surface dielectric gratings

    PubMed Central

    Zhao, Xiaobo; Zhang, Yongyou; Zhang, Qingyun; Zou, Bingsuo; Schwingenschlogl, Udo

    2016-01-01

    The transmission behaviour of a distributed Bragg reector (DBR) with surface dielectric gratings on top and bottom is studied. The transmission shows a comb-like spectrum in the DBR band gap, which is explained in the Fano picture. The number density of the transmission peaks increases with increasing number of cells of the DBR, while the ratio of the average full width at half maximum to the corresponding average free spectral range, being only few percent for both transversal electric and magnetic waves, is almost invariant. The transmission peaks can be narrower than 0.1 nm and are fully separated from each other in certain wavebands. We further prove that the transmission combs are robust against randomness in the heights of the DBR layers. Therefore, the proposed structure is a candidate for an ultra-narrow-band multichannel filter or polarizer. PMID:26893069

  18. Giant Bragg Wavelength Tuning of Tunable Hollow Waveguide Bragg Reflector

    NASA Astrophysics Data System (ADS)

    Sakurai, Yasuki; Matsutani, Akihiro; Sakaguchi, Takahiro; Koyama, Fumio

    2005-09-01

    We demonstrate a giant Bragg wavelength tuning with a grating loaded hollow waveguide Bragg reflector. An air-core thickness change of a hollow waveguide enables us to achieve a large propagation constant change over few tens percent, which would be useful for various tunable optical devices. Our observed Bragg-wavelength tuning range is over 160 nm at an air-core thickness change from 10.7 to 1.8 μm, which corresponds to a propagation constant change of over 10%. This is the record large tuning value ever reported in conventional tuning schemes such as thermo-optic or electro-optic effects.

  19. Dichroic Bragg reflectors based on birefringent porous silicon

    SciTech Connect

    Diener, J.; Kunzner, N.; Kovalev, D.; Gross, E.; Timoshenko, V. Yu.; Polisski, G.; Koch, F.

    2001-06-11

    Multilayers of anisotropically nanostructured silicon (Si) have been fabricated and studied by polarization-resolved reflection measurements. Alternating layers having different refractive indices exhibit additionally a strong in-plane anisotropy of their refractive index (birefringence). Therefore, a stack of layers, acting as a distributed Bragg reflector, has two distinct reflection bands, depending on the polarization of the incident linearly polarized light. This effect is governed by a three-dimensional (in-plane and in-depth) variation of the refractive index. These structures can yield optical effects which are difficult to achieve with conventional Bragg reflectors. {copyright} 2001 American Institute of Physics.

  20. Optimum conditions of the distributed bragg reflector in 850-nm GaAs infrared light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Ahn, Su-Chang; Lee, Byung-Teak; An, Won-Chan; Kim, Dae-Kwang; Jang, In-Kyu; So, Jin-Su; Lee, Hyung-Joo

    2016-07-01

    In this paper, a distributed Bragg reflector (DBR) for a bottom reflector in 850-nm GaAs infrared light-emitting diodes (Ir-LEDs) was developed and optimized. At an 850-nm wavelength, markedly improved reflection spectra were observed from DBRs consisting of Al1-xGaxAs/AlxGa1-xAs materials. In addition, the reflection spectra of Al1-xGaxAs/AlxGa1-xAs-based DBRs was found to increase with increasing difference between the high and the low refractive indices. At multiple layers of 10 pairs, maximal reflection spectra having about a 92% reflectivity were obtained from DBRs consisting of GaAs/AlAs. At 20 pairs, however, outstanding reflection spectra having a higher reflectivity and broader width were clearly observed from DBRs consisting of Al0.1Ga0.9As/Al0.9Ga0.1As. Some incident light appears to have been absorbed and confined by the narrow bandgap of the GaAs material used in DBRs consisting of GaAs/AlAs. This fact could be supported by the decrease in the reflectivity of the shorter wavelength region in DBRs consisting of GaAs/AlAs. For this reason, a remarkable output power could be obtained from the 850-nm GaAs Ir-LED chip having a DBR consisting of Al0.1Ga0.9As/Al0.9Ga0.1As.

  1. Polarization inhibition of the stop-band in distributed Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Dukin, A. A.; Feoktistov, N. A.; Medvedev, A. V.; Pevtsov, A. B.; Golubev, V. G.; Sel'kin, A. V.

    2006-08-01

    Bragg reflection spectra of high-contrast silicon-based 1D photonic crystals were measured for oblique incidence of light. The angular behaviour of the stop-band width has been investigated in the vicinity of the critical angle of incidence (an analogue of the Brewster angle) at which the stop-band for TM-mode disappears. The stop-band inhibition is experimentally observed against the background of pronounced Fabry-Perot interference due to the finite thickness of a photonic crystal slab. It is shown that the width of equidistant fringes arising from the interference limits the minimal measured Bragg reflection band width. The conditions for stop-band to collapse are considered theoretically and shown to be in good agreement with the experimental data presented.

  2. Tuning nanoporous anodic alumina distributed-Bragg reflectors with the number of anodization cycles and the anodization temperature.

    PubMed

    Ferré-Borrull, Josep; Rahman, Mohammad Mahbubur; Pallarès, Josep; Marsal, Lluís F

    2014-01-01

    The influence of the anodization temperature and of the number of applied voltage cycles on the photonic properties of nanoporous anodic alumina-based distributed-Bragg reflectors obtained by cyclic voltage anodization is analyzed. Furthermore, the possibility of tuning the stop band central wavelength with a pore-widening treatment after anodization and its combined effect with temperature has been studied by means of scanning electron microscopy and spectroscopic transmittance measurements. The spectra for samples measured right after anodization show irregular stop bands, which become better defined with the pore widening process. The results show that with 50 applied voltage cycles, stop bands are obtained and that increasing the number of cycles contributes to enhancing the photonic stop bands (specially for the case of the as-produced samples) but at the expense of increased scattering losses. The anodization temperature is a crucial factor in the tuning of the photonic stop bands, with a linear rate of 42 nm/°C. The pore widening permits further tuning to reach stop bands with central wavelengths as low as 500 nm. Furthermore, the results also show that applying different anodization temperatures does not have a great influence in the pore-widening rate or in the photonic stop band width.

  3. Wafer-scale Fabrication of Non-Polar Mesoporous GaN Distributed Bragg Reflectors via Electrochemical Porosification

    PubMed Central

    Zhu, Tongtong; Liu, Yingjun; Ding, Tao; Fu, Wai Yuen; Jarman, John; Ren, Christopher Xiang; Kumar, R. Vasant; Oliver, Rachel A.

    2017-01-01

    Distributed Bragg reflectors (DBRs) are essential components for the development of optoelectronic devices. For many device applications, it is highly desirable to achieve not only high reflectivity and low absorption, but also good conductivity to allow effective electrical injection of charges. Here, we demonstrate the wafer-scale fabrication of highly reflective and conductive non-polar gallium nitride (GaN) DBRs, consisting of perfectly lattice-matched non-polar (11–20) GaN and mesoporous GaN layers that are obtained by a facile one-step electrochemical etching method without any extra processing steps. The GaN/mesoporous GaN DBRs exhibit high peak reflectivities (>96%) across the entire visible spectrum and wide spectral stop-band widths (full-width at half-maximum >80 nm), while preserving the material quality and showing good electrical conductivity. Such mesoporous GaN DBRs thus provide a promising and scalable platform for high performance GaN-based optoelectronic, photonic, and quantum photonic devices. PMID:28345612

  4. Metalorganic chemical vapor phase epitaxy of narrow-band distributed Bragg reflectors realized by GaN:Ge modulation doping

    NASA Astrophysics Data System (ADS)

    Berger, Christoph; Lesnik, Andreas; Zettler, Thomas; Schmidt, Gordon; Veit, Peter; Dadgar, Armin; Bläsing, Jürgen; Christen, Jürgen; Strittmatter, André

    2016-04-01

    We report on metalorganic vapor phase epitaxy (MOVPE) of distributed Bragg reflectors (DBR) applying a periodic modulation of the GaN doping concentration only. The doping modulation changes the refractive index of GaN via the Burstein-Moss-effect. MOVPE growth of highly doped GaN:Ge and modulation of the dopant concentration by at least two orders of magnitude within few nanometers is required to achieve a refractive index contrast of 2-3%. Such modulation characteristic is achieved despite the presence of Ge memory effects and incorporation delay. We realized DBRs with up to 100 layer pairs by combining GaN:Ge with a nominal doping concentration of 1.6×1020 cm-3 as low-refractive index material with unintentionally doped GaN as high-refractive index layer. Scanning transmission electron microscope images reveal DBR structures with abrupt interfaces and homogenous layer thicknesses in lateral and vertical direction. Reflectance measurements of DBRs designed for the blue and near UV-spectral region show a narrow stopband with a maximum reflectivity of 85% at 418 nm and even 95% at 370 nm. InGaN/GaN multi-quantum well structures grown on top of such DBRs exhibit narrow emission spectra with linewidths below 3 nm and significantly increased emission intensity.

  5. InGaN Light-Emitting Diodes with an Embedded Nanoporous GaN Distributed Bragg Reflectors

    PubMed Central

    Shiu, Guo-Yi; Chen, Kuei-Ting; Fan, Feng-Hsu; Huang, Kun-Pin; Hsu, Wei-Ju; Dai, Jing-Jie; Lai, Chun-Feng; Lin, Chia-Feng

    2016-01-01

    InGaN light emitting diodes (LED) structure with an embedded 1/4λ-stack nanoporous-GaN/undoped-GaN distributed Bragg reflectors (DBR) structure have been demonstrated. Si-heavily doped GaN epitaxial layers (n+-GaN) in the 12-period n+-GaN/u-GaN stack structure are transformed into low refractive index nanoporous GaN structure through the doping-selective electrochemical wet etching process. The central wavelength of the nanoporous DBR structure was located at 442.3 nm with a 57 nm linewidth and a 97.1% peak reflectivity. The effective cavity length (6.0λ), the effective penetration depth (278 nm) in the nanoporous DBR structure, and InGaN active layer matching to Fabry-Pérot mode order 12 were observed in the far-field photoluminescence radiative spectra. High electroluminescence emission intensity and line-width narrowing effect were measured in the DBR-LED compared with the non-treated LED structure. Non-linear emission intensity and line-width reducing effect, from 11.8 nm to 0.73 nm, were observed by increasing the laser excited power. Resonant cavity effect was observed in the InGaN LED with bottom nanoporous-DBR and top GaN/air interface. PMID:27363290

  6. High-speed concatenation of frequency ramps using sampled grating distributed Bragg reflector laser diode sources for OCT resolution enhancement

    NASA Astrophysics Data System (ADS)

    George, Brandon; Derickson, Dennis

    2010-02-01

    Wavelength tunable sampled grating distributed Bragg reflector (SG-DBR) lasers used for telecommunications applications have previously demonstrated the ability for linear frequency ramps covering the entire tuning range of the laser at 100 kHz repetition rates1. An individual SG-DBR laser has a typical tuning range of 50 nm. The InGaAs/InP material system often used with SG-DBR lasers allows for design variations that cover the 1250 to 1650 nm wavelength range. This paper addresses the possibility of concatenating the outputs of tunable SGDBR lasers covering adjacent wavelength ranges for enhancing the resolution of OCT measurements. This laser concatenation method is demonstrated by combining the 1525 nm to 1575 nm wavelength range of a "C Band" SG-DBR laser with the 1570nm to 1620 nm wavelength coverage of an "L-Band" SG-DBR laser. Measurements show that SGDBR lasers can be concatenated with a transition switching time of less than 50 ns with undesired leakage signals attenuated by 50 dB.

  7. Biomimetic Nanoporous Anodic Alumina Distributed Bragg Reflectors in the Form of Films and Microsized Particles for Sensing Applications.

    PubMed

    Chen, Yuting; Santos, Abel; Wang, Ye; Kumeria, Tushar; Li, Junsheng; Wang, Changhai; Losic, Dusan

    2015-09-09

    In this study, we produce for the first time biomimetic films and microsized particles based on nanoporous anodic alumina distributed Bragg reflectors (NAA-DBRs) by a rational galvanostatic pulse-anodization approach. These biomimetic photonic structures can feature a broad range of vivid bright colors, which can be tuned across the UV-visible spectrum by engineering their nanoporous structure through different anodization parameters. The effective medium of NAA-DBRs films is systematically assessed as a function of the anodization period, the anodization temperature, and the current density ratio by reflectometric interference spectroscopy (RIfS). This analysis makes it possible to establish the most sensitive structure toward changes in its effective medium. Subsequently, specific detection of vitamin C molecules is demonstrated. The obtained results reveal that NAA-DBRs with optimized structure can achieve a low limit of detection for vitamin C molecules as low as 20 nM, a sensitivity of 227±4 nm μM(-1), and a linearity of 0.9985. Finally, as proof of concept, we developed a new photonic nanomaterial based on NAA-DBR microsized particles, which could provide new opportunities to produce microsized photonic analytical tools.

  8. Enhanced Performance of GaN-Based Light-Emitting Diodes by Using Al Mirror and Atomic Layer Deposition-TiO2/Al2O3 Distributed Bragg Reflector Backside Reflector with Patterned Sapphire Substrate

    NASA Astrophysics Data System (ADS)

    Chen, Hongjun; Guo, Hao; Zhang, Peiyuan; Zhang, Xiong; Liu, Honggang; Wang, Shengkai; Cui, Yiping

    2013-02-01

    GaN-based light-emitting diodes (LEDs) coated with an Al mirror and a three-pair TiO2/Al2O3 distributed Bragg reflector (DBR) by atomic layer deposition (ALD) grown on a patterned sapphire substrate (PSS) were proposed and realized for the first time. A 43.1% enhancement in light output power (LOP) was realized at 60 mA with the LED coated with an Al mirror and a three-pair ALD-grown TiO2/Al2O3 DBR compared with the LED without a backside reflector, as well as a 10.7% enhancement compared with the LED with a conventional Al mirror and a three-pair TiO2/SiO2 DBR reflector.

  9. Widely tunable Sampled Grating Distributed Bragg Reflector Quantum Cascade laser for gas spectroscopy applications

    NASA Astrophysics Data System (ADS)

    Diba, Abdou Salam

    Since the advent of semiconductor lasers, the development of tunable laser sources has been subject of many efforts in industry and academia arenas. This interest towards broadly tunable lasers is mainly due to the great promise they have in many applications ranging from telecommunication, to environmental science and homeland security, just to name a few. After the first demonstration of quantum cascade laser (QCL) in the early nineties, QCL has experienced a rapid development, so much so that QCLs are now the most reliable and efficient laser source in the Mid-IR range covering between 3 microm to 30 microm region of the electromagnetic spectrum. QCLs have almost all the desirable characteristics of a laser for spectroscopy applications such as narrow spectral linewidth ideal for high selectivity measurement, high power enabling high sensitivity sensing and more importantly they emit in the finger-print region of most of the trace gases and large molecules. The need for widely tunable QCLs is now more pressing than ever before. A single mode quantum cascade laser (QCL) such as a distributed feedback (DFB) QCL, is an ideal light source for gas sensing in the MIR wavelength range. Despite their performance and reliability, DFB QCLs are limited by their relatively narrow wavelength tuning range determined by the thermal rollover of the laser. An external cavity (EC) QCL, on the other hand, is a widely tunable laser source, and so far is the choice mid-infrared single frequency light sources for detecting multiple species/large molecules. However, EC QCLs can be complex, bulky and expensive. In the quest for finding alternative broadly wavelength tunable sources in the mid-infrared, many monolithic tunable QCLs are recently proposed and fabricated, including SG-DBR, DFB-Arrays, Slot-hole etc. and they are all of potentially of interest as a candidate for multi-gas sensing and monitoring applications, due to their large tuning range (>50 cm-1), and potentially low

  10. Disturbance-free distributed Bragg reflector laser-diode interferometer with a double sinusoidal phase-modulating technique for measurement of absolute distance.

    PubMed

    Suzuki, Takamasa; Ohizumi, Takao; Sekimoto, Tatsuhiko; Sasaki, Osami

    2004-08-10

    A new range-finding technique that uses both double sinusoidal phase modulation and quasi-two-wavelength interferometry is described. Two independent interference signals are generated with respect to two different wavelengths on a time-sharing basis. We clarify that external disturbances of these interference signals are eliminated by both feedback control and differential detection and that the feedback control does not affect the distance measurement. A single distributed Bragg reflector laser diode allows us to simplify the optical setup and to improve the measurement accuracy. After discussing a measurement range, we estimate a measurement error by making several measurements.

  11. Observation of Tamm plasmon polaritons in visible regime from ZnO/Al 2O 3 distributed Bragg reflector - Ag interface

    NASA Astrophysics Data System (ADS)

    Tsang, S. H.; Yu, S. F.; Li, X. F.; Yang, H. Y.; Liang, H. K.

    2011-04-01

    Ag coated ZnO/Al2O3 distributed Bragg reflectors (DBRs), which were fabricated by a modified filtered cathodic vacuum arc technique at room temperature, shown the formation of visible Tamm plasmon polaritons (TPP). By varying the thickness of Ag and top ZnO dielectric layer of the DBR, it can be verified that the excitation of dip at the stopband of the reflection spectrum is related to TPPs. As visible light was used to excite TPPs, the corresponding effective mass can be reduced to 1.3 × 10- 5 of the free electron mass.

  12. Vertical cavity surface emitting laser based on gallium arsenide/air-gap distributed Bragg reflectors: From concept to working devices

    NASA Astrophysics Data System (ADS)

    Mo, Qingwei

    Vertical-cavity surface-emitting lasers (VCSELs) have created new opportunities in optoelectronics. However, VCSELs have so far been commercialized mainly for operation at 0.85 mum, despite their potential importance at other wavelengths, such as 1.3 mum and 1.55 mum. The limitations at these longer wavelengths come from material characteristics, such as a low contrast ratio in mirror materials, lower mirror reflectivity, and smaller optical gain for longer wavelength materials versus AlGaAs/GaAs quantum wells. A similar situation, insufficient gain relative to the cavity loss, existed in the past for shorter wavelength VCSELs before high quality epitaxial mirrors were developed. Semiconductor/air-gap Distributed Bragg Reflectors (DBRs) are attractive due to their high index contrast, which leads to a high reflectivity, wide stop band and low optical loss mirror with a small number of pairs. This concept is ready to be integrated into material systems other than AlGaAs/GaAs, which is studied in this work. Therefore, the impact of these DBRs can be extended into both visible and longer infrared wavelengths as a solution to the trade-off between DBR and active region materials. Air-gap DBRs can also be used as basic building blocks of micro-opto-electro-mechanical systems (MOEMS). The high Q microcavity formed by the air-gap DBRs also provide a good platform for microcavity physics study. Air-gap DBRs are modeled using the transmission matrix formulae of the Maxwell equations. A comparison to existing DBR technology shows the great advantage and potential that the air-gap DBR possesses. Two types of air-gap are proposed and developed. The first one includes multiple GaAs/air pairs while the second one combines a single air-gap with metal and dielectric mirrors. New device structures and processing designs, especially an all-epitaxial lateral current and optical confinement technique, are carried out to incorporate air-gap DBRs into VCSEL structures. The first VCSEL

  13. ZnO/a-Si distributed Bragg reflectors for light trapping in thin film solar cells from visible to infrared range

    NASA Astrophysics Data System (ADS)

    Chen, Aqing; Yuan, Qianmin; Zhu, Kaigui

    2016-01-01

    Distributed Bragg reflectors (DBRs) consisting of ZnO and amorphous silicon (a-Si) were prepared by magnetron sputtering method for selective light trapping. The quarter-wavelength ZnO/a-Si DBRs with only 6 periods exhibit a peak reflectance of above 99% and have a full width at half maximum that is greater than 347 nm in the range of visible to infrared. The 6-pair reversed quarter-wavelength ZnO/a-Si DBRs also have a peak reflectance of 98%. Combination of the two ZnO/a-Si DBRs leads to a broader stopband from 686 nm to 1354 nm. Using the ZnO/a-Si DBRs as the rear reflector of a-Si thin film solar cells significantly increases the photocurrent in the spectrum range of 400⿿1000 nm, in comparison with that of the cells with Al reflector. The obtained results suggest that ZnO/a-Si DBRs are promising reflectors of a-Si thin-film solar cells for light trapping.

  14. Low-threshold lasing of InGaN vertical-cavity surface-emitting lasers with dielectric distributed Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Tawara, Takehiko; Gotoh, Hideki; Akasaka, Tetsuya; Kobayashi, Naoki; Saitoh, Tadashi

    2003-08-01

    Lasing action is achieved in InGaN vertical-cavity surface-emitting lasers (VCSELs) with dielectric distributed Bragg reflectors (DBRs). We fabricated III-nitride VCSELs by removing a SiC substrate from a III-nitride cavity with a dry etching technique and then wafer bonding the cavity and SiO2/ZrO2 DBRs. These VCSELs have a high quality factor of 460 and a spontaneous emission factor of 10-2. We observed lasing at a wavelength of 401 nm at room temperature with optical pumping. This lasing action was demonstrated at a low threshold of 5.1 mJ/cm2 by using a high-quality crystalline cavity and quantum-well layers without surface roughening or cracking.

  15. Efficient generation of 1.9  W yellow light by cascaded frequency doubling of a distributed Bragg reflector tapered diode.

    PubMed

    Hansen, A K; Christensen, M; Noordegraaf, D; Heist, P; Papastathopoulos, E; Loyo-Maldonado, V; Jensen, O B; Skovgaard, P M W

    2016-11-10

    Watt-level yellow emitting lasers are interesting for medical applications, due to their high hemoglobin absorption, and for efficient detection of certain fluorophores. In this paper, we demonstrate a compact and robust diode-based laser system in the yellow spectral range. The system generates 1.9 W of single-frequency light at 562.4 nm by cascaded single-pass frequency doubling of the 1124.8 nm emission from a distributed Bragg reflector (DBR) tapered laser diode. The absence of a free-space cavity makes the system stable over a base-plate temperature range of 30 K. At the same time, the use of a laser diode enables the modulation of the pump wavelength by controlling the drive current. This is utilized to achieve a power modulation depth above 90% for the second harmonic light, with a rise time below 40  μs.

  16. All-nitride AlxGa1-xN:Mn/GaN distributed Bragg reflectors for the near-infrared.

    PubMed

    Capuzzo, Giulia; Kysylychyn, Dmytro; Adhikari, Rajdeep; Li, Tian; Faina, Bogdan; Tarazaga Martín-Luengo, Aitana; Bonanni, Alberta

    2017-02-15

    Since the technological breakthrough prompted by the inception of light emitting diodes based on III-nitrides, these material systems have emerged as strategic semiconductors not only for the lighting of the future, but also for the new generation of high-power electronic and spintronic devices. While III-nitride optoelectronics in the visible and ultraviolet spectral range is widely established, all-nitride efficient devices in the near-infrared (NIR) are still wanted. Here, through a comprehensive protocol of design, modeling, epitaxial growth and in-depth characterization, we develop AlxGa1-xN:Mn/GaN NIR distributed Bragg reflectors and we show their efficiency in combination with GaN:(Mn,Mg) layers containing Mn-Mgk complexes optically active in the near-infrared range of wavelengths.

  17. High-Quality Crystal Growth and Characteristics of AlGaN-Based Solar-Blind Distributed Bragg Reflectors with a Tri-layer Period Structure.

    PubMed

    Chang, Jianjun; Chen, Dunjun; Yang, Lianhong; Liu, Yanli; Dong, Kexiu; Lu, Hai; Zhang, Rong; Zheng, Youdou

    2016-07-06

    To realize AlGaN-based solar-blind ultraviolet distributed Bragg reflectors (DBRs), a novel tri-layer AlGaN/AlInN/AlInGaN periodical structure that differs from the traditional periodically alternating layers of high- and low-refractive-index materials was proposed and grown on an Al0.5Ga0.5N template via metal-organic chemical vapour deposition. Because of the intentional design of the AlInGaN strain transition layer, a state-of-the-art DBR structure with atomic-level-flatness interfaces was achieved using an AlGaN template. The fabricated DBR exhibits a peak reflectivity of 86% at the centre wavelength of 274 nm and a stopband with a full-width at half-maximum of 16 nm.

  18. High-performance AlGaN-based solar-blind avalanche photodiodes with dual-periodic III–nitride distributed Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Yao, Chujun; Ye, Xuanchao; Sun, Rui; Yang, Guofeng; Wang, Jin; Lu, Yanan; Yan, Pengfei; Cao, Jintao; Gao, Shumei

    2017-03-01

    Separate absorption and multiplication AlGaN solar-blind avalanche photodiodes with dual-periodic III–nitride distributed Bragg reflectors (DBRs) are numerically demonstrated. The designed devices exhibit an improved solar-blind characteristic with a maximum spectral responsivity of 0.184 A/W at λ = 284 nm owing to the optimized optical properties of the dual-periodic III–nitride DBRs. Compared with their conventional counterparts, an increased multiplication gain and a reduced breakdown voltage are achieved by using p-type Al0.15Ga0.85N layers with a lower Al content and multiplication layers. These improvements are attributed to the high p-doping efficiency and large hole ionization coefficient.

  19. High-Quality Crystal Growth and Characteristics of AlGaN-Based Solar-Blind Distributed Bragg Reflectors with a Tri-layer Period Structure

    NASA Astrophysics Data System (ADS)

    Chang, Jianjun; Chen, Dunjun; Yang, Lianhong; Liu, Yanli; Dong, Kexiu; Lu, Hai; Zhang, Rong; Zheng, Youdou

    2016-07-01

    To realize AlGaN-based solar-blind ultraviolet distributed Bragg reflectors (DBRs), a novel tri-layer AlGaN/AlInN/AlInGaN periodical structure that differs from the traditional periodically alternating layers of high- and low-refractive-index materials was proposed and grown on an Al0.5Ga0.5N template via metal-organic chemical vapour deposition. Because of the intentional design of the AlInGaN strain transition layer, a state-of-the-art DBR structure with atomic-level-flatness interfaces was achieved using an AlGaN template. The fabricated DBR exhibits a peak reflectivity of 86% at the centre wavelength of 274 nm and a stopband with a full-width at half-maximum of 16 nm.

  20. Record-level quantum efficiency from a high polarization strained GaAs/GaAsP superlattice photocathode with distributed Bragg reflector

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Chen, Yiqiao; Lu, Wentao; Moy, Aaron; Poelker, Matthew; Stutzman, Marcy; Zhang, Shukui

    2016-12-01

    Photocathodes that provide high electron-spin polarization (ESP) and high quantum efficiency (QE) can significantly enhance the physics capabilities of electron accelerators. We report record-level QE from a high-polarization strained GaAs/GaAsP superlattice photocathode fabricated with a Distributed Bragg Reflector (DBR). The DBR photocathode technique enhances the absorption of incident laser light thereby enhancing QE, but as literature suggests, it is very challenging to optimize all of the parameters associated with the fabrication of complicated photocathode structures composed of many distinct layers. Past reports of DBR photocathodes describe high polarization but typically QE of only ˜1%, which is comparable to QE of high polarization photocathodes grown without a DBR structure. This work describes a strained GaAs/GaAsP superlattice DBR photocathode exhibiting a high polarization of 84% and significantly enhanced QE of 6.4%.

  1. Strong coupling in non-polar GaN/AlGaN microcavities with air-gap/III-nitride distributed Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Tao, Renchun; Arita, Munetaka; Kako, Satoshi; Kamide, Kenji; Arakawa, Yasuhiko

    2015-09-01

    Strong coupling between excitons and photons is experimentally demonstrated in m-plane GaN/AlGaN microcavities (MCs) with air/AlGaN distributed Bragg reflectors (DBRs) at room temperature. Strong coupling is confirmed by momentum space spectroscopy, and a Rabi splitting (Ω) of 84 meV is estimated. A Rabi splitting of 84 meV is the largest value reported in a III-nitride DBR MC to date and is mainly attributed to the shortened effective cavity length resulting from the high index contrast in the air-gap DBRs used here. These results show that III-nitride air-gap DBR MCs have a high potential for realizing high Ω / κ systems (where κ is the cavity loss).

  2. Record-level quantum efficiency from a high polarization strained GaAs/GaAsP superlattice photocathode with distributed Bragg reflector

    DOE PAGES

    Liu, Wei; Chen, Yiqiao; Lu, Wentao; ...

    2016-12-19

    Photocathodes that provide high polarization and high quantum efficiency (QE) can significantly enhance the physics capabilities of electron accelerators. We report record-level QE from a high-polarization strained GaAs/GaAsP superlattice photocathode fabricated with a Distributed Bragg Reflector (DBR). The DBR photocathode technique enhances the absorption of incident laser light thereby enhancing QE, but as literature suggests, it is very challenging to optimize all of the parameters associated with the fabrication of complicated photocathode structures composed of many distinct layers. Past reports of DBR photocathodes describe high polarization but typically QE of only ~ 1%, which is comparable to QE of highmore » polarization photocathodes grown without a DBR structure. As a result, this work describes a new strained GaAs/GaAsP superlattice DBR photocathode exhibiting polarization of 84% and QE of 6.4%.« less

  3. All-nitride AlxGa1‑xN:Mn/GaN distributed Bragg reflectors for the near-infrared

    NASA Astrophysics Data System (ADS)

    Capuzzo, Giulia; Kysylychyn, Dmytro; Adhikari, Rajdeep; Li, Tian; Faina, Bogdan; Tarazaga Martín-Luengo, Aitana; Bonanni, Alberta

    2017-02-01

    Since the technological breakthrough prompted by the inception of light emitting diodes based on III-nitrides, these material systems have emerged as strategic semiconductors not only for the lighting of the future, but also for the new generation of high-power electronic and spintronic devices. While III-nitride optoelectronics in the visible and ultraviolet spectral range is widely established, all-nitride efficient devices in the near-infrared (NIR) are still wanted. Here, through a comprehensive protocol of design, modeling, epitaxial growth and in-depth characterization, we develop AlxGa1‑xN:Mn/GaN NIR distributed Bragg reflectors and we show their efficiency in combination with GaN:(Mn,Mg) layers containing Mn-Mgk complexes optically active in the near-infrared range of wavelengths.

  4. High-power green and blue electron-beam pumped surface-emitting lasers using dielectric and epitaxial distributed Bragg reflectors

    SciTech Connect

    Klein, T.; Klembt, S.; Kozlovsky, V. I.; Zheng, A.; Tiberi, M. D.; Kruse, C.

    2015-03-21

    ZnSe-based electron-beam pumped vertical-cavity surface-emitting lasers for the green (λ = 530 nm) and blue (λ = 462 nm) spectral region have been realized. Structures with and without epitaxial bottom distributed Bragg reflector have been fabricated and characterized. The samples consist of an active region containing 20 quantum wells with a cavity length varying between an optical thickness of 10 λ to 20 λ. The active material is ZnCdSSe in case of the green devices and ZnSe for the blue ones. Room temperature single mode lasing for structures with and without epitaxial bottom mirror with a maximum output power up to 5.9 W (green) and 3.3 W (blue) is achieved, respectively.

  5. Super color purity green organic light-emitting diodes with ZrO2/zircone nanolaminates as a distributed Bragg reflector deposited by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Jianhua; Zhang, Hao; Zheng, Yanqiong; Wei, Mengjie; Ding, He; Wei, Bin; Zhang, Zhilin

    2017-01-01

    ZrO2/zircone nanolaminate thin films fabricated by atomic layer deposition were used for a distributed Bragg reflector (DBR) in green organic light-emitting diodes (OLEDs). It is found that the novel ZrO2/zircone DBR structure significantly improves the light purity of green OLEDs without interfering with intrinsic electroluminescence properties. The full width at half maximum (FWHM) of the EL spectral band for the green OLEDs decreases with respect to increasing the ZrO2/zircone pairs. The FWHMs of OLEDs with 0, 2, 4, and 6 pairs of ZrO2/zircone layers are 72 nm, 48 nm, 24 nm, and 12 nm, respectively. A super-narrow FWHM of 12 nm is achieved by using six pairs of the DBR structure. The EQE is increased from 10.7% to 16.1% with four pairs of ZrO2/zircone layers.

  6. High-Quality Crystal Growth and Characteristics of AlGaN-Based Solar-Blind Distributed Bragg Reflectors with a Tri-layer Period Structure

    PubMed Central

    Chang, Jianjun; Chen, Dunjun; Yang, Lianhong; Liu, Yanli; Dong, Kexiu; Lu, Hai; Zhang, Rong; Zheng, Youdou

    2016-01-01

    To realize AlGaN-based solar-blind ultraviolet distributed Bragg reflectors (DBRs), a novel tri-layer AlGaN/AlInN/AlInGaN periodical structure that differs from the traditional periodically alternating layers of high- and low-refractive-index materials was proposed and grown on an Al0.5Ga0.5N template via metal-organic chemical vapour deposition. Because of the intentional design of the AlInGaN strain transition layer, a state-of-the-art DBR structure with atomic-level-flatness interfaces was achieved using an AlGaN template. The fabricated DBR exhibits a peak reflectivity of 86% at the centre wavelength of 274 nm and a stopband with a full-width at half-maximum of 16 nm. PMID:27381651

  7. Record-level quantum efficiency from a high polarization strained GaAs/GaAsP superlattice photocathode with distributed Bragg reflector

    SciTech Connect

    Liu, Wei; Chen, Yiqiao; Lu, Wentao; Moy, Aaron; Poelker, Matthew; Stutzman, Marcy; Zhang, Shukui

    2016-12-19

    Photocathodes that provide high polarization and high quantum efficiency (QE) can significantly enhance the physics capabilities of electron accelerators. We report record-level QE from a high-polarization strained GaAs/GaAsP superlattice photocathode fabricated with a Distributed Bragg Reflector (DBR). The DBR photocathode technique enhances the absorption of incident laser light thereby enhancing QE, but as literature suggests, it is very challenging to optimize all of the parameters associated with the fabrication of complicated photocathode structures composed of many distinct layers. Past reports of DBR photocathodes describe high polarization but typically QE of only ~ 1%, which is comparable to QE of high polarization photocathodes grown without a DBR structure. As a result, this work describes a new strained GaAs/GaAsP superlattice DBR photocathode exhibiting polarization of 84% and QE of 6.4%.

  8. All-nitride AlxGa1−xN:Mn/GaN distributed Bragg reflectors for the near-infrared

    PubMed Central

    Capuzzo, Giulia; Kysylychyn, Dmytro; Adhikari, Rajdeep; Li, Tian; Faina, Bogdan; Tarazaga Martín-Luengo, Aitana; Bonanni, Alberta

    2017-01-01

    Since the technological breakthrough prompted by the inception of light emitting diodes based on III-nitrides, these material systems have emerged as strategic semiconductors not only for the lighting of the future, but also for the new generation of high-power electronic and spintronic devices. While III-nitride optoelectronics in the visible and ultraviolet spectral range is widely established, all-nitride efficient devices in the near-infrared (NIR) are still wanted. Here, through a comprehensive protocol of design, modeling, epitaxial growth and in-depth characterization, we develop AlxGa1−xN:Mn/GaN NIR distributed Bragg reflectors and we show their efficiency in combination with GaN:(Mn,Mg) layers containing Mn-Mgk complexes optically active in the near-infrared range of wavelengths. PMID:28198432

  9. Optical device with low electrical and thermal resistance bragg reflectors

    DOEpatents

    Lear, Kevin L.

    1996-01-01

    A compound-semiconductor optical device and method. The optical device is provided with one or more asymmetrically-graded heterojunctions between compound semiconductor layers for forming a distributed Bragg reflector mirror having an improved electrical and thermal resistance. Efficient light-emitting devices such as light-emitting diodes, resonant-cavity light-emitting diodes, and vertical-cavity surface-emitting lasers may be formed according to the present invention, which may be applied to the formation of resonant-cavity photodetectors.

  10. Optical device with low electrical and thermal resistance Bragg reflectors

    DOEpatents

    Lear, K.L.

    1996-10-22

    A compound-semiconductor optical device and method are disclosed. The optical device is provided with one or more asymmetrically-graded heterojunctions between compound semiconductor layers for forming a distributed Bragg reflector mirror having an improved electrical and thermal resistance. Efficient light-emitting devices such as light-emitting diodes, resonant-cavity light-emitting diodes, and vertical-cavity surface-emitting lasers may be formed according to the present invention, which may be applied to the formation of resonant-cavity photodetectors. 16 figs.

  11. Parametric x-ray FEL operating with external Bragg reflectors

    SciTech Connect

    Baryshevsky, V.G.; Batrakov, K.G.; Dubovskaya, I.Ya.

    1995-12-31

    In the crystal X-ray FELs using channeling and parametric quasi-Cherenkov mechanisms of spontaneous radiation were considered as versions of FEL allowing, in principle, to obtain coherent X-ray source. In this case a crystal is both radiator and resonator for X-rays emitted by a particle beam passing through crystal. However, it is well-known that a beam current density required for lasing is extremely high in X-ray spectral range for any radiation mechanisms and it is very important to find a way to lower its magnitude. The application of three-dimensional distributed feedback formed by dynamical diffraction of emitted photons permitted to reduce starting beam current density 10{sup 2}-10{sup 4} times up to 10{sup 9}. One of ways to lower the starting current is the formation of multi-wave distributed feedback the another one is the application of external reflectors. The thing is that lasing regime was shown to be produced at frequencies in the vicinity of degeneration point for roots of dispersion equation describing radiation modes excited in an active medium (crystal plus particle beam). Unfortunately, in case of parametric quasi-Cherenkov FEL this region coincides with the region of strong self-absorption of radiation inside a crystal. That fact, obviously, increases the starting beam current. In this report we have shown that the application of external Bragg reflectors gives the possibility to lower radiation self-absorption inside a crystal by modifying radiation modes excited in the active medium under consideration. The corresponding dispersion equation and the expression for excited modes are derived. The generation equation determining starting conditions for lasing is obtained. Using these expressions we have shown that the application of external Bragg reflectors permits to reduce starting beam current density more than 10 times.

  12. Improving the Efficiency of Quasi-Optical Bragg Reflectors

    NASA Astrophysics Data System (ADS)

    Khozin, M. A.; Denisov, G. G.; Belousov, V. I.

    2017-01-01

    In the analysis of propagation of wave beams in quasi-optical transmission lines, the loss rate and transformation of modes by various elements of the transmission line are of great importance. The effects occurring when a spatially bounded, obliquely incident wave beam is reflected from a Bragg resonator being a periodic, plane-layered medium with varied dielectric permittivity are considered. Such a reflector can be used as a frequency-selective element of the transmission line. Since the reflection coefficient of a plane wave from the Bragg reflector depends on its incidence angle, there occurs a transformation of the reflected beam. Analytical expressions for the beam displacement, the angle of deflection of the beam from the mirror reflection direction, and the wavefront curvature variation have been obtained. The influence of the mentioned effects on characteristics of the reflected wave beam in the main band of the Bragg reflector is numerically analyzed. The possibility of compensation for these distortions is considered.

  13. A simple wavelength-locking scheme of a tunable three-electrode distributed Bragg reflector laser for multiple ITU channel application in C band

    NASA Astrophysics Data System (ADS)

    Ye, Nan; Liu, Yang; Zhao, Ling-Juan

    2010-11-01

    In this paper, a simple wavelength-locking scheme for a tunable distributed Bragg reflector laser is presented. A 1*2 wide band fiber coupler as the function of beam splitter forms two optical paths with evenly separated power, one for wavelength monitoring and the other for power reference. For wavelength monitoring, two single mode fiber collimators- one as a transmitter and the other as a receiver-form a collimated light path for laser beam and a highly stable air-paced Etalon inserted between them is used as an optical frequency discriminator to lock the laser wavelengths to several ITU channels maintain 100GHz or 0.8 nm channel spacing in C band. Meanwhile, a photodetector connected with receiving collimator by a FC/PC connector turns the optical signal into electronic signal. For power reference, one of the coupler output pots is directly connected with a similar photodetector. Then wavelength shifting signal proportional to the power differences between two optical paths could be feed backed to the phase region or DBR region for stabilizing the laser output wavelength.

  14. Phase-sensitive optical coherence tomography using an Vernier-tuned distributed Bragg reflector swept laser in the mouse middle ear.

    PubMed

    Park, Jesung; Carbajal, Esteban F; Chen, Xi; Oghalai, John S; Applegate, Brian E

    2014-11-01

    Phase-sensitive optical coherence tomography (PhOCT) offers exquisite sensitivity to mechanical vibration in biological tissues. There is growing interest in using PhOCT for imaging the nanometer scale vibrations of the ear in animal models of hearing disorders. Swept-source-based systems offer fast acquisition speeds, suppression of common mode noise via balanced detection, and good signal roll-off. However, achieving high phase stability is difficult due to nonlinear laser sweeps and trigger jitter in a typical swept laser source. Here, we report on the initial application of a Vernier-tuned distributed Bragg reflector (VT-DBR) swept laser as the source for a fiber-based PhOCT system. The VT-DBR swept laser is electronically tuned and precisely controls sweeps without mechanical movement, resulting in highly linear sweeps with high wavelength stability and repeatability. We experimentally measured a phase sensitivity of 0.4 pm standard deviation, within a factor of less than 2 of the computed shot-noise limit. We further demonstrated the system by making ex vivo measurements of the vibrations of the mouse middle ear structures.

  15. POLICRYPS-based electrically switchable Bragg reflector.

    PubMed

    De Sio, Luciano; Tabiryan, Nelson; Bunning, Timothy J

    2015-12-14

    The formation and characterization of a switchable volume reflective element fabricated from a polymer liquid crystal (LC) polymer slice (POLICRYPS) structure by holographic photopolymerization at high temperature (65 °C) using a photosensitive/nematic liquid crystal prepolymer mixture is reported. The submicron Bragg structure formed consists of periodic continuous polymeric walls separated by periodic LC channels. The phase separated NLC self-aligns in a homeotropic alignment between the polymer walls as indicated by polarizing optical microscopy analysis (Maltese cross). The resulting periodic grating structure results in a Bragg reflection notch upon illumination with white light due to the periodic variation in refractive index. Electro-optical experiments realized through in-plane electrodes and temperature experiments confirm that the multilayer structure acts as a Bragg mirror whose reflection efficiency can be controlled by either a small (~3V/µm) electric field or temperature.

  16. Beam-steering in hollow ZrO2/SiO2 distributed Bragg reflector waveguides for one-dimensional RGB imaging

    NASA Astrophysics Data System (ADS)

    Gu, Xiaodong; Nakahama, Masanori; Ahmed, Moustafa; Bakry, Ahmed; Koyama, Fumio

    2014-03-01

    A novel one-dimensional beam deflector based on a hollow Bragg reflector waveguide for RGB imaging was proposed and evaluated by modeling. Large steering range over 30° is possible by only 100 nm change in the hollow air-core thickness. Electrostatic actuation enables fast and precise control of the beam-steering with a low operation voltage. An ultra-small divergence angle and super-high resolution are expected for device lengths of a few millimeters thanks to the high coherency of the output beam. The proposed hollow-waveguide type deflector is extremely compact and can be arrayed with high density.

  17. High-power temperature-stable GaInNAs distributed Bragg reflector laser emitting at 1180  nm.

    PubMed

    Korpijärvi, Ville-Markus; Viheriälä, Jukka; Koskinen, Mervi; Aho, Antti T; Guina, Mircea

    2016-02-15

    We report a single-mode 1180 nm distributed Bragg reflector (DBR) laser diode with a high output power of 340 mW. For the fabrication, we employed novel nanoimprint lithography that ensures cost-effective, large-area, conformal patterning and does not require regrowth. The output characteristics exhibited outstanding temperature insensitivity with a power drop of only 30% for an increase of the mount temperature from 20°C to 80°C. The high temperature stability was achieved by using GaInNAs/GaAs quantum wells (QWs), which exhibit improved carrier confinement compared to standard InGaAs/GaAs QWs. The corresponding characteristic temperatures were T0=110  K and T1=160  K. Moreover, we used a large detuning between the peak wavelength of the material gain at room temperature and the lasing wavelength determined by the DBR. In addition to good temperature characteristics, GaInNAs/GaAs QWs exhibit relatively low lattice strain with direct impact on improving the lifetime of laser diodes at this challenging wavelength range. The single-mode laser emission could be tuned by changing the mount temperature (0.1 nm/°C) or the drive current (0.5 pm/mA). The laser showed no degradation in a room-temperature lifetime test at 900 mA drive current. These compact and efficient 1180 nm laser diodes are instrumental for the development of compact frequency-doubled yellow-orange lasers, which have important applications in medicine and spectroscopy.

  18. Frequency sweep jitter and wander of a Vernier-Tuned Distributed Bragg Reflector (VT-DBR) laser at 1550 nm in OCT applications

    NASA Astrophysics Data System (ADS)

    Martens Biersach, R. C.; Derickson, Dennis; Ensher, Jason

    2015-07-01

    The short-term jitter and longer-term wander of the frequency sweep profile of a Vernier-Tuned Distributed Bragg Reflector (VT-DBR) laser at 1550 nm used in OCT applications is characterized in this work. The VT-DBR has demonstrated success in source-swept OCT (SSOCT), performing both intensity [1] and phase-sensitive [2] OCT. The purpose of this paper is to investigate one of the unique aspects of the VT-DBR laser that makes it successful in OCT: the stability of the linear optical frequency sweep of the source. Jitter measurements of the optical frequency sweep are recorded using a 3-cavity 100 GHz free spectral range (FSR) solid etalon. A gas absorption reference cell is used for wander characterization. We report that the VT-DBR jitters by no more than 82 MHz RMS in optical frequency while sweeping at an 8 kHz repetition rate. Longer-term wander provides insight into the accuracy of the VT-DBR selfcalibration routine which produces an intrinsically linear optical frequency sweep. Over an 8-hour data collection period, the system maintains a linear sweep with an optical frequency step of 105 MHz per 2.5 ns with +/- 3 kHz per 2.5 ns (+/- 0.03%) peak-to-peak deviation. We find that the absolute frequency drifts by 325 MHz (2.6pm) over the same 8- hour period with ambient temperature fluctuations of no more than 5 °C. Results show that using calibration with a gas reference cell, picometer absolute wavelength accuracy of the laser can be achieved at any time for a single sweep. Stability and accuracy limits are thought to be due to electronic drive circuitry in the current design.

  19. Light output enhancement of GaN-based flip-chip light-emitting diodes fabricated with SiO2/TiO2 distributed Bragg reflector coated on mesa sidewall

    NASA Astrophysics Data System (ADS)

    Baik, K. H.; Min, B. K.; Kim, J. Y.; Kim, H. K.; Sone, C.; Park, Y.; Kim, H.

    2010-09-01

    We report on the enhanced light output of GaN-based flip-chip light-emitting diodes (LEDs) fabricated with SiO2/TiO2 distributed Bragg reflector (DBR) on mesa sidewall. At the wavelength of 400 nm, five pairs of SiO2/TiO2 DBR coats on the GaN layer showed a normal-incidence reflectivity as high as 99.1%, along with an excellent angle-dependent reflectivity. As compared to the reference LED, the LED fabricated with the DBR-coated mesa sidewall showed an increased output power by a factor of 1.32 and 1.12 before and after lamp packaging, respectively. This could be attributed to an efficient reflection of the laterally guided mode at the highly reflective mesa sidewall, enhancing the subsequent extraction of light through the sapphire substrate.

  20. High efficient radiation stable AlGaAs/GaAs solar cells with internal Bragg reflector

    NASA Technical Reports Server (NTRS)

    Andreev, V. M.; Kalinovsky, V. S.; Komin, V. V.; Kochnev, I. V.; Lantratov, V. M.; Shvarts, M. Z.

    1995-01-01

    An investigation of solar cells based on AlGaAs/GaAs heterostructures with an internal Bragg reflector as the back-surface reflector is presented. The Bragg reflector is grown by low pressure metalorganic chemical vapor deposition on n-GaAs substrates in a horizontal resistively heated reactor. The Bragg reflector with its maximum reflectance centered at a wavelength of 860 nm consists of 12 pairs of AlAs/GaAs layers. The resulting Bragg reflector has a thickness of 0.072 micrometers for AlAs and 0.059 micrometers for GaAs. The multi-layered quasi-dielectric stack selectively reflects weakly absorbed photons with energies near to the GaAs band gap for a second pass through the photoactive region, thus increasing the photocurrent. The use of the Bragg reflector allows the external quantum efficiency to be increased in the long wavelength of the spectrum. The use of the Bragg reflector and an antireflective coating and prismatic cover allowed an efficiency of 23.4 percent to be obtained.

  1. THz Radiation from Intracavity Saturable Bragg Reflector in Magnetic Field with Self-Started Mode-Locking by Strained Saturable Bragg Reflector

    NASA Astrophysics Data System (ADS)

    Liu, Tze-An; Huang, Kai-Fung; Pan, Ci-Ling; Liu, Zhenlin; Ono, Shingo; Ohtake, Hideyuki; Sarukura, Nobuhiko

    1999-11-01

    We demonstrate a new configuration for intracavity generation of THz radiation. A magnetic-field-biased saturable Bragg reflector (SBR) located inside the femtosecond laser cavity is the emitter, while a strained saturable Bragg reflector (SSBR) achieves self-started mode-locking without focusing. The calibrated power of the emitted THz radiation is estimated to be approximately 45 nW with a peak frequency at 0.72 THz and width of approximately 0.7 THz under a 0.88 T magnetic field. The quadratic dependence of THz-radiation power by the SBR on the magnetic field is also observed for the first time.

  2. Integrated photonics based on planar holographic Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Greiner, Christoph M.; Iazikov, Dmitri; Mossberg, Thomas W.

    2004-10-01

    Integrated holographics is a novel photonics technology made possible by recent advances in semiconductor manufacturing technology and planar waveguide fabrication. The technology's corner stone, the holographic Bragg reflector (HBR), is a slab-waveguide based, nanoscale, refractive-index structure that merges, for the first time, powerful features of holography, such as single-element spectral and spatial signal processing and overlay of multiple structures, with a highly integrated environment. As a building block for photonic circuits, the HBR's holographic signal mapping comprises a unique and novel way of on-chip signal routing and transport that is free-space-like but fully integrated. Signals propagate and overlap freely as they are imaged from active element to active element - an architecture that eliminates the need for constraining electronics-style channel-waveguides and associated space requirements and opens the door to unique integrated photonic circuits of very compact footprint. Photolithographic HBR fabrication was recently demonstrated to provide complete amplitude and phase control over individual HBR diffractive elements thus offering the powerful ability to implement almost arbitrary phase-coherent spectral filtering functions. This is enabling to a broad range of optics-on-a-chip devices including compact multiplexers, tailored passband optical filters, optical switch fabrics, spectral comparators, and correlator-based optical look-up tables.

  3. A hollow waveguide Bragg reflector: A tunable platform for integrated photonics

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh

    2015-01-01

    Hollow waveguides are promising candidates for applications in sensing and high-power transmission. Flexible design and cost effective fabrication of hollow waveguides make it possible to realize integrated devices with small temperature dependence, tight control on optical confinement and tailorable characteristics. One of the potential applications of hollow waveguide is a tunable Bragg reflector, which can be used as building block for integrated photonics. In this review, integrated tunable Bragg reflector based on hollow-core optical waveguide is reviewed and presented; this Bragg reflector offers variable characteristics and design flexibility for applications in reconfigurable integrated photonic devices and circuits. Variety of tunable optical functions can be realized with on-chip Bragg reflector based on hollow waveguide, few of them are discussed in this review. Ultra-wide tuning in Bragg wavelength and on-chip polarization control can be realized using 3D hollow waveguide. A tapered 3D hollow waveguide Bragg reflector for an adjustable compensation of polarization mode dispersion (PMD) is then discussed. The utilization of a high-index contrast grating in hollow waveguide is demonstrated to reduce the polarization dependence and reflection-bandwidth. The polarization- and bandwidth control may be useful for realizing polarization insensitive devices and semiconductor lasers with ultra-wide tuning.

  4. Vertical cavity surface emitting laser emitting at 1.56 microns with AlGaAsSb/AlAsSb distributed Bragg reflectors

    SciTech Connect

    Blum, O.; Klem, J.F.; Lear, K.L.; Vawter, G.A.; Kurtz, S.R.

    1998-07-01

    The authors report 77K operation of an optically pumped vertical cavity surface emitting laser with an Sb-based cavity. The structure consists of 15 and 20 pair AlGaAsSb/AlAsSb top and bottom reflectors and a bulk InGaAs active region.

  5. Generation of spectrally stable continuous-wave emission and ns pulses with a peak power of 4 W using a distributed Bragg reflector laser and a ridge-waveguide power amplifier.

    PubMed

    Klehr, A; Wenzel, H; Fricke, J; Bugge, F; Erbert, G

    2014-10-06

    We have developed a diode-laser based master oscillator power amplifier (MOPA) light source which emits high-power spectrally stabilized and nearly-diffraction limited optical pulses in the nanoseconds range as required by many applications. The MOPA consists of a distributed Bragg reflector (DBR) laser as master oscillator driven by a constant current and a ridge waveguide power amplifier (PA) which can be driven by a constant current (DC) or by rectangular current pulses with a width of 5 ns at a repetition frequency of 200 kHz. Under pulsed operation the amplifier acts as an optical gate, converting the CW input beam emitted by the DBR laser into a train of short amplified optical pulses. With this experimental MOPA arrangement no relaxation oscillations occur. A continuous wave power of 1 W under DC injection and a pulse power of 4 W under pulsed operation are reached. For both operational modes the optical spectrum of the emission of the amplifier exhibits a peak at a constant wavelength of 973.5 nm with a spectral width < 10 pm.

  6. Effect of the photon lifetime on the characteristics of 850-nm vertical-cavity surface-emitting lasers with fully doped distributed Bragg reflectors and an oxide current aperture

    SciTech Connect

    Bobrov, M. A.; Blokhin, S. A. Kuzmenkov, A. G.; Maleev, N. A.; Blokhin, A. A.; Zadiranov, Yu. M.; Nikitina, E. V.; Ustinov, V. M.

    2014-12-15

    The effect of the photon lifetime in an optical microcavity on the characteristics of 850-nm vertical-cavity surface-emitting lasers (VCSELs) with fully doped distributed Bragg reflectors (DBRs) and an oxide current aperture is studied. The photon lifetime in the microcavity is controlled by varying the upper DBR reflectance. It is found that the speed of VCSELs with a current-aperture diameter of 10 μm is mainly limited by the self-heating effect, despite an increase in the relaxation-oscillation damping coefficient with increasing photon lifetime in the microcavity. At the same time, the higher level of internal optical loss in lasers with a current-aperture diameter of 1.5 μm leads to dominance of the effect of relaxation-oscillation damping independently of the radiation output loss. In the case of devices with a current-aperture diameter of 5.5 μm, both mechanisms limiting the speed operate, which allow an increase in the VCSEL effective modulation frequency from 21 to 24 GHz as the photon lifetime decreases from 3.7 to 0.8 ps.

  7. Multimode Analysis of Bragg Reflectors for Cyclotron Maser Applications

    DTIC Science & Technology

    1991-02-16

    exponentially with distance in the reflector. The spatial dependance of the TMI I mode is oscillatory. Figure 3 shows the frequency dependence of the...mode reflector for a CARM oscillator resonator. Figure 4 shows the frequency dependance of the reflection and mode conversion in the reflector. In order

  8. Vertically Conductive Single-Crystal SiC-Based Bragg Reflector Grown on Si Wafer

    PubMed Central

    Massoubre, David; Wang, Li; Hold, Leonie; Fernandes, Alanna; Chai, Jessica; Dimitrijev, Sima; Iacopi, Alan

    2015-01-01

    Single-crystal silicon carbide (SiC) thin-films on silicon (Si) were used for the fabrication and characterization of electrically conductive distributed Bragg reflectors (DBRs) on 100 mm Si wafers. The DBRs, each composed of 3 alternating layers of SiC and Al(Ga)N grown on Si substrates, show high wafer uniformity with a typical maximum reflectance of 54% in the blue spectrum and a stopband (at 80% maximum reflectance) as large as 100 nm. Furthermore, high vertical electrical conduction is also demonstrated resulting to a density of current exceeding 70 A/cm2 above 1.5 V. Such SiC/III-N DBRs with high thermal and electrical conductivities could be used as pseudo-substrate to enhance the efficiency of SiC-based and GaN-based optoelectronic devices on large Si wafers. PMID:26601894

  9. Ultraviolet GaN photodetectors on Si via oxide buffer heterostructures with integrated short period oxide-based distributed Bragg reflectors and leakage suppressing metal-oxide-semiconductor contacts

    SciTech Connect

    Szyszka, A. E-mail: adam.szyszka@pwr.wroc.pl; Haeberlen, M.; Storck, P.; Thapa, S. B.; Schroeder, T.

    2014-08-28

    Based on a novel double step oxide buffer heterostructure approach for GaN integration on Si, we present an optimized Metal-Semiconductor-Metal (MSM)-based Ultraviolet (UV) GaN photodetector system with integrated short-period (oxide/Si) Distributed Bragg Reflector (DBR) and leakage suppressing Metal-Oxide-Semiconductor (MOS) electrode contacts. In terms of structural properties, it is demonstrated by in-situ reflection high energy electron diffraction and transmission electron microscopy-energy dispersive x-ray studies that the DBR heterostructure layers grow with high thickness homogeneity and sharp interface structures sufficient for UV applications; only minor Si diffusion into the Y{sub 2}O{sub 3} films is detected under the applied thermal growth budget. As revealed by comparative high resolution x-ray diffraction studies on GaN/oxide buffer/Si systems with and without DBR systems, the final GaN layer structure quality is not significantly influenced by the growth of the integrated DBR heterostructure. In terms of optoelectronic properties, it is demonstrated that—with respect to the basic GaN/oxide/Si system without DBR—the insertion of (a) the DBR heterostructures and (b) dark current suppressing MOS contacts enhances the photoresponsivity below the GaN band-gap related UV cut-off energy by almost up to two orders of magnitude. Given the in-situ oxide passivation capability of grown GaN surfaces and the one order of magnitude lower number of superlattice layers in case of higher refractive index contrast (oxide/Si) systems with respect to classical III-N DBR superlattices, virtual GaN substrates on Si via functional oxide buffer systems are thus a promising robust approach for future GaN-based UV detector technologies.

  10. Optical parameters of the tunable Bragg reflectors in squid

    PubMed Central

    Ghoshal, Amitabh; DeMartini, Daniel G.; Eck, Elizabeth; Morse, Daniel E.

    2013-01-01

    Cephalopods (e.g. octopus, squid and cuttlefish) dynamically tune the colour and brightness of their skin for camouflage and communication using specialized skin cells called iridocytes. We use high-resolution microspectrophotometry to investigate individual tunable Bragg structures (consisting of alternating reflectin protein-containing, high-refractive index lamellae and low-refractive index inter-lamellar spaces) in live and chemically fixed iridocytes of the California market squid, Doryteuthis opalescens. This subcellular, single-stack microspectrophotometry allows for spectral normalization, permitting use of a transfer-matrix model of Bragg reflectance to calculate all the parameters of the Bragg stack—the refractive indices, dimensions and numbers of the lamellae and inter-lamellar spaces. Results of the fitting analyses show that eight or nine pairs of low- and high-index layers typically contribute to the observed reflectivity in live cells, whereas six or seven pairs of low- and high-index layers typically contribute to the reflectivity in chemically fixed cells. The reflectin-containing, high-index lamellae of live cells have a refractive index proportional to the peak reflectivity, with an average of 1.405 ± 0.012 and a maximum around 1.44, while the reflectin-containing lamellae in fixed tissue have a refractive index of 1.413 ± 0.015 suggesting a slight increase of refractive index in the process of fixation. As expected, incremental changes in refractive index contribute to the greatest incremental changes in reflectivity for those Bragg stacks with the most layers. The excursions in dimensions required to tune the measured reflected wavelength from 675 (red) to 425 nm (blue) are a decrease from ca 150 to 80 nm for the high-index lamellae and from ca 120 to 50 nm for the low-index inter-lamellar spaces. Fixation-induced dimensional changes also are quantified, leading us to suggest that further microspectrophotometric analyses of this iridocyte

  11. Optical parameters of the tunable Bragg reflectors in squid.

    PubMed

    Ghoshal, Amitabh; Demartini, Daniel G; Eck, Elizabeth; Morse, Daniel E

    2013-08-06

    Cephalopods (e.g. octopus, squid and cuttlefish) dynamically tune the colour and brightness of their skin for camouflage and communication using specialized skin cells called iridocytes. We use high-resolution microspectrophotometry to investigate individual tunable Bragg structures (consisting of alternating reflectin protein-containing, high-refractive index lamellae and low-refractive index inter-lamellar spaces) in live and chemically fixed iridocytes of the California market squid, Doryteuthis opalescens. This subcellular, single-stack microspectrophotometry allows for spectral normalization, permitting use of a transfer-matrix model of Bragg reflectance to calculate all the parameters of the Bragg stack-the refractive indices, dimensions and numbers of the lamellae and inter-lamellar spaces. Results of the fitting analyses show that eight or nine pairs of low- and high-index layers typically contribute to the observed reflectivity in live cells, whereas six or seven pairs of low- and high-index layers typically contribute to the reflectivity in chemically fixed cells. The reflectin-containing, high-index lamellae of live cells have a refractive index proportional to the peak reflectivity, with an average of 1.405 ± 0.012 and a maximum around 1.44, while the reflectin-containing lamellae in fixed tissue have a refractive index of 1.413 ± 0.015 suggesting a slight increase of refractive index in the process of fixation. As expected, incremental changes in refractive index contribute to the greatest incremental changes in reflectivity for those Bragg stacks with the most layers. The excursions in dimensions required to tune the measured reflected wavelength from 675 (red) to 425 nm (blue) are a decrease from ca 150 to 80 nm for the high-index lamellae and from ca 120 to 50 nm for the low-index inter-lamellar spaces. Fixation-induced dimensional changes also are quantified, leading us to suggest that further microspectrophotometric analyses of this iridocyte

  12. InAlN/GaN Bragg reflectors grown by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Gacevic, Z.; Fernandez-Garrido, S.; Calleja, E.; Estrade, S.

    2010-12-01

    We report on molecular beam epitaxy growth and characterization of ten-period lattice-matched InAlN/GaN distributed Bragg reflectors (DBRs), with peak reflectivity centered around 400 nm. Thanks to the well tuned ternary alloy composition, crack-free surfaces have been obtained, as confirmed by both optical and transmission electron microscopy (TEM). Their good periodicity and well-defined interfaces have been confirmed by both x-ray diffraction and TEM measurements. Peak reflectivity values as high as 60% with stop bands of 30 nm have been demonstrated. Optical measurements revealed that discrepancy between the obtained (60%) and the theoretically expected ({approx}75%) reflectivity is a consequence of significant residual absorption ({approx}35%). TEM measurements revealed the coexistence of zinc-blende and wurtzite phases, as well as planar defects, mainly in GaN. These defects are suggested as the potential source of the undesired absorption and/or scattering effects that lowered the DBRs' peak reflectivity.

  13. Direct excitation of the Tamm plasmon-polaritons on a dielectric Bragg reflector coated with a metal film

    NASA Astrophysics Data System (ADS)

    Zhu, Y.-G.; Hu, W.-L.; Fang, Y.-T.

    2013-09-01

    Tamm plasmon-polariton is a surface state or surface wave formed at the boundary between a metal and a dielectric Bragg reflector. In order to directly excite the Tamm plasmon-polaritons with unit transmission, we design a structure of Bragg reflector coated with a metal film. Through the Bloch theorem of periodic structures and transfer matrix method, we deduce the existence conditions of the Tamm plasmon-polaritons. For a a finite structure, the Tamm plasmon-polaritons can be excited, which is dependent on the thickness of metal, the period number of the Bragg reflector, the incident direction and frequency. On proper conditions, a perfect transmission for the Tamm plasmon-polariton mode can be achieved without the use of attenuated total reflection prism coupling or diffraction grating.

  14. Tunable Multiple-Step Plasmonic Bragg Reflectors with Graphene-Based Modulated Grating

    PubMed Central

    Qian, Qinglu; Liang, Youjian; Liang, Yue; Shao, Hongyan; Zhang, Menglai; Xiao, Ting; Wang, Jicheng

    2016-01-01

    We propose a novel plasmonic Bragg reflector (PBR) based on graphene with multiple-step silicon structure. The monolayer graphene bears locally variable optical properties by modulation of electric fields, and the periodical change of effective refractive index on graphene can be obtained by external bias voltage in the mid-infrared region. Through patterning the PBR units into multiple-step structures, we can decrease the insertion loss and suppress the rippling in transmission spectra. By introducing the defect into the multiple-step PBRs, the multiple resonance modes are formed inside the stopband by increasing the step number. This work may pave the ways for the further development of ultra-compact low-cost hyperspectral sensors in the mid-infrared region. PMID:27916930

  15. Tunable stop-band hollow waveguide Bragg reflectors with tapered air core for adaptive dispersion-compensation

    NASA Astrophysics Data System (ADS)

    Sakurai, Yasuki; Matsutani, Akihiro; Koyama, Fumio

    2006-03-01

    We propose a tunable stop-band hollow waveguide Bragg reflector with a variable tapered air core for an adjustable dispersion-compensation device. The tapered air-core structure gives us chirped Bragg reflection. The precise control of tapered air-core thickness and angle enables us to achieve the dynamic tuning of both stop-band width and center wavelength of Bragg reflection. We demonstrate center-wavelength tuning of 20.1nm corresponding to 1.3% of propagation constant change and stop-band expansion up to 5nm. Also, we demonstrate dispersion tuning operation either in negative or positive dispersion ranges with delay-time difference of about 10ps.

  16. Analysis of Fabry-Perot optical micro-cavities based on coating-free all-silicon cylindrical Bragg reflectors.

    PubMed

    Malak, Maurine; Gaber, Noha; Marty, Frédéric; Pavy, Nicolas; Richalot, Elodie; Bourouina, Tarik

    2013-01-28

    We study the behavior of Fabry-Perot micro-optical resonators based on cylindrical reflectors, optionally combined with cylindrical lenses. The core of the resonator architecture incorporates coating-free, all-silicon, Bragg reflectors of cylindrical shape. The combined effect of high reflectance and light confinement produced by the reflectors curvature allows substantial reduction of the energy loss. The proposed resonator uses curved Bragg reflectors consisting of a stack of silicon-air wall pairs constructed by micromachining. Quality factor Q ~1000 was achieved on rather large cavity length L = 210 microns, which is mainly intended to lab-on-chip analytical experiments, where enough space is required to introduce the analyte inside the resonator. We report on the behavioral analysis of such resonators through analytical modeling along with numerical simulations supported by experimental results. We demonstrate selective excitation of pure longitudinal modes, taking advantage of a proper control of mode matching involved in the process of coupling light from an optical fiber to the resonator. For the sake of comparison, insight on the behavior of Fabry-Perot cavity incorporating a Fiber-Rod-Lens is confirmed by similar numerical simulations.

  17. Giant birefringence and tunable differential group delay in Bragg reflector based on tapered three-dimensional hollow waveguide

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Sakagichi, Takahiro; Koyama, Fumio

    2009-02-01

    A tunable Bragg reflector based on a tapered three-dimensional (3D) hollow waveguide (HWG) with variable taper angle has been proposed and demonstrated. A large grating coupling coefficient for a large reflection band and a giant birefringence of 0.01 have been achieved by optimizing the structure of the 3D HWG. The large birefringence causes a delay difference between the orthogonal polarizations and the variable taper angle provides tuning in the delay difference. A 13 ps tuning in differential group delay has been reported with a 3 mm long compact device, which can be used for adjustable compensation of polarization mode dispersion in optical fiber links.

  18. Room temperature fabrication of dielectric Bragg reflectors composed of a CaF2/ZnS multilayered coating.

    PubMed

    Muallem, Merav; Palatnik, Alex; Nessim, Gilbert D; Tischler, Yaakov R

    2015-01-14

    We describe the design, fabrication, and characterization of mechanically stable, reproducible, and highly reflecting distributed Bragg reflectors (DBR) composed of thermally evaporated thin films of calcium fluoride (CaF2) and zinc sulfide (ZnS). CaF2 and ZnS were chosen as the low and high refractive index components of the multilayer DBR structures, with n = 1.43 and n = 2.38 respectively, because neither material requires substrate heating during the deposition process in order to produce optical quality thin films. DBRs consisting of seven pairs of CaF2 and ZnS layers, were fabricated with thicknesses of 96 and 58 nm, respectively, as characterized by high-resolution scanning electron microscopy (HR-SEM), and exhibited a center wavelength of λc = 550 nm and peak reflectance exceeding 99%. The layers showed good adhesion to each other and to the glass substrate, resulting in mechanically stable DBR coatings. Complete optical microcavities consisting of two such DBR coatings and a CaF2 spacer layer between them could be fabricated in a single deposition run. Optically, these structures exhibited a resonator quality factor of Q > 160. When a CaF2/ZnS DBR was grown, without heating the substrate during deposition, on top of a thin film containing the fluorescent dye Rhodamine 6G, the fluorescence intensity showed no degradation compared to an uncoated film, in contrast to a MgF2/ZnS DBR coating grown with substrate heating which showed a 92% reduction in signal. The ability to fabricate optical quality CaF2/ZnS DBRs without substrate heating, as introduced here, can therefore enable formation of low-loss high-reflectivity coatings on top of more delicate heat-sensitive materials such as organics and other nanostructured emitters, and hence facilitate the development of nanoemitter-based microcavity device applications.

  19. Spatially graded TiO₂-SiO₂ Bragg reflector with rainbow-colored photonic band gap.

    PubMed

    Singh, Dhruv Pratap; Lee, Seung Hee; Choi, Il Yong; Kim, Jong Kyu

    2015-06-29

    A simple single-step method to fabricate spatially graded TiO2-SiO2 Bragg stack with rainbow colored photonic band gap is presented. The gradation in thickness of the Bragg stack was accomplished with a modified glancing angle deposition (GLAD) technique with dynamic shadow enabled by a block attached to one edge of the rotating substrate. A linear gradation in thickness over a distance of about 17 mm resulted in a brilliant colorful rainbow pattern. Interestingly, the photonic band gap position can be changed across the whole visible wavelength range by linearly translating the graded Bragg stack over a large area substrate. The spatially graded Bragg stack may find potential applications in the tunable optical devices, such as optical filters, reflection gratings, and lasers.

  20. In situ metalorganic vapor phase epitaxy control of GaAs/AlAs Bragg reflectors by laser reflectometry at 514 nm

    NASA Astrophysics Data System (ADS)

    Raffle, Y.; Kuszelewicz, R.; Azoulay, R.; Le Roux, G.; Michel, J. C.; Dugrand, L.; Toussaere, E.

    1993-12-01

    In situ reflectometry with a 514-nm laser beam was used to monitor AlAs and GaAs layer thicknesses grown by metalorganic vapor phase epitaxy. The effective optical indices of these materials have been calibrated at the growth temperature by using an original method based on ex situ double crystal x-ray diffraction measurement. According to these measured indices, the in situ laser reflectometry at 514 nm appears to be well suited for a real-time thickness control of the GaAs/AlAs based Bragg reflectors. Finally, Bragg reflectors centered at 980 nm have been grown using the reflectometry at 514 nm. X-ray diffraction and reflectivity measurements performed on these reflectors confirm a 1% reproducibility and accuracy of the wavelength stop band center.

  1. Synthesis and study of the optical properties of dielectric Bragg reflectors infiltrated with 6G-Rhodamine

    NASA Astrophysics Data System (ADS)

    Gómez-Barojas, E.; Aca-López, V.; Sánchez-Mora, E.; Silva-González, R.; Luna-López, J. A.

    2014-04-01

    We report the study of the optical properties of 6G-Rhodamine (Rhd) infiltrated porous silicon dielectric Bragg reflectors (DBRs) with 31 constituent periods. The DBRs were obtained by an electrochemical anodizing process of Si in a two electrodes Teflon cell. The porosity was determined by gravimetric measurements on single Porous silicon (PSi) layers. Based on the characterization results of single layers the DBRs were synthesized. After anodizing, the DBRs were silanized with a 3-mercaptopropyltrimethoxysilane solution and functionalized with Rhd solutions at different concentrations. Cross section scanning electron micrographs show that the DBRs synthesis was successful. After each preparation step, Reflectance and Fluorescence (FL) spectra were recorded. These spectra show that as the Rhd concentration in solution is increased the stop band intensity as well as the FL intensity are enhanced due to constructive interference effects.

  2. Laser fabrication of photorefractive Bragg reflectors, asymmetric waveguides and void arrays in glass

    NASA Astrophysics Data System (ADS)

    Itoh, Kazuyoshi; Watanabe, Wataru; Li, Yan; Yamada, Kazuhiro; Nishii, Junji

    2002-11-01

    We have been studying the refractive index changes and vacancies that are induced in silica glass by the irradiation of ultrashort laser pulses. By scanning the laser beam in the glass we can form 3-D shape of waveguides, arrays of tiny vacancies, called voids, and long holes with microscopic diameters. In this paper, we report on the asymmetry of the waveguide formed by linearly polarized ultrashort pulses. The formation of the photo-induced waveguide is normally accompanied by the filamentation, the self-trapping of laser beam due to nonlinear optical effects. The asymmetric cross-section of the waveguide structures explains properly the illusory birefringence of photo-induced waveguides observed earlier. The cross-sectional forms of the waveguides were observed by polishing and etching the cross-psections. We also report the possibility of forming asymmetric shapes of voids. The asymmetry of voids results from the beam profile. We controlled the profile by inserting apertures before the focusing lens. The asymmetry leads to the polarization dependence of diffraction from the array of voids. We also report on the formation of Bragg grating in glass. The Bragg gratings were formed in soda-lime glass. We succeeded in forming a series of three Bragg gratings. The formation of grating inside glass was confirmed by diffraction experiments and chemical etching of polished cross-sections.

  3. High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication

    PubMed Central

    Geng, Yong; Noh, JungHyun; Drevensek-Olenik, Irena; Rupp, Romano; Lenzini, Gabriele; Lagerwall, Jan P. F.

    2016-01-01

    Monodisperse cholesteric liquid crystal microspheres exhibit spherically symmetric Bragg reflection, generating, via photonic cross communication, dynamically tuneable multi-coloured patterns. These patterns, uniquely defined by the particular sphere arrangement, could render cholesteric microspheres very useful in countless security applications, as tags to identify and authenticate their carriers, mainly physical objects or persons. However, the optical quality of the cholesteric droplets studied so far is unsatisfactory, especially after polymerisation, a step required for obtaining durable samples that can be used for object identification. We show that a transition from droplets to shells solves all key problems, giving rise to sharp patterns and excellent optical quality even after polymerisation, the polymerised shells sustaining considerable mechanical deformation. Moreover, we demonstrate that, counter to prior expectation, cross communication takes place even between non-identical shells. This opens additional communication channels that add significantly to the complexity and unique character of the generated patterns. PMID:27230944

  4. High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication

    NASA Astrophysics Data System (ADS)

    Geng, Yong; Noh, Junghyun; Drevensek-Olenik, Irena; Rupp, Romano; Lenzini, Gabriele; Lagerwall, Jan P. F.

    2016-05-01

    Monodisperse cholesteric liquid crystal microspheres exhibit spherically symmetric Bragg reflection, generating, via photonic cross communication, dynamically tuneable multi-coloured patterns. These patterns, uniquely defined by the particular sphere arrangement, could render cholesteric microspheres very useful in countless security applications, as tags to identify and authenticate their carriers, mainly physical objects or persons. However, the optical quality of the cholesteric droplets studied so far is unsatisfactory, especially after polymerisation, a step required for obtaining durable samples that can be used for object identification. We show that a transition from droplets to shells solves all key problems, giving rise to sharp patterns and excellent optical quality even after polymerisation, the polymerised shells sustaining considerable mechanical deformation. Moreover, we demonstrate that, counter to prior expectation, cross communication takes place even between non-identical shells. This opens additional communication channels that add significantly to the complexity and unique character of the generated patterns.

  5. Unsteady temperature distribution in volume reflectors

    NASA Technical Reports Server (NTRS)

    Weston, K. C.; Reddy, R. S.

    1974-01-01

    The development of unsteady temperature distributions in semitransparent scattering materials under the influence of arbitrary incident radiative flux with other than specified temperature boundary conditions is considered. Specifically, such a problem is considered for an approximate radiative transfer model which allows analytic solutions. The model represents the unsteady, one-dimensional, radiative heating of a weakly absorbing, semitransparent medium with specified conductive heat flux at one boundary. The radiation field is modeled using an approximation to the radiative heat flux obtained by solution of the Kubelka-Munk differential equations.

  6. Experimental modal analysis and dynamic strain fiber Bragg gratings for structural health monitoring of composite antenna sub-reflector

    NASA Astrophysics Data System (ADS)

    Panopoulou, A.; Fransen, S.; Gomez-Molinero, V.; Kostopoulos, V.

    2013-09-01

    The objective of this work is to develop a new structural health monitoring system for composite aerospace structures based on dynamic response strain measurements and experimental modal analysis techniques. Fiber Bragg grating (FBG) optical sensors were used for monitoring the dynamic response of the composite structure. The structural dynamic behavior has been numerically simulated and experimentally verified by means of vibration testing. The hypothesis of all vibration tests was that actual damage in composites reduces their stiffness and produces an eigenfrequency shifting to lower values in the same sense as mass increase produces. Thus, damage was simulated by slightly varying locally the mass of the structure at different zones. The correlation between the simulated damage and the loss of stiffness was analytically defined. Experimental modal analysis based on the strain responses was conducted and the extracted strain mode shapes were the input for the damage detection expert system. A feed-forward back propagation neural network was the core of the damage detection system. The features-input to the neural network consisted of the strain mode shapes, extracted from the experimental modal analysis. Dedicated training and validation activities were carried out based on the experimental results. The system showed high reliability, confirmed by the ability of the neural network to recognize the size and the position of damage on the structure. The experiments were performed on a real structure i.e. a lightweight antenna sub-reflector, manufactured and tested at EADS CASA ESPACIO. An integrated FBG sensor network, based on the advantage of multiplexing, was mounted on the structure with optimum topology. Numerical simulation was used as a support tool at all the steps of the work. Potential applications for the proposed system are during ground qualification extensive tests of space structures and during the mission as modal analysis tool on board, being able

  7. Tamm plasmon-polariton with negative group velocity induced by a negative index meta-material capping layer at metal-Bragg reflector interface.

    PubMed

    Liu, Cunding; Kong, Mingdong; Li, Bincheng

    2014-05-05

    Influence of a negative refractive index meta-material (NIM) capping layer on properties of Tamm plasmon-polariton at the interface of metal-Bragg reflector structure is investigated. Conditions for excitation of the plasmon-polariton is determined from reflectivity mapping calculation and analyzed with cavity mode theory. For specific thicknesses of capping layers, Tamm plasmon-polariton with negative group velocity is revealed in a wide region of frequency. Different from backward optical propagation induced by negative effective-group-refractive-index in dispersive media, negative group velocity of Tamm plasmon-polariton results from opposite signs of cross-section-integrated field energy and Poynting vector.

  8. Solar reflector soiling pattern distributions and reflectance measurement requirements

    SciTech Connect

    Kidney, K. )

    1990-10-01

    Short-term specular reflectance losses from optical surfaces used in the collection or concentration of solar energy results in significant reduction of these systems' output. Losses range from 0.1% to 1.0% per day, approaching asymptotes of 25% to 60% for periods greater than one year, depending onsite and season. To appropriately assess the value of a particular location for the production of power, consideration of the rates of soiling and strategies to minimize losses resulting from soiling must be considered. Strategies for measuring the optical performance of reflector materials to a specified degree of accuracy have been developed, according to the types of soiling patterns observed. It was found most soiling occurs with the accumulation of particulates in spots of different sizes, and the spot sizes follow a lognormal distribution. For most practical situations, it was determined that 10 measurements with a 1-cm-diameter beam are enough to place the average value within 3% of the true value, with a confidence level of 95%.

  9. Suzaku observations of Markarian 335: evidence for a distributed reflector

    NASA Astrophysics Data System (ADS)

    Larsson, J.; Miniutti, G.; Fabian, A. C.; Miller, J. M.; Reynolds, C. S.; Ponti, G.

    2008-03-01

    We report on a 151-ks net exposure Suzaku observation of the narrow-line Seyfert 1 galaxy Mrk 335. The 0.5-40 keV spectrum contains a broad Fe line, a strong soft excess below about 2 keV and a Compton hump around 20-30 keV. We find that a model consisting of a power law and two reflectors provides the best fit to the time-averaged spectrum. In this model, an ionized, heavily blurred, inner reflector produces most of the soft excess, while an almost neutral outer reflector (outside ~ 40rg) produces most of the Fe line emission. The spectral variability of the observation is characterized by spectral hardening at very low count rates. In terms of our power-law + two-reflector model it seems like this hardening is mainly caused by pivoting of the power law. The rms spectrum of the entire observation has the curved shape commonly observed in active galactic nuclei, although the shape is significantly flatter when an interval which does not contain any deep dip in the light curve is considered. We also examine a previous 133-ks XMM-Newton observation of Mrk 335. We find that the XMM-Newton spectrum can be fitted with a similar two-reflector model as the Suzaku data and we confirm that the rms spectrum of the observation is flat. The flat rms spectra, as well as the high-energy data from the Suzaku PIN detector, disfavour an absorption origin for the soft excess in Mrk 335.

  10. Shape control of distributed parameter reflectors using sliding mode control

    NASA Astrophysics Data System (ADS)

    Andoh, Fukashi; Washington, Gregory N.; Utkin, Vadim

    2001-08-01

    Sliding mode control has become one of the most powerful control methods for variable structure systems, a set of continuous systems with an appropriate switching logic. Its robustness properties and order reduction capability have made sliding mode control one of the most efficient tools for relatively higher order nonlinear plants operating under uncertain conditions. Piezo-electric materials possess the property of creating a charge when subjected to a mechanical strain, and of generating a strain when subjected to an electric field. Piezo-electric actuators are known to have a hysteresis due to the thermal motion and Coulomb interaction of Weiss domains. Because of the thermal effect the hysteresis of piezo-electric actuators is reproducible only with some uncertainty in experiments. The robustness of sliding mode control under uncertain conditions has an advantage in handling the hysteresis of piezo-electric actuators. In this research sliding mode control is used to control the shape of one- and two-dimensionally curved adaptive reflectors with piezo-electric actuators. Four discrete linear actuators for the one-dimensionally curved reflector and eight actuators for the two-dimensionally curved reflector are assumed.

  11. Reflectance and unsteady temperature distribution of diffuse reflectors

    NASA Technical Reports Server (NTRS)

    Weston, K. C.; Reddy, R. S.

    1973-01-01

    The applicability of a previously derived solution of the Kubelka-Munk differential equations for the reflectance of an absorbing and scattering material for the case of a zero absorption coefficient to the description of the reflectance of a weakly absorbing, highly scattering material is examined. A solution for the transient heating of a one-dimensional volume reflector is obtained, and the error incurred in the use of the zero absorption coefficient solution is assessed for early times appropriate to the entry heat protection system application. It is found that the small difference in reflectance causes a significant difference in internal temperature.

  12. 2.5-Gb/s hybridly-integrated tunable external cavity laser using a superluminescent diode and a polymer Bragg reflector.

    PubMed

    Yoon, Ki-Hong; Oh, Su Hwan; Kim, Ki Soo; Kwon, O-Kyun; Oh, Dae Kon; Noh, Young-Ouk; Lee, Hyung-Jong

    2010-03-15

    We presented a hybridly-integrated tunable external cavity laser with 0.8 nm mode spacing 16 channels operating in the direct modulation of 2.5-Gbps for a low-cost source of a WDM-PON system. The tunable laser was fabricated by using a superluminescent diode (SLD) and a polymer Bragg reflector. The maximum output power and the power slope efficiency of the tunable laser were 10.3 mW and 0.132 mW/mA, respectively, at the SLD current of 100 mA and the temperature of 25 degrees C. The directly-modulated tunable laser successfully provided 2.5-Gbps transmissions through 20-km standard single mode fiber. The power penalty of the tunable laser was less than 0.8 dB for 16 channels after a 20-km transmission. The power penalty variation was less than 1.4 dB during the blue-shifted wavelength tuning.

  13. Distributed gain in plasmonic reflectors and its use for terahertz generation.

    PubMed

    Sydoruk, O; Syms, R R A; Solymar, L

    2012-08-27

    Semiconductor plasmons have potential for terahertz generation. Because practical device formats may be quasi-optical, we studied theoretically distributed plasmonic reflectors that comprise multiple interfaces between cascaded two-dimensional electron channels. Employing a mode-matching technique, we show that transmission through and reflection from a single interface depend on the magnitude and direction of a dc current flowing in the channels. As a result, plasmons can be amplified at an interface, and the cumulative effect of multiple interfaces increases the total gain, leading to plasmonic reflection coefficients exceeding unity. Reversing the current direction in a distributed reflector, however, has the opposite effect of plasmonic deamplification. Consequently, we propose structurally asymmetric resonators comprising two different distributed reflectors and predict that they are capable of terahertz oscillations at low threshold currents.

  14. Inverse problem for shape control of flexible space reflectors using distributed solar pressure

    NASA Astrophysics Data System (ADS)

    Borggräfe, A.; Heiligers, J.; Ceriotti, M.; McInnes, C. R.

    2014-07-01

    This paper investigates controlled elastic deflection of thin circular space reflectors using an inverse problem approach to non-linear thin membrane theory. When changing the surface reflectivity across the membrane, the distributed loads due to ambient solar radiation pressure can be manipulated optically, thus controlling the surface shape without using mechanical or piezo-electric systems. The surface reflectivity can in principle be modulated using uniformly distributed thin-film electro-chromic coatings. We present an analytic solution to the inverse problem of finding the necessary reflectivity distribution that creates a specific membrane deflection, for example that of a parabolic reflector. Importantly, the reflectivity distribution across the surface is found to be independent of membrane size, thickness and solar distance, enabling engineering of the reflectivity distribution directly during the manufacture of the membrane.

  15. Mesoporous Bragg reflectors: block-copolymer self-assembly leads to building blocks with well defined continuous pores and high control over optical properties

    NASA Astrophysics Data System (ADS)

    Guldin, S.; Kolle, M.; Stefik, M.; Wiesner, U.; Steiner, U.

    2011-09-01

    Mesoporous distributed Bragg re ectors (MDBRs) exhibit porosity on the sub-optical length scale. This makes them ideally suited as sensing platforms in biology and chemistry as well as for light management in optoelectronic devices. Here we present a new fast forward route for the fabrication of MDBRs which relies on the self-assembling properties of the block copolymer poly(isoprene-block-ethylene oxide) (PI-b-PEO) in combination with sol-gel chemistry. The interplay between structure directing organic host and co-assembled inorganic guest allows the ne tuning of refractive index in the outcome material. The refractive index dierence between the high and low porosity layer can be as high as 0.4, with the optical interfaces being well dened. Following a 30 min annealing protocol after each layer deposition enables the fast and reliable stacking of MDBRs which exhibit a continuous TiO2 network with large accessible pores and high optical quality.

  16. Performance enhancement of thin film silicon solar cells based on distributed Bragg reflector and diffraction grating

    SciTech Connect

    Dubey, R. S.; Saravanan, S.; Kalainathan, S.

    2014-12-15

    The influence of various designing parameters were investigated and explored for high performance solar cells. Single layer grating based solar cell of 50 μm thickness gives maximum efficiency up to 24 % whereas same efficiency is achieved with the use of three bilayers grating based solar cell of 30 μm thickness. Remarkably, bilayer grating based solar cell design not only gives broadband absorption but also enhancement in efficiency with reduced cell thickness requirement. This absorption enhancement is attributed to the high reflection and diffraction from DBR and grating respectively. The obtained short-circuit current were 29.6, 32.9, 34.6 and 36.05 mA/cm{sup 2} of 5, 10, 20 and 30 μm cell thicknesses respectively. These presented designing efforts would be helpful to design and realize new generation of solar cells.

  17. Highly Effective Polarized Electron Sources Based on Strained Semiconductor Superlattice with Distributed Bragg Reflector

    SciTech Connect

    Gerchikov, L.G.; Aulenbacher, K.; Clendenin, J.E.; Kuz'michev, V.V.; Mamaev, Yu.A.; Maruyama, T.; Mikhrin, V.S.; Roberts, J.S.; Utstinov, V.M.; Vasiliev, D.A.; Vasiliev, A.P.; Yashin, Yu.P.; Zhukov, A.E.; /St. Petersburg Polytechnic Inst. /Mainz U., Inst. Kernphys. /SLAC /Ioffe Phys. Tech. Inst. /Sheffield U.

    2007-11-28

    Resonance enhancement of the quantum efficiency of new polarized electron photocathodes based on a short-period strained superlattice structures is reported. The superlattice is a part of an integrated Fabry-Perot optical cavity. We demonstrate that the Fabry-Perot resonator enhances the quantum efficiency by the order of magnitude in the wavelength region of the main polarization maximum. The high structural quality implied by these results points to the very promising application of these photocathodes for spin-polarized electron sources.

  18. Highly Effective Polarized Electron Sources Based on Strained Semiconductor Superlattice with Distributed Bragg Reflector

    SciTech Connect

    Gerchikov, L. G.; Kuz'michev, V. V.; Mamaev, Yu. A.; Vasiliev, D. A.; Yashin, Yu. P.; Aulenbacher, K.; Clendenin, J. E.; Maruyama, T.; Mikhrin, V. S.; Ustinov, V. M.; Vasiliev, A. P.; Zhukov, A. E.; Roberts, J. S.

    2008-02-06

    Resonance enhancement of the quantum efficiency of new polarized electron photocathodes based on a short-period strained superlattice structures is reported. The superlattice is a part of an integrated Fabry-Perot optical cavity. We demonstrate that the Fabry-Perot resonator enhances the quantum efficiency by the order of magnitude in the wavelength region of the main polarization maximum. The high structural quality implied by these results points to the very promising application of these photocathodes for spin-polarized electron sources.

  19. Double sinusoidal phase-modulating distributed-Bragg-reflector laser-diode interferometer for distance measurement.

    PubMed

    Suzuki, Takamasa; Suda, Hiromi; Sasaki, Osami

    2003-01-01

    A previously proposed double sinusoidal phase-modulating (DSPM) laser-diode interferometer measures distances larger than a half-wavelength by detecting modulation depth. Although it requires a vibrating mirror to provide the second modulation to the interference signal, such vibrations naturally affect measurement accuracy. We propose a static-type DSPM laser-diode interferometer that uses no mechanical modulation. Our experimental results indicate a measurement error of +/- 1.6 microm.

  20. Quasi-distributed acoustic sensing based on identical low-reflective fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Shang, Ying; Yang, Yuan-Hong; Wang, Chen; Liu, Xiao-Hui; Wang, Chang; Peng, Gang-Ding

    2017-01-01

    A quasi-distributed acoustic sensing (QDAS) scheme based on identical low-reflective fiber Bragg grating is proposed and analyzed theoretically and experimentally. We realize the acoustic demodulation of different location and different frequency simultaneously by using imbalanced Michelson interferometer of φ-OTDR and Phase Generated Carrier technology with 600 identical low-reflective fiber Bragg gratings(FBGs) written on-line during drawing of the ordinary signal mode fibers in an equal separation of 2 m. We further obtain the 1.4 dB of frequency response flatness at the range of 200 Hz-1500 Hz and proportional character of demodulated intensity of acoustic sources with different drive voltage of underwater speaker in the experiment.

  1. A distributed optical fiber sensing system for dynamic strain measurement based on artificial reflector

    NASA Astrophysics Data System (ADS)

    Sun, Zhenhong; Shan, Yuanyuan; Li, Yanting; Zhang, Yixin; Zhang, Xuping

    2016-10-01

    Phase sensitive optical time domain reflectometry (Φ-OTDR) has been widely used in many applications for its distributed sensing ability on weak disturbance all along the sensing fiber. However, traditional Φ-OTDR cannot make quantitative measurement on the external disturbance due to the randomly distributed position and reflectivity of scatters within the optical fiber. Recently, some methods have been proposed to realize quantitative measurement of dynamic strain. In these literatures, the fiber with or without FBGs in practice was easily damaged and with difficulty of maintenance. PZT is employed to generate strain event in the fiber. There is a large gap compared with the real detecting environment, which will not reveal the full performance of the sensing system. In this paper, a distributed optical fiber sensing (DOFS) system for dynamic strain measurement based on artificial reflector is proposed and demonstrated experimentally. The fiber under test (FUT) is composed by four 20-meter long single mode optical fiber patch cords (OFPCs), which are cascaded with ferrule contactor/physical contact (FC/PC) connectors via fiber flanges. The fiber facet of FC/PC connector forms an artificial reflector. When the interval between the two reflectors is changed, the phase of the interference signal will also be changed. A symmetric 3×3 coupler with table-look-up scheme is introduced to discriminate the phase change through interference intensity. In our experiment, the center 10m section of the second OFPC is attached to the bottom of an aluminum alloy plate. An ordinary loudspeaker box was located on the top of the aluminum alloy plate. The dynamic strain generated by the loudspeaker box is transmitted from the aluminum alloy plate to the OFPC. Experimental results show that the proposed method has a good frequency response characteristic up to 3.2 kHz and a linear intensity response of R2=0.9986 while the optical probe pulse width and repetition rate were 100ns

  2. Effects of thermal annealing of W/SiO2 multilayer Bragg reflectors on resonance characteristics of film bulk acoustic resonator devices with cobalt electrodes

    NASA Astrophysics Data System (ADS)

    Yim, Munhyuk; Kim, Dong-Hyun; Chai, Dongkyu; Yoon, Giwan

    2004-05-01

    In this article, we present the thermal annealing effects of the W/SiO2 multilayer reflectors in ZnO-based film bulk acoustic resonator (FBAR) devices with cobalt (Co) electrodes in comparison with those with aluminum (Al) electrodes. Various thermal annealing conditions have been implemented on the W/SiO2 multilayer reflectors formed on p-type (100) silicon substrates. The resonance characteristics could be significantly improved due to the thermal annealing and were observed to depend strongly on the annealing conditions applied to the reflectors. Particularly, the FBAR devices with the W/SiO2 multilayer reflectors annealed at 400 °C/30 min have shown superior resonance characteristics in terms of return loss and quality factor. In addition, the use of Co electrodes has resulted in the further improvement of the resonance characteristics as compared with the Al electrodes. As a result, the combined use of both the thermal annealing and Co electrodes seems very useful to more effectively improve the resonance characteristics of the FBAR devices with the W/SiO2 multilayer reflectors. .

  3. High-power and narrow-linewidth tunable distributed-reflector laser

    NASA Astrophysics Data System (ADS)

    Kaneko, Toshimitsu; Matsuura, Hiroyuki; Tanizawa, Ken; Uesaka, Katsumi

    2016-02-01

    Deployment of digital coherent transmission technologies to metro networks drives the use of higher-order modulation formats such as PDM-16QAM and downsizing of optical transceivers. A narrow-linewidth (<300 kHz) tunable laser with high output power (>+17 dBm) is very attractive for such purposes, not only because it can compensate for the modulation loss increase caused by a high-peak-to-average ratio of the electrical driving signal of higher-order modulation formats, but also because it can be shared between transmitter and receiver saving the foot-print and power dissipation. This paper reviews the Tunable Distributed Amplification -- Chirped Sampled Grating -- Distributed Reflector (TDA-CSG-DR) laser being developed for metro application.

  4. Superradiant amplification of terahertz radiation by plasmons in inverted graphene with a planar distributed Bragg resonator

    SciTech Connect

    Polischuk, O. V. Popov, V. V.; Otsuji, T.

    2015-11-15

    It is shown theoretically that stimulated generation of terahertz radiation by plasmons in graphene with a planar distributed Bragg resonator is possible at two different frequencies for each plasmon mode. This behavior may be attributed to the superradiance of the collective plasmon mode, which is associated with superlinear increase in the radiative damping of the plasmons with increase in pumping power. As a result, the curves of the radiative damping and the plasmon gain as a function of the pumping power intersect at two points corresponding to different generation conditions.

  5. Design method for a distributed Bragg resonator based evanescent field sensor

    NASA Astrophysics Data System (ADS)

    Bischof, David; Kehl, Florian; Michler, Markus

    2016-12-01

    This paper presents an analytic design method for a distributed Bragg resonator based evanescent field sensor. Such sensors can, for example, be used to measure changing refractive indices of the cover medium of a waveguide, as well as molecule adsorption at the sensor surface. For given starting conditions, the presented design method allows the analytical calculation of optimized sensor parameters for quantitative simulation and fabrication. The design process is based on the Fabry-Pérot resonator and analytical solutions of coupled mode theory.

  6. GaN-based high-voltage light-emitting diodes with backside reflector

    NASA Astrophysics Data System (ADS)

    Huamao, Huang; Hong, Wang; Xiaosheng, Huang; Jinyong, Hu

    2014-07-01

    High-voltage light-emitting diodes (HV-LED) withbackside reflector, including Ti3O5/SiO2 distributed Bragg reflector (DBR) or hybrid reflector combining DBR and Al or Ag metal layer, are investigated using Monte Carlo ray tracing method. The hybrid reflector leads to more enhancement of light-extraction efficiency (LEE). Moreover, the LEE can also be improved by redesigning the thicknesses of DBR. HV-LED with four redesigned DBR pairs (4-MDBR), and those with a hybrid reflector combining 4-MDBR and Al metal layer (4-MDBR-Al), are fabricated. Compared to 4-MDBR, the enhancement of light-output power induced by 4-MDBR-Al is 4.6%, which is consistent with the simulated value of 4.9%.

  7. Monitoring of inhomogeneous flow distributions using fibre-optic Bragg grating temperature sensor arrays

    NASA Astrophysics Data System (ADS)

    Latka, Ines; Bosselmann, Thomas; Ecke, Wolfgang; Willsch, Michael

    2006-04-01

    Knowledge of the gas flow distributions, their mass velocity and turbulences, in chemical reactors, thermodynamic engines, pipes, and other industrial facilities may help to achieve a more efficient system performance. In our novel approach, optical fibre Bragg grating (FBG) sensors have been used for measuring the temperature of a heated element, adapting the principles of conventional hot-wire-anemometers. Because of the multiplexing capability of FBG sensors, the gas mass flow distribution can be measured along the sensor array. The length of the heated and sensor-equipped element can be easily adapted to the cross section of the gas flow, from <10 cm up to several metres. The number and distances of FBGs distributed over this length defines the spatial resolution and is basically limited by the sensor signal processing. According to FBG sensor lengths < 5 mm, spatial resolutions of gas flow measurements of less than 1 cm can be achieved.

  8. Distributed OTDR-interferometric sensing network with identical ultra-weak fiber Bragg gratings.

    PubMed

    Wang, Chen; Shang, Ying; Liu, Xiao-Hui; Wang, Chang; Yu, Hai-Hu; Jiang, De-Sheng; Peng, Gang-Ding

    2015-11-02

    We demonstrate a distributed sensing network with 500 identical ultra-weak fiber Bragg gratings (uwFBGs) in an equal separation of 2m using balanced Michelson interferometer of the phase sensitive optical time domain reflectometry (φ-OTDR) for acoustic measurement. Phase, amplitude, frequency response and location information can be directly obtained at the same time by using the passive 3 × 3 coupler demodulation. Lab experiments on detecting sound waves in water tank are carried out. The results show that this system can well demodulate distributed acoustic signal with the pressure detection limit of 0.122Pa and achieve an acoustic phase sensitivity of around -158dB (re rad/μPa) with a relatively flat frequency response between 450Hz to 600Hz.

  9. Spatial distributions of dose enhancement around a gold nanoparticle at several depths of proton Bragg peak

    NASA Astrophysics Data System (ADS)

    Kwon, Jihun; Sutherland, Kenneth; Hashimoto, Takayuki; Shirato, Hiroki; Date, Hiroyuki

    2016-10-01

    Gold nanoparticles (GNPs) have been recognized as a promising candidate for a radiation sensitizer. A proton beam incident on a GNP can produce secondary electrons, resulting in an enhancement of the dose around the GNP. However, little is known about the spatial distribution of dose enhancement around the GNP, especially in the direction along the incident proton. The purpose of this study is to determine the spatial distribution of dose enhancement by taking the incident direction into account. Two steps of calculation were conducted using the Geant4 Monte Carlo simulation toolkit. First, the energy spectra of 100 and 195 MeV protons colliding with a GNP were calculated at the Bragg peak and three other depths around the peak in liquid water. Second, the GNP was bombarded by protons with the obtained energy spectra. Radial dose distributions were computed along the incident beam direction. The spatial distributions of the dose enhancement factor (DEF) and subtracted dose (Dsub) were then evaluated. The spatial DEF distributions showed hot spots in the distal radial region from the proton beam axis. The spatial Dsub distribution isotropically spread out around the GNP. Low energy protons caused higher and wider dose enhancement. The macroscopic dose enhancement in clinical applications was also evaluated. The results suggest that the consideration of the spatial distribution of GNPs in treatment planning will maximize the potential of GNPs.

  10. Distribution of Micronuclei in Human Fibroblasts across the Bragg Curve of Light and Heavy Ions

    NASA Technical Reports Server (NTRS)

    Hada, M.; Lacy, S.; Gridley, D. S.; Rusek, A.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    The space environment consists of energetic particles of varying mass and energy, and understanding the :biological Bragg curve" is essential in optimizing shielding effectiveness against space radiation induced biological impacts. The "biological Bragg curve" is dependent on the energy and the type of the primary particle, and may vary for different biological endpoints. Previously, we studied the induction of micronuclei (MN) across the Bragg curve of energetic Fe and Si ions, and observed no increased yield of MN at the location of the Bragg peak. However, the ratio of mono- to bi-nucleated cells, which indicates inhibition of cell progression, was found higher at the Bragg peak location in comparison to the plateau region of the Bragg curve. Here, we report the induction of MN in normal human fibroblast cells across the Bragg curve of incident protons generated at Loma Linda University. Similar to Si and Fe ions, the ratio of mono- to bi-nucleated cells showed a clear spike as the protons reached the Bragg peak. Unlike the two heavy ions, however, the MN yield also increased at the Bragg peak location. These results confirm the hypothesis that severely damaged cells at the Bragg peak of heavy, but not light ions are more likely to go through reproductive death and not be evaluated for micronuclei.

  11. Stimulated Brillouin scattering in ultra-long distributed feedback Bragg gratings in standard optical fiber.

    PubMed

    Loranger, Sébastien; Lambin-Iezzi, Victor; Wahbeh, Mamoun; Kashyap, Raman

    2016-04-15

    Distributed feedback (DFB) fiber Bragg gratings (FBG) are widely used as narrow-band filters and single-mode cavities for lasers. Recently, a nonlinear generation has been shown in 10-20 cm DFB gratings in a highly nonlinear fiber. First, we show in this Letter a novel fabrication technique of ultra-long DFBs in a standard fiber (SMF-28). Second, we demonstrate nonlinear generation in such gratings. A particular inscription technique was used to fabricate all-in-phase ultra-long FBG and to implement reproducible phase shift to form a DFB mode. We demonstrate stimulated Brillouin scattering (SBS) emission from this DFB mode and characterize the resulting laser. It seems that such a SBS based DFB laser stabilizes a pump's jittering and reduces its linewidth.

  12. Tunable hollow waveguide Bragg grating with low-temperature dependence

    NASA Astrophysics Data System (ADS)

    Sakurai, Yasuki; Yokota, Yasushi; Matsutani, Akihiro; Koyama, Fumio

    2005-02-01

    We demonstrate a tunable hollow waveguide Bragg grating with low-temperature dependence. We fabricated a distributed Bragg reflector consisting of a grating loaded slab semiconductor hollow waveguide with a variable air-core. A change in an air-core thickness enables us to achieve a tunable propagation constant of several percents resulting in a large shift of several tens of nanometers in Bragg wavelength. We demonstrate 10nm continuous wavelength tuning of a peak reflectivity. This value corresponds to a propagation constant change of 0.64%, which is larger than that of thermo-optic effects or electro-optic effects. The measured temperature sensitivity of the peak wavelength is as low as 0.016nm/K, which is seven times smaller than that of conventional semiconductor waveguide devices.

  13. Solar reflector

    SciTech Connect

    Stone, D. C.

    1981-02-17

    A solar reflector having a flexible triangular reflective sheet or membrane for receiving and reflecting solar energy therefrom. The reflector is characterized by the triangular reflective sheet which is placed under tension thereby defining a smooth planar surface eliminating surface deflection which heretofore has reduced the efficiency of reflectors or heliostats used in combination for receiving and transmitting solar energy to an absorber tower.

  14. Modeling and testing of static pressure within an optical fiber cable spool using distributed fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Ma, Chengju; Ren, Liyong; Qu, Enshi; Tang, Feng; Liang, Quan

    2012-11-01

    Based on the force analysis, we establish a theoretical model to study the static pressure distribution of the fiber cable spool for the fiber optic guided missile (FOG-M). Simulations indicate that for each fiber layer in the fiber cable spool, the applied static pressure on it asymptotically converges as the number of fiber layers increases. Using the distributed fiber Bragg grating (FBG) sensing technique, the static pressure of fiber cable layers in the spool on the cable winding device was measured. Experiments show that the Bragg wavelength of FBG in every layer varies very quickly at the beginning and then becomes gently as the subsequent fiber cable was twisted onto the spool layer by layer. Theoretical simulations agree qualitatively with experimental results. This technology provides us a real-time method to monitor the pressure within the fiber cable layer during the cable winding process.

  15. Strain Modal Analysis of Small and Light Pipes Using Distributed Fibre Bragg Grating Sensors.

    PubMed

    Huang, Jun; Zhou, Zude; Zhang, Lin; Chen, Juntao; Ji, Chunqian; Pham, Duc Truong

    2016-09-25

    Vibration fatigue failure is a critical problem of hydraulic pipes under severe working conditions. Strain modal testing of small and light pipes is a good option for dynamic characteristic evaluation, structural health monitoring and damage identification. Unique features such as small size, light weight, and high multiplexing capability enable Fibre Bragg Grating (FBG) sensors to measure structural dynamic responses where sensor size and placement are critical. In this paper, experimental strain modal analysis of pipes using distributed FBG sensors ispresented. Strain modal analysis and parameter identification methods are introduced. Experimental strain modal testing and finite element analysis for a cantilever pipe have been carried out. The analysis results indicate that the natural frequencies and strain mode shapes of the tested pipe acquired by FBG sensors are in good agreement with the results obtained by a reference accelerometer and simulation outputs. The strain modal parameters of a hydraulic pipe were obtained by the proposed strain modal testing method. FBG sensors have been shown to be useful in the experimental strain modal analysis of small and light pipes in mechanical, aeronautic and aerospace applications.

  16. Strain Modal Analysis of Small and Light Pipes Using Distributed Fibre Bragg Grating Sensors

    PubMed Central

    Huang, Jun; Zhou, Zude; Zhang, Lin; Chen, Juntao; Ji, Chunqian; Pham, Duc Truong

    2016-01-01

    Vibration fatigue failure is a critical problem of hydraulic pipes under severe working conditions. Strain modal testing of small and light pipes is a good option for dynamic characteristic evaluation, structural health monitoring and damage identification. Unique features such as small size, light weight, and high multiplexing capability enable Fibre Bragg Grating (FBG) sensors to measure structural dynamic responses where sensor size and placement are critical. In this paper, experimental strain modal analysis of pipes using distributed FBG sensors ispresented. Strain modal analysis and parameter identification methods are introduced. Experimental strain modal testing and finite element analysis for a cantilever pipe have been carried out. The analysis results indicate that the natural frequencies and strain mode shapes of the tested pipe acquired by FBG sensors are in good agreement with the results obtained by a reference accelerometer and simulation outputs. The strain modal parameters of a hydraulic pipe were obtained by the proposed strain modal testing method. FBG sensors have been shown to be useful in the experimental strain modal analysis of small and light pipes in mechanical, aeronautic and aerospace applications. PMID:27681728

  17. Experimental Investigation and Computer Modeling of Optical Switching in Distributed Bragg Reflector and Vertical Cavity Surface Emitting Laser Structures.

    DTIC Science & Technology

    1995-12-01

    Panish. Heterostructure Lasers, Part A: Fundamental Principles. Quantum Electronics : Principles and Applications, Orlando: Academic Press, Inc., 1978...John Wiley & Sons, 1978. 15. Gibbs, H.M. Optical Bistability: Controlling Light with Light. Quantum Electronics - Principles and Applications, Orlando

  18. Simultaneous measurement of temperature, hydrostatic pressure and acoustic signal using a single distributed Bragg reflector fiber laser

    NASA Astrophysics Data System (ADS)

    Tan, Yan-Nan; Zhang, Yang; Guan, Bai-Ou

    2011-05-01

    A fiber-optic sensor based on a dual polarization fiber grating laser for simultaneous measurement of temperature, hydrostatic pressure and acoustic signal is proposed and experimentally demonstrated. The acoustic wave induces a frequency modulation (FM) of the carrier in radio frequency (RF) range generated by the fiber laser and can be easily extracted by using the FM demodulation technique. The temperature can be determined by the laser wavelength. The hydrostatic pressure can be determined by monitoring the static shift of the carrier frequency and deducting the effect of the temperature.

  19. Chirped distributed Bragg reflector for broad-band group velocity dispersion compensation in terahertz quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Xu, C.; Ban, D.

    2016-11-01

    Behaviors of chirped DBR for group velocity dispersion (GVD) compensation in THz QCLs with metal-metal waveguides have been investigated theoretically in both 1D and 3D models with COMSOL Multiphysics. The strategy of designing chirped DBR for GVD compensation in terahertz frequency range has been presented. In order to achieve broad-band GVD compensation with less distortion, a two-section chirped DBR structure is proposed.

  20. Quasi-interferometric scheme improved by fiber Bragg grating for detection of outer mechanical stress influence on distributed sensor being silica multimode optical fiber operating in a few-mode regime

    NASA Astrophysics Data System (ADS)

    Kafarova, Anastasia M.; Faskhutdinov, Lenar M.; Kuznetzov, Artem A.; Minaeva, Alina Y.; Sevruk, Nikita L.; Nureev, Ilnur I.; Vasilets, Alexander A.; Bourdine, Anton V.; Morozov, Oleg G.; Burdin, Vladimir A.

    2016-03-01

    This work presents results of experimental approbation of modified fiber optic stress sensor based on a few-mode effects occurring during laser-excited optical signal propagation over silica multimode optical fiber (MMF). Modification is concerned with adding of quasi-interferometric scheme realized by two multimode Y-couplers with equalized arm lengths improved by fiber Bragg grating (FBG) and special offset launching conditions providing laser-based excitation of higher-order modes. We tested FBGs written on graded-index MMFs 50/125 with Bragg wavelength 1550 nm connected to different parts of proposed scheme. Researches are focused on comparing analysis of both spectral and pulse responses under changing of selected mode mixing and power diffusion processes due to stress local and distributed action to sensor fiber depending on scheme configuration. Here we considered FBGs not only as particular wavelength reflector during spectral response measurement but also as local periodic microstructure defect strongly effecting few-mode signal components mixing process that provides pulse response variation. Some results of spectral and pulse response measurements produced for different scheme configuration and their comparison analysis are represented.

  1. Sensitivities in the production of spread-out Bragg peak dose distributions by passive scattering with beam current modulation

    SciTech Connect

    Lu, H.-M.; Brett, Robert; Engelsman, Martijn; Slopsema, Roelf; Kooy, Hanne; Flanz, Jay

    2007-10-15

    A spread-out Bragg peak (SOBP) is used in proton beam therapy to create a longitudinal conformality of the required dose to the target. In order to create this effect in a passive beam scattering system, a variety of components must operate in conjunction to produce the desired beam parameters. We will describe how the SOBP is generated and will explore the tolerances of the various components and their subsequent effect on the dose distribution. A specific aspect of this investigation includes a case study involving the use of a beam current modulated system. In such a system, the intensity of the beam current can be varied in synchronization with the revolution of the range-modulator wheel. As a result, the weights of the pulled-back Bragg peaks can be individually controlled to produce uniform dose plateaus for a large range of treatment depths using only a small number of modulator wheels.

  2. Cavity-resonator-integrated guided-mode resonance band-stop reflector.

    PubMed

    Ura, Shogo; Nakata, Masahiro; Yanagida, Kenichi; Inoue, Junichi; Kintaka, Kenji

    2016-06-27

    A cavity-resonator-integrated guided-mode resonance filter (CRIGF) consists of a grating coupler inside a pair of distributed Bragg reflectors. A combination of a CRIGF with a high-reflection substrate can provide a new type of a band-stop reflector with a small aperture for a vertically incident wave from air. A narrow stopband was theoretically predicted and experimentally demonstrated. It was quantitatively shown that reflection spectra depended on optical-buffer-layer thickness. The reflector of 10-μm aperture was fabricated and characterized. The extinction ratio in reflectance was measured to be lower than -20 dB at a resonance wavelength. The bandwidth at -3 dB was 0.15 nm.

  3. Distribution of petroleum hydrocarbons and toluene biodegradation, Knox Street fire pits, Fort Bragg, North Carolina

    USGS Publications Warehouse

    Harden, S.L.; Landmeyer, J.E.

    1996-01-01

    An investigation was conducted at the Knox Street fire pits, Fort Bragg, North Carolina, to monitor the distribution of toluene, ethylbenzene, and xylene (TEX) in soil vapor, ground water, and ground-water/vapor to evaluate if total concentrations of TEX at the site are decreasing with time, and to quantify biodegradation rates of toluene in the unsaturated and saturated zones. Soil-vapor and ground-water samples were collected around the fire pits and ground-water/vapor samples were collected along the ground-water discharge zone, Beaver Creek, on a monthly basis from June 1994 through June 1995. Concentrations of TEX compounds in these samples were determined with a field gas chro- matograph. Laboratory experiments were performed on aquifer sediment samples to measure rates of toluene biodegradation by in situ micro- organisms. Based on field gas chromatographic analytical results, contamination levels of TEX compounds in both soil vapor and ground water appear to decrease downgradient of the fire-pit source area. During the 1-year study period, the observed temporal and spatial trends in soil vapor TEX concentrations appear to reflect differences in the distribution of TEX among solid, aqueous, and gaseous phases within fuel-contaminated soils in the unsaturated zone. Soil temperature and soil moisture are two important factors which influence the distribution of TEX com- pounds among the different phases. Because of the short period of data collection, it was not possible to distinguish between seasonal fluc- tuations in soil vapor TEX concentrations and an overall net decrease in TEX concentrations at the study site. No seasonal trend was observed in total TEX concentrations for ground- water samples collected at the study site. Although the analytical results could not be used to determine if ground-water TEX concen- trations decreased during the study at a specific location, the data were used to examine rate constants of toluene biodegradation. Based on

  4. Modal analysis of Bragg onion resonators

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Liang, Wei; Yariv, Amnon; Fleming, James G.; Lin, Shawn-Yu

    2004-03-01

    From analysis of the high Q modes in a Bragg onion resonator with an omnidirectional reflector cladding, we establish a close analogy between such a resonator and a spherical hollow cavity in perfect metal. We demonstrate that onion resonators are ideal for applications that require a large spontaneous-emission factor ß, such as thresholdless lasers and single-photon devices.

  5. Structural Characterization of a Mo/Ru/Si Extreme Ultraviolet (EUV) Reflector by Optical Modeling

    NASA Astrophysics Data System (ADS)

    Kang, In-Yong; Kim, Tae Geun; Lee, Seung Yoon; Ahn, Jinho; Chung, Yong-Chae

    2004-06-01

    The performance of a multilayer extreme ultraviolet (EUV) reflector has a direct bearing on process throughput and the cost of new technology. Using measured data from an experimentally manufactured reflector, we intend, in this work, to show that the reflectivity of the Bragg reflector can be characterized by using structural parameters such as the d-spacing, density, thicknesses of the interdiffusion layers and oxidation layer. This quantitative analysis of the reflectivity derived from the structural parameters can be utilized to optimize the optical properties of the existing Mo/Ru/Si system and to provide fundamental insights into the science involved in a Bragg EUV reflector.

  6. Distributed Sensing of Carbon-Epoxy Composites and Filament Wound Pressure Vessels Using Fiber-Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Grant, J.; Kaul, R.; Taylor, S.; Myer, G.; Jackson, K.; Osei, A.; Sharma, A.

    2003-01-01

    Multiple Fiber Bragg-gratings are embedded in carbon-epoxy laminates as well as in composite wound pressure vessel. Structural properties of such composites are investigated. The measurements include stress-strain relation in laminates and Poisson's ratio in several specimens with varying orientation of the optical fiber Bragg-sensor with respect to the carbon fiber in an epoxy matrix. Additionally, fiber Bragg gratings are bonded on the surface of these laminates and cylinders fabricated out of carbon-epoxy composites and multiple points are monitored and compared for strain measurements at several locations.

  7. Distribution and Origin of Multiple Bottom Simulating Reflectors in the Danube Deep-Sea Fan, Black Sea

    NASA Astrophysics Data System (ADS)

    Zander, T.; Berndt, C.; Haeckel, M.; Klaucke, I.; Bialas, J.; Klaeschen, D.

    2015-12-01

    The sedimentary succession of the anoxic, deep Black Sea Basin is an ideal location for organic matter preservation and microbial methane generation. In the depth range of the gas hydrate stability zone (GHSZ) methane gas forms methane hydrates and presumably large accumulations of gas hydrate exist in porous sediments, such as those encountered on the Danube deep-sea fan. High-resolution P-Cable 3D seismic data reveals the character and distribution of up to four stacked bottom simulating reflectors (BSR) within the channel-levee systems of the Danube deep-sea fan. These anomalous BSRs were first described by Popescu et al. (2006). The geological processes that lead to multiple BSRs are still poorly understood. The theoretical base of the GHSZ calculated from regional temperature gradients and salinity data is in agreement with the shallowest BSR in the area. We have tested two hypotheses that may explain the formation of the lower BSRs. The first hypothesis is that the lower BSRs are formed by overpressure compartments. Large amounts of free gas below the BSRs are trapped in the pore space increasing the pressure above hydrostatic condition up to a level where gas hydrates are stable again. The second hypothesis is that the lower BSRs are linked to the growth of the Danube fan. Sediment deposits from the outer levee of the youngest channel cover the area hosting multiple BSRs. The youngest channel developed during the last sea level lowstand that is correlated with the Neo-Euxinian that started 23,000 yrs. BP. We propose that the rapid sediment loading during sea level lowstands is a key factor for the preservation of paleo-BSRs in the study area. References Popescu, I., De Batist, M., Lericolais, G., Nouzé, H., Poort, J., Panin, N., Versteeg, W., Gillet, H., 2006. Multiple bottom-simulating reflections in the Black Sea: Potential proxies of past climate conditions. Marine Geology 227, 163-176.

  8. Bifocal dual reflector antenna

    NASA Technical Reports Server (NTRS)

    Rao, B. L. J.

    1973-01-01

    A bifocal dual reflector antenna is similar to and has better scan capability than classical cassegrain reflector antenna. The method used in determining the reflector surfaces is a modification of a design method for the dielectric bifocal lens. The three dimensional dual reflector is obtained by first designing an exact (in geometrical optics sense) two-point corrected two dimensional reflector and then rotating it around its axis of symmetry. A point by point technique is used in computing the reflector surfaces. Computed radiation characteristics of the dual reflector are compared with those of a cassegrain reflector. The results confirm that the bifocal antenna has superior performance.

  9. Real-time distributed measurement of detonation velocities inside high explosives with the help of chirped fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Magne, Sylvain; Lefrançois, Alexandre; Luc, Jérome; Laffont, Guillaume; Ferdinand, Pierre

    2013-05-01

    Following the pioneering work of the Lawrence Livermore National Laboratory, Chirped Fiber Bragg Gratings are investigated as in situ, real-time, wavelength-position discriminators for measuring detonation speeds inside explosives.

  10. The rigorous wave optics design of diffuse medium reflectors for photovoltaics

    NASA Astrophysics Data System (ADS)

    Lin, Albert; Ming Fu, Sze; Kai Zhong, Yan; Wei Tseng, Chi; Yu Chen, Po; Ping Ju, Nyan

    2014-04-01

    Recently, diffuse reflectors are being incorporated into solar cells, due to the advantage of no metallic absorption loss, higher reflectance, decent light scattering property by embedded TiO2 scatterers, and the ease of fabrication. Different methods have been employed to analyze diffuse reflectors, including Monte Carlo method, N-flux method, and a one-dimensional approximation based on semi-coherent optics, and the calculated reflectance is around 80% by these methods. In this work, rigorous wave optics solution is used, and it is shown that the reflectance for diffuse medium mirrors can actually be as high as >99% over a broad spectral range, provided the TiO2 scatterer geometry is properly optimized. The bandwidth of diffuse reflectors is un-achievable by other dielectric mirrors such as distributed Bragg reflectors or high index contrast grating mirror, using the same index contrast. Finally, it is promisingly found that even if the distribution of TiO2 is random, the wide-band reflection can still be achieved for the optimized TiO2 geometry. Initial experimental result is included in the supplementary material which shows the high feasibility of diffuse medium mirrors for solar cells.

  11. Experimental detailed power distribution in a fast spectrum thermionic reactor fuel element at the core/BeO reflector interface region

    NASA Technical Reports Server (NTRS)

    Klann, P. G.; Lantz, E.

    1973-01-01

    A zero-power critical assembly was designed, constructed, and operated for the prupose of conducting a series of benchmark experiments dealing with the physics characteristics of a UN-fueled, Li-7-cooled, Mo-reflected, drum-controlled compact fast reactor for use with a space-power conversion system. The critical assembly was modified to simulate a fast spectrum advanced thermionics reactor by: (1) using BeO as a reflector in place of some of the existing molybdenum, (2) substituting Nb-1Zr tubing for some of the existing Ta tubing, and (3) inserting four full-scale mockups of thermionic type fuel elements near the core and BeO reflector boundary. These mockups were surrounded with a buffer zone having the equivalent thermionic core composition. In addition to measuring the critical mass of this thermionic configuration, a detailed power distribution in one of the thermionic element stages in the mixed spectrum region was measured. A power peak to average ratio of two was observed for this fuel stage at the midplane of the core and adjacent to the reflector. Also, the power on the outer surface adjacent to the BeO was slightly more than a factor of two larger than the power on the inside surface of a 5.08 cm (2.0 in.) high annular fuel segment with a 2.52 cm (0.993 in. ) o.d. and a 1.86 cm (0.731 in.) i.d.

  12. DNA damage intensity in fibroblasts in a 3-dimensional collagen matrix correlates with the Bragg curve energy distribution of a high LET particle

    PubMed Central

    Roig, Andres I.; Hight, Suzie K.; Minna, John D.; Shay, Jerry W.; Rusek, Adam; Story, Michael D.

    2012-01-01

    Purpose The DNA double-strand break (DSB) damage response induced by high energy charged particles on lung fibroblast cells embedded in a 3-dimensional (3-D) collagen tissue equivalents was investigated using antibodies to the DNA damage response proteins gamma-histone 2AX (γ-H2AX) and phosphorylated DNA-PKcs (p-DNA-PKcs). Materials and methods 3-D tissue equivalents were irradiated in positions across the linear distribution of the Bragg curve profiles of 307.7 MeV/nucleon, 556.9 MeV/nucleon, or 967.0 MeV/nucleon 56Fe ions at a dose of 0.30 Gy. Results Patterns of discrete DNA damage streaks across nuclei or saturated nuclear damage were observed, with saturated nuclear damage being more predominant as samples were positioned closer to the physical Bragg peak. Quantification of the DNA damage signal intensities at each distance for each of the examined energies revealed a biological Bragg curve profile with a pattern of DNA damage intensity similar to the physical Bragg curve for the particular energy. Deconvolution microscopy of nuclei with streaked or saturated nuclear damage pattern revealed more details of the damage, with evidence of double-strand breaks radially distributed from the main particle track as well as multiple discrete tracks within saturated damage nuclei. Conclusions These 3-D culture systems can be used as a biological substrate to better understand the interaction of heavy charged particles of different energies with tissue and could serve as a basis to model space-radiation-induced cancer initiation and progression. PMID:20201648

  13. Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance

    NASA Astrophysics Data System (ADS)

    Skorobogatiy, Maksim; Dupuis, Alexandre

    2007-03-01

    Design of hollow all-polymer Bragg fibers using periodic multilayers of ferroelectric polyvinylidene fluoride (PVDF) polymer and a low loss polycarbonate (PC) polymer is demonstrated. Efficient band gap guiding is predicted near the transverse optical frequency of a PVDF material in the terahertz regime. Optimal reflector designs are investigated in the whole terahertz region. Depending on frequency, the lowest loss hollow Bragg fiber can be one of the following: a photonic crystal fiber guiding in the band gap regime, a metamaterial fiber with a subwavelength reflector period, a single PC, or a PVDF tube.

  14. Structural, optical and waveguiding properties improvement of SiO{sub 2}/TiO{sub 2} Bragg reflectors processed by the sol–gel method under the effect of Ni-doped TiO{sub 2} and annealing duration

    SciTech Connect

    Sedrati, H.; Bensaha, R.; Bensouyad, H.; Miska, P.; Robert, S.

    2014-09-15

    Highlights: • The formation of anatase phase only, whatever are Ni content and annealing duration. • Transmission and PL spectra redshifted with Ni content and annealing duration. • PL lowering with Ni content is due to the recombination rate of electron–hole reduction. • Annealing duration increases the recombination rate and then the PL intensity rises. • Increasing Ni content improves waveguiding properties and then two TE modes appear. - Abstract: We investigated the nickel doped TiO{sub 2} layer and annealing duration effects on SiO{sub 2}/TiO{sub 2} Bragg reflectors. The films crystallize in pure anatase phase whatever is the Ni content and the annealing duration. In UV–vis-NIR analyses, variations of width, position and transmission coefficient of the stop-band were observed. The PL spectra red-shifted when the Ni content and annealing duration increased. As the annealing duration increases, an additional sharp emission peak appears around 867 nm, indicating a reduced number of defects. As Ni content increased, the M-lines spectroscopy shows two transverse electric polarization guided modes TE{sub 0} and TE{sub 1}, which indicates a decreased refractive index and an increased film thickness.

  15. Research on human physiological parameters intelligent clothing based on distributed Fiber Bragg Grating

    NASA Astrophysics Data System (ADS)

    Miao, Changyun; Shi, Boya; Li, Hongqiang

    2008-12-01

    A human physiological parameters intelligent clothing is researched with FBG sensor technology. In this paper, the principles and methods of measuring human physiological parameters including body temperature and heart rate in intelligent clothing with distributed FBG are studied, the mathematical models of human physiological parameters measurement are built; the processing method of body temperature and heart rate detection signals is presented; human physiological parameters detection module is designed, the interference signals are filtered out, and the measurement accuracy is improved; the integration of the intelligent clothing is given. The intelligent clothing can implement real-time measurement, processing, storage and output of body temperature and heart rate. It has accurate measurement, portability, low cost, real-time monitoring, and other advantages. The intelligent clothing can realize the non-contact monitoring between doctors and patients, timely find the diseases such as cancer and infectious diseases, and make patients get timely treatment. It has great significance and value for ensuring the health of the elders and the children with language dysfunction.

  16. Bridge sensing using a fiber Bragg grating quasi-distributed transducer: in-field results

    NASA Astrophysics Data System (ADS)

    Jauregui, Cesar; Quintela, Antonio; Echevarria, Juan; Quintela, Marian; Cobo, Adolfo; Lopez-Higuera, Jose Miguel

    2003-03-01

    Structural health and behavior monitoring have always been both a common concern and need in civil engineering. Several classical approaches have been given to this problem including the widley used strain gauges as well as the topographic measurements. These two techniques are almost always used to monitor the behavior of the structures whereas the health monitoring is accomplished by a simple periodic visual inspection. These approaches present serious problems that limit their practical use in real structures such as: lack of fiability, long-term drift, impossibility of full-time measurements, or lack of thoroughness. Centering the discussion in the strain gauges, for being the most representative of the classical civil engineering monitoring methods, it must be said that due to their electric nature they are exposed to both electromagnetic interference and corrosion. The latter greatly reduces their operating life time pushing it typically to less than one year after installation. That is whey new ways of monitoring civil structures were looked for, and that is how photonic fiber sensing came up. Characteristics shared by all fiber senors are their electromagnetic immunity for being manufactured using a dielectric material, low weight, small size, and compatibility with construction materials. As can be seen these inherent characteristics make them very suitable for their use in civil engineering structures. An example of a quasi-distributed transducer is presented in this communication. First the theoretical fundamentals of the transducer and its behavior is explained, and an in-field experiment consisting on monitoring a bridge is described and its results reported.

  17. Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector.

    PubMed

    Zaugg, C A; Sun, Z; Wittwer, V J; Popa, D; Milana, S; Kulmala, T S; Sundaram, R S; Mangold, M; Sieber, O D; Golling, M; Lee, Y; Ahn, J H; Ferrari, A C; Keller, U

    2013-12-16

    We report a versatile way of controlling the unsaturated loss, modulation depth and saturation fluence of graphene-based saturable absorbers (GSAs), by changing the thickness of a spacer between a single layer graphene (SLG) and a high-reflection mirror. This allows us to modulate the electric field intensity enhancement at the GSA from 0 up to 400%, due to the interference of incident and reflected light at the mirror. The unsaturated loss of the SLG-mirror-assembly can be reduced to ∼0. We use this to mode-lock a vertical-external-cavity surface-emitting laser (VECSEL) from 935 to 981 nm. This approach can be applied to integrate SLG into various optical components, such as output coupler mirrors, dispersive mirrors or dielectric coatings on gain materials. Conversely, it can also be used to increase the absorption (up to 10%) in various graphene based photonics and optoelectronics devices, such as photodetectors.

  18. Computer prediction of dual reflector antenna radiation properties

    NASA Technical Reports Server (NTRS)

    Christodoulou, C.

    1981-01-01

    A program for calculating radiation patterns for reflector antennas with either smooth analytic surfaces or with surfaces composed of a number of panels. Techniques based on the geometrical optics (GO) approach were used in tracing rays over the following regions: from a feed antenna to the first reflector surface (subreflector); from this reflector to a larger reflector surface (main reflector); and from the main reflector to a mathematical plane (aperture plane) in front of the main reflector. The equations of GO were also used to calculate the reflected field components for each ray making use of the feed radiation pattern and the parameters defining the surfaces of the two reflectors. These resulting fields form an aperture distribution which is integrated numerically to compute the radiation pattern for a specified set of angles.

  19. Design of Semiconductor-Based Back Reflectors for High Voc Monolithic Multijunction Solar Cells: Preprint

    SciTech Connect

    Garcia, I.; Geisz, J.; Steiner, M.; Olson, J.; Friedman, D.; Kurtz, S.

    2012-06-01

    State-of-the-art multijunction cell designs have the potential for significant improvement before going to higher number of junctions. For example, the Voc can be substantially increased if the photon recycling taking place in the junctions is enhanced. This has already been demonstrated (by Alta Devices) for a GaAs single-junction cell. For this, the loss of re-emitted photons by absorption in the underlying layers or substrate must be minimized. Selective back surface reflectors are needed for this purpose. In this work, different architectures of semiconductor distributed Bragg reflectors (DBR) are assessed as the appropriate choice for application in monolithic multijunction solar cells. Since the photon re-emission in the photon recycling process is spatially isotropic, the effect of the incident angle on the reflectance spectrum is of central importance. In addition, the DBR structure must be designed taking into account its integration into the monolithic multijunction solar cells, concerning series resistance, growth economics, and other issues. We analyze the tradeoffs in DBR design complexity with all these requirements to determine if such a reflector is suitable to improve multijunction solar cells.

  20. Multiple Reflector Scanning Antennas

    NASA Astrophysics Data System (ADS)

    Shen, Bing

    Narrow beamwidth antenna systems are important to remote sensing applications and point-to-point communication systems. In many applications the main beam of the antenna radiation pattern must be scannable over a region of space. Scanning by mechanically skewing the entire antenna assembly is difficult and in many situations is unacceptable. Performance during scan is, of course, also very important. Traditional reflector systems employing the well-focused paraboloidal -shaped main reflector accomplish scan by motion of a few feeds, or by phase steering a focal plane feed array. Such scanning systems can experience significant gain loss. Traditional reflecting systems with a spherical main reflector have low aperture efficiency and poor side lobe and cross polarization performance. This dissertation introduces a new approach to the design of scanning spherical reflector systems, in which the performance weaknesses of high cross polarization and high side lobe levels are avoided. Moreover, the low aperture utilization common in spherical reflectors is overcome. As an improvement to this new spherical main reflector configuration, a flat mirror reflector is introduced to minimize the mechanical difficulties to scan the main beam. In addition to the reflector system design, reflector antenna performance evaluation is also important. The temperature resolution issue important for earth observation radiometer antennas is studied, and a new method to evaluate and optimize such temperature resolution is introduced.

  1. Nuclear reactor reflector

    DOEpatents

    Hopkins, Ronald J.; Land, John T.; Misvel, Michael C.

    1994-01-01

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.

  2. Nuclear reactor reflector

    DOEpatents

    Hopkins, R.J.; Land, J.T.; Misvel, M.C.

    1994-06-07

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.

  3. Precision antenna reflector structures

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.

    1985-01-01

    The assembly of the Large Precise Reflector Infrared Telescope is detailed. Also given are the specifications for the Aft Cargo Carrier and the Large Precision Reflector structure. Packaging concepts and options, stowage depth and support truss geometry are also considered. An example of a construction scenario is given.

  4. Spacecraft reflectors thermomechanical analysis

    NASA Astrophysics Data System (ADS)

    Ponomarev, Viktor S.; Gerasimov, Alexander V.; Ponomarev, Sergey V.; Shendalev, Denis O.

    2015-01-01

    In this article, thermo-mechanical analysis results of the composite reflectors for the use on the geostationary Earth orbit possibility studies are described. The behavior of two different space reflector structures manufactured on composite materials is investigated. The estimates of reflecting surfaces RMS deviations for the two extreme cases orbital inclinations are presented.

  5. REFLECTOR FOR NEUTRONIC REACTORS

    DOEpatents

    Fraas, A.P.

    1963-08-01

    A reflector for nuclear reactors that comprises an assembly of closely packed graphite rods disposed with their major axes substantially perpendicular to the interface between the reactor core and the reflector is described. Each graphite rod is round in transverse cross section at (at least) its interface end and is provided, at that end, with a coaxial, inwardly tapering hole. (AEC)

  6. Semiconductor Laser With Multilayer Dielectric Reflector

    NASA Technical Reports Server (NTRS)

    Lang, Robert J.

    1991-01-01

    Multilayer dielectric reflector included in proposed surface-emitting, distributed-feedback, grating semiconductor laser (e.g., a GaAlAs device). Contributes to efficiency and output power of laser by reducing amount of light entering substrate, where wasted by absorption. Index of refraction in reflector sublayers alternates between higher and lower value. Higher value less than effective index of refraction of waveguide layer.

  7. Design and optimization of ultrathin crystalline silicon solar cells using an efficient back reflector

    NASA Astrophysics Data System (ADS)

    Saravanan, S.; Dubey, R. S.; Kalainathan, S.; More, M. A.; Gautam, D. K.

    2015-05-01

    Thin film solar cells are cheaper but having low absorption in longer wavelength and hence, an effective light trapping mechanism is essential. In this work, we proposed an ultrathin crystalline silicon solar cell which showed extraordinary performance due to enhanced light absorption in visible and infrared part of solar spectrum. Various designing parameters such as number of distributed Bragg reflector (DBR) pairs, anti-reflection layer thickness, grating thickness, active layer thickness, grating duty cycle and period were optimized for the optimal performance of solar cell. An ultrathin silicon solar cell with 40 nm active layer could produce an enhancement in cell efficiency ˜15 % and current density ˜23 mA/cm2. This design approach would be useful for the realization of new generation of solar cells with reduced active layer thickness.

  8. Are Bragg Peaks Gaussian?

    PubMed Central

    Hammouda, Boualem

    2014-01-01

    It is common practice to assume that Bragg scattering peaks have Gaussian shape. The Gaussian shape function is used to perform most instrumental smearing corrections. Using Monte Carlo ray tracing simulation, the resolution of a realistic small-angle neutron scattering (SANS) instrument is generated reliably. Including a single-crystal sample with large d-spacing, Bragg peaks are produced. Bragg peaks contain contributions from the resolution function and from spread in the sample structure. Results show that Bragg peaks are Gaussian in the resolution-limited condition (with negligible sample spread) while this is not the case when spread in the sample structure is non-negligible. When sample spread contributes, the exponentially modified Gaussian function is a better account of the Bragg peak shape. This function is characterized by a non-zero third moment (skewness) which makes Bragg peaks asymmetric for broad neutron wavelength spreads. PMID:26601025

  9. Analysis of ring-structured Bragg fibres for single TE mode guidance

    NASA Astrophysics Data System (ADS)

    Argyros, Alexander; Bassett, Ian M.; van Eijkelenborg, Martijn A.; Large, Maryanne C. J.

    2004-06-01

    Ring-structured Bragg fibres that support a single TE-polarisation mode are investigated. The fibre designs consist of a hollow core and rings of holes concentric with the core, which form the low-index layers of the Bragg reflector in the cladding. The effects of varying the air fraction in each ring of holes on the transmission properties of the fibres are analysed and an approximate model based on homogenisation is explored. Surface modes and transitions thereof are also discussed.

  10. Streicker Bridge: a comparison between Bragg-grating long-gauge strain and temperature sensors and Brillouin scattering-based distributed strain and temperature sensors

    NASA Astrophysics Data System (ADS)

    Glisic, Branko; Chen, Jeremy; Hubbell, David

    2011-04-01

    The Streicker Bridge at Princeton University campus has been equipped with two fiber-optic sensing technologies: discrete long-gauge sensing, based on Fiber Bragg-Gratings (FBG), and truly-distributed sensing, based on Brillouin Optical Time Domain Analysis (BOTDA). The sensors were embedded in concrete during the construction. The early age measurements, including hydration swelling and contraction, and post-tensioning of concrete were registered by both systems and placed side by side in order to compare their performances. Aside from the usual behavior, an unusual increase in strain was detected by several sensors in various cross-sections. The nature of this event is still under investigation, but preliminary study indicates early-age cracking as the cause. The comparison between the two monitoring systems shows good agreement in the areas where no unusual behavior was detected, but some discrepancies are noticed at locations where unusual behavior occurred and during the early age of concrete. These discrepancies are attributed to the spatial resolution of the distributed monitoring system and the temperature influences at early age. In this paper, general information concerning the Streicker Bridge project is given. The monitoring systems and their specifications are briefly presented. The monitoring data are analyzed and a comparison between the two systems is performed.

  11. Design and performance investigation of a highly accurate apodized fiber Bragg grating-based strain sensor in single and quasi-distributed systems.

    PubMed

    Ali, Taha A; Shehata, Mohamed I; Mohamed, Nazmi A

    2015-06-01

    In this work, fiber Bragg grating (FBG) strain sensors in single and quasi-distributed systems are investigated, seeking high-accuracy measurement. Since FBG-based strain sensors of small lengths are preferred in medical applications, and that causes the full width at half-maximum (FWHM) to be larger, a new apodization profile is introduced for the first time, to the best of our knowledge, with a remarkable FWHM at small sensor lengths compared to the Gaussian and Nuttall profiles, in addition to a higher mainlobe slope at these lengths. A careful selection of apodization profiles with detailed investigation is performed-using sidelobe analysis and the FWHM, which are primary judgment factors especially in a quasi-distributed configuration. A comparison between the elite selection of apodization profiles (extracted from related literature) and the proposed new profile is carried out covering the reflectivity peak, FWHM, and sidelobe analysis. The optimization process concludes that the proposed new profile with a chosen small length (L) of 10 mm and Δnac of 1.4×10-4 is the optimum choice for single stage and quasi-distributed strain-sensor networks, even better than the Gaussian profile at small sensor lengths. The proposed profile achieves the smallest FWHM of 15 GHz (suitable for UDWDM), and the highest mainlobe slope of 130 dB/nm. For the quasi-distributed scenario, a noteworthy high isolation of 6.953 dB is achieved while applying a high strain value of 1500 μstrain (με) for a five-stage strain-sensing network. Further investigation was undertaken, proving that consistency in choosing the apodization profile in the quasi-distributed network is mandatory. A test was made of the inclusion of a uniform apodized sensor among other apodized sensors with the proposed profile in an FBG strain-sensor network.

  12. Birefringence Bragg Binary (3B) grating, quasi-Bragg grating and immersion gratings

    NASA Astrophysics Data System (ADS)

    Ebizuka, Noboru; Morita, Shin-ya; Yamagata, Yutaka; Sasaki, Minoru; Bianco, Andorea; Tanabe, Ayano; Hashimoto, Nobuyuki; Hirahara, Yasuhiro; Aoki, Wako

    2014-07-01

    A volume phase holographic (VPH) grating achieves high angular dispersion and very high diffraction efficiency for the first diffraction order and for S or P polarization. However the VPH grating could not achieve high diffraction efficiency for non-polarized light at a large diffraction angle because properties of diffraction efficiencies for S and P polarizations are different. Furthermore diffraction efficiency of the VPH grating extinguishes toward a higher diffraction order. A birefringence binary Bragg (3B) grating is a thick transmission grating with optically anisotropic material such as lithium niobate or liquid crystal. The 3B grating achieves diffraction efficiency up to 100% for non-polarized light by tuning of refractive indices for S and P polarizations, even in higher diffraction orders. We fabricated 3B grating with liquid crystal and evaluated the performance of the liquid crystal grating. A quasi-Bragg (QB) grating, which consists long rectangle mirrors aligned in parallel precisely such as a window shade, also achieves high diffraction efficiency toward higher orders. We fabricated QB grating by laminating of silica glass substrates and glued by pressure fusion of gold films. A quasi-Bragg immersion (QBI) grating has smooth mirror hypotenuse and reflector array inside the hypotenuse, instead of step-like grooves of a conventional immersion grating. An incident beam of the QBI grating reflects obliquely at a reflector, then reflects vertically at the mirror surface and reflects again at the same reflector. We are going to fabricate QBI gratings by laminating of mirror plates as similar to fabrication of the QB grating. We will also fabricate silicon and germanium immersion gratings with conventional step-like grooves by means of the latest diamond machining methods. We introduce characteristics and performance of these gratings.

  13. A new approach for shaping of dual-reflector antennas

    NASA Technical Reports Server (NTRS)

    Lee, Teh-Hong; Burnside, W. D.; Rudduck, Roger C.

    1987-01-01

    The shaping of 2-D dual-reflector antenna systems to generate a prescribed distribution with uniform phase at the aperture of the second reflector is examined. This method is based on the geometrical nature of Cassegrain and Gregorian dual-reflector antennas. The method of syntheses satisfies the principles of geometrical optics which are the foundations of dual-reflector designs. Instead of setting up differential equations or heuristically designing the subreflector, a set of algebraic equations is formulated and solved numerically to obtain the desired surfaces. The caustics of the reflected rays from the subreflector can be obtained and examined. Several examples of 2-D dual-reflector shaping are shown to validate the study. Geometrical optics and physical optics are used to calculate the scattered fields from the reflectors.

  14. See-through dye-sensitized solar cells: photonic reflectors for tandem and building integrated photovoltaics.

    PubMed

    Heiniger, Leo-Philipp; O'Brien, Paul G; Soheilnia, Navid; Yang, Yang; Kherani, Nazir P; Grätzel, Michael; Ozin, Geoffrey A; Tétreault, Nicolas

    2013-10-25

    See-through dye-sensitized solar cells with 1D photonic crystal Bragg reflector photoanodes show an increase in peak external quantum efficiency of 47% while still maintaining high fill factors, resulting in an almost 40% increase in power conversion efficiency. These photoanodes are ideally suited for tandem and building integrated photovoltaics.

  15. Modeling Mechanical Behavior of a Prismatic Replaceable Reflector Block

    SciTech Connect

    Robert Bratton

    2009-04-01

    This report outlines the development of finite element models used to determine temperature and stresses in a prismatic core reflector block. This initial analysis determines an appropriate temperature distribution in a prismatic reflector from limiting conditions in the adjacent fuel block based on simplifying assumptions.

  16. A dielectric omnidirectional reflector

    PubMed

    Fink; Winn; Fan; Chen; Michel; Joannopoulos; Thomas

    1998-11-27

    A design criterion that permits truly omnidirectional reflectivity for all polarizations of incident light over a wide selectable range of frequencies was used in fabricating an all-dielectric omnidirectional reflector consisting of multilayer films. The reflector was simply constructed as a stack of nine alternating micrometer-thick layers of polystyrene and tellurium and demonstrates omnidirectional reflection over the wavelength range from 10 to 15 micrometers. Because the omnidirectionality criterion is general, it can be used to design omnidirectional reflectors in many frequency ranges of interest. Potential uses depend on the geometry of the system. For example, coating of an enclosure will result in an optical cavity. A hollow tube will produce a low-loss, broadband waveguide, whereas a planar film could be used as an efficient radiative heat barrier or collector in thermoelectric devices.

  17. Bragg Curve, Biological Bragg Curve and Biological Issues in Space Radiation Protection with Shielding

    NASA Technical Reports Server (NTRS)

    Honglu, Wu; Cucinotta, F.A.; Durante, M.; Lin, Z.; Rusek, A.

    2006-01-01

    The space environment consists of a varying field of radiation particles including high-energy ions, with spacecraft shielding material providing the major protection to astronauts from harmful exposure. Unlike low-LET gamma or X-rays, the presence of shielding does not always reduce the radiation risks for energetic charged particle exposure. Since the dose delivered by the charged particle increases sharply as the particle approaches the end of its range, a position known as the Bragg peak, the Bragg curve does not necessarily represent the biological damage along the particle traversal since biological effects are influenced by the track structure of both primary and secondary particles. Therefore, the biological Bragg curve is dependent on the energy and the type of the primary particle, and may vary for different biological endpoints. To achieve a Bragg curve distribution, we exposed cells to energetic heavy ions with the beam geometry parallel to a monolayer of fibroblasts. Qualitative analyses of gamma-H2AX fluorescence, a known marker of DSBs, indicated increased clustering of DNA damage before the Bragg peak, enhanced homogenous distribution at the peak, and provided visual evidence of high linear energy transfer (LET) particle traversal of cells beyond the Bragg peak. A quantitative biological response curve generated for micronuclei (MN) induction across the Bragg curve did not reveal an increased yield of MN at the location of the Bragg peak. However, the ratio of mono-to bi-nucleated cells, which indicates inhibition in cell progression, increased at the Bragg peak location. These results, along with other biological concerns, show that space radiation protection with shielding can be a complicated issue.

  18. Inline microring reflector for photonic applications

    NASA Astrophysics Data System (ADS)

    Kang, Young Mo

    The microring is a compact resonator that is used as a versatile building block in photonic circuits ranging from filters, modulators, logic gates, sensors, switches, multiplexers, and laser cavities. The Bragg grating is a periodic structure that allows the selection of a narrow bandwidth of spectrum for stable lasing operation. In this dissertation, we study analysis and simulations of a compact microring based reflector assembled by forming a Bragg grating into a loop. With the appropriate design, the microring resonance can precisely align with the reflection peak of the grating while all other peaks are suppressed by reflection nulls of the grating. The field buildup at the resonance effectively amplifies small reflection of the grating, thereby producing significant overall reflection from the ring, and it is possible to achieve a stable narrow linewidth compact laser by forming a single mode laser cavity. The device operation principle is studied from two distinct perspectives; the first looks at coupling of two contra-directional traveling waves within the ring whereas the second aspect investigates relative excitation of the two competing microring resonant modes. In the former method, we relate the steady state amplitudes of the two traveling waves to the reflection spectrum of the grating and solve for the reflection and transmission response for each wavelength of interest. In the latter approach, we expand the field in terms of the resonant modes of the ring cavity and derive transfer functions for reflection and transmission from the nearby mode frequencies. The angular periodicity of the reflective microring geometry allows us to effectively simulate the resonant modes from a computational domain of a single period grating when the continuity boundary condition is applied. We successfully predict the reflection and transmission response of a Si3N 4/SiO2 microring reflector using this method---otherwise too large to carry out full-wave simulation

  19. Deployable Reflector for Solar Cells

    NASA Technical Reports Server (NTRS)

    Johnson, K. L.

    1982-01-01

    Unfoldable-membrane-reflector concept leads to mobile photovoltaic generators. Hinged containers swing open for deployment, and counterbalance beam swings into position. Folded reflector membranes are unfolded as deployment mast is extended, until stretched out flat.

  20. The Corner Reflector.

    ERIC Educational Resources Information Center

    Harris, Whitney S., Jr.

    1983-01-01

    The nature of the corner reflector array left on the moon by the July 1969 Apollo astronauts is described. The array was used to reflect earth-originating laser beams back to earth, and yielded a more accurate determination (to within six inches) of distance from the earth to the moon. (MP)

  1. Modular reflector concept study

    NASA Technical Reports Server (NTRS)

    Vaughan, D. H.

    1981-01-01

    A study was conducted to evaluate the feasibility of space erecting a 100 meter paraboloidal radio frequency reflector by joining a number of individually deployed structural modules. Three module design concepts were considered: (1) the deployable cell module (DCM); (2) the modular paraboloidal erectable truss antenna (Mod-PETA); and (3) the modular erectable truss antenna (META). With the space shuttle (STS) as the launch system, the methodology of packaging and stowing in the orbiter, and of dispensing, deploying and joining, in orbit, were studied and the necessary support equipment identified. The structural performance of the completed reflectors was evaluated and their overall operational capability and feasibility were evaluated and compared. The potential of the three concepts to maintain stable shape in the space environment was determined. Their ability to operate at radio frequencies of 1 GHz and higher was assessed assuming the reflector surface to consist of a number of flat, hexagonal facets. A parametric study was performed to determine figure degradation as a function of reflector size, flat facet size, and f/D ratio.

  2. Corrosion protection for silver reflectors

    DOEpatents

    Arendt, Paul N.; Scott, Marion L.

    1991-12-31

    A method of protecting silver reflectors from damage caused by contact with gaseous substances which are often present in the atmosphere and a silver reflector which is so protected. The inventive method comprises at least partially coating a reflector with a metal oxide such as aluminum oxide to a thickness of 15 .ANG. or less.

  3. Microfabricated bragg waveguide

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu; Hadley, G. Ronald

    2004-10-19

    A microfabricated Bragg waveguide of semiconductor-compatible material having a hollow core and a multilayer dielectric cladding can be fabricated by integrated circuit technologies. The microfabricated Bragg waveguide can comprise a hollow channel waveguide or a hollow fiber. The Bragg fiber can be fabricated by coating a sacrificial mandrel or mold with alternating layers of high- and low-refractive-index dielectric materials and then removing the mandrel or mold to leave a hollow tube with a multilayer dielectric cladding. The Bragg channel waveguide can be fabricated by forming a trench embedded in a substrate and coating the inner wall of the trench with a multilayer dielectric cladding. The thicknesses of the alternating layers can be selected to satisfy the condition for minimum radiation loss of the guided wave.

  4. Distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings.

    PubMed

    Tian, Jiajun; Zhang, Qi; Han, Ming

    2013-03-11

    Active ultrasonic testing is widely used for medical diagnosis, material characterization and structural health monitoring. Ultrasonic transducer is a key component in active ultrasonic testing. Due to their many advantages such as small size, light weight, and immunity to electromagnetic interference, fiber-optic ultrasonic transducers are particularly attractive for permanent, embedded applications in active ultrasonic testing for structural health monitoring. However, current fiber-optic transducers only allow effective ultrasound generation at a single location of the fiber end. Here we demonstrate a fiber-optic device that can effectively generate ultrasound at multiple, selected locations along a fiber in a controllable manner based on a smart light tapping scheme that only taps out the light of a particular wavelength for laser-ultrasound generation and allow light of longer wavelengths pass by without loss. Such a scheme may also find applications in remote fiber-optic device tuning and quasi-distributed biochemical fiber-optic sensing.

  5. Secondary pattern computation of an offset reflector antenna

    NASA Technical Reports Server (NTRS)

    Acosta, R. J.

    1985-01-01

    Reflector antennas are widely used in communications satellite systems because they provide high gain at low cost. In analyzing reflector antennas the computation of the secondary pattern is the main concern. A computer program for calculating the secondary pattern of an offset reflector has been developed and implemented at the NASA Lewis Research Center. The theoretical foundation for this program is based on the use of geometrical optics to describe the fields from the feed to the reflector surface and to the aperture plane. The resulting aperture field distribution is then transformed to the far-field zone by the fast Fourier transform algorithm. Comparing this technique with other well-known techniques (the geometrical theory of diffraction, physical optics (Jacobi-Bessel), etc.) shows good agreement for large (diameter of 100 lambda or greater) reflector antennas.

  6. Volume Bragg lasers

    NASA Astrophysics Data System (ADS)

    Divliansky, Ivan; Jain, Apurva; Drachenberg, Derrek; Podvyaznyy, Alexey; Smirnov, Vadim; Venus, George; Glebov, Leonid

    2010-09-01

    This paper is a survey of recent achievements at the College of Optics and Photonics/CREOL at the University of Central Florida in the use of newly developed diffractive optical elements which are volume Bragg gratings recorded in a photo-thermo-refractive (PTR) glass. Three levels of semiconductor laser design are proposed to achieve high-power low-divergence output. The first level is coherent coupling of emitters by means of PTR Bragg gratings which provide excitation of only one common mode in a multichannel resonator. This type of phase locking automatically leads to a narrow spectral width of emission usually not exceeding a few tens of picometers. The second level is a change of the mechanism of transverse mode selection from spatial selection by apertures to angular selection by PTR Bragg gratings. This approach allows increasing of the aperture size without increasing the length and selecting of arbitrary mode but not necessarily a fundamental one. The third level is spectral beam combining by PTR Bragg gratings which re-direct radiation from several high-power fiber lasers to co-propagate in the same direction with diffraction limited divergence. This approach allows simplification of the thermal management because only passive devices with low absorption (a PTR volume Bragg gratings) are placed in the path of high power laser beam.

  7. Characteristics of AlN/GaN nanowire Bragg mirror grown on (001) silicon by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Heo, Junseok; Zhou, Zifan; Guo, Wei; Ooi, Boon S.; Bhattacharya, Pallab

    2013-10-01

    GaN nanowires containing AlN/GaN distributed Bragg reflector (DBR) heterostructures have been grown on (001) silicon substrate by molecular beam epitaxy. A peak reflectance of 70% with normal incidence at 560 nm is derived from angle resolved reflectance measurements on the as-grown nanowire DBR array. The measured peak reflectance wavelength is significantly blue-shifted from the ideal calculated value. The discrepancy is explained by investigating the reflectance of the nanoscale DBRs with a finite difference time domain technique. Ensemble nanowire microcavities with In0.3Ga0.7N nanowires clad by AlN/GaN DBRs have also been characterized. Room temperature emission from the microcavity exhibits considerable linewidth narrowing compared to that measured for unclad In0.3Ga0.7N nanowires. The resonant emission is characterized by a peak wavelength and linewidth of 575 nm and 39 nm, respectively.

  8. Deployment simulation of a deployable reflector for earth science application

    NASA Astrophysics Data System (ADS)

    Wang, Xiaokai; Fang, Houfei; Cai, Bei; Ma, Xiaofei

    2015-10-01

    A novel mission concept namely NEXRAD-In-Space (NIS) has been developed for monitoring hurricanes, cyclones and other severe storms from a geostationary orbit. It requires a space deployable 35-meter diameter Ka-band (35 GHz) reflector. NIS can measure hurricane precipitation intensity, dynamics and its life cycle. These information is necessary for predicting the track, intensity, rain rate and hurricane-induced floods. To meet the requirements of the radar system, a Membrane Shell Reflector Segment (MSRS) reflector technology has been developed and several technologies have been evaluated. However, the deployment analysis of this large size and high-precision reflector has not been investigated. For a pre-studies, a scaled tetrahedral truss reflector with spring driving deployment system has been made and tested, deployment dynamics analysis of this scaled reflector has been performed using ADAMS to understand its deployment dynamic behaviors. Eliminating the redundant constraints in the reflector system with a large number of moving parts is a challenging issue. A primitive joint and flexible struts were introduced to the analytical model and they can effectively eliminate over constraints of the model. By using a high-speed camera and a force transducer, a deployment experiment of a single-bay tetrahedral module has been conducted. With the tested results, an optimization process has been performed by using the parameter optimization module of ADAMS to obtain the parameters of the analytical model. These parameters were incorporated to the analytical model of the whole reflector. It is observed from the analysis results that the deployment process of the reflector with a fixed boundary experiences three stages. These stages are rapid deployment stage, slow deployment stage and impact stage. The insight of the force peak distributions of the reflector can help the optimization design of the structure.

  9. Wirelessly Controllable Inflated Electroactive Polymer (EAP) Reflectors

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Sherrit, Stewart; Badescu, Mircea

    2005-01-01

    Inflatable membrane reflectors are attractive for deployable, large aperture, lightweight optical and microwave systems in micro-gravity space environment. However, any fabrication flaw or temperature variation may results in significant aberration of the surface. Even for a perfectly fabricated inflatable membrane mirror with uniform thickness, theory shows it will form a Hencky curve surface but a desired parabolic or spherical surface. Precision control of the surfaceshape of extremely flexible membrane structures is a critical challenge for the success of this technology. Wirelessly controllable inflated reflectors made of electroactive polymers (EAP) are proposed in this paper. A finite element model was configured to predict the behavior of the inflatable EAP membranes under pre-strains, pressures and distributed electric charges on the surface. To explore the controllability of the inflatable EAP reflectors, an iteration algorism was developed to find the required electric actuation for correcting the aberration of the Hencky curve to the desired parabolic curve. The correction capability of the reflectors with available EAP materials was explored numerically and is presented in this paper.

  10. The Planck Telescope reflectors

    NASA Astrophysics Data System (ADS)

    Stute, Thomas

    2004-09-01

    The mechanical division of EADS-Astrium GmbH, Friedrichshafen is currently engaged with the development, manufacturing and testing of the advanced dimensionally stable composite reflectors for the ESA satellite borne telescope Planck. The objective of the ESA mission Planck is to analyse the first light that filled the universe, the cosmic microwave background radiation. Under contract of the Danish Space Research Institute and ESA EADS-Astrium GmbH is developing the all CFRP primary and secondary reflectors for the 1.5-metre telescope which is the main instrument of the Planck satellite. The operational frequency ranges from to 25 GHz to 1000 GHz. The demanding high contour accuracy and surface roughness requirements are met. The design provides the extreme dimensional stability required by the cryogenic operational environment at around 40 K. The elliptical off-axis reflectors display a classical lightweight sandwich design with CFRP core and facesheets. Isostatic mounts provide the interfaces to the telescope structure. Protected VDA provides the reflecting surface. The manufacturing is performed at the Friedrichshafen premises of EADS-Space Transportation GmbH, the former Dornier composite workshops. Advanced manufacturing technologies like true angle lay-up by CNC fibre placement and filament winding are utilized. The protected coating is applied at the CAHA facilities at the Calar Alto Observatory, Spain. The exhaustive environmental testing is performed at the facilities of IABG, Munich (mechanical testing) and for the cryo-optical tests at CSL Liege. The project is in advanced state with both Qualification Models being under environmental testing. The flight models will be delivered in 2004. The paper gives an overview over the requirements and the main structural features how these requirements are met. Special production aspects and available test results are reported.

  11. Micromachined, Electrostatically Deformable Reflectors

    NASA Technical Reports Server (NTRS)

    Bartman, Randall K.; Wang, Paul K. C.; Miller, Linda M.; Kenny, Thomas W.; Kaiser, William J.; Hadaegh, Fred Y.; Agronin, Michael L.

    1995-01-01

    Micromachined, closed-loop, electrostatically actuated reflectors (microCLEARs) provide relatively simple and inexpensive alternatives to large, complex, expensive adaptive optics used to control wavefronts of beams of light in astronomy and in experimental laser weapons. Micromachining used to make deformable mirror, supporting structure, and actuation circuitry. Development of microCLEARs may not only overcome some of disadvantages and limitations of older adaptive optics but may also satisfy demands of potential market for small, inexpensive deformable mirrors in electronically controlled film cameras, video cameras, and other commercial optoelectronic instruments.

  12. Sharply bent hollow optical waveguides formed by an omni-directional reflector

    NASA Astrophysics Data System (ADS)

    Chiu, Hua-Kung; Hsu, Chih-Ming; Lo, Shih-Shou; Chen, Chii-Chang; Lee, Chien-Chieh

    2009-10-01

    In this work, we demonstrate theoretically and experimentally the air core bent optical waveguide composed of omni-directional reflectors on a silicon substrate. Amorphous silicon and silicon oxide are used for high index-contrast Bragg reflectors. The transmission efficiency of power for the bent optical waveguide with various bending angles of 1°-90° is calculated by the two-dimensional finite-difference time-domain method and the three-dimensional beam propagation method. The sample is measured using the end-butt method. The device exhibits a lower polarization dependent loss at the operation wavelength of 1550 nm.

  13. Apodized Volume Bragg Gratings

    NASA Astrophysics Data System (ADS)

    Mokhov, Sergiy

    2015-03-01

    Reflective and transmissive volume Bragg grating (VBGs) are widely used in high power laser applications because of their large operational aperture and robustness. They are fabricated in photosensitive material through holographic recording of uniform interference pattern of two overlapping coherent waves obtained by splitting a flat-top shaped laser beam. The following thermal treatment produces permanent refractive index modulation (RIM). Reflective VBGs have fringes parallel to operational anti-reflective coated surfaces and they demonstrate narrow reflection bandwidth. Transmissive VBGs are cut with fringes perpendicular to surfaces and they are characterized by narrow angular selectivity. Uniform RIM causes secondary lobes in corresponding reflection and transmission spectra due to sharp boundary conditions for volume Bragg diffraction. We propose to create apodization of RIM by recording two interference patterns with slightly different parameters in the same volume which would create slow varying moire envelope of amplitude of RIM. Cutting the specimen at zeros of moire envelope with one sine semi-period thickness will produce VBGs apodized at sides which will reduce parasitic secondary lobes in spectra. In reflection geometry, two patterns of the same orientation with slightly different periods are required for apodization along Bragg wave vector. In transmission case, recording of the same interference patterns with small mutual rotation angle provides apodization in direction perpendicular to Bragg wave vector. Modeling results show significant improvement in selective properties of VBGs with such moire apodization.

  14. Advanced Manufacture of Reflectors

    SciTech Connect

    Angel, Roger

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors less than 1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants.

  15. Offset dual-shaped reflectors for dual chamber compact ranges

    NASA Technical Reports Server (NTRS)

    Galindo-Israel, Victor; Imbriale, William A.; Rengarajan, Sembiam R.; Mittra, Raj

    1991-01-01

    The application of the theory of the synthesis of offset dual-shaped reflectors to the design of compact ranges is examined. The object of the compact range is to provide a uniform plane wave with minimum amplitude and phase ripple over as large a volume as possible for a given size reflector. Ripple can be lowered by reducing the edge diffraction from the reflector producing the plane wave. This has been done either by serrating or rolling the edge. An alternative approach is to use dual offset-shaped reflector synthesis techniques to produce a reflector aperture distribution that is uniform over most of the aperture, but with a Gaussian taper near the edge. This approach can be used together with rolling and/or serration if desirable. The amount of phase and amplitude ripple obtained with two different dual-shaped reflector designs is studied as a function of position in the plane wave zone and reflector size in wavelengths. The amount of both transverse and longitudinal (z-component) cross polarization is studied.

  16. Drawing of the hollow all-polymer Bragg fibers

    NASA Astrophysics Data System (ADS)

    Pone, Elio; Dubois, Charles; Gu, Ning; Gao, Yan; Dupuis, Alexandre; Boismenu, Francis; Lacroix, Suzanne; Skorobogatiy, Maksim

    2006-06-01

    Drawing of the hollow all-polymer Bragg fibers based on PMMA/PS and PVDF/PC materials combinations are demonstrated. Hole collapse during drawing effects the uniformity of a photonic crystal reflector in the resultant fiber. We first investigate how the core collapse effects fiber transmission properties. We then present modelling of fluid dynamics of hollow multilayer polymer fiber drawing. Particularly, hole collapse during drawing and layer thickness non-uniformity are investigated as a function of draw temperature, draw ratio, feeding speed, core pressurization and mismatch of material properties in a multilayer. Both the newtonian and non-newtonian cases are considered assuming slender geometries.

  17. Making Curved Frequency-Selective Microwave Reflectors

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Wu, Te-Kao

    1995-01-01

    Prototype curved lightweight dichroic microwave reflectors designed to be highly reflective in X and K(suba) frequency bands and highly transmissive in K(subu) and S bands. Conductive grid elements formed photolithographically on curved reflector surfaces. Intended for use as subreflectors of main paraboloidal antenna reflector to enable simultaneous operation in both prime-focus configuration in K(subu) and S bands and Cassegrain configuration in X and K(suba) bands. Basic concepts of reflectors described in "Frequency-Selective Microwave Reflectors" (NPO-18701). "Double Square-Loop Dichroic Microwave Reflector" (NPO-18676), "Triband Circular-Loop Dichroic Microwave Reflector" (NPO-18714), and "Improved Dichroic Microwave Reflector" (NPO-18664).

  18. Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation.

    PubMed

    El-Taher, A E; Harper, P; Babin, S A; Churkin, D V; Podivilov, E V; Ania-Castanon, J D; Turitsyn, S K

    2011-01-15

    We experimentally demonstrate a Raman fiber laser based on multiple point-action fiber Bragg grating reflectors and distributed feedback via Rayleigh scattering in an ~22-km-long optical fiber. Twenty-two lasing lines with spacing of ~100 GHz (close to International Telecommunication Union grid) in the C band are generated at the watt level. In contrast to the normal cavity with competition between laser lines, the random distributed feedback cavity exhibits highly stable multiwavelength generation with a power-equalized uniform distribution, which is almost independent on power.

  19. Large Deployable Reflector (LDR)

    NASA Technical Reports Server (NTRS)

    Alff, W. H.

    1980-01-01

    The feasibility and costs were determined for a 1 m to 30 m diameter ambient temperature, infrared to submillimeter orbiting astronomical telescope which is to be shuttle-deployed, free-flying, and have a 10 year orbital life. Baseline concepts, constraints on delivery and deployment, and the sunshield required are examined. Reflector concepts, the optical configuration, alignment and pointing, and materials are also discussed. Technology studies show that a 10 m to 30 m diameter system which is background and diffraction limited at 30 micron m is feasible within the stated time frame. A 10 m system is feasible with current mirror technology, while a 30 m system requires technology still in development.

  20. Reflector Surface Error Compensation in Dual-Reflector Antennas

    NASA Technical Reports Server (NTRS)

    Jamnejad, Vahraz; Imbriale, William

    2010-01-01

    By probing the field on a small subreflector at a minimal number of points, the main reflector surface errors can be obtained and subsequently used to design a phase-correction subreflector that can compensate for main reflector errors. The compensating phase-error profile across the subreflector can be achieved either by a surface deformation or by the use of an array of elements such as patch antennas that can cause a phase shift between the incoming and outgoing fields. The second option is of primary interest here, but the methodology can be applied to either case. The patch array is most easily implemented on a planar surface. Therefore, the example of a flat subreflector and a parabolic main reflector (a Newtonian dual reflector system) is considered in this work. The subreflector is assumed to be a reflector array covered with patch elements. The phase variation on a subreflector can be detected by a small number of receiving patch elements (probes). By probing the phase change at these few selected positions on the subreflector, the phase error over the entire surface can be recovered and used to change the phase of all the patch elements covering the subreflector plane to compensate for main reflector errors. This is accomplished by using a version of sampling theorem on the circular aperture. The sampling is performed on the phase-error function on the circular aperture of the main reflector by a method developed using Zernike polynomials. This method is based upon and extended from a theory previously proposed and applied to reflector aperture integration. This sampling method provides for an exact retrieval of the coefficients of up to certain orders in the expansion of the phase function, from values on a specifically calculated set of points in radial and azimuthal directions in the polar coordinate system, on the circular reflector aperture. The corresponding points on the subreflector are then obtained and, by probing the fields at these points, a

  1. A spectrally tunable microstructured optical fibre Bragg grating utilizing an infiltrated ferrofluid.

    PubMed

    Candiani, A; Konstantaki, M; Margulis, W; Pissadakis, S

    2010-11-22

    The spectral response of a Bragg grating reflector inscribed in a microstructured optical fibre is tuned by employing an infiltrated ferrofluid, while modifying the overlap of the ferrofluidic medium with the grating length. Significant spectral changes in terms of Bragg grating wavelength shift and extinction ratio were obtained under static magnetic field actuation. Spectral measurements revealed non-bidirectional propagation effects dependent upon the relative position between the ferrofluid and the grating. The actuation speed of the device was measured to be of the order of few seconds.

  2. SEISMIC-REFLECTOR DATABASE SOFTWARE.

    USGS Publications Warehouse

    Wright, Evelyn L.; Hosom, John-Paul; ,

    1986-01-01

    The seismic data analysis (SDA) software system facilitates generation of marine seismic reflector databases composed of reflector depths, travel times, root-mean-square and interval velocities, geographic coordinates, and identifying information. System processes include digitizing of seismic profiles and velocity semblance curves, merging of velocity and navigation data with profile travel-time data, calculation of reflector depths in meters, profile and map graphic displays, data editing and smoothing, and entry of finalized data into a comprehensive database. An overview of concepts, file structures, and programs is presented.

  3. Use of 3000 Bragg Grating Strain Sensors Distributed on Four Eight-meter Optical Fibers During Static Load Tests of a Composite Structure

    NASA Technical Reports Server (NTRS)

    Childers, Brooks A.; Froggatt, Mark E.; Allison, Sidney G.; Moore, Thomas C., Sr.; Hare, David A.; Batten, Christopher F.; Jegley, Dawn C.

    2001-01-01

    This paper describes the use of a fiber optic system to measure strain at thousands of locations along optical fibers where weakly reflecting Bragg gratings have been photoetched. The optical fibers were applied to an advanced composite transport wing along with conventional foil strain gages. A comparison of the fiber optic and foil gage systems used for this test will be presented including: a brief description of both strain data systems; a discussion of the process used for installation of the optical fiber; comparative data from the composite wing test; the processes used for the location and display of the high density fiber optic data. Calibration data demonstrating the potential accuracy of the fiber optic system will also be presented. The opportunities for industrial and commercial applications will be discussed. The fiber optic technique is shown to be a valuable augmentation to foil strain gages providing insight to structural behavior previously requiring reliance on modeling.

  4. Reflectors for SAR performance testing.

    SciTech Connect

    Doerry, Armin Walter

    2008-01-01

    Synthetic Aperture Radar (SAR) performance testing and estimation is facilitated by observing the system response to known target scene elements. Trihedral corner reflectors and other canonical targets play an important role because their Radar Cross Section (RCS) can be calculated analytically. However, reflector orientation and the proximity of the ground and mounting structures can significantly impact the accuracy and precision with which measurements can be made. These issues are examined in this report.

  5. Two-way reflector based on two-dimensional sub-wavelength high-index contrast grating on SOI

    NASA Astrophysics Data System (ADS)

    Kaur, Harpinder; Kumar, Mukesh

    2016-05-01

    A two-dimensional (2D) high-index contrast grating (HCG) is proposed as a two-way reflector on Silicon-on-insulator (SOI). The proposed reflector provides high reflectivity over two (practically important) sets of angles of incidence- normal (θ = 0 °) and oblique/grazing (θ = 80 ° - 85 ° / 90 °). Analytical model of 2D HCG is presented using improved Fourier modal method. The vertical incidence is useful for application in VCSEL while oblique/grazing incidence can be utilized in high confinement (HCG mirrors based) hollow waveguides and Bragg reflectors. The proposed two-way reflector also exhibits a large reflection bandwidth (around telecom wavelength) which is an advantage for broadband photonic devices.

  6. Modification of spontaneous emission in Bragg onion resonators

    NASA Astrophysics Data System (ADS)

    Liang, Wei; Huang, Yanyi; Yariv, Amnon; Xu, Yong; Lin, Shawn-Yu

    2006-08-01

    We formulated an analytical model and analyzed the modification of spontaneous emission in Bragg onion resonators. We consider both the case of a single light emitter and a uniformly distributed ensemble of light emitters within the resonator. We obtain an expression for the average radiation rate of the light emitters ensemble and discuss the modification of the average radiation rate as a function of cavity parameters such as the core radius, the number of Bragg cladding layers, the index contrast of the Bragg cladding, and the refractive index of surrounding medium. We also consider the possibility of non-exponential decay of the light emitter ensemble due to the strong dependence of spontaneous emission on the location and polarization of individual light emitter. We conclude that Bragg onion resonators can both enhance and inhibit spontaneous emission by several orders of magnitude. This property can have significant impact in the field of cavity quantum electrodynamics (QED).

  7. Modification of spontaneous emission in Bragg onion resonators.

    PubMed

    Liang, Wei; Huang, Yanyi; Yariv, Amnon; Xu, Yong; Lin, Shawn-Yu

    2006-08-07

    We formulated an analytical model and analyzed the modification of spontaneous emission in Bragg onion resonators. We consider both the case of a single light emitter and a uniformly distributed ensemble of light emitters within the resonator. We obtain an expression for the average radiation rate of the light emitters ensemble and discuss the modification of the average radiation rate as a function of cavity parameters such as the core radius, the number of Bragg cladding layers, the index contrast of the Bragg cladding, and the refractive index of surrounding medium. We also consider the possibility of non-exponential decay of the light emitter ensemble due to the strong dependence of spontaneous emission on the location and polarization of individual light emitter. We conclude that Bragg onion resonators can both enhance and inhibit spontaneous emission by several orders of magnitude. This property can have significant impact in the field of cavity quantum electrodynamics (QED).

  8. Differential correction method applied to measurement of the FAST reflector

    NASA Astrophysics Data System (ADS)

    Li, Xin-Yi; Zhu, Li-Chun; Hu, Jin-Wen; Li, Zhi-Heng

    2016-08-01

    The Five-hundred-meter Aperture Spherical radio Telescope (FAST) adopts an active deformable main reflector which is composed of 4450 triangular panels. During an observation, the illuminated area of the reflector is deformed into a 300-m diameter paraboloid and directed toward a source. To achieve accurate control of the reflector shape, positions of 2226 nodes distributed around the entire reflector must be measured with sufficient precision within a limited time, which is a challenging task because of the large scale. Measurement of the FAST reflector makes use of stations and node targets. However, in this case the effect of the atmosphere on measurement accuracy is a significant issue. This paper investigates a differential correction method for total stations measurement of the FAST reflector. A multi-benchmark differential correction method, including a scheme for benchmark selection and weight assignment, is proposed. On-site evaluation experiments show there is an improvement of 70%-80% in measurement accuracy compared with the uncorrected measurement, verifying the effectiveness of the proposed method.

  9. Analysis and design of tunable wideband microwave photonics phase shifter based on Fabry-Perot cavity and Bragg mirrors in silicon-on-insulator waveguide.

    PubMed

    Qu, Pengfei; Zhou, Jingran; Chen, Weiyou; Li, Fumin; Li, Haibin; Liu, Caixia; Ruan, Shengping; Dong, Wei

    2010-04-20

    We designed a microwave (MW) photonics phase shifter, consisting of a Fabry-Perot filter, a phase modulation region (PMR), and distributed Bragg reflectors, in a silicon-on-insulator rib waveguide. The thermo-optics effect was employed to tune the PMR. It was theoretically demonstrated that the linear MW phase shift of 0-2pi could be achieved by a refractive index variation of 0-9.68x10(-3) in an ultrawideband (about 38?GHz-1.9?THz), and the corresponding tuning resolution was about 6.92 degrees / degrees C. The device had a very compact size. It could be easily integrated in silicon optoelectronic chips and expected to be widely used in the high-frequency MW photonics field.

  10. Optical Reflectance Measurements for Commonly Used Reflectors

    SciTech Connect

    Janecek, Petr Martin; Moses, William

    2008-06-11

    When simulating light collection in scintillators, modeling the angular distribution of optical light reflectance from surfaces is very important. Since light reflectance is poorly understood, either purely specular or purely diffuse reflectance is generally assumed. In this paper we measure the optical reflectance distribution for eleven commonly used reflectors. A 440 nm, output power stabilized, un-polarized laser is shone onto a reflector at a fixed angle of incidence. The reflected light's angular distribution is measured by an array of silicon photodiodes. The photodiodes are movable to cover 2 pi of solid angle. The light-induced current is, through a multiplexer, read out with a digital multimeter. A LabVIEW program controls the motion of the laser and the photodiode array, the multiplexer, and the data collection. The laser can be positioned at any angle with a position accuracy of 10 arc minutes. Each photodiode subtends 6.3o, and the photodiode array can be positioned at any angle with up to 10 arc minute angular resolution. The dynamic range for the current measurements is 105:1. The measured light reflectance distribution was measured to be specular for several ESR films as well as for aluminum foil, mostly diffuse for polytetrafluoroethylene (PTFE) tape and titanium dioxide paint, and neither specular nor diffuse for Lumirror(R), Melinex(R) and Tyvek(R). Instead, a more complicated light distribution was measured for these three materials.

  11. Reflector system for a lighting fixture

    DOEpatents

    Siminovitch, M.J.; Page, E.; Gould, C.T.

    1998-09-08

    Disclosed herein is a reflector system for a lighting fixture having a illumination source surrounded by an envelope. The reflector system includes a first reflector surrounding the illumination source. The reflector system also includes a second reflector which is non-contiguous with the first reflector and which surrounds the illumination source. The illumination source creates light rays which are reflected by the first and second reflectors. The first reflector directs light rays toward the center line of the fixture. However, the reflected rays despite being so reflected do not substantially intersect the envelope. The reflected light rays from the second reflector being directed so that they diverge from the center line of the fixture avoiding intersection with the semi-transparent envelope. 5 figs.

  12. Reflector system for a lighting fixture

    DOEpatents

    Siminovitch, Michael J.; Page, Erik; Gould, Carl T.

    2001-01-01

    Disclosed herein is a reflector system for a lighting fixture having a illumination source surrounded by an envelope. The reflector system includes a first reflector surrounding the illumination source. The reflector system also includes a second reflector which is non-contiguous with the first reflector and which surrounds the illumination source. The illumination source creates light rays which are reflected by the first and second reflectors. The first reflector directs light rays toward the center line of the fixture. However, the reflected rays despite being so reflected do not substantially intersect the envelope. The reflected light rays from the second reflector being directed so that they diverge from the center line of the fixture avoiding intersection with the semi-transparent envelope.

  13. Reflector system for a lighting fixture

    DOEpatents

    Siminovitch, Michael J.; Page, Erik; Gould, Carl T.

    1998-01-01

    Disclosed herein is a reflector system for a lighting fixture having a illumination source surrounded by an envelope. The reflector system includes a first reflector surrounding the illumination source. The reflector system also includes a second reflector which is non-contiguous with the first reflector and which surrounds the illumination source. The illumination source creates light rays which are reflected by the first and second reflectors. The first reflector directs light rays toward the center line of the fixture. However, the reflected rays despite being so reflected do not substantially intersect the envelope. The reflected light rays from the second reflector being directed so that they diverge from the center line of the fixture avoiding intersection with the semi-transparent envelope.

  14. Free-electron maser with high-selectivity Bragg resonator using coupled propagating and trapped modes

    NASA Astrophysics Data System (ADS)

    Ginzburg, N. S.; Golubev, I. I.; Golubykh, S. M.; Zaslavskii, V. Yu.; Zotova, I. V.; Kaminsky, A. K.; Kozlov, A. P.; Malkin, A. M.; Peskov, N. Yu.; Perel'Shteĭn, É. A.; Sedykh, S. N.; Sergeev, A. S.

    2010-10-01

    A free-electron maser (FEM) with a double-mirror resonator involving a new modification of Bragg structures operating on coupled propagating and quasi-cutoff (trapped) modes has been studied. The presence of trapped waves in the feedback chain improves the selectivity of Bragg resonators and ensures stable single-mode generation regime at a considerable superdimensionality of the interaction space. The possibility of using the new feedback mechanism has been confirmed by experiments with a 30-GHz FEM pumped by the electron beam of LIU-3000 (JINR) linear induction accelerator, in which narrow-band generation was obtained at a power of ˜10 MW and a frequency close to the cutoff frequency of the trapped mode excited in the input Bragg reflector.

  15. Shaped reflector antenna analysis using the Jacobi-Bessel series. [design for space and satellite communication

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Y.; Galindo-Israel, V.

    1980-01-01

    A vector radiation integral is derived for an offset shaped reflector illuminated by an arbitrarily located and oriented source. A procedure for expressing the integral in terms of a series of the Fourier transforms of an effective aperture distribution is discussed. The Jacobi-Bessel series is used to evaluate the Fourier transforms. Numerical results are presented for different reflector configurations and source locations.

  16. Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings.

    PubMed

    Chung, Kyungjae; Yu, Sunkyu; Heo, Chul-Joon; Shim, Jae Won; Yang, Seung-Man; Han, Moon Gyu; Lee, Hong-Seok; Jin, Yongwan; Lee, Sang Yoon; Park, Namkyoo; Shin, Jung H

    2012-05-08

    Thin-film color reflectors inspired by Morpho butterflies are fabricated. Using a combination of directional deposition, silica microspheres with a wide size distribution, and a PDMS (polydimethylsiloxane) encasing, a large, flexible reflector is created that actually provides better angle-independent color characteristics than Morpho butterflies and which can even be bent and folded freely without losing its Morpho-mimetic photonic properties.

  17. Electromagnetic backscattering by corner reflectors

    NASA Technical Reports Server (NTRS)

    Balanis, C. A.; Griesser, T.

    1986-01-01

    The Geometrical Theory of Diffraction (GTD), which supplements Geometric Optics (GO), and the Physical Theory of Diffraction (PTD), which supplements Physical Optics (PO), are used to predict the backscatter cross sections of dihedral corner reflectors which have right, obtuse, or acute included angles. These theories allow individual backscattering mechanisms of the dihedral corner reflectors to be identified and provide good agreement with experimental results in the azimuthal plane. The advantages and disadvantages of the geometrical and physical theories are discussed in terms of their accuracy, usefulness, and complexity. Numerous comparisons of analytical results with experimental data are presented. While physical optics alone is more accurate and more useful than geometrical optics alone, the combination of geometrical optics and geometrical diffraction seems to out perform physical optics and physical diffraction when compared with experimental data, especially for acute angle dihedral corner reflectors.

  18. Jet screech reduction with perforated flat reflector

    NASA Astrophysics Data System (ADS)

    Khan, Md. Tawhidul Islam; Teramoto, Kenbu; Matsuo, Shigeru; Setoguchi, Toshiaki

    2008-09-01

    In the present experimental study, investigations have been carried out to evaluate the performance of the new control technique of jet screech with different perforated flat reflectors. Mainly two types of porous flat reflectors had been used in the experiment. One reflector (reflector-V) designed for placing the reflector surface vertical to the jet axis, when, another type of reflector (reflector-H) designed for placing the reflecting surface horizontal to the jet axis. In both cases the reflectors had been placed at the nozzle (base tube with uniform cross-sectional area) exit. The diameter of the reflector-V was 15D when the diameter of the reflector-H was 10D. The porous area of the reflector-V was 6D and 4.5D for reflector-H where D indicated the diameter of the nozzle exit. The placement of the reflector at the exit of the nozzle reduces the sound pressure at the nozzle exit. Thus the muted sound can not excite the unstable disturbance at the nozzle exit and the loop of the feedback mechanism disappeared, finally, the generation of jet screech be cancelled. The suction space located at the back side of the porous surface of the reflector-V improves the efficiency of the screech control technique. However, in the case of reflector-H, the receptivity process of feedback loop had been controlled by reducing the disturbances at the effective shock fronts as well as at the nozzle exit. The performance of the proposed method was verified with a flat reflector concept and good performance in jet screech suppression has been confirmed in the case of porous reflector.

  19. Lamp bulb with integral reflector

    DOEpatents

    Levin, Izrail; Shanks, Bruce; Sumner, Thomas L.

    2001-01-01

    An improved electrodeless discharge lamp bulb includes an integral ceramic reflector as a portion of the bulb envelope. The bulb envelope further includes two pieces, a reflector portion or segment is cast quartz ceramic and a light transmissive portion is a clear fused silica. In one embodiment, the cast quartz ceramic segment includes heat sink fins or stubs providing an increased outside surface area to dissipate internal heat. In another embodiment, the quartz ceramic segment includes an outside surface fused to eliminate gas permeation by polishing.

  20. Extreme Precision Antenna Reflector Study Results

    NASA Technical Reports Server (NTRS)

    Sharp, G. R.; Gilger, L. D.; Ard, K. E.

    1985-01-01

    Thermal and mechanical distortion degrade the RF performance of antennas. The complexity of future communications antennas requires accurate, dimensionally stable antenna reflectors and structures built from materials other than those currently used. The advantages and disadvantages of using carbon fibers in an epoxy matrix are reviewed as well as current reflector fabrications technology and adjustment. The manufacturing sequence and coefficient of thermal expansion of carbon fiber/borosilicate glass composites is described. The construction of a parabolic reflector from this material and the assembling of both reflector and antenna are described. A 3M-aperture-diameter carbon/glass reflector that can be used as a subassembly for large reflectors is depicted. The deployment sequence for a 10.5M-aperture-diameter antenna, final reflector adjustment, and the deployment sequence for large reflectors are also illustrated.

  1. Adjusting the Contour of Reflector Panels

    NASA Technical Reports Server (NTRS)

    Palmer, W. B.; Giebler, M. M.

    1984-01-01

    Postfabrication adjustment of contour of panels for reflector, such as parabolic reflector for radio antennas, possible with simple mechanism consisting of threaded stud, two nuts, and flexure. Contours adjusted manually.

  2. Ellipsoidal reflectors in biomedical diagnostic

    NASA Astrophysics Data System (ADS)

    Bezuglyi, M. A.; Bezuglaya, N. V.

    2013-11-01

    In this work were considered photometric tools for biomedical diagnostics, which contain a mirror ellipsoid of revolution. Proposed schemes with ellipsoidal reflectors for diagnostics in reflected and in reflected and transmitted light. A comparative analysis of measurement standards scattering surfaces was held.

  3. Membrane Shell Reflector Segment Antenna

    NASA Technical Reports Server (NTRS)

    Fang, Houfei; Im, Eastwood; Lin, John; Moore, James

    2012-01-01

    The mesh reflector is the only type of large, in-space deployable antenna that has successfully flown in space. However, state-of-the-art large deployable mesh antenna systems are RF-frequency-limited by both global shape accuracy and local surface quality. The limitations of mesh reflectors stem from two factors. First, at higher frequencies, the porosity and surface roughness of the mesh results in loss and scattering of the signal. Second, the mesh material does not have any bending stiffness and thus cannot be formed into true parabolic (or other desired) shapes. To advance the deployable reflector technology at high RF frequencies from the current state-of-the-art, significant improvements need to be made in three major aspects: a high-stability and highprecision deployable truss; a continuously curved RF reflecting surface (the function of the surface as well as its first derivative are both continuous); and the RF reflecting surface should be made of a continuous material. To meet these three requirements, the Membrane Shell Reflector Segment (MSRS) antenna was developed.

  4. Polarization losses in reflector antennas

    NASA Astrophysics Data System (ADS)

    Safak, M.; Yazgan, E.

    1985-08-01

    Various definitions for polarization-loss efficiency of Cassegrainian and front-fed reflectors are compared. The effects of flare angle, feed taper and the feed pattern asymmetry on the polarization-loss efficiency are investigated. The definitions based on aperture fields are shown to be inadequate and far fields must be used for calculating the polarization losses.

  5. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  6. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  7. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  8. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  9. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  10. Primary reflector for solar energy collection systems

    NASA Technical Reports Server (NTRS)

    Miller, C. G. (Inventor); Stephens, J. B.

    1978-01-01

    A fixed, linear, ground-based primary reflector is disclosed which has an extended curved sawtooth-contoured surface covered with a metalized polymeric reflecting material. The device reflects solar energy to a movably supported collector that is kept at the concentrated line focus of the reflector primary. The primary reflector may be constructed by a process utilizing well-known freeway paving machinery.

  11. Computer prediction of large reflector antenna radiation properties

    NASA Technical Reports Server (NTRS)

    Botula, A.

    1980-01-01

    A FORTRAN program for calculating reflector antenna radiation patterns was rewritten and extended to include reflectors composed of a number of panels. These individual panels must be analytic surfaces. The theoretical foundation for the program is as follows: Geometrical optics techniques are used to trace rays from a feed antenna to the reflector surface and back to a mathematical plane just in front of the reflector. The resulting tangential electric field distribution, assumed to be the only source of forward radiation, is integrated numerically to calculate the radiation pattern for a desired set of angles. When the reflector is composed of more than one panel, each panel is treated as a separated antenna, the ray-tracing procedure and integration being repeated for each panel. The results of the individual aperture plane integrations are stored and summed to yield the relative electric field strength over the angles of interest. An example and several test cases are included to demonstrate the use of the program and verify the new method of computation.

  12. Preliminary design of 19-element feed cluster for a large F/D reflector antenna

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1983-01-01

    The design of a low sidelobe 19 element microstrip cluster and its distribution network is described. The problem of spillover illumination of an adjacent reflector in a multiple aperture reflector system is addressed. A practical implementation of the array is presented which requires only one printed circuit board for the distribution network with the potential for being easily tailored to a wide range of excitation distributions.

  13. Bragg gratings in ORMOCERs

    NASA Astrophysics Data System (ADS)

    Belenguer, Tomas; Cheben, Pavel; Moreno-Barriuso, Eva M.; Nunez, Armonia; Ulibarrena, Manuel; del Monte, Francisco; Levy, David

    1997-10-01

    Two novel holographic recording media based on silica gel methyl methacrylate (MMA) and hydroxy ethyl methacrylate (HEMA) organically modified ceramics (ORMOCERS) are presented and its holographic properties, inferred from the experimental data, are discussed. The recording of holographic gratings of both low-spatial frequency (50 lp/mm) and high-spatial frequency (1400 lp/mm) in a bulk ORMOCER matrix is reported. The gratings were recorded by UV irradiation-induced photopolymerization of the MMA or HEMA monomers embedded in the silica matrix. The Bragg gratings were successfully recorded by interference of two coherent beams of 351.1 nm wavelength. A linearly polarized He-Ne laser beam (632.8 nm) was used for continuous monitoring of the recording process by measurement of the diffraction efficiency and for enhancement of the grating creation process. High diffraction efficiencies (93%) and low absorption and scattering coefficients were measured during the holographic reconstruction by He-Ne laser beam. The most important holographic parameters of the gratings were inferred from the experimental data: diffraction efficiency, angular selectivity, refraction-index modulation amplitude, spectral sensitivity, the Klein-Cook parameter, and the environmental stability of the gratings.

  14. Optimal design of one-dimensional photonic crystal back reflectors for thin-film silicon solar cells

    SciTech Connect

    Chen, Peizhuan; Hou, Guofu Zhang, Jianjun Zhang, Xiaodan; Zhao, Ying

    2014-08-14

    For thin-film silicon solar cells (TFSC), a one-dimensional photonic crystal (1D PC) is a good back reflector (BR) because it increases the total internal reflection at the back surface. We used the plane-wave expansion method and the finite difference time domain (FDTD) algorithm to simulate and analyze the photonic bandgap (PBG), the reflection and the absorption properties of a 1D PC and to further explore the optimal 1D PC design for use in hydrogenated amorphous silicon (a-Si:H) solar cells. With identified refractive index contrast and period thickness, we found that the PBG and the reflection of a 1D PC are strongly influenced by the contrast in bilayer thickness. Additionally, light coupled to the top three periods of the 1D PC and was absorbed if one of the bilayers was absorptive. By decreasing the thickness contrast of the absorptive layer relative to the non-absorptive layer, an average reflectivity of 96.7% was achieved for a 1D PC alternatively stacked with a-Si:H and SiO{sub 2} in five periods. This reflectivity was superior to a distributed Bragg reflector (DBR) structure with 93.5% and an Ag film with 93.4%. n-i-p a-Si:H solar cells with an optimal 1D PC-based BR offer a higher short-circuit current density than those with a DBR-based BR or an AZO/Ag-based BR. These results provide new design rules for photonic structures in TFSC.

  15. POMESH - DIFFRACTION ANALYSIS OF REFLECTOR ANTENNAS

    NASA Technical Reports Server (NTRS)

    Hodges, R. E.

    1994-01-01

    calculation from a user provided data file. A numerical description of the principle plane patterns of the source horn must also be provided. The program is supplied with an analytically defined parabolic reflector surface. However, it is a simple matter to replace it with a user defined reflector surface. Output is given in the form of a data stream to the terminal; a summary of the parameters used in the computation and some sample results in a file; and a data file of the results of the pattern calculations suitable for plotting. POMESH is written in FORTRAN 77 for execution on CRAY series computers running UNICOS. With minor modifications, it has also been successfully implemented on a Sun4 series computer running SunOS, a DEC VAX series computer running VMS, and an IBM PC series computer running OS/2. It requires 2.5Mb of RAM under SunOS 4.1.1, 2.5Mb of RAM under VMS 5-4.3, and 2.5Mb of RAM under OS/2. The OS/2 version requires the Lahey F77L compiler. The standard distribution medium for this program is one 5.25 inch 360K MS-DOS format diskette. It is also available on a .25 inch streaming magnetic tape cartridge in UNIX tar format and a 9-track 1600 BPI magnetic tape in DEC VAX FILES-11 format. POMESH was developed in 1989 and is a copyrighted work with all copyright vested in NASA. CRAY and UNICOS are registered trademarks of Cray Research, Inc. SunOS and Sun4 are trademarks of Sun Microsystems, Inc. DEC, DEC FILES-11, VAX and VMS are trademarks of Digital Equipment Corporation. IBM PC and OS/2 are registered trademarks of International Business Machines, Inc. UNIX is a registered trademark of Bell Laboratories.

  16. New CPV Systems With Static Reflectors

    NASA Astrophysics Data System (ADS)

    Tripanagnostopoulos, Y.; Chemisana, D.; Rosell, J. I.; Souliotis, M.

    2010-10-01

    New designs of low concentrating photovoltaics have been studied, where static reflectors and moving absorbers that track the concentrated solar rays, aim to cost effective solar devices. These systems are based on the concept that strip absorbers can use the beam radiation and convert it to electricity, while the diffuse radiation is absorbed by flat absorbers and converted into heat. The work on these designs follow the research on the linear Fresnel lenses, which are combined with PV or PV/T absorbers and can be used not only for the conversion of solar radiation into electricity and heat but also to control the illumination and the temperature of interior building spaces. Design aspects and optical results give a figure of the optical performance of these new CPV collectors, which are based on the converged solar radiation distribution profiles for East-West orientation of parabolic trough reflectors. The concentration ratio depends on the geometry of the parabola axis and the higher values correspond to the axis towards the summer solstice. The results show that the new CPV designs can be effectively applied in buildings adapting energy demand in electricity and heat.

  17. Generation of XS library for the reflector of VVER reactor core using Monte Carlo code Serpent

    NASA Astrophysics Data System (ADS)

    Usheva, K. I.; Kuten, S. A.; Khruschinsky, A. A.; Babichev, L. F.

    2017-01-01

    A physical model of the radial and axial reflector of VVER-1200-like reactor core has been developed. Five types of radial reflector with different material composition exist for the VVER reactor core and 1D and 2D models were developed for all of them. Axial top and bottom reflectors are described by the 1D model. A two-group XS library for diffusion code DYN3D has been generated for all types of reflectors by using Serpent 2 Monte Carlo code. Power distribution in the reactor core calculated in DYN3D is flattened in the core central region to more extent in the 2D model of the radial reflector than in its 1D model.

  18. An Intensity-Based Demodulation Approach for the Measurement of Strains Induced by Structural Vibrations using Bragg Gratings

    DTIC Science & Technology

    2011-02-01

    gratings for response measurement. DSTO’s involvement in this program is to develop the distributed Bragg grating in- terrogation system and conduct... Calibration 29 E System Operation Documentation 30 E.1 Configuration Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 E.2 Scan Screen...challenges associated with this type of distributed response measurement using Bragg gratings is that the strains induced by structural vibrations tend

  19. The effects of stainless steel radial reflector on core reactivity for small modular reactor

    SciTech Connect

    Kang, Jung Kil Hah, Chang Joo; Cho, Sung Ju Seong, Ki Bong

    2016-01-22

    Commercial PWR core is surrounded by a radial reflector, which consists of a baffle and water. Radial reflector is designed to reflect neutron back into the core region to improve the neutron efficiency of the reactor and to protect the reactor vessels from the embrittling effects caused by irradiation during power operation. Reflector also helps to flatten the neutron flux and power distributions in the reactor core. The conceptual nuclear design for boron-free small modular reactor (SMR) under development in Korea requires to have the cycle length of 4∼5 years, rated power of 180 MWth and enrichment less than 5 w/o. The aim of this paper is to analyze the effects of stainless steel radial reflector on the performance of the SMR using UO{sub 2} fuels. Three types of reflectors such as water, water/stainless steel 304 mixture and stainless steel 304 are selected to investigate the effect on core reactivity. Additionally, the thickness of stainless steel and double layer reflector type are also investigated. CASMO-4/SIMULATE-3 code system is used for this analysis. The results of analysis show that single layer stainless steel reflector is the most efficient reflector.

  20. The effects of stainless steel radial reflector on core reactivity for small modular reactor

    NASA Astrophysics Data System (ADS)

    Kang, Jung Kil; Hah, Chang Joo; Cho, Sung Ju; Seong, Ki Bong

    2016-01-01

    Commercial PWR core is surrounded by a radial reflector, which consists of a baffle and water. Radial reflector is designed to reflect neutron back into the core region to improve the neutron efficiency of the reactor and to protect the reactor vessels from the embrittling effects caused by irradiation during power operation. Reflector also helps to flatten the neutron flux and power distributions in the reactor core. The conceptual nuclear design for boron-free small modular reactor (SMR) under development in Korea requires to have the cycle length of 4˜5 years, rated power of 180 MWth and enrichment less than 5 w/o. The aim of this paper is to analyze the effects of stainless steel radial reflector on the performance of the SMR using UO2 fuels. Three types of reflectors such as water, water/stainless steel 304 mixture and stainless steel 304 are selected to investigate the effect on core reactivity. Additionally, the thickness of stainless steel and double layer reflector type are also investigated. CASMO-4/SIMULATE-3 code system is used for this analysis. The results of analysis show that single layer stainless steel reflector is the most efficient reflector.

  1. Bragg interactions in periodic media

    NASA Technical Reports Server (NTRS)

    Jaggard, D. L.

    1976-01-01

    The interaction of electromagnetic waves of wavelength lambda with periodic structures of spatial period lambda are studied. The emphasis of the work is on Bragg interactions where lambda approximately equal to 2 lambda/N and the Bragg order N takes on the values 1, 2,.... An extended coupled waves (ECW) theory is developed for the case N greater or equal to 2 and the results of the theory are found to compare favorably with the exact results of Floquet theory. Numerous numerical results are displayed as Brillouin diagrams for the first few Bragg orders. Moreover, explicit expressions for coupling coefficients, bandgap shifts and bandgap widths are derived for singly periodic media. Particular note is taken of phase speeding effects.

  2. Optical Tamm states above the bulk plasma frequency at a Bragg stack/metal interface

    NASA Astrophysics Data System (ADS)

    Brand, S.; Kaliteevski, M. A.; Abram, R. A.

    2009-02-01

    We demonstrate theoretically that surface-plasmon polaritons, a form of optical Tamm state, can occur at the interface between a metal and a Bragg reflector at frequencies above the bulk plasma frequency of the metal. The frequencies of the excitations are within the photonic band gap of the Bragg reflector which provides the required evanescent decay on that side of the interface. At finite in-plane wave vector, the low value of the permittivity of the metal above its plasma frequency can lead to an imaginary normal wave vector component in the metal, which provides the localization on the other side of the interface. It is proposed that the necessary conditions can be realized using a GaAs/AlAs Bragg stack coated with a suitable conducting metal oxide having a bulk plasma frequency of 1 eV, but the concept is valid for other systems given an appropriate plasma frequency and photonic band-gap structure. The dispersion relations of the plasmon polaritons in the structures considered are calculated for both possible polarizations, and it is shown how the excitations result in distinct features in the predicted reflectivity spectra.

  3. Computational Electromagnetic Studies for Low-Frequency Compensation of the Reflector Impulse-radiating Antenna

    DTIC Science & Technology

    2015-03-26

    COMPUTATIONAL ELECTROMAGNETIC STUDIES FOR LOW-FREQUENCY COMPENSATION OF THE REFLECTOR IMPULSE-RADIATING ANTENNA THESIS Casey E. Fillmore, Capt, USAF... ELECTROMAGNETIC STUDIES FOR LOW-FREQUENCY COMPENSATION OF THE REFLECTOR IMPULSE-RADIATING ANTENNA THESIS Presented to the Faculty Department of Electrical and...2015 DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENG-MS-15-M-011 COMPUTATIONAL ELECTROMAGNETIC STUDIES FOR LOW

  4. Actuator Grouping Optimization on Flexible Space Reflectors

    NASA Technical Reports Server (NTRS)

    Hill, Jeffrey R.; Wang, K. W.; Fang, Houfei; Quijano, Ubaldo

    2011-01-01

    With the rapid advances in deployable membrane and mesh antenna technologies, the feasibility of developing large, lightweight reflectors has greatly improved. In order to achieve the required surface accuracy, precision surface control is needed on these lightweight reflectors. For this study, an analytical model is shown which combines a flexible Kapton reflector with Polyvinylidene fluoride (PVDF) actuators for surface control. Surface errors are introduced that are similar to real world scenarios, and a least squares control algorithm is developed for surface control. Experimental results on a 2.4 meter reflector show that while the analytical reflector model is generally correct, due to idiosyncrasies in the reflector it cannot be used for online control. A new method called the En Mass Elimination algorithm is used to determine the optimal grouping of actuators when the number of actuators in the system exceeds the number of power supplies available.

  5. Design concepts for large reflector antenna structures

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.; Adams, L. R.

    1983-01-01

    Practical approaches for establishing large, precise antenna reflectors in space are described. Reflector surfaces consisting of either solid panels or knitted mesh are considered. The approach using a deep articulated truss structure to support a mesh reflector is selected for detailed investigations. A new sequential deployment concept for the tetrahedral truss is explained. Good joint design is discussed, and examples are described both analytically and by means of demonstration models. The influence of curvature on the design and its vibration characteristics are investigated.

  6. Lamp with a truncated reflector cup

    DOEpatents

    Li, Ming; Allen, Steven C.; Bazydola, Sarah; Ghiu, Camil-Daniel

    2013-10-15

    A lamp assembly, and method for making same. The lamp assembly includes first and second truncated reflector cups. The lamp assembly also includes at least one base plate disposed between the first and second truncated reflector cups, and a light engine disposed on a top surface of the at least one base plate. The light engine is configured to emit light to be reflected by one of the first and second truncated reflector cups.

  7. Piezocomposite Actuator Arrays for Correcting and Controlling Wavefront Error in Reflectors

    NASA Technical Reports Server (NTRS)

    Bradford, Samuel Case; Peterson, Lee D.; Ohara, Catherine M.; Shi, Fang; Agnes, Greg S.; Hoffman, Samuel M.; Wilkie, William Keats

    2012-01-01

    Three reflectors have been developed and tested to assess the performance of a distributed network of piezocomposite actuators for correcting thermal deformations and total wave-front error. The primary testbed article is an active composite reflector, composed of a spherically curved panel with a graphite face sheet and aluminum honeycomb core composite, and then augmented with a network of 90 distributed piezoelectric composite actuators. The piezoelectric actuator system may be used for correcting as-built residual shape errors, and for controlling low-order, thermally-induced quasi-static distortions of the panel. In this study, thermally-induced surface deformations of 1 to 5 microns were deliberately introduced onto the reflector, then measured using a speckle holography interferometer system. The reflector surface figure was subsequently corrected to a tolerance of 50 nm using the actuators embedded in the reflector's back face sheet. Two additional test articles were constructed: a borosilicate at window at 150 mm diameter with 18 actuators bonded to the back surface; and a direct metal laser sintered reflector with spherical curvature, 230 mm diameter, and 12 actuators bonded to the back surface. In the case of the glass reflector, absolute measurements were performed with an interferometer and the absolute surface was corrected. These test articles were evaluated to determine their absolute surface control capabilities, as well as to assess a multiphysics modeling effort developed under this program for the prediction of active reflector response. This paper will describe the design, construction, and testing of active reflector systems under thermal loads, and subsequent correction of surface shape via distributed peizeoelctric actuation.

  8. Air-suspended TiO2-based HCG reflectors for visible spectral range

    NASA Astrophysics Data System (ADS)

    Hashemi, Ehsan; Bengtsson, Jörgen; Gustavsson, Johan; Carlsson, Stefan; Rossbach, Georg; Haglund, Åsa

    2015-02-01

    For GaN-based microcavity light emitters, such as vertical-cavity surface-emitting lasers (VCSELs) and resonant cavity light emitting diodes (RCLEDs) in the blue-green wavelength regime, achieving a high reflectivity wide bandwidth feedback mirror is truly challenging. The material properties of the III-nitride alloys are hardly compatible with the conventional distributed Bragg reflectors (DBRs) and the newly proposed high-contrast gratings (HCGs). Alternatively, at least for the top outcoupling mirror, dielectric materials offer more suitable material combinations not only for the DBRs but also for the HCGs. HCGs may offer advantages such as transverse mode and polarization control, a broader reflectivity spectrum than epitaxially grown DBRs, and the possibility to set the resonance wavelength after epitaxial growth by the grating parameters. In this work we have realized an air-suspended TiO2 grating with the help of a SiO2 sacrificial layer. The deposition processes for the dielectric layers were fine-tuned to minimize the residual stress. To achieve an accurate control of the grating duty cycle, a newly developed lift-off process, using hydrogen silesquioxan (HSQ) and sacrificial polymethyl-methacrylate (PMMA) resists, was applied to deposit the hard mask, providing sub-10 nm resolution. The finally obtained TiO2/air HCGs were characterized in a micro-reflectance measurement setup. A peak power reflectivity in excess of 95% was achieved for TM polarization at the center wavelength of 435 nm, with a reflectivity stopband width of about 80 nm (FWHM). The measured HCG reflectance spectra were compared to corresponding simulations obtained from rigorous coupled-wave analysis and very good agreement was found.

  9. Electronic Compensation For Distortion Of Antenna Reflector

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.; Cockrell, C.R.; Staton, L. D.

    1995-01-01

    Proposed method of obtaining approximately desired radiation or reception pattern from antenna that includes reflector based on concept of superposition of electromagnetic fields generated by multiple feedhorns or feed antenna elements arrayed at various positions near reflector and excited at electronically adjustable magnitudes and phases. In intended application, reflector nominally paraboloidal, feed elements N feedhorns in hexagonal array, and method used to compensate for deviations of real reflector surface from nominal paraboloidal shape. Method and concept also applicable to electronic beam steering and electronic antenna compensation in other situations.

  10. Low Sidelobe Scanning Beams for Parabolic Reflectors,

    DTIC Science & Technology

    Parabolic antennas, *Sidelobes, *Electronic scanners, Parabolas, Far field, Antenna feeds , Reflectors, Low level, Amplitude, Distortion, Configurations, Secondary, Compensation, Feeding , Symposia, Taper

  11. Solar thermal collectors using planar reflector

    NASA Technical Reports Server (NTRS)

    Espy, P. N.

    1978-01-01

    Specular reflectors have been used successfully with flat-plate collectors to achieve exceptionally high operating temperatures and high delivered energy per unit collector area. Optimal orientation of collectors and reflectors can result in even higher performance with an improved relationship between energy demand and supply. This paper reports on a study providing first order optimization of collector-reflector arrays in which single- and multiple-faceted reflectors in fixed or singly adjustable configurations provide delivered energy maxima in either summer or winter.

  12. Passive solar reflector satellite revisited

    NASA Astrophysics Data System (ADS)

    Polk, C.; Daly, J. C.

    1980-07-01

    Passive light weight reflectors in space which direct the incident solar energy to a specified location on the Earth surface are proposed as an alternative system for the solar power satellite to overcome conversion losses and to avoid the need for photovoltaic cells. On Earth, either photovoltaic cells or a steam turbine alternator on a solar tower, or a similar conventional, relatively high efficiency cycle are used for electricity generation. The constraints which apply to the design of the optical system if a single satellite is placed in geostationary orbit are outlined. A single lens and a two lens system are discussed.

  13. Passive solar reflector satellite revisited

    NASA Technical Reports Server (NTRS)

    Polk, C.; Daly, J. C.

    1980-01-01

    Passive light weight reflectors in space which direct the incident solar energy to a specified location on the Earth surface are proposed as an alternative system for the solar power satellite to overcome conversion losses and to avoid the need for photovoltaic cells. On Earth, either photovoltaic cells or a steam turbine alternator on a solar tower, or a similar conventional, relatively high efficiency cycle are used for electricity generation. The constraints which apply to the design of the optical system if a single satellite is placed in geostationary orbit are outlined. A single lens and a two lens system are discussed.

  14. Optical fiber Bragg gratings for tunnel surveillance

    NASA Astrophysics Data System (ADS)

    Nellen, Philipp M.; Frank, Andreas; Broennimann, Rolf; Sennhauser, Urs J.

    2000-06-01

    We report on application tests of novel sensor elements for long term surveillance of tunnels. The sensors are made of glass fiber reinforced polymers (GFRP) with embedded optical fiber Bragg gratings. The tests were made in a tunnel near Sargans in Switzerland and we will present strain and temperature data of more than one year of operation of the sensor elements. Two sensor types were tested. First, GFRP rockbolts with a diameter of 22 mm were produced. They have a load-bearing function as anchors for tunnel or mine roofs and in addition measure distributed strain fields and temperature with embedded optical fiber Bragg grating arrays. Rockbolts are key elements during construction and operation of tunnels. Data about strain inside the rockbolts can support decision about precautions to be taken and reveal information about the long term movement of the rock. Second, thin and flexible GFRP wires of 3 mm in diameter were found to be robust and versatile sensors not only for tunnel surveillance but for many civil engineering applications where they can be attached or embedded (e.g., in concrete). The fabrication of both sensor types and solutions for the connection of the embedded fiber sensors to a fiber cable will be presented. Moreover, laboratory and tunnel data of functionality and long term stability tests will be discussed and compared.

  15. Bragg diffraction for normal and obliquely circularly polarized light due a new chiral mixture

    NASA Astrophysics Data System (ADS)

    Castro-Garay, P.; Manzanares-Martinez, J.; Corella-Madueño, A.; Rosas-Burgos, A.; Lizola, Josue; Clark, Marielena; Palma, Lillian

    2015-09-01

    We have found experimentally the transmittance of normal incident circularly polarized light due to new chiral mixture that was distorted by electric field. The chiral mixture was achieved by mixtures of two nematic liquid crystals (5OCB and 5CB) and S-1-bromo-2-methylbutane. We have found a regime of circular Bragg diffraction for certain values of concentrations and thickness. Optical diffraction phenomenon have received particular attention in research for optical and electro-optical applications, such as low -voltage modulators, reflective phase gratings and smart reflectors.

  16. Shaped cassegrain reflector antenna. [design equations

    NASA Technical Reports Server (NTRS)

    Rao, B. L. J.

    1973-01-01

    Design equations are developed to compute the reflector surfaces required to produce uniform illumination on the main reflector of a cassegrain system when the feed pattern is specified. The final equations are somewhat simple and straightforward to solve (using a computer) compared to the ones which exist already in the literature. Step by step procedure for solving the design equations is discussed in detail.

  17. Conformal Membrane Reflectors for Deployable Optics

    NASA Technical Reports Server (NTRS)

    Hood, Patrick J.; Keys, Andrew S. (Technical Monitor)

    2002-01-01

    This presentation reports the Phase I results on NASA's Gossamer Spacecraft Exploratory Research and Technology Program. Cornerstone Research Group, Inc., the University of Rochester, and International Photonics Consultants collaborated to investigate the feasibility of free-standing, liquid-crystal-polymer (LCP) reflectors for integration into space-based optical systems. The goal of the program was to achieve large-diameter, broadband. reflective membranes that are resistant to the effects of space, specifically cryogenic environments and gamma-ray irradiation. Additionally, we assessed the applicability of utilizing the technology as tight sails, since, by their very nature, these films offer high-reflectivity at specified wavelengths. Previous research programs have demonstrated all-polymer, narrow-band Specular reflectors and diffuse membrane reflectors. The feasibility of fabricating an all-polymer broadband specular reflector and a narrow-band specular membrane reflector was assessed in the Phase I Gossamer program. In addition, preliminary gamma irradiation studies were conducted to determine the stability of the polymer reflectors to radiation. Materials and process technology were developed to fabricate coupon-scale reflectors of both broad- and narrow-band specular reflectors in Phase 1. This presentation will report the results of these studies, including, the performance of a narrow-band specular membrane. Gamma irradiation exposures indicate limited impact on the optical performance although additional exposure studies are warranted. Plans to scale up the membrane fabrication process will be presented.

  18. Back surface reflectors for solar cells

    NASA Technical Reports Server (NTRS)

    Chai, A. T.

    1980-01-01

    Sample solar cells were fabricated to study the effects of various back surface reflectors on the device performance. They are typical 50 micrometers thick, space quality, silicon solar cells except for variations of the back contact configuration. The back surfaces of the sample cells are polished to a mirror like finish, and have either conventional full contacts or grid finger contacts. Measurements and evaluation of various metallic back surface reflectors, as well as cells with total internal reflection, are presented. Results indicate that back surface reflectors formed using a grid finger back contact are more effective reflectors than cells with full back metallization and that Au, Ag, or Cu are better back surface reflector metals than Al.

  19. Beam diffraction by planar and parabolic reflectors

    NASA Astrophysics Data System (ADS)

    Suedan, Gibreel A.; Jull, Edward V.

    1991-04-01

    In the complex source point (CSP) technique, an omnidirectional source diffraction solution becomes that for a directive beam when the coordinates of the source position are given appropriate complex values. This is applied to include feed directivity in reflector edge diffraction. Solutions and numerical examples for planar strip and parabolic cylinder reflectors are given, including an offset parabolic reflector. The main beams of parabolic reflectors are calculated by aperture integration and the edge diffracted fields by uniform diffraction theory. In both cases, a complex source point feed in the near or far field of the reflector may be used in the pattern calculation, with improvements in accuracy in the lateral and spillover pattern lobes.

  20. Nanolaminate Membranes as Cylindrical Telescope Reflectors

    NASA Technical Reports Server (NTRS)

    Dooley, Jennifer; Dragovan, Mark; Hickey, Gregory; Lih, Shyh-Shiu Lih

    2010-01-01

    A document discusses a proposal to use axially stretched metal nanolaminate membranes as lightweight parabolic cylindrical reflectors in the Dual Anamorphic Reflector Telescope (DART) - a planned spaceborne telescope in which the cylindrical reflectors would be arranged to obtain a point focus. The discussion brings together a combination of concepts reported separately in several prior NASA Tech Briefs articles, the most relevant being "Nanolaminate Mirrors With Integral Figure-Control Actuators" NPO -30221, Vol. 26, No. 5 (May 2002), page 90; and "Reflectors Made From Membranes Stretched Between Beams" NPO -30571, Vol. 33, No. 10 (October 2009), page 11a. The engineering issues receiving the greatest emphasis in the instant document are (1) the change in curvature associated with the Poisson contraction of a stretched nanolaminate reflector membrane and (2) the feasibility of using patches of poly(vinylidene fluoride) on the rear membrane surface as piezoelectric actuators to correct the surface figure for the effect of Poisson contraction and other shape errors.

  1. Monolithic integrated optic fiber Bragg grating sensor interrogator

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Esterkin, Yan; Kempen, Cornelia; Sun, Songjian

    2010-04-01

    Fiber Bragg gratings (FBGs) are a mature sensing technology that has gained rapid acceptance in civil, aerospace, chemical and petrochemical, medicine, aviation and automotive industries. Fiber Bragg grating sensors can be use for a variety of measurements including strain, stress, vibration, acoustics, acceleration, pressure, temperature, moisture, and corrosion distributed at multiple locations within the structure using a single fiber element. The most prominent advantages of FBGs are: small size and light weight, multiple FBG transducers on a single fiber, and immunity to radio frequency interference. A major disadvantage of FBG technology is that conventional state-of-the-art fiber Bragg grating interrogation systems are typically bulky, heavy, and costly bench top instruments that are assembled from off-the-shelf fiber optic and optical components integrated with a signal electronics board into an instrument console. Based on the need for a compact FBG interrogation system, this paper describes recent progress towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-TransceiverTM) system based on multi-channel monolithic integrated optic sensor microchip technology. The integrated optic microchip technology enables the monolithic integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogators systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm small form factor (SFF) package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation.

  2. Solar-powered illuminated reflector

    SciTech Connect

    Roberts, J.C.

    1987-05-26

    A highway traffic marker is described comprising: a housing adapted to be secured to a highway; a reflector in the housing for reflecting light in at least one predetermined direction toward highway traffic; at least one light source in the housing; a battery in circuit with the light source; a photovoltaic system is the housing for charging the battery. The housing includes window means for transmitting light from the light source outward from the housing in the predetermined direction; and optical lightguide element is mounted in the housing for guiding light from the one light source to the window means. The optical lightguide element has a generally conical shape and the window means being a Fresnel lens.

  3. Integrated reflector antenna design and analysis

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. L.; Lee, S. W.; Ni, S.; Christensen, M.; Wang, Y. M.

    1993-01-01

    Reflector antenna design is a mature field and most aspects were studied. However, of that most previous work is distinguished by the fact that it is narrow in scope, analyzing only a particular problem under certain conditions. Methods of analysis of this type are not useful for working on real-life problems since they can not handle the many and various types of perturbations of basic antenna design. The idea of an integrated design and analysis is proposed. By broadening the scope of the analysis, it becomes possible to deal with the intricacies attendant with modem reflector antenna design problems. The concept of integrated reflector antenna design is put forward. A number of electromagnetic problems related to reflector antenna design are investigated. Some of these show how tools for reflector antenna design are created. In particular, a method for estimating spillover loss for open-ended waveguide feeds is examined. The problem of calculating and optimizing beam efficiency (an important figure of merit in radiometry applications) is also solved. Other chapters deal with applications of this general analysis. The wide angle scan abilities of reflector antennas is examined and a design is proposed for the ATDRSS triband reflector antenna. The development of a general phased-array pattern computation program is discussed and how the concept of integrated design can be extended to other types of antennas is shown. The conclusions are contained in the final chapter.

  4. Shape control of slack space reflectors using modulated solar pressure.

    PubMed

    Borggräfe, Andreas; Heiligers, Jeannette; Ceriotti, Matteo; McInnes, Colin R

    2015-07-08

    The static deflection profile of a large spin-stabilized space reflector because of solar radiation pressure acting on its surface is investigated. Such a spacecraft consists of a thin reflective circular film, which is deployed from a supporting hoop structure in an untensioned, slack manner. This paper investigates the use of a variable reflectivity distribution across the surface to control the solar pressure force and hence the deflected shape. In this first analysis, the film material is modelled as one-dimensional slack radial strings with no resistance to bending or transverse shear, which enables a semi-analytic derivation of the nominal deflection profile. An inverse method is then used to find the reflectivity distribution that generates a specific, for example, parabolic deflection shape of the strings. Applying these results to a parabolic reflector, short focal distances can be obtained when large slack lengths of the film are employed. The development of such optically controlled reflector films enables future key mission applications such as solar power collection, radio-frequency antennae and optical telescopes.

  5. Shape control of slack space reflectors using modulated solar pressure

    PubMed Central

    Borggräfe, Andreas; Heiligers, Jeannette; Ceriotti, Matteo; McInnes, Colin R.

    2015-01-01

    The static deflection profile of a large spin-stabilized space reflector because of solar radiation pressure acting on its surface is investigated. Such a spacecraft consists of a thin reflective circular film, which is deployed from a supporting hoop structure in an untensioned, slack manner. This paper investigates the use of a variable reflectivity distribution across the surface to control the solar pressure force and hence the deflected shape. In this first analysis, the film material is modelled as one-dimensional slack radial strings with no resistance to bending or transverse shear, which enables a semi-analytic derivation of the nominal deflection profile. An inverse method is then used to find the reflectivity distribution that generates a specific, for example, parabolic deflection shape of the strings. Applying these results to a parabolic reflector, short focal distances can be obtained when large slack lengths of the film are employed. The development of such optically controlled reflector films enables future key mission applications such as solar power collection, radio-frequency antennae and optical telescopes. PMID:26345083

  6. Six-dimensional optical storage utilizing wavelength selective, polarization sensitive, and reflectivity graded Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Liu, Shangqing

    2014-09-01

    An optical storage system which stores data in three spacial and three physical dimensions is designed and investigated. Its feasibility has been demonstrated by theoretical derivation and numerical calculation. This system has comprehensive advantages including very large capacity, ultrafast throughputs, relatively simple structure and compatibility with CD and DVD. It's an actually practicable technology. With two-photon absorption writing/erasing and optical coherence tomography reading, its storage capacity is over 32 Tbytes per DVD sized disk, and its reading speed is over 25 Gbits/s with high signal-to-noise ratio of over 76 dB. The larger capacity of over 1 Pbyte per disk is potential.

  7. Biological polarized light reflectors in stomatopod crustaceans

    NASA Astrophysics Data System (ADS)

    Chiou, Tsyr-Huei; Cronin, Thomas W.; Caldwell, Roy L.; Marshall, Justin

    2005-08-01

    Body parts that can reflect highly polarized light have been found in several species of stomatopod crustaceans (mantis shrimps). These polarized light reflectors can be grossly divided into two major types. The first type, usually red or pink in color to the human visual system, is located within an animal's cuticle. Reflectors of the second type, showing iridescent blue, are located beneath the exoskeleton and thus are unaffected by the molt cycle. We used reflection spectropolarimetry and transmission electron microscopy (TEM) to study the reflective properties and the structures that reflect highly polarized light in stomatopods. For the first type of reflector, the degree of polarization usually changes dramatically, from less than 20% to over 70%, with a change in viewing angle. TEM examination indicates that the polarization reflection is generated by multilayer thin-film interference. The second type of reflector, the blue colored ones, reflects highly polarized light to all viewing angles. However, these reflectors show a slight chromatic change with different viewing angles. TEM sections have revealed that streams of oval-shaped vesicles might be responsible for the production of the polarized light reflection. In all the reflectors we have examined so far, the reflected light is always maximally polarized at around 500 nm, which is close to the wavelength best transmitted by sea water. This suggests that the polarized light reflectors found in stomatopods are well adapted to the underwater environment. We also found that most reflectors produce polarized light with a horizontal e-vector. How these polarized light reflectors are used in stomatopod signaling remains unknown.

  8. Flat plate reflectors for PV collectors

    SciTech Connect

    Spielberg, J.I. )

    1989-01-01

    This article delineates experimentation establishing that fixed reflectors may be used with solar photovoltaic panels to obtain 70% of the efficiency of a dual-axis tracking system. Also described is how the power output of a stationary, non-tracking panel can be easily doubled via the addition of over-sized, overhanging wind reflectors in place of the traditional reflectors of a dual axis system. Discussion covers theory, experimental details, comparison of theory to results, and conclusions drawn. 15 refs., 7 figs., 1 tab.

  9. Bragg optics computer codes for neutron scattering instrument design

    SciTech Connect

    Popovici, M.; Yelon, W.B.; Berliner, R.R.; Stoica, A.D.

    1997-09-01

    Computer codes for neutron crystal spectrometer design, optimization and experiment planning are described. Phase space distributions, linewidths and absolute intensities are calculated by matrix methods in an extension of the Cooper-Nathans resolution function formalism. For modeling the Bragg reflection on bent crystals the lamellar approximation is used. Optimization is done by satisfying conditions of focusing in scattering and in real space, and by numerically maximizing figures of merit. Examples for three-axis and two-axis spectrometers are given.

  10. 49 CFR 393.26 - Requirements for reflectors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... reflectors. (a) Mounting. Reflex reflectors shall be mounted at the locations required by § 393.11. In the... mounting height range. All permanent reflex reflectors shall be securely mounted on a rigid part of the... required to be permanently mounted to a part of the vehicle. Temporary reflex reflectors on...

  11. 49 CFR 393.26 - Requirements for reflectors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... reflectors. (a) Mounting. Reflex reflectors shall be mounted at the locations required by § 393.11. In the... mounting height range. All permanent reflex reflectors shall be securely mounted on a rigid part of the... required to be permanently mounted to a part of the vehicle. Temporary reflex reflectors on...

  12. 49 CFR 393.26 - Requirements for reflectors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... reflectors. (a) Mounting. Reflex reflectors shall be mounted at the locations required by § 393.11. In the... mounting height range. All permanent reflex reflectors shall be securely mounted on a rigid part of the... required to be permanently mounted to a part of the vehicle. Temporary reflex reflectors on...

  13. 49 CFR 393.26 - Requirements for reflectors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... reflectors. (a) Mounting. Reflex reflectors shall be mounted at the locations required by § 393.11. In the... mounting height range. All permanent reflex reflectors shall be securely mounted on a rigid part of the... required to be permanently mounted to a part of the vehicle. Temporary reflex reflectors on...

  14. 49 CFR 393.26 - Requirements for reflectors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... reflectors. (a) Mounting. Reflex reflectors shall be mounted at the locations required by § 393.11. In the... mounting height range. All permanent reflex reflectors shall be securely mounted on a rigid part of the... required to be permanently mounted to a part of the vehicle. Temporary reflex reflectors on...

  15. Focal region fields of distorted reflectors

    NASA Technical Reports Server (NTRS)

    Buris, N. E.; Kauffman, J. F.

    1988-01-01

    The problem of the focal region fields scattered by an arbitrary surface reflector under uniform plane wave illumination is solved. The physical optics (PO) approximation is used to calculate the current induced on the reflector. The surface of the reflector is described by a number of triangular domain-wise 5th degree bivariate polynomials. A 2-dimensional Gaussian quadrature is employed to numerically evaluate the integral expressions of the scattered fields. No Freshnel or Fraunhofer zone approximations are made. The relation of the focal fields problem to surface compensation techniques and other applications are mentioned. Several examples of distorted parabolic reflectors are presented. The computer code developed is included, together with instructions on its usage.

  16. Ellipsoidal optical reflectors reproduced by electroforming

    NASA Technical Reports Server (NTRS)

    Hungerford, W. J.; Larmer, J. W.; Levinsohn, M.

    1964-01-01

    An accurately dimensioned convex ellipsoidal surface, which will become a master after polishing, is fabricated from 316L stainless steel. When polishing of the master is completed, it is suspended in a modified watt bath for electroforming of nickel reflectors.

  17. Pactruss support structure for precision segmented reflectors

    NASA Technical Reports Server (NTRS)

    Hedgepeth, John M.

    1989-01-01

    The application of the Pactruss deployable structure to the support of large paraboloidal reflectors of very high precision was studied. The Pactruss concept, originally conceived for the Space Station truss, is shown to be suitable for use in a triangular arrangement to support a reflector surface composed of hexagonal reflector panels. A hybrid of Pactruss structural and deployable single-fold beams is shown to accommodate a center body. A minor alteration in the geometry is in order to avoid lockup during deployment. To assess the capability of the hybrid Pactruss structure, an example truss supporting a full-scale (20 meter diameter) infrared telescope was analyzed for static and dynamic performance. A truss structure weighing 800 kilograms gave adequate support to a reflector surface weighing 3,000 kilograms.

  18. Design concepts for large antenna reflectors

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.

    1981-01-01

    A type of antenna reflector was studied in which a stiff structure is constructed to hold a membrane like reflector mesh in the correct position. An important basic restriction is that the mesh be controlled only by the structure and that no additional local shaping be employed. Furthermore, attention is confined to structures in which no adjustments would be made on assembly. Primary attention is given to the tetrahedral truss configuration because of its outstanding stiffness and dimensional stability.

  19. Aberrations of ellipsoidal reflectors for unit magnification.

    PubMed

    Mielenz, K D

    1974-12-01

    Ellipsoidal reflectors are useful for the 1:1 imaging of small objects without spherical and chromatic aberration. The magnitude of the off-axis aberrations of such reflectors is computed by application of Fermat's principle to the Hamiltonian point characteristic. The limiting form of the mirror aperture for which these aberrations do not exceed a set tolerance is an ellipse whose semiaxes depend on object size and angle of incidence.

  20. Wideband Waveguide Acousto-Optic Bragg Cell.

    DTIC Science & Technology

    The results of an effort to improve the performance specifications of acousto - optic Bragg cells are reported. Various configurations of multiple...would provide a 700 MHz acousto - optic bandwidth. Investigated were Bragg cells fabricated on Ti diffused LiNb03 waveguides as well as Ti diffused LiNb03

  1. Climate Change Impacts on Fort Bragg, NC

    DTIC Science & Technology

    2013-10-15

    41 A4 Fort Bragg, Bio 4 — Temperature Seasonality (SD...scenarios ...................... 49 A17 Fort Bragg, Bio 15 — Precipitation Seasonality (Coefficient of Variation), all GCMs and scenarios...range/temperature annual range) BIO4 = Temperature Seasonality (standard deviation *100) (C° x 10) BIO5 = Max Temperature of Warmest Month BIO6

  2. Cascaded Bragg scattering in fiber optics.

    PubMed

    Xu, Y Q; Erkintalo, M; Genty, G; Murdoch, S G

    2013-01-15

    We report on a theoretical and experimental study of cascaded Bragg scattering in fiber optics. We show that the usual energy-momentum conservation of Bragg scattering can be considerably relaxed via cascade-induced phase-matching. Experimentally we demonstrate frequency translation over six- and 11-fold cascades, in excellent agreement with derived phase-matching conditions.

  3. Solar central receiver heliostat reflector assembly

    DOEpatents

    Horton, Richard H.; Zdeb, John J.

    1980-01-01

    A heliostat reflector assembly for a solar central receiver system comprises a light-weight, readily assemblable frame which supports a sheet of stretchable reflective material and includes mechanism for selectively applying tension to and positioning the sheet to stretch it to optical flatness. The frame is mounted on and supported by a pipe pedestal assembly that, in turn, is installed in the ground. The frame is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e. central receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The frame may include a built-in system for testing for optical flatness of the reflector. The preferable geometric configuration of the reflector is octagonal; however, it may be other shapes, such as hexagonal, pentagonal or square. Several different embodiments of means for tensioning and positioning the reflector to achieve optical flatness are disclosed. The reflector assembly is based on the stretch frame concept which provides an extremely light-weight, simple, low-cost reflector assembly that may be driven for positioning and tracking by a light-weight, inexpensive drive system.

  4. Solar central receiver heliostat reflector assembly

    SciTech Connect

    Horton, R.H.; Zdeb, J.J.

    1980-06-24

    A heliostat reflector assembly for a solar central receiver system comprises a light-weight, readily assemblable frame which supports a sheet of stretchable reflective material and includes a mechanism for selectively applying tension to and positioning the sheet to stretch it to optical flatness. The frame is mounted on and supported by a pipe pedestal assembly that, in turn, is installed in the ground. The frame is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e. central receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The frame may include a built-in system for testing for optical flatness of the reflector. The preferable geometric configuration of the reflector is octagonal; however, it may be other shapes, such as hexagonal, pentagonal or square. Several different embodiments of means for tensioning and positioning the reflector to achieve optical flatness are disclosed. The reflector assembly is based on the stretch frame concept which provides an extremely light-weight, simple, low-cost reflector assembly that may be driven for positioning and tracking by a light-weight, inexpensive drive system. 14 figs.

  5. Solar central receiver heliostat reflector assembly

    SciTech Connect

    Horton, R.H.; Zdeb, J.J.

    1980-06-24

    A heliostat reflector assembly for a solar central receiver system comprises a light-weight, readily assemblable frame which supports a sheet of stretchable reflective material and includes mechanism for selectively applying tension to and positioning the sheet to stretch it to optical flatness. The frame is mounted on and supported by a pipe pedestal assembly that, in turn, is installed in the ground. The frame is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e., central receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The frame may include a built-in system for testing for optical flatness of the reflector. The preferable geometric configuration of the reflector is octagonal; however, it may be other shapes, such as hexagonal, pentagonal or square. Several different embodiments of means for tensioning and positioning the reflector to achieve optical flatness are disclosed. The reflector assembly is based on the stretch frame concept which provides an extremely light-weight, simple, low-cost reflector assembly that may be driven for positioning and tracking by a light-weight, inexpensive drive system. 14 claims.

  6. Polarization properties of reflector antennas used as radio telescopes

    NASA Astrophysics Data System (ADS)

    Ng, T.; Landecker, T. L.; Cazzolato, F.; Routledge, D.; Gray, A. D.; Reid, R. I.; Veidt, B. G.

    2005-10-01

    The distribution of cross polarization across the main beam and near sidelobes of a reflector antenna is calculated. Results are expressed in terms relevant to imaging in radio astronomy, using Stokes parameters, as plots of instrumental polarization Q/I, U/I, and V/I, showing conversion of total intensity of a signal which is unpolarized into apparent linear and circular polarization. The calculations use GRASP8, software that is based on physical optics and the physical theory of diffraction. For purposes of calculation, the symmetrical paraboloidal reflector (diameter ~40 wavelengths) is fed at the prime focus with a linearly polarized signal. Computed radiation patterns at a number of feed orientations are averaged to establish the antenna response to an unpolarized radio astronomy signal. The results of the computations are consistent with measurements of instrumental polarization of the Dominion Radio Astrophysical Observatory Synthesis Telescope at 1420 MHz made using unpolarized radio sources. For this telescope, the dominant source of instrumental polarization across the field is the cross polarization of the feed. The next most significant effect is scattering by the feed struts; both three-strut and four-strut configurations are examined. Struts affect performance in linear polarization but also introduce some instrumental circular polarization. The contribution to instrumental polarization from the reflector itself is comparatively small. Roughness of the reflector surface has relatively little effect in the main beam in Q and U but introduces V and also randomizes the polarization of the sidelobes. In all cases considered, the computations show that the first and subsequent sidelobes are highly polarized, with levels of instrumental polarization up to 50%.

  7. Design of reflector contours to satisfy photometric criteria using physically realizable light sources

    NASA Astrophysics Data System (ADS)

    Spencer, Domina E.

    2001-11-01

    Traditionally reflector design has been confined to the use of surfaces defined in terms of conic sections, assuming that all light sources can be considered to be point sources. In the middle of the twentieth century, it was recognized that major improvements could be made if the shape of the reflector was designed to produce a desired distribution of light form an actual light source. Cylindrical reflectors were created which illuminated airport runways using fluorescent lamps in such a way that pilots could make visual landings safely even in fog. These reflector contours were called macrofocal parabolic cylinders. Other new reflector contours introduced were macrofocal elliptic cylinders which confined the light to long rectangles. Surfaces of revolution the fourth degree were also developed which made possible uniform floodlighting of a circular region. These were called horned and peaked quartics. The optimum solution of the automotive head lighting problem has not yet been found. The paper concludes with a discussion of the possibility of developing reflectors which are neither cylindrical nor rotational but will produce the optimum field of view for the automobile driver both in clear weather and in fog.

  8. The Effect of Boundary Support and Reflector Dimensions on Inflatable Parabolic Antenna Performance

    NASA Technical Reports Server (NTRS)

    Coleman, Michael J.; Baginski, Frank; Romanofsky, Robert R.

    2011-01-01

    For parabolic antennas with sufficient surface accuracy, more power can be radiated with a larger aperture size. This paper explores the performance of antennas of various size and reflector depth. The particular focus is on a large inflatable elastic antenna reflector that is supported about its perimeter by a set of elastic tendons and is subjected to a constant hydrostatic pressure. The surface accuracy of the antenna is measured by an RMS calculation, while the reflector phase error component of the efficiency is determined by computing the power density at boresight. In the analysis, the calculation of antenna efficiency is not based on the Ruze Equation. Hence, no assumption regarding the distribution of the reflector surface distortions is presumed. The reflector surface is modeled as an isotropic elastic membrane using a linear stress-strain constitutive relation. Three types of antenna reflector construction are considered: one molded to an ideal parabolic form and two different flat panel design patterns. The flat panel surfaces are constructed by seaming together panels in a manner that the desired parabolic shape is approximately attained after pressurization. Numerical solutions of the model problem are calculated under a variety of conditions in order to estimate the accuracy and efficiency of these antenna systems. In the case of the flat panel constructions, several different cutting patterns are analyzed in order to determine an optimal cutting strategy.

  9. Fiber Bragg grating multichemical sensor

    NASA Astrophysics Data System (ADS)

    Boland, Patrick; Sethuraman, Gopakumar; Mendez, Alexis; Graver, Tom; Pestov, Dmitry; Tait, Gregory

    2006-10-01

    Fiber optic-based chemical sensors are created by coating fiber Bragg gratings (FBG) with the glassy polymer cellulose acetate (CA). CA is a polymeric matrix capable of localizing or concentrating chemical constituents within its structure. Some typical properties of CA include good rigidity (high modulus) and high transparency. With CA acting as a sensor element, immersion of the gratings in various chemical solutions causes the polymer to expand and mechanically strain the glass fiber. This elongation of the fiber sections containing the grating causes a corresponding change in the periodicity of the grating that subsequently results in a change in the Bragg-reflected wavelengths. A high-resolution tunable fiber ring laser interrogator is used to obtain room-temperature reflectance spectrograms from two fiber gratings at two different wavelengths - 1540nm and 1550nm. The graphical representation from this device enables the display of spectral shape, and not merely shifts in FBG central wavelength, thereby allowing for more comprehensive analysis of how different physical conditions cause the reflectance profile to move and alter overall form. Wavelength shifts on the order of 1 to 80 pm in the FBG transition edges and changes in spectral shape are observed in both sensors upon immersion in a diverse selection of chemical analytes.

  10. Advanced Fibre Bragg Grating and Microfibre Bragg Grating Fabrication Techniques

    NASA Astrophysics Data System (ADS)

    Chung, Kit Man

    Fibre Bragg gratings (FBGs) have become a very important technology for communication systems and fibre optic sensing. Typically, FBGs are less than 10-mm long and are fabricated using fused silica uniform phase masks which become more expensive for longer length or non-uniform pitch. Generally, interference UV laser beams are employed to make long or complex FBGs, and this technique introduces critical precision and control issues. In this work, we demonstrate an advanced FBG fabrication system that enables the writing of long and complex gratings in optical fibres with virtually any apodisation profile, local phase and Bragg wavelength using a novel optical design in which the incident angles of two UV beams onto an optical fibre can be adjusted simultaneously by moving just one optical component, instead of two optics employed in earlier configurations, to vary the grating pitch. The key advantage of the grating fabrication system is that complex gratings can be fabricated by controlling the linear movements of two translation stages. In addition to the study of advanced grating fabrication technique, we also focus on the inscription of FBGs written in optical fibres with a cladding diameter of several ten's of microns. Fabrication of microfibres was investigated using a sophisticated tapering method. We also proposed a simple but practical technique to filter out the higher order modes reflected from the FBG written in microfibres via a linear taper region while the fundamental mode re-couples to the core. By using this technique, reflection from the microfibre Bragg grating (MFBG) can be effectively single mode, simplifying the demultiplexing and demodulation processes. MFBG exhibits high sensitivity to contact force and an MFBG-based force sensor was also constructed and tested to investigate their suitability for use as an invasive surgery device. Performance of the contact force sensor packaged in a conforming elastomer material compares favourably to one

  11. High-efficiency FEL-oscillator with Bragg resonator operated in reversed guide field regime

    SciTech Connect

    Kaminsky, A.K.; Sedykh, S.N.; Sergeyev, A.P.

    1995-12-31

    The aim of the present work was to develop a narrow-band FEL-oscillator working in millimeter wavelength with, high efficiency. It looked promising to combine the high selective property of Bragg resonator with high efficiency and other advantages of FEL operation in the reversed guide-field regime. An experimental study of the FEL was performed using lilac LIU-3000 (JINR, Dubna) with the electron energy of 1 MeV, beam current up to 200 A and pulse duration of 200 ns. The beam was injected into the internction region with guide magnetic field of 2.9 kGs. Transverse oscillations of electrons were pumped by the helical wiggler with the period length of 6 cm and the field slowly up-tapering over the initial 6 periods. The FEI electrodynamic system consisted of a circular waveguide with diameter 20 mm and two Bragg reflectors. The H wave of the circular waveguide was shown for operation. Two effective feedback waves were observed in {open_quotes}cold{close_quotes} electrodynamic measurement in correspondence with calculations; the E wave near the frequency of 31. 5 GHz and the E wave - 37.5 GHz. The width of the both reflection resonances was about 2%. In {open_quotes}hot{close_quotes} experiments the radiation on the designed H wave and frequencies corresponding to the both feedback waves was registered separately. Selection of the frequency was realized by varying of the wiggler field strength. The spectrum was measured with a set of the cut--off waveguide filters with inaccuracy less than 2%. Calibrated Semiconductor detectors wire used to measure the radiation power. The radiation with the frequencies of 37.5 and 31.5 GHz was observed in vicinity of the wiggler field amplitude of 2.5 kGs. The measured spectrum width of the output FEL-oscillator radiation did not exceed the width of the Bragg reflector resonances for the both feedback waves.

  12. Degradation of the Bragg peak due to inhomogeneities.

    PubMed

    Urie, M; Goitein, M; Holley, W R; Chen, G T

    1986-01-01

    The rapid fall-off of dose at the end of range of heavy charged particle beams has the potential in therapeutic applications of sparing critical structures just distal to the target volume. Here we explored the effects of highly inhomogeneous regions on this desirable depth-dose characteristic. The proton depth-dose distribution behind a lucite-air interface parallel to the beam was bimodal, indicating the presence of two groups of protons with different residual ranges, creating a step-like depth-dose distribution at the end of range. The residual ranges became more spread out as the interface was angled at 3 degrees, and still more at 6 degrees, to the direction of the beam. A second experiment showed little significant effect on the distal depth-dose of protons having passed through a mosaic of teflon and lucite. Anatomic studies demonstrated significant effects of complex fine inhomogeneities on the end of range characteristics. Monoenergetic protons passing through the petrous ridges and mastoid air cells in the base of skull showed a dramatic degradation of the distal Bragg peak. In beams with spread out Bragg peaks passing through regions of the base of skull, the distal fall-off from 90 to 20% dose was increased from its nominal 6 to well over 32 mm. Heavy ions showed a corresponding degradation in their ends of range. In the worst case in the base of skull region, a monoenergetic neon beam showed a broadening of the full width at half maximum of the Bragg peak to over 15 mm (compared with 4 mm in a homogeneous unit density medium). A similar effect was found with carbon ions in the abdomen, where the full width at half maximum of the Bragg peak (nominally 5.5 mm) was found to be greater than 25 mm behind gas-soft-tissue interfaces. We address the implications of these data for dose computation with heavy charged particles.

  13. Ionoacoustic characterization of the proton Bragg peak with submillimeter accuracy

    SciTech Connect

    Assmann, W. Reinhardt, S.; Lehrack, S.; Edlich, A.; Thirolf, P. G.; Parodi, K.; Kellnberger, S.; Omar, M.; Ntziachristos, V.; Moser, M.; Dollinger, G.

    2015-02-15

    Purpose: Range verification in ion beam therapy relies to date on nuclear imaging techniques which require complex and costly detector systems. A different approach is the detection of thermoacoustic signals that are generated due to localized energy loss of ion beams in tissue (ionoacoustics). Aim of this work was to study experimentally the achievable position resolution of ionoacoustics under idealized conditions using high frequency ultrasonic transducers and a specifically selected probing beam. Methods: A water phantom was irradiated by a pulsed 20 MeV proton beam with varying pulse intensity and length. The acoustic signal of single proton pulses was measured by different PZT-based ultrasound detectors (3.5 and 10 MHz central frequencies). The proton dose distribution in water was calculated by Geant4 and used as input for simulation of the generated acoustic wave by the matlab toolbox k-WAVE. Results: In measurements from this study, a clear signal of the Bragg peak was observed for an energy deposition as low as 10{sup 12} eV. The signal amplitude showed a linear increase with particle number per pulse and thus, dose. Bragg peak position measurements were reproducible within ±30 μm and agreed with Geant4 simulations to better than 100 μm. The ionoacoustic signal pattern allowed for a detailed analysis of the Bragg peak and could be well reproduced by k-WAVE simulations. Conclusions: The authors have studied the ionoacoustic signal of the Bragg peak in experiments using a 20 MeV proton beam with its correspondingly localized energy deposition, demonstrating submillimeter position resolution and providing a deep insight in the correlation between the acoustic signal and Bragg peak shape. These results, together with earlier experiments and new simulations (including the results in this study) at higher energies, suggest ionoacoustics as a technique for range verification in particle therapy at locations, where the tumor can be localized by ultrasound

  14. Cross-fiber Bragg grating transducer

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia (Inventor); Zheng, Jianli (Inventor); Lavarias, Arnel (Inventor)

    2000-01-01

    A transducer has been invented that uses specially-oriented gratings in waveguide a manner that allows the simultaneous measurement of physical phenomena (such as shear force, strain and temperature) in a single sensing element. The invention has a highly sensitive, linear response and also has directional sensitivity with regard to strain. The transducer has a waveguide with a longitudinal axis as well as two Bragg gratings. The transducer has a first Bragg grating associated with the waveguide that has an angular orientation .theta..sub.a relative to a perpendicular to the longitudinal axis such that 0.degree.<.theta..sub.a <.theta..sub.max. The second Bragg grating is associated with the waveguide in such a way that the angular orientation .theta..sub.b of the grating relative to a perpendicular to the longitudinal axis is (360.degree.-.theta..sub.max)<.theta..sub.b <360.degree.. The first Bragg grating can have a periodicity .LAMBDA..sub.a and the second Bragg grating can have a periodicity .LAMBDA..sub.b such that the periodicity .LAMBDA..sub.a of the first Bragg grating does not equal the periodicity .LAMBDA..sub.b of the second Bragg grating. The angle of the gratings can be such that .theta..sub.a =360.degree.-.theta..sub.b. The waveguide can assume a variety of configurations, including an optical fiber, a rectangular waveguide and a planar waveguide. The waveguide can be fabricated of a variety of materials, including silica and polymer material.

  15. Interpolation solutions for the problem of synthesis of dual-shaped offset reflector antennas

    NASA Technical Reports Server (NTRS)

    Jervase, Joseph A.; Mittra, Raj; Galindo-Israel, Victor; Imbriale, W.

    1989-01-01

    Synthesis of dual-shaped offset reflector antennas to control the exit aperture distribution of amplitude and phase has received considerable attention in recent years. For a given feed illumination and desired aperture field distribution, an exact formulation of the problem of simultaneously synthesizing the shapes of the sub and main reflectors was presented recently by Galindo-Israel et al. (1987) in terms of a set of nonlinear first-order differential equations. In this paper, a numerical approach to solving these equations is discussed which circumvents some of the difficulties encountered by Galindo-Israel et al., particularly for small values of theta.

  16. Hyperbolic Metamaterials with Bragg Polaritons.

    PubMed

    Sedov, Evgeny S; Iorsh, I V; Arakelian, S M; Alodjants, A P; Kavokin, Alexey

    2015-06-12

    We propose a novel mechanism for designing quantum hyperbolic metamaterials with the use of semiconductor Bragg mirrors containing periodically arranged quantum wells. The hyperbolic dispersion of exciton-polariton modes is realized near the top of the first allowed photonic miniband in such a structure which leads to the formation of exciton-polariton X waves. Exciton-light coupling provides a resonant nonlinearity which leads to nontrivial topologic solutions. We predict the formation of low amplitude spatially localized oscillatory structures: oscillons described by kink shaped solutions of the effective Ginzburg-Landau-Higgs equation. The oscillons have direct analogies in gravitational theory. We discuss implementation of exciton-polariton Higgs fields for the Schrödinger cat state generation.

  17. Hyperbolic Metamaterials with Bragg Polaritons

    NASA Astrophysics Data System (ADS)

    Sedov, Evgeny S.; Iorsh, I. V.; Arakelian, S. M.; Alodjants, A. P.; Kavokin, Alexey

    2015-06-01

    We propose a novel mechanism for designing quantum hyperbolic metamaterials with the use of semiconductor Bragg mirrors containing periodically arranged quantum wells. The hyperbolic dispersion of exciton-polariton modes is realized near the top of the first allowed photonic miniband in such a structure which leads to the formation of exciton-polariton X waves. Exciton-light coupling provides a resonant nonlinearity which leads to nontrivial topologic solutions. We predict the formation of low amplitude spatially localized oscillatory structures: oscillons described by kink shaped solutions of the effective Ginzburg-Landau-Higgs equation. The oscillons have direct analogies in gravitational theory. We discuss implementation of exciton-polariton Higgs fields for the Schrödinger cat state generation.

  18. Bragg fiber design for transparent metro networks.

    PubMed

    Pal, Bishnu; Dasgupta, Sonali; Shenoy, M

    2005-01-24

    A Bragg fiber design with potential for applications in metro networks is proposed for the first time. The average dispersion of the designed fiber is 10 ps/km.nm in the C-band, and in view of its estimated loss being very low, such a Bragg fiber should enable ultra low-loss DWDM transmission over 100 km at 10 Gbits/s. A Bragg fiber based metro network is an attractive proposition because it would not require any amplifier and dispersion compensator for distances approximately 100 km. This should significantly reduce installation and operational cost, and complexity of a metro network.

  19. Bragg spectroscopy of strongly interacting Fermi gases

    NASA Astrophysics Data System (ADS)

    Lingham, M. G.; Fenech, K.; Peppler, T.; Hoinka, S.; Dyke, P.; Hannaford, P.; Vale, C. J.

    2016-10-01

    This article provides an overview of recent developments and emerging topics in the study of two-component Fermi gases using Bragg spectroscopy. Bragg scattering is achieved by exposing a gas to two intersecting laser beams with a slight frequency difference and measuring the momentum transferred to the atoms. By varying the Bragg laser detuning, it is possible to measure either the density or spin response functions which characterize the basic excitations present in the gas. Specifically, one can measure properties such as the dynamic and static structure factors, Tan's universal contact parameter and observe signatures for the onset of pair condensation locally within a gas.

  20. Recent BeO-reflector-controlled reactor experiments in ZPPR

    SciTech Connect

    McFarlane, H.F.; Brumbach, S.B.; Carpenter, S.G.; Collins, P.J.; McKnight, R.D.

    1986-01-01

    Integral reactor physics measurements were performed on a BeO-reflected fast reactor assembly in the ZPPR facility during January and February of 1985. The measurements emphasized power distributions and reflector control worths in two different critical states. The measurements have been analyzed using three-dimensional deterministic and Monte Carlo methods and the ENDF/B-V.2 nuclear data library. Together the measurements and analyses form a modern, reliable, benchmark data set for testing calculational methods that will be used in predicting some of the design parameters for future space reactors.

  1. Enhanced imaging of reflector antenna surface distortion using microwave holography

    NASA Technical Reports Server (NTRS)

    Gilmore, Sean W.; Rudduck, Roger C.

    1989-01-01

    Two signal processing techniques are discussed that improve the accuracy of a microwave holographic measurement by removing unwanted signals from the aperture distribution: pattern simulation and subtraction, and time domain filtering. Pattern simulation and subtraction involves modeling unwanted scattering mechanisms and then removing them from the measured far-field data. Measurements taken on a focal point geometry and a Cassegrain geometry at 11 GHz were processed by the holographic analysis system. Pattern simulation and subtraction was applied to both geometries. Surface deformation profiles generated for the Cassegrain antenna by this system were compared to an optical measurement of the main reflector surface.

  2. High frequency strain measurements with fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Koch, J.; Angelmahr, M.; Schade, W.

    2015-05-01

    In recent years fiber Bragg grating sensors gained interest in structural health monitoring and concepts for smart structures. They are small, lightweight, and immune to electromagnetic interference. Using multiplexing techniques, several sensors can be addressed by a single fiber. Therefore, well-established structures and materials in industrial applications can be easily equipped with fiber optical sensors with marginal influence on their mechanical properties. In return, critical components can be monitored in real-time, leading to reduced maintenance intervals and a great reduction of costs. Beside of generally condition monitoring, the localization of failures in a structure is a desired feature of the condition monitoring system. Detecting the acoustic emission of a sudden event, its place of origin can be determined by analyzing the delay time of distributed sensor signals. To achieve high localization accuracies for the detection of cracks, breaks, and impacts high sampling rates combined with the simultaneous interrogation of several fiber Bragg grating sensors are required. In this article a fiber Bragg grating interrogator for high frequency measurements up to the megahertz range is presented. The interrogator is based on a passive wavelength to intensity conversion applying arrayed waveguide gratings. Light power fluctuations are suppressed by a differential data evaluation, leading to a reduced signal-to-noise ratio and a low strain detection limit. The measurement system is used to detect, inter alia, wire breaks in steel wire ropes for dockside cranes.

  3. InP/InGaAsP electrically controlled Bragg modulator for over 40-Gbit/s modulation speed

    NASA Astrophysics Data System (ADS)

    De Laurentis, M.; De Paola, F. M.; d'Alessandro, V.; Irace, A.; Breglio, G.

    2006-07-01

    An electrically induced Bragg ReflectorModulator 2.5 mm long has been designed in InP/InGaAsP rib waveguide. By means of an in house code based on a suitable simulation strategy which takes advantage of state-of-the-art electronic simulator such as Silvaco/ATLAS and a general purpose FEM solver such as Comsol Multiphysics, predictions of DC response the transient analysis had been make. The code allows us to use the same grid to evaluate all the quantity of interest, the effective refractive index included. The simulations results show that such a modulator can theoretically reach ultra 40 GHz switching speed.

  4. Sputtered SiO2 as low acoustic impedance material for Bragg mirror fabrication in BAW resonators.

    PubMed

    Olivares, Jimena; Wegmann, Enrique; Capilla, José; Iborra, Enrique; Clement, Marta; Vergara, Lucía; Aigner, Robert

    2010-01-01

    In this paper we describe the procedure to sputter low acoustic impedance SiO(2) films to be used as a low acoustic impedance layer in Bragg mirrors for BAW resonators. The composition and structure of the material are assessed through infrared absorption spectroscopy. The acoustic properties of the films (mass density and sound velocity) are assessed through X-ray reflectometry and picosecond acoustic spectroscopy. A second measurement of the sound velocity is achieved through the analysis of the longitudinal lambda/2 resonance that appears in these silicon oxide films when used as uppermost layer of an acoustic reflector placed under an AlN-based resonator.

  5. Advanced composite materials for precision segmented reflectors

    NASA Technical Reports Server (NTRS)

    Stein, Bland A.; Bowles, David E.

    1988-01-01

    The objective in the NASA Precision Segmented Reflector (PSR) project is to develop new composite material concepts for highly stable and durable reflectors with precision surfaces. The project focuses on alternate material concepts such as the development of new low coefficient of thermal expansion resins as matrices for graphite fiber reinforced composites, quartz fiber reinforced epoxies, and graphite reinforced glass. Low residual stress fabrication methods will be developed. When coupon specimens of these new material concepts have demonstrated the required surface accuracies and resistance to thermal distortion and microcracking, reflector panels will be fabricated and tested in simulated space environments. An important part of the program is the analytical modeling of environmental stability of these new composite materials concepts through constitutive equation development, modeling of microdamage in the composite matrix, and prediction of long term stability (including viscoelasticity). These analyses include both closed form and finite element solutions at the micro and macro levels.

  6. Advanced deployable reflectors for communications satellites

    NASA Astrophysics Data System (ADS)

    Lowe, Elvin; Josephs, Michael; Hedgepeth, John

    1993-02-01

    This paper discusses a concept for a deployable mesh reflector for large spacecraft antennas and the processes used in design, fabrication and testing. A set of overall reflector requirements such as stowed volume, deployed diameter and RF loss derived from system specifications are presented. The development of design and analysis tools to allow parametric studies such as facet size, number of ribs and number of rib segments is discussed. CATIA (a commercially available three-dimensional design and analysis tool) is used to perform kinematic analyses as well as to establish the database to be used by the several groups participating in the development is examined. Results of trade studies performed to reduce cost with minimum risk to product delivery are included. A thirty foot reflector has been built and tested.

  7. Advanced reflector materials for solar concentrators

    SciTech Connect

    Jorgensen, G; Williams, T; Wendelin, T

    1994-10-01

    This paper describes the research and development program at the U.S. National Renewable Energy Laboratory (NREL) in advanced reflector materials for solar concentrators. NREL's research thrust is to develop solar reflector materials that maintain high specular reflectance for extended lifetimes under outdoor service conditions and whose cost is significantly lower than existing products. Much of this work has been in collaboration with private-sector companies that have extensive expertise in vacuum-coating and polymer-film technologies. Significant progress and other promising developments will be discussed. These are expected to lead to additional improvements needed to commercialize solar thermal concentration systems and make them economically attractive to the solar manufacturing industry. To explicitly demonstrate the optical durability of candidate reflector materials in real-world service conditions, a network of instrumented outdoor exposure sites has been activated.

  8. Test progress on the electrostatic membrane reflector

    NASA Technical Reports Server (NTRS)

    Mihora, D. J.

    1981-01-01

    An extemely lightweight type of precision reflector antenna, being developed for potential deployment from the space shuttle, uses electrostatic forces to tension a thin membrane and form it into a concave reflector surface. The typical shuttle-deployed antenna would have a diameter of 100 meters and an RMS surface smoothness of 10 to 1 mm for operation at 1 to 10 GHz. NASA Langley Research Center built and is currently testing a subscale (16 foot diameter) model of the membrane reflector portion of such an antenna. Preliminary test results and principal factors affecting surface quality are addressed. Factors included are the effect of the perimeter boundary, splicing of the membrane, the long-scale smoothness of commercial membranes, and the spatial controllability of the membrane using voltage adjustments to alter the electrostatic pressure. Only readily available commercial membranes are considered.

  9. The Freeform Reflector for Uniform Rectangular Illumination

    NASA Astrophysics Data System (ADS)

    Ding, Yi; Gu, Pei-Fu; Zheng, Zhen-Rong

    2007-12-01

    Energy from the source was rearranged through reflection by a freeform reflector, in order to get uniform rectangular illumination. The numerical results of partial differential equation sets were investigated to obtain the freeform reflector and these equations were obtained upon the determination of the characters of source and the desired illumination. As an example, a light emitting diode (LED) with a Lambertian light-emitting surface of 1 × 1 mm2 and a viewing angle of 120° was applied as the source, and the target plane was a 4:3 rectangle with uniform illumination. The projective length of the reflector on x-axis is about 23 mm, and on y-axis is about 21 mm. Thus the illumination system is very compact.

  10. Composite materials for precision space reflector panels

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.; Funk, Joan G.; Bowles, David E.; Towell, Timothy W.; Connell, John W.

    1992-01-01

    One of the critical technology needs of large precision reflectors for future astrophysical and optical communications satellites lies in the area of structural materials. Results from a materials research and development program at NASA Langley Research Center to provide materials for these reflector applications are discussed. Advanced materials that meet the reflector panel requirements are identified, and thermal, mechanical and durability properties of candidate materials after exposure to simulated space environments are compared. A parabolic, graphite-phenolic honeycomb composite panel having a surface accuracy of 70.8 microinches rms and an areal weight of 1.17 lbm/sq ft was fabricated with T50/ERL1962 facesheets, a PAEI thermoplastic surface film, and Al and SiO(x) coatings.

  11. Advanced reflector materials for solar concentrators

    NASA Astrophysics Data System (ADS)

    Jorgensen, Gary; Williams, Tom; Wendelin, Tim

    1994-10-01

    This paper describes the research and development at the US National Renewable Energy Laboratory (NREL) in advanced reflector materials for solar concentrators. NREL's research thrust is to develop solar reflector materials that maintain high specular reflectance for extended lifetimes under outdoor service conditions and whose cost is significantly lower than existing products. Much of this work has been in collaboration with private-sector companies that have extensive expertise in vacuum-coating and polymer-film technologies. Significant progress and other promising developments will be discussed. These are expected to lead to additional improvements needed to commercialize solar thermal concentration systems and make them economically attractive to the solar manufacturing industry. To explicitly demonstrate the optical durability of candidate reflector materials in real-world service conditions, a network of instrumented outdoor exposure sites has been activated.

  12. Precision atomic gravimeter based on Bragg diffraction

    NASA Astrophysics Data System (ADS)

    Altin, P. A.; Johnsson, M. T.; Negnevitsky, V.; Dennis, G. R.; Anderson, R. P.; Debs, J. E.; Szigeti, S. S.; Hardman, K. S.; Bennetts, S.; McDonald, G. D.; Turner, L. D.; Close, J. D.; Robins, N. P.

    2013-02-01

    We present a precision gravimeter based on coherent Bragg diffraction of freely falling cold atoms. Traditionally, atomic gravimeters have used stimulated Raman transitions to separate clouds in momentum space by driving transitions between two internal atomic states. Bragg interferometers utilize only a single internal state, and can therefore be less susceptible to environmental perturbations. Here we show that atoms extracted from a magneto-optical trap using an accelerating optical lattice are a suitable source for a Bragg atom interferometer, allowing efficient beamsplitting and subsequent separation of momentum states for detection. Despite the inherently multi-state nature of atom diffraction, we are able to build a Mach-Zehnder interferometer using Bragg scattering which achieves a sensitivity to the gravitational acceleration of Δg/g = 2.7 × 10-9 with an integration time of 1000 s. The device can also be converted to a gravity gradiometer by a simple modification of the light pulse sequence.

  13. Nuclear Transmutations in HFIR's Beryllium Reflector and Their Impact on Reactor Operation and Reflector Disposal

    SciTech Connect

    Chandler, David; Maldonado, G Ivan; Primm, Trent; Proctor, Larry Duane

    2012-01-01

    The High Flux Isotope Reactor located at the Oak Ridge National Laboratory utilizes a large cylindrical beryllium reflector that is subdivided into three concentric regions and encompasses the compact reactor core. Nuclear transmutations caused by neutron activation occur in the beryllium reflector regions, which leads to unwanted neutron absorbing and radiation emitting isotopes. During the past year, two topics related to the HFIR beryllium reflector were reviewed. The first topic included studying the neutron poison (helium-3 and lithium-6) buildup in the reflector regions and its affect on beginning-of-cycle reactivity. A new methodology was developed to predict the reactivity impact and estimated symmetrical critical control element positions as a function of outage time between cycles due to helium-3 buildup and was shown to be in better agreement with actual symmetrical critical control element position data than the current methodology. The second topic included studying the composition of the beryllium reflector regions at discharge as well as during decay to assess the viability of transporting, storing, and ultimately disposing the reflector regions currently stored in the spent fuel pool. The post-irradiation curie inventories were used to determine whether the reflector regions are discharged as transuranic waste or become transuranic waste during the decay period for disposal purposes and to determine the nuclear hazard category, which may affect the controls invoked for transportation and temporary storage. Two of the reflector regions were determined to be transuranic waste at discharge and the other region was determined to become transuranic waste in less than 2 years after being discharged due to the initial uranium content (0.0044 weight percent uranium). It was also concluded that all three of the reflector regions could be classified as nuclear hazard category 3 (potential for localized consequences only).

  14. Second Order Bragg Scattering in a SAR,

    DTIC Science & Technology

    1984-08-01

    accept the notion that the short- wave components of the ship wake are slightly distorted versions of the Kelvin wake, then there is the possibility of...scattering, at a given place, from a spectrum of waves . The Dabob Bay data indicates that there is little energy in the wake having wave numbers capable...observations do show considerable enhancement of waves of twice the Bragg wavelength at the angle where a SAR wake is observed.. Second order Bragg

  15. Distinct S wave reflector in the midcrust beneath Nikko-Shirane volcano in the northeastern Japan arc

    NASA Astrophysics Data System (ADS)

    Matsumoto, Satoshi; Hasegawa, Akira

    1996-02-01

    Distinct S waves reflected from a midcrustal seismic velocity discontinuity are detected beneath Nikko-Shirane volcano in the southernmost part of the northeastern Japan arc. A detailed travel time analysis of the reflected S waves by using data acquired through a dense seismic network temporarily set up in this region shows that this unusual S wave reflector is distributed over an area of 15 × 15 km2 at depths ranging from 8 to 15 km. The reflector has a conical shape becoming shallow toward the summit of Nikko-Shirane volcano. Observed amplitude spectral ratios of reflected S waves to direct S waves show that the reflector body has a strong velocity contrast to the surrounding medium and its thickness is of the order of 100 m at most. The reflector body is approximated by two thin layers probably filled with partially molten materials. Cutoff depth for shallow seismicity in this area is 3-5 km above the reflector and becomes shallow toward Nikko-Shirane volcano, nearly parallel to the reflector. The depth to brittle-ductile transition zone seems to be prescribed by the existence of the reflector body, which is perhaps a thin magma body.

  16. Advanced Bragg grating filters for DWDM applications

    NASA Astrophysics Data System (ADS)

    Sokolov, Victor I.; Khudobenko, Alexander I.; Panchenko, Vladislav Y.

    2002-09-01

    The advent of the technology of Dense Wavelength Division Multiplexing (DWDM) in Optical Fiber Networks (OFNs) has resulted in the necessity of developing advanced Optical Add/Drop Multiplexers (OADMs) on the basis of submicron Bragg gratings. The OADMs for dense multichannel OFNs with bit rates 10 - 40 Gbits/s per channel and channel spacing 200, 100 and 50 GHz must possess rectangular-shaped reflection/transmission spectra and linear phase characteristic within the stop/passband. These features can not be achieved with uniform periodic Bragg gratings and therefore nonuniform gratings with space-modulated coupling coefficient should be used. We present the recent advances in the design and fabrication of narrowband wavelength-selective optical filters for DWDM applications on the basis of single-mode fibers with side-polishing and periodic relief Bragg gratings with apodized coupling coefficient. The peculiarities of propagation, interaction and diffraction of electromagnetic waves in nonuniform Bragg grating structures are considered. Narrowband reflection filters based on side-polished fibers and submicron relief gratings on SiO2 and SiO materials are designed and fabricated. The filters have stopband width 0.4 - 0.8 nm and peak reflectivity R > 98% in the 1.55 mkm wavelength communication region. Narrowband flat-top reflection filters for DWDM applications based on side-polished fibers and periodic relief Bragg gratings are designed. The schemes for multichannel integration of Bragg grating filters into OFNs are presented.

  17. Dual annular rotating "windowed" nuclear reflector reactor control system

    DOEpatents

    Jacox, Michael G.; Drexler, Robert L.; Hunt, Robert N. M.; Lake, James A.

    1994-01-01

    A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core.

  18. In Vitro Experimental Model to Investigate the Biological Effects across the Bragg Curve of High-LET Radiation

    NASA Technical Reports Server (NTRS)

    Desai, N.; Cucinotta, F. A.; Durante, M.; Lin, Z.; Meador, J.; Rusek, A.; Wu, H.

    2005-01-01

    The space environment consists of a varying field of radiation particles including high energy ions, with a spacecrafts shielding material providing the only major protection to astronauts from harmful exposure. Unlike lowLET gamma or Xrays, the presence of shielding does not always reduce the radiation risks for energetic charged particle exposure since the dose delivered by the charged particle increases sharply as the particle approaches the end of its range, a position known as the Bragg peak and the correlating spatial dose distribution identified as the Bragg curve. The Bragg curve does not necessarily represent the biological damage along the particle traversal since biological effects are influenced by the track structure of both primary and secondary particles. Therefore, the biological Bragg curve is dependent of the energy and the type of the primary particle, and may vary for different biological endpoints. Here we describe a unique irradiation geometry and experimental system to measure the biological response across the Bragg curve in one consistent biological sample. Polyethylene shielding was used to achieve a Bragg curve distribution with the beam geometry parallel to a monolayer of fibroblast cells. We present data that highlights the differential formation of DNA double strand breaks (DSBs) and chromosomal deletions across the Bragg curve in human fibroblasts irradiated with 600 MeV/nucleon iron ion beams. Qualitative analyses of gammaH2AX fluorescence, a known marker of DSBs, indicated potentially increased clustering of DNA damage before the Bragg peak, enhanced homogenous distribution at the peak, and provided visual evidence of high linear energy transfer (LET) particle traversal of cells beyond the Bragg peak in agreement with one-dimensional transport approximations. A biological response curve generated for micronuclei induction across the Bragg curve for 600 MeV/n Fe ions did not reveal an increase in the yield of micronuclei at the Bragg

  19. Advanced sunflower antenna concept development. [stowable reflectors

    NASA Technical Reports Server (NTRS)

    Archer, J. S.

    1980-01-01

    The feasibility of stowing large solid antenna reflectors in the shuttle was demonstrated for applications with 40 foot apertures at frequencies of 100 GHz. Concepts allowing extension of the basic concept to 80-foot apertures operable at 60 GHz were identified.

  20. Distortion compensation techniques for large reflector antennas

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.

    2001-01-01

    The high-frequency limit of reflector antennas is usually governed by the magnitude of the surface error. Whereas little can be done for the high-spatial frequency portion of this error, there are various techniques that can be employed to compensate for large-scale surface errors due to gravity induced distortions for spacecraft antennas.

  1. Electrically thin flat lenses and reflectors.

    PubMed

    Ruphuy, Miguel; Siddiqui, Omar; Ramahi, Omar M

    2015-09-01

    We introduce electrically thin dielectric lenses and reflectors that focus a plane wave based on the principles of phase compensation and constructive wave interference. Phase compensation is achieved by arranging thin rectangular slabs having different dielectric permittivity according to a permittivity profile obtained through analytic design equations. All incident rays parallel to the optical axis converge to a focal point with equalized optical paths resulting in constructive interference. Plane wave simulations indicate strong focusing, even in the presence of impedance mismatch between free space and the dielectric layers composing the lens. We demonstrate focusing at 9.45 GHz using a lens fabricated with commercially available dielectric materials. In addition to focusing, the flat lens proposed here demonstrates relatively high power gain at the focal point. We also present a flat reflector based on the same concept. We believe that the proposed dielectric lens and reflector are strong candidates to replace heavy metallic dishes and reflectors used in a variety of applications, especially satellites.

  2. Welding torch with arc light reflector

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1986-01-01

    A welding torch arc light reflector is disclosed for welding torches having optical viewing systems. A schematic of a welding torch having an internal coaxial viewing system consisting of a lens which focuses the field of view of the weld scene of the workpiece onto the end of the fiberoptic bundle is provided. The transmitted image of the fiberoptic bundle is provided to a camera lens which focuses it onto a TV sensor array for transmission. To improve the parity of the image of the monitoring system, an arc light reflector is shown fitted to the end of the torch housing or gas cup. The arc light reflector has an internal conical section portion which is polished to serve as a mirror which reflects the bright arc light back onto the darker areas of the weld area and thereby provides a more detailed image for the monitoring system. The novelty of the invention lies in the use of an arc light reflector on welding torches having optical viewing systems.

  3. Welding torch with arc light reflector

    NASA Astrophysics Data System (ADS)

    Gordon, Stephen S.

    1986-12-01

    A welding torch arc light reflector is disclosed for welding torches having optical viewing systems. A schematic of a welding torch having an internal coaxial viewing system consisting of a lens which focuses the field of view of the weld scene of the workpiece onto the end of the fiberoptic bundle is provided. The transmitted image of the fiberoptic bundle is provided to a camera lens which focuses it onto a TV sensor array for transmission. To improve the parity of the image of the monitoring system, an arc light reflector is shown fitted to the end of the torch housing or gas cup. The arc light reflector has an internal conical section portion which is polished to serve as a mirror which reflects the bright arc light back onto the darker areas of the weld area and thereby provides a more detailed image for the monitoring system. The novelty of the invention lies in the use of an arc light reflector on welding torches having optical viewing systems.

  4. A comparison of reflector antenna designs for wide-angle scanning

    NASA Technical Reports Server (NTRS)

    Zimmerman, M.; Lee, S. W.; Houshmand, B.; Rahmat-Samii, Y.; Acosta, R.

    1989-01-01

    Conventional reflector antennas are typically designed for up to + or - 20 beamwidths scan. An attempt was made to stretch this scan range to some + or - 300 beamwidths. Six single and dual reflector antennas were compared. It is found that a symmetrical parabolic reflector with f/D = 2 and a single circular waveguide feed has the minimum scan loss (only 0.6 dB at Theta sub 0 = 8 deg, or a 114 beamwidths scan). The scan is achieved by tilting the parabolic reflector by an angle equal to the half-scan angle. The f/D may be shortened if a cluster 7 to 19 elements instead of one element is used for the feed. The cluster excitation is adjusted for each new beam scan direction to compensate for the imperfect field distribution over the reflector aperture. The antenna can be folded into a Cassegrain configuration except that, due to spillover and blockage considerations, the amount of folding achievable is small.

  5. Transient axial solution for plane and axisymmetric waves focused by a paraboloidal reflector.

    PubMed

    Tsai, Yi-Te; Zhu, Jinying; Haberman, Michael R

    2013-04-01

    A time domain analytical solution is presented to calculate the pressure response along the axis of a paraboloidal reflector for a normally incident plane wave. This work is inspired by Hamilton's axial solution for an ellipsoidal mirror and the same methodology is employed in this paper. Behavior of the reflected waves along reflector axis is studied, and special interest is placed on focusing gain obtained at the focal point. This analytical solution indicates that the focusing gain is affected by reflector geometry and the time derivative of the input signal. In addition, focused pressure response in the focal zone given by various reflector geometries and input frequencies are also investigated. This information is useful for selecting appropriate reflector geometry in a specific working environment to achieve the best signal enhancement. Numerical simulation employing the finite element method is used to validate the analytical solution, and visualize the wave field to provide a better understanding of the propagation of reflected waves. This analytical solution can be modified to apply to non-planar incident waves with axisymmetric wavefront and non-uniform pressure distribution. An example of incident waves with conical-shaped wavefront is presented.

  6. Stacking illumination of a confocal reflector light emitting diode automobile headlamp with an asymmetric triangular prism.

    PubMed

    Chen, Hsi-Chao; Zhou, Jia-Hao; Zhou, Yang

    2017-02-01

    A confocal reflector lamp with an asymmetric triangular prism was designed for a stacking illumination of a light emitting diode (LED) automobile headlamp fitting ECE R112 asymmetrical regulation. The optical system includes three 1st elliptic reflectors, three 2nd parabolic reflectors, and one asymmetric triangular prism. Three elliptic and parabolic reflectors were assembled with three confocal reflector modules; two modules projected the cut-off line of a 0° angle, and the other module projected the cut-off line of a 15° angle using of an asymmetric triangular prism. The ray tracing, optical simulation, and mockup experiment results exhibited that the illumination distribution met the regulation of ECE R112 class B, and the ideal efficiency could reach 96.8% in theory. The tolerance analysis showed the efficiency remained above 98% under the error values of ±0.2  mm of the position of the LED light source, and the y direction of the up-down movement was more sensitive than the x and z directions. The measurement results of the mockup sample safety factor were all larger than 1.15 and supported the regulation of the ECE R112 Class B.

  7. Performance improvements of symmetry-breaking reflector structures in nonimaging devices

    DOEpatents

    Winston, Roland

    2004-01-13

    A structure and method for providing a broken symmetry reflector structure for a solar concentrator device. The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quantity, referred to as the translational skew invariant, is conserved in rotationally symmetric optical systems. Performance limits for translationally symmetric nonimaging optical devices are derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. A numerically optimized non-tracking solar concentrator utilizing symmetry-breaking reflector structures can overcome the performance limits associated with translational symmetry.

  8. Non-astigmatic imaging with matched pairs of spherically bent reflectors

    DOEpatents

    Bitter, Manfred Ludwig [Princeton, NJ; Hill, Kenneth Wayne [Plainsboro, NJ; Scott, Steven Douglas [Wellesley, MA; Feder, Russell [Newton, PA; Ko, Jinseok [Cambridge, MA; Rice, John E [N. Billerica, MA; Ince-Cushman, Alexander Charles [New York, NY; Jones, Frank [Manalapan, NJ

    2012-07-10

    Arrangements for the point-to-point imaging of a broad spectrum of electromagnetic radiation and ultrasound at large angles of incidence employ matched pairs of spherically bent reflectors to eliminate astigmatic imaging errors. Matched pairs of spherically bent crystals or spherically bent multi-layers are used for X-rays and EUV radiation; and matched pairs of spherically bent mirrors that are appropriate for the type of radiation are used with microwaves, infrared and visible light, or ultrasound. The arrangements encompass the two cases, where the Bragg angle--the complement to the angle of incidence in optics--is between 45.degree. and 90.degree. on both crystals/mirrors or between 0.degree. and 45.degree. on the first crystal/mirror and between 45.degree. and 90.degree. on the second crystal/mirror, where the angles of convergence and divergence are equal. For x-rays and EUV radiation, also the Bragg condition is satisfied on both spherically bent crystals/multi-layers.

  9. The effect of reflector geometry on the acoustic field and bubble dynamics produced by an electrohydraulic shock wave lithotripter

    PubMed Central

    Zhou, Yufeng; Zhong, Pei

    2007-01-01

    A theoretical model for the propagation of shock wave from an axisymmetric reflector was developed by modifying the initial conditions for the conventional solution of a nonlinear parabolic wave equation (i.e., the Khokhlov–Zabolotskaya–Kuznestsov equation). The ellipsoidal reflector of an HM-3 lithotripter is modeled equivalently as a self-focusing spherically distributed pressure source. The pressure wave form generated by the spark discharge of the HM-3 electrode was measured by a fiber optic probe hydrophone and used as source conditions in the numerical calculation. The simulated pressure wave forms, accounting for the effects of diffraction, nonlinearity, and thermoviscous absorption in wave propagation and focusing, were compared with the measured results and a reasonably good agreement was found. Furthermore, the primary characteristics in the pressure wave forms produced by different reflector geometries, such as that produced by a reflector insert, can also be predicted by this model. It is interesting to note that when the interpulse delay time calculated by linear geometric model is less than about 1.5 μs, two pulses from the reflector insert and the uncovered bottom of the original HM-3 reflector will merge together. Coupling the simulated pressure wave form with the Gilmore model was carried out to evaluate the effect of reflector geometry on resultant bubble dynamics in a lithotripter field. Altogether, the equivalent reflector model was found to provide a useful tool for the prediction of pressure wave form generated in a lithotripter field. This model may be used to guide the design optimization of reflector geometries for improving the performance and safety of clinical lithotripters. PMID:16838506

  10. Fast implementation of Oliker's ellipses technology to build free form reflector

    NASA Astrophysics Data System (ADS)

    Magarill, S.

    2013-09-01

    The field of illumination optics has a number of applications where using free-form reflective surfaces to create a required light distribution can be beneficial. Oliker's concept of combining elliptical surfaces is the foundation of forming a reflector for an arbitrary illuminance distribution. The algorithm for fast implementation of this concept is discussed in detail. It is based on an analytical computation of a 3D cloud of points in order to map the reflector shape with the required flux distribution. Flux delivered to chosen zones across the target can be calculated based on the number of associated cloud points and its locations. This allows optimized ellipse parameters to achieve the required flux distribution without raytracing through the reflector geometry. Such a strictly analytical optimization is much faster than building reflector geometry and raytracing each step of the optimization. A generated 3D cloud of points can be used with a standard SolidWorks feature to build the loft surface. This surface consists of adjacent elliptical facets and should be smooth to maintain continuous irradiance across the target. A secondary operation to smooth the surface profile between elliptical facets is discussed. Examples of proposed algorithm implementations are presented.

  11. CONTROL OF LASER RADIATION PARAMETERS: New method to control the shape of spectral characteristics of Bragg gratings in electrooptical materials

    NASA Astrophysics Data System (ADS)

    Shamrai, A. V.; Kozlov, A. S.; Il'ichev, I. V.; Petrov, Mikhail P.

    2005-08-01

    A new method is proposed to control the shape of spectral characteristics of Bragg gratings, which is based on the introduction of electrically controlled shifts of the average refractive index. The shape of the spectral characteristics of Bragg gratings with a complex step structure of the spatial distribution of the average refractive index is calculated. The operative electric control of their shape in a channel optical LiNbO3 crystal waveguide is experimentally demonstrated.

  12. Design tradeoff study for reflector antenna systems for the shuttle imaging microwave system

    NASA Technical Reports Server (NTRS)

    Hansen, R. C.

    1974-01-01

    A general tradeoff is made of the symmetric Cassegrain antenna with regard to the possibility of meeting a 90% beam efficiency. The effects of aperture taper and blockage are calculated using an adjustable sidelobe circular distribution. Numerical integration is used. For the feed spillover calculation, a low sidelobe symmetric feed pattern is used with the equivalent parabola and numerical integration. Reflector cross polarization is calculated using double numerical integration. Reflector back lobes are estimated from radiation pattern envelopes of commercial common carrier dish antennas. The curves allow a range of f/D to be determined for a specified edge taper and blockage diameter ratio, and with a table of Cassegrain parameters, a range of possible designs that meet the 90% beam efficiency is obtained. It is shown that the feed and reflector design and implementation must be carefully done.

  13. The significance of Bragg's law in electron diffraction and microscopy, and Bragg's second law.

    PubMed

    Humphreys, C J

    2013-01-01

    Bragg's second law, which deserves to be more widely known, is recounted. The significance of Bragg's law in electron diffraction and microscopy is then discussed, with particular emphasis on differences between X-ray and electron diffraction. As an example of such differences, the critical voltage effect in electron diffraction is described. It is then shown that the lattice imaging of crystals in high-resolution electron microscopy directly reveals the Bragg planes used for the imaging process, exactly as visualized by Bragg in his real-space law. Finally, it is shown how in 2012, for the first time, on the centennial anniversary of Bragg's law, single atoms have been identified in an electron microscope using X-rays emitted from the specimen. Hence atomic resolution X-ray maps of a crystal in real space can be formed which give the positions and identities of the different atoms in the crystal, or of a single impurity atom in the crystal.

  14. Silicon reflectors for external cavity lasers based on ring resonators

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Li, Xia; Jin, Hao; Yu, Hui; Yang, Jianyi; Jiang, Xiaoqing

    2017-01-01

    We propose and experimentally investigate types of silicon ring reflectors on Silicon-On-Insulator (SOI) platform. These reflectors are used for realizing the silicon hybrid external cavity lasers. A suspended edge coupler is used to connect the reflective semiconductor optical amplifier (RSOA) chip and the reflectors. The properties of the reflectors and the hybrid external cavity lasers with these reflectors are illustrated. The experimental results show that all of those reflectors have a high reflectivity and the highest reflectivity can up to be 95%. The lowest insertion loss can be as low as 0.4 dB. The output power of the hybrid external cavity lasers with these reflectors can reach mW magnitude and the highest output power is 6.1 mW. Over 30 dB side mode suppression ratio is obtained.

  15. Multi-Band Frequency-Selective Microwave Reflectors

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao

    1995-01-01

    Double-loop patch and slot elements used in two different frequency-multiplexing designs. Array of double-round-loop conductive patches highly reflective at frequencies around 33 GHz (in Ka band). Array of double-square loop slots in conductive plane highly transmissive in S and Ku bands and highly reflective in X band. These frequency-selective reflectors closely related to several previous articles in NASA Tech Briefs, including "Frequency-Selective Microwave Reflectors" (NPO-18701), "Improved Dichroic Microwave Reflector" (NPO-18664), "Double-Square-Loop Dichroic Microwave Reflector" (NPO-18676), "Triband Circular-Loop Dichroic Microwave Reflector" (NPO-18714), "Making Curved Frequency-Selective Microwave Reflectors" (NPO-18755), "More Circular-Loop Dichroic Microwave Reflectors" (NPO-18940).

  16. Strongly Dispersive Transient Bragg Grating for High Harmonics

    SciTech Connect

    Farrell, J.; Spector, L.S.; Gaarde, M.B.; McFarland, B.K.; Bucksbaum, P.H.; Guhr, Markus; /SLAC, PULSE /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.

    2010-06-04

    We create a transient Bragg grating in a high harmonic generation medium using two counterpropagating pulses. The Bragg grating disperses the harmonics in angle and can diffract a large bandwidth with temporal resolution limited only by the source size.

  17. Cassegrain Reflector Sidelobe Reduction Study

    DTIC Science & Technology

    1985-07-15

    Calif. 90245 15 July 1985 DTIC APPROVED FOR PUBLIC RELEASE; ELECTE DISTRIBUTION UNLIMITED SEP 4 V85U B lPrepared for SPACE DIVISION AIR FORCE SYSTEMS...COMMAND Los Angeles Air Force Station P.O. Box 92960, Worldway Postal Center Los Angeles, CA 90009-2960 85 8 29 048 This report was submitted by The...Morgan, SD/CGX, was the Air Force project officer. This report has been reviewed by the Public Affairs Office (PAS) and is releasable to the

  18. Fabrication of Extremely Short Length Fiber Bragg Gratings for Sensor Applications

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Rogowski, Robert S.; Tedjojuwono, Ken K.

    2002-01-01

    A new technique and a physical model for writing extremely short length Bragg gratings in optical fibers have been developed. The model describes the effects of diffraction on the spatial spectra and therefore, the wavelength spectra of the Bragg gratings. Using an interferometric technique and a variable aperture, short gratings of various lengths and center wavelengths were written in optical fibers. By selecting the related parameters, the Bragg gratings with typical length of several hundred microns and bandwidth of several nanometers can be obtained. These short gratings can be apodized with selected diffraction patterns and hence their broadband spectra have a well-defined bell shape. They are suitable for use as miniaturized distributed strain sensors, which have broad applications to aerospace research and industry as well.

  19. Fiber Bragg grating inscription in novel highly strains sensitive microstructured fiber

    NASA Astrophysics Data System (ADS)

    Stepien, K.; Tenderenda, T.; Murawski, M.; Szymanski, M.; Szostkiewicz, L.; Becker, M.; Rothhardt, M.; Bartelt, H.; Mergo, P.; Poturaj, K.; Jaroszewicz, L. R.; Nasilowski, T.

    2014-05-01

    Microstructured optical fibers (MOF) sometimes also referred to as photonic crystal fibers (PCF) have been a subject of extensive research for over a decade. This is mainly due to the fact that by changing the microstructure geometry (e.g. distribution and size of the air-holes) fiber properties can be significantly modified to better fit specific applications. In this manuscript we present a novel fiber design with three large air-holes neighboring the core and report on how the air-hole diameter influences the effective refractive index strain sensitivity. As direct measurement of the effective refractive index change may be complex and challenging, we propose to use fiber Bragg gratings (FBG) in our sensing set up. The Bragg wavelength is a function of the effective refractive index, hence the external strain changes can be monitored through the Bragg wavelength shift with a simple optical spectrometer. Furthermore we also include an analysis of the fibers temperature sensitivity.

  20. Axle counter for high-speed railway based on fibre Bragg grating sensor and algorithm optimization for peak searching

    NASA Astrophysics Data System (ADS)

    Quan, Yu; He, Dawei; Wang, Yongsheng; Wang, Pengfei

    2014-08-01

    For the benefit of electrical isolation, corrosion resistance and quasi-distributed detecting, Fiber Bragg Grating Sensor has been studied for high-speed railway application progressively. Existing Axle counter system based on fiber Bragg grating sensor isn't appropriate for high-speed railway for the shortcoming of emplacement of fiber Bragg grating sensor, low Sampling rate and un-optimized algorithm for peak searching. We propose a new design for the Axle counter of high-speed railway based on high-speed fiber Bragg grating demodulating system. We also optimized algorithm for peak searching by synthesizing the three sensor data, bringing forward the time axle, Gaussian fitting and Finite Element Analysis. The feasibility was verified by field experiment.

  1. Compensation for Primary Reflector Wavefront Error

    NASA Technical Reports Server (NTRS)

    Meinel, A. B. (Inventor); Meinel, M. P. (Inventor); Stacy, J. E. (Inventor)

    1986-01-01

    The object of the invention is to compensate for errors in a large telescope primary reflector by making certain compensating deviations in a smaller, auxiliary reflector of the telescope. At least one intermediate element forms an image of the primary surface onto the secondary surface, so each point on the secondary surface corresponds to a point on the primary surface. The secondary surface is formed with a deviation from an ideal secondary surface, with the piston distance of each point on the actual secondary surface equal to the piston distance of a corresponding piston on the actual primary surface from the ideal primary surface. It is found that this results in electromagnetic (e.g., light) rays which strike a deviating area of the actual primary surface being brought to the same focus as if the actual primary surface did not have a diviation from an ideal primary surface.

  2. Contour mode resonators with acoustic reflectors

    DOEpatents

    Olsson, Roy H.; Fleming, James G.; Tuck, Melanie R.

    2008-06-10

    A microelectromechanical (MEM) resonator is disclosed which has a linear or ring-shaped acoustic resonator suspended above a substrate by an acoustic reflector. The acoustic resonator can be formed with a piezoelectric material (e.g. aluminum nitride, zinc oxide or PZT), or using an electrostatically-actuated material. The acoustic reflector (also termed an acoustic mirror) uses alternating sections of a relatively low acoustic impedance Z.sub.L material and a relatively high acoustic impedance Z.sub.H material to isolate the acoustic resonator from the substrate. The MEM resonator, which can be formed on a silicon substrate with conventional CMOS circuitry, has applications for forming oscillators, rf filters, and acoustic sensors.

  3. Isogrid Membranes for Precise, Singly Curved Reflectors

    NASA Technical Reports Server (NTRS)

    Fang, Houfei; Lou, Michael

    2005-01-01

    A new type of composite material has been proposed for membranes that would constitute the reflective surfaces of planned lightweight, single-curvature (e.g., parabolic cylindrical) reflectors for some radar and radio-communication systems. The proposed composite materials would consist of polyimide membranes containing embedded grids of highstrength (e.g., carbon) fibers. The purpose of the fiber reinforcements, as explained in more detail below, is to prevent wrinkling or rippling of the membrane.

  4. Light shifts in atomic Bragg diffraction

    NASA Astrophysics Data System (ADS)

    Giese, E.; Friedrich, A.; Abend, S.; Rasel, E. M.; Schleich, W. P.

    2016-12-01

    Bragg diffraction of an atomic wave packet in a retroreflective geometry with two counterpropagating optical lattices exhibits a light shift induced phase. We show that the temporal shape of the light pulse determines the behavior of this phase shift: In contrast to Raman diffraction, Bragg diffraction with Gaussian pulses leads to a significant suppression of the intrinsic phase shift due to a scaling with the third power of the inverse Doppler frequency. However, for box-shaped laser pulses, the corresponding shift is twice as large as for Raman diffraction. Our results are based on approximate but analytical expressions as well as a numerical integration of the corresponding Schrödinger equation.

  5. William Henry Bragg (1862-1942)

    NASA Astrophysics Data System (ADS)

    da C. Andrade, E. N.

    In the late fifties Robert John Bragg, a young man of twenty-five, retired from the sea, where he had been serving as an officer in the merchant navy, and purchased with some monies that had been l to him the farm called Stoneraise Place at Westward, near Wigton, in Cumberland; Here he settled down to a farmer's life. In 1861 he married Mary Wood, the daughter of the Vicar of the parish of Westward, and the next year, on 2 July 1862, William Henry Bragg, later to be President of the Royal Society, was born…

  6. Simulation of parabolic reflectors for ultraviolet phototherapy

    NASA Astrophysics Data System (ADS)

    Grimes, David Robert

    2016-08-01

    Ultraviolet (UVR) phototherapy is widely used to treat an array of skin conditions, including psoriasis, eczema and vitiligo. For such interventions, a quantified dose is vital if the treatment is to be both biologically effective and to avoid the detrimental effects of over-dosing. As dose is absorbed at surface level, the orientation of patient site with respect to the UVR lamps modulates effective dose. Previous investigations have modelled this behaviour, and examined the impact of shaped anodized aluminium reflectors typically placed around lamps in phototherapy cabins. These mirrors are effective but tend to yield complex patterns of reflection around the cabin which can result in substantial dose inhomogeneity. There has been some speculation over whether using the reflective property of parabolic mirrors might improve dose delivery or homogeneity through the treatment cabin. In this work, the effects of parabolic mirrors are simulated and compared with standard shaped mirrors. Simulation results strongly suggest that parabolic reflectors reduce total irradiance relative to standard shaped reflectors, and have a negligible impact on dose homogeneity.

  7. Analysis of Reflector Antennas in Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Yeap, K. H.; Loh, M. C.; Tham, C. Y.; Yiam, C. Y.; Yeong, K. C.; Lai, K. C.

    2016-11-01

    We present an analysis on the performance of the Cassegrain and Gregorian on-axis, off-axis and offset antennas. In our study, we have adopted the design parameters for the Cassegrain configuration used in the Atacama Large Millimeter Array (ALMA) project. Modifications on the original parameters are made so as to meet the design requirement for the off-axis and offset configurations. To reduce spillover loss in the offset antennas, we have adjusted the angle between the axis of the primary reflector and that of the sub-reflector, so that the feed horn is placed right next to the edge of the primary reflector. This is to allow the offset antennas to receive the highest power at the feed horn. The results obtained from the physical optics simulation show that the radiation characteristics of both Cassegrain and Gregorian antennas are similar. The offset designs exhibit the best performance, followed by the on-axis, and, finally, the off-axis designs. Our analysis also shows that the performance of both offset Cassegrain and Gregorian antennas are comparable to each other.

  8. Wavefront Correction for Large, Flexible Antenna Reflector

    NASA Technical Reports Server (NTRS)

    Imbriale, William A.; Jammejad, Vahraz; Rajagopalan, Harish; Xu, Shenheng

    2010-01-01

    A wavefront-correction system has been proposed as part of an outer-space radio communication system that would include a large, somewhat flexible main reflector antenna, a smaller subreflector antenna, and a small array feed at the focal plane of these two reflector antennas. Part of the wavefront-correction system would reside in the subreflector, which would be a planar patch-element reflectarray antenna in which the phase shifts of the patch antenna elements would be controlled via microelectromechanical systems (MEMS) radio -frequency (RF) switches. The system would include the following sensing-and-computing subsystems: a) An optical photogrammetric subsystem built around two cameras would estimate geometric distortions of the main reflector; b) A second subsystem would estimate wavefront distortions from amplitudes and phases of signals received by the array feed elements; and c) A third subsystem, built around small probes on the subreflector plane, would estimate wavefront distortions from differences among phases of signals received by the probes. The distortion estimates from the three subsystems would be processed to generate control signals to be fed to the MEMS RF switches to correct for the distortions, thereby enabling collimation and aiming of the received or transmitted radio beam to the required precision.

  9. Vacuum deposited polymer/silver reflector material

    SciTech Connect

    Affinito, J.; Martin, P.; Gross, M.; Bennett, W.

    1994-07-01

    Weatherable, low cost, front surface, solar reflectors on flexible substrates would be highly desirable for lamination to solar concentrator panels. The method to be described in this paper may permit such reflector material to be fabricated for less than 50 cents per square foot. Vacuum deposited Polymer/Silver/Polymer reflectors and Fabry-Perot interference filters were fabricated in a vacuum web coating operation on polyester substrates. Reflectivities were measured in the wavelength range from .4 {mu}m to .8 {mu}m. It is hoped that a low cost substrate can be used with the substrate laminated to the concentrator and the weatherable acrylic polymer coating facing the sun. This technique should be capable of deposition line speeds approaching 1500 linear feet/minute. Central to this technique is a new vacuum deposition process for the high rate deposition of polymer films. This polymer process involves the flash evaporation of an acrylic monomer onto a moving substrate. The monomer is subsequently cured by an electron beam or ultraviolet light. This high speed polymer film deposition process has been named the PML process - for Polymer Multi-Layer.

  10. Laser ranging retro-reflector: continuing measurements and expected results.

    PubMed

    Alley, C O; Chang, R F; Currie, D G; Poultney, S K; Bender, P L; Dicke, R H; Wilkinson, D T; Faller, J E; Kaula, W M; Macdonald, G J; Mulholland, J D; Plotkin, H H; Carrion, W; Wampler, E J

    1970-01-30

    After successful acquisition in August of reflected ruby laser pulses from the Apollo 11 laser ranging retro-reflector (LRRR) with the telescopes at the Lick and McDonald observatories, repeated measurements of the round-trip travel time of light have been made from the McDonald Observatory in September with an equivalent range precision of +/-2.5 meters. These acquisition period observations demonstrated the performance of the LRRR through lunar night and during sunlit conditions on the moon. Instrumentation activated at the McDonald Observatory in October has yielded a precision of +/-0.3 meter, and improvement to +/-0.15 meter is expected shortly. Continued monitoring of the changes in the earth-moon distance as measured by the round-trip travel time of light from suitably distributed earth stations is expected to contribute to our knowledge of the earth-moon system.

  11. Properties of wideband resonant reflectors under fully conical light incidence

    NASA Astrophysics Data System (ADS)

    Ko, Yeong Hwan; Niraula, Manoj; Lee, Kyu Jin; Magnusson, Robert

    2016-03-01

    Applying numerical modeling coupled with experiments, we investigate the properties of wideband resonant reflectors under fully conical light incidence. We show that the wave vectors pertinent to resonant first-order diffraction under fully conical mounting vary less with incident angle than those associated with reflectors in classical mounting. Therefore, as the evanescent diffracted waves drive the leaky modes responsible for the resonance effects, fully-conical mounting imbues reflectors with larger angular tolerance than their classical counterparts. We quantify the angular-spectral performance of representative resonant wideband reflectors in conic and classic mounts by numerical calculations with improved spectra found for fully conic incidence. Moreover, these predictions are verified experimentally for wideband reflectors fashioned in crystalline and amorphous silicon in distinct spectral regions spanning the 1200-1600-nm and 1600-2400-nm spectral bands. These results will be useful in various applications demanding wideband reflectors that are efficient and materially sparse.

  12. Reaction formulation for radiation and scattering from plates, corner reflectors and dielectric-coated cylinders

    NASA Technical Reports Server (NTRS)

    Wang, N. N.

    1974-01-01

    The reaction concept is employed to formulate an integral equation for radiation and scattering from plates, corner reflectors, and dielectric-coated conducting cylinders. The surface-current density on the conducting surface is expanded with subsectional bases. The dielectric layer is modeled with polarization currents radiating in free space. Maxwell's equation and the boundary conditions are employed to express the polarization-current distribution in terms of the surface-current density on the conducting surface. By enforcing reaction tests with an array of electric test sources, the moment method is employed to reduce the integral equation to a matrix equation. Inversion of the matrix equation yields the current distribution, and the scattered field is then obtained by integrating the current distribution. The theory, computer program and numerical results are presented for radiation and scattering from plates, corner reflectors, and dielectric-coated conducting cylinders.

  13. Simultaneous high-resolution scanning Bragg contrast and ptychographic imaging of a single solar cell nanowire

    PubMed Central

    Wallentin, Jesper; Wilke, Robin N.; Osterhoff, Markus; Salditt, Tim

    2015-01-01

    Simultaneous scanning Bragg contrast and small-angle ptychographic imaging of a single solar cell nanowire are demonstrated, using a nanofocused hard X-ray beam and two detectors. The 2.5 µm-long nanowire consists of a single-crystal InP core of 190 nm diameter, coated with amorphous SiO2 and polycrystalline indium tin oxide. The nanowire was selected and aligned in real space using the small-angle scattering of the 140 × 210 nm X-ray beam. The orientation of the nanowire, as observed in small-angle scattering, was used to find the correct rotation for the Bragg condition. After alignment in real space and rotation, high-resolution (50 nm step) raster scans were performed to simultaneously measure the distribution of small-angle scattering and Bragg diffraction in the nanowire. Ptychographic reconstruction of the coherent small-angle scattering was used to achieve sub-beam spatial resolution. The small-angle scattering images, which are sensitive to the shape and the electron density of all parts of the nanowire, showed a homogeneous profile along the nanowire axis except at the thicker head region. In contrast, the scanning Bragg diffraction microscopy, which probes only the single-crystal InP core, revealed bending and crystalline inhomogeneity. Both systematic and non-systematic real-space movement of the nanowire were observed as it was rotated, which would have been difficult to reveal only from the Bragg scattering. These results demonstrate the advantages of simultaneously collecting and analyzing the small-angle scattering in Bragg diffraction experiments. PMID:26664342

  14. Simultaneous high-resolution scanning Bragg contrast and ptychographic imaging of a single solar cell nanowire.

    PubMed

    Wallentin, Jesper; Wilke, Robin N; Osterhoff, Markus; Salditt, Tim

    2015-12-01

    Simultaneous scanning Bragg contrast and small-angle ptychographic imaging of a single solar cell nanowire are demonstrated, using a nanofocused hard X-ray beam and two detectors. The 2.5 µm-long nanowire consists of a single-crystal InP core of 190 nm diameter, coated with amorphous SiO2 and polycrystalline indium tin oxide. The nanowire was selected and aligned in real space using the small-angle scattering of the 140 × 210 nm X-ray beam. The orientation of the nanowire, as observed in small-angle scattering, was used to find the correct rotation for the Bragg condition. After alignment in real space and rotation, high-resolution (50 nm step) raster scans were performed to simultaneously measure the distribution of small-angle scattering and Bragg diffraction in the nanowire. Ptychographic reconstruction of the coherent small-angle scattering was used to achieve sub-beam spatial resolution. The small-angle scattering images, which are sensitive to the shape and the electron density of all parts of the nanowire, showed a homogeneous profile along the nanowire axis except at the thicker head region. In contrast, the scanning Bragg diffraction microscopy, which probes only the single-crystal InP core, revealed bending and crystalline inhomogeneity. Both systematic and non-systematic real-space movement of the nanowire were observed as it was rotated, which would have been difficult to reveal only from the Bragg scattering. These results demonstrate the advantages of simultaneously collecting and analyzing the small-angle scattering in Bragg diffraction experiments.

  15. Why momentum width matters for atom interferometry with Bragg pulses

    NASA Astrophysics Data System (ADS)

    Szigeti, S. S.; Debs, J. E.; Hope, J. J.; Robins, N. P.; Close, J. D.

    2012-02-01

    We theoretically consider the effect of the atomic source's momentum width on the efficiency of Bragg mirrors and beamsplitters and, more generally, on the phase sensitivity of Bragg pulse atom interferometers. By numerical optimization, we show that an atomic cloud's momentum width places a fundamental upper bound on the maximum transfer efficiency of a Bragg mirror pulse, and furthermore limits the phase sensitivity of a Bragg pulse atom interferometer. We quantify these momentum width effects, and precisely compute how mirror efficiencies and interferometer phase sensitivities vary as functions of Bragg order and source type. Our results and methodology allow for an efficient optimization of Bragg pulses and the comparison of different atomic sources, and will help in the design of large momentum transfer Bragg mirrors and beamsplitters for use in atom-based inertial sensors.

  16. Gravity deformation measurements of 70m reflector surfaces

    NASA Technical Reports Server (NTRS)

    Brenner, Michael; Imbriale, William A.; Britcliffe, Michael K.

    2001-01-01

    Two of NASA's Deep Space Network (DSN) 70-meter reflectors are measured using a Leica TDM-5000 theodolite. The main reflector surface was measured at five elevation angles so that a gravity deformation model could be derived that described the main reflector distortions over the entire range of elevation angles. The report describes the measurement equipment and accuracy and the results derived from the data.

  17. Wideband QAMC reflector's antenna for low profile applications

    NASA Astrophysics Data System (ADS)

    Grelier, M.; Jousset, M.; Mallégol, S.; Lepage, A. C.; Begaud, X.; LeMener, J. M.

    2011-06-01

    A wideband reflector's antenna based on quasi-artificial magnetic conductor is proposed. To validate the design, an Archimedean spiral has been backed to this new reflector. In comparison to classical solution using absorbent material, the prototype presents a very low thickness of λ/15 at the lowest operating frequency and an improved gain over a 2.4:1 bandwidth. The whole methodology to design this reflector can be applied to other wideband antennas.

  18. Controlled-Shape, Ultrasonic-Angle-Beam Standard Reflector

    NASA Technical Reports Server (NTRS)

    Berry, J., Robertf.

    1986-01-01

    New ultrasonic angle-beam standard reflector uses impression of letter "l" steel-die stamp. NDE techniques and standard reflector apply to use of pulse-echo-type ultrasonic equipment for inspection of wrought metals including forgings and forging stock; rolled billet, bar or plate; and extruded bar, tube, and shapes. "l" reference standard reflector affords advantages of easy insertion in inspected item using common hand-tools and greatly reduced implementation time through elimination of machining operations.

  19. The DART Cylindrical, Infrared, 1 Meter Membrane Reflector

    NASA Technical Reports Server (NTRS)

    Morgan, Rhonda M.; Agnes, Greg S.; Barber, Dan; Dooley, Jennifer; Dragovan, Mark; Hatheway, Al E.; Marcin, Marty

    2004-01-01

    The Dual Anamorphic Reflector Telescopes (DART) is an architecture for large aperture space telescopes that enables the use of membranes. A membrane can be readily shaped in one direction of curvature using a combination of boundary control and tensioning, yielding a cylindrical reflector. Two cylindrical reflectors (orthogonal and confocal) comprise the 'primary mirror' of the telescope system. The aperture is completely unobstructed and ideal for infrared and high contrast observations.

  20. Magnetron sputtering in rigid optical solar reflectors production

    NASA Astrophysics Data System (ADS)

    Asainov, O. Kh; Bainov, D. D.; Krivobokov, V. P.; Sidelev, D. V.

    2016-07-01

    Magnetron sputtering was applied to meet the growing need for glass optical solar reflectors. This plasma method provided more uniform deposition of the silver based coating on glass substrates resulted in decrease of defective reflectors fraction down to 5%. For instance, such parameter of resistive evaporation was of 30%. Silver film adhesion to glass substrate was enhanced with indium tin oxide sublayer. Sunlight absorption coefficient of these rigid reflectors was 0.081-0.083.

  1. Testing the figure of parabolic reflectors for solar concentrators.

    PubMed

    Bodenheimer, J S; Eisenberg, N P; Gur, J

    1982-12-15

    A novel method for testing the optical quality of large parabolic solar concentrators is presented, based on autocollimation. An optical system continuously scans the reflector along a fixed reference axis. At each position along the axis, the spread function is obtained. Analysis of the location, width, and intensity changes of this function gives quantitative information about the reflector's defects. A figure of merit describing the performance of parabolic trough reflectors is proposed.

  2. Inflatable Reflector For Solar Power And Radio Communication

    NASA Technical Reports Server (NTRS)

    Sercel, Joel; Gilchriest, Carl; Ewell, Rich; Herman, Martin; Rascoe, Daniel L.; Nesmith, Bill J.

    1995-01-01

    Report proposes installation of lightweight inflatable reflector structure aboard spacecraft required to both derive power from sunlight and communicate with Earth by radio when apparent position of Earth is at manageably small angle from line of sight to Sun. Structure contains large-aperture paraboloidal reflector aimed toward Sun and concentrates sunlight onto photovoltaic power converter and acts as main reflector of spacecraft radio-communication system.

  3. Velocity characteristics of reflectors in solar tower systems

    NASA Astrophysics Data System (ADS)

    Aparisi, R. R.; Tepliakov, D. I.; Khantsis, B. G.

    An analysis is presented of the velocities of azimuthal and zenithal rotations of reflectors in solar tower systems in relation to reflector arrangement, geographic latitude, and season of the year. Two methods are used in the analysis: (1) the direct calculation of heliostat rotation velocity at successive moments of time; and (2) a generalized representation of reflector velocity fields. Research and engineering applications of the calculations are discussed.

  4. Designs for the ATDRSS tri-band reflector antenna

    NASA Technical Reports Server (NTRS)

    Lee, Shung-Wu; Zimmerman, Martin L.; Fujikawa, Gene; Sharp, G. Richard

    1991-01-01

    Two approaches to design a tri-band reflector antenna for the Advanced TDRSS are examined. Two reflector antenna configurations utilizing frequency selective surfaces for operation in three frequency bands, S, Ku, and Ka, are proposed. Far-field patterns and the antenna feed losses were computed for each configuration. An offset-fed single reflector antenna configuration was adapted for conceptual spacecraft design. CADAM drawings were completed and a 1/13th scale model of the spacecraft was constructed.

  5. Large space reflector technology on the Space Station

    NASA Technical Reports Server (NTRS)

    Mankins, J. C.; Dickinson, R. M.; Freeland, R. E.; Marzwell, N. I.

    1986-01-01

    This paper discusses the role of the Space Station in the evolutionary development of large space reflector technology and the accommodation of mission systems which will apply large space reflectors during the late 1990s and the early part of the next century. Reflectors which range from 10 to 100 meters in size and which span the electromagnetic spectrum for applications that include earth communications, earth observations, astrophysics and solar physics, and deep space communications are discussed. The role of the Space Station in large space reflector technology development and system performance demonstration is found to be critical; that role involves the accommodation of a wide variety of technology demonstrations and operational activities on the Station, including reflector deployment and/or assembly, mechanical performance verification and configuration refinement, systematic diagnostics of reflector surfaces, structural dynamics and controls research, overall system performance characterization and modification (including both radio frequency field pattern measurements and required end-to-end system demonstrations), and reflector-to-spacecraft integration and staging. A unique facility for Space Station-based, large space reflector research and development is proposed. A preliminary concept for such a Space Station-based Large Space Reflector Facility (LSRF) is described.

  6. Ellipsoidal reflector design of the LED vehicle projector type headlamp

    NASA Astrophysics Data System (ADS)

    Ying, Shang-Ping; Lyu, Jhen-Cyun

    2016-09-01

    In this study, the design of the projector type headlamp using LEDs with different structure parameters is proposed. The ellipsoidal reflector with different major and minor axis would contribute different aperture and focal lengths of the ellipsoidal reflector, and then collimate the light to the converging lens. With specific converging lens and metal-based baffle plate in the projector type headlamp system, we systematical analysis of the ellipsoidal reflector in the projector type headlamp. The systematical analysis of the ellipsoidal reflector can be a reference to design a projector type headlamp with compact size and high photometry performance.

  7. Array feed synthesis for correction of reflector distortion and Vernier Beamsteering

    NASA Technical Reports Server (NTRS)

    Blank, S. J.; Imbriale, W. A.

    1986-01-01

    An algorithmic procedure for the synthesis of planar array feeds for paraboloidal reflectors is described which simultaneously provides electronic correction of systematic reflector surface distortions as well as a Vernier electronic beamsteering capability. Simple rules of thumb for the optimum choice of planar array feed configuration (i.e., number and type of elements) are derived from a parametric study made using the synthesis procedure. A number of f/D ratios and distortion models were examined that are typical of large paraboloidal reflectors. Numerical results are presented showing that, for the range of distortion models considered, good on-axis gain restoration can be achieved with as few as seven elements. For beamsteering to +/- 1 beamwidth (BW), 19 elements are required. For arrays with either 7 or 19 elements, the results indicate that the use of high-aperture-efficiency elements (e.g., disk-on-rod and short backfire) in the array yields higher system gain than can be obtained with elements having lower aperture efficiency (e.g., open-ended waveguides). With 37 elements, excellent gain and beamsteering performance to +/- 1.5 BW are obtained independent of the assumed effective aperture of the array element. An approximate expression is derived for the focal-plane field distribution of the distorted reflector. Contour plots of the focal-plane fields are also presented for various distortion and beam scan angle cases. The results obtained show the effectiveness of the array feed approach.

  8. Array feed synthesis for correction of reflector distortion and Vernier beamsteering

    NASA Technical Reports Server (NTRS)

    Blank, Stephen J.; Imbriale, William A.

    1988-01-01

    An algorithmic procedure for the synthesis of planar array feeds for paraboloidal reflectors is described which simultaneously provides electronic correction of systematic reflector surface distortions as well as a Vernier electronic beamsteering capability. Simple rules of thumb for the optimum chioce of planar array feed configuration (i.e., the number and type of elements) are derived from a parametric study made using the synthesis procedure. A number of f/D ratios and distortion models were examined that are typical of large paraboloidal reflectors. Numerical results are presented showing that, for the range of distortion models considered, good on-axis gain restoration can be achieved with as few as seven elements. For beamsteering to +/- 1 beamwidth (BW), 19 elements are required. For arrays with either 7 or 19 elements, the results indicate that the use of high-aperture-efficiency elements (e.g., disk-on-rod and short backfire) in the array yields higher system gain than can be obtained with elements having lower aperture efficiency (e.g., open-ended waveguides). With 37 elements, excellent gain and beamsteering performance to +/- 1.5 BW are obtained independent of the assumed effective aperture of the array element. An approximate expression is derived for the focal-plane field distribution of the distorted reflector. Contour plots of the focal-plane fields are also presented for various distortion and beam scan angle cases. The results obtained show the effectiveness of the array feed approach.

  9. Free-flying solar reflector spacecraft

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.

    1981-01-01

    Results of investigations of requirements and design concepts for large solar-reflecting spacecraft are given. The emphasis is on the one kilometer diameter self contained spacecraft that can be packaged and launched in the space shuttle. The configuration consists of a compression rim stabilized by stays coming from each end of the central compression hub. The stays are stowed on reels on the ends of the hub. The hub consists of two Astromasts which are deployed after launch. The reflector membrane is a two micron thick Kapton film with a vapor deposited aluminum coating.

  10. Experiences with large CFRP-radiotelescope reflectors

    NASA Astrophysics Data System (ADS)

    Muser, D.

    1991-10-01

    Since 1986 several ground based 15 m radiotelescopes with CFRP (Carbon Fiber Reinforced Plastic) structures and reflector panels are under operation in the millimeter wavelength range. A new submillimeter telescope with 10 m diameter is under manufacture. Analysis and design, manufacturing and qualification show the advantages of CFRP. While the assembled dishes have accuracies of some 50 micrometers rms the mean value of about 1000 panels was measured to 12 micrometer rms. These results show the possibilities of manufacturing large space based antennae with the required accuracies for millimeter and submillimeter operations.

  11. Bright color reflective displays with interlayer reflectors

    NASA Astrophysics Data System (ADS)

    Kitson, Stephen; Geisow, Adrian; Rudin, John; Taphouse, Tim

    2011-08-01

    A good solution to the reflective display of color has been a major challenge for the display industry, with very limited color gamuts demonstrated to date. Conventional side-by-side red, green and blue color filters waste two-thirds of incident light. The alternative of stacking cyan, magenta and yellow layers is also challenging -- a 10% loss per layer compounds to nearly 50% overall. Here we demonstrate an architecture that interleaves absorbing-to-clear shutters with matched wavelength selective reflectors. This increases color gamut by reducing losses and more cleanly separating the color channels, and gives much wider choice of electro-optic colorants.

  12. Solar Tracking Error Analysis of Fresnel Reflector

    PubMed Central

    Zheng, Jiantao; Yan, Junjie; Pei, Jie; Liu, Guanjie

    2014-01-01

    Depending on the rotational structure of Fresnel reflector, the rotation angle of the mirror was deduced under the eccentric condition. By analyzing the influence of the sun tracking rotation angle error caused by main factors, the change rule and extent of the influence were revealed. It is concluded that the tracking errors caused by the difference between the rotation axis and true north meridian, at noon, were maximum under certain conditions and reduced at morning and afternoon gradually. The tracking error caused by other deviations such as rotating eccentric, latitude, and solar altitude was positive at morning, negative at afternoon, and zero at a certain moment of noon. PMID:24895664

  13. Hybrid grating reflectors: Origin of ultrabroad stopband

    NASA Astrophysics Data System (ADS)

    Park, Gyeong Cheol; Taghizadeh, Alireza; Chung, Il-Sug

    2016-04-01

    Hybrid grating (HG) reflectors with a high-refractive-index cap layer added onto a high contrast grating (HCG) provide a high reflectance close to 100% over a broader wavelength range than HCGs. The combination of a cap layer and a grating layer brings a strong Fabry-Perot (FP) resonance as well as a weak guided mode (GM) resonance. Most of the reflected power results from the FP resonance, while the GM resonance plays a key role in achieving a reflectance close to 100% as well as broadening the stopband. An HG sample with 7 InGaAlAs quantum wells included in the cap layer has been fabricated by directly wafer-bonding a III-V cap layer onto a Si grating layer. Its reflection property has been characterized. This heterogeneously integrated HG reflector may allow for a hybrid III-V on Si laser to be thermally efficient, which has promising prospects for silicon photonics light sources and high-speed operation.

  14. Test progress on the electrostatic membrane reflector

    NASA Technical Reports Server (NTRS)

    Goslee, J. W.; Mihora, D. J.

    1981-01-01

    NASA is currently developing a low mass antenna which derives its reflector surface quality from the application of electrostatic forces to form a thin membrane into the desired concave reflector surface. The shuttle-deployed antenna would have a diameter of 100 m and an RMS surface smoothness of 10 to 1 mm for operation at 1 to 10 GHz. Surface quality measurements have been made on a highly deformable elastic membrane, pressurized by electrostatic forces. Included are the effects of the perimeter boundary, splicing of the membrane, the long-scale smoothness of commercial membranes, and the spatial controllability of the membrane using voltage adjustments to alter the electrostatic forces. The electrostatic membrane was found to operate well in an open-loop sense, showing a high degree of position stability and negligible power consumption in dry air. Visco-electric creep was not evident, but the polymer membrane did expand and contract considerably due to its hygroscopic expansion coefficient. A residual roughness of about 0.75 mm existed with the polymer used in these tests; this error is attributed to seams and membrane anisotropy where the material is stiffer in one direction.

  15. 78 FR 14357 - Certain Compact Fluorescent Reflector Lamps, Products Containing Same and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... COMMISSION Certain Compact Fluorescent Reflector Lamps, Products Containing Same and Components Thereof... importation of certain compact fluorescent reflector lamps, products containing same and components thereof by... importation of certain compact fluorescent reflector lamps, products containing same and components thereof...

  16. Design and rigorous analysis of generalized axially- symmetric dual-reflector antennas

    NASA Astrophysics Data System (ADS)

    Moreira, Fernando J. S.

    1997-10-01

    The development of reflector antennas is continuously driven by ever increasing performance requirements, creating a demand for improved design and analysis tools. Ideally, the antenna synthesis should rely on general closed-form design equations (to establish the initial geometry and performance), as well as on accurate analysis techniques (to tune up the antenna performance by accounting for all pertinent electrical effects). Driven by these motivations, this dissertation provides the required formulation for the rigorous (in a numerical sense) analysis of axially-symmetric dual-reflector antennas and for their effective design. The rigorous analysis is performed using integral-equation techniques, which permit the inclusion of all relevant antenna components (i.e., reflector surfaces and feed structure), with the exception of the supporting struts and radomes. These techniques allow the electrical performance of a designed antenna to be accurately determined, hence minimizing the use of hardware models. The design portion starts with a unified investigation of generalized classical axially-symmetric dual-reflector antennas- conic-section generated configurations that minimize the main-reflector scattering towards the subreflector while providing a uniform-phase aperture illumination. It is shown that all possible configurations can be grouped in four basic categories. Using Geometrical Optics principles, useful closed-form design expressions are obtained, allowing a straightforward determination of the initial geometry and its upper-bound high-frequency performance. The improvement of the antenna radiation characteristics through the reflector shaping is also explored. An amplitude distribution is proposed for the shaped-antenna aperture field (with constant phase), providing high efficiency while controlling the sidelobe envelope. The diffraction and spillover effects are also investigated using Geometrical Theory of Diffraction, yielding useful formulas and

  17. Torque transducer based on fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Li, Tao; Jiang, Shu; Li, Jiang; Lin, Jiejun; Qi, Hongli

    2016-11-01

    In order to obtain the accurate torque measurements in harsh condition, such as marine environment, a torque transducer based on fiber Bragg grating is proposed in this paper. According to its optimized elastomer design and fiber Bragg grati ng patching tactics, the new proposed torque transducer realizes automatic compensations of temperature and bending moment which avoids influences from environment. The accuracy and stability of the torquetransducer, as well as its under water performance are tested by loading tests both in air and in underwater environment, which indicate the designed tor que transducer is not only able to realize highaccurate and robust measurements, but also can be applied in torque sensing in harsh environment. We believe the proposed design detailed illustrated in this paper provides important reference for studies and applications on torque measurements in marine environment.

  18. Optically tunable chirped fiber Bragg grating.

    PubMed

    Li, Zhen; Chen, Zhe; Hsiao, V K S; Tang, Jie-Yuan; Zhao, Fuli; Jiang, Shao-Ji

    2012-05-07

    This work presents an optically tunable chirped fiber Bragg grating (CFBG). The CFBG is obtained by a side-polished fiber Bragg grating (SPFBG) whose thickness of the residual cladding layer in the polished area (D(RC)) varies with position along the length of the grating, which is coated with a photoresponsive liquid crystal (LC) overlay. The reflection spectrum of the CFBG is tuned by refractive index (RI) modulation, which comes from the phase transition of the overlaid photoresponsive LC under ultraviolet (UV) light irradiation. The broadening in the reflection spectrum and corresponding shift in the central wavelength are observed with UV light irradiation density of 0.64mW/mm. During the phase transition of the photoresponsive LC, the RI increase of the overlaid LC leads to the change of the CFBG reflection spectrum and the change is reversible and repeatable. The optically tunable CFBGs have potential use in optical DWDM system and an all-fiber telecommunication system.

  19. Ion implanted Bragg{endash}Fresnel lens

    SciTech Connect

    Souvorov, A.; Snigirev, A.; Snigireva, I.; Aristova, E.

    1996-05-01

    We have investigated the feasibility of widening the bandpath of the Bragg{endash}Fresnel optical element through the use of ion implantation. The focusing properties of Bragg{endash}Fresnel lenses (BFLs) were studied as a function of the implantation dose and energy. An enhancement of the focus intensity of up to 15{percent} was found, which is less than expected. Due to the complicated scattering of the low energy ions inside the micrometer- and submicrometer-sized crystal features that make up the BFL relief, the implantation technology destroys the peripheral zones of the BFL more than it increases the intensity in the focus. Nevertheless we believe that high energy implantation can be successfully used to modify the BFL reflectivity, especially in the case of nearly backscattering reflection. {copyright} {ital 1996 American Institute of Physics.}

  20. Evaluation of cable tension sensors of FAST reflector from the perspective of EMI

    NASA Astrophysics Data System (ADS)

    Zhu, Ming; Wang, Qiming; Egan, Dennis; Wu, Mingchang; Sun, Xiao

    2016-06-01

    The active reflector of FAST (five-hundred-meter aperture spherical radio telescope) is supported by a ring beam and a cable-net structure, in which nodes are actively controlled to form series of real-time paraboloids. To ensure the security and stability of the supporting structure, tension must be monitored for some typical cables. Considering the stringent requirements in accuracy and long-term stability, magnetic flux sensor, vibrating wire strain gauge and fiber bragg grating strain gauge are screened for the cable tension monitoring of the supporting cable-net. Specifically, receivers of radio telescopes have strict restriction on electro magnetic interference (EMI) or radio frequency interference (RFI). These three types of sensors are evaluated from the view of EMI/RFI. Firstly, these fundamentals are theoretically analyzed. Secondly, typical sensor signals are collected in the time and analyzed in the frequency domain, which shows the characteristic in the frequency domain. Finally, typical sensors are tested in an anechoic chamber to get the EMI levels. Theoretical analysis shows that Fiber Bragg Grating strain gauge itself will not lead to EMI/RFI. According to GJB151A, frequency domain analysis and test results show that for the vibrating wire strain gauge and magnetic flux sensor themselves, testable EMI/RFI levels are typically below the background noise of the anechoic chamber. FAST finally choses these three sensors as the monitoring sensors of its cable tension. The proposed study is also a reference to the monitoring equipment selection of other radio telescopes and large structures.

  1. 46 CFR 28.235 - Anchors and radar reflectors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Anchors and radar reflectors. 28.235 Section 28.235....235 Anchors and radar reflectors. (a) Each vessel must be fitted with an anchor(s) and chain(s), cable... rigged with gear that provides a radar signature from a distance of 6 miles, each nonmetallic hull...

  2. 46 CFR 28.235 - Anchors and radar reflectors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Anchors and radar reflectors. 28.235 Section 28.235....235 Anchors and radar reflectors. (a) Each vessel must be fitted with an anchor(s) and chain(s), cable... rigged with gear that provides a radar signature from a distance of 6 miles, each nonmetallic hull...

  3. 46 CFR 28.235 - Anchors and radar reflectors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Anchors and radar reflectors. 28.235 Section 28.235....235 Anchors and radar reflectors. (a) Each vessel must be fitted with an anchor(s) and chain(s), cable... rigged with gear that provides a radar signature from a distance of 6 miles, each nonmetallic hull...

  4. 46 CFR 28.235 - Anchors and radar reflectors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Anchors and radar reflectors. 28.235 Section 28.235....235 Anchors and radar reflectors. (a) Each vessel must be fitted with an anchor(s) and chain(s), cable... rigged with gear that provides a radar signature from a distance of 6 miles, each nonmetallic hull...

  5. 46 CFR 28.235 - Anchors and radar reflectors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Anchors and radar reflectors. 28.235 Section 28.235....235 Anchors and radar reflectors. (a) Each vessel must be fitted with an anchor(s) and chain(s), cable... rigged with gear that provides a radar signature from a distance of 6 miles, each nonmetallic hull...

  6. Detail of 25' highband reflector screen poles with monopole antenna ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of 25' high-band reflector screen poles with monopole antenna elements behind, note the metal sleeve bases of the reflector screen poles and the guy wire anchors from the dipole antenna elements (left foreground), view facing north northwest - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI

  7. Detail of 25' highband reflector screen pole showing the horizontal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of 25' high-band reflector screen pole showing the horizontal wood beams and vertical wires hung from ceramic insulators, note the dipole antenna element and 94' low-band reflector screen poles in background, view facing north - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI

  8. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures, stakes... bridge channel piers. Racons are used to mark the centerline of the channel....

  9. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures, stakes... bridge channel piers. Racons are used to mark the centerline of the channel....

  10. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures, stakes... bridge channel piers. Racons are used to mark the centerline of the channel....

  11. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures, stakes... bridge channel piers. Racons are used to mark the centerline of the channel....

  12. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures, stakes... bridge channel piers. Racons are used to mark the centerline of the channel....

  13. Study variants of hard CFRP reflector for intersatellite communication

    NASA Astrophysics Data System (ADS)

    Prosuntsov, PV; Reznik, SV; Mikhailovsky, KV; Novikov, AD; Aung, Zaw Ye

    2016-10-01

    The paper deals with the justification of space antennas reflector layout for advanced telecommunication satellites. The selection of design decisions is based on numerical simulations of heat transfer and mechanics processes characteristic of the geostationary orbit conditions. The advantages of parabolic shell of small thickness reflector scheme reinforced with star-shaped ribs on the convex side are demonstrated.

  14. X-ray resonator with pear-shaped reflectors

    SciTech Connect

    Churikov, V A

    2003-11-30

    An X-ray resonator design is proposed in which peculiar pear-shaped reflectors, which are grazing-incidence X-ray mirrors, serve as optical elements. Special features of this resonator are relatively high reflector efficiencies and the axial symmetry of the output radiation. (resonators)

  15. Bragg interferometer for gravity gradient measurements

    NASA Astrophysics Data System (ADS)

    D'Amico, G.; Borselli, F.; Cacciapuoti, L.; Prevedelli, M.; Rosi, G.; Sorrentino, F.; Tino, G. M.

    2016-06-01

    We report on the characterization of a dual cloud atom interferometer for gravity gradient measurements using third-order Bragg diffraction as atom optical elements. We study the dependence of the contrast and the gradiometer phase angle against the relevant experimental parameters and characterize the instrument sensitivity. We achieve a sensitivity to gravity gradient measurements of 2.6 ×10-8s-2 (26 E) after 2000 s of integration time.

  16. Fort Bragg Embraces Groundbreaking Heat Pump Technology

    SciTech Connect

    none,

    2013-03-01

    The U.S. Army’s Fort Bragg partnered with the Department of Energy (DOE) to develop and implement solutions to build new, low-energy buildings that are at least 50% below Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  17. Fiber Bragg grating based tunable sensitivity goniometer

    NASA Astrophysics Data System (ADS)

    Padma, Srivani; Umesh, Sharath; Pant, Shweta; Srinivas, Talabattula; Asokan, Sundarrajan

    2016-03-01

    Goniometer has found extensive usage in diverse applications, primary being medical field in which it is employed for obtaining the range of motion of joints during physical therapy. It is imperative to have a dynamic system to measure the range of motion which will aid for a progressive therapeutic treatment. Hence in the present study, a novel goniometer for real time dynamic angle measurement between two surfaces with the aid of a Fiber Bragg Grating sensor is proposed. The angular rotation between the two surfaces will be identified by the two arms of the Fiber Bragg Grating Goniometer (FBGG), which is translated to the rotation of the shaft which holds these arms together. A cantilever beam is fixed onto the base plate whose free end is connected to the rotating shaft. The rotating shaft will actuate a mechanism which will pull the free end of the cantilever resulting in strain variation over the cantilever beam. The strain variation on the cantilever beam is measured by the Fiber Bragg Grating sensor bonded over it. Further, the proposed FBGG facilitates tunable sensitivity by the discs of varying diameters on the rotating shaft. Tunable sensitivity of the FBGG is realised by the movement of these discs by varying circumferential arc lengths for the same angular movement, which will actuate the pull on the cantilever beam. As per the requirement of the application in terms of resolution and range of angular measurement, individual mode of sensitivity may be selected.

  18. Self-clamping arc light reflector for welding torch

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1987-01-01

    This invention is directed to a coaxial extending metal mirror reflector attached to the electrode housing or gas cup on a welding torch. An electric welding torch with an internal viewing system for robotic welding is provded with an annular arc light reflector to reflect light from the arc back onto the workpiece. The reflector has a vertical split or gap in its surrounding wall to permit the adjacent wall ends forming the split to be sprung open slightly to permit the reflector to be removed or slipped onto the torch housing or gas cup. The upper opening of the reflector is slightly smaller than the torch housing or gas cup and therefore, when placed on the torch housing or gas cup has that springiness to cause it to clamp tightly on the housing or gas cup. The split or gap also serves to permit the feed of weld wire through to the weld area,

  19. Self-clamping arc light reflector for welding torch

    NASA Astrophysics Data System (ADS)

    Gordon, Stephen S.

    1987-07-01

    This invention is directed to a coaxial extending metal mirror reflector attached to the electrode housing or gas cup on a welding torch. An electric welding torch with an internal viewing system for robotic welding is provded with an annular arc light reflector to reflect light from the arc back onto the workpiece. The reflector has a vertical split or gap in its surrounding wall to permit the adjacent wall ends forming the split to be sprung open slightly to permit the reflector to be removed or slipped onto the torch housing or gas cup. The upper opening of the reflector is slightly smaller than the torch housing or gas cup and therefore, when placed on the torch housing or gas cup has that springiness to cause it to clamp tightly on the housing or gas cup. The split or gap also serves to permit the feed of weld wire through to the weld area,

  20. Impact of HFIR LEU Conversion on Beryllium Reflector Degradation Factors

    SciTech Connect

    Ilas, Dan

    2013-10-01

    An assessment of the impact of low enriched uranium (LEU) conversion on the factors that may cause the degradation of the beryllium reflector is performed for the High Flux Isotope Reactor (HFIR). The computational methods, models, and tools, comparisons with previous work, along with the results obtained are documented and discussed in this report. The report documents the results for the gas and neutronic poison production, and the heating in the beryllium reflector for both the highly enriched uranium (HEU) and LEU HFIR configurations, and discusses the impact that the conversion to LEU may have on these quantities. A time-averaging procedure was developed to calculate the isotopic (gas and poisons) production in reflector. The sensitivity of this approach to different approximations is gauged and documented. The results show that the gas is produced in the beryllium reflector at a total rate of 0.304 g/cycle for the HEU configuration; this rate increases by ~12% for the LEU case. The total tritium production rate in reflector is 0.098 g/cycle for the HEU core and approximately 11% higher for the LEU core. A significant increase (up to ~25%) in the neutronic poisons production in the reflector during the operation cycles is observed for the LEU core, compared to the HEU case, for regions close to the core s horizontal midplane. The poisoning level of the reflector may increase by more than two orders of magnitude during long periods of downtime. The heating rate in the reflector is estimated to be approximately 20% lower for the LEU core than for the HEU core. The decrease is due to a significantly lower contribution of the heating produced by the gamma radiation for the LEU core. Both the isotopic (gas and neutronic poisons) production and the heating rates are spatially non-uniform throughout the beryllium reflector volume. The maximum values typically occur in the removable reflector and close to the midplane.

  1. Novel back-reflector architecture with nanoparticle based buried light-scattering microstructures for improved solar cell performance

    NASA Astrophysics Data System (ADS)

    Desta, Derese; Ram, Sanjay K.; Rizzoli, Rita; Bellettato, Michele; Summonte, Caterina; Jeppesen, Bjarke R.; Jensen, Pia B.; Tsao, Yao-Chung; Wiggers, Hartmut; Pereira, Rui N.; Balling, Peter; Larsen, Arne Nylandsted

    2016-06-01

    A new back-reflector architecture for light-management in thin-film solar cells is proposed that includes a morphologically smooth top surface with light-scattering microstructures buried within. The microstructures are pyramid shaped, fabricated on a planar reflector using TiO2 nanoparticles and subsequently covered with a layer of Si nanoparticles to obtain a flattened top surface, thus enabling growth of good quality thin-film solar cells. The optical properties of this back-reflector show high broadband haze parameter and wide angular distribution of diffuse light-scattering. The n-i-p amorphous silicon thin-film solar cells grown on such a back-reflector show enhanced light absorption resulting in improved external quantum efficiency. The benefit of the light trapping in those solar cells is evidenced by the gains in short-circuit current density and efficiency up to 15.6% and 19.3% respectively, compared to the reference flat solar cells. This improvement in the current generation in the solar cells grown on the flat-topped (buried pyramid) back-reflector is observed even when the irradiation takes place at large oblique angles of incidence. Finite-difference-time-domain simulation results of optical absorption and ideal short-circuit current density values agree well with the experimental findings. The proposed approach uses a low cost and simple fabrication technique and allows effective light manipulation by utilizing the optical properties of micro-scale structures and nanoscale constituent particles.

  2. Fiber optic security seal including plural Bragg gratings

    DOEpatents

    Forman, Peter R.

    1994-01-01

    An optical security system enables the integrity of a container seal to be remotely interrogated. A plurality of Bragg gratings is written holographically into the core of at least one optical fiber placed about the container seal, where each Bragg grating has a predetermined location and a known frequency for reflecting incident light. A time domain reflectometer is provided with a variable frequency light output that corresponds to the reflecting frequencies of the Bragg gratings to output a signal that is functionally related to the location and reflecting frequency of each of the Bragg gratings.

  3. Fiber optic security seal including plural Bragg gratings

    DOEpatents

    Forman, P.R.

    1994-09-27

    An optical security system enables the integrity of a container seal to be remotely interrogated. A plurality of Bragg gratings is written holographically into the core of at least one optical fiber placed about the container seal, where each Bragg grating has a predetermined location and a known frequency for reflecting incident light. A time domain reflectometer is provided with a variable frequency light output that corresponds to the reflecting frequencies of the Bragg gratings to output a signal that is functionally related to the location and reflecting frequency of each of the Bragg gratings. 2 figs.

  4. Integrated 222-GHz corner-reflector antennas

    NASA Astrophysics Data System (ADS)

    Gearhart, Steven S.; Ling, Curtis C.; Rebeiz, Gabriel M.

    1991-01-01

    A high-gain monolithic millimeter-wave antenna has been designed, fabricated, and tested at 222 GHz. The structure consists of a traveling-wave antenna integrated on a 1.2-micron dielectric membrane and suspended in a longitudinal cavity etched in a silicon wafer. A new traveling-wave antenna design yields a wideband input impedance and a low cross-polarization component in the E- and quasi-H-plane patterns. A directivity of 17.7 dB and a main-beam efficiency of 88.5 percent are calculated from the 222-GHz pattern measurements. The integrated corner-reflector antenna is well suited for millimeter- and submillimeter-wave imaging applications in large f-number systems.

  5. Imaging with Spherically Bent Crystals or Reflectors

    SciTech Connect

    Bitter, M; Hill, K W; Scott, S; Ince-Cushman, A; Reinke, M; Podpaly, Y; Rice, J E; Beiersdorfer, P

    2010-06-01

    This paper consists of two parts: Part I describes the working principle of a recently developed x-ray imaging crystal spectrometer, where the astigmatism of spherically bent crystals is being used with advantage to record spatially resolved spectra of highly charged ions for Doppler measurements of the ion-temperature and toroidal plasmarotation- velocity profiles in tokamak plasmas. This type of spectrometer was thoroughly tested on NSTX and Alcator C-Mod, and its concept was recently adopted for the design of the ITER crystal spectrometers. Part II describes imaging schemes, where the astigmatism has been eliminated by the use of matched pairs of spherically bent crystals or reflectors. These imaging schemes are applicable over a wide range of the electromagnetic radiation, which includes microwaves, visible light, EUV radiation, and x-rays. Potential applications with EUV radiation and x-rays are the diagnosis of laserproduced plasmas, imaging of biological samples with synchrotron radiation, and lithography.

  6. Multiple seismic reflectors in Earth's lowermost mantle.

    PubMed

    Shang, Xuefeng; Shim, Sang-Heon; de Hoop, Maarten; van der Hilst, Robert

    2014-02-18

    The modern view of Earth's lowermost mantle considers a D″ region of enhanced (seismologically inferred) heterogeneity bounded by the core-mantle boundary and an interface some 150-300 km above it, with the latter often attributed to the postperovskite phase transition (in MgSiO3). Seismic exploration of Earth's deep interior suggests, however, that this view needs modification. So-called ScS and SKKS waves, which probe the lowermost mantle from above and below, respectively, reveal multiple reflectors beneath Central America and East Asia, two areas known for subduction of oceanic plates deep into Earth's mantle. This observation is inconsistent with expectations from a thermal response of a single isochemical postperovskite transition, but some of the newly observed structures can be explained with postperovskite transitions in differentiated slab materials. Our results imply that the lowermost mantle is more complex than hitherto thought and that interfaces and compositional heterogeneity occur beyond the D″ region sensu stricto.

  7. Method of making reflecting film reflector

    DOEpatents

    Cottingham, James G.

    1980-01-01

    A reflector of the reflecting film type is disclosed and which may be used in a heliostatic system for concentrating solar energy and comprising a reflecting film bonded to an appropriate rigid substrate in such a way that specularity of a very high order is achieved. A method of bonding the reflecting film to the substrate is also disclosed and comprises the steps of initially adhering the film to a smooth, clean flat rigid surface with a non-bonding liquid between the rigid surface and film, and then bonding the substrate and film. The non-bonding liquid has a molecular adhesion greater than any stresses due to handling or curing of the bonding agent which is applied between the film and the opposing surface of the rigid substrate.

  8. Using Two-Dimensional Distributed Feedback for Synchronization of Radiation from Two Parallel-Sheet Electron Beams in a Free-Electron Maser.

    PubMed

    Arzhannikov, A V; Ginzburg, N S; Kalinin, P V; Kuznetsov, S A; Malkin, A M; Peskov, N Yu; Sergeev, A S; Sinitsky, S L; Stepanov, V D; Thumm, M; Zaslavsky, V Yu

    2016-09-09

    A spatially extended planar 75 GHz free-electron maser with a hybrid two-mirror resonator consisting of two-dimensional upstream and traditional one-dimensional downstream Bragg reflectors and driven by two parallel-sheet electron beams 0.8  MeV/1  kA has been elaborated. For the highly oversized interaction space (cross section 45×2.5 vacuum wavelengths), the two-dimensional distributed feedback allowed realization of stable narrow-band generation that includes synchronization of emission from both electron beams. As a result, spatially coherent radiation with the output power of 30-50 MW and a pulse duration of ∼100  ns was obtained in each channel.

  9. Using Two-Dimensional Distributed Feedback for Synchronization of Radiation from Two Parallel-Sheet Electron Beams in a Free-Electron Maser

    NASA Astrophysics Data System (ADS)

    Arzhannikov, A. V.; Ginzburg, N. S.; Kalinin, P. V.; Kuznetsov, S. A.; Malkin, A. M.; Peskov, N. Yu.; Sergeev, A. S.; Sinitsky, S. L.; Stepanov, V. D.; Thumm, M.; Zaslavsky, V. Yu.

    2016-09-01

    A spatially extended planar 75 GHz free-electron maser with a hybrid two-mirror resonator consisting of two-dimensional upstream and traditional one-dimensional downstream Bragg reflectors and driven by two parallel-sheet electron beams 0.8 MeV /1 kA has been elaborated. For the highly oversized interaction space (cross section 45 ×2.5 vacuum wavelengths), the two-dimensional distributed feedback allowed realization of stable narrow-band generation that includes synchronization of emission from both electron beams. As a result, spatially coherent radiation with the output power of 30-50 MW and a pulse duration of ˜100 ns was obtained in each channel.

  10. Theoretical consideration of an X-ray Bragg-reflection lens using the eikonal approximation.

    PubMed

    Balyan, Minas K

    2014-07-01

    On the basis of the eikonal approximation, X-ray Bragg-case focusing by a perfect crystal with parabolic-shaped entrance surface is considered theoretically. Expressions for focal distances, intensity gain and distribution around the focus spot as well as for the focus spot sizes are obtained. The condition of point focusing is presented. The experiment can be performed using X-ray synchrotron radiation sources (particularly free-electron lasers).

  11. Surface diagnosis of large reflector antennas using microwave holographic metrology - An iterative approach

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Y.

    1984-01-01

    The radiation pattern of an antenna can be significantly affected by reflector surface errors. A minimization of losses due to surface inaccuracies is, therefore, required. A suitable procedure for the determination of the deviations of the surface from its ideal geometry is based on the microwave holographic technique. In this procedure, the complex pattern of the antenna is measured, and the Fourier transform relationship, existing between the radiation pattern and the function related to the current distribution on the reflector surface, is applied. It is naturally desirable to limit the amount of measured data. The present investigation is concerned with the concept of the Fourier transform relationship between the induced current and the far field. It is demonstrated that the relationship, in general, can be interpreted as a summation of many Fourier transforms. An iterative scheme is employed to continue the far-field pattern outside the measurement window.

  12. Visible light focusing flat lenses based on hybrid dielectric-metal metasurface reflector-arrays.

    PubMed

    Fan, Qingbin; Huo, Pengcheng; Wang, Daopeng; Liang, Yuzhang; Yan, Feng; Xu, Ting

    2017-03-23

    Conventional metasurface reflector-arrays based on metallic resonant nanoantenna to control the wavefront of light for focusing always suffer from strong ohmic loss at optical frequencies. Here, we overcome this challenge by constructing a non-resonant, hybrid dielectric-metal configuration consisting of TiO2 nanofins associated with an Ag reflector substrate that provides a broadband response and high polarization conversion efficiency in the visible range. A reflective flat lens based on this configuration shows an excellent focusing performance with the spot size close to the diffraction limit. Furthermore, by employing the superimposed phase distribution design to manipulate the wavefront of the reflected light, various functionalities, such as multifocal and achromatic focusing, are demonstrated for the flat lenses. Such a reflective flat lens will find various applications in visible light imaging and sensing systems.

  13. Diffuse reflectors for improving light management in solar cells: a review and outlook

    NASA Astrophysics Data System (ADS)

    Barugkin, Chog; Beck, Fiona J.; Catchpole, Kylie R.

    2017-01-01

    Pigment based diffuse reflectors (DRs) have several advantages over metal reflectors such as good stability, high reflectivity, and low parasitic absorption. As such, DRs have the potential to be applied on high efficiency silicon solar cells and further increase the power conversion efficiency. In this paper, we perform a thorough review on the notable achievements to date of DRs’ application for photovoltaics. We outline unique attributes of these technologies and discuss the theoretical and laboratory development working towards overcoming the challenges of transferring to high efficiency silicon solar cells. In order to understand the potential of DRs for high efficiency silicon solar cells, we provide a qualitative analysis of the impact of front reflection, rear absorption and the angular distribution on the useful light absorption in silicon wafers. By including this discussion, we provide an outlook for the application of DR in reaching maximum photo-current for high efficiency silicon solar cells.

  14. Visible light focusing flat lenses based on hybrid dielectric-metal metasurface reflector-arrays

    PubMed Central

    Fan, Qingbin; Huo, Pengcheng; Wang, Daopeng; Liang, Yuzhang; Yan, Feng; Xu, Ting

    2017-01-01

    Conventional metasurface reflector-arrays based on metallic resonant nanoantenna to control the wavefront of light for focusing always suffer from strong ohmic loss at optical frequencies. Here, we overcome this challenge by constructing a non-resonant, hybrid dielectric-metal configuration consisting of TiO2 nanofins associated with an Ag reflector substrate that provides a broadband response and high polarization conversion efficiency in the visible range. A reflective flat lens based on this configuration shows an excellent focusing performance with the spot size close to the diffraction limit. Furthermore, by employing the superimposed phase distribution design to manipulate the wavefront of the reflected light, various functionalities, such as multifocal and achromatic focusing, are demonstrated for the flat lenses. Such a reflective flat lens will find various applications in visible light imaging and sensing systems. PMID:28332611

  15. Visible light focusing flat lenses based on hybrid dielectric-metal metasurface reflector-arrays

    NASA Astrophysics Data System (ADS)

    Fan, Qingbin; Huo, Pengcheng; Wang, Daopeng; Liang, Yuzhang; Yan, Feng; Xu, Ting

    2017-03-01

    Conventional metasurface reflector-arrays based on metallic resonant nanoantenna to control the wavefront of light for focusing always suffer from strong ohmic loss at optical frequencies. Here, we overcome this challenge by constructing a non-resonant, hybrid dielectric-metal configuration consisting of TiO2 nanofins associated with an Ag reflector substrate that provides a broadband response and high polarization conversion efficiency in the visible range. A reflective flat lens based on this configuration shows an excellent focusing performance with the spot size close to the diffraction limit. Furthermore, by employing the superimposed phase distribution design to manipulate the wavefront of the reflected light, various functionalities, such as multifocal and achromatic focusing, are demonstrated for the flat lenses. Such a reflective flat lens will find various applications in visible light imaging and sensing systems.

  16. Modular design of a high-efficiency LED headlamp system based on freeform reflectors

    NASA Astrophysics Data System (ADS)

    Wu, Heng; Zhang, Xianmin; Ge, Peng

    2015-09-01

    A modular of the LED headlamp system based on freeform reflectors is proposed. Glare suppression and optical design are taken into account during the module design. The proposed module consists of six LEDs and each of them has a freeform reflector correspondingly, which is constructed based on the light energy maps and Snell's Law. Through lighting up different LEDs, the high-beam light and the low-beam light can be switched conveniently. With the proposed method, a module is designed and LUW HWQP LED source whose chip size is 1.0 mm×1.0 mm is adopted for the simulation. Results demonstrate that the lighting distribution can well fulfill the requirements of ECE R112 regulation without any other lenses, shields or baffles. Furthermore, the total optical efficiency can reach up to 80.29% and 81.16% for the low-beam light and high-beam light respectively.

  17. The Role of Bottom Simulating Reflectors in Gas Hydrate Assessment

    NASA Astrophysics Data System (ADS)

    Majumdar, U.; Shedd, W. W.; Cook, A.; Frye, M.

    2015-12-01

    In this research we test the viability of using a bottom simulating reflector (BSR) to detect gas hydrate. Bottom simulating reflectors (BSRs) occur at many gas hydrate sites near the thermodynamic base of the gas hydrate stability zone (GHSZ), and are frequently used to identify possible presence of gas hydrate on a regional scale. To find if drilling a BSR actually increases the chances of finding gas hydrate, we combine an updated dataset of BSR distribution from the Bureau of Ocean Energy Management with a comprehensive dataset of natural gas hydrate distribution as appraised from well logs, covering an area of around 200,000 square kilometers in the northern Gulf of Mexico. The BSR dataset compiles industry 3-D seismic data, and includes mostly good-quality and high-confidence traditional and non-traditional BSRs. Resistivity well logs were used to identify the presence of gas hydrate from over 700 existing industry wells and we have found over 110 wells with likely gas hydrate occurrences. By integrating the two datasets, our results show that the chances of encountering gas hydrate when drilling through a BSR is ~ 42%, while that when drilling outside the BSR is ~15%. Our preliminary analysis indicates that a positive relationship exists between BSRs and gas hydrate accumulations, and the chances of encountering gas hydrate increases almost three-fold when drilling through a BSR. One interesting observation is that ~ 58% of the wells intersecting a BSR show no apparent evidence of gas hydrate. In this case, a BSR may occur at sites with no gas hydrate accumulations due to the presence of very low concentration of free gas that is not detected on resistivity logs. On the other hand, in a few wells, accumulations of gas hydrate were observed where no BSR is present. For example in a well in Atwater Valley Block 92, two intervals of gas hydrate accumulation in fractures have been identified on resistivity logs, of which, the deeper interval has 230 feet thick

  18. Vibration sensor based on highly birefringent Bragg gratings written in standard optical fiber by a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Chah, Karima; Bueno, Antonio; Kinet, Damien; Caucheteur, Christophe; Chluda, Cédric; Mégret, Patrice; Wuilpart, Marc

    2014-05-01

    We present a vibration sensor based on highly birefringent fiber Bragg gratings written in standard single mode optical fiber and realized with UV femtosecond pulses. This vibration sensor takes advantage of the stress-induced phase shift between the two orthogonally polarized fiber eigenmodes which induces intensity distribution changes in the two fiber Bragg grating reflection modes. The gratings are inscribed with the femtosecond line by line technique and have a birefringence value of 6 10-4. We demonstrate that theses gratings are temperature birefringence insensitive and ideal for vibration measurements.

  19. Deployable reflector design for Ku-band operation

    NASA Technical Reports Server (NTRS)

    Tankersley, B. C.

    1974-01-01

    A project was conducted to extend the deployable antenna technology state-of-the art through the design, analysis, construction, and testing of a lightweight, high surface tolerance, 12.5 foot diameter reflector for Ku-band operation. The applicability of the reflector design to the Tracking and Data Relay Satellite (TDRS) program was one requirement to be met. A documentary of the total program is presented. The performance requirements used to guide and constrain the design are discussed. The radio frequency, structural/dynamic, and thermal performance results are reported. Appendices are used to provide test data and detailed fabrication drawings of the reflector.

  20. Incidental Reflector Comparison of Containerized Dry Fire Extinguishing Agents

    SciTech Connect

    Chapman, Bryan Scott; Wysong, Andrew Russell

    2016-12-14

    This document addresses the incidental reflector reactivity worth of containerized fire extinguishing agents authorized for use in PF-4 at Los Alamos National Laboratory (LANL). The intent of the document is to analyze dry fire extinguishing agent that remains in a container and is not actively being used in a fire emergency. The incidental reflector reactivity worth is determined by comparison to various thicknesses of close fitting water reflection which is commonly used to bound incidental reflectors in criticality safety evaluations. The conclusion is that even in unlimited quantities, when containerized the authorized dry fire extinguishing agents are bound by 0.4 inches of close fitting water.

  1. Pressure surge reflector for pipe type cable system

    SciTech Connect

    Chu, H.; El Badaly, H.A.; Ghafurian, R. ); Aabo, T.; Ringlee, R.R.; Williams, J.A. ); Melcher, J. )

    1990-04-01

    This paper describes work performed on the development and testing of a pressure surge reflector, designed to reduce the pressure seen at potheads during an electrical failure in a pipe type cable system. The reflector is designed to protect the potheads from failing due to the pressure surge that may be large enough to fracture the porcelain, particularly when the electrical failure is physically close to the pothead. Test results show that the prototype reflector will lower the pressure significantly, bringing the pressure surge below the factory pressure test level for standard potheads.

  2. REFLECTOR CONTROL OF A BOILING-WATER REACTOR

    DOEpatents

    Treshow, M.

    1962-05-22

    A line connecting the reactor with a spent steam condenser contains a valve set to open when the pressure in the reactor exceeds a predetermined value and an orifice on the upstream side of the valve. Another line connects the reflector with this line between the orifice and the valve. An excess steam pressure causes the valve to open and the flow of steam through the line draws water out of the reflector. Provision is also made for adding water to the reflector when the steam pressure drops. (AEC)

  3. Adaptive feed array compensation system for reflector antenna surface distortion

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Zaman, A.

    1989-01-01

    The feasibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems degrade as the reflector surface distorts mainly due to thermal effects from a varying solar flux. The compensating systems described in this report can be used to maintain the design performance characteristics independent of thermal effects on the reflector surface. The proposed compensating system employs the concept of conjugate field matching to adjust the feed array complex excitation coefficients.

  4. Miniature fiber Bragg grating sensor interrogator (FBG-Transceiver) system

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Kempen, Cornelia; Lopatin, Craig

    2007-04-01

    This paper describes recent progress conducted towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-Transceiver TM) system based on multi-channel integrated optic sensor (InOSense TM) microchip technology. The hybrid InOSense TM microchip technology enables the integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogator systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation. The FBG-Transceiver system uses active optoelectronic components monolithically integrated to the InOSense TM microchip, a microprocessor controlled signal processing electronics board capable of processing the FBG sensors signals related to stress-strain and temperature as well as vibration and acoustics. The FBG-Transceiver TM system represents a new, reliable, highly robust technology that can be used to accurately monitor the status of an array of distributed fiber optic Bragg grating sensors installed in critical infrastructures. Its miniature package, low power operation, and state-of-the-art data communications architecture, all at a very affordable price makes it a very attractive solution for a large number of SHM/NDI applications in aerospace, naval and maritime industry, civil structures like bridges, buildings and dams, the oil and chemical industry, and for homeland security applications. The miniature, cost-efficient FBG-Transceiver TM system is poised to revolutionize the field of structural health monitoring and nondestructive inspection market. The sponsor of this program is NAVAIR under a DOD SBIR contract.

  5. Fiber Bragg Grating Sensors for Harsh Environments

    PubMed Central

    Mihailov, Stephen J.

    2012-01-01

    Because of their small size, passive nature, immunity to electromagnetic interference, and capability to directly measure physical parameters such as temperature and strain, fiber Bragg grating sensors have developed beyond a laboratory curiosity and are becoming a mainstream sensing technology. Recently, high temperature stable gratings based on regeneration techniques and femtosecond infrared laser processing have shown promise for use in extreme environments such as high temperature, pressure or ionizing radiation. Such gratings are ideally suited for energy production applications where there is a requirement for advanced energy system instrumentation and controls that are operable in harsh environments. This paper will present a review of some of the more recent developments. PMID:22438744

  6. Demonstration of uniform multicore fiber Bragg gratings.

    PubMed

    Lindley, Emma; Min, Seong-Sik; Leon-Saval, Sergio; Cvetojevic, Nick; Lawrence, Jon; Ellis, Simon; Bland-Hawthorn, Joss

    2014-12-15

    Fiber Bragg gratings in multicore fibers have significant potential as compact and robust filters for research and commercial applications. With the aid of an innovative, flat-fielded Mach-Zehnder interferometer, we demonstrate deep (>30 dB) narrow (100 pm at 3 dB; 90 pm at 10 dB) notches in the outer 6 cores of a 7-core fiber at a constant wavelength ( ± 15 pm). This is a crucial step in the development of FBGs operating within multimode fibers that carry an arbitrary number of spatial modes.

  7. Modified fiber Bragg grating pulse pressure sensor

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Tomasz; Kaczmarek, Zdzisław

    2007-04-01

    A new fiber optic, pulse pressure sensor with a Bragg grating, in the structure of which the operating principle of the Hopkinson bar is applied, is presented in the paper. The delivery of the measured pressure to the sensor is realized by means of a measuring head with truncated cone, made of silica glass and fusion-spliced to the grating's fiber. The optical and the electronic setup of the sensor is given. The sensor was employed to measure pulse pressure generated by an electric discharge in water. The obtained measurement results and the conclusions arising from them are presented.

  8. Hyperbolic metamaterials based on Bragg polariton structures

    NASA Astrophysics Data System (ADS)

    Sedov, E. S.; Charukhchyan, M. V.; Arakelyan, S. M.; Alodzhants, A. P.; Lee, R.-K.; Kavokin, A. V.

    2016-07-01

    A new hyperbolic metamaterial based on a modified semiconductor Bragg mirror structure with embedded periodically arranged quantum wells is proposed. It is shown that exciton polaritons in this material feature hyperbolic dispersion in the vicinity of the second photonic band gap. Exciton-photon interaction brings about resonant nonlinearity leading to the emergence of nontrivial topological polaritonic states. The formation of spatially localized breather-type structures (oscillons) representing kink-shaped solutions of the effective Ginzburg-Landau-Higgs equation slightly oscillating along one spatial direction is predicted.

  9. Space Reflector Materials for Prometheus Application

    SciTech Connect

    J. Nash; V. Munne; LL Stimely

    2006-01-31

    The two materials studied in depth which appear to have the most promise in a Prometheus reflector application are beryllium (Be) and beryllium oxide (BeO). Three additional materials, magnesium oxide (MgO), alumina (Al{sub 2}O{sub 3}), and magnesium aluminate spinel (MgAl{sub 2}O{sub 4}) were also recently identified to be of potential interest, and may have promise in a Prometheus application as well, but are expected to be somewhat higher mass than either a Be or BeO based reflector. Literature review and analysis indicates that material properties for Be are largely known, but there are gaps in the properties of Be0 relative to the operating conditions for a Prometheus application. A detailed preconceptual design information document was issued providing material properties for both materials (Reference (a)). Beryllium oxide specimens were planned to be irradiated in the JOY0 Japanese test reactor to partially fill the material property gaps, but more testing in the High Flux Isotope Reactor (HFIR) test reactor at Oak Ridge National Laboratory (ORNL) was expected to be needed. A key issue identified for BeO was obtaining material for irradiation testing with an average grain size of {approx}5 micrometers, reminiscent of material for which prior irradiation test results were promising. Current commercially available material has an average grain size of {approx}10 micrometers. The literature indicated that improved irradiation performance could be expected (e.g., reduced irradiation-induced swelling) with the finer grain size material. Confirmation of these results would allow the use of historic irradiated materials test results from the literature, reducing the extent of required testing and therefore the cost of using this material. Environmental, safety and health (ES&H) concerns associated with manufacturing are significant but manageable for Be and BeO. Although particulate-generating operations (e.g., machining, grinding, etc.) involving Be

  10. Theoretical study of transverse mode selection in laser resonator with volume Bragg gratings

    NASA Astrophysics Data System (ADS)

    Hu, Jing; Gao, Fan; Zhang, Xiang; Yuan, Xiao

    2016-11-01

    Volume Bragg grating (VBG) can be used in laser resonator to control the transverse distribution due to its excellent Bragg selectivity. The coupled-wave theory is used to analyze the angular selectivity of VBG, and the output modes of the volume Bragg resonator are simulated with the fast Fourier transform (FFT) method and the coupled-wave theory. In this paper, the volume Bragg grating is inserted into a plane-parallel resonator, the intensity distribution and diffraction losses for the mode of TEM00, TEM10 and TEM20 are simulated, and the loss difference for different modes at different angular selectivity of VBGs are discussed. At the VBG angular selectivity of 3 mrad, the diffraction loss for fundamental mode is of 6.3%, while the diffraction loss for TEM10 and TEM20 mode are 19.8% and 32.7%, respectively. Therefore, TEM10 and TEM20 can be easily suppressed if the gain is between 6.3% and 19.8%, and a fundamental transverse mode can be obtained. Besides, the simulation results show that the intensity distribution profile of the transverse modes become smooth with the insertion of VBG, but the diffraction losses of transverse modes are increasing, and the diffraction loss increases with the order number of transverse modes increasing. Moreover, the loss difference between modes is getting large under the effect of VBG. The high loss difference between different modes is good for transverse mode selection, and VBG with reasonable angular selectivity in laser resonator will force the multi-mode to operate in a single transverse mode, which may has potential applications in lasers.

  11. Secondary pattern computation of an arbitrarily shaped main reflector

    NASA Technical Reports Server (NTRS)

    Lam, P. T. C.; Lee, S. W.; Acosta, R.

    1984-01-01

    The secondary pattern of a perfectly conducting offset main reflector being illuminated by a point feed at an arbitrary location was studied. The method of analysis is based upon the application of the Fast Fourier Transform (FFT) to the aperture fields obtained using geometrical optics (GO) and geometrical theory of diffraction (GTD). Key features of the reflector surface is completely arbitrary, the incident field from the feed is most general with arbitrary polarization and location, and the edge diffraction is calculated by either UAT or by UTD. Comparison of this technique for an offset parabolic reflector with the Jacobi-Bessel and Fourier-Bessel techniques shows good agreement. Near field, far field, and scan data of a large reflector are presented.

  12. Preliminary design approach for large high precision segmented reflectors

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.; Collins, Timothy J.; Hedgepeth, John M.

    1990-01-01

    A simplified preliminary design capability for erectable precision segmented reflectors is presented. This design capability permits a rapid assessment of a wide range of reflector parameters as well as new structural concepts and materials. The preliminary design approach was applied to a range of precision reflectors from 10 meters to 100 meters in diameter while considering standard design drivers. The design drivers considered were: weight, fundamental frequency, launch packaging volume, part count, and on-orbit assembly time. For the range of parameters considered, on-orbit assembly time was identified as the major design driver. A family of modular panels is introduced which can significantly reduce the number of reflector parts and the on-orbit assembly time.

  13. Elevation of a portion of the reflector screen and antenna ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation of a portion of the reflector screen and antenna circles from the interior, view facing southeast - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI

  14. 6. GENE WASH DAM, LOOKING NORTHWEST. SURVEY REFLECTOR IN FOREGROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. GENE WASH DAM, LOOKING NORTHWEST. SURVEY REFLECTOR IN FOREGROUND FOR MONITORING MOVEMENT OF DAM AND EARTH. - Gene Wash Reservoir & Dam, 2 miles west of Parker Dam, Parker Dam, San Bernardino County, CA

  15. Optical biometry of biological tissues by ellipsoidal reflectors

    NASA Astrophysics Data System (ADS)

    Bezuglyi, M. A.; Pavlovets, N. V.

    2013-06-01

    Possibilities of measuring systems that uses ellipsoidal reflectors for determining the optical parameters of biological tissue are studied. The modified inverse Monte Carlo method was designed for biomedical photometric system "biological tissue - ellipsoidal mirror."

  16. 16 CFR 1512.16 - Requirements for reflectors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... sidewalls or, alternatively, reflectors mounted on the spokes of each wheel, or, for non-caliper rim brake... must break before additional separation (peeling) from the rim is observed. (3) After...

  17. 16 CFR 1512.16 - Requirements for reflectors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... sidewalls or, alternatively, reflectors mounted on the spokes of each wheel, or, for non-caliper rim brake... must break before additional separation (peeling) from the rim is observed. (3) After...

  18. 16 CFR 1512.16 - Requirements for reflectors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... sidewalls or, alternatively, reflectors mounted on the spokes of each wheel, or, for non-caliper rim brake... must break before additional separation (peeling) from the rim is observed. (3) After...

  19. 16 CFR 1512.16 - Requirements for reflectors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... sidewalls or, alternatively, reflectors mounted on the spokes of each wheel, or, for non-caliper rim brake... must break before additional separation (peeling) from the rim is observed. (3) After...

  20. 16 CFR 1512.16 - Requirements for reflectors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... sidewalls or, alternatively, reflectors mounted on the spokes of each wheel, or, for non-caliper rim brake... must break before additional separation (peeling) from the rim is observed. (3) After...

  1. A bionic approach to mathematical modeling the fold geometry of deployable reflector antennas on satellites

    NASA Astrophysics Data System (ADS)

    Feng, C. M.; Liu, T. S.

    2014-10-01

    Inspired from biology, this study presents a method for designing the fold geometry of deployable reflectors. Since the space available inside rockets for transporting satellites with reflector antennas is typically cylindrical in shape, and its cross-sectional area is considerably smaller than the reflector antenna after deployment, the cross-sectional area of the folded reflector must be smaller than the available rocket interior space. Membrane reflectors in aerospace are a type of lightweight structure that can be packaged compactly. To design membrane reflectors from the perspective of deployment processes, bionic applications from morphological changes of plants are investigated. Creating biologically inspired reflectors, this paper deals with fold geometry of reflectors, which imitate flower buds. This study uses mathematical formulation to describe geometric profiles of flower buds. Based on the formulation, new designs for deployable membrane reflectors derived from bionics are proposed. Adjusting parameters in the formulation of these designs leads to decreases in reflector area before deployment.

  2. Reflectors for SAR performance testing-second edition

    SciTech Connect

    Doerry, Armin Walter

    2014-02-01

    Synthetic Aperture Radar (SAR) performance testing and estimation is facilitated by observing the system response to known target scene elements. Trihedral corner reflectors and other canonical targets play an important role because their Radar Cross Section (RCS) can be calculated analytically. However, reflector orientation and the proximity of the ground and mounting structures can significantly impact the accuracy and precision with which measurements can be made. These issues are examined in this report.

  3. Aluminum honeycomb reflector panels on James Clerk Maxwell Telescope

    NASA Astrophysics Data System (ADS)

    Greenhalgh, R. Justin S.

    1993-10-01

    The accuracy requirements and design philosophy of the JCMT reflector structure are briefly reviewed, leading to a steel space-frame with separate reflector panels. The choice of material for the panels is discussed, with particular emphasis on the properties of aluminum honeycomb composites. The development of the manufacturing process and the details of the process are described. Finally, statistics on the results of the manufacturing process are given.

  4. On the design of large space deployable modular antenna reflectors

    NASA Technical Reports Server (NTRS)

    Ribble, J. W.; Woods, A. A., Jr.

    1981-01-01

    The deployment kinematics, stowing philosophy, and deployment sequencing for large deployable antenna modules were verified. Mesh attachment methods compatible with full scale modules were devised. Parametric studies of large modular reflectors established size, mass, and aperture frequency capabilities for these assemblies. Preliminary studies were made devising means of delivering modules to orbit, and once there, of assembling the modules into complete modular antenna reflectors. The basic feasibility of creating mass efficient modules erectable into large structures in space was established.

  5. Ultralightweight Space Deployable Primary Reflector Demonstrator

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E., IV; Zeiders, Glenn W.; Smith, W. Scott (Technical Monitor)

    2002-01-01

    A concept has been developed and analyzed and several generational prototypes built for a gossamer-class deployable truss for a mirror or reflector with many smaller precisely-figured solid elements attached will, for at least the next several decades, minimize the mass of a large primary mirror assembly while still providing the high image quality essential for planet-finding and cosmological astronomical missions. Primary mirror segments are mounted in turn on ultralightweight thermally-formed plastic panels that hold clusters of mirror segments in rigid arrays whose tip/tilt and piston would be corrected over the scale of the plastic panels by the control segments. Prototype panels developed under this program are 45 cm wide and fabricated from commercially available Kaplan sheets. A three-strut octahedral tensegrity is the basis for the overall support structure. Each fundamental is composed of two such octahedrons, rotated oppositely about a common triangular face. Adjacent modules are joined at the nodes of the upper and lower triangles to form a deployable structure that could be made arbitrarily large. A seven-module dowel-and-wire prototype has been constructed. Deployment techniques based on the use of collapsing toggled struts with diagonal tensional elements allows an assembly of tensegrities to be fully collapsed and redeployed. The prototype designs will be described and results of a test program for measuring strength and deformation will be presented.

  6. Improved Monoblock laser brightness using external reflector.

    PubMed

    Hays, A D; Nettleton, John; Barr, Nick; Hough, Nathaniel; Goldberg, Lew

    2014-03-01

    The Monoblock laser has become the laser of choice in long-range, eye-safe laser range finders. It is eye-safe with emission at 1570 nm, high pulse energy, simple construction, and high efficiency when pumped by a laser-diode stack. Although the output beam divergence of a typical Monoblock with a 3  mm×3  mm cross section is relatively large (10-12 mrad), it can be reduced to <1  mrad using a telescope with large magnification. In this paper we present a simple and compact technique for achieving significant reduction in the Monoblock beam divergence using a partial reflector that is placed a short distance from the optical parametric oscillator (OPO). Using a 38 mm long Monoblock with a 10 mm long potassium titanyl phosphate OPO, we achieved a beam divergence of <4  mrad, corresponding to a >2.5× reduction from the unmodified laser. Performance using this technique with various feedback and etalon spacings is presented.

  7. Comparison of spatial harmonics in infinite and finite Bragg stacks for metamaterial homogenization

    NASA Astrophysics Data System (ADS)

    Clausen, N. C. J.; Arslanagić, S.; Breinbjerg, O.

    2014-11-01

    Metamaterial homogenization may be based on the dominance of a single Floquet-Bloch spatial harmonic in an infinite periodic structure - with the dominance quantified in terms of the relative magnitude of the associated spatial harmonic Poynting vector. For the corresponding finite structure the field is not quasi-periodic and cannot be expanded in Floquet-Bloch spatial harmonics; however, a set of pseudo spatial harmonics can be defined and the dominance of a single such harmonic likewise be used to determine whether the structure can be homogenized. For three different lossless Bragg stack configurations (one of which is magneto-dielectric), we show, using spectral representation, that the field in the finite structure can be accurately expanded in terms of these pseudo spatial harmonics and that the distribution of these agrees very well with the distribution of Floquet-Bloch spatial harmonics of the corresponding infinite Bragg stack. This is even the case for finite Bragg stacks having only two unit cells; thus, the number of unit cells does not influence the homogenizability of this type of configuration.

  8. Optimization of current modulation function for proton spread-out Bragg peak fields

    SciTech Connect

    Lu, H.-M.; Kooy, Hanne

    2006-05-15

    Proton treatments with spread-out Bragg peak (SOBP) fields often use a rotating modulation wheel of varying thickness to modulate the pristine Bragg peak in depth and intensity. The technique of modulating also the beam current independently over the wheel rotation provides an additional control over the intensities of the pulled-back Bragg peaks. As a result, a single wheel can be used over a large range of energies and SOBP parameters and field-specific wheels are no longer necessary. An essential task in commissioning a particular treatment depth is the determination of this current modulation function. We have developed a method for the optimization of the current modulation function. The basic idea is to treat the entire beam nozzle, housing the various beam scattering and modulating components, as a whole and to characterize its effect as a transformation from a modulating beam current to a depth-dose distribution. While this transformation is difficult to calculate theoretically due to the complex scattering paths in the nozzle and the phantom, it can, however, be determined by time-resolved dose measurements. Using this transformation, we can calculate SOBP depth-dose distributions for any current modulation function and optimize it by a simple numerical optimization. We have applied the new method to a number of proton beams with satisfactory results.

  9. Longitudinal strain sensing with photonic crystal fibers and fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Tenderenda, T.; Murawski, M.; Szymanski, M.; Szostkiewicz, L.; Becker, M.; Rothhardt, M.; Bartelt, H.; Mergo, P.; Poturaj, Kl; Makara, M.; Skorupski, K.; Marc, P.; Jaroszewicz, L. R.; Nasilowski, T.

    2014-03-01

    Photonic crystal fibers (PCF), sometimes also referred to as microstructured fibers (MSF), have been a subject of extensive research for over a decade. This is mainly due to the fact that by changing the geometry and distribution of the air holes the fiber properties can be significantly modified and tailored to specific applications. In this paper we present the results of a numerical analysis of the influence of the air-hole distribution on the sensitivity of the propagated modes' effective refractive index to externally applied longitudinal strain. We propose an optimal strain sensitive fiber design, with a number of fibers drawn and experimentally evaluated to confirm the theoretical results. Furthermore as the direct measurement of the effective refractive index change may be complex and challenging in field environment, we propose to use fiber Bragg gratings (FBG) in our sensing set-up. As the Bragg wavelength is a function of the effective refractive index, the external strain changes can be monitored through the Bragg wavelength shift with a simple optical spectrometer. Moreover, since the PCF is also optimized for low-loss splicing with standard single mode fiber, our novel sensor head can be used with standard off-the-shelf components in complex multiplexed sensing arrays, with the measured signal transmitted to and from the sensor head by standard telecom fibers, which significantly reduces costs.

  10. Structural sensitivity of x-ray Bragg projection ptychography to domain patterns in epitaxial thin films

    DOE PAGES

    Hruszkewycz, S. O.; Zhang, Q.; Holt, M. V.; ...

    2016-10-04

    Bragg projection ptychography (BPP) is a coherent diffraction imaging technique capable of mapping the spatial distribution of the Bragg structure factor in nanostructured thin films. Here, we show that, because these images are projections, the structural sensitivity of the resulting images depends on the film thickness and the aspect ratio and orientation of the features of interest and that image interpretation depends on these factors. Lastly, we model changes in contrast in the BPP reconstructions of simulated PbTiO3 ferroelectric thin films with meandering 180° stripe domains as a function of film thickness, discuss their origin, and comment on the implicationmore » of these factors on the design of BPP experiments of general nanostructured films.« less

  11. Structural sensitivity of x-ray Bragg projection ptychography to domain patterns in epitaxial thin films

    SciTech Connect

    Hruszkewycz, S. O.; Zhang, Q.; Holt, M. V.; Highland, M. J.; Evans, P. G.; Fuoss, P. H.

    2016-10-04

    Bragg projection ptychography (BPP) is a coherent diffraction imaging technique capable of mapping the spatial distribution of the Bragg structure factor in nanostructured thin films. Here, we show that, because these images are projections, the structural sensitivity of the resulting images depends on the film thickness and the aspect ratio and orientation of the features of interest and that image interpretation depends on these factors. Lastly, we model changes in contrast in the BPP reconstructions of simulated PbTiO3 ferroelectric thin films with meandering 180° stripe domains as a function of film thickness, discuss their origin, and comment on the implication of these factors on the design of BPP experiments of general nanostructured films.

  12. Parity–time-symmetric circular Bragg lasers: a proposal and analysis

    PubMed Central

    Gu, Jiahua; Xi, Xiang; Ma, Jingwen; Yu, Zejie; Sun, Xiankai

    2016-01-01

    We propose a new type of semiconductor lasers by implementing the concept of parity–time symmetry in a two-dimensional circular Bragg grating structure, where both the real and imaginary parts of the refractive index are modulated along the radial direction. The laser modal properties are analyzed with a transfer-matrix method and are verified with numerical simulation of a practical design. Compared with conventional distributed-feedback lasers with modulation of only the real part of refractive index, the parity–time-symmetric circular Bragg lasers feature reduced threshold and enhanced modal discrimination, which in combination with the intrinsic circularly symmetric, large emission aperture are clear advantages in applications that require mode-hop-free, high-power, single-mode laser operation. PMID:27892933

  13. Bragg reflection band width and optical rotatory dispersion of cubic blue-phase liquid crystals

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Anucha, Konkanok; Ogawa, Yasuhiro; Kawata, Yuto; Ozaki, Masanori; Fukuda, Jun-ichi; Kikuchi, Hirotsugu

    2016-10-01

    The Bragg reflection band width and optical rotatory dispersion of liquid crystalline cholesteric blue phases (BPs) I and II are compared by numerical simulations. Attention is paid to the wavelength regions for which the reflection bands with lowest photon energies appear, i.e., the [110 ] direction for BP I and the [100 ] direction for BP II. Finite difference time domain and 4 ×4 matrix calculations performed on the theoretical director tensor distribution of BPs with the same material parameters show that BP II, which has simple cubic symmetry, has a wider photonic band gap than BP I, which has body centered cubic symmetry, possibly due to the fact that the density of the double-twist cylinders in BP II are twice that in BP I. The theoretical results on the Bragg reflection band width are supported by reflectance measurements performed on BPs I and II for light incident along the [110 ] and [100 ] directions, respectively.

  14. Bragg reflection band width and optical rotatory dispersion of cubic blue-phase liquid crystals.

    PubMed

    Yoshida, Hiroyuki; Anucha, Konkanok; Ogawa, Yasuhiro; Kawata, Yuto; Ozaki, Masanori; Fukuda, Jun-Ichi; Kikuchi, Hirotsugu

    2016-10-01

    The Bragg reflection band width and optical rotatory dispersion of liquid crystalline cholesteric blue phases (BPs) I and II are compared by numerical simulations. Attention is paid to the wavelength regions for which the reflection bands with lowest photon energies appear, i.e., the [110] direction for BP I and the [100] direction for BP II. Finite difference time domain and 4×4 matrix calculations performed on the theoretical director tensor distribution of BPs with the same material parameters show that BP II, which has simple cubic symmetry, has a wider photonic band gap than BP I, which has body centered cubic symmetry, possibly due to the fact that the density of the double-twist cylinders in BP II are twice that in BP I. The theoretical results on the Bragg reflection band width are supported by reflectance measurements performed on BPs I and II for light incident along the [110] and [100] directions, respectively.

  15. Detecting stripe phase in spin-orbit coupled condensates via optical Bragg scattering

    NASA Astrophysics Data System (ADS)

    Putra, Andika; Carcoba, Francisco Salces; Yue, Yuchen; Sugawa, Seiji; Spielman, Ian

    2016-05-01

    The stripe phase in spin-orbit coupled condensates has been predicted theoretically but not yet been observed. This peculiar feature, analogue to supersolidity, originates from the interaction effects and spin-momentum locking between different spin states. Motivated by recent observation of antiferromagnetic correlations in cold atoms, we explore the feasibility of Bragg diffraction to observe the stripe phase. Here, we create spin-orbit coupled condensates in f = 1 ground state manifold of Rb87 using a pair of cross-polarized 790.02 nm counter-propagating laser beams. Using similar setup, we make a spin-dependent one dimensional lattice and demonstrate Bragg scattering of light to calibrate the atomic density distribution. This enables us to do a direct measure of the stripe phase.

  16. Parity–time-symmetric circular Bragg lasers: a proposal and analysis

    NASA Astrophysics Data System (ADS)

    Gu, Jiahua; Xi, Xiang; Ma, Jingwen; Yu, Zejie; Sun, Xiankai

    2016-11-01

    We propose a new type of semiconductor lasers by implementing the concept of parity–time symmetry in a two-dimensional circular Bragg grating structure, where both the real and imaginary parts of the refractive index are modulated along the radial direction. The laser modal properties are analyzed with a transfer-matrix method and are verified with numerical simulation of a practical design. Compared with conventional distributed-feedback lasers with modulation of only the real part of refractive index, the parity–time-symmetric circular Bragg lasers feature reduced threshold and enhanced modal discrimination, which in combination with the intrinsic circularly symmetric, large emission aperture are clear advantages in applications that require mode-hop-free, high-power, single-mode laser operation.

  17. Disordered animal multilayer reflectors and the localization of light

    PubMed Central

    Jordan, T. M.; Partridge, J. C.; Roberts, N. W.

    2014-01-01

    Multilayer optical reflectors constructed from ‘stacks’ of alternating layers of high and low refractive index dielectric materials are present in many animals. For example, stacks of guanine crystals with cytoplasm gaps occur within the skin and scales of fish, and stacks of protein platelets with cytoplasm gaps occur within the iridophores of cephalopods. Common to all these animal multilayer reflectors are different degrees of random variation in the thicknesses of the individual layers in the stack, ranging from highly periodic structures to strongly disordered systems. However, previous discussions of the optical effects of such thickness disorder have been made without quantitative reference to the propagation of light within the reflector. Here, we demonstrate that Anderson localization provides a general theoretical framework to explain the common coherent interference and optical properties of these biological reflectors. Firstly, we illustrate how the localization length enables the spectral properties of the reflections from more weakly disordered ‘coloured’ and more strongly disordered ‘silvery’ reflectors to be explained by the same physical process. Secondly, we show how the polarization properties of reflection can be controlled within guanine–cytoplasm reflectors, with an interplay of birefringence and thickness disorder explaining the origin of broadband polarization-insensitive reflectivity. PMID:25339688

  18. A Cassegrain reflector system for compact range applications

    NASA Technical Reports Server (NTRS)

    Rader, Mark D.; Burnside, Walter D.

    1986-01-01

    An integral part of a compact range is the means of providing a uniform plane wave. A Cassegrain reflector system is one alternative for achieving this goal. Theoretically, this system offers better performance than a simple reflector system. The longer pathlengths in the Cassegrain system lead to a more uniform field in the plane of interest. The addition of the subreflector creates several problems, though. System complexity is increased both in terms of construction and performance analysis. The subreflector also leads to aperture blockage and the orientation of the feed now results in spillover illuminating the target areas as well as the rest of the range. Finally, the addition of the subreflector leads to interaction between the two reflectors resulting in undesired field variations in the plane of interest. These difficulties are addressed and through the concept of blending the surfaces, a Cassegrain reflector system is developed that will provide a uniform plane wave that offers superior performance over large target areas for a given size reflector system. Design and analysis is implemented by considering the main reflector and subreflector separately. Then the system may be put together and the final design and system analysis completed.

  19. Disordered animal multilayer reflectors and the localization of light.

    PubMed

    Jordan, T M; Partridge, J C; Roberts, N W

    2014-12-06

    Multilayer optical reflectors constructed from 'stacks' of alternating layers of high and low refractive index dielectric materials are present in many animals. For example, stacks of guanine crystals with cytoplasm gaps occur within the skin and scales of fish, and stacks of protein platelets with cytoplasm gaps occur within the iridophores of cephalopods. Common to all these animal multilayer reflectors are different degrees of random variation in the thicknesses of the individual layers in the stack, ranging from highly periodic structures to strongly disordered systems. However, previous discussions of the optical effects of such thickness disorder have been made without quantitative reference to the propagation of light within the reflector. Here, we demonstrate that Anderson localization provides a general theoretical framework to explain the common coherent interference and optical properties of these biological reflectors. Firstly, we illustrate how the localization length enables the spectral properties of the reflections from more weakly disordered 'coloured' and more strongly disordered 'silvery' reflectors to be explained by the same physical process. Secondly, we show how the polarization properties of reflection can be controlled within guanine-cytoplasm reflectors, with an interplay of birefringence and thickness disorder explaining the origin of broadband polarization-insensitive reflectivity.

  20. Design method for four-reflector type beam waveguide systems

    NASA Technical Reports Server (NTRS)

    Betsudan, S.; Katagi, T.; Urasaki, S.

    1986-01-01

    Discussed is a method for the design of four reflector type beam waveguide feed systems, comprised of a conical horn and 4 focused reflectors, which are used widely as the primary reflector systems for communications satellite Earth station antennas. The design parameters for these systems are clarified, the relations between each parameter are brought out based on the beam mode development, and the independent design parameters are specified. The characteristics of these systems, namely spillover loss, crosspolarization components, and frequency characteristics, and their relation to the design parameters, are also shown. It is also indicated that design parameters which decide the dimensions of the conical horn or the shape of the focused reflectors can be unerringly established once the design standard for the system has been selected as either: (1) minimizing the crosspolarization component by keeping the spillover loss to within acceptable limits, or (2) minimizing the spillover loss by maintaining the crossover components below an acceptable level and the independent design parameters, such as the respective sizes of the focused reflectors and the distances between the focussed reflectors, etc., have been established according to mechanical restrictions. A sample design is also shown. In addition to being able to clarify the effects of each of the design parameters on the system and improving insight into these systems, the efficiency of these systems will also be increased with this design method.

  1. Large deployable reflectors for telecom and earth observation applications

    NASA Astrophysics Data System (ADS)

    Scialino, L.; Ihle, A.; Migliorelli, M.; Gatti, N.; Datashvili, L.; van `t Klooster, K.; Santiago Prowald, J.

    2013-12-01

    Large deployable antennas are one of the key components for advanced missions in the fields of telecom and earth observation. In the recent past, missions have taken on board large deployable reflector (LDR) up to 22 m of diameter and several missions have already planned embarking large reflectors, such as the 12 m of INMARSAT XL or BIOMASS. At the moment, no European LDR providers are available and the market is dominated by Northrop-Grumman and Harris. Consequently, the development of European large reflector technology is considered a key step to maintain commercial and strategic competitiveness (ESA Large Reflector Antenna Working Group Final Report, TEC-EEA/2010.595/CM, 2010). In this scenario, the ESA General Study Project RESTEO (REflector Synergy between Telecom and Earth Observation), starting from the identification of future missions needs, has identified the most promising reflector concepts based on European heritage/technology, able to cover the largest range of potential future missions for both telecom and earth observation. This paper summarizes the activities and findings of the RESTEO Study.

  2. Significance of the basin wide reverse polarity reflector in the Offshore Sydney Basin, East Australian Margin

    NASA Astrophysics Data System (ADS)

    Rahman Talukder, Asrarur; Nadri, Dariush; Rajput, Sanjeev; Clennell, Ben; Griffiths, Cedric; Breeze, David

    2010-05-01

    changes laterally and is characterized by patches of high amplitude (bright spots). Contour mapping shows that this reverse polarity reflector is continuous and regionally distributed. The depth of the reflector with respect to the sea surface is too shallow to be a BSR, typically caused at the interface between hydrate containing sediments above and free gas below. Reverse polarity is a common indicator of the accumulation of hydrocarbons. However, alternatively in such shallow depth it can also be caused by the presence of a soft sediment layer. Another important point to note is that no chimney or any other gas escape features have been observed in the vicinity originating from the reverse polarity reflector. However, in the adjacent continental slope, giant pockmarks have been observed on the bathymetry data. They most probably originated from gas sources in Permian coal measures. In order to understand what is causing this reverse polarity further quantitative analysis such as AVO and inversion has been done. AVO analysis and subsequent inversion of selected seismic lines show that some parts of the reversed polarity are characterized by bright spots, especially on the hanging wall side of the major faults, caused by the presence of gas. The stratigraphic position of the reflector suggests that the anomalous horizon could have been formed during the low-stand that followed the high-stand progradation event seen on dip sections. The gas accumulation could then be associated with "back reef" carbonates that during the low stand have been subjected to karstification causing the gas entrapment in vugular pore spaces.

  3. Hybrid Deployable Foam Antennas and Reflectors

    NASA Technical Reports Server (NTRS)

    Rivellini, Tommaso; Willis, Paul; Hodges, Richard; Spitz, Suzanne

    2006-01-01

    Hybrid deployable radio antennas and reflectors of a proposed type would feature rigid narrower apertures plus wider adjoining apertures comprising reflective surfaces supported by open-cell polymeric foam structures (see figure). The open-cell foam structure of such an antenna would be compressed for compact stowage during transport. To initiate deployment of the antenna, the foam structure would simply be released from its stowage mechanical restraint. The elasticity of the foam would drive the expansion of the foam structure to its full size and shape. There are several alternatives for fabricating a reflective surface supported by a polymeric foam structure. One approach would be to coat the foam with a metal. Another approach would be to attach a metal film or a metal-coated polymeric membrane to the foam. Yet another approach would be to attach a metal mesh to the foam. The hybrid antenna design and deployment concept as proposed offers significant advantages over other concepts for deployable antennas: 1) In the unlikely event of failure to deploy, the rigid narrow portion of the antenna would still function, providing a minimum level of assured performance. In contrast, most other concepts for deploying a large antenna from compact stowage are of an "all or nothing" nature: the antenna is not useful at all until and unless it is fully deployed. 2) Stowage and deployment would not depend on complex mechanisms or actuators, nor would it involve the use of inflatable structures. Therefore, relative to antennas deployed by use of mechanisms, actuators, or inflation systems, this antenna could be lighter, cheaper, amenable to stowage in a smaller volume, and more reliable. An open-cell polymeric (e.g., polyurethane) foam offers several advantages for use as a compressible/expandable structural material to support a large antenna or reflector aperture. A few of these advantages are the following: 3) The open cellular structure is amenable to compression to a very

  4. Cryogenic systems for the large deployable reflector

    NASA Technical Reports Server (NTRS)

    Mason, Peter V.

    1988-01-01

    There are five technologies which may have application for Large Deployable Reflector (LDR), one passive and four active. In order of maturity, they are passive stored cryogen systems, and mechanical, sorption, magnetic, and pulse-tube refrigerators. In addition, deep space radiators will be required to reject the heat of the active systems, and may be useful as auxiliary coolers for the stored cryogen systems. Hybrid combinations of these technologies may well be more efficient than any one alone, and extensive system studies will be required to determine the best trade-offs. Stored cryogen systems were flown on a number of missions. The systems are capable of meeting the temperature requirements of LDR. The size and weight of stored cryogen systems are proportional to heat load and, as a result, are applicable only if the low-temperature heat load can be kept small. Systems using chemisorption and physical adsorption for compressors and pumps have received considerable attention in the past few years. Systems based on adiabatic demagnetization of paramagnetic salts were used for refrigeration for many years. Pulse-tube refrigerators were recently proposed which show relatively high efficiency for temperatures in the 60 to 80 K range. The instrument heat loads and operating temperatures are critical to the selection and design of the cryogenic system. Every effort should be made to minimize heat loads, raise operating temperatures, and to define these precisely. No one technology is now ready for application to LDR. Substantial development efforts are underway in all of the technologies and should be monitored and advocated. Magnetic and pulse-tube refrigerators have high potential.

  5. Temperature insensitive measurements of displacement using fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Yang, Shuang; Li, Jun; Xu, Shengming; Sun, Miao; Tang, Yuquan; Gao, Gang; Dong, Fengzhong

    2016-11-01

    Optical fiber Bragg grating (FBG) displacement sensors play an important role in various areas due to the high sensitivity to displacement. However, it becomes a serious problem of FBG cross-sensitivity of temperature and displacement in applications with FBG displacement sensing. This paper presents a method of temperature insensitive measurement of displacement via using an appropriate layout of the sensor. A displacement sensor is constructed with two FBGs mounted on the opposite surface of a cantilever beam. The wavelengths of the FBGs shift with a horizontal direction displacement acting on the cantilever beam. Displacement measurement can be achieved by demodulating the wavelengths difference of the two FBGs. In this case, the difference of the two FBGs' wavelengths can be taken in order to compensate for the temperature effects. Four cantilever beams with different shapes are designed and the FBG strain distribution is quite different from each other. The deformation and strain distribution of cantilever beams are simulated by using finite element analysis, which is used to optimize the layout of the FBG displacement sensor. Experimental results show that an obvious increase in the sensitivity of this change on the displacement is obtained while temperature dependence greatly reduced. A change in the wavelength can be found with the increase of displacement from 0 to 10mm for a cantilever beam. The physical size of the FBG displacement sensor head can be adjusted to meet the need of different applications, such as structure health monitoring, smart material sensing, aerospace, etc.

  6. Sensing delamination in epoxy encapsulant systems with fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Jones, Brad H.; Rohr, Garth D.; Kaczmarowski, Amy K.

    2016-05-01

    Fiber Bragg gratings (FBGs) are well-suited for embedded sensing of interfacial phenomena in materials systems, due to the sensitivity of their spectral response to locally non-uniform strain fields. Over the last 15 years, FBGs have been successfully employed to sense delamination at interfaces, with a clear emphasis on planar events induced by transverse cracks in fiber-reinforced plastic laminates. We have built upon this work by utilizing FBGs to detect circular delamination events at the interface between epoxy films and alumina substrates. Two different delamination processes are examined, based on stress relief induced by indentation of the epoxy film or by cooling to low temperature. We have characterized the spectral response pre- and post-delamination for both simple and chirped FBGs as a function of delamination size. We show that delamination is readily detected by the evolution of a non-uniform strain distribution along the fiber axis that persists after the stressing condition is removed. These residual strain distributions differ substantially between the delamination processes, with indentation and cooling producing predominantly tensile and compressive strain, respectively, that are well-captured by Gaussian profiles. More importantly, we observe a strong correlation between spectrally-derived measurements, such as spectral widths, and delamination size. Our results further highlight the unique capabilities of FBGs as diagnostic tools for sensing delamination in materials systems.

  7. Frequency shift of the Bragg and Non-Bragg backscattering from periodic water wave.

    PubMed

    Wen, Biyang; Li, Ke

    2016-08-17

    Doppler effect is used to measure the relative speed of a moving target with respect to the radar, and is also used to interpret the frequency shift of the backscattering from the ocean wave according to the water-wave phase velocity. The widely known relationship between the Doppler shift and the water-wave phase velocity was deduced from the scattering measurements data collected from actual sea surface, and has not been verified under man-made conditions. Here we show that this ob- served frequency shift of the scattering data from the Bragg and Non-Bragg water wave is not the Doppler shift corresponding to the water-wave phase velocity as commonly believed, but is the water-wave frequency and its integral multiple frequency. The power spectrum of the backscatter from the periodic water wave consists of serials discrete peaks, which is equally spaced by water wave frequency. Only when the water-wave length is the integer multiples of the Bragg wave, and the radar range resolution is infinite, does the frequency shift of the backscattering mathematically equal the Doppler shift according to the water-wave phase velocity.

  8. Single-mode interface states in heterostructure waveguides with Bragg and non-Bragg gaps

    PubMed Central

    Fan, Ya-Xian; Sang, Tang-Qing; Liu, Ting; Xu, Lan-Lan; Tao, Zhi-Yong

    2017-01-01

    Interface states can always arise in heterostructures that consist of two or more (artificial) materials with topologically different energy bands. The gapped band structure can be classified by the Chern number (a topological invariant) generally or the Zak phase in one-dimensional periodic systems. Recently, topological properties have been employed to investigate the interface states occurring at the connecting regions of the heterostructures of mechanical isostatic lattices and acoustical waveguides. Here, we study this heterostructure phenomenon by carefully connecting two corrugated stainless steel waveguides with Bragg and non-Bragg gaps at approximately the same frequency. These two waveguide structures can be achieved by continuously varying their geometry parameters when a topological transition exists in the forbidden bands, in which the reflection impedance changes the sign. Furthermore, a localized single high-order mode has been observed at the interface because of the transverse mode interactions, which relate to the non-Bragg gaps created by the different transverse mode resonances. Such a localized acoustic single mode with very large enhanced intensity could find its applications in sound detection, biomedical imaging, and underwater sound control, and could also enrich our means of wave front manipulations in various engineering fields. PMID:28287173

  9. Single-mode interface states in heterostructure waveguides with Bragg and non-Bragg gaps

    NASA Astrophysics Data System (ADS)

    Fan, Ya-Xian; Sang, Tang-Qing; Liu, Ting; Xu, Lan-Lan; Tao, Zhi-Yong

    2017-03-01

    Interface states can always arise in heterostructures that consist of two or more (artificial) materials with topologically different energy bands. The gapped band structure can be classified by the Chern number (a topological invariant) generally or the Zak phase in one-dimensional periodic systems. Recently, topological properties have been employed to investigate the interface states occurring at the connecting regions of the heterostructures of mechanical isostatic lattices and acoustical waveguides. Here, we study this heterostructure phenomenon by carefully connecting two corrugated stainless steel waveguides with Bragg and non-Bragg gaps at approximately the same frequency. These two waveguide structures can be achieved by continuously varying their geometry parameters when a topological transition exists in the forbidden bands, in which the reflection impedance changes the sign. Furthermore, a localized single high-order mode has been observed at the interface because of the transverse mode interactions, which relate to the non-Bragg gaps created by the different transverse mode resonances. Such a localized acoustic single mode with very large enhanced intensity could find its applications in sound detection, biomedical imaging, and underwater sound control, and could also enrich our means of wave front manipulations in various engineering fields.

  10. Frequency shift of the Bragg and Non-Bragg backscattering from periodic water wave

    NASA Astrophysics Data System (ADS)

    Wen, Biyang; Li, Ke

    2016-08-01

    Doppler effect is used to measure the relative speed of a moving target with respect to the radar, and is also used to interpret the frequency shift of the backscattering from the ocean wave according to the water-wave phase velocity. The widely known relationship between the Doppler shift and the water-wave phase velocity was deduced from the scattering measurements data collected from actual sea surface, and has not been verified under man-made conditions. Here we show that this ob- served frequency shift of the scattering data from the Bragg and Non-Bragg water wave is not the Doppler shift corresponding to the water-wave phase velocity as commonly believed, but is the water-wave frequency and its integral multiple frequency. The power spectrum of the backscatter from the periodic water wave consists of serials discrete peaks, which is equally spaced by water wave frequency. Only when the water-wave length is the integer multiples of the Bragg wave, and the radar range resolution is infinite, does the frequency shift of the backscattering mathematically equal the Doppler shift according to the water-wave phase velocity.

  11. Transient dynamic distributed strain sensing using photonic crystal fibres

    NASA Astrophysics Data System (ADS)

    Samad, Shafeek A.; Hegde, G. M.; Roy Mahapatra, D.; Hanagud, S.

    2014-02-01

    A technique to determine the strain field in one-dimensional (1D) photonic crystal (PC) involving high strain rate, high temperature around shock or ballistic impact is proposed. Transient strain sensing is important in aerospace and other structural health monitoring (SHM) applications. We consider a MEMS based smart sensor design with photonic crystal integrated on a silicon substrate for dynamic strain correlation. Deeply etched silicon rib waveguides with distributed Bragg reflectors are suitable candidates for miniaturization of sensing elements, replacing the conventional FBG. Main objective here is to investigate the effect of non-uniform strain localization on the sensor output. Computational analysis is done to determine the static and dynamic strain sensing characteristics of the 1D photonic crystal based sensor. The structure is designed and modeled using Finite Element Method. Dynamic localization of strain field is observed. The distributed strain field is used to calculated the PC waveguide response. The sensitivity of the proposed sensor is estimated to be 0.6 pm/μɛ.

  12. Metal-coated Bragg grating reflecting fibre

    NASA Astrophysics Data System (ADS)

    Chamorovskiy, Yu. K.; Butov, O. V.; Kolosovskiy, A. O.; Popov, S. M.; Voloshin, V. V.; Vorob'ev, I. L.; Vyatkin, M. Yu.

    2017-03-01

    High-temperature optical fibres (OF) with fibre Bragg gratings (FBG) arrays written over a long length and in-line metal coating have been made for the first time. The optical parameters of the FBG arrays were tested by the optical frequency domain reflectometer (OFDR) method in a wide temperature range, demonstrating no degradation in reflection at heating up to 600 °C for a fibre with Al coating. The mechanical strength of the developed fibre was practically the same as "ordinary" OF with similar coating, showing the absence of the influence of FBG writing process on fibre strength. Further experiments are necessary to evaluate the possibility of further increases in the operational temperature range.

  13. Theory of Fiber Optical Bragg Grating: Revisited

    NASA Technical Reports Server (NTRS)

    Tai, H.

    2003-01-01

    The reflected signature of an optical fiber Bragg grating is analyzed using the transfer function method. This approach is capable to cast all relevant quantities into proper places and provides a better physical understanding. The relationship between reflected signal, number of periods, index of refraction, and reflected wave phase is elucidated. The condition for which the maximum reflectivity is achieved is fully examined. We also have derived an expression to predict the reflectivity minima accurately when the reflected wave is detuned. Furthermore, using the segmented potential approach, this model can handle arbitrary index of refraction profiles and compare the strength of optical reflectivity of different profiles. The condition of a non-uniform grating is also addressed.

  14. Periodic waves in fiber Bragg gratings

    SciTech Connect

    Chow, K. W.; Merhasin, Ilya M.; Malomed, Boris A.; Nakkeeran, K.; Senthilnathan, K.; Wai, P. K. A.

    2008-02-15

    We construct two families of exact periodic solutions to the standard model of fiber Bragg grating (FBG) with Kerr nonlinearity. The solutions are named ''sn'' and ''cn'' waves, according to the elliptic functions used in their analytical representation. The sn wave exists only inside the FBG's spectral bandgap, while waves of the cn type may only exist at negative frequencies ({omega}<0), both inside and outside the bandgap. In the long-wave limit, the sn and cn families recover, respectively, the ordinary gap solitons, and (unstable) antidark and dark solitons. Stability of the periodic solutions is checked by direct numerical simulations and, in the case of the sn family, also through the calculation of instability growth rates for small perturbations. Although, rigorously speaking, all periodic solutions are unstable, a subfamily of practically stable sn waves, with a sufficiently large spatial period and {omega}>0, is identified. However, the sn waves with {omega}<0, as well as all cn solutions, are strongly unstable.

  15. Ultrafast laser fabrication of Bragg waveguides in chalcogenide glass.

    PubMed

    McMillen, Ben; Li, Mingshan; Huang, Sheng; Zhang, Botao; Chen, Kevin P

    2014-06-15

    Bragg waveguides are fundamental components in photonic integrated circuits and are particularly interesting for mid-IR applications in high index, highly nonlinear materials. In this work, we present Bragg waveguides fabricated in bulk chalcogenide glass using an ultrafast laser. Waveguides with near circularly symmetric cross sections and low propagation loss are obtained through spatial and temporal beam shaping. Using a single-pass technique, the waveguide and Bragg structure are formed at the same time. First through sixth order gratings with strengths of up to 25 dB are realized, and performance is evaluated based on the modulation duty cycle of the writing beam.

  16. Dispersion blue-shift in an aperiodic Bragg reflection waveguide

    NASA Astrophysics Data System (ADS)

    Fesenko, Volodymyr I.; Tuz, Vladimir R.

    2016-04-01

    A particular feature of an aperiodic design of cladding of Bragg reflection waveguides to demonstrate a dispersion blue-shift is elucidated. It is made on the basis of a comparative study of dispersion characteristics of both periodic and aperiodic configurations of Bragg mirrors in the waveguide system, wherein for the aperiodic configuration three procedures for layers alternating, namely Fibonacci, Thue-Morse and Kolakoski substitutional rules are considered. It was found out that, in a Bragg reflection waveguide with any considered aperiodic cladding, dispersion curves of guided modes appear to be shifted to shorter wavelengths compared to the periodic configuration regardless of the modes polarization.

  17. Highly efficient and two-photon excited stimulated Rayleigh-Bragg scattering in organic solutions

    SciTech Connect

    He, Guang S. Prasad, Paras N.; Kannan, Ramamurthi; Tan, Loon-Seng

    2015-07-21

    The properties of backward stimulated Rayleigh-Bragg scattering (SRBS) in three highly two-photon active AF-chromophores solutions in tetrahydrofuran (THF) have been investigated using 816-nm and 8-ns pump laser beam. The nonlinear reflectivity R, spectral structure, temporal behavior, and phase-conjugation capability of the backward SRBS output have been measured, respectively. Under the same experimental condition, the pump threshold for SRBS in three solution samples can be significantly (∼one order of magnitude) lower than that for stimulated Brillouin scattering (SBS) in the pure solvent (THF). With the optimized concentration value and at a moderate pump energy (∼1.5 mJ) level, the measured nonlinear reflectivity was R ≥ 35% for the 2 cm-long solution sample, while for the SBS from a pure solvent sample of the same length was R ≈ 4.7%. The peculiar features of very low pump threshold, no spectral shift, tolerant pump spectral linewidth requirement (≤1 cm{sup −1}), and phase-conjugation capability are favorable for those nonlinear photonics applications, such as highly efficiency phase-conjugation reflectors for high-brightness laser oscillator/amplifier systems, special imaging through turbid medium, self-adaptive remote optical sensing, as well as for optical rangefinder and lidar systems.

  18. Optically nonlinear Bragg diffracting nanosecond optical switches

    NASA Astrophysics Data System (ADS)

    Pan, Guisheng

    We prepared low refractive index crystalline colloidal arrays (CCA) from highly charged fluorinated monodisperse spherical particles synthesized by emulsion polymerization of 1H,1H-heptafluorobutyl methacrylate. We have also covalently attached dyes to the fluorinated particles to prepare absorbing CCA. We photopolymerized these dyed CCA within a polyacrylamide matrix to form a polymerized crystalline colloidal array (PCCA). These semi-solid PCCA can withstand vibrations, ionic impurity addition and thermal shocks while maintaining the CCA ordering. The medium within the PCCA can easily be exchanged to exactly refractive index match the CCA. Thus, we were able to prepare a material where the real part of the refractive index was matched, while preserving a periodic modulation of the imaginary part of the refractive index. Under low light intensities the CCA is refractive index matched to the medium and does not diffract. However, high incident intensity illumination within the dye absorption band heats the particles within nsec to decrease their refractive index. This results in a mesoscopically periodic refractive index modulation with the periodicity of the CCA lattice. The array 'pops up' to diffract light within 2.5 nsec. These intelligent CCA hydrogels may have applications in optical limiting, optical computing and nsec fast optical switching devices, etc. We have also measured the polarization dependence of the Bragg diffraction efficiency of a CCA and compared the experimental results to that predicted by theory. The diffraction efficiency is maximized for σ polarization light at Bragg angle (θB) of 90o and minimized to zero for π polarized light at θB=45o. Our experimental diffraction and transmission results quantitatively agree with the predictions of Dynamical Diffraction Theory.

  19. Modeling fiber Bragg grating device networks in photomechanical polymer optical fibers

    NASA Astrophysics Data System (ADS)

    Lanska, Joseph T.; Kuzyk, Mark G.; Sullivan, Dennis M.

    2015-09-01

    We report on the modeling of fiber Bragg grating (FBG) networks in poly(methyl methacrylate) (PMMA) polymer fibers doped with azo dyes. Our target is the development of Photomechanical Optical Devices (PODs), comprised of two FBGs in series, separated by a Fabry-Perot cavity of photomechanical material. PODs exhibit photomechanical multi-stability, with the capacity to access multiple length states for a fixed input intensity when a mechanical shock is applied. Using finite-difference time-domain (FDTD) numerical methods, we modeled the photomechanical response of both Fabry-Perot and Bragg-type PODs in a single polymer optical fiber. The polymer fiber was modeled as an instantaneous Kerr-type nonlinear χ(3) material. Our model correctly predicts the essential optical features of FBGs as well as the photomechanical multi-stability of nonlinear Fabry-Perot cavity-based PODs. Networks of PODs may provide a framework for smart shape-shifting materials and fast optical computation where the decision process is distributed over the entire network. In addition, a POD can act as memory, and its response can depend on input history. Our models inform and will accelerate targeted development of novel Bragg grating-based polymer fiber device networks for a variety of applications in optical computing and smart materials.

  20. Investigation of Carbon-Polymer Structures with Embedded Fiber-Optic Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Grant, Joseph; Kaul, R.; Taylor, S.; Myers, G.; Sharma, A.

    2003-01-01

    Several Bragg-grating sensors fabricated within the same optical fiber are buried within multiple-ply carbon-epoxy planar and cylindrical structures. Effect of different orientation of fiber-sensors with respect to carbon fibers in the composite structure is investigated. This is done for both fabric and uni-tape material samples. Response of planar structures to axial and transverse strain up to 1 millistrain is investigated with distributed Bragg-grating sensors. Material properties like Young's Modulus and Poisson ratio is measured. A comparison is made between response measured by sensors in different ply-layers and those bonded on the surface. The results from buried fiber- sensors do not completely agree with surface bonded conventional strain gauges. A plausible explanation is given for observed differences. The planar structures are subjected to impacts with energies up to 10 ft-lb. Effect of this impact on the material stiffness is also investigated with buried fiber-optic Bragg sensors. The strain response of such optical sensors is also measured for cylindrical carbon-epoxy composite structures. The sensors are buried within the walls of the cylinder as well as surface bonded in both the axial as well as hoop directions. The response of these fiber-optic sensors is investigated by pressurizing the cylinder up to its burst pressure of around 1500 psi. This is done at both room temperature as well as cryogenic temperatures. The recorded response is compared with that from a conventional strain gauge.

  1. Large deployable antenna reflector trimming mechanism (LDA-RTM)

    NASA Astrophysics Data System (ADS)

    Domingo, Miguel; Vázquez, Jorge

    2003-09-01

    Future projects dealing with radars or telecommunications require deployable antennas. ESA Contract no. 15230 for the "Development of Large Deployable Antenna Reflector for Advanced Mobile Communication" has the objective of developing this critical technology in Europe for the commercial market. The Reflector Trimming Mechanism (RTM) allows the fine adjustment of the huge Reflector Dish (12 meters projected aperture diameter) in such a way to recover the mispointing induced by all sources inclusive of the S/C, the Antenna Arm, the feed and the Reflector. The RTM design is modular and allows its implementation in different reflector types and dimensions changing the distance between movable and fixed points and the lateral stiffener. In each linear actuator, it is implemented a device which is able to decouple the top and the bottom part. This is required because of imposed displacements of the interfaces during launch. The decoupling device is latched before starting normal operating condition. It is actuated with the same stepper motor used for trimming. The RTM has been designed to be operated with the electronic box already developed for moving the Antenna Pointing Mechanism in Hispasat 1-C.

  2. A computer program to calculate radiation properties of reflector antennas

    NASA Technical Reports Server (NTRS)

    Agrawal, P. K.

    1978-01-01

    A computer program to calculate the radiation properties of the reflector antennas is presented. It can be used for paraboloidal, spherical, or ellipsoidal reflector surfaces and is easily modified to handle any surface that can be expressed analytically. The program is general enough to allow any arbitrary location and pointing angle for the feed antenna. The effect of blockage due to the feed horn is also included in the computations. The computer program is based upon the technique of tracing the rays from the feed antenna to the reflector to an aperture plane. The far field radiation properties are then calculated by performing a double integration over the field points in the aperture plane. To facilitate the computation of double intergral, the field points are first aligned along the equispaced straight lines in the aperture plane. The computation time is relatively insensitive to the absolute size of the aperture and even though no limits on the largest reflector size have been determined, the program was used for reflector diameters of 1000 wavelenghts.

  3. Color temperature tunable white light emitting diodes packaged with an omni-directional reflector.

    PubMed

    Su, Jung-Chieh; Lu, Chun-Lin

    2009-11-23

    This study proposed a correlated color temperature (CCT) tunable phosphor-converted white light emitting diode (LED) with an omni-directional reflector (ODR). Applying current to each individual InGaN based ultraviolet, purple and blue source LED chip of the white LED package, we can achieve the CCT tunability. The optimum color properties of the resulting white light are (0.3347, 0.3384), 5398 K, 81, 3137-8746 K for color coordinates, CCT, color rendering index (CRI) and CCT tuning range, respectively. Roughening the ODR substrate, we solve the non-uniformity color distribution caused by the reflectance of the ODR and positioning of source LED chips.

  4. Bragg-Fresnel optics: New field of applications

    SciTech Connect

    Snigirev, A.

    1997-02-01

    Bragg-Fresnel Optics shows excellent compatibility with the third generation synchrotron radiation sources such as ESRF and is capable of obtaining monochromatic submicron focal spots with 10{sup 8}-10{sup 9} photons/sec in an energy bandwidth of 10{sup -4}-10{sup -6} and in a photon energy range between 2-100 keV. New types of Bragg-Fresnel lenses like modified, ion implanted, bent and acoustically modulated were tested. Microprobe techniques like microdiffraction and microfluorescence based on Bragg-Fresnel optics were realised at the ESRF beamlines. Excellent parameters of the X-ray beam at the ESRF in terms of low emittance and quite small angular source size allow for Bragg-Fresnel optics to occupy new fields of applications such as high resolution diffraction, holography, interferometry and phase contrast imaging.

  5. Fiber optical Bragg grating sensors embedded in CFRP wires

    NASA Astrophysics Data System (ADS)

    Nellen, Philipp M.; Frank, Andreas; Broennimann, Rolf; Meier, Urs; Sennhauser, Urs J.

    1999-05-01

    Based on the example application of Emmenbridge, a newly built steel-concrete-composite bridge in Switzerland with 47 m long built-in carbon fiber reinforced polymer (CFRP) prestressing cables, we will present and analyze the process chain leading to a reliable surveillance of modern civil engineering structures with embedded fiber optical Bragg gratings. This consists first in the embedding of optical fibers and in-fiber Bragg gratings in long CFRP wires in an industrial environment, including fiber optical monitoring of the curing process. Then, various qualifying tests were done: annealing experiments for determining optical lifetime of the Bragg gratings used, dynamic and static tensile tests for estimating their mechanical lifetime under operation, push-out experiments to check adhesion of fiber/coating/matrix interfaces, and performance tests to determine strain and temperature sensitivity of the embedded Bragg gratings. Finally, the prestressing cables were equipped with the CFRP sensor wires and built into the bridge.

  6. Development of Interpretation Algorithm for Optical Fiber Bragg Grating Sensors for Composite Structures

    NASA Astrophysics Data System (ADS)

    Peters, Kara

    2002-12-01

    compared to the first fiber, data from these gages indicated highly non-uniform strain along the gage length. This is to be expected in such regions. In contrast to the electrical strain gage, however, which averages out the effects of local strain variations, the Bragg grating can be used to measure the strain distribution through analysis of its reflected spectrum. However, such changes in the reflected spectrum, if large enough, can cause difficulties in the interpretation algorithm used. Several cases were studied in detail for gratings located near the cutouts. Further, the effects of structural vibrations were also seen to influence the measured strain. Future work will be to incorporate one of several algorithms studied to invert the spectral response into the precise strain distribution along the gage into the grating analysis program.

  7. Microfiber Bragg grating for temperature and strain sensing applications

    NASA Astrophysics Data System (ADS)

    Tian, Jie; Liu, Shuhui; Yu, Wenbing; Deng, Peigang

    2017-03-01

    Fiber Bragg grating is inscribed on microfiber with femtosecond laser pulses irradiation. The microfiber is fabricated by stretching a section of single mode fiber over a flame. Periodic grooves are carved on the microfiber by the laser as have been observed experimentally. The microfiber Bragg grating is demonstrated for temperature and strain sensing, and the strain sensitivity is improved with decreased diameters of the microfibers.

  8. Microfiber Bragg grating for temperature and strain sensing applications

    NASA Astrophysics Data System (ADS)

    Tian, Jie; Liu, Shuhui; Yu, Wenbing; Deng, Peigang

    2016-12-01

    Fiber Bragg grating is inscribed on microfiber with femtosecond laser pulses irradiation. The microfiber is fabricated by stretching a section of single mode fiber over a flame. Periodic grooves are carved on the microfiber by the laser as have been observed experimentally. The microfiber Bragg grating is demonstrated for temperature and strain sensing, and the strain sensitivity is improved with decreased diameters of the microfibers.

  9. Technical textiles with embedded fibre Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Bilro, L.; Cunha, H.; Pinto, J. L.; Nogueira, R. N.

    2009-10-01

    The characterization of fiber Bragg grating (FBG) sensors integrated on 2D and 3D mesh structures is presented. Several materials and configurations were tested, namely cork, foams, PVC, hexagonal 3D. Sensors were embedded between two substrates using textile lamination technique. Every sample was subjected to temperature variations and mechanical deformations. Through Bragg wavelength monitoring, thermal, deformation and pressure performance were evaluated. These results provide significant information to the conception of smart textiles.

  10. Fort Bragg Old Post Historic District Landscape Report

    DTIC Science & Technology

    2011-01-01

    Quality 2010) 231 ERDC/CERL SR-11-1 xi Preface This study was conducted for Fort Bragg, NC, under Project No. 321461, “Fort Bragg...scale planning effort to illustrate contemporary planning theories. The Quartermaster Corps gave each ex- isting post a complete study to develop an...its physical character” (Birn- baum 1996, p 4). Through the study of landscapes the built environment is explained by the physical remains of the

  11. Bragg spectroscopy with an accelerating Bose-Einstein condensate

    SciTech Connect

    Geursen, R.; Thomas, N.R.; Wilson, A.C.

    2003-10-01

    We present the results of Bragg spectroscopy performed on an accelerating Bose-Einstein condensate. The Bose-Einstein condensate undergoes circular micromotion in a magnetic time-averaged orbiting potential trap and the effect of this motion on the Bragg spectrum is analyzed. A simple frequency modulation model is used to interpret the observed complex structure, and broadening effects are considered using numerical solutions to the Gross-Pitaevskii equation.

  12. Blending Bragg scattering with optical absorption: spectroscopy without a spectroscope

    NASA Astrophysics Data System (ADS)

    Nozières, Philippe

    2006-03-01

    A double resonance method is proposed, blending resonant X-ray Bragg scattering with an optical laser that blurs the Bragg spots. One can detect the cross signal without resolving the satellite lines from the main beam, simply modulating the laser intensity at low frequency and carrying a synchronous detection. The concept is illustrated on two simple naive examples. To cite this article: Ph. Nozières, C. R. Physique 7 (2006).

  13. Polymeric waveguide Bragg grating filter using soft lithography

    NASA Astrophysics Data System (ADS)

    Kocabas, Askin; Aydinli, Atilla

    2006-10-01

    We use the soft lithography technique to fabricate a polymeric waveguide Bragg grating filter. Master grating structure is patterned by e-beam lithography. Using an elastomeric stamp and capillary action, uniform grating structures with very thin residual layers are transferred to the UV curable polymer without the use of an imprint machine. The waveguide layer based on BCB optical polymer is fabricated by conventional optical lithography. This approach provides processing simplicity to fabricate Bragg grating filters.

  14. Strain and temperature characterization of photonic crystal fiber Bragg gratings.

    PubMed

    Martelli, Cicero; Canning, John; Groothoff, Nathaniel; Lyytikainen, Katja

    2005-07-15

    A Bragg grating in a photonic crystal fiber was written and its dependence with temperature and strain analyzed. The two observed Bragg wavelengths correspond to a fundamental and a higher-order mode in the optical fiber. The temperature and strain calibration curves for both modes are measured and found to be distinct. The general properties of gratings in these fibers, and their implications, are enunciated.

  15. Secondary pattern computation of an arbitrarily shaped main reflector

    NASA Technical Reports Server (NTRS)

    Lee, S. W.; Lam, P. T. C.; Acosta, R. J.

    1985-01-01

    The secondary pattern of a perfectly conducting offset main reflector being illuminated by a point feed at an arbitrary location is studied. The method of analysis is based upon the application of the Fast Fourier Transform (FFT) to the aperture fields obtained using geometrical optics (GO) and geometrical theory of diffraction (GTD). Key features of the present work are (1) the reflector surface is completely arbitrary, (2) the incident field from the feed is most general with arbitrary polarization and location, and (3) the edge diffraction is calculated by either UAT or by UTD. Comparison of this technique for an offset parabolic reflector with the Jacobi-Bessel and Fourier-Bessel techniques shows good agreement. Near field, far field, and scan data of a large refelctor are presented.

  16. Search radar reflector antennas with extremely low sidelobes

    NASA Astrophysics Data System (ADS)

    Carlsson, E.; Derneryd, A.; Karlsson, E. R.; Larsson, J.-O.

    Several different search radar reflector antennas have been developed for varying elevation coverage and frequency requirements. The trend has been towards extremely low azimuth sidelobes. This paper treats electrical and mechanical design of such antennas including results achieved using computer aided optimization procedures (CAD). The definition of reflector shape and contour and the associated electrical performance, are presented. Furthermore, theoretical analyses concerning reflector surface imperfections and frequency dependence are given. Mechanical analyses for minimizing mass and deformations at high wind velocities, by means of computer simulations, wind tunnel tests and careful material selection are also presented. The antennas are manufactured in a sandwich GFRP construction on precision moulds which have been milled using NC-machines. Input data tapes are generated directly from the theoretical design computations (CAM). These antennas have been tested at a computer controlled test range and sidelobe performance down to -60 dB has been demonstrated.

  17. KuDGR- Dual Gridded Carbon Fiber Reinforced Plastic Reflector

    NASA Astrophysics Data System (ADS)

    Ihle, Alexander; Reichmann, O.; Lori, M.; Nathrath, N.; Pereira, C.; Linke, S.; Rinous, P.

    2014-06-01

    In the frame of an ESA-funded TRP activity HPS GmbH, together with INVENT GmbH and INEGI, has developed an advanced concept for dual gridded reflectors. The target frequency band is the Ku-band requiring high in-orbit thermo-elastic stability. It is a follow-on of the previous KaDGR [1] activity. The concept concerns the polarisation grid of the front and rear reflector. The grids are connected by a full CFRP monolithic peripheral ring. The demonstrator has an overall diameter of 1.4 x 1.2 m and a weight of only 4.23 kg. The design of this concept allows for smaller and larger reflectors.In the following we will present the results of the different development steps and current status of the TRP activity.

  18. Large-Scale All-Dielectric Metamaterial Perfect Reflectors

    SciTech Connect

    Moitra, Parikshit; Slovick, Brian A.; li, Wei; Kravchencko, Ivan I.; Briggs, Dayrl P.; Krishnamurthy, S.; Valentine, Jason

    2015-05-08

    All-dielectric metamaterials offer a potential low-loss alternative to plasmonic metamaterials at optical frequencies. In this paper, we take advantage of the low absorption loss as well as the simple unit cell geometry to demonstrate large-scale (centimeter-sized) all-dielectric metamaterial perfect reflectors made from silicon cylinder resonators. These perfect reflectors, operating in the telecommunications band, were fabricated using self-assembly based nanosphere lithography. In spite of the disorder originating from the self-assembly process, the average reflectance of the metamaterial perfect reflectors is 99.7% at 1530 nm, surpassing the reflectance of metallic mirrors. Moreover, the spectral separation of the electric and magnetic resonances can be chosen to achieve the required reflection bandwidth while maintaining a high tolerance to disorder. Finally, the scalability of this design could lead to new avenues of manipulating light for low-loss and large-area photonic applications.

  19. Integrated structural electromagnetic optimization of large space antenna reflectors

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Adelman, H. M.; Bailey, M. C.

    1987-01-01

    The requirements for extremely precise and powerful large space antenna reflectors have motivated the development of a procedure for shape control of the reflector surface. A mathematical optimization procedure has been developed which improves antenna performance while minimizing necessary shape correction effort. In contrast to previous work which proposed controlling the rms distortion error of the surface thereby indirectly improving antenna performance, the current work includes electromagnetic (EM) performance calculations as an integral part of the control procedure. The application of the procedure to a radiometer design with a tetrahedral truss backup structure demonstrates the potential for significant improvement. The results indicate the benefit of including EM performance calculations in procedures for shape control of large space antenna reflectors.

  20. Integrated structure electromagnetic optimization of large space antenna reflectors

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Adelman, Howard M.; Bailey, M. C.

    1987-01-01

    The requirements for extremely precise and powerful large space antenna reflectors have motivated the development of a procedure for shape control of the reflector surface. A mathematical optimization procedure has been developed which improves antenna performance while minimizing necessary shape correction effort. In contrast to previous work which proposed controlling the rms distortion error of the surface thereby indirectly improving antenna performance, the current work includes electromagnetic (EM) performance calculations as an integral of the control procedure. The application of the procedure to a radiometer design with a tetrahedral truss backup structure demonstrates the potential for significant improvement. The results indicate the benefit of including EM performance calculations in procedures for shape control of large space antenna reflectors.