A Bayesian alternative for multi-objective ecohydrological model specification
NASA Astrophysics Data System (ADS)
Tang, Yating; Marshall, Lucy; Sharma, Ashish; Ajami, Hoori
2018-01-01
Recent studies have identified the importance of vegetation processes in terrestrial hydrologic systems. Process-based ecohydrological models combine hydrological, physical, biochemical and ecological processes of the catchments, and as such are generally more complex and parametric than conceptual hydrological models. Thus, appropriate calibration objectives and model uncertainty analysis are essential for ecohydrological modeling. In recent years, Bayesian inference has become one of the most popular tools for quantifying the uncertainties in hydrological modeling with the development of Markov chain Monte Carlo (MCMC) techniques. The Bayesian approach offers an appealing alternative to traditional multi-objective hydrologic model calibrations by defining proper prior distributions that can be considered analogous to the ad-hoc weighting often prescribed in multi-objective calibration. Our study aims to develop appropriate prior distributions and likelihood functions that minimize the model uncertainties and bias within a Bayesian ecohydrological modeling framework based on a traditional Pareto-based model calibration technique. In our study, a Pareto-based multi-objective optimization and a formal Bayesian framework are implemented in a conceptual ecohydrological model that combines a hydrological model (HYMOD) and a modified Bucket Grassland Model (BGM). Simulations focused on one objective (streamflow/LAI) and multiple objectives (streamflow and LAI) with different emphasis defined via the prior distribution of the model error parameters. Results show more reliable outputs for both predicted streamflow and LAI using Bayesian multi-objective calibration with specified prior distributions for error parameters based on results from the Pareto front in the ecohydrological modeling. The methodology implemented here provides insight into the usefulness of multiobjective Bayesian calibration for ecohydrologic systems and the importance of appropriate prior distributions in such approaches.
A Bayesian Alternative for Multi-objective Ecohydrological Model Specification
NASA Astrophysics Data System (ADS)
Tang, Y.; Marshall, L. A.; Sharma, A.; Ajami, H.
2015-12-01
Process-based ecohydrological models combine the study of hydrological, physical, biogeochemical and ecological processes of the catchments, which are usually more complex and parametric than conceptual hydrological models. Thus, appropriate calibration objectives and model uncertainty analysis are essential for ecohydrological modeling. In recent years, Bayesian inference has become one of the most popular tools for quantifying the uncertainties in hydrological modeling with the development of Markov Chain Monte Carlo (MCMC) techniques. Our study aims to develop appropriate prior distributions and likelihood functions that minimize the model uncertainties and bias within a Bayesian ecohydrological framework. In our study, a formal Bayesian approach is implemented in an ecohydrological model which combines a hydrological model (HyMOD) and a dynamic vegetation model (DVM). Simulations focused on one objective likelihood (Streamflow/LAI) and multi-objective likelihoods (Streamflow and LAI) with different weights are compared. Uniform, weakly informative and strongly informative prior distributions are used in different simulations. The Kullback-leibler divergence (KLD) is used to measure the dis(similarity) between different priors and corresponding posterior distributions to examine the parameter sensitivity. Results show that different prior distributions can strongly influence posterior distributions for parameters, especially when the available data is limited or parameters are insensitive to the available data. We demonstrate differences in optimized parameters and uncertainty limits in different cases based on multi-objective likelihoods vs. single objective likelihoods. We also demonstrate the importance of appropriately defining the weights of objectives in multi-objective calibration according to different data types.
USDA-ARS?s Scientific Manuscript database
To improve the management strategy of riparian restoration, better understanding of the dynamic of eco-hydrological system and its feedback between hydrological and ecological components are needed. The fully distributed eco-hydrological model coupled with a hydrology component was developed based o...
NASA Astrophysics Data System (ADS)
Atchley, A. L.; Linn, R.; Middleton, R. S.; Runde, I.; Coon, E.; Michaletz, S. T.
2016-12-01
Wildfire is a complex agent of change that both affects and depends on eco-hydrological systems, thereby constituting a tightly linked system of disturbances and eco-hydrological conditions. For example, structure, build-up, and moisture content of fuel are dependent on eco-hydrological regimes, which impacts fire spread and intensity. Fire behavior, on the other hand, determines the severity and extent of eco-hydrological disturbance, often resulting in a mosaic of untouched, stressed, damaged, or completely destroyed vegetation within the fire perimeter. This in turn drives new eco-hydrological system behavior. The cycles of disturbance and recovery present a complex evolving system with many unknowns especially in the face of climate change that has implications for fire risk, water supply, and forest composition. Physically-based numerical experiments that attempt to capture the complex linkages between eco-hydrological regimes that affect fire behavior and the echo-hydrological response from those fire disturbances help build the understanding required to project how fire disturbance and eco-hydrological conditions coevolve over time. Here we explore the use of FIRETEC—a physically-based 3D combustion model that solves conservation of mass, momentum, energy, and chemical species—to resolve fire spread over complex terrain and fuel structures. Uniquely, we couple a physically-based plant mortality model with FIRETEC and examine the resultant hydrologic impact. In this proof of concept demonstration we spatially distribute fuel structure and moisture content based on the eco-hydrological condition to use as input for FIRETEC. The fire behavior simulation then produces localized burn severity and heat injures which are used as input to a spatially-informed plant mortality model. Ultimately we demonstrate the applicability of physically-based models to explore integrated disturbance and eco-hydrologic response to wildfire behavior and specifically map how fire spread and intensity is affect by the antecedent eco-hydrological condition, which then affects the resulting tree mortality patterns.
NASA Astrophysics Data System (ADS)
Ruiz-Pérez, Guiomar; Koch, Julian; Manfreda, Salvatore; Caylor, Kelly; Francés, Félix
2017-12-01
Ecohydrological modeling studies in developing countries, such as sub-Saharan Africa, often face the problem of extensive parametrical requirements and limited available data. Satellite remote sensing data may be able to fill this gap, but require novel methodologies to exploit their spatio-temporal information that could potentially be incorporated into model calibration and validation frameworks. The present study tackles this problem by suggesting an automatic calibration procedure, based on the empirical orthogonal function, for distributed ecohydrological daily models. The procedure is tested with the support of remote sensing data in a data-scarce environment - the upper Ewaso Ngiro river basin in Kenya. In the present application, the TETIS-VEG model is calibrated using only NDVI (Normalized Difference Vegetation Index) data derived from MODIS. The results demonstrate that (1) satellite data of vegetation dynamics can be used to calibrate and validate ecohydrological models in water-controlled and data-scarce regions, (2) the model calibrated using only satellite data is able to reproduce both the spatio-temporal vegetation dynamics and the observed discharge at the outlet and (3) the proposed automatic calibration methodology works satisfactorily and it allows for a straightforward incorporation of spatio-temporal data into the calibration and validation framework of a model.
Eco-hydrological Responses to Soil and Water Conservation in the Jinghe River Basin
NASA Astrophysics Data System (ADS)
Peng, H.; Jia, Y.; Qiu, Y.
2011-12-01
The Jinghe River Basin is one of the most serious soil erosion areas in the Loess Plateau. Many measures of soil and water conservation were applied in the basin. Terrestrial ecosystem model BIOME-BGC and distributed hydrological model WEP-L were used to build eco-hydrological model and verified by field observation and literature values. The model was applied in the Jinghe River Basin to analyze eco-hydrological responses under the scenarios of vegetation type change due to soil and water conservation polices. Four scenarios were set under the measures of conversion of cropland to forest, forestation on bare land, forestation on slope wasteland and planting grass on bare land. Analysis results show that the soil and water conservation has significant effects on runoff and the carbon cycle in the Jinghe River Basin: the average annual runoff would decrease and the average annual NPP and carbon storage would increase. Key words: soil and water conservation; conversion of cropland to forest; eco-hydrology response; the Jinghe River Basin
NASA Astrophysics Data System (ADS)
Bassiouni, Maoya; Higgins, Chad W.; Still, Christopher J.; Good, Stephen P.
2018-06-01
Vegetation controls on soil moisture dynamics are challenging to measure and translate into scale- and site-specific ecohydrological parameters for simple soil water balance models. We hypothesize that empirical probability density functions (pdfs) of relative soil moisture or soil saturation encode sufficient information to determine these ecohydrological parameters. Further, these parameters can be estimated through inverse modeling of the analytical equation for soil saturation pdfs, derived from the commonly used stochastic soil water balance framework. We developed a generalizable Bayesian inference framework to estimate ecohydrological parameters consistent with empirical soil saturation pdfs derived from observations at point, footprint, and satellite scales. We applied the inference method to four sites with different land cover and climate assuming (i) an annual rainfall pattern and (ii) a wet season rainfall pattern with a dry season of negligible rainfall. The Nash-Sutcliffe efficiencies of the analytical model's fit to soil observations ranged from 0.89 to 0.99. The coefficient of variation of posterior parameter distributions ranged from < 1 to 15 %. The parameter identifiability was not significantly improved in the more complex seasonal model; however, small differences in parameter values indicate that the annual model may have absorbed dry season dynamics. Parameter estimates were most constrained for scales and locations at which soil water dynamics are more sensitive to the fitted ecohydrological parameters of interest. In these cases, model inversion converged more slowly but ultimately provided better goodness of fit and lower uncertainty. Results were robust using as few as 100 daily observations randomly sampled from the full records, demonstrating the advantage of analyzing soil saturation pdfs instead of time series to estimate ecohydrological parameters from sparse records. Our work combines modeling and empirical approaches in ecohydrology and provides a simple framework to obtain scale- and site-specific analytical descriptions of soil moisture dynamics consistent with soil moisture observations.
Unleashing spatially distributed ecohydrology modeling using Big Data tools
NASA Astrophysics Data System (ADS)
Miles, B.; Idaszak, R.
2015-12-01
Physically based spatially distributed ecohydrology models are useful for answering science and management questions related to the hydrology and biogeochemistry of prairie, savanna, forested, as well as urbanized ecosystems. However, these models can produce hundreds of gigabytes of spatial output for a single model run over decadal time scales when run at regional spatial scales and moderate spatial resolutions (~100-km2+ at 30-m spatial resolution) or when run for small watersheds at high spatial resolutions (~1-km2 at 3-m spatial resolution). Numerical data formats such as HDF5 can store arbitrarily large datasets. However even in HPC environments, there are practical limits on the size of single files that can be stored and reliably backed up. Even when such large datasets can be stored, querying and analyzing these data can suffer from poor performance due to memory limitations and I/O bottlenecks, for example on single workstations where memory and bandwidth are limited, or in HPC environments where data are stored separately from computational nodes. The difficulty of storing and analyzing spatial data from ecohydrology models limits our ability to harness these powerful tools. Big Data tools such as distributed databases have the potential to surmount the data storage and analysis challenges inherent to large spatial datasets. Distributed databases solve these problems by storing data close to computational nodes while enabling horizontal scalability and fault tolerance. Here we present the architecture of and preliminary results from PatchDB, a distributed datastore for managing spatial output from the Regional Hydro-Ecological Simulation System (RHESSys). The initial version of PatchDB uses message queueing to asynchronously write RHESSys model output to an Apache Cassandra cluster. Once stored in the cluster, these data can be efficiently queried to quickly produce both spatial visualizations for a particular variable (e.g. maps and animations), as well as point time series of arbitrary variables at arbitrary points in space within a watershed or river basin. By treating ecohydrology modeling as a Big Data problem, we hope to provide a platform for answering transformative science and management questions related to water quantity and quality in a world of non-stationary climate.
NASA Astrophysics Data System (ADS)
Kuppel, S.; Tetzlaff, D.; Maneta, M. P.; Soulsby, C.
2017-12-01
Stable water isotope tracing has been extensively used in a wide range of geographical environments as a means to understand the sources, flow paths and ages of water stored and exiting a landscape via evapotranspiration, surface runoff and/or stream flow. Comparisons of isotopic signatures of precipitation and water in streams, soils, groundwater and plant xylem facilitates the assessment of how plant water use may affect preferential hydrologic pathways, storage dynamics and transit times in the critical zone. While tracers are also invaluable for testing model structure and accuracy, in most cases the measured isotopic signatures have been used to guide the calibration of conceptual runoff models with simplified vegetation and energy balance representation, which lacks sufficient detail to constrain key ecohydrological controls on flow paths and water ages. Here, we use a physically-based, distributed ecohydrological model (EcH2O) which we have extended to track 2H and 18O (including fractionation processes), and water age. This work is part of the "VeWa" project which aims at understanding ecohydrological couplings across climatic gradients in the wider North, where the hydrological implications of projected environmental change are essentially unknown though expected to be high. EcH2O combines a hydrologic scheme with an explicit representation of plant growth and phenology while resolving the energy balance across the soil-vegetation-atmosphere continuum. We focus on a montane catchment in Scotland, where unique long-term, high resolution hydrometric, ecohydrological and isotopic data allows for extensive model testing and projections. Results show the importance of incorporating soil fractionation processes to explain stream isotope dynamics, particularly seasonal enrichment in this humid, energy-limited catchment. This generic process-based approach facilitates analysis of dynamics in isotopes, storage and ages for the different hydrological compartments (canopy to groundwater) and, in particular, the explicit partitioning between soil evaporation and plant transpiration. Our study clearly advances our understanding of dynamics in water storage, flux and age in northern ecosystems, integrating ecohydrology, unsaturated zone, surface water, and groundwater hydrology.
Taehee Hwang; Lawrence E. Band; T. C. Hales; Chelcy F. Miniat; James M. Vose; Paul V. Bolstad; Brian Miles; Katie Price
2015-01-01
The spatial distribution of shallow landslides in steep forested mountains is strongly controlled by aboveground and belowground biomass, including the distribution of root cohesion. While remote sensing of aboveground canopy properties is relatively advanced, estimating the spatial distribution of root cohesion at the forest landscape scale remains challenging. We...
Alpine Ecohydrology Across Scales: Propagating Fine-scale Heterogeneity to the Catchment and Beyond
NASA Astrophysics Data System (ADS)
Mastrotheodoros, T.; Pappas, C.; Molnar, P.; Burlando, P.; Hadjidoukas, P.; Fatichi, S.
2017-12-01
In mountainous ecosystems, complex topography and landscape heterogeneity govern ecohydrological states and fluxes. Here, we investigate topographic controls on water, energy and carbon fluxes across different climatic regimes and vegetation types representative of the European Alps. We use an ecohydrological model to perform fine-scale numerical experiments on a synthetic domain that comprises a symmetric mountain with eight catchments draining along the cardinal and intercardinal directions. Distributed meteorological model input variables are generated using observations from Switzerland. The model computes the incoming solar radiation based on the local topography. We implement a multivariate statistical framework to disentangle the impact of landscape heterogeneity (i.e., elevation, aspect, flow contributing area, vegetation type) on the simulated water, carbon, and energy dynamics. This allows us to identify the sensitivities of several ecohydrological variables (including leaf area index, evapotranspiration, snow-cover and net primary productivity) to topographic and meteorological inputs at different spatial and temporal scales. We also use an alpine catchment as a real case study to investigate how the natural variability of soil and land cover affects the idealized relationships that arise from the synthetic domain. In accordance with previous studies, our analysis shows a complex pattern of vegetation response to radiation. We find also different patterns of ecosystem sensitivity to topography-driven heterogeneity depending on the hydrological regime (i.e., wet vs. dry conditions). Our results suggest that topography-driven variability in ecohydrological variables (e.g. transpiration) at the fine spatial scale can exceed 50%, but it is substantially reduced ( 5%) when integrated at the catchment scale.
Delineating floodplain and upload areas for hydrologic models: A comparison of methods
USDA-ARS?s Scientific Manuscript database
A spatially distributed representation of basin hydrology and transport processes in eco-hydrological models facilitates the identification of critical source areas and the placement of management and conservation measures. Floodplains are critical landscape features that differ from neighboring up...
Accounting for small scale heterogeneity in ecohydrologic watershed models
NASA Astrophysics Data System (ADS)
Bhaskar, A.; Fleming, B.; Hogan, D. M.
2016-12-01
Spatially distributed ecohydrologic models are inherently constrained by the spatial resolution of their smallest units, below which land and processes are assumed to be homogenous. At coarse scales, heterogeneity is often accounted for by computing store and fluxes of interest over a distribution of land cover types (or other sources of heterogeneity) within spatially explicit modeling units. However this approach ignores spatial organization and the lateral transfer of water and materials downslope. The challenge is to account both for the role of flow network topology and fine-scale heterogeneity. We present a new approach that defines two levels of spatial aggregation and that integrates spatially explicit network approach with a flexible representation of finer-scale aspatial heterogeneity. Critically, this solution does not simply increase the resolution of the smallest spatial unit, and so by comparison, results in improved computational efficiency. The approach is demonstrated by adapting Regional Hydro-Ecologic Simulation System (RHESSys), an ecohydrologic model widely used to simulate climate, land use, and land management impacts. We illustrate the utility of our approach by showing how the model can be used to better characterize forest thinning impacts on ecohydrology. Forest thinning is typically done at the scale of individual trees, and yet management responses of interest include impacts on watershed scale hydrology and on downslope riparian vegetation. Our approach allow us to characterize the variability in tree size/carbon reduction and water transfers between neighboring trees while still capturing hillslope to watershed scale effects, Our illustrative example demonstrates that accounting for these fine scale effects can substantially alter model estimates, in some cases shifting the impacts of thinning on downslope water availability from increases to decreases. We conclude by describing other use cases that may benefit from this approach including characterizing urban vegetation and storm water management features and their impact on watershed scale hydrology and biogeochemical cycling.
Accounting for small scale heterogeneity in ecohydrologic watershed models
NASA Astrophysics Data System (ADS)
Burke, W.; Tague, C.
2017-12-01
Spatially distributed ecohydrologic models are inherently constrained by the spatial resolution of their smallest units, below which land and processes are assumed to be homogenous. At coarse scales, heterogeneity is often accounted for by computing store and fluxes of interest over a distribution of land cover types (or other sources of heterogeneity) within spatially explicit modeling units. However this approach ignores spatial organization and the lateral transfer of water and materials downslope. The challenge is to account both for the role of flow network topology and fine-scale heterogeneity. We present a new approach that defines two levels of spatial aggregation and that integrates spatially explicit network approach with a flexible representation of finer-scale aspatial heterogeneity. Critically, this solution does not simply increase the resolution of the smallest spatial unit, and so by comparison, results in improved computational efficiency. The approach is demonstrated by adapting Regional Hydro-Ecologic Simulation System (RHESSys), an ecohydrologic model widely used to simulate climate, land use, and land management impacts. We illustrate the utility of our approach by showing how the model can be used to better characterize forest thinning impacts on ecohydrology. Forest thinning is typically done at the scale of individual trees, and yet management responses of interest include impacts on watershed scale hydrology and on downslope riparian vegetation. Our approach allow us to characterize the variability in tree size/carbon reduction and water transfers between neighboring trees while still capturing hillslope to watershed scale effects, Our illustrative example demonstrates that accounting for these fine scale effects can substantially alter model estimates, in some cases shifting the impacts of thinning on downslope water availability from increases to decreases. We conclude by describing other use cases that may benefit from this approach including characterizing urban vegetation and storm water management features and their impact on watershed scale hydrology and biogeochemical cycling.
Water ecosystem service function assessment based on eco-hydrological process in Luanhe Basin,China
NASA Astrophysics Data System (ADS)
Zhang, C.; Hao, C.; Qin, T.; Wang, G.; Weng, B.
2012-12-01
At present, ecological water are mainly occupied by a rapid development of social economic and population explosion, which seriously threat the ecological security and water security in watershed and regional scale. Due to the lack of a unified standard of measuring the benefit of water resource, social economic and ecosystem, the water allocation can't take place in social economic and ecosystem. The function which provided by water in terrestrial, aquatic and social economic system can be addressed through water ecosystem service function research, and it can guide the water allocation in water resource management. The function which provided by water in terrestrial, aquatic and social economic system can be addressed through water ecosystem service function research, and it can guide the water allocation in water resource management. Throughout the researches of water ecosystem service, a clear identification of the connection of water ecosystem service function has not been established, and eco-economic approach can't meet the practical requirement of water allocation. Based on "nature-artificiality" dual water cycle theory and eco-hydrological process, this paper proposes a connection and indicator system of water ecosystem service function. In approach, this paper establishes an integrated assessment approach through prototype observation technology, numerical simulation, physical simulation and modern geographic information technology. The core content is to couple an eco-hydrological model, which involves the key processes of distributed hydrological model (WEP), ecological model (CLM-DGVM), in terms of eco-hydrological process. This paper systematically evaluates the eco-hydrological process and evolution of Luanhe Basin in terms of precipitation, ET, runoff, groundwater, ecosystem's scale, form and distribution. According to the results of eco-hydrological process, this paper assesses the direct and derived service function. The result indicates that the general service function of 2010 has minor increase than 2007, however the general function of two years are in common level; Compare with different region, the upstream, middle stream and downstream indicates "worse", "common" and "good" level respectively. The first three derived functions are leisure, offer products and industrial water use. In the end, this paper investigates the evolution of water ecosystem service function under rising temperatures and elevated CO2 concentration scenarios in Luanhe Basin through eco-hydrological model. The results elaborate that the water ecosystem service functions would decline when temperature rising, and warming to 1.5 degree is the mutation point of sharp drop; Increased CO2 concentration scenario will improve the direct service function in the whole Basin; under the overlying scenario, different region shows different results, the direct service function will increased in upstream and middle stream, direct service function will drop in downstream. A comprehensive analysis indicates that the rising temperature is the major driven of water ecosystem service function in Luanhe Basin.
This seminar for Oregon State University’s Water Resources Graduate Program will describe the use of a spatially-distributed ecohydrological model, VELMA, for quantifying how alternative land use and climate scenarios affect tradeoffs among important ecosystem services. Sp...
NASA Astrophysics Data System (ADS)
Kuppel, S.; Soulsby, C.; Maneta, M. P.; Tetzlaff, D.
2017-12-01
The utility of field measurements to help constrain the model solution space and identify feasible model configurations has been an increasingly central issue in hydrological model calibration. Sufficiently informative observations are necessary to ensure that the goodness of model-data fit attained effectively translates into more physically-sound information for the internal model parameters, as a basis for model structure evaluation. Here we assess to which extent the diversity of information content can inform on the suitability of a complex, process-based ecohydrological model to simulate key water flux and storage dynamics at a long-term research catchment in the Scottish Highlands. We use the fully-distributed ecohydrological model EcH2O, calibrated against long-term datasets that encompass hydrologic and energy exchanges and ecological measurements: stream discharge, soil moisture, net radiation above canopy, and pine stand transpiration. Diverse combinations of these constraints were applied using a multi-objective cost function specifically designed to avoid compensatory effects between model-data metrics. Results revealed that calibration against virtually all datasets enabled the model to reproduce streamflow reasonably well. However, parameterizing the model to adequately capture local flux and storage dynamics, such as soil moisture or transpiration, required calibration with specific observations. This indicates that the footprint of the information contained in observations varies for each type of dataset, and that a diverse database informing about the different compartments of the domain, is critical to test hypotheses of catchment function and identify a consistent model parameterization. The results foster confidence in using EcH2O to help understanding current and future ecohydrological couplings in Northern catchments.
NASA Astrophysics Data System (ADS)
Ruiz-Pérez, G.
2015-12-01
Drylands are extensive, covering 30% of the Earth's land surface and 50% of Africa. Projections of the IPCC (Intergovernmental Panel on Climate Change, 2007) indicate that the extent of these regions have high probability to increase with a considerable additional impact on water resources, which should be taken into account by water management plans. In these water-controlled areas, vegetation plays a key role in the water cycle. Ecohydrological models provide a tool to investigate the relationships between vegetation and water resources. However, studies in Africa often face the problem that many ecohydrological models have quite extensive parametrical requirements, while available data are scarce. Therefore, there is a need for assessments using models whose requirements match the data availability. In that context, parsimonious models, together with available remote sensing information, can be valuable tools for ecohydrological studies. For this reason, we have focused on the use of a parsimonious model based on the amount of photosynthetically active radiation absorbed by green vegetation (APAR) and the Light Use Efficiency index (the efficiency by which that radiation is converted to plant biomass increment) in order to compute the gross primary production (GPP).This model has been calibrated using only remote sensing data (particularly, NDVI data from Modis products) in order to explore the potential of satellite information in implementing a simple distributed model. The model has been subsequently validated against stream flow data with the aim to define a tool able to account for landuse characteristics in describing water budget. Results are promising for studies aimed at the description of the consequences of ongoing land use changes on water resources.
Understanding ecohydrological connectivity in savannas: A system dynamics modeling approach
USDA-ARS?s Scientific Manuscript database
Ecohydrological connectivity is a system-level property that results from the linkages in the networks of water transport through ecosystems, by which feedback effects and other emergent system behaviors may be generated. We created a systems dynamic model that represents primary ecohydrological net...
Ecohydrological Interfaces as Dynamic Hotspots of Biogeochemical Cycling
NASA Astrophysics Data System (ADS)
Krause, Stefan; Lewandowski, Joerg; Hannah, David; McDonald, Karlie; Folegot, Silvia; Baranov, Victor
2016-04-01
Ecohydrological interfaces, represent the boundaries between water-dependent ecosystems that can alter substantially the fluxes of energy and matter. There is still a critical gap of understanding the organisational principles of the drivers and controls of spatially and temporally variable ecohydrological interface functions. This knowledge gap limits our capacity to efficiently quantify, predict and manage the services provided by complex ecosystems. Many ecohydrological interfaces are characterized by step changes in microbial metabolic activity, steep redox gradients and often even thermodynamic phase shifts, for instance at the interfaces between atmosphere and water or soil matrix and macro-pores interfaces. This paper integrates investigations from point scale laboratory microcosm experiments with reach and subcatchment scale tracer experiments and numerical modeling studies to elaborate similarities in the drivers and controls that constitute the enhanced biogeochemical activity of different types of ecohydrologica interfaces across a range of spatial and temporal scales. We therefore combine smart metabolic activity tracers to quantify the impact of bioturbating benthic fauna onto ecosystem respiration and oxygen consumption and investigate at larger scale, how microbial metabolic activity and carbon turnover at the water-sediment interface are controlled by sediment physical and chemical properties as well as water temperatures. Numerical modeling confirmed that experimentally identified hotspots of streambed biogeochemical cycling were controlled by patterns of physical properties such as hydraulic conductivities or bioavailability of organic matter, impacting on residence time distributions and hence reaction times. In contrast to previous research, our investigations thus confirmed that small-scale variability of physical and chemical interface properties had a major impact on biogeochemical processing at the investigated ecohydrological interfaces. Our results furthermore indicate that to fully understand spatial patterns and temporal dynamics of ecohydrological interface functioning, including hotspots and hot moments, detailed knowledge of the impacts of biological behavior on the physic-chemical ecosystem conditions, and vice-versa, is required.
Ecohydrological Interfaces as Dynamic Hotspots of Biogeochemical Cycling
NASA Astrophysics Data System (ADS)
Krause, S.
2015-12-01
Ecohydrological interfaces, represent the boundaries between water-dependent ecosystems that can alter substantially the fluxes of energy and matter. There is still a critical gap of understanding the organisational principles of the drivers and controls of spatially and temporally variable ecohydrological interface functions. This knowledge gap limits our capacity to efficiently quantify, predict and manage the services provided by complex ecosystems. Many ecohydrological interfaces are characterized by step changes in microbial metabolic activity, steep redox gradients and often even thermodynamic phase shifts, for instance at the interfaces between atmosphere and water or soil matrix and macro-pores interfaces. This paper integrates investigations from point scale microcosm experiments with reach and subcatchment scale tracer experiments and numerical modeling studies to elaborate similarities in the drivers and controls that constitute the enhanced biogeochemical activity of different types of ecohydrologica interfaces across a range of spatial and temporal scales. We therefore combine smart metabolic activity tracers to quantify the impact of bioturbating benthic fauna onto ecosystem respiration and oxygen consumption and investigate at larger scale, how microbial metabolic activity and carbon turnover at the water-sediment interface are controlled by sediment physical and chemical properties as well as water temperatures. Numerical modeling confirmed that experimentally identified hotspots of streambed biogeochemical cycling were controlled by patterns of physical properties such as hydraulic conductivities or bioavailability of organic matter, impacting on residence time distributions and hence reaction times. In contrast to previous research, our investigations thus confirmed that small-scale variability of physical and chemical interface properties had a major impact on biogeochemical processing at the investigated ecohydrological interfaces. Our results furthermore indicate that to fully understand spatial patterns and temporal dynamics of ecohydrological interface functioning, including hotspots and hot moments, detailed knowledge of the impacts of biological behavior on the physic-chemical ecosystem conditions, and vice-versa, is required.
A Coupled Model for Simulating Future Wildfire Regimes in the Western U.S.
NASA Astrophysics Data System (ADS)
Bart, R. R.; Kennedy, M. C.; Tague, C.; Hanan, E. J.
2017-12-01
Higher temperatures and larger fuel loads in the western U.S. have increased the size and intensity of wildfires over the past decades. However, it is unclear if this trend will continue over the long-term since increased wildfire activity has the countering effect of reducing landscape fuel loads, while higher temperatures alter the rate of vegetation recovery following fire. In this study, we introduce a coupled ecohydrologic-fire model for investigating how changes in vegetation, forest management, climate, and hydrology may affect future fire regimes. The spatially-distributed ecohydrologic model, RHESSys, simulates hydrologic, carbon and nutrient fluxes at watershed scales; the fire-spread model, WMFire, stochastically propagates fire on a landscape based on conditions in the ecohydrologic model. We use the coupled model to replicate fire return intervals in multiple ecoregions within the western U.S., including the southern Sierra Nevada and southern California. We also examine the sensitivity of fire return intervals to various model processes, including litter production, fire severity, and post-fire vegetation recovery rates. Results indicate that the coupled model is able to replicate expected fire return intervals in the selected locations. Fire return intervals were highly sensitive to the rate of vegetation growth, with longer fire return intervals associated with slower growing vegetation. Application of the model is expected to aid in our understanding of how fuel treatments, climate change and droughts may affect future fire regimes.
Stochastic simulation of ecohydrological interactions between vegetation and groundwater
NASA Astrophysics Data System (ADS)
Dwelle, M. C.; Ivanov, V. Y.; Sargsyan, K.
2017-12-01
The complex interactions between groundwater and vegetation in the Amazon rainforest may yield vital ecophysiological interactions in specific landscape niches such as buffering plant water stress during dry season or suppression of water uptake due to anoxic conditions. Representation of such processes is greatly impacted by both external and internal sources of uncertainty: inaccurate data and subjective choice of model representation. The models that can simulate these processes are complex and computationally expensive, and therefore make it difficult to address uncertainty using traditional methods. We use the ecohydrologic model tRIBS+VEGGIE and a novel uncertainty quantification framework applied to the ZF2 watershed near Manaus, Brazil. We showcase the capability of this framework for stochastic simulation of vegetation-hydrology dynamics. This framework is useful for simulation with internal and external stochasticity, but this work will focus on internal variability of groundwater depth distribution and model parameterizations. We demonstrate the capability of this framework to make inferences on uncertain states of groundwater depth from limited in situ data, and how the realizations of these inferences affect the ecohydrological interactions between groundwater dynamics and vegetation function. We place an emphasis on the probabilistic representation of quantities of interest and how this impacts the understanding and interpretation of the dynamics at the groundwater-vegetation interface.
Bounding salt marsh nitrogen fluxes: development of an ecohydrological salt marsh model
A mass-balance approach to characterize nitrogen flux in a 2-hectare, meso-haline saltmarsh yielded extensive flow and water chemistry data. However, a significant, unevenly distributed population of the nitrogen fixer Alnus rubra (red alder) in the 20-hectare upland catchment l...
NASA Astrophysics Data System (ADS)
Vivoni, E.; Pierini, N.; Anderson, C.; Schreiner-McGraw, A.; Robles-Morua, A.; Mendez-barroso, L. A.; Templeton, R. C.
2013-05-01
The causes and consequences of woody shrub and tree encroachment onto historical grasslands in arid and semiarid areas have been studied for over a century. Despite significant progress, the scientific community has not addressed the problem from a hydrologic perspective at a scale that integrates both vertical and lateral processes. The hydrologic budget of a small watershed can provide a strong constraint for other measured ecohydrological fluxes as well as help to link ecosystem transitions to changes in landscape properties. In this study, we present the measurement and modeling of ecohydrological processes in two watersheds in the Sonoran and Chihuahuan Deserts at the Santa Rita Experimental Range (Green Valley, AZ) and the Jornada Experimental Range (Las Cruces, NM). In each watershed, a similar set of observations are obtained from a high-resolution sensor network consisting of six rain gauges, forty soil moisture and temperature profiles, four channel runoff flumes, a COSMOS sensor and an eddy covariance tower. In addition, high-resolution digital terrain models and image orthomosaics were obtained from an aircraft with Light Detection and Ranging (LiDAR) measurements or an Unmanned Aerial Vehicle (UAV) with a digital camera. Based on these datasets, a distributed hydrologic model has been applied and tested to reproduce spatiotemporal patterns in the watershed ecohydrological processes. We compare and contrast the observations and model simulations for two summer periods (2011 and 2012) when both watersheds responded to the precipitation availability during the North American monsoon. Activities at both sites will provide a foundation for synthesizing the role of woody plant encroachment on watershed hydrology with broad implications for the Sonoran and Chihuahuan Deserts.
This webinar describes the use of VELMA, a spatially-distributed ecohydrological model, to identify green infrastructure (GI) best management practices for protecting water quality in intensively managed watersheds. The seminar will include a brief description of VELMA and an ex...
NASA Astrophysics Data System (ADS)
Bastola, S.; Dialynas, Y. G.; Arnone, E.; Bras, R. L.
2014-12-01
The spatial variability of soil, vegetation, topography, and precipitation controls hydrological processes, consequently resulting in high spatio-temporal variability of most of the hydrological variables, such as soil moisture. Limitation in existing measuring system to characterize this spatial variability, and its importance in various application have resulted in a need of reconciling spatially distributed soil moisture evolution model and corresponding measurements. Fully distributed ecohydrological model simulates soil moisture at high resolution soil moisture. This is relevant for range of environmental studies e.g., flood forecasting. They can also be used to evaluate the value of space born soil moisture data, by assimilating them into hydrological models. In this study, fine resolution soil moisture data simulated by a physically-based distributed hydrological model, tRIBS-VEGGIE, is compared with soil moisture data collected during the field campaign in Turkey river basin, Iowa. The soil moisture series at the 2 and 4 inch depth exhibited a more rapid response to rainfall as compared to bottom 8 and 20 inch ones. The spatial variability in two distinct land surfaces of Turkey River, IA, reflects the control of vegetation, topography and soil texture in the characterization of spatial variability. The comparison of observed and simulated soil moisture at various depth showed that model was able to capture the dynamics of soil moisture at a number of gauging stations. Discrepancies are large in some of the gauging stations, which are characterized by rugged terrain and represented, in the model, through large computational units.
NASA Astrophysics Data System (ADS)
Wang, Siru; Sun, Jinhua; Lei, Huimin; Zhu, Qiande; Jiang, Sanyuan
2017-04-01
Topography has a considerable influence on eco-hydrological processes resulting from the patterns of solar radiation distribution and lateral water flow. However, not much quantitative information on the contribution of lateral groundwater flow on ecological processes such as vegetation growth and evapo-transpiration is available. To fill this gap, we used a simple eco-hydrological model based on water balance with a 3D groundwater module that uses Darcy's law. This model was applied to a non-contributing area of 50km2 dominated by grassland and shrubland with an underlying shallow aquifer. It was calibrated using manually and remotely sensed vegetation data and water flux data observed by eddy covariance system of two flux towers as well as water table data obtained from HOBO recorders of 40 wells. The results demonstrate that the maximum hydraulic gradient and the maximum flux of lateral groundwater flow reached to 0.156m m-1 and 0.093m3 s-1 respectively. The average annual maximum LAI in grassland, predominantly in low-lying areas, improved by about 5.9% while that in shrubland, predominantly in high-lying areas, remained the same when lateral groundwater flow is considered adequately compared to the case without considering lateral groundwater flow. They also show that LAI is positively and nonlinearly related to evapotranspiration, and that the greater the magnitude of evapotranspiration, the smaller the rate of increase of LAI. The results suggest that lateral groundwater flow should not be neglected when simulating eco-hydrological process in areas with a shallow aquifer.
Mechanistic ecohydrological modeling with Tethys-Chloris: an attempt to unravel complexity
NASA Astrophysics Data System (ADS)
Fatichi, S.; Ivanov, V. Y.; Caporali, E.
2010-12-01
The role of vegetation in controlling and mediating hydrological states and fluxes at the level of individual processes has been largely explored, which has lead to the improvement of our understanding of mechanisms and patterns in ecohydrological systems. Nonetheless, relatively few efforts have been directed toward the development of continuous, complex, mechanistic ecohydrological models operating at the watershed-scale. This study presents a novel ecohydrological model Tethys-Chloris (T&C) and aims to discuss current limitations and perspectives of the mechanistic approach in ecohydrology. The model attempts to synthesize the state-of-the-art knowledge on individual processes and mechanisms drawn from various disciplines such as hydrology, plant physiology, ecology, and biogeochemistry. The model reproduces all essential components of hydrological cycle resolving the mass and energy budgets at the hourly scale; it includes energy and mass exchanges in the atmospheric boundary layer; a module of saturated and unsaturated soil water dynamics; two layers of vegetation, and a module of snowpack evolution. The vegetation component parsimoniously parameterizes essential plant life-cycle processes, including photosynthesis, phenology, carbon allocation, tissues turnover, and soil biogeochemistry. Quantitative metrics of model performance are discussed and highlight the capabilities of T&C in reproducing ecohydrological dynamics. The simulated patterns mimic the outcome of hydrological dynamics with high realism, given the uncertainty of imposed boundary conditions and limited data availability. Furthermore, highly satisfactory results are obtained without significant (e.g., automated) calibration efforts despite the large phase-space dimensionality of the model. A significant investment into model design and development leads to such desirable behavior. This suggests that while using the presented tool for high-precision predictions can be still problematic, the mechanistic nature of the model can be extremely valuable for designing virtual experiments, testing hypotheses. and focusing questions of scientific inquiry.
Minimalistic models of the vertical distribution of roots under stochastic hydrological forcing
NASA Astrophysics Data System (ADS)
Laio, Francesco
2014-05-01
The assessment of the vertical root profile can be useful for multiple purposes: the partition of water fluxes between evaporation and transpiration, the evaluation of root soil reinforcement for bioengineering applications, the influence of roots on biogeochemical and microbial processes in the soil, etc. In water-controlled ecosystems the shape of the root profile is mainly determined by the soil moisture availability at different depths. The long term soil water balance in the root zone can be assessed by modeling the stochastic incoming and outgoing water fluxes, influenced by the stochastic rainfall pulses and/or by the water table fluctuations. Through an ecohydrological analysis one obtains that in water-controlled ecosystems the vertical root distribution is a decreasing function with depth, whose parameters depend on pedologic and climatic factors. The model can be extended to suitably account for the influence of the water table fluctuations, when the water table is shallow enough to exert an influence on root development, in which case the vertical root distribution tends to assume a non-monotonic form. In order to evaluate the validity of the ecohydrological estimation of the root profile we have tested it on a case study in the north of Tuscany (Italy). We have analyzed data from 17 landslide-prone sites: in each of these sites we have assessed the pedologic and climatic descriptors necessary to apply the model, and we have measured the mean rooting depth. The results show a quite good matching between observed and modeled mean root depths. The merit of this minimalistic approach to the modeling of the vertical root distribution relies on the fact that it allows a quantitative estimation of the main features of the vertical root distribution without resorting to time- and money-demanding measuring surveys.
Accounting for Ecohydrologic Separation Alters Interpreted Catchment Hydrology
NASA Astrophysics Data System (ADS)
Cain, M. R.; Ward, A. S.; Hrachowitz, M.
2017-12-01
Recent studies have demonstrated that in in some catchments, compartmentalized pools of water supply either plant transpiration (poorly mobile water) or streamflow and groundwater (highly mobile water), a phenomenon referred to as ecohydrologic separation. Although the literature has acknowledged that omission of ecohydrologic separation in hydrological models may influence estimates of residence times of water and solutes, no study has investigated how and when this compartmentalization might alter interpretations of fluxes and storages within a catchment. In this study, we develop two hydrochemical lumped rainfall-runoff models, one which incorporates ecohydrologic separation and one which does not for a watershed at the H.J. Andrews Experimental Forest (Oregon, USA), the study site where ecohydrologic separation was first observed. The models are calibrated against stream discharge, as well as stream chloride concentration. The objectives of this study are (1) to compare calibrated parameters and identifiability across models, (2) to determine how and when compartmentalization of water in the vadose zone might alter interpretations of fluxes and stores within the catchment, and (3) to identify how and when these changes alter residence times. Preliminary results suggest that compartmentalization of the vadose zone alters interpretations of fluxes and storages in the catchment and improves our ability to simulate solute transport.
Modeling vegetation rooting strategies on a hillslope
NASA Astrophysics Data System (ADS)
Sivandran, G.; Bras, R. L.
2011-12-01
The manner in which water and energy is partitioned and redistributed along a hillslope is the result of complex coupled ecohydrological interactions between the climatic, soils, topography and vegetation operating over a wide range of spatiotemporal scales. Distributed process based modeling creates a framework through which the interaction of vegetation with the subtle differences in the spatial and temporal dynamics of soil moisture that arise under localized abiotic conditions along a hillslope can be simulated and examined. One deficiency in the current dynamic vegetation models is the one sided manner in which vegetation responds to soil moisture dynamics. Above ground, vegetation is given the freedom to dynamically evolve through alterations in fractional vegetation cover and/or canopy height and density; however below ground rooting profiles are simplistically represented and often held constant in time and space. The need to better represent the belowground role of vegetation through dynamic rooting strategies is fundamental in capturing the magnitude and timing of water and energy fluxes between the atmosphere and land surface. In order to allow vegetation to adapt to gradients in soil moisture a dynamic rooting scheme was incorporated into tRIBS+VEGGIE (a physically based distributed ecohydrological model). The dynamic rooting scheme allows vegetation the freedom to adapt their rooting depth and distribution in response abiotic conditions in a way that more closely mimics observed plant behavior. The incorporation of this belowground plasticity results in vegetation employing a suite of rooting strategies based on soil texture, climatic conditions and location on the hillslope.
USDA-ARS?s Scientific Manuscript database
The responses of eco-hydrological systems to anthropogenic and natural disturbances have attracted much attention in recent years. The coupling and simulating feedback between hydrological and ecological components have been realized in several recently developed eco-hydrological models. However, li...
NASA Astrophysics Data System (ADS)
Sivandran, Gajan; Bras, Rafael L.
2013-06-01
Arid regions are characterized by high variability in the arrival of rainfall, and species found in these areas have adapted mechanisms to ensure the capture of this scarce resource. In particular, the rooting strategies employed by vegetation can be critical to their survival. However, land surface models currently prescribe rooting profiles as a function of only the plant functional type of interest with no consideration for the soil texture or rainfall regime of the region being modeled. Additionally, these models do not incorporate the ability of vegetation to dynamically alter their rooting strategies in response to transient changes in environmental forcings or competition from other plant species and therefore tend to underestimate the resilience of these ecosystems. To address the simplicity of the current representation of roots in land surface models, a new dynamic rooting scheme was incorporated into the framework of the distributed ecohydrological model tRIBS+VEGGIE. The new scheme optimizes the allocation of carbon to the root zone to reduce the perceived stress of the vegetation, so that root profiles evolve based upon local climate and soil conditions. The ability of the new scheme to capture the complex dynamics of natural systems was evaluated by comparisons to hourly timescale energy flux, soil moisture, and vegetation growth observations from the Walnut Gulch Experimental Watershed, Arizona. Robust agreement was found between the model and observations, providing confidence that the improved model is able to capture the multidirectional interactions between climate, soil, and vegetation at this site.
NASA Astrophysics Data System (ADS)
Nudurupati, S. S.; Istanbulluoglu, E.; Adams, J. M.; Hobley, D. E. J.; Gasparini, N. M.; Tucker, G. E.; Hutton, E. W. H.
2014-12-01
Topography plays a commanding role on the organization of ecohydrologic processes and resulting vegetation patterns. In southwestern United States, climate conditions lead to terrain aspect- and elevation-controlled ecosystems, with mesic north-facing and xeric south-facing vegetation types; and changes in biodiversity as a function of elevation from shrublands in low desert elevations, to mixed grass/shrublands in mid elevations, and forests at high elevations and ridge tops. These observed patterns have been attributed to differences in topography-mediated local soil moisture availability, micro-climatology, and life history processes of plants that control chances of plant establishment and survival. While ecohydrologic models represent local vegetation dynamics in sufficient detail up to sub-hourly time scales, plant life history and competition for space and resources has not been adequately represented in models. In this study we develop an ecohydrologic cellular automata model within the Landlab component-based modeling framework. This model couples local vegetation dynamics (biomass production, death) and plant establishment and competition processes for resources and space. This model is used to study the vegetation organization in a semiarid New Mexico catchment where elevation and hillslope aspect play a defining role on plant types. Processes that lead to observed plant types across the landscape are examined by initializing the domain with randomly assigned plant types and systematically changing model parameters that couple plant response with soil moisture dynamics. Climate perturbation experiments are conducted to examine the plant response in space and time. Understanding the inherently transient ecohydrologic systems is critical to improve predictions of climate change impacts on ecosystems.
Kyongho Son; Christina Tague; Carolyn Hunsaker
2016-01-01
The effect of fine-scale topographic variability on model estimates of ecohydrologic responses to climate variability in Californiaâs Sierra Nevada watersheds has not been adequately quantified and may be important for supporting reliable climate-impact assessments. This study tested the effect of digital elevation model (DEM) resolution on model accuracy and estimates...
Recent developments and emergent challenges in Ecohydrology: Focus on the belowground frontier
NASA Astrophysics Data System (ADS)
Mackay, D. S.
2017-12-01
The broad spectrum of ecohydrology issues touch on many areas of research in hydrology. But what are the emerging themes and challenges that represent the core of ecohydrology as a maturing discipline? To answer this question the ecohydrology lens was applied to manuscripts published in Water Resources Research over period of 2015 through July 2017. The 235 manuscripts retrieved can be broadly grouped into catchment hydrology, riparian-hyporheic-stream processes, critical zone, land-atmosphere exchange, wetlands, and sustainability. Three dominant crosscutting themes (i.e., coevolution, interfaces, and energy exchange) account for more than half the papers retrieved. In the context of ecohydrology, coevolution refers to the development of physical systems in concert with biological systems and their interactions. In an ecohydrology context, interfaces refer to subsurface, and sometime surface connections that influence transport (e.g., solutes concentration-discharge) influenced by vegetative plumbing, ecophysiology, animal behavior, and microbial processes. Energy exchange in ecohydrology connects vegetative processes to movement of water to the atmosphere through evapotranspiration. Across these themes there is emerging theory and methodology that emphasizes the integrated roles of biology and hydrology in the subsurface. In particular, there is a notable surge of interest in the role of plant roots on subsurface processes. But these are hard to observe and remain challenging to model. By adopting principles of coevolution, in particular, significant advances will be made in modeling plant roots and their depths, corroborated with new geophysical and tracer tools, for improving understanding of critical zone development, subsurface flow processes, and land-atmosphere energy exchange.
This 2-page factsheet describes an enhanced version (2.0) of the VELMA eco-hydrological model. VELMA – Visualizing Ecosystem Land Management Assessments – has been redesigned to assist communities, land managers, policy makers and other decision makers in evaluataing the effecti...
On modeling the organization of landscapes and vegetation patterns controlled by solar radiation
NASA Astrophysics Data System (ADS)
Istanbulluoglu, E.; Yetemen, O.
2014-12-01
Solar radiation is a critical driver of ecohydrologic processes and vegetation dynamics. Patterns of runoff generation and vegetation dictate landscape geomorphic response. Distinct patterns in the organization of soil moisture, vegetation type, and landscape morphology have been documented in close relation to aspect in a range of climates. Within catchments, from north to south facing slopes, studies have shown ecotone shifts from forest to shrub species, and steep diffusion-dominated landforms to fluvial landforms. Over the long term differential evolution of ecohydrology and geomorphology leads to observed asymmetric structure in the planform of channel network and valley morphology. In this talk we present examples of coupled modeling of ecohydrology and geomorphology driven by solar radiation. In a cellular automata model of vegetation dynamics we will first show how plants organize in north and south facing slopes and how biodiversity changes with elevation. When vegetation-erosion feedbacks are coupled emergent properties of the coupled system are observed in the modeled elevation and vegetation fields. Integrating processes at a range of temporal and spatial scales, coupled models of ecohydrologic and geomorphic dynamics enable examination of global change impacts on landscapes and ecosystems.
Shanlei Sun; Ge Sun; Erika Cohen Mack; Steve McNulty; Peter V. Caldwell; Kai Duan; Yang Zhang
2016-01-01
Quantifying the potential impacts of climatechange on water yield and ecosystem productivity is essential to developing sound watershed restoration plans, andecosystem adaptation and mitigation strategies. This study links an ecohydrological model (Water Supply and StressIndex, WaSSI) with WRF (Weather Research and Forecasting Model) using dynamically downscaled...
NASA Astrophysics Data System (ADS)
Simeone, C.; Maneta, M. P.; Holden, Z. A.; Dobrowski, S.; Sala, A.
2017-12-01
Recent studies indicate that increases in drought stress due to climate change will increase forest mortality across the western U.S. Although ecohydrologic models used to study regional hydrologic stress response in forests have made rapid advances in recent years, they often incorporate simplified descriptions of the local hydrology, do not implement an explicit description of plant hydraulics, and do not permit to study the tradeoffs between frequency, intensity, and accumulation of hydrologic stress in vegetation. We use the spatially-distributed, mechanistic ecohydrologic model Ech2o, which effectively captures spatial variations in both hydrology, energy exchanges, and regional climate to simulate high-resolution tree hydraulics, estimating soil and leaf water potential, tree effective water conductance, and percent loss of conductivity in the xylem (PLC) at 250 meter resolution and sub-daily timestep across a topographically complex landscape. Tree hydraulics are simulated assuming a diffusive process in the soil-tree-atmosphere continuum. We use PLC to develop a vegetation dynamic stress index that scales plant-level processes to the landscape scale, and that takes into account the temporal accumulation of instantaneous hydraulic stress, growing season length, frequency and duration of drought periods, and plant drought tolerance. The resulting index is interpreted as the probability of drought induced tree mortality in a given location during the simulated period. We apply this index to regions of Northern Idaho and Western Montana. Results show that drought stress is highly spatially variable, sensitive to local-scale hydrologic and atmospheric conditions, and responsive to the recovery rate from individual hydraulic stress episodes.
Naithani, Kusum J; Baldwin, Doug C; Gaines, Katie P; Lin, Henry; Eissenstat, David M
2013-01-01
Quantifying coupled spatio-temporal dynamics of phenology and hydrology and understanding underlying processes is a fundamental challenge in ecohydrology. While variation in phenology and factors influencing it have attracted the attention of ecologists for a long time, the influence of biodiversity on coupled dynamics of phenology and hydrology across a landscape is largely untested. We measured leaf area index (L) and volumetric soil water content (θ) on a co-located spatial grid to characterize forest phenology and hydrology across a forested catchment in central Pennsylvania during 2010. We used hierarchical Bayesian modeling to quantify spatio-temporal patterns of L and θ. Our results suggest that the spatial distribution of tree species across the landscape created unique spatio-temporal patterns of L, which created patterns of water demand reflected in variable soil moisture across space and time. We found a lag of about 11 days between increase in L and decline in θ. Vegetation and soil moisture become increasingly homogenized and coupled from leaf-onset to maturity but heterogeneous and uncoupled from leaf maturity to senescence. Our results provide insight into spatio-temporal coupling between biodiversity and soil hydrology that is useful to enhance ecohydrological modeling in humid temperate forests.
S. Sun; Ge Sun; Erika Cohen Mack; Steve McNulty; Peter Caldwell; K. Duan; Y. Zhang
2015-01-01
Quantifying the potential impacts of climate change on water yield and ecosystem productivity (i.e., carbon balances) is essential to developing sound watershed restoration plans, and climate change adaptation and mitigation strategies. This study links an ecohydrological model (Water Supply and Stress Index, WaSSI) with WRF (Weather Research and Forecasting Model)...
NASA Astrophysics Data System (ADS)
Dodd, N. H.; Baird, A. J.; Wainwright, J.; Dunn, S. M.
2011-12-01
There are obvious surface expressions - in terms of vegetation patterning - of ecohydrological feedbacks on dryland and peatland hillslopes. Much less is known about subsurface ecohydrological patterns, and whether or not they 'map onto' surface patterns. Likewise, few attempts have been made to investigate how such ecohydrological patterns affect whole-hillslope hydrological behaviour or how widespread they are in non-dryland and non-peatland hillslopes. In this study we investigate surface and near- surface patterning in temperate hillslopes, which to date have been the focus of much hydrological work but little ecohydrological work. In particular, we consider the extent to which the direct and the indirect effects of past and present plant assemblages on local and whole-hillslope soil moisture conditions may contribute to patterning. We have conducted a field study of two temperate upland hillslopes in Northern Scotland, UK, on one of which human intervention plays a major part in shaping the landscape. Repeat measurements have been made of near- surface soil-moisture content, taken at lag distances of 0.25 m to 20 m, under different antecedent hydrological conditions together with characterisation of plant assemblages at the same points through both ground-based vegetation surveys of 1 m × 1 m plots and kite aerial photography (KAP) of > 20 m2 plots. Results from this have indicated that changes in ecohydrological patterns can occur over small spatial scales (< 1 m2) and short time scales (< 1 day). Comparison of values of near-surface soil moisture content with topographic wetness indices, calculated using 1 -m resolution topographic data collected in the field, has highlighted that topography does not explain all of the spatial variation in soil moisture content at this scale. KAP images allowed detection of vegetation patterns not obvious from the ground. Comparison of KAP images and historic aerial photographs has highlighted the persistence of vegetation patterns over time at both sites, and that the current structure of the landscape is clearly related to current and past vegetation management practices. Evidence of sustained patterning under relatively steady environmental conditions has prompted us to consider how internal system dynamics such as competition and facilitation between different plant assemblages, and persistence of ecological memory at a range of timescales may lead to a range of ecohydrological behaviours at the scale of whole hillslopes. To help conceptualize ways in which patterning may arise, we have built a two-dimensional cellular automata-type model in which local interactions between biotic and abiotic components have the potential to lead to emergence of larger-scale patterns within the model landscape. Results from the field study have been used to gauge how well temperate hillslope ecohydrological dynamics are represented in our model, and to check that local neighbourhood patterns in the model outputs resemble real-world patterning. Key words: temperate upland ecohydrology, plant assemblage dynamics, ecological memory, kite aerial photography, cellular automata.
Ecohydrological optimality in the Northeast China Transect
NASA Astrophysics Data System (ADS)
Cong, Zhentao; Li, Qinshu; Mo, Kangle; Zhang, Lexin; Shen, Hong
2017-05-01
The Northeast China Transect (NECT) is one of the International Geosphere-Biosphere Program (IGBP) terrestrial transects, where there is a significant precipitation gradient from east to west, as well as a vegetation transition of forest-grassland-desert. It is remarkable to understand vegetation distribution and dynamics under climate change in this transect. We take canopy cover (M), derived from Normalized Difference Vegetation Index (NDVI), as an index to describe the properties of vegetation distribution and dynamics in the NECT. In Eagleson's ecohydrological optimality theory, the optimal canopy cover (M*) is determined by the trade-off between water supply depending on water balance and water demand depending on canopy transpiration. We apply Eagleson's ecohydrological optimality method in the NECT based on data from 2000 to 2013 to get M*, which is compared with M from NDVI to further discuss the sensitivity of M* to vegetation properties and climate factors. The result indicates that the average M* fits the actual M well (for forest, M* = 0.822 while M = 0.826; for grassland, M* = 0.353 while M = 0.352; the correlation coefficient between M and M* is 0.81). Results of water balance also match the field-measured data in the references. The sensitivity analyses show that M* decreases with the increase of leaf area index (LAI), stem fraction and temperature, while it increases with the increase of leaf angle and precipitation amount. Eagleson's ecohydrological optimality method offers a quantitative way to understand the impacts of climate change on canopy cover and provides guidelines for ecorestoration projects.
Spatio-temporal variability of several eco-precipitation indicators in China
NASA Astrophysics Data System (ADS)
Guo, B. B.; Zhang, J.; Wang, F.
2016-12-01
Climate change is expected to have large impacts on the eco-hydrological processes. Precipitation as one of the most important meteorological factors is a significant parameter in ecohydrology. Many studies and precipitation indexes focused on the long-term precipitation variability have been put forward. However, these former studies did not consider the vegetation response and these indexes could not reflect it efficiently. Eco-precipitation indicators reflecting the features and patterns of precipitations and serving as significant input parameters of eco-hydrological models are of paramount significance to the studies of these models. Therefore we proposed 4 important eco-precipitation indicators—Precipitation Variability Index (PVI), Precipitation Occurrence Rate (λ), Mean Precipitation Depth (1/θ) and Annual Precipitation (AP). The PVI index depicts the precipitation variability with a value of zero for perfectly uniform and increases as precipitation events become more sporadic. The λ, 1/θ and AP depict the precipitation frequency, intensity and annual amount, respectively. With large precipitation and vegetation discrepancies, China is selected as a study area. Firstly, these indicators are calculated separately with 55-years (1961-2015) daily precipitation time-series from 693 weather stations in China. Then, the temporal trend is analyzed through Mann-Kendall (MK) test and parametric t-test in annual time scale. Furthermore, the spatial distribution is analyzed through the spatial interpolation tools ANUsplin. The result shows that: (1) 1/θ increased significantly (4.59cm/10yr) while λ decreased significantly (1.54 days/10yr), which means there is an increasing trend of extreme precipitation events; (2)there is a significant downward trend of PVI, which means the rhythm of precipitation has a uniform and concentrated trend; (3) AP increased insignificantly (0.57mm/10yr); and (4)the MK test of these indicators shows that there is saltation of λ and 1/θ with a saltation point in the year 1997 and 1992, respectively. This study indicates that uniform and concentrated extreme precipitation significantly increased in China under the climate change, which brings severer challenge in constructing eco-hydrological models to make rational countermeasures.
NASA Astrophysics Data System (ADS)
Rasouli, K.; Pomeroy, J. W.; Fang, X.; Whitfield, P. H.; Marks, D. G.; Janowicz, J. R.
2017-12-01
A transect comprising three intensively researched mountain headwater catchments stretching from the northern US to northern Canada provides the basis to downscale climate models outputs for mountain hydrology and insight for an assessment of water futures under changing climate and vegetation using a physically based hydrological model. Reynolds Mountain East, Idaho; Marmot Creek, Alberta and Wolf Creek, Yukon are high mountain catchments dominated by forests and alpine shrub and grass vegetation with long-term snow, hydrometric and meteorological observations and extensive ecohydrological process studies. The physically based, modular, flexible and object-oriented Cold Regions Hydrological Modelling Platform (CRHM) was used to create custom spatially distributed hydrological models for these three catchments. Model parameterisations were based on knowledge of hydrological processes, basin physiography, soils and vegetation with minimal or no calibration from streamflow measurements. The models were run over multidecadal periods using high-elevation meteorological observations to assess the recent ecohydrological functioning of these catchments. The results showed unique features in each catchment, from snowdrift-fed aspen pocket forests in Reynolds Mountain East, to deep late-lying snowdrifts at treeline larch forests in Marmot Creek, and snow-trapping shrub tundra overlying discontinuous permafrost in Wolf Creek. The meteorological observations were then perturbed using the changes in monthly temperature and precipitation predicted by the NARCCAP modelling outputs for the mid-21st C. In all catchments there is a dramatic decline in snow redistribution and sublimation by wind and of snow interception by and sublimation from evergreen canopies that is associated with warmer winters. Reduced sublimation loss only partially compensated for greater rainfall fractions of precipitation. Under climate change, snowmelt was earlier and slower and at the lowest elevations and latitudes produced less proportion of runoff from snowmelt. Transient vegetation changes counteracted increasing streamflow yields from climate change partly due to increased snow retention by enhanced vegetation heights at high elevations and reduced vegetation canopy coverage at low elevations.
We developed and applied a spatially-explicit, eco-hydrologic model to examine how a landscape disturbance affects hydrologic processes, ecosystem cycling of C and N, and ecosystem structure. We simulated how the pattern and magnitude of tree removal in a catchment influences fo...
A Model-Based Study of Ecohydrological Controls in the Mojave Desert
NASA Astrophysics Data System (ADS)
Ng, G. C.; Bedford, D.; Miller, D. M.
2010-12-01
Desert ecosystems represent extreme conditions near the limits of viability for vegetation. Their dependence on scarce resources make them vulnerable to climate and land use change. Understanding how ecohydrological conditions impact plants in such regions is critical for ecological sustainability. Various relationships have been observed in the field between vegetation growth and meteorology, terrain, and plant physiology. Quantifying the complex interactions of those influences on vegetation dynamics can be facilitated with a physically-based ecohydrological model. To assess ecohydrological controls in the Mojave Desert, we employ the CLM4.0 land-surface model with the Carbon-Nitrogen model component to simulate vegetation dynamics [Olesen et al., 2010]. Using an ecohydrological model with fully prognostic vegetation variables is essential for representing the coupled dynamics between plants and soil moisture. We apply the CLM4.0-CN model to a study basin in the Mojave National Preserve that covers a variety of conditions. Soils range from coarse-textured wash sediments to low-permeability desert pavements. Higher elevations in the basin experience cooler and moister conditions than the lower wash areas. The dominant vegetation types in the basin include the evergreen shrub Larrea tridentata (creosote) and the drought-deciduous shrub Ambrosia dumosa. Simulations are conducted over a 50 year period to investigate both seasonal and interannual dynamics. Sensitivity tests indicate that high temporal resolution rainfall inputs (at least hourly) are important for properly resolving ecohydrological dynamics at the study site. As expected, preliminary results show that both coarser soils and milder climate facilitate vegetation growth in this moisture-limited region. However, results indicate that effects of soil texture variations become subordinate with milder climate. The model also reveals how drought-deciduous and evergreen shrub types respond differently to various conditions. Due to its quick response to sporadic wet episodes, the drought-deciduous Ambrosia thrives under harsher (hotter and drier) climates in simulations. The evergreen Larrea shrub becomes more competitive with more consistent moisture of the relatively milder climates in the basin. Multi-decadal simulations indicate that anomalously wet years can yield a sustained boost in vegetation in following years, especially for Larrea. These model results coincide with many observed vegetation patterns in the field, and they serve to elucidate and quantify the contributing factors that impact desert vegetation.
NASA Astrophysics Data System (ADS)
McDonald, Karlie; Mika, Sarah; Kolbe, Tamara; Abbott, Ben; Ciocca, Francesco; Marruedo, Amaia; Hannah, David; Schmidt, Christian; Fleckenstein, Jan; Karuse, Stefan
2016-04-01
Sub-surface hydrologic processes are highly dynamic, varying spatially and temporally with strong links to the geomorphology and hydrogeologic properties of an area. This spatial and temporal complexity is a critical regulator of biogeochemical and ecological processes within the interface groundwater - surface water (GW-SW) ecohydrological interface and adjacent ecosystems. Many GW-SW models have attempted to capture this spatial and temporal complexity with varying degrees of success. The incorporation of spatial and temporal complexity within GW-SW model configuration is important to investigate interactions with transient storage and subsurface geology, infiltration and recharge, and mass balance of exchange fluxes at the GW-SW ecohydrological interface. Additionally, characterising spatial and temporal complexity in GW-SW models is essential to derive predictions using realistic environmental conditions. In this paper we conduct a systematic Web of Science meta-analysis of conceptual, hydrodynamic, and reactive and heat transport models of the GW-SW ecohydrological interface since 2004 to explore how these models handled spatial and temporal complexity. The freshwater - groundwater ecohydrological interface was the most commonly represented in publications between 2004 and 2014 with 91% of papers followed by marine 6% and estuarine systems with 3% of papers. Of the GW-SW models published since 2004, the 52% have focused on hydrodynamic processes and <15% covered more than one process (e.g. heat and reactive transport). Within the hydrodynamic subset, 25% of models focused on a vertical depth of <5m. The primary scientific and technological limitations of incorporating spatial and temporal variability into GW-SW models are identified as the inclusion of woody debris, carbon sources, subsurface geological structures and bioclogging into model parameterization. The technological limitations influence the types of models applied, such as hydrostatic coupled models and fully intrinsic saturated and unsaturated models, and the assumptions or simplifications scientists apply to investigate the GW-SW ecohydrological interface. We investigated the type of modelling approaches applied across different scales (site, reach, catchment, nested catchments) and assessed the simplifications in environmental conditions and complexity that are commonly made in model configuration. Understanding the theoretical concepts that underpin these current modelling approaches is critical for scientists to develop measures to derive predictions from realistic environmental conditions at management relevant scales and establish best-practice modelling approaches for improving the scientific understanding and management of the GW-SW interface. Additionally, the assessment of current modelling approaches informs our proposed framework for the progress of GW-SW models in the future. The framework presented aims to increase future scientific, technological and management integration and the identification of research priorities to allow spatial and temporal complexity to be better incorporated into GW-SW models.
Kang, Jian; Li, Xin; Jin, Rui; Ge, Yong; Wang, Jinfeng; Wang, Jianghao
2014-01-01
The eco-hydrological wireless sensor network (EHWSN) in the middle reaches of the Heihe River Basin in China is designed to capture the spatial and temporal variability and to estimate the ground truth for validating the remote sensing productions. However, there is no available prior information about a target variable. To meet both requirements, a hybrid model-based sampling method without any spatial autocorrelation assumptions is developed to optimize the distribution of EHWSN nodes based on geostatistics. This hybrid model incorporates two sub-criteria: one for the variogram modeling to represent the variability, another for improving the spatial prediction to evaluate remote sensing productions. The reasonability of the optimized EHWSN is validated from representativeness, the variogram modeling and the spatial accuracy through using 15 types of simulation fields generated with the unconditional geostatistical stochastic simulation. The sampling design shows good representativeness; variograms estimated by samples have less than 3% mean error relative to true variograms. Then, fields at multiple scales are predicted. As the scale increases, estimated fields have higher similarities to simulation fields at block sizes exceeding 240 m. The validations prove that this hybrid sampling method is effective for both objectives when we do not know the characteristics of an optimized variables. PMID:25317762
Predicting effects of environmental change on river inflows to ...
Estuarine river watersheds provide valued ecosystem services to their surrounding communities including drinking water, fish habitat, and regulation of estuarine water quality. However, the provisioning of these services can be affected by changes in the quantity and quality of river water, such as those caused by altered landscapes or shifting temperatures or precipitation. We used the ecohydrology model, VELMA, in the Trask River watershed to simulate the effects of environmental change scenarios on estuarine river inputs to Tillamook Bay (OR) estuary. The Trask River watershed is 453 km2 and contains extensive agriculture, silviculture, urban, and wetland areas. VELMA was parameterized using existing spatial datasets of elevation, soil type, land use, air temperature, precipitation, river flow, and water quality. Simulated land use change scenarios included alterations in the distribution of the nitrogen-fixing tree species Alnus rubra, and comparisons of varying timber harvest plans. Scenarios involving spatial and temporal shifts in air temperature and precipitation trends were also simulated. Our research demonstrates the utility of ecohydrology models such as VELMA to aid in watershed management decision-making. Model outputs of river water flow, temperature, and nutrient concentrations can be used to predict effects on drinking water quality, salmonid populations, and estuarine water quality. This modeling effort is part of a larger framework of
Kang, Jian; Li, Xin; Jin, Rui; Ge, Yong; Wang, Jinfeng; Wang, Jianghao
2014-10-14
The eco-hydrological wireless sensor network (EHWSN) in the middle reaches of the Heihe River Basin in China is designed to capture the spatial and temporal variability and to estimate the ground truth for validating the remote sensing productions. However, there is no available prior information about a target variable. To meet both requirements, a hybrid model-based sampling method without any spatial autocorrelation assumptions is developed to optimize the distribution of EHWSN nodes based on geostatistics. This hybrid model incorporates two sub-criteria: one for the variogram modeling to represent the variability, another for improving the spatial prediction to evaluate remote sensing productions. The reasonability of the optimized EHWSN is validated from representativeness, the variogram modeling and the spatial accuracy through using 15 types of simulation fields generated with the unconditional geostatistical stochastic simulation. The sampling design shows good representativeness; variograms estimated by samples have less than 3% mean error relative to true variograms. Then, fields at multiple scales are predicted. As the scale increases, estimated fields have higher similarities to simulation fields at block sizes exceeding 240 m. The validations prove that this hybrid sampling method is effective for both objectives when we do not know the characteristics of an optimized variables.
The Soil-Plant-Atmosphere Continuum of Mangroves: A Simple Ecohydrological model
NASA Astrophysics Data System (ADS)
Perri, Saverio; Viola, Francesco; Valerio Noto, Leonardo; Molini, Annalisa
2016-04-01
Mangroves represent the only forest able to grow at the interface between a terrestrial and a marine habitat. Although globally they have been estimated to account only for 1% of carbon sequestration from forests, as coastal ecosystems they account for about 14% of carbon sequestration by the global ocean. Despite the continuously increasing number of hydrological and ecological field observations, the ecohydrology of mangroves remains largely understudied. Modeling mangrove response to variations in environmental conditions needs to take into account the effect of waterlogging and salinity on transpiration and CO2 assimilation. However, similar ecohydrological models for halophytes are not yet documented in the literature. In this contribution we adapt a Soil-Plant-Atmosphere Continuum (SPAC) model to the mangrove ecosystems. Such SPAC model is based on a macroscopic approach and the transpiration rate is hence obtained by solving the plant and leaf water balance and the leaf energy balance, taking explicitly into account the role of osmotic water potential and salinity in governing plant resistance to water fluxes. Exploiting the well-known coupling of transpiration and CO2 exchange through the stomatal conductance, we also estimate the CO2 assimilation rate. The SPAC is hence tested against experimental data obtained from the literature, showing the reliability and effectiveness of this minimalist approach in reproducing observed processes. Results show that the developed SPAC model is able to realistically simulate the main ecohydrological traits of mangroves, indicating the salinity as a crucial limiting factor for mangrove trees transpiration and CO2 assimilation.
Macroscopic behavior and fluctuation-dissipation response of stochastic ecohydrological systems
NASA Astrophysics Data System (ADS)
Porporato, A. M.
2017-12-01
The coupled dynamics of water, carbon and nutrient cycles in ecohydrological systems is forced by unpredictable and intermittent hydroclimatic fluctuations at different time scales. While modeling and long-term prediction of these complex interactions often requires a probabilistic approach, the resulting stochastic equations however are only solvable in special cases. To obtain information on the behavior of the system one typically has to resort to approximation methods. Here we discuss macroscopic equations for the averages and fluctuation-dissipation estimates for the general correlations between the forcing and the ecohydrological response for the soil moisture-plant biomass interaction and the problem of primary salinization and nitrogen retention in soils.
Eco-hydrological Modeling in the Framework of Climate Change
NASA Astrophysics Data System (ADS)
Fatichi, Simone; Ivanov, Valeriy Y.; Caporali, Enrica
2010-05-01
A blueprint methodology for studying climate change impacts, as inferred from climate models, on eco-hydrological dynamics at the plot and small catchment scale is presented. Input hydro-meteorological variables for hydrological and eco-hydrological models for present and future climates are reproduced using a stochastic downscaling technique and a weather generator, "AWE-GEN". The generated time series of meteorological variables for the present climate and an ensemble of possible future climates serve as input to a newly developed physically-based eco-hydrological model "Tethys-Chloris". An application of the proposed methodology is realized reproducing the current (1961-2000) and multiple future (2081-2100) climates for the location of Tucson (Arizona). A general reduction of precipitation and a significant increase of air temperature are inferred. The eco-hydrological model is successively applied to detect changes in water recharge and vegetation dynamics for a desert shrub ecosystem, typical of the semi-arid climate of south Arizona. Results for the future climate account for uncertainties in the downscaling and are produced in terms of probability density functions. A comparison of control and future scenarios is discussed in terms of changes in the hydrological balance components, energy fluxes, and indices of vegetation productivity. An appreciable effect of climate change can be observed in metrics of vegetation performance. The negative impact on vegetation due to amplification of water stress in a warmer and dryer climate is offset by a positive effect of carbon dioxide augment. This implies a positive shift in plant capabilities to exploit water. Consequently, the plant water use efficiency and rain use efficiency are expected to increase. Interesting differences in the long-term vegetation productivity are also observed for the ensemble of future climates. The reduction of precipitation and the substantial maintenance of vegetation cover ultimately leads to the depletion of soil moisture and recharge to deeper layers. Such an outcome can affect the long-tem water availability in semi-arid systems and expose plants to more severe and frequent periods of stress.
NASA Astrophysics Data System (ADS)
Maurer, Thomas; Caviedes-Voullième, Daniel; Hinz, Christoph; Gerke, Horst H.
2017-04-01
Landscapes that are heavily disturbed or newly formed by either natural processes or human activity are in a state of disequilibrium. Their initial development is thus characterized by highly dynamic processes under all climatic conditions. The primary distribution and structure of the solid phase (i.e. mineral particles forming the pore space) is one of the decisive factors for the development of hydrological behavior of the eco-hydrological system and therefore (co-) determining for its - more or less - stable final state. The artificially constructed ‚Hühnerwasser' catchment (a 6 ha area located in the open-cast lignite mine Welzow-Süd, southern Brandenburg, Germany) is a landscape laboratory where the initial eco-hydrological development is observed since 2005. The specific formation (or construction) processes generated characteristic sediment structures and distributions, resulting in a spatially heterogeneous initial state of the catchment. We developed a structure generator that simulates the characteristic distribution of the solid phase for such constructed landscapes. The program is able to generate quasi-realistic structures and sediment compositions on multiple spatial levels (1 cm up to 100 m scale). The generated structures can be i) conditioned to actual measurement values (e.g., soil texture and bulk distribution); ii) stochastically generated, and iii) calculated deterministically according to the geology and technical processes at the excavation site. Results are visualized using the GOCAD software package and the free software Paraview. Based on the 3D-spatial sediment distributions, effective hydraulic van-Genuchten parameters are calculated using pedotransfer functions. The hydraulic behavior of different sediment distribution (i.e. versions or variations of the catchment's porous body) is calculated using a numerical model developed by one of us (Caviedes-Voullième). Observation data are available from catchment monitoring are available for i) determining the boundary conditions (e.g., precipitation), and ii) the calibration / validation of the model (catchment discharge, ground water). The analysis of multiple sediment distribution scenarios should allow to approximately determine the influx of starting conditions on initial development of hydrological behavior. We present first flow modeling results for a reference (conditioned) catchment model and variations thereof. We will also give an outlook on further methodical development of our approach.
NASA Astrophysics Data System (ADS)
Seaby, L. P.; Tague, C. L.; Hope, A. S.
2006-12-01
The Mediterranean type environments (MTEs) of California are characterized by a distinct wet and dry season and high variability in inter-annual climate. Water limitation in MTEs makes eco-hydrological processes highly sensitive to both climate variability and frequent fire disturbance. This research modeled post-fire eco- hydrologic behavior under historical and moderate and extreme scenarios of future climate in a semi-arid chaparral dominated southern California MTE. We used a physically-based, spatially-distributed, eco- hydrological model (RHESSys - Regional Hydro-Ecologic Simulation System), to capture linkages between water and vegetation response to the combined effects of fire and historic and future climate variability. We found post-fire eco-hydrologic behavior to be strongly influenced by the episodic nature of MTE climate, which intensifies under projected climate change. Higher rates of post-fire net primary productivity were found under moderate climate change, while more extreme climate change produced water stressed conditions which were less favorable for vegetation productivity. Precipitation variability in the historic record follows the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), and these inter-annual climate characteristics intensify under climate change. Inter-annual variation in streamflow follows these precipitation patterns. Post-fire streamflow and carbon cycling trajectories are strongly dependent on climate characteristics during the first 5 years following fire, and historic intra-climate variability during this period tends to overwhelm longer term trends and variation that might be attributable to climate change. Results have implications for water resource availability, vegetation type conversion from shrubs to grassland, and changes in ecosystem structure and function.
NASA Astrophysics Data System (ADS)
Baron, J.; Mast, A.; Clow, D. W.; Wetherbee, G. A.
2014-12-01
Ecohydrological systems evolve spontaneously in response to geologic, hydroclimate and biodiversity drivers. The stability and resilience of these systems to multiple disturbances can be addressed over specific temporal extents, potentially embedded within long term transience in response to geologic or climate change. The limits of ecohydrological resilience of system state in terms of vegetation canopy and soil catenae and the space/time distribution of water, carbon and nutrient cycling is determined by a set of critical feedbacks and potential substitutions of plant functional forms in response to disturbance. The ability of forest systems to return to states functionally similar to states prior to major disturbance, or combinations of multiple disturbances, is a critical question given increasing hydroclimate extremes, biological invasions, and human disturbance. Over the past century, forest landscape ecological patterns appear to have the ability to recover from significant disturbance and re-establish similar hydrological and ecological function in humid, biodiverse regions such as the southern Appalachians, and potentially drier forest ecosystems. Understanding and prediction of past and future long term dynamics requires explicit representation of spatial and temporal feedbacks and dependencies between hydrological, ecosystem and geomorphic processes, and the spatial pattern of species or plant functional type (PFT). Comprehensive models of watershed ecohydrological resilience requires careful balance between the level of process and parameter detail between the interacting components, relative to the structure, organization, space and time scales of the landscape.
NASA Astrophysics Data System (ADS)
Wigmore, O.; Molotch, N. P.
2017-12-01
Mountain regions are a critical component of the hydrologic system. These regions are extremely heterogeneous, with dramatic topographic, climatic, ecologic and hydrologic variations occurring over very short distances. This heterogeneity makes understanding changes in these environments difficult. Commonly used satellite data are often too coarse to resolve processes at appropriate scales and point measurements are typically unrepresentative of the wider region. The rapid rise of Unmanned Aerial Systems (UAS) offers a potential solution to the scale-related inadequacies of satellite and ground-based observing systems. Using UAS, spatially distributed datasets can be collected at high resolution (i.e. cm), on demand, and can therefore facilitate improved understanding of mountain ecohydrology. We deployed a custom built multispectral - visible (RGB), near infrared (NIR) and thermal infrared (TIR) - UAS at a weekly interval over the Niwot Ridge Long Term Ecological Research (NWT LTER) saddle catchment at 3500masl in the Colorado Rockies. This system was used to map surface water pathways, land cover and topography, and quantify ecohydrologic variables including, snow depth, vegetation productivity and surface soil moisture at 5-50cm resolution across an 80ha study area. This presentation will discuss the techniques, methods and merits of using UAS derived multispectral data for ecohydrologic research in mountain regions. We will also present preliminary findings from our survey time series at NWT LTER and a discussion of the potential insights that these datasets can provide. Key questions to be addressed are: 1) how does spatial variability in snow depth impact soil moisture and vegetation productivity, 2) how can UAS help us to identify ecohydrologic `hotspots' and `hot moments' across heterogeneous landscapes.
Soil, Water, Plants and Preferred Flow in All Directions: A Biosphere-2 Experiment
NASA Astrophysics Data System (ADS)
McDonnell, J.; Evaristo, J. A.; Kim, M.; Van Haren, J. L. M.; Pangle, L. A.; Harman, C. J.; Troch, P. A. A.
2016-12-01
Measuring, understanding and predicting preferential flow in the critical zone is impossibly difficult, but we must try. While past work has focused on specific features of preferential flow pathways and model parameterizations, the resultant effect of preferential flow is often difficult to detect because we do not know the boundary conditions of our flow domain. Here we take a holistic view of preferential flow at the ecosystem level. We present new results from the tropical rainforest biome at Biosphere 2. We test the null hypothesis that the ecohydrological system is well mixed and that water forming groundwater recharge and plant transpiration is from a common pool. Our specific research question is what is the nature of preferential flow and partitioning of groundwater recharge, soil water recharge, and transpiration water after rainfall events? We performed a 10-week drought experiment and then added 66 mm of labelled rainfall with 152‰ deuterium (D), distributed over four events (mean 16.5 mm per event). This was followed by a total of 87 mm of rainfall (-60‰ D) distributed over 13 events that were spaced every 2-3 days. Our results show that flow in all ecohydrological domains (soil water, groundwater recharge and plant transpiration) was preferential. With known boundary conditions, we found that groundwater recharge was 3-8 times younger ( 8 days) than transpired water (range 24-64 days). The "age" of transpired water showed strong dependence on species and was intimately linked to driving force (difference between soil matric potential and midday leaf water potential). These results suggest that preferential flow in the critical zone is one whereby transpiration is strongly species-dependent, and groundwater recharge is controlled by inherent subsurface heterogeneity. The marked difference in the ages associated with these two fluxes supports the concept of ecohydrological separation—in this case, in a `time-based' context.
Ecohydrologic process modeling of mountain block groundwater recharge.
Magruder, Ian A; Woessner, William W; Running, Steve W
2009-01-01
Regional mountain block recharge (MBR) is a key component of alluvial basin aquifer systems typical of the western United States. Yet neither water scientists nor resource managers have a commonly available and reasonably invoked quantitative method to constrain MBR rates. Recent advances in landscape-scale ecohydrologic process modeling offer the possibility that meteorological data and land surface physical and vegetative conditions can be used to generate estimates of MBR. A water balance was generated for a temperate 24,600-ha mountain watershed, elevation 1565 to 3207 m, using the ecosystem process model Biome-BGC (BioGeochemical Cycles) (Running and Hunt 1993). Input data included remotely sensed landscape information and climate data generated with the Mountain Climate Simulator (MT-CLIM) (Running et al. 1987). Estimated mean annual MBR flux into the crystalline bedrock terrain is 99,000 m(3) /d, or approximately 19% of annual precipitation for the 2003 water year. Controls on MBR predictions include evapotranspiration (radiation limited in wet years and moisture limited in dry years), soil properties, vegetative ecotones (significant at lower elevations), and snowmelt (dominant recharge process). The ecohydrologic model is also used to investigate how climatic and vegetative controls influence recharge dynamics within three elevation zones. The ecohydrologic model proves useful for investigating controls on recharge to mountain blocks as a function of climate and vegetation. Future efforts will need to investigate the uncertainty in the modeled water balance by incorporating an advanced understanding of mountain recharge processes, an ability to simulate those processes at varying scales, and independent approaches to calibrating MBR estimates. Copyright © 2009 The Author(s). Journal compilation © 2009 National Ground Water Association.
Vegetation Cover based on Eagleson's Ecohydrological Optimality in Northeast China Transect (NECT)
NASA Astrophysics Data System (ADS)
Cong, Z.; Mo, K.; Qinshu, L.; Zhang, L.
2016-12-01
Vegetation is considered as the indicator of climate, thus the study of vegetation growth and distribution is of great importance to cognize the ecosystem construction and functions. Vegetation cover is used as an important index to describe vegetation conditions. In Eagleson's ecohydrological optimality, the theoretical optimal vegetation cover M* can be estimated by solving water balance equations. In this study, the theory is applied in the Northeast China Transect (NECT), one of International Geosphere-Biosphere Programs (IGBP) terrestrial transects. The spatial distribution of actual vegetation cover M, which is derived from Normalized Vegetation Index (NDVI) from Moderate-resolution Imaging Spectroradiometer (MODIS), shows that there is a significant gradient ranging from 1 in the east forests to 0 in the west desert. The result indicates that the theoretical M* fits the actual M well (for forest, M* = 0.822 while M = 0.826; for grassland, M* = 0.353 while M = 0.352; the correlation coefficient between M and M* is 0.81). The reasonable calculated proportion of water balance components further demonstrates the applicability of the ecohydrological optimality theory. M* increases with the increase of LAI, leaf angle, stem fraction and temperature, and decreases with the increase of precipitation amount. This method offers the possibility to analyze the impacts of climate change to vegetation cover quantitatively, thus providing advices for eco-restoration projects.
NASA Astrophysics Data System (ADS)
Gianetta, Ivan; Schwarz, Massimiliano; Glenz, Christian; Lammeranner, Walter
2013-04-01
In recent years the effects of roots on river banks and levees have been the subject of major discussions. The main issue about the presence of woody vegetation on levees is related to the possibility that roots increase internal erosion processes and the superimposed load of large trees compromise the integrity of these structures. However, ecologists and landscape managers argue that eliminating the natural vegetation from the riverbanks also means eliminating biotopes, strengthening anthropisation of the landscape, as well as limiting recreations areas. In the context of the third correction of the Rhone in Switzerland, the discussion on new levee geometries and the implementation of woody vegetation on them, lead to a detailed analysis of this issue for this specific case. The objective of this study was to describe quantitatively the processes and factors that influence the root distribution on levees and test modeling approaches for the simulation of vertical root distribution with laboratory and field data. An extension of an eco-hydrological analytic model that considers climatic and pedological condition for the quantification of vertical root distribution was validated with data provided by the University of Vienna (BOKU) of willows' roots (Salix purpurea) grown under controlled conditions. Furthermore, root distribution data of four transversal sections of a levee near Visp (canton Wallis, Switzerland) was used to validate the model. The positions of the levee's sections were chosen based on the species and dimensions of the woody vegetation. The dominant species present in the sections were birch (Betula pendula) and poplar (Populus nigra). For each section a grid of 50x50 cm was created to count and measure the roots. The results show that vertical distribution of root density under controlled growing conditions has an exponential form, decreasing with increasing soil depth, and can be well described by the eco-hydrological model. Vice versa, field data of vertical roots distribution show a non-exponential function and cannot fully be described by the model. A compacted layer of stones at about 2 m depth is considered as limiting factor for the rooting depth on the analyzed levee. The collected data and the knowledge gained from quantitative analysis represent the starting point for a discussion on new levee geometries and the development of new strategies for the implementation of woody vegetation on levees. A long term monitoring project for the analysis of the effectiveness of new implementation strategies of vegetation on levees, is considered an important prospective for future studies on this topic.
A mechanistic modeling and data assimilation framework for Mojave Desert ecohydrology
Ng, Gene-Hua Crystal.; Bedford, David; Miller, David
2014-01-01
This study demonstrates and addresses challenges in coupled ecohydrological modeling in deserts, which arise due to unique plant adaptations, marginal growing conditions, slow net primary production rates, and highly variable rainfall. We consider model uncertainty from both structural and parameter errors and present a mechanistic model for the shrub Larrea tridentata (creosote bush) under conditions found in the Mojave National Preserve in southeastern California (USA). Desert-specific plant and soil features are incorporated into the CLM-CN model by Oleson et al. (2010). We then develop a data assimilation framework using the ensemble Kalman filter (EnKF) to estimate model parameters based on soil moisture and leaf-area index observations. A new implementation procedure, the “multisite loop EnKF,” tackles parameter estimation difficulties found to affect desert ecohydrological applications. Specifically, the procedure iterates through data from various observation sites to alleviate adverse filter impacts from non-Gaussianity in small desert vegetation state values. It also readjusts inconsistent parameters and states through a model spin-up step that accounts for longer dynamical time scales due to infrequent rainfall in deserts. Observation error variance inflation may also be needed to help prevent divergence of estimates from true values. Synthetic test results highlight the importance of adequate observations for reducing model uncertainty, which can be achieved through data quality or quantity.
Perspective on Eco-Hydrology Developing Strategy in China
NASA Astrophysics Data System (ADS)
Xia, J.
2017-12-01
China is one of developing countries with higher eco-environmental press in the world due to large population and its socio-economic development. In China, water is not only the sources for life, but also the key for production, and the foundation for eco-system. Thus, Eco-hydrology becomes a fundamental also an applied sciences related to describe the hydrologic mechanisms that underlie ecologic patterns and processes. This paper addresses the issue of Eco-hydrology Developing Strategy in China, supported by Chinese Academy of Sciences (CAS). Major contents include four aspects, namely: (1) Demands and frontier of eco-hydrology in the world; (2) Major theories and approaches of Eco-hydrology; (3) Perspective of future development on Eco-hydrology; (4) Enacting and proposal for China development strategy on Eco-hydrology. Application fields involves urban, rural area, wetland, river & lake, forest and special regions in China, such as the arid and semi-arid region and so on. The goal is to promote the disciplinary development of eco-hydrology, and serve for national demands on ecological civilization construction in China.
An ecohydrological model for studying groundwater-vegetation interactions in wetlands
NASA Astrophysics Data System (ADS)
Chui, Ting Fong May; Low, Swee Yang; Liong, Shie-Yui
2011-10-01
SummaryDespite their importance to the natural environment, wetlands worldwide face drastic degradation from changes in land use and climatic patterns. To help preservation efforts and guide conservation strategies, a clear understanding of the dynamic relationship between coupled hydrology and vegetation systems in wetlands, and their responses to engineering works and climate change, is needed. An ecohydrological model was developed in this study to address this issue. The model combines a hydrology component based on the Richards' equation for characterizing variably saturated groundwater flow, with a vegetation component described by Lotka-Volterra equations tailored for plant growth. Vegetation is represented by two characteristic wetland herbaceous plant types which differ in their flood and drought resistances. Validation of the model on a study site in the Everglades demonstrated the capability of the model in capturing field-measured water table and transpiration dynamics. The model was next applied on a section of the Nee Soon swamp forest, a tropical wetland in Singapore, for studying the impact of possible drainage works on the groundwater hydrology and native vegetation. Drainage of 10 m downstream of the wetland resulted in a localized zone of influence within half a kilometer from the drainage site with significant adverse impacts on groundwater and biomass levels, indicating a strong need for conservation. Simulated water table-plant biomass relationships demonstrated the capability of the model in capturing the time-lag in biomass response to water table changes. To test the significance of taking plant growth into consideration, the performance of the model was compared to one that substituted the vegetation component with a pre-specified evapotranspiration rate. Unlike its revised counterpart, the original ecohydrological model explicitly accounted for the drainage-induced plant biomass decrease and translated the resulting reduced transpiration toll back to the groundwater hydrology for a more accurate soil water balance. This study represents, to our knowledge, the first development of an ecohydrological model for wetland ecosystems that characterizes the coupled relationship between variably-saturated groundwater flow and plant growth dynamics.
NASA Astrophysics Data System (ADS)
Qin, Y.; Yang, D.; Gao, B.
2016-12-01
The source region of Yellow River, located in the transition zone of discontinuous and continuous permafrost on the northeastern Tibetan Plateau, has experienced dramatic climate change during the past decades. The long-term changes in the seasonally frozen ground remarkably affected the eco-hydrological processes in the source region and the water availability in the middle and lower reaches. In this study, we employed a geomorphology-based eco-hydrological model (GBEHM) to quantitatively assess the impacts of climate change on the frozen soil and regional eco-hydrology. It was found that the air temperature has increased by 2.1 °C since the 1960s and most significantly during the recent decade (0.67 °C /10a), while there was no significant trend of the precipitation. Based on a 34-year (1981-2014) simulation, the maximum frozen soil depth was in the range of 0.7-2.1 m and decreased by 1.5-7.9 cm/10a because of the warming climate. The model simulation adequately reproduced the observed streamflow changes, including the drought period in the 1990s and wet period in the 2000s, and the variability in hydrological behavior was closely associated with the climate and landscape conditions. The vegetation responses to climate changes manifested as advancing green-up dates and increasing leaf area index at the initial stage of growing season. Our study shows that the ecohydrological processes are changing along with the frozen soil degradation in headwater areas on the Tibetan Plateau, which could influence the availability of water resources in the middle and lower reaches.
NASA Astrophysics Data System (ADS)
García-Arias, Alicia; Ruiz-Pérez, Guiomar; Francés, Félix
2017-04-01
Vegetation plays a main role in the water balance of most hydrological systems. However, in the past it has been barely considered the effect of the interception and evapotranspiration for hydrological modelling purposes. During the last years many authors have recognised and supported ecohydrological approaches instead of traditional strategies. This contribution is aimed to demonstrate the pivotal role of the vegetation in ecohydrological models and that a better understanding of the hydrological systems can be achieved by considering the appropriate processes related to plants. The study is performed in two scales: the plot scale and the reach scale. At plot scale, only zonal vegetation was considered while at reach scale both zonal and riparian were taken into account. In order to assure the main role of the water on the vegetation development, semiarid environments have been selected for the case studies. Results show an increase of the capabilities to predict plant behaviour and water balance when interception and evapotranspiration are taken into account in the soil water balance
NASA Astrophysics Data System (ADS)
Liu, S.; Mo, X.; Zhao, W.; Naeimi, V.; Dai, D.; Shu, C.; Mao, L.
2008-12-01
For integrative management of soil and water in the Wuding River basin, Loess plateau, China, where severe soil erosion damages are incurred, the ecohydrological behavior of the region is needed to be explored. In this study we focus on the evolution of soil moisture (SM) in the basin. Since there are only twelve years in-situ SM measurements available at two stations from 1992 to 2004, an eco-hydrological processes-based model (VIP, Vegetation Interface Processes model) is employed to simulate the long-term SM, evapotranspiration (ET), vegetation cover and production variation from 1956 to 2004, for the mechanical analysis of SM change. In-situ SM observations and a remotely sensed SM dataset retrieved by the Vienna University of Technology are used to validate the model. The results show that the model is able to capture seasonal SM variations. The seasonal pattern, multi-year variation, standard deviation and CV (coefficient of the variation) of SM at the daily, monthly and annual scale are well explained by the climatic and ecological factors such as precipitation, temperature, net radiation, evapotranspiration, and Leaf Area Index (LAI, denoted as LAI). The annual and inter-annual variability of SM is the lowest comparing with that for other 11-ecohydrological variables. The trend analysis shows that SM is in decreasing tendency at ∝=0.01 level of significance. Its significance is lower than that of runoff and that of temperature (∝=0.001), whereas higher than that of precipitation (∝=0.1). The products of these long-term SM data aim to help integrative management of soil and water resources.
NASA Astrophysics Data System (ADS)
Sarigu, Alessio; Montaldo, Nicola
2017-04-01
In the last three decades, climate change and human activities increased desertification process in Mediterranean regions, with dramatic consequences for agriculture and water availability. For instance in the main reservoir systems in Sardinia the average annual runoff in the latter part of the 20th century decreased of more than 50% compared with the previous period, while the precipitation over the Sardinia basin has decreased, but not at such a drastic rate as the discharge, with an high precipitation elasticity to streamflow, highlighting the key role of the rainfall seasonality on runoff production. IPCC climate change scenarios predict a further decrease of winter rainfall, which is the key term for runoff production in these typical Mediterranean climate basins, and air temperature increase, which can potentially impact on evapotranspiration, soil moisture and runoff. Only the use of an accurate ecohydrological physically based distributed model allow to well predict the impact of the climate change scenarios on the basin water resources. A new eco-hydrological model is developed that couples a distributed hydrological model of and a vegetation dynamic model (VDM). The hydrological model estimates the soil water balance of each basin cell using the force-restore method, the Philips model for infiltration estimate and the Penman-Monteith equation for evapotranspiration estimate. The VDM evaluates the changes in biomass over time for each cell and provides the leaf area index (LAI), which is then used by the hydrological model for evapotranspiration and rainfall interception estimates. Case study is the Mulargia basin (Sardinia, basin area of about 70 km2), where an extended field campaign started from 2003, with rain and discharge data observed at the basin outlet, periodic field measurements of soil moisture and LAI all over the basin, and evapotraspiration estimates using an eddy correlation based tower. The Mulargia basin case study is a very interesting laboratory of Mediterranean basins, thanks to its typical Mediterranean climate, its typical physiografic characteristics, its low human activities and influences and its attractive hydrologic database. The model has been successfully and deeply calibrated for the 2003 and validated for the 2004-2005 period, using both field data and satellite Modis data. Three future climate change scenarios has been generated using a stochastic model (Richardson, 1991), opportunely adapted for accounting the future changes of climate conditions. The scenarios (A1-A1B-A2) assume that in the next century there will be a drastic reduction of precipitation (with maximum reduction of 30% in A2) and that will continue the warming process. A reduction of soil moisture (about 40%) is predicted, especially during winter month and also the LAI will drastically decrease (more than 50% for woody vegetation and 75% for grass especially during the spring). Runoff will decrease even more (up to 70%) during the winter season, which is the key season for the water resource management and planning of these Mediterranean basins. These results anticipate a dramatic reduction of water resources availability, a change of vegetation species and ecosystems, increasing the desertification process in this typical Mediterranean area.
Understanding the role of ecohydrological feedbacks in ecosystem state change in drylands
Turnbull, L.; Wilcox, B.P.; Belnap, J.; Ravi, S.; D'Odorico, P.; Childers, D.; Gwenzi, W.; Okin, G.; Wainwright, J.; Caylor, K.K.; Sankey, T.
2012-01-01
Ecohydrological feedbacks are likely to be critical for understanding the mechanisms by which changes in exogenous forces result in ecosystem state change. We propose that in drylands, the dynamics of ecosystem state change are determined by changes in the type (stabilizing vs amplifying) and strength of ecohydrological feedbacks following a change in exogenous forces. Using a selection of five case studies from drylands, we explore the characteristics of ecohydrological feedbacks and resulting dynamics of ecosystem state change. We surmise that stabilizing feedbacks are critical for the provision of plant-essential resources in drylands. Exogenous forces that break these stabilizing feedbacks can alter the state of the system, although such changes are potentially reversible if strong amplifying ecohydrological feedbacks do not develop. The case studies indicate that if amplifying ecohydrological feedbacks do develop, they are typically associated with abiotic processes such as runoff, erosion (by wind and water), and fire. These amplifying ecohydrological feedbacks progressively modify the system in ways that are long-lasting and possibly irreversible on human timescales.
Fine-Scale Relief in the Amazon Drives Large Scale Ecohydrological Processes
NASA Astrophysics Data System (ADS)
Nobre, A. D.; Cuartas, A.; Hodnett, M.; Saleska, S. R.
2014-12-01
Access to soil water by roots is a key ecophysiological factor for plant productivity in natural systems. Periodically during dry seasons or critically during episodic climate droughts, shortage of water supply can reduce or severely impair plant life. At the other extreme persistent soil waterlogging will limit root respiration and restrict local establishment to adapted species, usually leading to stunted and less productive communities. Soil-water availability is therefore a very important climate variable controlling plant physiology and ecosystem dynamics. Terra-firme, the non-seasonally floodable terrain that covers 82% of the landscape in Amazonia,[1] supports the most massive part of the rainforest ecosystem. The availability of soil water data for terra-firme is scant and very coarse. This lack of data has hampered observational and modeling studies aiming to develop a large-scale integrative ecohydrological picture of Amazonia and its vulnerability to climate change. We have mapped the Amazon basin with a new terrain model developed in our group (HAND, Height Above the Nearest drainage[2]), delineating soil water environments using topographical data from the SRTM digital elevation model (250 m horizontal interpolated resolution). The preliminary results show that more than 50% of Terra-firme has the water table very close to the surface (up to 2 m deep), while the remainder of the upland landscape has variable degree of dependence on non-saturated soil (vadose layer). The mapping also shows extremely heterogeneous patterns of fine-scale relief across the basin, which implies complex ecohydrological regional forcing on the forest physiology. Ecoclimate studies should therefore take into account fine-scale relief and its implications for soil-water availability to plant processes. [1] Melack, J. M., & Hess, L. L. (2011). Remote sensing of the distribution and extent of wetlands in the Amazon basin. In W. J. Junk & M. Piedade (Eds.), Amazonian floodplain forests: Ecophysiology, ecology, biodiversity and sustainable management (pp. 1-28). Ecological Studies-Springer. [2] Nobre, A. D., Cuartas, L. A., Hodnett, M., … Saleska, S. (2011). Height Above the Nearest Drainage - a hydrologically relevant new terrain model. Journal of Hydrology, 404(1-2), 13-29
Remembrance of ecohydrologic extremes past
NASA Astrophysics Data System (ADS)
Band, L. E.; Hwang, T.
2013-12-01
Ecohydrological systems operate at time scales that span several orders of magnitude. Significant processes and feedbacks range from subdaily physiologic response to meteorological drivers, to soil forming and geomorphic processes ranging up through 10^3-10^4 years. While much attention in ecohydrology has focused on ecosystem optimization paradigms, these systems can show significant transience in structure and function, with apparent memory of hydroclimate extremes and regime shifts. While optimization feedbacks can be reconciled with system transience, a better understanding of the time scales and mechanisms of adjustment to increased hydroclimate variability and to specific events is required to understand and predict dynamics and vulnerability of ecosystems. Under certain circumstances of slowly varying hydroclimate, we hypothesize that ecosystems can remain adjusted to changing climate regimes, without displaying apparent system memory. Alternatively, rapid changes in hydroclimate and increased hydroclimate variability, amplified with well expressed non-linearity in the processes controlling feedbacks between water, carbon and nutrients, can move ecosystems far from adjusted states. The Coweeta Hydrological Laboratory is typical of humid, broadleaf forests in eastern North America, with a range of forest biomes from northern hardwoods at higher elevations, to oak-pine assemblages at lower elevations. The site provides almost 80 years of rainfall-runoff records for a set of watersheds under different management, along with multi-decadal forest plot structural information, soil moisture conditions and stream chemistry. An initial period of multi-decadal cooling, was followed by three decades of warming and increased hydroclimate variability. While mean temperature has risen over this time period, precipitation shows no long term trends in the mean, but has had a significant rise in variability with repeated extreme drought and wet periods. Over this latter period, intra and interannual shifts of canopy structure and phenology are discernable, along with long term canopy adjustment. We use a combination of field observations, long term remote sensing records and distributed ecohydrological modeling to investigate transient behavior, apparent memory and mechanisms of ecosystem adjustment to hydroclimate variability and change over the range of biomes in the watershed.
NASA Astrophysics Data System (ADS)
Poyatos, R.; Granda, V.; Mencuccini, M.; Flo, V.; Oren, R.; Molowny-Horas, R.; Katul, G. G.; Mahecha, M. D.; Steppe, K.; Cabon, A.; De Cáceres, M.; Martínez-Vilalta, J.
2017-12-01
Plant transpiration is the fundamental process linking water and vegetation and it is therefore a central topic in ecohydrological research. Globally, plants display a huge variety of coordinated adjustments in their physiology and structure to regulate transpiration in response to fluctuations of water demand and supply at multiple temporal scales. Sap flow measured in plant stems reveals the temporal patterns of these responses but sap flow data have remained fragmentary and generally unavailable for syntheses of regional to global scope. Here we present the first global database of sap flow measurements from individual plants (SAPFLUXNET, http://sapfluxnet.creaf.cat/), which has been compiled from > 150 datasets contributed by researchers worldwide. Received datasets were harmonised and conveniently stored in custom-designed R objects holding sap flow and environmental data time series, together with several ancillary metadata, enabling data access for synthesis activities. SAPFLUXNET covers most vegetated biomes and holds data for > 1500 individual plants, mostly trees, belonging to >100 species and > 50 genera. We retrieved water use traits indicative of maximum transpiration rates and of transpiration sensitivity to vapour pressure deficit using quantile regression approaches and moving window analyses. Global patterns of these water use traits were then analysed as a function of climate, plant functional type and stand characteristics. For example, maximum transpiration rates at a given plant diameter or sapwood area tended to be higher for Angiosperms compared to Gymnosperms, but this relationships converged to a more similar scaling between transpiration and leaf area across these groups. SAPFLUXNET is also a valuable tool to evaluate water balance components in ecosystem models. We combined SAPFLUXNET data with the MEDFATE model (https://cran.r-project.org/web/packages/medfate/index.html) to validate an ecohydrological optimisation approach to retrieve root distribution parameters at a regional scale. SAPFLUXNET is therefore a promising resource for ecohydrologists as it can complement other transpiration quantifications obtained from eddy flux, isotopic or catchment water balance data.
Ecohydrological interfaces as hot spots of ecosystem processes
NASA Astrophysics Data System (ADS)
Krause, Stefan; Lewandowski, Jörg; Grimm, Nancy B.; Hannah, David M.; Pinay, Gilles; McDonald, Karlie; Martí, Eugènia; Argerich, Alba; Pfister, Laurent; Klaus, Julian; Battin, Tom; Larned, Scott T.; Schelker, Jacob; Fleckenstein, Jan; Schmidt, Christian; Rivett, Michael O.; Watts, Glenn; Sabater, Francesc; Sorolla, Albert; Turk, Valentina
2017-08-01
The movement of water, matter, organisms, and energy can be altered substantially at ecohydrological interfaces, the dynamic transition zones that often develop within ecotones or boundaries between adjacent ecosystems. Interdisciplinary research over the last two decades has indicated that ecohydrological interfaces are often "hot spots" of ecological, biogeochemical, and hydrological processes and may provide refuge for biota during extreme events. Ecohydrological interfaces can have significant impact on global hydrological and biogeochemical cycles, biodiversity, pollutant removal, and ecosystem resilience to disturbance. The organizational principles (i.e., the drivers and controls) of spatially and temporally variable processes at ecohydrological interfaces are poorly understood and require the integrated analysis of hydrological, biogeochemical, and ecological processes. Our rudimentary understanding of the interactions between different drivers and controls critically limits our ability to predict complex system responses to change. In this paper, we explore similarities and contrasts in the functioning of diverse freshwater ecohydrological interfaces across spatial and temporal scales. We use this comparison to develop an integrated, interdisciplinary framework, including a roadmap for analyzing ecohydrological processes and their interactions in ecosystems. We argue that, in order to fully account for their nonlinear process dynamics, ecohydrological interfaces need to be conceptualized as unique, spatially and temporally dynamic entities, which represents a step change from their current representation as boundary conditions at investigated ecosystems.
NASA Astrophysics Data System (ADS)
Choler, P.; Sea, W.; Briggs, P.; Raupach, M.; Leuning, R.
2009-09-01
Modelling leaf phenology in water-controlled ecosystems remains a difficult task because of high spatial and temporal variability in the interaction of plant growth and soil moisture. Here, we move beyond widely used linear models to examine the performance of low-dimensional, nonlinear ecohydrological models that couple the dynamics of plant cover and soil moisture. The study area encompasses 400 000 km2 of semi-arid perennial tropical grasslands, dominated by C4 grasses, in the Northern Territory and Queensland (Australia). We prepared 8 yr time series (2001-2008) of climatic variables and estimates of fractional vegetation cover derived from MODIS Normalized Difference Vegetation Index (NDVI) for 400 randomly chosen sites, of which 25% were used for model calibration and 75% for model validation. We found that the mean absolute error of linear and nonlinear models did not markedly differ. However, nonlinear models presented key advantages: (1) they exhibited far less systematic error than their linear counterparts; (2) their error magnitude was consistent throughout a precipitation gradient while the performance of linear models deteriorated at the driest sites, and (3) they better captured the sharp transitions in leaf cover that are observed under high seasonality of precipitation. Our results showed that low-dimensional models including feedbacks between soil water balance and plant growth adequately predict leaf dynamics in semi-arid perennial grasslands. Because these models attempt to capture fundamental ecohydrological processes, they should be the favoured approach for prognostic models of phenology.
NASA Astrophysics Data System (ADS)
Choler, P.; Sea, W.; Briggs, P.; Raupach, M.; Leuning, R.
2010-03-01
Modelling leaf phenology in water-controlled ecosystems remains a difficult task because of high spatial and temporal variability in the interaction of plant growth and soil moisture. Here, we move beyond widely used linear models to examine the performance of low-dimensional, nonlinear ecohydrological models that couple the dynamics of plant cover and soil moisture. The study area encompasses 400 000 km2 of semi-arid perennial tropical grasslands, dominated by C4 grasses, in the Northern Territory and Queensland (Australia). We prepared 8-year time series (2001-2008) of climatic variables and estimates of fractional vegetation cover derived from MODIS Normalized Difference Vegetation Index (NDVI) for 400 randomly chosen sites, of which 25% were used for model calibration and 75% for model validation. We found that the mean absolute error of linear and nonlinear models did not markedly differ. However, nonlinear models presented key advantages: (1) they exhibited far less systematic error than their linear counterparts; (2) their error magnitude was consistent throughout a precipitation gradient while the performance of linear models deteriorated at the driest sites, and (3) they better captured the sharp transitions in leaf cover that are observed under high seasonality of precipitation. Our results showed that low-dimensional models including feedbacks between soil water balance and plant growth adequately predict leaf dynamics in semi-arid perennial grasslands. Because these models attempt to capture fundamental ecohydrological processes, they should be the favoured approach for prognostic models of phenology.
A blueprint for using climate change predictions in an eco-hydrological study
NASA Astrophysics Data System (ADS)
Caporali, E.; Fatichi, S.; Ivanov, V. Y.
2009-12-01
There is a growing interest to extend climate change predictions to smaller, catchment-size scales and identify their implications on hydrological and ecological processes. Small scale processes are, in fact, expected to mediate climate changes, producing local effects and feedbacks that can interact with the principal consequences of the change. This is particularly applicable, when a complex interaction, such as the inter-relationship between the hydrological cycle and vegetation dynamics, is considered. This study presents a blueprint methodology for studying climate change impacts, as inferred from climate models, on eco-hydrological dynamics at the catchment scale. Climate conditions, present or future, are imposed through input hydrometeorological variables for hydrological and eco-hydrological models. These variables are simulated with an hourly weather generator as an outcome of a stochastic downscaling technique. The generator is parameterized to reproduce the climate of southwestern Arizona for present (1961-2000) and future (2081-2100) conditions. The methodology provides the capability to generate ensemble realizations for the future that take into account the heterogeneous nature of climate predictions from different models. The generated time series of meteorological variables for the two scenarios corresponding to the current and mean expected future serve as input to a coupled hydrological and vegetation dynamics model, “Tethys-Chloris”. The hydrological model reproduces essential components of the land-surface hydrological cycle, solving the mass and energy budget equations. The vegetation model parsimoniously parameterizes essential plant life-cycle processes, including photosynthesis, phenology, carbon allocation, and tissue turnover. The results for the two mean scenarios are compared and discussed in terms of changes in the hydrological balance components, energy fluxes, and indices of vegetation productivity The need to account for uncertainties in projections of future climate is discussed and a methodology for propagating these uncertainties into the probability density functions of changes in eco-hydrological variables is presented.
Biological Soil Crusts are Ecohydrological Hotspots in Dryland and Subhumid Regions
NASA Astrophysics Data System (ADS)
Belnap, J.; Chamizo de la Piedra, S.
2015-12-01
Dry and subhumid lands cover ~41% of Earth's terrestrial surface and biocrusts are often a dominant lifeform in these regions. These soil surface communities are known to be critical component in determining dryland hydrologic cycles by altering infiltration, runoff and evaporation processes; thus, they create a hotspot for ecohydrologic processes. Biocrust properties, such as micro-topography and the spatial distribution of overall cover and individual species, are believed to be the most influential; these properties vary with climate. Across the gradient from higher potential evapo-transpiration (PET; lower rainfall/higher temperatures such as hyper-arid deserts) to lower PET (higher rainfall/lower temperature such as semi-arid steppe), the external morphology of biocrusts generally goes from very smooth to highly roughened, with water residence time thus increasing as well. This change in PET is also accompanied by increasing species number and biomass; while these changes increase water absorption, they also clogs soil pores. It has long been believed that as biocrust roughness, species, and biomass increases, so does water infiltration and retention. However, the majority of these studies have occurred at a very small (< 2m2) spatial scale. Interesting, when done at the small scale, the current dogma holds: smooth biocrusts with low biomass decrease infiltration and increase runoff, whereas roughened ones with higher biomass increase infiltration. However, studies done at larger spatial scales across a gradient of roughness, species composition, and biomass, show biocrusts almost always increase infiltration and decrease runoff, regardless of biocrust characteristics. This finding runs counter to long-held views regarding the role of biocrusts in hydrologic cycles. These findings have large implications for modelling of soil moisture cycles in drylands under current and future conditions and the concept of ecohydrologic hotspots and hot moments in drylands.
NASA Astrophysics Data System (ADS)
Liu, Qiang; McVicar, Tim R.; Yang, Zhifeng; Donohue, Randall J.; Liang, Liqiao; Yang, Yuting
2016-12-01
Vegetation patterns are affected by water availability, which, in turn, influences the hydrological partitioning and regional water balance, especially in water-limited regions. Considering the important role of vegetation in partitioning the catchment water yield, the recently developed Budyko-Choudhury-Porporato (or BCP) model incorporated Porporato's model of key ecohydrological processes into Choudury's form of the Budyko hydroclimatic framework. Here we extend the steady state BCP model by incorporating dynamic ecohydrological processes into it and combining it with a typical bucket soil water balance model (resulting in the dynamic BCP, or dBCP, model). The dBCP model is used here to assess the impacts of vegetation on the water balance in a temperate water-limited basin (i.e., the Yellow River Basin (YRB) in north China), where growing season phenology is primarily constrained by low temperatures. The results show that: (i) the incorporation of dynamic growing season (fs) and dynamic effective rooting depth (Ze) conditions into the dBCP model improves results when compared to the original BCP model; (ii) dBCP model's results vary depending on time-step used (i.e., we tested mean-annual to monthly), which reflected the influence of catchment variables, e.g., catchment area, catchment-average air temperature, dryness index and Ze; and (iii) actual evapotranspiration (E) is more sensitive to changes in mean storm depth (α), followed by P, Ze, and Ep. When taking into account observed variability of each of four ecohydrological variables, changes in Ze cause the greatest variability in E, generally followed by variability in P and α, and then Ep. The dBCP results indicate that incorporating dynamic ecohydrological processes into the Budyko framework can improve the estimation of inter-annual variability of the regional water balance. This can help to understand the water requirement and to establish suitable water management strategies to adapt to climate change in the YRB. The dBCP model has modest forcing data requirements and can be applied to other basins globally.
Ecohydrological index, native fish, and climate trends and relationships in the Kansas River basin
This study sought to quantify climatological and hydrological trends and their relationship to presence and distribution of two native aquatic species in the Kansas River Basin over the past half century. Trend analyses were applied to indicators of hydrologic alteration (IHAs) ...
NASA Astrophysics Data System (ADS)
Sarigu, Alessio; Cortis, Clorinda; Montaldo, Nicola
2014-05-01
In the last three decades, climate change and human activities increased desertification process in Mediterranean regions, with dramatic consequences for agriculture and water availability. For instance in the Flumendosa reservoir system in Sardinia the average annual runoff in the latter part of the 20th century was less than half the historic average rate, while the precipitation over the Flumendosa basin has decreased, but not at such a drastic rate as the discharge, suggesting a marked non-linear response of discharge to precipitation changes. With the objective of analyzing and looking for the reasons of the historical runoff decrease a new ecohydrological model is developed and tested for the main basin of the Sardinia island, the Flumendosa basin. The eco-hydrological model developed couples a distributed hydrological model and a vegetation dynamic model (VDM). The hydrological model estimates the soil water balance of each basin cell using the force-restore method and the Philips model for runoff estimate. Then it computes runoff propagation along the river network through a modified version of the Muskingum -Cunge method (Mancini et al., 2000; Montaldo et al., 2004). The VDM evaluates the changes in biomass over time from the difference between the rates of biomass production (photosynthesis) and loss (respiration and senescence), and provides LAI, which is then used by the hydrological model for evapotranspiration and rainfall interception estimates. Case study is the Flumendosa basin (Sardinia, basin area of about 1700 km2), which is characterized by a reservoir system that supplies water to the main city of Sardinia, Cagliari. Data are from 42 rain stations (1922-2008 period) over the entire basin and data of runoff are available for the same period. The model has been successfully calibrated for the 1922 - 2008 period for which rain, meteorological data and discharge data are available. We demonstrate that the hystorical strong decrease of runoff is due to a change of rainfall regime, with a decrease of rainfall during the winter months, and a little increase of rainfall during spring-summer months. Indeed, the higher Spring rainfall produced an increase of transpiration mainly, whithout any impact on runoff. Instead the decrease of rainfall in winter months produces a strong decrease of runoff. This trend impacts significantly on monthly runoff production, and, more important, on yearly runoff production, because most of the yearly runoff contribution comes from the winter months. Yearly runoff is more important in Sardinia water resources systems, because runoff is accumulated in dam reservoirs, and is the main water resources of the island. Hence, due to the change of rainfall regime in last decades we are observing a dramatic decrease of runoff, which is reaching to impact on the water availability of the Sardinian major city, Cagliari.
Experiences with the Development of an Undergraduate Degree in Ecohydrology
NASA Astrophysics Data System (ADS)
Saito, L.; Walker, M.; Markee, N.
2014-12-01
In 2007, the Department of Natural Resources and Environmental Science established the first undergraduate degree in Ecohydrology in the United States. The degree was designed to prepare students for careers as hydrologists while also including coursework equivalent to a minor in ecology (UNR does not officially offer a minor in ecology). The development of the major was intended to provide students with useful skills and training for the job market, and also to increase enrollment in the University's water-related undergraduate majors. The Department also established an Ecohydrology minor. Since the degree was established, average enrollment in the major has been almost two times higher than the previous Watershed Science option in Environmental Science (the closest comparable degree offering at UNR). The Department has graduated 19 students as of May 2014, and an additional 8 students have graduated with the Ecohydrology minor. Several Ecohydrology graduates have gone on to graduate degrees, and most of the remainder are employed in water-related areas. The students have established an Ecohydrology Club at UNR and are active in organizing water-related activities to do together. This presentation will describe the development of the degree, its implementation, and challenges and opportunities for carrying out an undergraduate degree in Ecohydrology. It will also discuss potential development of a 5-year Bachelor of Science-Master of Science (BS-MS) degree in Ecohydrology.
NASA Astrophysics Data System (ADS)
Jin, Rui; kang, Jian
2017-04-01
Wireless Sensor Networks are recognized as one of most important near-surface components of GEOSS (Global Earth Observation System of Systems), with flourish development of low-cost, robust and integrated data loggers and sensors. A nested eco-hydrological wireless sensor network (EHWSN) was installed in the up- and middle-reaches of the Heihe River Basin, operated to obtain multi-scale observation of soil moisture, soil temperature and land surface temperature from 2012 till now. The spatial distribution of EHWSN was optimally designed based on the geo-statistical theory, with the aim to capture the spatial variations and temporal dynamics of soil moisture and soil temperature, and to produce ground truth at grid scale for validating the related remote sensing products and model simulation in the heterogeneous land surface. In terms of upscaling research, we have developed a set of method to aggregate multi-point WSN observations to grid scale ( 1km), including regression kriging estimation to utilize multi-resource remote sensing auxiliary information, block kriging with homogeneous measurement errors, and bayesian-based upscaling algorithm that utilizes MODIS-derived apparent thermal inertia. All the EHWSN observation are organized as datasets to be freely published at http://westdc.westgis.ac.cn/hiwater. EHWSN integrates distributed observation nodes to achieve an automated, intelligent and remote-controllable network that provides superior integrated, standardized and automated observation capabilities for hydrological and ecological processes research at the basin scale.
Updated Global Patterns of Drought and Heat-Induced Forest Die-off, and Ecohydrological Feedbacks
NASA Astrophysics Data System (ADS)
Allen, C. D.
2011-12-01
Ongoing climate changes - particularly increases in mean temperatures as well as frequencies, durations, and severities of extreme drought and heat - can amplify tree physiological stress and thereby drive increases in both background tree mortality rates and episodes of rapid, broad-scale forest die-off. Updates are presented to a recent global synthesis of documented tree mortality episodes attributed to drought and/or heat, further expanding the documented spatial distribution and demonstrating the vulnerability of all major forest types from tropical moist forests and savannas to temperate and boreal forests. Given that anthropogenic climate change is projected to drive substantial increases in both mean temperatures and the frequency/duration/severity of extreme drought and heat in many regions, recent episodes of broad-scale drought-induced forest mortality may reflect increasing global risks of forest die-off, even in environments not normally considered water-limited. Since vegetation cover patterns are closely and interactively linked with ecosystem water fluxes, episodes of massive forest die-off can be expected to significantly affect ecohydrological patterns and processes, ranging from runoff and erosion to evaporation and transpiration, often with nonlinear threshold responses expected. Diverse examples of such feedbacks between climate-induced forest mortality and ecohydrology are presented, ranging from detailed observations of linked changes in vegetation, runoff, and erosion in response to forest mortality in the southwestern US to Western Australia and Amazonian rainforest water cycling. Current research efforts to address the large knowledge gaps that at present hinder our ability to predict climate-induced forest mortality and associated ecohydrological responses are discussed.
Ecohydrological modeling in agroecosystems: Examples and challenges
Porporato, A.; Feng, X.; Manzoni, S.; ...
2015-06-01
We report that human societies are increasingly altering the water and biogeochemical cycles to both improve ecosystem productivity and reduce risks associated with the unpredictable variability of climatic drivers. These alterations, however, often cause large negative environmental consequences, raising the question as to how societies can ensure a sustainable use of natural resources for the future. Here we discuss how ecohydrological modeling may address these broad questions with special attention to agroecosystems. The challenges related to modeling the two-way interaction between society and environment are illustrated by means of a dynamical model in which soil and water quality supports themore » growth of human society but is also degraded by excessive pressure, leading to critical transitions and sustained societal growth-collapse cycles. We then focus on the coupled dynamics of soil water and solutes (nutrients or contaminants), emphasizing the modeling challenges, presented by the strong nonlinearities in the soil and plant system and the unpredictable hydroclimatic forcing, that need to be overcome to quantitatively analyze problems of soil water sustainability in both natural and agricultural ecosystems. Finally, we discuss applications of this framework to problems of irrigation, soil salinization, and fertilization and emphasize how optimal solutions for large-scale, long-term planning of soil and water resources in agroecosystems under uncertainty could be provided by methods from stochastic control, informed by physically and mathematically sound descriptions of ecohydrological and biogeochemical interactions.« less
NASA Astrophysics Data System (ADS)
Pierini, N. A.; Vivoni, E. R.; Anderson, C.; Saripalli, S.; Robles-Morua, A.
2012-12-01
Woody plant encroachment is an important issue facing semiarid ecosystems in the southwestern United States that is associated with grazing pressures, fire suppression, and the invasion of shrub species into historical grasslands. In this study, we present observational and distributed modeling activities conducted in two small rangeland watersheds of the Santa Rita Experimental Range, Arizona. This Sonoran Desert landscape is representative of the vegetation shift from grasslands to a woody savanna due to the encroachment of velvet mesquite (Prosopis velutina). The paired basins are similar in size and in close proximity, leading to equivalent meteorological and soil conditions. Nevertheless, they vary substantially in mesquite cover, with one basin having undergone a removal treatment several decades ago, while the other watershed represents the regional encroachment process. This distinction presents an excellent case study for analyzing the effects of mesquite encroachment on dryland ecohydrological dynamics. Observational datasets are obtained from a high-resolution environmental sensor network consisting of six rain gauges, twenty-one soil moisture and temperature profiles, five channel runoff flumes and an eddy covariance tower with a complete set of radiation, energy, carbon and water fluxes. In addition, high-resolution digital terrain models and image orthomosaics were obtained from a piloted aircraft with Light Detection and Ranging (LiDAR) measurements and an Unmanned Aerial Vehicle (UAV) with a digital camera. These two remote sensing platforms allowed characterizing the topography, stream network and plant species distributions at a high resolution (<1 m) in both basins. Using the sensor network, we present comparative analyses of watershed rainfall-runoff transformation in the paired basins, illustrating the role that mesquite trees have in runoff generation at the two outlet flumes. We further explore the impact of mesquite trees on the soil moisture and temperature distributions through comparisons of canopy and intercanopy sites. The field and remote sensing observations are then used in simulations using the TIN-based Real-time Integrated Basin Simulator (tRIBS) at high spatiotemporal resolutions over the two study years (2011-2012). Numerical experiments are designed to reveal the influence of the mesquite encroachment patterns on the watershed dynamics. Through the spatiotemporal analysis of model outputs, we identify how and when mesquite trees affect the spatial patterns of energy and water fluxes and their linkage to runoff production. As a result, the distributed model application provides a more complete understanding of the impact of woody encroachment on watershed-scale hydrologic patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brewer, Shannon K.; Worthington, Thomas A.; Mollenhauer, Robert
Ecohydrology combines empiricism, data analytics, and the integration of models to characterize linkages between ecological and hydrological processes. A challenge for practitioners is determining which models best generalizes heterogeneity in hydrological behaviour, including water fluxes across spatial and temporal scales, integrating environmental and socio–economic activities to determine best watershed management practices and data requirements. We conducted a literature review and synthesis of hydrologic, hydraulic, water quality, and ecological models designed for solving interdisciplinary questions. We reviewed 1,275 papers and identified 178 models that have the capacity to answer an array of research questions about ecohydrology or ecohydraulics. Of these models,more » 43 were commonly applied due to their versatility, accessibility, user–friendliness, and excellent user–support. Forty–one of 43 reviewed models were linked to at least 1 other model especially: Water Quality Analysis Simulation Program (linked to 21 other models), Soil and Water Assessment Tool (19), and Hydrologic Engineering Center's River Analysis System (15). However, model integration was still relatively infrequent. There was substantial variation in model applications, possibly an artefact of the regional focus of research questions, simplicity of use, quality of user–support efforts, or a limited understanding of model applicability. Simply increasing the interoperability of model platforms, transformation of models to user–friendly forms, increasing user–support, defining the reliability and risk associated with model results, and increasing awareness of model applicability may promote increased use of models across subdisciplines. Furthermore, the current availability of models allows an array of interdisciplinary questions to be addressed, and model choice relates to several factors including research objective, model complexity, ability to link to other models, and interface choice.« less
Brewer, Shannon K.; Worthington, Thomas; Mollenhauer, Robert; Stewart, David; McManamay, Ryan; Guertault, Lucie; Moore, Desiree
2018-01-01
Ecohydrology combines empiricism, data analytics, and the integration of models to characterize linkages between ecological and hydrological processes. A challenge for practitioners is determining which models best generalizes heterogeneity in hydrological behaviour, including water fluxes across spatial and temporal scales, integrating environmental and socio‐economic activities to determine best watershed management practices and data requirements. We conducted a literature review and synthesis of hydrologic, hydraulic, water quality, and ecological models designed for solving interdisciplinary questions. We reviewed 1,275 papers and identified 178 models that have the capacity to answer an array of research questions about ecohydrology or ecohydraulics. Of these models, 43 were commonly applied due to their versatility, accessibility, user‐friendliness, and excellent user‐support. Forty‐one of 43 reviewed models were linked to at least 1 other model especially: Water Quality Analysis Simulation Program (linked to 21 other models), Soil and Water Assessment Tool (19), and Hydrologic Engineering Center's River Analysis System (15). However, model integration was still relatively infrequent. There was substantial variation in model applications, possibly an artefact of the regional focus of research questions, simplicity of use, quality of user‐support efforts, or a limited understanding of model applicability. Simply increasing the interoperability of model platforms, transformation of models to user‐friendly forms, increasing user‐support, defining the reliability and risk associated with model results, and increasing awareness of model applicability may promote increased use of models across subdisciplines. Nonetheless, the current availability of models allows an array of interdisciplinary questions to be addressed, and model choice relates to several factors including research objective, model complexity, ability to link to other models, and interface choice.
Brewer, Shannon K.; Worthington, Thomas A.; Mollenhauer, Robert; ...
2018-04-06
Ecohydrology combines empiricism, data analytics, and the integration of models to characterize linkages between ecological and hydrological processes. A challenge for practitioners is determining which models best generalizes heterogeneity in hydrological behaviour, including water fluxes across spatial and temporal scales, integrating environmental and socio–economic activities to determine best watershed management practices and data requirements. We conducted a literature review and synthesis of hydrologic, hydraulic, water quality, and ecological models designed for solving interdisciplinary questions. We reviewed 1,275 papers and identified 178 models that have the capacity to answer an array of research questions about ecohydrology or ecohydraulics. Of these models,more » 43 were commonly applied due to their versatility, accessibility, user–friendliness, and excellent user–support. Forty–one of 43 reviewed models were linked to at least 1 other model especially: Water Quality Analysis Simulation Program (linked to 21 other models), Soil and Water Assessment Tool (19), and Hydrologic Engineering Center's River Analysis System (15). However, model integration was still relatively infrequent. There was substantial variation in model applications, possibly an artefact of the regional focus of research questions, simplicity of use, quality of user–support efforts, or a limited understanding of model applicability. Simply increasing the interoperability of model platforms, transformation of models to user–friendly forms, increasing user–support, defining the reliability and risk associated with model results, and increasing awareness of model applicability may promote increased use of models across subdisciplines. Furthermore, the current availability of models allows an array of interdisciplinary questions to be addressed, and model choice relates to several factors including research objective, model complexity, ability to link to other models, and interface choice.« less
A Template for an Intensive Ecohydrology Field Course
NASA Astrophysics Data System (ADS)
Emanuel, R. E.; McGlynn, B. L.; Riveros-Iregui, D. A.
2014-12-01
Many of the greatest challenges in the earth and environmental sciences are complex and interdisciplinary in nature. Ecohydrology exemplifies the type of holistic inquiry needed to address these challenges because it spans and integrates earth science, biological science and, often, social science. Ecohydrology courses can prepare the next generation of scientists, decision-makers and informed citizens to understand and address these challenges, and field courses in particular can play an important role in this preparation. Ecohydrology field course instructors have unique opportunities to convey interwoven theoretical and applied principles through a variety of modes that include lecture, discussion, immersion, and hands-on activity. In this presentation, we report on our experience co-teaching the Mountain Ecohydrology Field Course, a full-credit course taught 3 times in the past 5 years to more than 30 students representing 6 universities. The course, which has ranged from 1-2 weeks in length, has given students in-depth exposure to intensively instrumented ecohydrological field sites in the southern Appalachian and northern Rocky Mountains. Students learn fundamental principles in ecohydrology and related fields of watershed hydrology, soil biogeochemistry, micrometeorology and plant ecophysiology. They gain hands-on experience in a variety of cutting edge field techniques, tools and analyses while practicing presentation and communication of science. Students and instructors deal with real-world challenges of conducting fieldwork in remote settings. We offer our experience as one potential template for others interested in developing or refining ecohydrology field courses elsewhere.
Ecohydrology of Deep Fractured Rocks at Homestake DUSEL
NASA Astrophysics Data System (ADS)
Kieft, T. L.; Boutt, D. F.; Murdoch, L. C.; Wang, H. F.
2009-12-01
The Deep Underground Science and Engineering Laboratory (DUSEL) at Homestake in SD will provide an unprecedented opportunity to study the terrestrial subsurface. Such a study could fundamentally change the way we view the origin and early evolution of life on Earth, the search for novel materials, and the generation of energy. Knowledge of subsurface life has come from only a few boreholes and deep mines. DUSEL will enable the first detailed study of a deep ecosystem in the context of the hydrology, geochemistry, and rock system state that sustain it. We are guided by the over-arching question: What controls the distribution and evolution of subsurface life? Our hypothesis is that these controls are dominated by processes related to geology, geochemistry, geomechanics, and hydrology. Themes of scaling and the development of facies, or zones of similar characteristics cut across all the processes. The ecohydrologic setting of DUSEL Homestake is characterized by a vast expanse of fractured metamorphic rock cut by 100s of km of tunnels and boreholes. Many km3 of the region have been highly affected by mining activities; adjacent regions are partially desaturated; and more distal regions are pristine and presumed to harbor indigenous microbial ecosystems. Simulations along with descriptions of the mine suggest division into zones, or ecohydrologic facies, where essential characteristics related to the requirements for life are expected to be similar. These ecohydrologic facies are a primary organizing principle for our investigation. The Deep EcoHydrology Experiment will consist of field studies supported by numerical simulations. The experimental activities include a particularly exciting opportunity to probe the lower limits of the biosphere using deep drilling technology deployed from the lowest reaches of the facility (2440 m below the surface). The use of the flooding/dewatering event as a tracer combined with hydrologic and mechanical stressors form a theme that cuts across many of the experimental activities. Five key experimental activities have been identified that will enable motivating hypotheses to be tested: 1) Initial Characterization, 2) Flow System, 3) Stress and Deformation, 4) Exploration, and 5) Cross-cutting activities. The International Continental Drilling Program has approved a preproposal for an ICDP ecohydrology project at DUSEL. The development of a long-term deep geosciences observatory at the Homestake DUSEL will revolutionize the field of deep sub-surface ecohydrology. The opportunities for young scientists and international participation in such a facility will be tremendous. Results from the work will have wide ranging implications as 20% of the current earth’s surface consists of a similar geologic setting. DUSEL will also facilitate experiential learning for K-12 through graduate school students working alongside world-class geoscientists.
Ecohydrological consequences of grasses invading shrublands: A comparison of cold and warm deserts
USDA-ARS?s Scientific Manuscript database
Exotic grasses are altering native savannas and woodlands across the globe. We summarize the current state of knowledge concerning the ecohydrological consequences of native-shrubland-to-grassland conversion. Our objectives are to understand ecohydrological changes at the local scale, such as soil-...
Excessive Afforestation and Soil Drying on China's Loess Plateau
NASA Astrophysics Data System (ADS)
Zhang, Shuilei; Yang, Dawen; Yang, Yuting; Piao, Shilong; Yang, Hanbo; Lei, Huimin; Fu, Bojie
2018-03-01
Afforestation and deforestation as human disturbances to vegetation have profound impacts on ecohydrological processes influencing both water and carbon cycles and ecosystem sustainability. Since 1999, large-scale revegetation activities such as "Grain-to-Green Program" have been implemented across China's Loess Plateau. However, negative ecohydrological consequences, including streamflow decline and soil drying have emerged. Here we estimate the equilibrium vegetation cover over the Loess Plateau based on an ecohydrological model and assess the water balance under the equilibrium and actual vegetation cover over the past decade. Results show that the current vegetation cover (0.48 on average) has already exceeded the climate-defined equilibrium vegetation cover (0.43 on average) in many parts of the Loess Plateau, especially in the middle-to-east regions. This indicates a widespread overplanting, which is found to primarily responsible for soil drying in the area. Additionally, both the equilibrium vegetation cover and soil moisture tend to decrease under future (i.e., 2011-2050) climate scenarios due to declined atmospheric water supply (i.e., precipitation) and increased atmospheric water demand (i.e., potential evapotranspiration). Our findings suggest that further revegetation on the Loess Plateau should be applied with caution. To maintain a sustainable ecohydrological environment in the region, a revegetation threshold is urgently needed to guide future revegetation activities.
An ecohydrologic model for a shallow groundwater urban environment.
Arden, Sam; Ma, Xin Cissy; Brown, Mark
2014-01-01
The urban environment is a patchwork of natural and artificial surfaces that results in complex interactions with and impacts to natural hydrologic cycles. Evapotranspiration is a major hydrologic flow that is often altered through urbanization, although the mechanisms of change are sometimes difficult to tease out due to difficulty in effectively simulating soil-plant-atmosphere interactions. This paper introduces a simplified yet realistic model that is a combination of existing surface runoff and ecohydrology models designed to increase the quantitative understanding of complex urban hydrologic processes. Results demonstrate that the model is capable of simulating the long-term variability of major hydrologic fluxes as a function of impervious surface, temperature, water table elevation, canopy interception, soil characteristics, precipitation and complex mechanisms of plant water uptake. These understandings have potential implications for holistic urban water system management.
NASA Astrophysics Data System (ADS)
Bertoldi, Giacomo; Cordano, Emanuele; Brenner, Johannes; Senoner, Samuel; Della Chiesa, Stefano; Niedrist, Georg
2017-04-01
In mountain regions, the plot- and catchment-scale water and energy budgets are controlled by a complex interplay of different abiotic (i.e. topography, geology, climate) and biotic (i.e. vegetation, land management) controlling factors. When integrated, physically-based eco-hydrological models are used in mountain areas, there are a large number of parameters, topographic and boundary conditions that need to be chosen. However, data on soil and land-cover properties are relatively scarce and do not reflect the strong variability at the local scale. For this reason, tools for uncertainty quantification and optimal parameters identification are essential not only to improve model performances, but also to identify most relevant parameters to be measured in the field and to evaluate the impact of different assumptions for topographic and boundary conditions (surface, lateral and subsurface water and energy fluxes), which are usually unknown. In this contribution, we present the results of a sensitivity analysis exercise for a set of 20 experimental stations located in the Italian Alps, representative of different conditions in terms of topography (elevation, slope, aspect), land use (pastures, meadows, and apple orchards), soil type and groundwater influence. Besides micrometeorological parameters, each station provides soil water content at different depths, and in three stations (one for each land cover) eddy covariance fluxes. The aims of this work are: (I) To present an approach for improving calibration of plot-scale soil moisture and evapotranspiration (ET). (II) To identify the most sensitive parameters and relevant factors controlling temporal and spatial differences among sites. (III) Identify possible model structural deficiencies or uncertainties in boundary conditions. Simulations have been performed with the GEOtop 2.0 model, which is a physically-based, fully distributed integrated eco-hydrological model that has been specifically designed for mountain regions, since it considers the effect of topography on radiation and water fluxes and integrates a snow module. A new automatic sensitivity and optimization tool based on the Particle Swarm Optimization theory has been developed, available as R package on https://github.com/EURAC-Ecohydro/geotopOptim2. The model, once calibrated for soil and vegetation parameters, predicts the plot-scale temporal SMC dynamics of SMC and ET with a RMSE of about 0.05 m3/m3 and 40 W/m2, respectively. However, the model tends to underestimate ET during summer months over apple orchards. Results show how most sensitive parameters are both soil and canopy structural properties. However, ranking is affected by the choice of the target function and local topographic conditions. In particular, local slope/aspect influences results in stations located over hillslopes, but with marked seasonal differences. Results for locations in the valley floor are strongly controlled by the choice of the bottom water flux boundary condition. The poorer model performances in simulating ET over apple orchards could be explained by a model structural deficiency in representing the stomatal control on vapor pressure deficit for this particular type of vegetation. The results of this sensitivity could be extended to other physically distributed models, and also provide valuable insights for optimizing new experimental designs.
Ecohydrologic impacts of rangeland fire on runoff and erosion: A literature synthesis
Frederick B. Pierson; C. Jason Williams
2016-01-01
Fire can dramatically influence rangeland hydrology and erosion by altering ecohydrologic relationships. This synthesis presents an ecohydrologic perspective on the effects of fire on rangeland runoff and erosion through a review of scientific literature spanning many decades. The objectives are: (1) to introduce rangeland hydrology and erosion concepts necessary for...
Benefits of Long-term Catchment/Observatory Research: Reynolds Creek Case
NASA Astrophysics Data System (ADS)
Seyfried, M. S.; Marks, D. G.; Pierson, F. B.; Lohse, K. A.; Flerchinger, G. N.
2017-12-01
Long-term catchments/observatories fill an important role in the larger spectrum of ecohydrologic research. We use three examples of roles the Reynolds Creek Experimental Watershed (RCEW) has played in advancing research to illustrate the benefits of these observatories. Two characteristics of the RCEW are critical: longevity and scale. Longevity provides continuity of effort and historical context, scale provides environmental gradients, replication and management options. First, the RCEW is a laboratory for ecohydrologic model testing and development. The extensive RCEW data have been used for testing a variety models. The RCEW is also the site of several "home grown" models. Today Isnobal, a process-based snow model, is being used to inform reservoir management for power supply and irrigation of major catchments in the western US. This model is the result of many years of directed field research and model testing in the "outdoor laboratory" of the RCEW, which provided a range of topography, vegetation cover, a climatic gradient spanning the rain-snow transition elevation and many years of climate data to evaluate inter-annual variations. Second, the RCEW provides scientific and physical support for multi-institutional, interdisciplinary research. By providing preexisting instrumentation, on-site support, and historical context for research, the RCEW has been host to research from a variety of institutions. This is most evident today in the collaborative research with the co-located Reynolds Creek Critical Zone Observatory. We have built upon traditional hydrologic research to incorporate the linkages between water availability, soil development and vegetative productivity that are critical to natural resource management. Third, the RCEW provides documentation of climate change impacts on ecohydrology. The observatories are in the unique position of providing direct linkages between climate change and ecohydrologic change. Thus, we have measured temperature increases at the RCEW and have been able to directly link those increases to changes in snow accumulation and melt at different elevations, soil water trends, and streamflow amount and timing. This kind of linkage facilitates a process-level understanding of how climate change impacts the landscape.
Forest ecohydrological research in the 21st century: what are the critical needs?
James Vose; Ge Sun; Chelcy Ford; Michael Bredemeier; Kyoichi Ostsuki; Adam Wei; Zhiqiang Zhang; Lu. Zang
2011-01-01
Modern ecohydrologic science will be critical for providing the best information to policy makers and society to address water resource challenges in the 21st century. Implicitly, ecohydrology involves understanding both the functional interactions among vegetation, soils, and hydrologic processes at multiple scales and the linkages among upland, riparian, and aquatic...
NASA Astrophysics Data System (ADS)
Svoray, Tal; Assouline, Shmuel; Katul, Gabriel
2015-11-01
Current literature provides large number of publications about ecohydrological processes and their effect on the biota in drylands. Given the limited laboratory and field experiments in such systems, many of these publications are based on mathematical models of varying complexity. The underlying implicit assumption is that the data set used to evaluate these models covers the parameter space of conditions that characterize drylands and that the models represent the actual processes with acceptable certainty. However, a question raised is to what extent these mathematical models are valid when confronted with observed ecosystem complexity? This Introduction reviews the 16 papers that comprise the Special Section on Eco-hydrology of Semiarid Environments: Confronting Mathematical Models with Ecosystem Complexity. The subjects studied in these papers include rainfall regime, infiltration and preferential flow, evaporation and evapotranspiration, annual net primary production, dispersal and invasion, and vegetation greening. The findings in the papers published in this Special Section show that innovative mathematical modeling approaches can represent actual field measurements. Hence, there are strong grounds for suggesting that mathematical models can contribute to greater understanding of ecosystem complexity through characterization of space-time dynamics of biomass and water storage as well as their multiscale interactions. However, the generality of the models and their low-dimensional representation of many processes may also be a "curse" that results in failures when particulars of an ecosystem are required. It is envisaged that the search for a unifying "general" model, while seductive, may remain elusive in the foreseeable future. It is for this reason that improving the merger between experiments and models of various degrees of complexity continues to shape the future research agenda.
NASA Astrophysics Data System (ADS)
Ravi, Sujith; Wang, Lixin; Kaseke, Kudzai Farai; Buynevich, Ilya V.; Marais, Eugene
2017-02-01
Vegetation patterns such as rings, bands, and spots are recurrent characteristics of resource-limited arid and semiarid ecosystems. One of the most recognizable vegetation patterns is the millions of circular patches, often referred to as "fairy circles," within the arid grassland matrix extending over hundreds of kilometers in the Namib Desert. Several modeling studies have highlighted the role of plant-soil interactions in the formation of these fairy circles. However, little is known about the spatial and temporal variabilities of hydrological processes inside a fairy circle. In particular, a detailed field assessment of hydrological and soil properties inside and outside the fairy circles is limited. We conducted extensive measurements of infiltration rate, soil moisture, grass biometric, and sediment grain-size distribution from multiple circles and interspaces in the Namib Desert. Our results indicate that considerable heterogeneity in hydrological processes exists within the fairy circles, resulting from the presence of coarser particles in the inner bare soil areas, whereas concentration of fine soil occurs on the vegetated edges. The trapping of aeolian and water-borne sediments by plants may result in the observed soil textural changes beneath the vegetation, which in turn, explains the heterogeneity in hydrological processes such as infiltration and runoff. Our investigation provides new insights and experimental data on the ecohydrological processes associated with fairy circles, from a less studied location devoid of sand termite activity within the circles. The results seem to provide support to the "self-organization hypothesis" of fairy circle formation attributed to the antiphase spatial biomass-water distributions.
Integrative systems modeling and multi-objective optimization
This presentation presents a number of algorithms, tools, and methods for utilizing multi-objective optimization within integrated systems modeling frameworks. We first present innovative methods using a genetic algorithm to optimally calibrate the VELMA and SWAT ecohydrological ...
NASA Astrophysics Data System (ADS)
Zulkafli, Z. D.; Buytaert, W.; Veliz, C.
2014-12-01
The potential impact of a changing climate on Andean-Amazonian hydrology is an important question for scientists and policymakers alike, because of its implications for local ecosystem services such as water resources availability, river flow regulation, and eco-hydrology. This study presents new projections of climate change impacts on the hydrological regime of the upper Amazon river in Peru, and the consequent effect on two vulnerable species of freshwater turtle populations Podocnemis expansa (Amazon turtle) and Podocnemis unilis (yellow-spotted side neck turtle), which nest on its banks. To do this, the global climate model outputs of radiation, temperature, precipitation, wind, and humidity data from the Coupled Model Inter-comparison Project Phase 5 (CMIP5) are propagated through a hydrological model to simulate changes in river flow. The model consists of a land surface scheme called the Joint-UK Land Environment Simulator (JULES) that is coupled to a distributed river flow routing routine, which also accounts for floodplain attenuation of flood peaks. It is parameterized using a combination of remote sensing (TRMM, MODIS, an Landsat) and ground observational data to reproduce reliably the historical floodplain regime. The climate-induced shifts are inferred from a comparison between the RCP 4.5 and 8.5 projections against the historical scenario. Changes in the 10th and 95th percentile of flows, as well as the distributions in the length of the dry and wet seasons are analysed. These parameters are then used to construct probability models of biologically significant events (BSEs - extreme dry year, extreme wet year and repiquete), which are negative drivers of the turtle-egg ovipositioning, nesting and hatching. The results indicate that the projected increase in wet-season precipitation overcome the increase in evapotranspirative demand from an increase in temperature, resulting in more frequent and longer term flooding that causes a net loss of total turtle-egg counts. Additionally, changes in air and water temperature may alter the male / female ratio of the turtles.
Preface. Forest ecohydrological processes in a changing environment.
Xiaohua Wei; Ge Sun; James Vose; Kyoichi Otsuki; Zhiqiang Zhang; Keith Smetterm
2011-01-01
The papers in this issue are a selection of the presentations made at the second International Conference on Forests and Water in a Changing Environment. This special issue âForest Ecohydrological Processes in a Changing Environmentâ covers the topics regarding the effects of forest, land use and climate changes on ecohydrological processes across forest stand,...
Ecohydrology and Its Relation to Integrated Groundwater Management
Hunt, Randall J.; Hayashi, Masaki; Batelaan, Okke
2016-01-01
In the twentieth century, groundwater characterization focused primarily on easily measured hydraulic metrics of water storage and flows. Twenty-first century concepts of groundwater availability, however, encompass other factors having societal value, such as ecological well-being. Effective ecohydrological science is a nexus of fundamental understanding derived from two scientific disciplines: (1) ecology, where scale, thresholds, feedbacks and tipping points for societal questions form the basis for the ecologic characterization, and (2) hydrology, where the characteristics, magnitude, and timing of water flows are characterized for a defined system of interest. In addition to ecohydrology itself, integrated groundwater management requires input from resource managers to understand which areas of the vast world of ecohydrology are important for decision making. Expectations of acceptable uncertainty, or even what ecohydrological outputs have utility, are often not well articulated within societal decision making frameworks, or within the science community itself. Similarly, “acceptable levels of impact” are difficult to define. Three examples are given to demonstrate the use of ecohydrological considerations for long-term sustainability of groundwater resources and their related ecosystem function. Such examples illustrate the importance of accommodating ecohydrogeological aspects into integrated groundwater management of the twenty-first century, regardless of society, climate, or setting.
Forest Influences on Climate and Water Resources at the Landscape to Regional Scale
Ge Sun; Yongqiang Liu
2013-01-01
Although it is well known that climate controls the distribution, productivity and functioning of vegetation on earth, our knowledge about the role of forests in regulating regional climate and water resources is lacking. The studies on climate-forests feedbacks have received increasing attention from the climate change and ecohydrology research communities. The goal...
Ecohydrology of dry regions of the United States: Precipitation pulses and intraseasonal drought
William K. Lauenroth; John B. Bradford
2009-01-01
Distribution of precipitation event sizes and interval lengths between events are important characteristics of arid and semi-arid climates. Understanding their importance will contribute to our ability to understand ecosystem dynamics in these regions. Our objective for this paper was to present a comprehensive analysis of the daily precipitation regimes of arid and...
NASA Astrophysics Data System (ADS)
Ward, E. M.; Gorelick, S.; Hadly, E. A.
2016-12-01
The 6000 km2 Peace-Athabasca Delta ("Delta") in northeastern Alberta, Canada, is a Ramsar Convention Wetland and UNESCO World Heritage Site ("in Danger" status pending) where hydropower development and climate change are creating ecological impacts through desiccation and reduction in Delta shoreline habitat. We focus on ecohydrologic changes and mitigation and adaptation options to advance the field of ecohydrology using interdisciplinary technology by combining, for the first time, satellite remote sensing and hydrologic simulation with individual-based population modeling of muskrat (Ondatra zibethicus), a species native to the Delta whose population dynamics are strongly controlled by the hydrology of floodplain lakes. We are building a conceptual and quantitative modeling framework linking climate change, upstream water demand, and hydrologic change in the floodplain to muskrat population dynamics with the objective of exploring the impacts of these stressors on this ecosystem. We explicitly account for cultural and humanistic influences and are committed to effective communication with the regional subsistence community that depends on muskrat for food and income. Our modeling framework can ultimately serve as the basis for improved stewardship and sustainable development upstream of stressed freshwater deltaic, coastal and lake systems worldwide affected by climate change, providing a predictive tool to quantify population changes of animals relevant to regional subsistence food security and commercial trapping.
Belowground adaptation and resilience to drought conditions
NASA Astrophysics Data System (ADS)
Sivandran, G.; Gentine, P.; Bras, R. L.
2012-12-01
The most expansive drought in 50 years stretched across the Midwest in 2012. In light of predicted increases in the variability of climate, this type of event can no longer be considered extreme. Understanding the resilience of both managed and natural vegetation and how these systems may adapt to this new climate reality is critical in predicting changes to the global carbon, energy and water balance. An eco-hydrological model (tRIBS+VEGGIE) was employed to model the sensitivity of vegetation to varying drought intensities. Point scale simulations were carried out using two vertical root distribution schemes: (i) Static - a temporally invariant root distribution; and (ii) Dynamic - a temporally variable root carbon allocation scheme. A stochastic climate generator was used to create a series of synthetic climate realizations varying the drought characteristics - in particular the interstorm period. This change in the seasonal distribution of precipitation impacts the spatial (soil layers) and temporal distribution of soil moisture which directly impacts the water resource niche for vegetation. This change in resource niche is reflected in a shift in the optimal static rooting strategy further highlighting the need for the incorporation of a dynamic scheme that responds to local conditions.
Urban watersheds are notoriously difficult to model due to their complex, small-scale combinations of landscape and land use characteristics including impervious surfaces that ultimately affect the hydrologic system. We utilized EPA’s Visualizing Ecosystem Land Management A...
NASA Astrophysics Data System (ADS)
Jiao, Yang; Lei, Huimin; Yang, Dawen; Huang, Maoyi; Liu, Dengfeng; Yuan, Xing
2017-08-01
Land surface models (LSMs) are widely used to understand the interactions between hydrological processes and vegetation dynamics, which is important for the attribution and prediction of regional hydrological variations. However, most LSMs have large uncertainties in their representations of eco-hydrological processes due to deficiencies in hydrological parameterizations. In this study, the Community Land Model version 4 (CLM4) LSM was modified with an advanced runoff generation and flow routing scheme, resulting in a new land surface-hydrology coupled model, CLM-GBHM. Both models were implemented in the Wudinghe River Basin (WRB), which is a semi-arid basin located in the middle reaches of the Yellow River, China. Compared with CLM, CLM-GBHM increased the Nash Sutcliffe efficiency for daily river discharge simulation (1965-1969) from -0.03 to 0.23 and reduced the relative bias in water table depth simulations (2010-2012) from 32.4% to 13.4%. The CLM-GBHM simulations with static, remotely sensed and model-predicted vegetation conditions showed that the vegetation in the WRB began to recover in the 2000s due to the Grain for Green Program but had not reached the same level of vegetation cover as regions in natural eco-hydrological equilibrium. Compared with a simulation using remotely sensed vegetation cover, the simulation with a dynamic vegetation model that considers only climate-induced change showed a 10.3% increase in evapotranspiration, a 47.8% decrease in runoff, and a 62.7% and 71.3% deceleration in changing trend of the outlet river discharge before and after the year 2000, respectively. This result suggests that both natural and anthropogenic factors should be incorporated in dynamic vegetation models to better simulate the eco-hydrological cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Yang; Lei, Huimin; Yang, Dawen
Land surface models (LSMs) are widely used to understand the interactions between hydrological processes and vegetation dynamics, which is important for the attribution and prediction of regional hydrological variations. However, most LSMs have large uncertainties in their representations of ecohydrological processes due to deficiencies in hydrological parameterizations. In this study, the Community Land Model version 4 (CLM4) LSM was modified with an advanced runoff generation and flow routing scheme, resulting in a new land surface-hydrology coupled model, CLM-GBHM. Both models were implemented in the Wudinghe River Basin (WRB), which is a semi-arid basin located in the middle reaches of themore » Yellow River, China. Compared with CLM, CLM-GBHM increased the Nash Sutcliffe efficiency for daily river discharge simulation (1965–1969) from 0.03 to 0.23 and reduced the relative bias in water table depth simulations (2010–2012) from 32.4% to 13.4%. The CLM-GBHM simulations with static, remotely sensed and model-predicted vegetation conditions showed that the vegetation in the WRB began to recover in the 2000s due to the Grain for Green Program but had not reached the same level of vegetation cover as regions in natural eco-hydrological equilibrium. Compared with a simulation using remotely sensed vegetation cover, the simulation with a dynamic vegetation model that considers only climate-induced change showed a 10.3% increase in evapotranspiration, a 47.8% decrease in runoff, and a 62.7% and 71.3% deceleration in changing trend of the outlet river discharge before and after the year 2000, respectively. This result suggests that both natural and anthropogenic factors should be incorporated in dynamic vegetation models to better simulate the eco-hydrological cycle.« less
NASA Astrophysics Data System (ADS)
Setegn, S. G.; Ortiz, J.; Melendez, J.; Barreto, M.; Torres-Perez, J. L.; Guild, L. S.
2015-12-01
There are limited studies in Puerto Rico that shows the water resources availability and variability with respect to changing climates and land use. The main goal of the HICE-PR (Human Impacts to Coastal Ecosystems in Puerto Rico (HICE-PR): the Río Loco Watershed (southwest coast PR) project which was funded by NASA is to evaluate the impacts of land use/land cover changes on the quality and extent of coastal and marine ecosystems (CMEs) in two priority watersheds in Puerto Rico (Manatí and Guánica).The main objective of this study is to set up a physically based spatially distributed hydrological model, Soil and Water Assessment Tool (SWAT) for the analysis of hydrological processes in the Rio Grande de Manati river basin. SWAT (soil and water assessment tool) is a spatially distributed watershed model developed to predict the impact of land management practices on water, sediment and agricultural chemical yields in large complex watersheds. For efficient use of distributed models for hydrological and scenario analysis, it is important that these models pass through a careful calibration and uncertainty analysis. The model was calibrated and validated using Sequential Uncertainty Fitting (SUFI-2) calibration and uncertainty analysis algorithms. The model evaluation statistics for streamflows prediction shows that there is a good agreement between the measured and simulated flows that was verified by coefficients of determination and Nash Sutcliffe efficiency greater than 0.5. Keywords: Hydrological Modeling; SWAT; SUFI-2; Rio Grande De Manati; Puerto Rico
Puget Sound Applications of the VELMA Ecohydrological Model
This seminar will present an overview of EPA’s Visualizing Ecosystem Land Management Assessments (VELMA) model and its applications in the Puget Sound Basin. Topics will include a description of how VELMA simulates the interaction of hydrological and biogeochemical processe...
NASA Astrophysics Data System (ADS)
He, L.; Ivanov, V. Y.; Bisht, G.; Schneider, C.; Kalbacher, T.; Hildebrandt, A.
2013-12-01
The current generation of ecohydrological or land surface models oversimplify fine-scale root water uptake processes and are thus likely to produce errors in estimating regional transpiration flux when soil approaches dry condition. As future climate is likely to result in a drier soil state in many regions around the world, a better understanding and numerical representation of plant root water uptake process is crucial. In this study, a microscopic root water uptake approach is proposed to simulate the three-dimensional radial moisture fluxes from the soil to roots, and water flux transfer processes within the root systems. During dry conditions, this microscopic approach can simulate plant's ability to compensate the suppressed root water uptake in water-stressed regions by increasing uptake density in moister regions. This study incorporated the microscopic root water uptake approach based on 'aRoot' and 'PFLOTRAN' models into a larger-scale ecohydrological model ('tRIBS+VEGGIE'). The ecohydrological model provides boundary conditions for the microscopic module, and the latter feedbacks with actual transpiration rates and profiles of moisture sinks. The study is conducted for a northern temperate mixed forest of Northern Michigan. The study addresses two species (oak and aspen) with different root architectures, the primary and secondary type root systems. The modeling results use historical climate situations, as well as empirical observations suggesting that transpiration was not limited by soil moisture even when the surface soil water content approached the residual value. Climate projection scenarios are used to predict different water stress levels that would be experienced by the studied species.
Water, climate, and vegetation: ecohydrology in a changing world
L. Wang; J. Liu; G. Sun; X. Wei; S. Liu; Q. Dong
2012-01-01
Ecohydrology has advanced rapidly in the past few decades. A search of the topic âecohydrologyâ in the Web of Science showed an exponential growth of both publications and citations. The number of publications and citations increased from 7 and 6, respectively in 2000 to 65 and 1262 by 26 November 2012 (Fig. 1). Even with slightly different focus and definitions among...
NASA Astrophysics Data System (ADS)
Mckane, R.; Abdelnour, A. G.; Brookes, A.; Djang, K.; Stieglitz, M.; Pan, F.; Bolte, J.; Papenfus, M.; Burdick, C.
2012-12-01
Scientists, policymakers, community planners and others have discussed ecosystem services for decades, however, society is still in the early stages of developing methodologies to quantify and value the services that ecosystems provide. For example, the U.S. Environmental Protection Agency recently established the Sustainable and Healthy Communities Research Program to develop such methodologies, so that natural capital can be better accounted for in decisions that affect the supply of the ecosystem goods and services upon which human well-being depends. Essential to this goal are highly integrated models that can be used to define policy and management strategies for entire ecosystems, not simply individual components of the ecosystem. We developed the VELMA (Visualizing Ecosystems for Land Management Assessments) eco-hydrologic modeling framework to help address this emerging risk assessment objective. Here we describe a proof-of-concept application of VELMA to the H.J. Andrews Experimental Forest, a forested 64 km2 basin and Long Term Ecological Research site in the western Cascade Range of Oregon, USA. VELMA is a spatially-distributed eco-hydrologic model that links a land surface hydrologic model with a terrestrial biogeochemistry model for simulating the integrated responses of vegetation, soil, and water resources to interacting stressors. We used the model to simulate the effects of three different land use scenarios (100% old-growth, 100% clearcut harvest, and present-day land cover consisting of 45% old-growth and 55% harvested) on trade-offs among five ecosystem services: timber production, carbon sequestration, greenhouse gas regulation, water quantity, and water quality. Compared to the old-growth simulation, over a 60-yr period the clearcut simulation reduced total ecosystem carbon stocks (-40%), and initially increased total stream discharge (+28%), stream nitrogen export (>300%), and total CO2 and N2O radiative forcing (>200%). The simulation for present-day land cover resulted in intermediate values, albeit substantially closer to old growth than to clearcut values. Ongoing work is focused on incorporating VELMA within a flexible decision support platform (Envision) that integrates a wide variety of models, decision tools, and datasets for evaluating economic, social and environmental trade-offs associated with alternative decision scenarios. This framework will be used to address questions about the sustainability of natural capital vital to local and regional economies, initially in the PNW and Great Plains. For example, can those factors that have the greatest potential to improve future trajectories of ecosystem services and human well-being be identified? What green and grey infrastructure improvements, carbon and nitrogen management practices, and growth and development policies can most effectively be managed to attain a sustainable and desirable future?
Ecohydrological drought monitoring and prediction using a land data assimilation system
NASA Astrophysics Data System (ADS)
Sawada, Y.; Koike, T.
2017-12-01
Despite the importance of the ecological and agricultural aspects of severe droughts, few drought monitor and prediction systems can forecast the deficit of vegetation growth. To address this issue, we have developed a land data assimilation system (LDAS) which can simultaneously simulate soil moisture and vegetation dynamics. By assimilating satellite-observed passive microwave brightness temperature, which is sensitive to both surface soil moisture and vegetation water content, we can significantly improve the skill of a land surface model to simulate surface soil moisture, root zone soil moisture, and leaf area index (LAI). We run this LDAS to generate a global ecohydrological land surface reanalysis product. In this presentation, we will demonstrate how useful this new reanalysis product is to monitor and analyze the historical mega-droughts. In addition, using the analyses of soil moistures and LAI as initial conditions, we can forecast the ecological and hydrological conditions in the middle of droughts. We will present our recent effort to develop a near real time ecohydrological drought monitoring and prediction system in Africa by combining the LDAS and the atmospheric seasonal prediction.
NASA Astrophysics Data System (ADS)
Volo, T. J.; Vivoni, E. R.; Martin, C. A.; Wang, Z.; Ruddell, B.
2012-12-01
Through the past several decades, rapid population growth in the arid American Southwest has dramatically changed patterns of plant-available water through municipal and residential irrigation systems that provide supplemental water to designed and managed urban landscape vegetation. Urban irrigation, including diversion of rainwater and addition of imported water, has thereby enabled the transformation of areas once covered by bare soil and low water-use, native desert plant species to large tracts of exotic, high water-use turf grass and shade trees. Despite the large percentage of residential water appropriated to irrigation purposes, models of urban hydrology often fail to include the impact that this anthropogenic input has on water, energy, and biomass conditions. This study utilizes two one-dimensional soil moisture models to examine the importance of representing different processes in a quantitative urban ecohydrology model under irrigation scenarios. Such processes include sub-daily energy fluxes, vertical redistribution of soil moisture, saturation- and infiltration-excess runoff mechanisms, seasonally variable irrigation scheduling, and soil moisture control on evapotranspiration rates. The analysis is informed by soil moisture observations from an experimental sensor network in the Phoenix, Arizona metropolitan area. The network includes data from several different landscape and irrigation treatments representative of pre- and post-development conditions in the region. By interpreting soil moisture levels in terms of plant water stress, this study analyzes the effectiveness of urban irrigation practices in arid climates. Furthermore, by identifying the necessary hydrologic processes to represent in an urban ecohydrology model, our results inform future work in adapting a distributed hydrologic model to desert urban settings where irrigation plays a significant role in minimizing plant water stress. An appropriate model of water and energy balances, calibrated using local meteorological forcing, can facilitate discussions with water managers and homeowners regarding optimal irrigation frequency, volume, duration, and seasonality for individual landscapes, while also aiding in water-efficient landscape design for growing cities in desert regions.
The interactions between vegetation and hydrology in mountainous terrain are difficult to represent in mathematical models. There are at least three primary reasons for this difficulty. First, expanding plot-scale measurements to the watershed scale requires finding the balance...
Belowground Controls on the Dynamics of Plant Communities
NASA Astrophysics Data System (ADS)
Sivandran, G.
2013-12-01
Arid regions are characterized by high variability in the arrival of rainfall, and species found in these areas have adapted mechanisms to ensure the capture of this scarce resource. In particular, the rooting strategies employed by vegetation can be critical to their survival. These rooting strategies also dictate the competitive outcomes within plant communities. A dynamic rooting scheme was incorporated into tRIBS+VEGGIE (a physically-based, distributed ecohydrologic model). The dynamic rooting scheme allows vegetation the freedom to alter its rooting profile in response to changes in rainfall and soil conditions, in a way that more closely mimics observed phenotypic plasticity. A simple competition-colonization model was combined with the new dynamic root scheme to explore the role of root adaptability in plant competition and landscape evolution in semi-arid environments. The influence of model representation of rooting strategy on the long term plant community composition
NASA Astrophysics Data System (ADS)
Yang, J.; Medlyn, B.; De Kauwe, M. G.; Duursma, R.
2017-12-01
Leaf Area Index (LAI) is a key variable in modelling terrestrial vegetation, because it has a major impact on carbon, water and energy fluxes. However, LAI is difficult to predict: several recent intercomparisons have shown that modelled LAI differs significantly among models, and between models and satellite-derived estimates. Empirical studies show that long-term mean LAI is strongly related to mean annual precipitation. This observation is predicted by the theory of ecohydrological equilibrium, which provides a promising alternative means to predict steady-state LAI. We implemented this theory in a simple optimisation model. We hypothesized that, when water availability is limited, plants should adjust long-term LAI and stomatal behavior (g1) to maximize net canopy carbon export, under the constraint that canopy transpiration is a fixed fraction of total precipitation. We evaluated the predicted LAI (Lopt) for Australia against ground-based observations of LAI at 135 sites, and continental-scale satellite-derived estimates. For the site-level data, the RMSE of predicted Lopt was 0.14 m2 m-2, which was similar to the RMSE of a comparison of the data against nine-year mean satellite-derived LAI at those sites. Continentally, Lopt had a R2 of over 70% when compared to satellite-derived LAI, which is comparable to the R2 obtained when different satellite products are compared against each other. The predicted response of Lopt to the increase in atmospheric CO2 over the last 30 years also agreed with the estimate based on satellite-derivatives. Our results indicate that long-term equilibrium LAI can be successfully predicted from a simple application of ecohydrological theory. We suggest that this theory could be usefully incorporated into terrestrial vegetation models to improve their predictions of LAI.
E. Garcia; C.L. Tague; J. Choate
2013-01-01
Most spatially explicit hydrologic models require estimates of air temperature patterns. For these models, empirical relationships between elevation and air temperature are frequently used to upscale point measurements or downscale regional and global climate model estimates of air temperature. Mountainous environments are particularly sensitive to air temperature...
NASA Astrophysics Data System (ADS)
Govind, A.; Chen, J. M.; Margolis, H.
2007-12-01
Current estimates of terrestrial carbon overlook the effects of topographically-driven lateral flow of soil water. We hypothesize that this component, which occur at a landscape or watershed scale have significant influences on the spatial distribution of carbon, due to its large contribution to the local water balance. To this end, we further developed a spatially explicit ecohydrological model, BEPS-TerrainLab V2.0. We simulated the coupled hydrological and carbon cycle processes in a black spruce-moss ecosystem in central Quebec, Canada. The carbon stocks were initialized using a long term carbon cycling model, InTEC, under a climate change and disturbance scenario, the accuracy of which was determined with inventory plot measurements. Further, we simulated and validated several ecosystem indicators such as ET, GPP, NEP, water table, snow depth and soil temperature, using the measurements for two years, 2004 and 2005. After gaining confidence in the model's ability to simulate ecohydrological processes, we tested the influence of lateral water flow on the carbon cycle. We made three hydrological modeling scenarios 1) Explicit, were realistic lateral water routing was considered 2) Implicit where calculations were based on a bucket modeling approach 3) NoFlow, where the lateral water flow was turned off in the model. The results showed that pronounced anomalies exist among the scenarios for the simulated GPP, ET and NEP. In general, Implicit calculation overestimated GPP and underestimated NEP, as opposed to Explicit simulation. NoFlow underestimated GPP and overestimated NEP. The key processes controlling GPP were manifested through stomatal conductance which reduces under conditions of rapid soil saturation ( NoFlow ) or increases in the Implicit case, and, nitrogen availability which affects Vcmax, the maximum carboxylation rate. However, for NEP, the anomalies were attributed to differences in soil carbon pool decomposition, which determine the heterotrophic respiration and the resultant nitrogen mineralization which affects GPP and several other feedback mechanisms. These results suggest that lateral water flow does play a significant role in the terrestrial carbon distribution. Therefore, regional or global scale terrestrial carbon estimates could have significant errors if proper hydrological constrains are not considered for modeling ecological processes due to large topographic variations on the Earth's surface. For more info please visit: http://ajit.govind.googlepages.com/agu2007
NASA Astrophysics Data System (ADS)
Thomas, Zahra; Rousseau-Gueutin, Pauline; Kolbe, Tamara; Abbott, Ben; Marcais, Jean; Peiffer, Stefan; Frei, Sven; Bishop, Kevin; Le Henaff, Geneviève; Squividant, Hervé; Pichelin, Pascal; Pinay, Gilles; de Dreuzy, Jean-Raynald
2017-04-01
The distribution of groundwater residence time in a catchment provides synoptic information about catchment functioning (e.g. nutrient retention and removal, hydrograph flashiness). In contrast with interpreted model results, which are often not directly comparable between studies, residence time distribution is a general output that could be used to compare catchment behaviors and test hypotheses about landscape controls on catchment functioning. In this goal, we created a virtual observatory platform called Catchment Virtual Observatory for Sharing Flow and Transport Model Outputs (COnSOrT). The main goal of COnSOrT is to collect outputs from calibrated groundwater models from a wide range of environments. By comparing a wide variety of catchments from different climatic, topographic and hydrogeological contexts, we expect to enhance understanding of catchment connectivity, resilience to anthropogenic disturbance, and overall functioning. The web-based observatory will also provide software tools to analyze model outputs. The observatory will enable modelers to test their models in a wide range of catchment environments to evaluate the generality of their findings and robustness of their post-processing methods. Researchers with calibrated numerical models can benefit from observatory by using the post-processing methods to implement a new approach to analyzing their data. Field scientists interested in contributing data could invite modelers associated with the observatory to test their models against observed catchment behavior. COnSOrT will allow meta-analyses with community contributions to generate new understanding and identify promising pathways forward to moving beyond single catchment ecohydrology. Keywords: Residence time distribution, Models outputs, Catchment hydrology, Inter-catchment comparison
Interaction Between Ecohydrologic Dynamics and Microtopographic Variability Under Climate Change
NASA Astrophysics Data System (ADS)
Le, Phong V. V.; Kumar, Praveen
2017-10-01
Vegetation acclimation resulting from elevated atmospheric CO2 concentration, along with response to increased temperature and altered rainfall pattern, is expected to result in emergent behavior in ecologic and hydrologic functions. We hypothesize that microtopographic variability, which are landscape features typically of the length scale of the order of meters, such as topographic depressions, will play an important role in determining this dynamics by altering the persistence and variability of moisture. To investigate these emergent ecohydrologic dynamics, we develop a modeling framework, Dhara, which explicitly incorporates the control of microtopographic variability on vegetation, moisture, and energy dynamics. The intensive computational demand from such a modeling framework that allows coupling of multilayer modeling of the soil-vegetation continuum with 3-D surface-subsurface flow processes is addressed using hybrid CPU-GPU parallel computing framework. The study is performed for different climate change scenarios for an intensively managed agricultural landscape in central Illinois, USA, which is dominated by row-crop agriculture, primarily soybean (Glycine max) and maize (Zea mays). We show that rising CO2 concentration will decrease evapotranspiration, thus increasing soil moisture and surface water ponding in topographic depressions. However, increased atmospheric demand from higher air temperature overcomes this conservative behavior resulting in a net increase of evapotranspiration, leading to reduction in both soil moisture storage and persistence of ponding. These results shed light on the linkage between vegetation acclimation under climate change and microtopography variability controls on ecohydrologic processes.
Can longer forest harvest intervals increase summer streamflow for salmon recovery?
The Mashel Streamflow Modeling Project in the Mashel River Basin, Washington, is using a watershed-scale ecohydrological model to assess whether longer forest harvest intervals can remediate summer low flow conditions that have contributed to sharply reduced runs of spawning Chin...
NASA Astrophysics Data System (ADS)
Williams, C. J.; Pierson, F. B.; Nouwakpo, S.; Weltz, M.
2016-12-01
Pinyon and juniper encroachment has altered vegetation structure, ecological condition, hydrologic function, and delivery of ecosystem goods and services on millions of hectares of sagebrush rangelands in the western US. Pinyon and juniper out-compete shrubs and herbaceous vegetation for water and nutrients and facilitate a decline in vigor and cover of understory plants. These cover declines educe a shift from biotic-controlled resource retention to abiotic-driven losses of critical soil resources over time (soil erosion feedback). Our research objective was to evaluate tree removal by mastication, burning, and cutting as a threshold-reversal mechanism for restoration of sagebrush steppe ecohydrologic resilience over a ten year period. We examined vegetation, soils, infiltration, runoff, and erosion from artificial rainfall and concentrated flow experiments across multiple scales in two late succession woodlands before and 1, 2, and 10 yr after tree removal to address two research questions: 1) Can tree removal decrease late-succession woodland ecohydrologic resilience by increasing vegetation and ground cover within the first 10 yr post-treatment?, and 2) Is the soil erosion feedback reversible in the later stages of woodland encroachment? Distributing shredded tree debris into bare areas improved infiltration and reduced soil erosion in the first few years following tree mastication. Cutting and placing downed trees in bare patches had no initial effect on runoff and erosion. Burning initially reduced infiltration and increased runoff and erosion at the sites, but favorable grass and forb cover recruitment 2 yr after burning reduced erosion from the mostly bare intercanopy between tree mounds. Our presentation of the overall study will chronicle these published pre-fire, 1 yr, and 2 yr responses and preliminary results from the 10th yr post-treatment to address the questions outlined above. The collective results advance understanding of pinyon and juniper encroachment on vegetation, hydrology, and erosion processes and the short-term and decadal ecohydrologic recovery of sagebrush steppe following tree removal by mastication, burning, and cutting.
Ecohydrological control of deep drainage in arid and semiarid regions
Seyfried, M.S.; Schwinning, S.; Walvoord, Michelle Ann; Pockman, W. T.; Newman, B.D.; Jackson, R.B.; Phillips, F.M.
2005-01-01
The amount and spatial distribution of deep drainage (downward movement of water across the bottom of the root zone) and groundwater recharge affect the quantity and quality of increasingly limited groundwater in arid and semiarid regions. We synthesize research from the fields of ecology and hydrology to address the issue of deep drainage in arid and semiarid regions. We start with a recently developed hydrological model that accurately simulates soil water potential and geochemical profiles measured in thick (>50 m), unconsolidated vadose zones. Model results indicate that, since the climate change that marked the onset of the Holocene period 10 000–15 000 years ago, there has been no deep drainage in vegetated interdrainage areas and that continuous, relatively low (<−1 MPa) soil water potentials have been maintained at depths of 2–3 m. A conceptual model consistent with these results proposes that the native, xeric‐shrub‐dominated, plant communities that gained dominance during the Holocene generated and maintained these conditions. We present three lines of ecological evidence that support the conceptual model. First, xeric shrubs have sufficiently deep rooting systems with low extraction limits to generate the modeled conditions. Second, the characteristic deep‐rooted soil–plant systems store sufficient water to effectively buffer deep soil from climatic fluctuations in these dry environments, allowing stable conditions to persist for long periods of time. And third, adaptations resulting in deep, low‐extraction‐limit rooting systems confer significant advantages to xeric shrubs in arid and semiarid environments. We then consider conditions in arid and semiarid regions in which the conceptual model may not apply, leading to the expectation that portions of many arid and semiarid watersheds supply some deep drainage. Further ecohydrologic research is required to elucidate critical climatic and edaphic thresholds, evaluate the role of important physiological processes (such as hydraulic redistribution), and evaluate the role of deep roots in terms of carbon costs, nutrient uptake, and whole‐plant development.
NASA Astrophysics Data System (ADS)
Earnest, E. J.; Boutt, D. F.; Murdoch, L.; Hisz, D. B.; Ebenhack, J.; Kieft, T. L.; Onstott, T. C.; Wang, H. F.
2011-12-01
Mine-based ecohydrology studies provide unique access to deep flow systems at multiple crustal depths. Mass and energy transfer in such deep flow systems is typically dominated by localized flow through discrete features such as fractures and faults, of which only a small percentage contribute to both local and regional flow systems. Predicting which fractures are contributing to flow and transport in these networks has proven extremely difficult. Researchers working at deeper crustal levels (Barton et al., 1995) have successfully predicted fracture network permeability using relationships between fracture aperture (i.e. transmissivity) and in-situ stress. Observations suggest that compared to porous media, fractured rocks have flow systems that operate across large spatial scales and may contain clusters that are hydraulically isolated. . This point is important as these flow systems can house fluids and microbes in isolated clusters and are minimally impacted by the presence of a mine. One example of this is the the former Homestake gold mine in the northern Black Hills, South Dakota, which is being considered as a location for an underground science laboratory. Mine workings cover several km2 in plan and extend to a depth 2.4 km. The area is dominantly Proterozoic metamorphic rocks, forming regional-scale folds with plunge axes oriented ~40o to the SSE. Prior analysis of the hydrogeology of the area indicates that permeability is strongly dependent on effective stress; an increase in permeability with decreasing depth appears to be an important factor controlling the development of a shallow ground water flow systems. In this contribution we examine a set of factors contributing to permeability distribution at the site with a specific focus on: 1) refining permeability-depth models for fractured rock to include the influence of both normal and shear fracture deformation on permeability-depth trends, 2) promote the development and testing of a stress-path fracture permeability hypothesis to examine space-time fracture permeability evolution at various depths, and 3) evaluate factors necessary to create and sustain isolated fracture clusters that could be targets for studies of ecohydrology. Preliminary field work in fractured rocks of Eastern Massachusetts suggest that the stress-path hypothesis, in which fracture permeability undergoes spatial and temporal changes due to erosion and rotatation of the in situ stress field, can be used to explain depth-dependent permeability trends, and is particularly significant for flow systems at depths significant for deep ecohydrology studies.
The U.S. Environmental Protection Agency recently established the Ecosystem Services Research Program to help formulate methods and models for conducting comprehensive risk assessments that quantify how multiple ecosystem services interact and respond in concert to environmental ...
The U.S. Environmental Protection Agency recently established the Ecosystem Services Research Program to help formulate methods and models for conducting comprehensive risk assessments that quantify how multiple ecosystem services interact and respond in concert to environmental ...
Comparing two tools for ecosystem service assessments regarding water resources decisions.
Dennedy-Frank, P James; Muenich, Rebecca Logsdon; Chaubey, Indrajeet; Ziv, Guy
2016-07-15
We present a comparison of two ecohydrologic models commonly used for planning land management to assess the production of hydrologic ecosystem services: the Soil and Water Assessment Tool (SWAT) and the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) annual water yield model. We compare these two models at two distinct sites in the US: the Wildcat Creek Watershed in Indiana and the Upper Upatoi Creek Watershed in Georgia. The InVEST and SWAT models provide similar estimates of the spatial distribution of water yield in Wildcat Creek, but very different estimates of the spatial distribution of water yield in Upper Upatoi Creek. The InVEST model may do a poor job estimating the spatial distribution of water yield in the Upper Upatoi Creek Watershed because baseflow provides a significant portion of the site's total water yield, which means that storage dynamics which are not modeled by InVEST may be important. We also compare the ability of these two models, as well as one newly developed set of ecosystem service indices, to deliver useful guidance for land management decisions focused on providing hydrologic ecosystem services in three particular decision contexts: environmental flow ecosystem services, ecosystem services for potable water supply, and ecosystem services for rainfed irrigation. We present a simple framework for selecting models or indices to evaluate hydrologic ecosystem services as a way to formalize where models deliver useful guidance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Landform elevation suggests ecohydrologic footprints in subsurface geomorphology
NASA Astrophysics Data System (ADS)
Watts, A. C.; Watts, D.; Kaplan, D. A.; Mclaughlin, D. L.; Heffernan, J. B.; Martin, J. B.; Murray, A.; Osborne, T.; Cohen, M. J.; Kobziar, L. N.
2012-12-01
Many landscapes exhibit patterns in their arrangement of biota, or in their surface geomorphology as a result of biotic activity. Examples occur around the globe and include northern peatlands, Sahelian savannas, and shallow marine reefs. Such self-organized patterning is strongly suggestive of coupled, reciprocal feedbacks (i.e. locally positive, and distally negative) among biota and their environment. Much research on patterned landscapes has concerned emergent biogeomorphologic surfaces such as those found in peatlands, or the influence of biota on soil formation or transport. Our research concerns ecohydrologic feedbacks hypothesized to produce patterned occurrence of depressions in a subtropical limestone karst landscape. Our findings show strong evidence of self-organized patterning, in the form of overdispersed dissolution basins. Distributions of randomized bedrock elevation measurements on the landscape are bimodal, with means clustered about either higher- or lower-elevation modes. Measurements on the thin mantle of soil overlying this landscape, however, display reduced bimodality and mode separation. These observations indicate abiotic processes in diametric opposition to the biogenic forces which may be responsible for generating landscape pattern. Correlograms show higher spatial autocorrelation among soil measurements compared to bedrock measurements, and measurements of soil-layer thickness show high negative correlation with bedrock elevation. Our results are consistent with predictions of direct ecohydrologic feedbacks that would produce patterned "footprints" directly on bedrock, and of abiotic processes operating to obfuscate this pattern. The study suggests new steps to identify biogeochemical mechanisms for landscape patterning: an "ecological drill" by which plant communities modify geology.
Kopprio, Germán A; Biancalana, Florencia; Fricke, Anna; Garzón Cardona, John E; Martínez, Ana; Lara, Rubén J
2015-02-28
The aims of this work are to provide an overview of the current stresses of estuaries in Argentina and to propose adaptation strategies from an ecohydrological approach. Several Argentinian estuaries are impacted by pollutants, derived mainly from sewage discharge and agricultural or industrial activities. Anthropogenic impacts are expected to rise with increasing human population. Climate-driven warmer temperature and hydrological changes will alter stratification, residence time, oxygen content, salinity, pollutant distribution, organism physiology and ecology, and nutrient dynamics. Good water quality is essential in enhancing estuarine ecological resilience to disturbances brought on by global change. The preservation, restoration, and creation of wetlands will help to protect the coast from erosion, increase sediment accretion rates, and improve water quality by removing excess nutrients and pollutants. The capacity of hydrologic basin ecosystems to absorb human and natural impacts can be improved through holistic management, which should consider social vulnerability in complex human-natural systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
The U.S. Environmental Protection Agency recently established the Ecosystem Services Research Program to help formulate methods and models for conducting comprehensive risk assessments that quantify how multiple ecosystem services interact and respond in concert to environmental ...
The U.S. Environmental Protection Agency recently established the Ecosystem Services Research Program to help formulate methods and models for conducting comprehensive risk assessments that quantify how multiple ecosystem services interact and respond in concert to environmental ...
The U.S. Environmental Protection Agency recently established the Ecosystem Services Research Program to help formulate methods and models for conducting comprehensive risk assessments that quantify how multiple ecosystem services interact and respond in concert to environmental ...
The U.S. Environmental Protection Agency recently established the Ecosystem Services Research Program to help formulate methods and models for conducting comprehensive risk assessments that quantify how multiple ecosystem services interact and respond in concert to environmental ...
Effects of harvest on carbon and nitrogen dynamics in a Pacific Northwest forest catchment
We used a new ecohydrological model, Visualizing Ecosystems for Land Management Assessments (VELMA), to analyze the effects of forest harvest on catchment carbon and nitrogen dynamics. We applied the model to a 10 ha headwater catchment in the western Oregon Cascade Range where t...
NASA Astrophysics Data System (ADS)
Ivanov, Valeriy Y.; Bras, Rafael L.; Vivoni, Enrique R.
2008-03-01
Vegetation, particularly its dynamics, is the often-ignored linchpin of the land-surface hydrology. This work emphasizes the coupled nature of vegetation-water-energy dynamics by considering linkages at timescales that vary from hourly to interannual. A series of two papers is presented. A dynamic ecohydrological model [tRIBS + VEGGIE] is described in this paper. It reproduces essential water and energy processes over the complex topography of a river basin and links them to the basic plant life regulatory processes. The framework focuses on ecohydrology of semiarid environments exhibiting abundant input of solar energy but limiting soil water that correspondingly affects vegetation structure and organization. The mechanisms through which water limitation influences plant dynamics are related to carbon assimilation via the control of photosynthesis and stomatal behavior, carbon allocation, stress-induced foliage loss, as well as recruitment and phenology patterns. This first introductory paper demonstrates model performance using observations for a site located in a semiarid environment of central New Mexico.
Accelerating a three-dimensional eco-hydrological cellular automaton on GPGPU with OpenCL
NASA Astrophysics Data System (ADS)
Senatore, Alfonso; D'Ambrosio, Donato; De Rango, Alessio; Rongo, Rocco; Spataro, William; Straface, Salvatore; Mendicino, Giuseppe
2016-10-01
This work presents an effective implementation of a numerical model for complete eco-hydrological Cellular Automata modeling on Graphical Processing Units (GPU) with OpenCL (Open Computing Language) for heterogeneous computation (i.e., on CPUs and/or GPUs). Different types of parallel implementations were carried out (e.g., use of fast local memory, loop unrolling, etc), showing increasing performance improvements in terms of speedup, adopting also some original optimizations strategies. Moreover, numerical analysis of results (i.e., comparison of CPU and GPU outcomes in terms of rounding errors) have proven to be satisfactory. Experiments were carried out on a workstation with two CPUs (Intel Xeon E5440 at 2.83GHz), one GPU AMD R9 280X and one GPU nVIDIA Tesla K20c. Results have been extremely positive, but further testing should be performed to assess the functionality of the adopted strategies on other complete models and their ability to fruitfully exploit parallel systems resources.
Development of an ecohydrological salt marsh model
Terrestrial nitrogen input to coastal waters is a critical water quality problem nationwide. Even in systems well described experimentally, a clear understanding of process-level hydrological and biogeochemical controls can be difficult to ascertain from data alone. For examp...
NASA Astrophysics Data System (ADS)
Xin, Pei; Wang, Shen S. J.; Shen, Chengji; Zhang, Zeyu; Lu, Chunhui; Li, Ling
2018-03-01
Shallow groundwater interacts strongly with surface water across a quarter of global land area, affecting significantly the terrestrial eco-hydrology and biogeochemistry. We examined groundwater behavior subjected to unimodal impulse and irregular surface water fluctuations, combining physical experiments, numerical simulations, and functional data analysis. Both the experiments and numerical simulations demonstrated a damped and delayed response of groundwater table to surface water fluctuations. To quantify this hysteretic shallow groundwater behavior, we developed a regression model with the Gamma distribution functions adopted to account for the dependence of groundwater behavior on antecedent surface water conditions. The regression model fits and predicts well the groundwater table oscillations resulting from propagation of irregular surface water fluctuations in both laboratory and large-scale aquifers. The coefficients of the Gamma distribution function vary spatially, reflecting the hysteresis effect associated with increased amplitude damping and delay as the fluctuation propagates. The regression model, in a relatively simple functional form, has demonstrated its capacity of reproducing high-order nonlinear effects that underpin the surface water and groundwater interactions. The finding has important implications for understanding and predicting shallow groundwater behavior and associated biogeochemical processes, and will contribute broadly to studies of groundwater-dependent ecology and biogeochemistry.
NASA Astrophysics Data System (ADS)
Yang, J.; Weisberg, P.; Dilts, T.
2016-12-01
Climate warming can lead to large-scale drought-induced tree mortality events and greatly affect forest landscape resilience. Climatic water deficit (CWD) and its physiographic variations provide a key mechanism in driving landscape dynamics in response to climate change. Although CWD has been successfully applied in niche-based species distribution models, its application in process-based forest landscape models is still scarce. Here we present a framework incorporating fine-scale influence of terrain on ecohydrology in modeling forest landscape dynamics. We integrated CWD with a forest landscape succession and disturbance model (LANDIS-II) to evaluate how tree species distribution might shift in response to different climate-fire scenarios across an elevation-aspect gradient in a semi-arid montane landscape of northeastern Nevada, USA. Our simulations indicated that drought-intolerant tree species such as quaking aspen could experience greatly reduced distributions in the more arid portions of their existing ranges due to water stress limitations under future climate warming scenarios. However, even at the most xeric portions of its range, aspen is likely to persist in certain environmental settings due to unique and often fine-scale combinations of resource availability, species interactions and disturbance regime. The modeling approach presented here allowed identification of these refugia. In addition, this approach helped quantify how the direction and magnitude of fire influences on species distribution would vary across topoclimatic gradients, as well as furthers our understanding on the role of environmental conditions, fire, and inter-specific competition in shaping potential responses of landscape resilience to climate change.
Elevation Control on Vegetation Organization in a Semiarid Ecosystem in Central New Mexico
NASA Astrophysics Data System (ADS)
Nudurupati, S. S.; Istanbulluoglu, E.; Adams, J. M.; Hobley, D. E. J.; Gasparini, N. M.; Tucker, G. E.; Hutton, E. W. H.
2015-12-01
Many semiarid and desert ecosystems are characterized by patchy and dynamic vegetation. Topography plays a commanding role on vegetation patterns. It is observed that plant biomes and biodiversity vary systematically with slope and aspect, from shrublands in low desert elevations, to mixed grass/shrublands in mid elevations, and forests at high elevations. In this study, we investigate the role of elevation dependent climatology on vegetation organization in a semiarid New Mexico catchment where elevation and hillslope aspect play a defining role on plant types. An ecohydrologic cellular automaton model developed within Landlab (component based modeling framework) is used. The model couples local vegetation dynamics (that simulate biomass production based on local soil moisture and potential evapotranspiration) and plant establishment and mortality based on competition for resources and space. This model is driven by elevation dependent rainfall pulses and solar radiation. The domain is initialized with randomly assigned plant types and the model parameters that couple plant response with soil moisture are systematically changed. Climate perturbation experiments are conducted to examine spatial vegetation organization and associated timescales. Model results reproduce elevation and aspect controls on observed vegetation patterns indicating that this model captures necessary and sufficient conditions that explain these observed ecohydrological patterns.
Testing DRAINMOD-FOREST for predicting evapotranspiration in a mid-rotation pine plantation
Shiying Tian; Mohamed A. Youssef; Ge Sun; George M. Chescheir; Asko Noormets; Devendra M. Amatya; R. Wayne Skaggs; John S. King; Steve McNulty; Michael Gavazzi; Guofang Miao; Jean-Christophe Domec
2015-01-01
Evapotranspiration (ET) is a key component of the hydrologic cycle in terrestrial ecosystems and accurate description of ET processes is essential for developing reliable ecohydrological models. This study investigated the accuracy of ET prediction by the DRAINMOD-FOREST after its calibration/validation for predicting commonly measured hydrological variables. The model...
VELMA (Visualizing Ecosystem Land Management Assessments) is an eco-hydrological model that produces visual simulations of many hydrologic and ecological processes over time periods from hours to days to years. The purpose thus far has been used for predicting effectiveness of g...
NASA Astrophysics Data System (ADS)
Shi, Y.; Eissenstat, D. M.; He, Y.; Davis, K. J.
2017-12-01
Most current biogeochemical models are 1-D and represent one point in space. Therefore, they cannot resolve topographically driven land surface heterogeneity (e.g., lateral water flow, soil moisture, soil temperature, solar radiation) or the spatial pattern of nutrient availability. A spatially distributed forest biogeochemical model with nitrogen transport, Flux-PIHM-BGC, has been developed by coupling a 1-D mechanistic biogeochemical model Biome-BGC (BBGC) with a spatially distributed land surface hydrologic model, Flux-PIHM, and adding an advection dominated nitrogen transport module. Flux-PIHM is a coupled physically based model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model, and is augmented by adding a topographic solar radiation module. Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as land surface heterogeneities caused by topography. In the coupled Flux-PIHM-BGC model, each Flux-PIHM model grid couples a 1-D BBGC model, while nitrogen is transported among model grids via surface and subsurface water flow. In each grid, Flux-PIHM provides BBGC with soil moisture, soil temperature, and solar radiation, while BBGC provides Flux-PIHM with spatially-distributed leaf area index. The coupled Flux-PIHM-BGC model has been implemented at the Susquehanna/Shale Hills Critical Zone Observatory. The model-predicted aboveground vegetation carbon and soil carbon distributions generally agree with the macro patterns observed within the watershed. The importance of abiotic variables (including soil moisture, soil temperature, solar radiation, and soil mineral nitrogen) in predicting aboveground carbon distribution is calculated using a random forest. The result suggests that the spatial pattern of aboveground carbon is controlled by the distribution of soil mineral nitrogen. A Flux-PIHM-BGC simulation without the nitrogen transport module is also executed. The model without nitrogen transport fails in predicting the spatial patterns of vegetation carbon, which indicates the importance of having a nitrogen transport module in spatially distributed ecohydrologic modeling.
Integrating research on ecohydrology and land use change with land use management
NASA Astrophysics Data System (ADS)
Bass, Brad; Byers, Ralph E.; Lister, Nina-Marie
1998-10-01
One objective of the International Geosphere-Biosphere Programme is to provide a scientific basis for sustainable development policies. Land use change and ecohydrology are important components of this scientific basis, but predicting change is difficult because of the scale and complexity of the interactions between non-linear ecohydrological and socio-economic processes at different spatial and temporal scales. A systems framework, the Ecosystem Approach, has been developed to conceptualize these interactions for the purpose of providing information for sustainable development policy. The Ecosystem Approach combines the dynamics of the Holling figure-eight model - a conceptual model of dynamics that stresses discontinuous change and destruction as an internal property of the system - and the properties of self-organizing systems with the socio political aspects of decision making.The Ecosystem Approach highlights the problems of managing change in complex systems when that change may involve unpredictable shifts to a different attractor. Although there are methods available to detect the occurrence of such shifts, both detection and modelling are complicated by the presence of semi-stable attractors. When a model or an ecosystem is on a semi-stable attractor, it may appear to remain stable for an extended period prior to changing as a consequence of inherent instabilities. When the shift to a new attractor occurs, it is quite sudden and unpredictable. A technical discussion on prediction under conditions of semi-stability and chaos is included because it enhances our understanding of the role of surprise in ecosystems, as well as the utility of simulation models.The principles of the Ecosystem Approach are derived from the theoretical discussion and an example of a land use policy in the Huron Natural Area in south-western Ontario. These principles provide a clear role for scientific research, and particularly simulation modelling, within the larger context of policy and land use management.
NASA Astrophysics Data System (ADS)
Nakayama, Tadanobu
2017-04-01
Recent research showed that inland water including rivers, lakes, and groundwater may play some role in carbon cycling, although its contribution has remained uncertain due to limited amount of reliable data available. In this study, the author developed an advanced model coupling eco-hydrology and biogeochemical cycle (National Integrated Catchment-based Eco-hydrology (NICE)-BGC). This new model incorporates complex coupling of hydrologic-carbon cycle in terrestrial-aquatic linkages and interplay between inorganic and organic carbon during the whole process of carbon cycling. The model could simulate both horizontal transports (export from land to inland water 2.01 ± 1.98 Pg C/yr and transported to ocean 1.13 ± 0.50 Pg C/yr) and vertical fluxes (degassing 0.79 ± 0.38 Pg C/yr, and sediment storage 0.20 ± 0.09 Pg C/yr) in major rivers in good agreement with previous researches, which was an improved estimate of carbon flux from previous studies. The model results also showed global net land flux simulated by NICE-BGC (-1.05 ± 0.62 Pg C/yr) decreased carbon sink a little in comparison with revised Lund-Potsdam-Jena Wetland Hydrology and Methane (-1.79 ± 0.64 Pg C/yr) and previous materials (-2.8 to -1.4 Pg C/yr). This is attributable to CO2 evasion and lateral carbon transport explicitly included in the model, and the result suggests that most previous researches have generally overestimated the accumulation of terrestrial carbon and underestimated the potential for lateral transport. The results further implied difference between inverse techniques and budget estimates suggested can be explained to some extent by a net source from inland water. NICE-BGC would play an important role in reevaluation of greenhouse gas budget of the biosphere, quantification of hot spots, and bridging the gap between top-down and bottom-up approaches to global carbon budget.
Yuan Fang; Ge Sun; Peter Caldwell; Steven G. McNulty; Asko Noormets; Jean-Christophe Domec; John King; Zhiqiang Zhang; Xudong Zhang; Guanghui Lin; Guangsheng Zhou; Jingfeng Xiao; Jiquan Chen
2015-01-01
Evapotranspiration (ET) is arguably the most uncertain ecohydrologic variable for quantifying watershed water budgets. Although numerous ET and hydrological models exist, accurately predicting the effects of global change on water use and availability remains challenging because of model deficiency and/or a lack of input parameters. The objective of this study was to...
Kellie Vache; Lutz Breuer; Julia Jones; Phil Sollins
2015-01-01
We present a systems modeling approach to the development of a place-based ecohydrological model. The conceptual model is calibrated to a variety of existing observations, taken in watershed 10 (WS10) at the HJ Andrews Experimental Forest (HJA) in Oregon, USA, a long term ecological research (LTER) site with a long history of catchment-...
GIS/RS-based Integrated Eco-hydrologic Modeling in the East River Basin, South China
NASA Astrophysics Data System (ADS)
Wang, Kai
Land use/cover change (LUCC) has significantly altered the hydrologic system in the East River (Dongjiang) Basin. Quantitative modeling of hydrologic impacts of LUCC is of great importance for water supply, drought monitoring and integrated water resources management. An integrated eco-hydrologic modeling system of Distributed Monthly Water Balance Model (DMWBM), Surface Energy Balance System (SEBS) was developed with aid of GIS/RS to quantify LUCC, to conduct physically-based ET (evapotranspiration) mapping and to predict hydrologic impacts of LUCC. To begin with, in order to evaluate LUCC, understand implications of LUCC and provide boundary condition for the integrated eco-hydrologic modeling, firstly the long-term vegetation dynamics was investigated based on Normalized Difference Vegetation Index (NDVI) data, and then LUCC was analyzed with post-classification methods and finally LUCC prediction was conducted based on Markov chain model. The results demonstrate that the vegetation activities decreased significantly in summer over the years. Moreover, there were significant changes in land use/cover over the past two decades. Particularly there was a sharp increase of urban and built-up area and a significant decrease of grassland and cropland. All these indicate that human activities are intensive in the East River Basin and provide valuable information for constructing scenarios for studying hydrologic impacts of LUCC. The physically-remote-sensing-based Surface Energy Balance System (SEBS) was employed to estimate areal actual ET for a large area rather than traditional point measurements . The SEBS was enhanced for application in complex vegetated area. Then the inter-comparison with complimentary ET model and distributed monthly water balance model was made to validate the enhanced SEBS (ESEBS). The application and test of ESEBS show that it has a good accuracy both monthly and annually and can be effectively applied in the East River Basin. The results of ET mapping based on ESEBS demonstrate that actual ET in the East River Basin decreases significantly in the last two decades, which is probably caused by decrease of sunshine duration. In order to effectively simulate hydrologic impact of LUCC, an integrated model of ESEBS and distributed monthly water balance model has been developed in this study. The model is capable of considering basin terrain and the spatial distribution of precipitation and soil moisture. Particularly, the model is unique in accounting for spatial and temporal variations of vegetation cover and ET, which provides a powerful tool for studying the hydrologic impacts of LUCC. The model was applied to simulate the monthly runoff for the period of 1980-1994 for model calibration and for the period of 1995-2000 for validation. The calibration and validation results show that the newly integrated model is suitable for simulating monthly runoff and studying hydrologic impacts ofLUCC in the East River Basin. Finally, the newly integrated model was firstly applied to analyze the relationship of land use and hydrologic regimes based on the land use maps in 1980 and 2000. Then the newly integrated model was applied to simulate the potential impacts of land use change on hydrologic regimes in the East River Basin under a series of hypothetical scenarios. The results show that ET has a positive relationship with Leaf Area Index (LAI) while runoff has a negative relationship with LAI in the same climatic zone, which can be elaborated by surface energy balance and water balance equation. Specifically, on an annual basis, ET of forest scenarios is larger than that of grassland or cropland scenarios. On the contrary, runoff of forest scenarios is less than that of grassland or cropland scenarios. On a monthly basis, for most of the scenarios, particularly the grassland and cropland scenarios, the most significant changes occurred in the rainy season. The results indicate that deforestation would cause increase of runoff and decrease of ET on an annual basis in the East River Basin. On a monthly basis, deforestation would cause significant decrease of ET and increase of runoff in the rainy season in the East River Basin. These results are not definitive statements as to what will happen to runoff, ET and soil moisture regimes in the East River Basin, but rather offer an insight into the plausible changes in basin hydrology due to land use change. The integrated model developed in this study and these results have significant implications for integrated water resources management and sustainable development in the East River Basin.
Upscaling issues in ecohydrological observations
USDA-ARS?s Scientific Manuscript database
Scale is recognized as a central concept in the description of the hierarchical organization of our world. Pressing environmental and societal problems such require an understanding of how processes operate at different scales, and how they can be linked across scales. Ecohydrology as many other dis...
Optimal stomatal behaviour around the world
NASA Astrophysics Data System (ADS)
Lin, Yan-Shih; Medlyn, Belinda E.; Duursma, Remko A.; Prentice, I. Colin; Wang, Han; Baig, Sofia; Eamus, Derek; de Dios, Victor Resco; Mitchell, Patrick; Ellsworth, David S.; de Beeck, Maarten Op; Wallin, Göran; Uddling, Johan; Tarvainen, Lasse; Linderson, Maj-Lena; Cernusak, Lucas A.; Nippert, Jesse B.; Ocheltree, Troy W.; Tissue, David T.; Martin-Stpaul, Nicolas K.; Rogers, Alistair; Warren, Jeff M.; de Angelis, Paolo; Hikosaka, Kouki; Han, Qingmin; Onoda, Yusuke; Gimeno, Teresa E.; Barton, Craig V. M.; Bennie, Jonathan; Bonal, Damien; Bosc, Alexandre; Löw, Markus; Macinins-Ng, Cate; Rey, Ana; Rowland, Lucy; Setterfield, Samantha A.; Tausz-Posch, Sabine; Zaragoza-Castells, Joana; Broadmeadow, Mark S. J.; Drake, John E.; Freeman, Michael; Ghannoum, Oula; Hutley, Lindsay B.; Kelly, Jeff W.; Kikuzawa, Kihachiro; Kolari, Pasi; Koyama, Kohei; Limousin, Jean-Marc; Meir, Patrick; Lola da Costa, Antonio C.; Mikkelsen, Teis N.; Salinas, Norma; Sun, Wei; Wingate, Lisa
2015-05-01
Stomatal conductance (gs) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model and the leaf and wood economics spectrum. We also demonstrate a global relationship with climate. These findings provide a robust theoretical framework for understanding and predicting the behaviour of gs across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.
An Ecohydrologic Model for a Shallow Groundwater Urban Environment
The urban environment is a patchwork of natural and artificial surfaces that results in complex interactions with and impacts to natural hydrologic cycles. Evapotranspiration (ET) is a major hydrologic flow that is often altered from urbanization, though the mechanisms of change ...
NASA Astrophysics Data System (ADS)
Lyon, S. W.; Walter, M. T.; Jantze, E. J.; Archibald, J. A.
2013-12-01
Structuring an education strategy capable of addressing the various spheres of ecohydrology is difficult due to the inter-disciplinary and cross-disciplinary nature of this emergent field. Clearly, there is a need for such strategies to accommodate more progressive educational concepts while highlighting a skills-based education. To demonstrate a possible way to develop courses that include such concepts, we offer a case-study or a ';how-you-can-do-it' example from an ecohydrology course recently co-taught by teachers from Stockholm University and Cornell University at Stockholm University's Navarino Environmental Observatory (NEO) in Costa Navarino, Greece. This course focused on introducing hydrology Master's students to some of the central concepts of ecohydrology while at the same time supplying process-based understanding relevant for characterizing evapotranspiration. As such, the main goal of the course was to explore central theories in ecohydrology and their connection to plant-water interactions and the water cycle in a semiarid environment. In addition to presenting this roadmap for ecohydrology course development, we explore the utility and effectiveness of adopting active teaching and learning strategies drawing from the suite of learn-by-doing, hands-on, and inquiry-based techniques in such a course. We test a gradient of ';activeness' across a sequence of three teaching and learning activities. Our results indicate that there was a clear advantage for utilizing active learning techniques in place of traditional lecture-based styles. In addition, there was a preference among the student towards the more ';active' techniques. This demonstrates the added value of incorporating even the simplest active learning approaches in our ecohydrology (or general) teaching.
NASA Astrophysics Data System (ADS)
Lyon, Steve W.; Walter, M. Todd; Jantze, Elin J.; Archibald, Josephine A.
2015-04-01
Structuring an education strategy capable of addressing the various spheres of ecohydrology is difficult due to the inter-disciplinary and cross-disciplinary nature of this emergent field. Clearly, there is a need for such strategies to accommodate more progressive educational concepts while highlighting a skills-based education. To demonstrate a possible way to develop courses that include such concepts, we offer a case-study or a 'how-you-can-do-it' example from an ecohydrology course recently co-taught by teachers from Stockholm University and Cornell University at Stockholm University's Navarino Environmental Observatory (NEO) in Costa Navarino, Greece. This course focused on introducing hydrology Master's students to some of the central concepts of ecohydrology while at the same time supplying process-based understanding relevant for characterizing evapotranspiration. As such, the main goal of the course was to explore central theories in ecohydrology and their connection to plant-water interactions and the water cycle in a semiarid environment. In addition to presenting this roadmap for ecohydrology course development, we explore the utility and effectiveness of adopting active teaching and learning strategies drawing from the suite of learn-by-doing, hands-on, and inquiry-based techniques in such a course. We test a gradient of 'activeness' across a sequence of three teaching and learning activities. Our results indicate that there was a clear advantage for utilizing active learning techniques in place of traditional lecture-based styles. In addition, there was a preference among the student towards the more 'active' techniques. This demonstrates the added value of incorporating even the simplest active learning approaches in our ecohydrology (or general) teaching.
NASA Astrophysics Data System (ADS)
Lyon, S. W.; Walter, M. T.; Jantze, E. J.; Archibald, J. A.
2012-08-01
Structuring an education strategy capable of addressing the various spheres of ecohydrology is difficult due to the inter-disciplinary and cross-disciplinary nature of this emergent field. Clearly, there is a need for such strategies to accommodate more progressive educational concepts while highlighting a skills-based education. To demonstrate a possible way to develop courses that include such concepts, we offer a case-study or a "how-you-can-do-it" example from an ecohydrology course recently co-taught by teachers from Stockholm University and Cornell University at the Navarino Environmental Observatory (NEO) in Costa Navarino, Greece. This course focused on introducing hydrology Master's students to some of the central concepts of ecohydrology while at the same time supplying process-based understanding relevant for characterizing evapotranspiration. As such, the main goal of the course was to explore central theories in ecohydrology and their connection to plant-water interactions and the water cycle in a semiarid environment. In addition to presenting this roadmap for ecohydrology course development, we explore the utility and effectiveness of adopting active teaching and learning strategies drawing from the suite of learn-by-doing, hands-on, and inquiry-based techniques in such a course. We test a gradient of "activeness" across a sequence of three teaching and learning activities. Our results indicate that there was a clear advantage for utilizing active learning techniques in place of traditional lecture-based styles. In addition, there was a preference among the student towards the more "active" techniques. This demonstrates the added value of incorporating even the simplest active learning approaches in our ecohydrology (or general) teaching.
Understanding Drought and Regional Conservation Efforts on Urban Ecohydrology in Southern California
NASA Astrophysics Data System (ADS)
Hogue, T. S.
2015-12-01
Cities in the western U.S. are under increasing pressure to reduce the demand of imported water through increasing conservation efforts, altering non-native landscapes, and enhancing local water supplies. The State of California adopted emergency regulations implementing a mandatory 25% statewide reduction in potable urban water use and agricultural restrictions have also been enacted. The complexities in urban water flows and lack of granular data make understanding the impact of conservation and demand change on regional ecohydrology difficult. This presentation highlights ongoing work to better understand the coupling between humans, water and ecosystems in semi-arid urban cities, using metropolitan southern California as a case study. We evaluate historical and contemporary ecohydrologic behavior and human impacts through intensive data collection, remote sensing and high resolution modeling. The change in outdoor irrigation rates due to recent conservation measures (2008-2010) has resulted in overall decreased greenness and reduced dry season streamflow; however significant variability in conservation response is observed. Groundwater recharge, artificially supported by landscape irrigation, is also being impacted. In general, anthropogenic water fluxes (irrigation, pipe leakage, spreading grounds) are not parameterized in hydrologic and land surface models applied over urban areas. Inclusion of landscape irrigation significantly improves neighborhood scale simulations of evaporative fluxes and land surface temperatures and results in shifts in the energy partitioning. The cooling effects of irrigation on daily air temperatures has the largest influence over low intensity residential areas, with an average 2°C decrease observed in coupled model simulations (WRF-Noah-UCM). Ultimately, we strive to improve predictions of human-water interactions in semi-arid cities to better understand the effectiveness and impacts of ongoing drought and conservation efforts and guide demand strategies under future climate variability.
Incorporating hydrologic data and ecohydrologic relationships in ecological site descriptions
USDA-ARS?s Scientific Manuscript database
The purpose of this paper is to recommend a framework and methodology for inclusion of key ecohydrologic feedbacks and relationships in Ecological Site Descriptions (ESDs) and thereby enhance the utility of ESDs for assessing rangelands and guiding resilience-based management strategies. Resilience...
Semiarid ECohydrological Array – SECA 2058
USDA-ARS?s Scientific Manuscript database
The Southwestern ECohydrology Array (SECA) is a multi-user network that serves to assess biosphere / atmospheric exchange processes, as well as surface hydrology in semiarid ecosystems. SECA is administered through the USDA-ARS Southwest Watershed Research Center and the University of Arizona’s B2 E...
ERIC Educational Resources Information Center
Villegas, Juan Camilo; Morrison, Clayton T.; Gerst, Katharine L.; Beal, Carole R.; Espeleta, Javier E.; Adamson, Matt
2010-01-01
Current trends in ecological research emphasize interdisciplinary approaches for assessing effects of present and predicted environmental changes. One such emerging interdisciplinary field is the discipline of ecohydrology, which studies the feedbacks and interactions between ecological and hydrological processes. However, interdisciplinary…
Bedford, D.R.; Small, E.E.
2008-01-01
Spatial patterns of soil properties are linked to patchy vegetation in arid and semi-arid landscapes. The patterns of soil properties are generally assumed to be linked to the ecohydrological functioning of patchy dryland vegetation ecosystems. We studied the effects of vegetation canopy, its spatial pattern, and landforms on soil properties affecting overland flow and infiltration in shrublands at the Sevilleta National Wildlife Refuge/LTER in central New Mexico, USA. We studied the patterns of microtopography and saturated conductivity (Ksat), and generally found it to be affected by vegetation canopy and pattern, as well as landform type. On gently sloping alluvial fans, both microtopography and Ksat are high under vegetation canopy and decay with distance from plant center. On steeper hillslope landforms, only microtopography was significantly higher under vegetation canopy, while there was no significant difference in Ksat between vegetation and interspaces. Using geostatistics, we found that the spatial pattern of soil properties was determined by the spatial pattern of vegetation. Most importantly, the effects of vegetation were present in the unvegetated interspaces 2-4 times the extent of vegetation canopy, on the order of 2-3??m. Our results have implications for the understanding the ecohydrologic function of semi-arid ecosystems as well as the parameterization of hydrologic models. ?? 2007 Elsevier B.V. All rights reserved.
The monitoring of eco-hydrological parameters within the LIFE Ljubljanica Connects project
NASA Astrophysics Data System (ADS)
Sapač, Klaudija; Šraj, Mojca; Zabret, Katarina; Brilly, Mitja; Vidmar, Andrej
2016-04-01
The main objectives of the Ljubljanica Connects project arising from the need to improve the living conditions in the Ljubljanica River for endangered fish species. The history of improving the conditions dates back more than 100 years ago with the construction of fish passages at the obstacles on the Ljubljanica River. As part of the project the fish passages were reconstructed and upgraded to improve river connectivity. But for the survival of fish and other aquatic organisms in the river also adequate living conditions are necessary which can be determined by measurements of individual parameters of water quality. Within the LIFE Ljubljanica Connects project we have established continuous eco-hydrological monitoring of water level and temperature at 17 measuring sites and concentration of dissolved oxygen at 3 measuring sites along the Ljubljanica River and its tributaries. Water level data are input data for the hydrological model of Ljubljanica River, while water temperature and concentration of dissolved oxygen are the basic indicators of the quality of the water. The purpose of this paper is to present the measuring equipment of eco-hydrological monitoring, the first feedback on the results of measured water temperature and the concentration of dissolved oxygen in the Ljubljanica River, and the advantages and importance of such monitoring.
The ecohydrology of water limited landscapes
NASA Astrophysics Data System (ADS)
Huxman, T. E.
2011-12-01
Developing a mechanistic understanding of the coupling of ecological and hydrological systems is crucial for understanding the land-surface response of large areas of the globe to changes in climate. The distribution of biodiversity, the quantity and quality of streamflow, the biogeochemistry that constrains vegetation cover and production, and the stability of soil systems in watersheds are all functions of water-life coupling. Many key ecosystem services are governed by the dynamics of near-surface hydrology and biological feedbacks on the landscape occur through plant influence over available soil moisture. Thus, ecohydrology has tremendous potential to contribute to a predictive framework for understanding earth system dynamics. Despite the importance of such couplings and water as a major limiting resource in ecosystems throughout the globe, ecology still struggles with a mechanistic understanding of how changes in rainfall affect the biology of plants and microbes, or how changes in plant communities affect hydrological dynamics in watersheds. Part of the problem comes from our lack of understanding of how plants effectively partition available water among individuals in communities and how that modifies the physical environment, affecting additional resource availability and the passage of water along other hydrological pathways. The partitioning of evapotranspiration between transpiration by plants and evaporation from the soil surface is key to interrelated ecological, hydrological, and atmospheric processes and likely varies with vegetation structure and atmospheric dynamics. In addition, the vertical stratification of autotrophic and heterotrophic components in the soil profile, and the speed at which each respond to increased water, exert strong control over the carbon cycle. The magnitude of biosphere-atmosphere carbon exchange depends on the time-depth-distribution of soil moisture, a fundamental consequence of local precipitation pulse characteristics, soil texture and plant functional type. The transport of metabolic products within plants and their differential activation result in non-intuitive patterns of exchange associated with the major drivers creating problems with the scaling of physiological processes of individual plants to ecosystems. Such dynamics, along with hysteretic behavior creates challenges for measurement, evaluation, modeling and predicting ecosystem behavior. New frameworks and conceptual approaches to modeling ecosystem metabolism and the role of water are helping to describe the consequences of precipitation variability and change.
Catchment hydrological responses to forest harvest amount and spatial pattern - 2011
We used an ecohydrological model, Visualizing Ecosystems for Land Management Assessments (VELMA), to analyze the effects of forest harvest location and amount on ecosystem carbon (C) and nitrogen (N) dynamics in an intensively studied headwater catchment (WS10) in western Oregon,...
Emerald Ash Borer Threat Reveals Ecohydrologic Feedbacks in Northern U.S. Black Ash Wetlands
NASA Astrophysics Data System (ADS)
Diamond, J.; Mclaughlin, D. L.; Slesak, R.
2016-12-01
Hydrology is a primary driver of wetland structure and process that can be modified by abiotic and biotic feedbacks, leading to self-organization of wetland systems. Large-scale disturbance to these feedbacks, such as loss of vegetation, can thus be expected to impact wetland hydrology. The Emerald Ash Borer is an invasive beetle that is expected to cause widespread-loss of ash trees throughout the northern U.S. and Canada. To predict ecosystem response to this threat of vegetation loss, we ask if and how Black Ash (Fraxinus nigra), a ubiquitous facultative-wetland ash species, actively controls wetland hydrology to determine if Black Ash creates favorable hydrologic regimes for growth (i.e., evidence for ecohydrologic feedbacks). We do this by taking advantage of plot-level tree removal experiments in Black Ash-dominated (75-100% basal area) wetlands in the Chippewa National Forest, Minnesota. The monospecies dominance in these systems minimizes variation associated with species-specific effects, allowing for clearer interpretation of results regarding ecohydrologic feedbacks. Here, we present an analysis of six years of water table and soil moisture time series in experimental plots with the following treatments: 1) clear cut, 2) girdling, 3) group-selection thinning, and 4) control. We also present evapotranspiration (ET) time series estimates for each experimental plot using analysis of diel water level variation. Results show elevated water tables in treatment plots relative to control plots for all treatments for several years after treatments were applied, with differences as great as 50 cm. Some recovery of water table to pre-treatment levels was observed over time, but only the group-selection thinning treatment showed near-complete recovery to pre-treatment levels, and clear-cut treatments indicate sustained elevated water tables over five years. Differences among treatments are directly attributed to variably reduced ET relative to controls. Results also indicate changes to the ET vs. water table relationship among treatments, with implications for ET feedbacks to favorable hydrologic regimes for growth. Finally, we present a conceptual model for these ecosystems and discuss how the model will be used to explore ecohydrologic feedbacks in upcoming years.
The Ecohydrologic Role of Coexistence and Competition in Semiarid Hillslopes
NASA Astrophysics Data System (ADS)
Soltanjalili, M. J.; Saco, P. M.; Willgoose, G. R.
2015-12-01
Through its influence on runoff and erosion-deposition processes, vegetation remarkably regulates different aspects of landscape dynamics. Here, the influence of different plant functional traits on the coexistence of different species in arid and semi-arid regions with patchy vegetation is investigated using an ecohydrology model. The model simulates coevolving changes in biomass patterns for two species, as well as overland flow and soil moisture dynamics. Vegetation patterns emerge as a result of facilitation (shading and infiltration) and competition mechanisms as well as varying seed dispersal strategies. The results show that the survival of only one species or the coexistence of both species not only strongly depends on environmental stresses, but also on differences in hillslope micro and macro topography. These vegetation patterns have very different hydrologic signatures and the potential to trigger remarkably different geomorphic responses. Based on these results we establish new hypothesis that will be used to further investigate the role of plant interspecific and intraspecific feedbacks on landscape coevolution processes.
Estimating hydrologic and erosion response for use in ecological site descriptions
USDA-ARS?s Scientific Manuscript database
Ecological resilience of rangeland landscapes is strongly related to eco-hydrologic pattern-process feedbacks that regulate the retention or loss of water and soil resources. However, key ecohydrologic information is often lacking in Ecological Site Descriptions (ESDs) used to guide management of ra...
Invasion of shrublands by exotic grasses: Ecohydrological consequences in cold vs. warm deserts
USDA-ARS?s Scientific Manuscript database
Across the globe, native savannas and woodlands are undergoing conversion to exotic grasslands. Here we summarize the current state of knowledge concerning the ecohydrological consequences of this conversion for the cold deserts (Great Basin, Colorado Plateau) and the warm deserts (Mojave, Sonoran, ...
NASA Astrophysics Data System (ADS)
Parolari, A.; Katul, G. G.; Porporato, A. M.
2013-12-01
Regional scale drought-induced forest mortality events are projected to become more frequent under future climates due to changes in rainfall patterns. However, the ability to predict the conditions under which such events occur is currently lacking. To quantify and understand the underlying causes of drought-induced forest mortality, we propose a stochastic ecohydrological model that explicitly couples tree water and carbon use strategies with climate characteristics, such as the frequency and severity of drought. Using the model and results from a controlled drought experiment, we identify the soil, vegetation, and climate factors that underlie tree water and carbon deficits and, ultimately, the risk of drought-induced forest mortality. This mortality risk is then compared across the spectrum of anisohydric-isohydric stomatal control strategies and a range of rainfall regimes. These results suggest certain soil-plant combinations may maximize the survivable drought length in a given climate. Finally, we discuss how this approach can be expanded to estimate the effect of anticipated climate change on drought-induced forest mortality and associated consequences for forest water and carbon balances.
Incorporating hydrologic data and ecohydrologic relationships into ecological site descriptions
C. Jason Williams; Frederick B. Pierson; Kenneth E. Spaeth; Joel R. Brown; Osama Z. Al-Hamdan; Mark A. Weltz; Mark A. Nearing; Jeffrey E. Herrick; Jan Boll; Pete Robichaud; David C. Goodrich; Phillip Heilman; D. Phillip Guertin; Mariano Hernandez; Haiyan Wei; Stuart P. Hardegree; Eva K. Strand; Jonathan D. Bates; Loretta J. Metz; Mary H. Nichols
2016-01-01
The purpose of this paper is to recommend a framework and methodology for incorporating hydrologic data and ecohydrologic relationships in Ecological Site Descriptions (ESDs) and thereby enhance the utility of ESDs for assessing rangelands and guiding resilience-based management strategies. Resilience-based strategies assess and manage ecological state...
USDA-ARS?s Scientific Manuscript database
This series of articles not only represents a testimonial to the rapid progression of ecohydrology as a field but also reinforces the potential for new insights through targeted interdisciplinary collaboration. Within this issue, readers will find new insights and hypotheses, the testing of which ca...
USDA-ARS?s Scientific Manuscript database
Increasing trends in wildfire activity on semi-arid rangelands necessitate advancement in understanding of fire impacts on vegetation, soils, and runoff and erosion processes. This study used artificially applied rainfall and concentrated overland flow experiments to evaluate the ecohydrologic resp...
Ecohydrological processes and ecosystem services in the Anthropocene: a review
Ge Sun; Dennis Hallema; Heidi Asbjornsen
2017-01-01
The framework for ecosystem services has been increasingly used in integrated watershed ecosystem management practices that involve scientists, engineers, managers, and policy makers. The objective of this review is to explore the intimate connections between ecohydrological processes and water-related ecosystem services in human-dominated ecosystems in the...
Hydrochemistry and land cover in the upper Naryn river basin, Kyrgyzstan
NASA Astrophysics Data System (ADS)
Schneider, K.; Dernedde, Y.; Breuer, L.; Frede, H. G.
2009-04-01
Economic and social changes at the end of the 20th century affected land use decisions and land management in the Central Asian republics of the former Soviet Union. Amongst others, land tenure changed from mainly collectivized to private land, and in consequence, land management (e.g. soil treatment and fertilization practices) altered. Apart from agricultural pollutants and the impact of irrigation management, water resources are threatened by waste dumps remaining from mining activities. However, recent studies on the effect of land use changes on ecohydrology in Central Asia remain scarce. In a preliminary study, current land use and hydrochemistry in the upper Naryn Valley (Kyrgyzstan) was analyzed in 2008. Climate is semi-arid, and annual precipitation is approximately 300 mm. Precipitation peak occurs in early summer, while the rest of the year is rather dry. Crop and hay production prevail in the valley bottom. Environmental conditions in the mountains support pastoralism with a shift between summer and winter pastures. Agriculture depends on irrigation to a great deal as precipitation is seasonal and the vegetation period usually is the dry period. Today, production is mainly for subsistence purposes or local markets. The Naryn river is the headwater of the of the Syrdarya river which is one of the major sources of irrigation water in the Aral Sea basin. Hence, the ecohydrological condition of the contributing rivers is of major importance for the irrigation management downstream. Nevertheless, information on current ecohydrological conditions and land use which may affect the distribution and chemical composition of the rivers is lacking. In the presented study, basic hydrochemical measurements in the Naryn river and its tributaries were made. In situ measurements comprised electrical conductivity, ammonia and nitrate measurements, among others. While electrical conductivity varies greatly between the Naryn river and its tributaries, ammonia and nitrate concentrations remain below detection limit for the most part. The study shows that tributaries of high electrical conductivity do not affect hydrochemistry of the main river during summer because glacier and snow melt dominates runoff generation. Daily cycles of increased runoff due to snow and ice melt in the afternoon could be observed along the tributaries in the upper parts of the study area. Effects of agricultural production on ecohydrology remain weak as application of fertilizers and pesticides is currently low due to financial constraints. The data will be linked to land use data derived from satellite image products in order to analyse the effect of land cover and land cover changes on ecohydrological processes. Former observation of remote sensing data and related literature showed evidence for a change in land use management in the Naryn Valley. In 2008 training areas of land use classes for a supervised classification of 2008 remote sensing data have been recorded. A land use classification of the Naryn Valley on the base of Landsat ETM+ Data of 2008 and 1993 was done to get information on land use change on a regional scale. The classification uses spectral and spatial data in a hard classifier and object oriented combined approach. Comparing the two datasets with respect to changes in pattern of irrigated area and pasture area, change in cultivated crops and the change of agricultural cell sizes gives further information for hydrological modeling and land use monitoring purposes.
An eco-hydrologic model of malaria outbreaks
NASA Astrophysics Data System (ADS)
Montosi, E.; Manzoni, S.; Porporato, A.; Montanari, A.
2012-03-01
Malaria is a geographically widespread infectious disease that is well known to be affected by climate variability at both seasonal and interannual timescales. In an effort to identify climatic factors that impact malaria dynamics, there has been considerable research focused on the development of appropriate disease models for malaria transmission and their consideration alongside climatic datasets. These analyses have focused largely on variation in temperature and rainfall as direct climatic drivers of malaria dynamics. Here, we further these efforts by considering additionally the role that soil water content may play in driving malaria incidence. Specifically, we hypothesize that hydro-climatic variability should be an important factor in controlling the availability of mosquito habitats, thereby governing mosquito growth rates. To test this hypothesis, we reduce a nonlinear eco-hydrologic model to a simple linear model through a series of consecutive assumptions and apply this model to malaria incidence data from three South African provinces. Despite the assumptions made in the reduction of the model, we show that soil water content can account for a significant portion of malaria's case variability beyond its seasonal patterns, whereas neither temperature nor rainfall alone can do so. Future work should therefore consider soil water content as a simple and computable variable for incorporation into climate-driven disease models of malaria and other vector-borne infectious diseases.
An ecohydrological model of malaria outbreaks
NASA Astrophysics Data System (ADS)
Montosi, E.; Manzoni, S.; Porporato, A.; Montanari, A.
2012-08-01
Malaria is a geographically widespread infectious disease that is well known to be affected by climate variability at both seasonal and interannual timescales. In an effort to identify climatic factors that impact malaria dynamics, there has been considerable research focused on the development of appropriate disease models for malaria transmission driven by climatic time series. These analyses have focused largely on variation in temperature and rainfall as direct climatic drivers of malaria dynamics. Here, we further these efforts by considering additionally the role that soil water content may play in driving malaria incidence. Specifically, we hypothesize that hydro-climatic variability should be an important factor in controlling the availability of mosquito habitats, thereby governing mosquito growth rates. To test this hypothesis, we reduce a nonlinear ecohydrological model to a simple linear model through a series of consecutive assumptions and apply this model to malaria incidence data from three South African provinces. Despite the assumptions made in the reduction of the model, we show that soil water content can account for a significant portion of malaria's case variability beyond its seasonal patterns, whereas neither temperature nor rainfall alone can do so. Future work should therefore consider soil water content as a simple and computable variable for incorporation into climate-driven disease models of malaria and other vector-borne infectious diseases.
NASA Astrophysics Data System (ADS)
Yetemen, Omer; Istanbulluoglu, Erkan; Duvall, Alison R.
2015-12-01
Observations at the field, catchment, and continental scales across a range of arid and semiarid climates and latitudes reveal aspect-controlled patterns in soil properties, vegetation types, ecohydrologic fluxes, and hillslope morphology. Although the global distribution of solar radiation on earth's surface and its implications on vegetation dynamics are well documented, we know little about how variation of solar radiation across latitudes influence landscape evolution and resulting geomorphic difference. Here, we used a landscape evolution model that couples the continuity equations for water, sediment, and aboveground vegetation biomass at each model element in order to explore the controls of latitude and mean annual precipitation (MAP) on the development of hillslope asymmetry (HA). In our model, asymmetric hillslopes emerged from the competition between soil creep and vegetation-modulated fluvial transport, driven by spatial distribution of solar radiation. Latitude was a primary driver of HA because of its effects on the global distribution of solar radiation. In the Northern Hemisphere, north-facing slopes (NFS), which support more vegetation cover and have lower transport efficiency, get steeper toward the North Pole while south-facing slopes (SFS) get gentler. In the Southern Hemisphere, the patterns are reversed and SFS get steeper toward the South Pole. For any given latitude, MAP is found to have minor control on HA. Our results underscore the potential influence of solar radiation as a global control on the development of asymmetric hillslopes in fluvial landscapes.
Climate change and the eco-hydrology of fire: Will area burned increase in a warming western USA?
Donald McKenzie; Jeremy S. Littell
2017-01-01
Wildfire area is predicted to increase with global warming. Empirical statistical models and process-based simulations agree almost universally. The key relationship for this unanimity, observed at multiple spatial and temporal scales, is between drought and fire. Predictive models often focus on ecosystems in which this relationship appears to be particularly strong,...
Devendra Amatya; S. Tian; Z. Dai; Ge Sun
2016-01-01
A reliable estimate of potential evapotranspiration (PET) for a forest ecosystem is critical in ecohydrologic modeling related with water supply, vegetation dynamics, and climate change and yet is a challenging task due to its complexity. Based on long-term on-site measured hydro-climatic data and predictions from earlier validated hydrologic modeling studies...
Ecohydrology of the different photosynthetic pathways and implication for sustainable agriculture
NASA Astrophysics Data System (ADS)
Porporato, A. M.; Bartlett, M. S., Jr.; Hartzell, S. R.
2016-12-01
We use a recently proposed model that can simulate the different photosynthetic pathways coupled to the soil-plant-atmosphere continuum (SPAC) to discuss their ecohydrological implications in relation to water use and plant water stress in both natural and agricultural ecosystems. Built around the classical C3 photosynthesis core model (light reactions and Calvin cycle), the model includes a simple CO2-pump parameterization for C4 plants and a circadian rhythm and carbon storage components for the CAM (Crassulacean Acid Metabolism) plants. Its architecture takes advantage of the interesting modularity in which photosynthesis evolved in geological times to provide a relatively simple but comprehensive framework to explore the advantages and tradeoffs in water energy and carbon fluxes of the three photosynthetic pathways under fluctuating environmental forcing. We calibrate the model with reference to a series of C3,C4 and CAM plants, and discuss the trade-offs in water use and plan productivity and the related impact on hydrologic fluxes and soil biogeochemistry. We also consider some important crop species to analyze the implications of choosing crops with different photosynthetic pathways to improve sustainability of agriculture and irrigation in semiarid systems.
NASA Astrophysics Data System (ADS)
Manzoni, S.; Vico, G.; Palmroth, S.; Katul, G. G.; Porporato, A. M.
2013-12-01
In terrestrial ecosystems, plant photosynthesis occurs at the expense of water losses through stomata, thus creating an inherent hydrologic constrain to carbon (C) gains and productivity. While such a constraint cannot be overcome, evolution has led to a number of adaptations that allow plants to thrive under highly variable and often limiting water availability. It may be hypothesized that these adaptations are optimal and allow maximum C gain for a given water availability. A corollary hypothesis is that these adaptations manifest themselves as coordination between the leaf photosynthetic machinery and the plant hydraulic system. This coordination leads to functional relations between the mean hydrologic state, plant hydraulic traits, and photosynthetic parameters that can be used as bridge across temporal scales. Here, optimality theories describing the behavior of stomata and plant morphological features in a fluctuating soil moisture environment are proposed. The overarching goal is to explain observed global patterns of plant water use and their ecological and biogeochemical consequences. The problem is initially framed as an optimal control problem of stomatal closure during drought of a given duration, where maximizing the total photosynthesis under limited and diminishing water availability is the objective function. Analytical solutions show that commonly used transpiration models (in which stomatal conductance is assumed to depend on soil moisture) are particular solutions emerging from the optimal control problem. Relations between stomatal conductance, vapor pressure deficit, and atmospheric CO2 are also obtained without any a priori assumptions under this framework. Second, the temporal scales of the model are expanded by explicitly considering the stochasticity of rainfall. In this context, the optimal control problem becomes a maximization problem for the mean photosynthetic rate. Results show that to achieve maximum C gains under these unpredictable rainfall conditions, plant hydraulic traits (xylem and stomatal response to water availability) and morphological features (leaf and sapwood areas) must be coordinated - thus providing an ecohydrological interpretation of observed coordination (or homeostasis) among hydraulic traits. Moreover, the combinations of hydraulic traits and responses to drought that are optimal are found to depend on both total rainfall and its distribution during the growing season. Both drier conditions and more intense rainfall events interspaced by longer dry periods favor plants with high resistance to cavitation and delayed stomatal closure as soils dry. In contrast, plants in mesic conditions benefit from cavitation prevention through earlier stomatal closure. The proposed ecohydrological optimality criteria can be used as analytical tools to interpret variability in plant water use and predict trends in plant productivity and species composition under future climates.
Palmquist, Kyle A.; Schlaepfer, Daniel R.; Bradford, John B.; Lauenroth, William K.
2016-01-01
Ecohydrological responses to climate change will exhibit spatial variability and understanding the spatial pattern of ecological impacts is critical from a land management perspective. To quantify climate change impacts on spatial patterns of ecohydrology across shrub steppe ecosystems in North America, we asked the following question: How will climate change impacts on ecohydrology differ in magnitude and variability across climatic gradients, among three big sagebrush ecosystems (SB-Shrubland, SB-Steppe, SB-Montane), and among Sage-grouse Management Zones? We explored these potential changes for mid-century for RCP8.5 using a process-based water balance model (SOILWAT) for 898 big sagebrush sites using site- and scenario-specific inputs. We summarize changes in available soil water (ASW) and dry days, as these ecohydrological variables may be helpful in guiding land management decisions about where to geographically concentrate climate change mitigation and adaptation resources. Our results suggest that during spring, soils will be wetter in the future across the western United States, while soils will be drier in the summer. The magnitude of those predictions differed depending on geographic position and the ecosystem in question: Larger increases in mean daily spring ASW were expected for high-elevation SB-Montane sites and the eastern and central portions of our study area. The largest decreases in mean daily summer ASW were projected for warm, dry, mid-elevation SB-Montane sites in the central and west-central portions of our study area (decreases of up to 50%). Consistent with declining summer ASW, the number of dry days was projected to increase rangewide, but particularly for SB-Montane and SB-Steppe sites in the eastern and northern regions. Collectively, these results suggest that most sites will be drier in the future during the summer, but changes were especially large for mid- to high-elevation sites in the northern half of our study area. Drier summer conditions in high-elevation, SB-Montane sites may result in increased habitat suitability for big sagebrush, while those same changes will likely reduce habitat suitability for drier ecosystems. Our work has important implications for where land managers should prioritize resources for the conservation of North American shrub steppe plant communities and the species that depend on them.
Kai Duan; Ge Sun; Steven G. McNulty; Peter V. Caldwell; Erika C. Cohen; Shanlei Sun; Heather D. Aldridge; Decheng Zhou; Liangxia Zhang; Yang Zhang
2017-01-01
This study examines the relative roles of cli- matic variables in altering annual runoff in the contermi- nous United States (CONUS) in the 21st century, using a monthly ecohydrological model (the Water Supply Stress In- dex model, WaSSI) driven with historical records and future scenarios constructed from 20 Coupled Model Intercompar- ison Project Phase 5 (CMIP5)...
Combining Mechanistic Approaches for Studying Eco-Hydro-Geomorphic Coupling
NASA Astrophysics Data System (ADS)
Francipane, A.; Ivanov, V.; Akutina, Y.; Noto, V.; Istanbullouglu, E.
2008-12-01
Vegetation interacts with hydrology and geomorphic form and processes of a river basin in profound ways. Despite recent advances in hydrological modeling, the dynamic coupling between these processes is yet to be adequately captured at the basin scale to elucidate key features of process interaction and their role in the organization of vegetation and landscape morphology. In this study, we present a blueprint for integrating a geomorphic component into the physically-based, spatially distributed ecohydrological model, tRIBS- VEGGIE, which reproduces essential water and energy processes over the complex topography of a river basin and links them to the basic plant life regulatory processes. We present a preliminary design of the integrated modeling framework in which hillslope and channel erosion processes at the catchment scale, will be coupled with vegetation-hydrology dynamics. We evaluate the developed framework by applying the integrated model to Lucky Hills basin, a sub-catchment of the Walnut Gulch Experimental Watershed (Arizona). The evaluation is carried out by comparing sediment yields at the basin outlet, that follows a detailed verification of simulated land-surface energy partition, biomass dynamics, and soil moisture states.
NASA Astrophysics Data System (ADS)
Miles, B.; Band, L. E.
2012-12-01
Water sustainability has been recognized as a fundamental problem of science whose solution relies in part on high-performance computing. Stormwater management is a major concern of urban sustainability. Understanding interactions between urban landcover and stormwater nutrient pollution requires consideration of fine-scale residential stormwater management, which in turn requires high-resolution LIDAR and landcover data not provided through national spatial data infrastructure, as well as field observation at the household scale. The objectives of my research are twofold: (1) advance understanding of the relationship between residential stormwater management practices and the export of nutrient pollution from stormwater in urbanized ecosystems; and (2) improve the informatics workflows used in community ecohydrology modeling as applied to heterogeneous urbanized ecosystems. In support of these objectives, I present preliminary results from initial work to: (1) develop an ecohydrology workflow platform that automates data preparation while maintaining data provenance and model metadata to yield reproducible workflows and support model benchmarking; (2) perform field observation of existing patterns of residential rooftop impervious surface connectivity to stormwater networks; and (3) develop Regional Hydro-Ecological Simulation System (RHESSys) models for watersheds in Baltimore, MD (as part of the Baltimore Ecosystem Study (BES) NSF Long-Term Ecological Research (LTER) site) and Durham, NC (as part of the NSF Urban Long-Term Research Area (ULTRA) program); these models will be used to simulate nitrogen loading resulting from both baseline residential rooftop impervious connectivity and for disconnection scenarios (e.g. roof drainage to lawn v. engineered rain garden, upslope v. riparian). This research builds on work done as part of the NSF EarthCube Layered Architecture Concept Award where a RHESSys workflow is being implemented in an iRODS (integrated Rule-Oriented Data System) environment. Modeling the ecohydrology of urban ecosystems in a reliable and reproducible manner requires a flexible scientific workflow platform that allows rapid prototyping with large-scale spatial datasets and model refinement integrating expert knowledge with local datasets and household surveys.
NASA Astrophysics Data System (ADS)
He, L.; Ivanov, V. Y.; Schneider, C.
2012-12-01
The predictive accuracy of current land surface models has been limited by uncertainties in modeling transpiration and its sensitivity to the plant-available water in the root zone. Models usually distribute vegetation transpiration demand as sink terms in one-dimensional soil-water accounting model, according to the vertical root density profile. During water-limited situations, the sink terms are constrained using a heuristic "Feddes-type" water stress function. This approach significantly simplifies the actual three-dimensional physical process of root water uptake and may predict an early onset of water-limited transpiration. Recently, a microscopic root water uptake approach was proposed to simulate the three-dimensional radial moisture fluxes from the soil to roots, and water flux transfer processes along the root systems. During dry conditions, this approach permits the compensation of decreased root water uptake in water-stressed regions by increasing uptake density in moister regions. This effect cannot be captured by the Feddes heuristic function. This study "loosely" incorporates the microscopic root water uptake approach based on aRoot model into an ecohydrological model tRIBS+VEGGIE. The ecohydrological model provides boundary conditions for the microscopic root water uptake model (e.g., potential transpiration, soil evaporation, and precipitation influx), and the latter computes the actual transpiration and profiles of sink terms. Based on the departure of the actual latent heat flux from the potential value, the other energy budget components are adjusted. The study is conducted for a northern temperate mixed forest near the University of Michigan Biological Station. Observational evidence for this site suggests little-to-no control of transpiration by soil moisture yet the commonly used Feddes-type approach implies severe water limitation on transpiration during dry episodes. The study addresses two species: oak and aspen. The effects of differences in root architecture on actual transpiration are explored. The energy components simulated with the microscopic modeling approach are tested against observational data. Through the improved spatiotemporal representation of small-scale root water uptake process, the microscopic modeling framework leads to a better agreement with the observational data than the Feddes-type approach. During dry periods, relatively high transpiration is sustained, as water uptake regions shift from densely to sparsely rooted layers, or from drier to moister soil areas. Implications and approaches for incorporating microscopic modeling methodologies within large-scale land-surface parameterizations are discussed.
Singer, Michael Bliss; Sargeant, Christopher I; Piégay, Hervé; Riquier, Jérémie; Wilson, Rob J S; Evans, Cristina M
2014-05-01
Seasonal and annual partitioning of water within river floodplains has important implications for ecohydrologic links between the water cycle and tree growth. Climatic and hydrologic shifts alter water distribution between floodplain storage reservoirs (e.g., vadose, phreatic), affecting water availability to tree roots. Water partitioning is also dependent on the physical conditions that control tree rooting depth (e.g., gravel layers that impede root growth), the sources of contributing water, the rate of water drainage, and water residence times within particular storage reservoirs. We employ instrumental climate records alongside oxygen isotopes within tree rings and regional source waters, as well as topographic data and soil depth measurements, to infer the water sources used over several decades by two co-occurring tree species within a riparian floodplain along the Rhône River in France. We find that water partitioning to riparian trees is influenced by annual (wet versus dry years) and seasonal (spring snowmelt versus spring rainfall) fluctuations in climate. This influence depends strongly on local (tree level) conditions including floodplain surface elevation and subsurface gravel layer elevation. The latter represents the upper limit of the phreatic zone and therefore controls access to shallow groundwater. The difference between them, the thickness of the vadose zone, controls total soil moisture retention capacity. These factors thus modulate the climatic influence on tree ring isotopes. Additionally, we identified growth signatures and tree ring isotope changes associated with recent restoration of minimum streamflows in the Rhône, which made new phreatic water sources available to some trees in otherwise dry years. Water shifts due to climatic fluctuations between floodplain storage reservoirsAnthropogenic changes to hydrology directly impact water available to treesEcohydrologic approaches to integration of hydrology afford new possibilities.
Singer, Michael Bliss; Sargeant, Christopher I; Piégay, Hervé; Riquier, Jérémie; Wilson, Rob J S; Evans, Cristina M
2014-01-01
Seasonal and annual partitioning of water within river floodplains has important implications for ecohydrologic links between the water cycle and tree growth. Climatic and hydrologic shifts alter water distribution between floodplain storage reservoirs (e.g., vadose, phreatic), affecting water availability to tree roots. Water partitioning is also dependent on the physical conditions that control tree rooting depth (e.g., gravel layers that impede root growth), the sources of contributing water, the rate of water drainage, and water residence times within particular storage reservoirs. We employ instrumental climate records alongside oxygen isotopes within tree rings and regional source waters, as well as topographic data and soil depth measurements, to infer the water sources used over several decades by two co-occurring tree species within a riparian floodplain along the Rhône River in France. We find that water partitioning to riparian trees is influenced by annual (wet versus dry years) and seasonal (spring snowmelt versus spring rainfall) fluctuations in climate. This influence depends strongly on local (tree level) conditions including floodplain surface elevation and subsurface gravel layer elevation. The latter represents the upper limit of the phreatic zone and therefore controls access to shallow groundwater. The difference between them, the thickness of the vadose zone, controls total soil moisture retention capacity. These factors thus modulate the climatic influence on tree ring isotopes. Additionally, we identified growth signatures and tree ring isotope changes associated with recent restoration of minimum streamflows in the Rhône, which made new phreatic water sources available to some trees in otherwise dry years. Key Points Water shifts due to climatic fluctuations between floodplain storage reservoirs Anthropogenic changes to hydrology directly impact water available to trees Ecohydrologic approaches to integration of hydrology afford new possibilities PMID:25506099
Ecohydrology as an Undergraduate Degree: Challenges in Developing an Interdisciplinary Major
ERIC Educational Resources Information Center
Saito, Laurel; Walker, Mark; Chandra, Sudeep; Miller, W. Watkins; Tyler, Scott
2009-01-01
In the new ecohydrology major at the University of Nevada, Reno (UNR), students learn about the relationships between hydrologic mechanisms and ecological patterns and processes in watersheds and aquatic systems. The curriculum provides students with the option of meeting the requirements for federal positions as a hydrologist (GS 1315) and is…
Li, Xin; Liu, Shaomin; Xiao, Qin; Ma, Mingguo; Jin, Rui; Che, Tao; Wang, Weizhen; Hu, Xiaoli; Xu, Ziwei; Wen, Jianguang; Wang, Liangxu
2017-01-01
We introduce a multiscale dataset obtained from Heihe Watershed Allied Telemetry Experimental Research (HiWATER) in an oasis-desert area in 2012. Upscaling of eco-hydrological processes on a heterogeneous surface is a grand challenge. Progress in this field is hindered by the poor availability of multiscale observations. HiWATER is an experiment designed to address this challenge through instrumentation on hierarchically nested scales to obtain multiscale and multidisciplinary data. The HiWATER observation system consists of a flux observation matrix of eddy covariance towers, large aperture scintillometers, and automatic meteorological stations; an eco-hydrological sensor network of soil moisture and leaf area index; hyper-resolution airborne remote sensing using LiDAR, imaging spectrometer, multi-angle thermal imager, and L-band microwave radiometer; and synchronical ground measurements of vegetation dynamics, and photosynthesis processes. All observational data were carefully quality controlled throughout sensor calibration, data collection, data processing, and datasets generation. The data are freely available at figshare and the Cold and Arid Regions Science Data Centre. The data should be useful for elucidating multiscale eco-hydrological processes and developing upscaling methods. PMID:28654086
Scientists, policymakers, community planners and others have discussed ecosystem services for decades, however, society is still in the early stages of developing methodologies to quantify and value the services provided by ecosystems. For example, the U.S. Environmental Protect...
Ecohydrologic Separation of Plant Life Forms Across A Soil Moisture Gradient in a Montane Wetland
NASA Astrophysics Data System (ADS)
Mercer, J.; Millar, D.; Williams, D. G.
2016-12-01
Sources of water used by plants can differ from those that flow to groundwater and streams. Such ecohydrologic separation forms the basis for the "two water worlds hypothesis" that challenges commonly held notions of how water moves through terrestrial ecosystems. Yet, recent observations in a humid, low energy wetland environment did not support the presence of ecohydrologic separation. These contrasting results, in the context of general physical principles, suggest that energy gradients along the soil-plant-atmosphere continuum may play a role in defining the magnitude of ecohydrologic separation. We quantified ecohydrologic separation in a montane wetland with pronounced hummocks and hollows located in southeastern Wyoming. The rooting zone in this wetland is fully saturated during the spring, but is prone to water table draw-downs (> 1 m) during the summer, likely producing significant water potential differences between plant and soil water pools. We predict that wetland vegetation will express some degree of ecohydrologic separation, but such expression will differ based on microtopgraphic position and the rooting strategy of different plant life form (i.e., trees, shrubs, graminoids). For example, shallowly rooted graminoids on raised hummocks may use water that is distinctly different from that located in wetter hollows, with water in hollows being more isotopically similar to water leaving the wetland via surface water flows. We collected xylem water from dominant plant life forms in hummocks and hollows, free water (via piezometers) and bulk soil water at depths of 20 and 60 cm, as well as surface water and groundwater. Stable isotope ratios of H and O were determined from samples by either laser spectroscopy or isotope ratio mass spectrometry. Our expected results suggest that most of the water being used by wetland plants will be similar to that leaving the wetland via surface flow. In the context of their being two water worlds in the surrounding forested uplands, we suggest that mountain wetlands may play a more important role in provisioning streamflow than previously thought.
NASA Astrophysics Data System (ADS)
Qian, Jin; Zheng, Hao; Wang, Peifang; Liao, Xiaolin; Wang, Chao; Hou, Jun; Ao, Yanhui; Shen, Mengmeng; Liu, Jingjing; Li, Kun
2017-10-01
In this study we used a dual stable isotope approach (δ18O and δ2H) to assess the ecohydrological separation hypothesis and to identify the seasonal variation in water sources of Ginkgo biloba L. in the riparian zone in the Taihu Lake basin, China. Three study sites located at 5, 10, and 30 m from a river bank were established. From August 2014 to July 2015, samples of rainwater, river water, groundwater, bulk soil water at five soil depths (i.e. 0-30, 30-60, 60-90, 90-120, 120-150 cm), and xylem water of G. biloba, were collected and their δ18O and δ2H values were measured. Generally, the δ18O and δ2H values for xylem water, groundwater, and soil water clustered together and separated from those of river water, suggesting the possible occurrence of ecohydrological separation. However, the line-conditioned excess (lc-excess) values of most xylem water were positive, indicating a mixture of different water sources. Significant correlations were observed between the contributions of precipitation, soil water, and groundwater to water uptake by G. biloba, further supporting ecohydrological connectivity rather than ecohydrological separation. G. biloba switched its major water sources from soil water at 0-60 cm depth and precipitation in the wet summer, to soil water from >90 cm depth and groundwater in the dry winter. The river water was a minor water source for G. biloba, but its contribution was comparatively greater at the site closest to the river bank. Our findings contribute to understanding of plant-soil-water relationships and the water balance, and may provide important information for investigations of nutrient sources and sinks in riparian zones. The present study suggests the need to rethink the application of ecohydrological connectivity and separation in different biomes, especially where river water and groundwater recharge each other over time.
NASA Astrophysics Data System (ADS)
Jackson, C.; Todhunter, P. E.
2017-12-01
Since 1993, Devils Lake in North Dakota has experienced a prolonged rise in lake level and flooding of the lake's neighboring areas within the closed basin system. Understanding the relative contribution of climate change and land use change is needed to explain the historical rise in lake level, and to evaluate the potential impact of anthropogenic climate change upon future lake conditions and management. Four methodologies were considered to examine the relative contribution of climatic and human landscape drivers to streamflow variations: statistical, ecohydrologic, physically-based modeling, and elasticity of streamflow; for this study, ecohydrologic and climate elasticity were selected. Agricultural statistics determined that Towner and Ramsey counties underwent a crop conversion from small grains to row crops within the last 30 years. Through the Topographic Wetness Index (TWI), a 10 meter resolution DEM confirmed the presence of innumerable wetland depressions within the non-contributing area of the Mauvais Coulee Sub-basin. Although the ecohydrologic and climate elasticity methodologies are the most commonly used in literature, they make assumptions that are not applicable to basin conditions. A modified and more informed approach to the use of these methods was applied to account for these unique sub-basin characteristics. Ultimately, hydroclimatic variability was determined as the largest driver to streamflow variation in Mauvais Coulee and Devils Lake.
Modeling biomass competition and invasion in a schematic wetland
NASA Astrophysics Data System (ADS)
Ursino, N.
2010-08-01
Plants growing along hydrologic gradients adjust their biomass allocation and distribution in response to interspecific competition. Furthermore, susceptibility of a community to invasion is to some extent mediated by differences in growth habit, including root architecture and canopy hight. With reference to the study of a schematic wetland, the aim of this paper is (1) to test, via numerical modeling, the capacity of native plants to counteract an alien dominant species and cause eco-hydrological shifts of the ecosystem by changing their growth habit (e.g. allocating biomass below ground and by so doing changing the evapotranspiration locally) and (2) to test the impact on biodiversity of management practices that alter nutrient supply. The results demonstrated that unique combinations of vegetation types characterized by different growth habits may lead to different vegetation patterns under the same hydrologic forcing, and additionally, the vegetation patterns may change in response to major hydrological shifts, which could be related to diverse wetland management and restoration practices.
Qin, Yue; Yang, Dawen; Gao, Bing; Wang, Taihua; Chen, Jinsong; Chen, Yun; Wang, Yuhan; Zheng, Guanheng
2017-12-15
The Yellow River source region is located in the transition region between permafrost and seasonally frozen ground on the northeastern Qinghai-Tibet Plateau. The region has experienced severe climate change, especially air temperature increases, in past decades. In this study, we employed a geomorphology-based eco-hydrological model (GBEHM) to assess the impacts of climate change on the frozen ground and eco-hydrological processes in the region. Based on a long-term simulation from 1981 to 2015, we found that the areal mean maximum thickness of seasonally frozen ground ranged from 1.1-1.8m and decreased by 1.2cm per year. Additionally, the ratio of the permafrost area to the total area decreased by 1.1% per year. These decreasing trends are faster than the average in China because the study area is on the sensitive margin of the Qinghai-Tibet Plateau. The annual runoff exhibited variations similar to those of the annual precipitation (R 2 =0.85), although the annual evapotranspiration (ET) exhibited an increasing trend (14.3mm/10a) similar to that of the annual mean air temperature (0.66°C/10a). The runoff coefficient (annual runoff divided by annual precipitation) displayed a decreasing trend because of the increasing ET, and the vegetation responses to climate warming and permafrost degradation were manifested as increases in the leaf area index (LAI) and ET at the start of the growing season. Furthermore, the results showed that changes to the frozen ground depth affected vegetation growth. Notably, a rapid decrease in the frozen ground depth (< -3.0cm/a) decreased the topsoil moisture and then decreased the LAI. This study showed that the eco-hydrological processes in the headwater area of the Yellow River have changed because of permafrost degradation, and these changes could further influence the water resources availability in the middle and lower reaches of the basin. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Faivre, R.; Colin, J.; Menenti, M.; Lindenbergh, R.; Van Den Bergh, L.; Yu, H.; Jia, L.; Xin, L.
2010-10-01
Improving the understanding and the monitoring of high elevation regions hydrology is of major relevance from both societal and environmental points of view for many Asian countries, in particular in terms of flood and drought, but also in terms of food security in a chang- ing environment. Satellite and airborne remote sensing technologies are of utmost for such a challenge. Exist- ing imaging spectro-radiometers, radars, microwave ra- diometers and backscatter LIDAR provide a very com- prehensive suite of measurements over a wide rage of wavelengths, time frequencies and spatial resolu- tions. It is however needed to devise new algorithms to convert these radiometric measurements into useful eco-hydrological quantitative parameters for hydrologi- cal modeling and water management. The DRAGON II project entitled Key Eco-Hydrological Parameters Re- trieval and Land Data Assimilation System Development in a Typical Inland River Basin of Chinas Arid Region (ID 5322) aims at improving the monitoring, understand- ing, and predictability of hydrological and ecological pro- cesses at catchment scale, and promote the applicability of quantitative remote sensing in watershed science. Ex- isting Earth Observation platforms provided by the Euro- pean Space Agency as well as prototype airborne systems developed in China - ENVISAT/AATSR, ALOS/PRISM and PALSAR, Airborne LIDAR - are used and combined to retrieve advanced land surface physical properties over high elevation arid regions of China. The existing syn- ergies between this project, the CEOP-AEGIS project (FP7) and the WATER project (CAS) provide incentives for innovative studies. The investigations presented in the following report focus on the development of advanced and innovative methodologies and algorithms to monitor both the state and the trend of key eco-hydrological vari- ables: 3D vegetation properties, land surface evaporation, glacier mass balance and drought indicators.
NASA Astrophysics Data System (ADS)
Yetemen, O.; Saco, P. M.
2016-12-01
Orography induced precipitation and its implications on vegetation dynamics and landscape morphology have long been documented in the literature. However a numerical framework that integrates a range of ecohydrologic and geomorphic processes to explore the coupled ecohydro-geomorphic landscape response of catchments where pronounced orographic precipitation prevails has been missing. In this study, our aim is to realistically represent orographic-precipitation-driven ecohydrologic dynamics in a landscape evolution model (LEM). The model is used to investigate how ecohydro-geomorphic differences caused by differential precipitation patterns on the leeward and windward sides of low-relief landscapes lead to differences in the organization of modelled topography, soil moisture and plant biomass. We use the CHILD LEM equipped with a vegetation dynamics component that explicitly tracks above- and below-ground biomass, and a precipitation forcing component that simulates rainfall as a function of elevation and orientation. The preliminary results of the model show how the competition between an increased shear stress through runoff production and an enhanced resistance force due to denser canopy cover shape the landscape. Moreover, orographic precipitation leads to not only the migration of the divide between leeward and windward slopes but also a change in the concavity of streams. These results clearly demonstrate the strong coupling between landform evolution and climate processes.
Afshin Pourmokhtarian; Charles T. Driscoll; John L. Campbell; Katharine Hayhoe; Anne M. K. Stoner; Mary Beth Adams; Douglas Burns; Ivan Fernandez; Myron J. Mitchell; James B. Shanley
2016-01-01
A cross-site analysis was conducted on seven diverse, forested watersheds in the northeastern United States to evaluate hydrological responses (evapotranspiration, soil moisture, seasonal and annual streamflow, and water stress) to projections of future climate. We used output from four atmosphereâocean general circulation models (AOGCMs; CCSM4, HadGEM2-CC, MIROC5, and...
Effects of harvest on carbon and nitrogen dynamics in a Pacific Northwest forest catchment
Alex Abdelnour; Robert B. McKane; Marc Stieglitz; Feifei Pan; Yiwei Cheng
2013-01-01
We used a new ecohydrological model, Visualizing Ecosystems for Land Management Assessments (VELMA), to analyze the effects of forest harvest on catchment carbon and nitrogen dynamics. We applied the model to a 10 ha headwater catchment in the western Oregon Cascade Range where two major disturbance events have occurred during the past 500 years: a stand-replacing fire...
Henry D. Adams; Charles H. Luce; David D. Breshears; Craig D. Allen; Markus Weiler; V. Cody Hale; Alistair M. S. Smith; Travis E. Huxman
2012-01-01
Widespread, rapid, drought-, and infestation-triggered tree mortality is emerging as a phenomenon affecting forests globally and may be linked to increasing temperatures and drought frequency and severity. The ecohydrological consequences of forest die-off have been little studied and remain highly uncertain. To explore this knowledge gap, we apply the extensive...
Ecohydrology of an outbreak: Mountain pine beetle impacts trees in drier landscape positions first
Kendra E. Kaiser; Ryan E. Emanuel
2013-01-01
Vegetation pattern and landscape structure intersect to exert strong control over ecohydrological dynamics at the watershed scale. The hydrologic implications of vegetation disturbance (e.g. fire, disease) depend on the spatial pattern and form of environmental change. Here, we investigate this intersection at Tenderfoot Creek Experimental Forest (TCEF), Montana, with...
Ecohydrological implications of drought
James M. Vose; Chelcy Ford Miniat; Charlie Luce
2016-01-01
Ecohydrology focuses on the interactions and interrelationships between hydrological processes and the structure and function of vegetation (Breshears 2005, Rodriguez-Iturbe 2000). It builds on a long history of watershed science that quantified how changes in vegetation (e.g., through purposeful manipulation. succession, or natural disturbances) alters water and ...
Effects of dynamic agricultural decision making in an ecohydrological model
NASA Astrophysics Data System (ADS)
Reichenau, T. G.; Krimly, T.; Schneider, K.
2012-04-01
Due to various interdependencies between the cycles of water, carbon, nitrogen, and energy the impacts of climate change on ecohydrological systems can only be investigated in an integrative way. Furthermore, the human intervention in the environmental processes makes the system even more complex. On the one hand human impact affects natural systems. On the other hand the changing natural systems have a feedback on human decision making. One of the most important examples for this kind of interaction can be found in the agricultural sector. Management dates (planting, fertilization, harvesting) are chosen based on meteorological conditions and yield expectations. A faster development of crops under a warmer climate causes shorter cropping seasons. The choice of crops depends on their profitability, which is mainly determined by market prizes, the agro-political framework, and the (climate dependent) crop yield. This study investigates these relations for the district Günzburg located in the Upper Danube catchment in southern Germany. The modeling system DANUBIA was used to perform dynamically coupled simulations of plant growth, surface and soil hydrological processes, soil nitrogen transformations, and agricultural decision making. The agro-economic model simulates decisions on management dates (based on meteorological conditions and the crops' development state), on fertilization intensities (based on yield expectations), and on choice of crops (based on profitability). The environmental models included in DANUBIA are to a great extent process based to enable its use in a climate change scenario context. Scenario model runs until 2058 were performed using an IPCC A1B forcing. In consecutive runs, dynamic crop management, dynamic crop selection, and a changing agro-political framework were activated. Effects of these model features on hydrological and ecological variables were analyzed separately by comparing the results to a model run with constant crop distribution and constant management. Results show that the influence of the modeled dynamic management adaptation on variables like transpiration, carbon uptake, or nitrate leaching from the vadose zone is stronger than the influence of a dynamic choice of crops. Climate change was found to have a stronger impact on this modeled choice of crops than the agro-political framework. These results suggest that scenario studies in areas with a large share of arable land should take into account management adaptations to changing climate.
Yang, Jian; Weisberg, Peter J.; Shinneman, Douglas; Dilts, Thomas E.; Earnst, Susan L.; Scheller, Robert M
2015-01-01
Content Changing aspen distribution in response to climate change and fire is a major focus of biodiversity conservation, yet little is known about the potential response of aspen to these two driving forces along topoclimatic gradients. Objective This study is set to evaluate how aspen distribution might shift in response to different climate-fire scenarios in a semi-arid montane landscape, and quantify the influence of fire regime along topoclimatic gradients. Methods We used a novel integration of a forest landscape succession and disturbance model (LANDIS-II) with a fine-scale climatic water deficit approach to simulate dynamics of aspen and associated conifer and shrub species over the next 150 years under various climate-fire scenarios. Results Simulations suggest that many aspen stands could persist without fire for centuries under current climate conditions. However, a simulated 2–5 °C increase in temperature caused a substantial reduction of aspen coverage at lower elevations and a modest increase at upper elevations, leading to an overall reduction of aspen range at the landscape level. Increasing fire activity may favor aspen increase at its upper elevation limits adjacent to coniferous forest, but may also favor reduction of aspen at lower elevation limits adjacent to xeric shrubland. Conclusions Our study highlights the importance of incorporating fine-scale terrain effects on climatic water deficit and ecohydrology when modeling species distribution response to climate change. This modeling study suggests that climate mitigation and adaptation strategies that use fire would benefit from consideration of spatial context at landscape scales.
NASA Astrophysics Data System (ADS)
Soulsby, C.; Kuppel, S.; Smith, A.; Tetzlaff, D.
2017-12-01
The dynamics of water storage in a catchment provides a fundamental insight into the interlinkages between input and output fluxes, and how these are affected by environmental change. Such dynamics also mediate, and help us understand, the fundamental difference of the rapid celerity of the rainfall-runoff (minutes to hours) response of catchments and the much slower velocity of water particles (months to decades) as they are transported through catchment systems. In this contribution we report an intensive, long-term (>10year), multi-scale isotope study in the Scottish Highlands that has sought to better understand these issues. We have integrated empirical data collection with diverse modelling approaches to quantify the dynamics and residence times of storage in different compartments of the hydrological system (vegetation canopies, soils, ground waters etc.) and their relationship between the magnitude and travel time distributions of output fluxes (stream flow, transpiration and evaporation). Use of conceptual, physically-based and probabilistic modelling approaches give broadly consistent perspectives on the storage-discharge relationships and the preferential selection of younger waters in runoff, evaporation and transpiration; while older waters predominate in groundwater. The work also highlighted the importance role vegetation plays in regulating fluxes in evaporation and transpiration and how this contributes to the differential ageing of water in mobile and bulk waters in the soil compartment. A separate case study shows how land use change can affect storage distributions in a catchment and radically change travel time distributions in output fluxes.
Is the Amazon Rainforest Drying Out?
NASA Astrophysics Data System (ADS)
Saatchi, S.; Xu, L.; Bloom, A. A.; Konings, A. G.; Yang, Y.; Aragão, L. E.; Fu, R.; Worden, J. R.; Schimel, D.
2017-12-01
Hotter droughts are the emerging characteristics of recent climate conditions, causing increased aridity over many land areas, broad-scale die-off, and pervasive mortality in forest ecosystems globally. Using a suite of eco-hydrological measurements from satellite observations combined with ecosystem data assimilation model, we show the Amazon forests, under recent changes in climate, have been consistently losing water in vegetation from increased leaf temperature. These long-term changes have caused a decline in evapotranspiration with consequences of changing the seasonality of precipitation by increasing the dry season length and delaying the wet season arrival. Three severe droughts (2005, 2010, 2015), occurring on the background of this long-term warming have an unprecedented legacy resulting in longer delays in recharging of water storage and recovery of forests after drought induced disturbances (4-5 years after each drought). The paper discusses the evidences of eco-hydrological changes pointing to the drying of forests of Amazonia.
NASA Astrophysics Data System (ADS)
Chang, Ni-Bin; Xuan, Zhemin; Wimberly, Brent
2011-09-01
Soil moisture and evapotranspiration (ET) is affected by both water and energy balances in the soilvegetation- atmosphere system, it involves many complex processes in the nexus of water and thermal cycles at the surface of the Earth. These impacts may affect the recharge of the upper Floridian aquifer. The advent of urban hydrology and remote sensing technologies opens new and innovative means to undertake eventbased assessment of ecohydrological effects in urban regions. For assessing these landfalls, the multispectral Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing images can be used for the estimation of such soil moisture change in connection with two other MODIS products - Enhanced Vegetation Index (EVI), Land Surface Temperature (LST). Supervised classification for soil moisture retrieval was performed for Tampa Bay area on the 2 kmx2km grid with MODIS images. Machine learning with genetic programming model for soil moisture estimation shows advances in image processing, feature extraction, and change detection of soil moisture. ET data that were derived by Geostationary Operational Environmental Satellite (GOES) data and hydrologic models can be retrieved from the USGS web site directly. Overall, the derived soil moisture in comparison with ET time series changes on a seasonal basis shows that spatial and temporal variations of soil moisture and ET that are confined within a defined region for each type of surfaces, showing clustered patterns and featuring space scatter plot in association with the land use and cover map. These concomitant soil moisture patterns and ET fluctuations vary among patches, plant species, and, especially, location on the urban gradient. Time series plots of LST in association with ET, soil moisture and EVI reveals unique ecohydrological trends. Such ecohydrological assessment can be applied for supporting the urban landscape management in hurricane-stricken regions.
NASA Astrophysics Data System (ADS)
Gao, Xuan
2017-04-01
Terraces are built in mountainous regions to provide larger area for cultivation,in which the hydrological and geomorphological processes are impacted by local farmers' water management strategies and are modified by manmade irrigation-drainage engineering systems.The Honghe Hani Rice Terraces is a 1300a history of traditional agricultural landscape that was inscribed in the 2013 World Heritage List.The local farmers had developed systematic water management strategies and built perfect irrigation-drainage engineering systems to adapt the local rainfall pattern and rice farming activities.Through field investigation,interviews,combined with Geographic Information Systems,Remote Sensing images and Global Positioning Systems technology,the water management strategies as well as the irrigation-drainage systems and their impacts on eco-hydrological process were studied,the results indicate:Firstly,the local people created and maintained an unique woodcarving allocating management system of irrigating water over hundreds years,which aids distributing water and natural nutrition to each terrace field evenly,and regularly according to cultivation schedule.Secondly,the management of local people play an essential role in effective irrigation-drainage engineering system.A ditch leader takes charge of managing the ditch of their village,keeping ample amount of irrigation water,repairing broken parts of ditches,dealing with unfair water using issues,and so on.Meanwhile,some traditional leaders of minority also take part in.Thus, this traditional way of irrigation-drainage engineering has bringed Hani people around 1300 years of rice harvest for its eco-hydrological effects.Lastly we discuss the future of Honghe Hani Rice Terraces,the traditional cultivation pattern has been influenced by the rapid development of modern civilization,in which some related changes such as the new equipment of county roads and plastic channels and the water overusing by tourism are not totally rely on eco-hydrological engineering rules,which broke the ecosystem stability of agricultural terraces.The current situation of Honghe Hani Rice Terraces heritage cannot completely meets the purpose of sustainability development and appropriate conservation of Honghe Hani Rice Terraces heritage.This study of traditional cultivation pattern can help us to propose rational solutions for future development of terraces heritages. Key words:Honghe Hani Rice Terraces,water management,eco-hydrological effects,heritage conservation
The role of root distribution in eco-hydrological modeling in semi-arid regions
NASA Astrophysics Data System (ADS)
Sivandran, G.; Bras, R. L.
2010-12-01
In semi arid regions, the rooting strategies employed by vegetation can be critical to its survival. Arid regions are characterized by high variability in the arrival of rainfall, and species found in these areas have adapted mechanisms to ensure the capture of this scarce resource. Niche separation, through rooting strategies, is one manner in which different species coexist. At present, land surface models prescribe rooting profiles as a function of only the plant functional type of interest with no consideration for the soil texture or rainfall regime of the region being modeled. These models do not incorporate the ability of vegetation to dynamically alter their rooting strategies in response to transient changes in environmental forcings and therefore tend to underestimate the resilience of many of these ecosystems. A coupled, dynamic vegetation and hydrologic model, tRIBS+VEGGIE, was used to explore the role of vertical root distribution on hydrologic fluxes. Point scale simulations were carried out using two vertical root distribution schemes: (i) Static - a temporally invariant root distribution; and (ii) Dynamic - a temporally variable allocation of assimilated carbon at any depth within the root zone in order to minimize the soil moisture-induced stress on the vegetation. The simulations were forced with a stochastic climate generator calibrated to weather stations and rain gauges in the semi-arid Walnut Gulch Experimental Watershed in Arizona. For the static root distribution scheme, a series of simulations were carried out varying the shape of the rooting profile. The optimal distribution for the simulation was defined as the root distribution with the maximum mean transpiration over a 200 year period. This optimal distribution was determined for 5 soil textures and using 2 plant functional types, and the results varied from case to case. The dynamic rooting simulations allow vegetation the freedom to adjust the allocation of assimilated carbon to different rooting depths in response to changes in stress caused by the redistribution and uptake of soil moisture. The results obtained from these experiments elucidate the strong link between plant functional type, soil texture and climate and highlight the potential errors in the modeling of hydrologic fluxes from imposing a static root profile.
NASA Astrophysics Data System (ADS)
Flores, A. N.; Entekhabi, D.; Bras, R. L.
2007-12-01
Soil hydraulic and thermal properties (SHTPs) affect both the rate of moisture redistribution in the soil column and the volumetric soil water capacity. Adequately constraining these properties through field and lab analysis to parameterize spatially-distributed hydrology models is often prohibitively expensive. Because SHTPs vary significantly at small spatial scales individual soil samples are also only reliably indicative of local conditions, and these properties remain a significant source of uncertainty in soil moisture and temperature estimation. In ensemble-based soil moisture data assimilation, uncertainty in the model-produced prior estimate due to associated uncertainty in SHTPs must be taken into account to avoid under-dispersive ensembles. To treat SHTP uncertainty for purposes of supplying inputs to a distributed watershed model we use the restricted pairing (RP) algorithm, an extension of Latin Hypercube (LH) sampling. The RP algorithm generates an arbitrary number of SHTP combinations by sampling the appropriate marginal distributions of the individual soil properties using the LH approach, while imposing a target rank correlation among the properties. A previously-published meta- database of 1309 soils representing 12 textural classes is used to fit appropriate marginal distributions to the properties and compute the target rank correlation structure, conditioned on soil texture. Given categorical soil textures, our implementation of the RP algorithm generates an arbitrarily-sized ensemble of realizations of the SHTPs required as input to the TIN-based Realtime Integrated Basin Simulator with vegetation dynamics (tRIBS+VEGGIE) distributed parameter ecohydrology model. Soil moisture ensembles simulated with RP- generated SHTPs exhibit less variance than ensembles simulated with SHTPs generated by a scheme that neglects correlation among properties. Neglecting correlation among SHTPs can lead to physically unrealistic combinations of parameters that exhibit implausible hydrologic behavior when input to the tRIBS+VEGGIE model.
Ecosystem processes at the watershed scale: mapping and modeling ecohydrological controls
Lawrence E. Band; T. Hwang; T.C. Hales; James Vose; Chelcy Ford
2012-01-01
Mountain watersheds are sources of a set of valuable ecosystem services as well as potential hazards. The former include high quality freshwater, carbon sequestration, nutrient retention, and biodiversity, whereas the latter include flash floods, landslides and forest fires. Each of these ecosystem services and hazards represents different elements of the integrated...
The Hubbard Brook Long Term Ecological Research site has produced some of the most extensive and long-running databases on the hydrology, biology and chemistry of forest ecosystem responses to climate and forest harvest. We used these long-term databases to calibrate and apply G...
Scientists, policymakers, community planners and others have discussed ecosystem services for decades, however, society is still in the early stages of developing methodologies to quantify and value the goods and services that ecosystems provide. Essential to this goal are highl...
Germino, Matthew J.
2013-01-01
The INL Site and other landscapes having sagebrush steppe vegetation are experiencing a simultaneous change in climate and floristics that result from increases in exotic species. Determining the separate and combined/interactive effects of climate and vegetation change is important for assessing future changes on the landscape and for hydrologic processes. This research uses the 72 experimental plots established and initially maintained for many years as the “Protective Cap Biobarrier Experiment” by Dr. Jay Anderson and the Stoller ESER program, and the experiment is also now referred to as the “INL Site Ecohydrology Study.” We are evaluating long-term impacts of different plant communities commonly found throughout Idaho subject to different precipitation regimes and to different soil depths. Treatments of amount and timing of precipitation (irrigation), soil depth, and either native/perennial or exotic grass vegetation allow researchers to investigate how vegetation, precipitation and soil interact to influence soil hydrology and ecosystem biogeochemistry. This information will be used to improve a variety of models, as well as provide data for these models.
Optimal stomatal behaviour around the world
Lin, Yan-Shih; Medlyn, Belinda E.; Duursma, Remko A.; ...
2015-03-02
Stomatal conductance (g s) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of g s in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of g s that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed g s obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs accordingmore » to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model 1 and the leaf and wood economics spectrum 2,3. We also demonstrate a global relationship with climate. In conclusion, these findings provide a robust theoretical framework for understanding and predicting the behaviour of g s across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.« less
Devendra Amatya; Timothy Callahan; William Hansen; Carl Trettin; Artur Radecki-Pawlik; Patrick Meire
2015-01-01
Water yield, water supply and quality, wildlife habitat, and ecosystem productivity and services are important societal concerns for natural resource management in the 21st century. Watershed-scale ecohydrologic studies can provide needed context for addressing complex spatial and temporal dynamics of these functions and services. This study was...
An eco-hydrological project on Turkey Creek watershed, South Carolina, U.S.A.
Devendra Amatya; Carl Trettin
2008-01-01
The low-gradient, forested wetland landscape of the southeastern United Statesâ Coastal Plain represents an important eco-hydrologic system, yet there is a very little information available on the regionâs ecological, hydrological and biogeochemical processes. Long-term hydrologic monitoring can provide the information needed to understand basic hydrologic processes...
Masterson, John P.; Fienen, Michael N.; Thieler, E. Robert; Gesch, Dean B.; Gutierrez, Benjamin T.; Plant, Nathaniel G.
2014-01-01
We used a numerical model to investigate how a barrier island groundwater system responds to increases of up to 60 cm in sea level. We found that a sea-level rise of 20 cm leads to substantial changes in the depth of the water table and the extent and depth of saltwater intrusion, which are key determinants in the establishment, distribution and succession of vegetation assemblages and habitat suitability in barrier islands ecosystems. In our simulations, increases in water-table height in areas with a shallow depth to water (or thin vadose zone) resulted in extensive groundwater inundation of land surface and a thinning of the underlying freshwater lens. We demonstrated the interdependence of the groundwater response to island morphology by evaluating changes at three sites. This interdependence can have a profound effect on ecosystem composition in these fragile coastal landscapes under long-term changing climatic conditions.
Mid-latitude shrub steppe plant communities: Climate change consequences for soil water resources
Palmquist, Kyle A.; Schlaepfer, Daniel R.; Bradford, John B.; Lauenroth, Willliam K.
2016-01-01
In the coming century, climate change is projected to impact precipitation and temperature regimes worldwide, with especially large effects in drylands. We use big sagebrush ecosystems as a model dryland ecosystem to explore the impacts of altered climate on ecohydrology and the implications of those changes for big sagebrush plant communities using output from 10 Global Circulation Models (GCMs) for two representative concentration pathways (RCPs). We ask: 1) What is the magnitude of variability in future temperature and precipitation regimes among GCMs and RCPs for big sagebrush ecosystems and 2) How will altered climate and uncertainty in climate forecasts influence key aspects of big sagebrush water balance? We explored these questions across 1980-2010, 2030-2060, and 2070-2100 to determine how changes in water balance might develop through the 21st century. We assessed ecohydrological variables at 898 sagebrush sites across the western US using a process-based soil water model, SOILWAT to model all components of daily water balance using site-specific vegetation parameters and site-specific soil properties for multiple soil layers. Our modeling approach allowed for changes in vegetation based on climate. Temperature increased across all GCMs and RCPs, while changes in precipitation were more variable across GCMs. Winter and spring precipitation was predicted to increase in the future (7% by 2030-2060, 12% by 2070-2100), resulting in slight increases in soil water potential (SWP) in winter. Despite wetter winter soil conditions, SWP decreased in late spring and summer due to increased evapotranspiration (6% by 2030-2060, 10% by 2070-2100) and groundwater recharge (26% and 30% increase by 2030-2060 and 2070-2100). Thus, despite increased precipitation in the cold season, soils may dry out earlier in the year, resulting in potentially longer drier summer conditions. If winter precipitation cannot offset drier summer conditions in the future, we expect big sagebrush regeneration and survival will be negatively impacted, potentially resulting in shifts in the relative abundance of big sagebrush plant functional groups. Our results also highlight the importance of assessing multiple GCMs to understand the range of climate change outcomes on ecohydrology, which was contingent on the GCM chosen.
Quantitative evaluation of legacy phosphorus and its spatial distribution.
Lou, Hezhen; Zhao, Changsen; Yang, Shengtian; Shi, Liuhua; Wang, Yue; Ren, Xiaoyu; Bai, Juan
2018-04-01
A phosphorus resource crisis threatens the security of global crop production, especially in developing countries like China and Brazil. Legacy phosphorus (legacy-P), which is left behind in agricultural soil by over-fertilization, can help address this issue as a new resource in the soil phosphorus pool. However, issues involved with calculating and defining the spatial distribution of legacy-P hinder its future utilization. To resolve these issues, this study applied remote sensing and ecohydrological modeling to precisely quantify legacy-P and define its spatial distribution in China's Sanjiang Plain from 2000 to 2014. The total legacy-P in the study area was calculated as 579,090 t with an annual average of 38,600 t; this comprises 51.83% of the phosphorus fertilizer applied annually. From 2000 to 2014, the annual amount of legacy-P increased by more than 3.42-fold, equivalent to a 2460-ton increase each year. The spatial distribution of legacy-P showed heterogeneity and agglomeration in this area, with peaks in cultivated land experiencing long-term agricultural development. This study supplies a new approach to finding legacy-P in soil as a precondition for future utilization. Once its spatial distribution is known, legacy-P can be better utilized in agriculture to help alleviate the phosphorus resource crisis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wetland Ecohydrology: stochastic description of water level fluctuations across the soil surface
NASA Astrophysics Data System (ADS)
Tamea, S.; Muneepeerakul, R.; Laio, F.; Ridolfi, L.; Rodriguez-Iturbe, I.
2009-12-01
Wetlands provide a suite of social and ecological critical functions such as being habitats of disease-carrying vectors, providing buffer zones against hurricanes, controlling sediment transport, filtering nutrients and contaminants, and a repository of great biological diversity. More recently, wetlands have also been recognized as crucial for carbon storage in the context of global climate change. Despite such importance, quantitative approaches to many aspects of wetlands are far from adequate. Therefore, improving our quantitative understanding of wetlands is necessary to our ability to maintain, manage, and restore these invaluable environments. In wetlands, hydrologic factors and ecosystem processes interplay and generate unique characteristics and a delicate balance between biotic and abiotic elements. The main hydrologic driver of wetland ecosystems is the position of the water level that, being above or below ground, determines the submergence or exposure of soil. When the water level is above the soil surface, soil saturation and lack of oxygen causes hypoxia, anaerobic functioning of microorganisms and anoxic stress in plants, that might lead to the death of non-adapted organisms. When the water level lies below the soil surface, the ecosystem becomes groundwater-dependent, and pedological and physiological aspects play their role in the soil water balance. We propose here a quantitative description of wetland ecohydrology, through a stochastic process-based water balance, driven by a marked compound Poisson noise representing rainfall events. The model includes processes such as rainfall infiltration, evapotranspiration, capillary rise, and the contribution of external water bodies, which are quantified in a simple yet realistic way. The semi-analytical steady-state probability distributions of water level spanning across the soil surface are validated with data from the Everglades (Florida, USA). The model and its results allow for a quantitative analysis of the long term behavior of biotic and abiotic factors which depend on the position of the water level and enable the assessment of impacts of climate changes on the wetland ecosystem.
NASA Astrophysics Data System (ADS)
Heffernan, J. B.; Ross, M. S.; Sah, J. P.; Isherwood, E.; Cohen, M. J.
2015-12-01
Spatial patterning occurs in a variety of ecosystems, and is important for the functional properties of landscapes; for testing spatial models of ecological processes; and as an indicator of landscape condition and resilience. Theory suggests that regular patterns arise from coupled local- and landscape-scale feedbacks that can also create multiple stable landscape states. In the Florida Everglades, hydrologic modification has degraded much of the historically-extensive ridge-slough landscape, a patterned peatland mosaic with distinct, flow-parallel patches. However, in the Everglades and in general, the hypothesis that patterned landscapes have homogeneous alternative states has little direct empirical support. Here we use microtopographic and vegetative heterogeneity, and their relation to hydrologic conditions, to infer the existence of multiple landscape equilibria and identify the hydrologic thresholds for critical transitions between these states. Dual relationships between elevation variance and water depth, and bi-modal distributions of both elevation variance and plant community distinctness, are consistent with generic predictions of multiple states, and covariation between these measures suggests that microtopography is the leading indicator of landscape degradation. Furthermore, a simple ecohydrologic multiple-state model correctly predicts the hydrologic thresholds for persistence of distinct ridges and sloughs. Predicted ridge-slough elevation differences and their relation to water depth are much greater than observed in the contemporary Everglades, but correspond closely with historical observations of pre-drainage conditions. These multiple lines of evidence represent the broadest and most direct support for the link between regular spatial pattern and landscape-scale alternative states in any ecosystem, and suggest that other patterned landscapes could undergo sudden collapse in response to changing environmental conditions. Hydrologic thresholds and leading indicators of critical transitions should guide management of the Everglades ridge-slough landscape, whose preservation is a central goal of one of the world's largest ecosystem restoration efforts.
An Ecohydrological Approach to the Resiliency and Stability of Ecosystems
NASA Astrophysics Data System (ADS)
Peña Alzate, S.; Canon Barriga, J. E.
2013-12-01
We introduce a simplified ecohydrological model to quantitatively assess the resiliency and stability of ecosystems. The proposed model couples a hydrological soil moisture balance with a set of spatiotemporal dynamics of systems and agent-based algorithms to represent the interactions among several plant populations in a gridded area under different water, soil and temperature constraints. The model also allows disturbances, representing mostly the effects of deforestation practices. The simulated ecosystem, composed by a set of plant populations, includes allometric rules (i.e., power laws for generational and reproductive times, linear approximations for water and temperature gains, losses and optimal values and a set of intra and interspecific interaction rules based on high, optimal and low competition responses among the populations). Disturbances are determined by a clearance of populations in a defined area within the model's domain. The effects of climate variability can be also incorporated through precipitation and temperature time series that exhibit trends and heteroskedasticity. Resiliency and stability are calculated with modified indices that are used in hydrology, in this case to determine the ability of the ecosystem to recover from a disturbance. The model represents different types of plant phenotypes showing exponential growth in the first steps of the simulations. The indices, evaluated on each population and over the structure of the entire ecosystem, show how different populations respond differently to disturbances, following behaviors similar to those expected in nature, like high reproduction rates on gregarious plants with short generation times, and low densities in plants with high generations times. The selection of plant populations was mainly focused on the concept of biodiversity with emphasis on tropical regions. The model can represent the spatial and temporal succession of the ecosystem after being disturbed. The model also shows the differences between a disturbed and undisturbed ecosystem in a temporal scale, and how the differences in the phenotypical characteristics of plant populations can be advantageous or disadvantageous when they are disturbed. This ecohydrological model is intended to be used as an aid for making decisions about restoration and conservation practices, and also to help understanding resilience and stability of ecosystems, especially in tropical forests under climate change scenarios. Acknowledgements: authors thank the financial support of COLCIENCIAS (program Jovenes Investigadores e innovadores 2012), GAIA group and Universidad de Antioquia through its Sustainability Program 2011-2012.
Hydrological alteration of the Upper Nakdong river under AR5 climate change scenarios
NASA Astrophysics Data System (ADS)
Kim, S.; Park, Y.; Cha, W. Y.; Okjeong, L.; Choi, J.; Lee, J.
2016-12-01
One of the tasks faced to water engineers is how to consider the climate change impact in our water resources management. Especially in South Korea, where almost all drinking water is taken from major rivers, the public attention is focused on their eco-hydrologic status. In this study, the effect of climate change on eco-hydrologic regime in the Upper Nakdong river which is one of major rivers in South Korea is investigated using SWAT. The simulation results are measured using the indicators of hydrological alteration (IHA) established by U.S. Nature Conservancy. Future climate information is obtained by scaling historical series, provided by Korean Meteorological Administration RCM (KMA RCM) and four RCP scenarios. KMA RCM has 12.5-km spatial resolution in Korean Peninsula and is produced by UK Hedley Centre regional climate model HadGEM3-RA. The RCM bias is corrected by the Kernel density distribution mapping (KDDM) method. The KDDM estimates the cumulative probability density function (CDF) of each dataset using kernel density estimation, and is implemented by quantile-mapping the CDF of a present climate variable obtained from the RCM onto that of the corresponding observed climate variable. Although the simulation results from different RCP scenarios show diverse hydrologic responses in our watershed, the mainstream of future simulation results indicate that there will be more river flow in southeast Korea. The predicted impacts of hydrological alteration caused by climate change on the aquatic ecosystem in the Upper Nakdong river will be presented. Acknowledgement This research was supported by a grant(14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.
NASA Astrophysics Data System (ADS)
Breshears, D. D.; Adams, H. D.; Eamus, D.; McDowell, N. G.; Law, D. J.; Will, R. E.; Williams, P.; Zou, C.
2013-12-01
Ecohydrology focuses on the interactions of water availability, ecosystem productivity, and biogeochemical cycles via ecological-hydrological connections. These connections can be particularly pronounced and socially relevant when there are large-scale rapid changes in vegetation. One such key change, vegetation mortality, can be triggered by drought and is projected to become more frequent and/or extensive in the future under changing climate. Recent research on drought-induced vegetation die-off has focused primarily on direct drought effects, such as soil moisture deficit, and, to a much lesser degree, the potential for warmer temperatures to exacerbate stress and accelerate mortality. However, temperature is tightly interrelated with atmospheric demand (vapor pressure deficit, VPD) but the latter has rarely been considered explicitly relative to die-off events. Here we highlight the importance of VPD in addition to soil moisture deficit and warmer temperature as an important driver of future die-off. Recent examples highlighting the importance of VPD include mortality patterns corresponding to VPD drivers, a strong dependence of forest growth on VPD, patterns of observed mortality along an environmental gradient, an experimentally-determined climate envelope for mortality, and a suite of modeling simulations segregating the drought effects of VPD from those of temperature. The vast bulk of evidence suggests that atmospheric demand needs to be considered in addition to temperature and soil moisture deficit in predicting risk of future vegetation die-off and associated ecohydrological transformations.
NASA Astrophysics Data System (ADS)
Flores, A. N.; Lakshmi, V.; Al-Barakat, R.; Maksimowicz, M.
2016-12-01
Terrestrial vegetation controls the partitioning of incoming energy into latent and sensible heat fluxes and precipitation into runoff and infiltration. Humans modify terrestrial vegetation in direct and indirect ways, impacting the components of the surface water and energy balance. Although ecohydrologic impacts of land modification due to agriculture and deforestation have been studied extensively, impacts of civil conflict on regional ecohydrology have received comparatively less study. Remote sensing provides a unique opportunity to investigate potential impacts of this civil conflict on terrestrial vegetation communities and the surface water and energy balance. During the Mozambican civil war (1977-1992) many agricultural fields went fallow and large herbivore populations collapsed due to poaching. The extent of these impacts on changes in regional water and energy balance and the spatiotemporal scale of those changes, however, is largely unknown. We use remote sensing data from multiple satellite platforms to diagnose and characterize changes in terrestrial vegetation and ecohydrology in Mozambique. The Advanced very High Resolution Radiometer (AVHRR) sensor has been integral to many NOAA satellite platforms and provides long-term continuous data that can document terrestrial vegetation change during most of the Mozambican civil war period. More recently, the Tropical Rainfall Measurement Mission provides microwave-based estimates of precipitation from 1997 onward, affording the ability to explore associations between precipitation and vegetation in the post-bellum period. In this work we explore application of graph theory methods for characterizing spatial and temporal patterns in vegetation and precipitation. This work is important to advancing fundamental understanding of coupled human-environment systems through characterizing potential impacts of civil conflict (which may become more frequent and widespread with climate change) on regional ecohydrology.
Long-Term Forest Hydrologic Monitoring in Coastal Carolinas
Devendra M. Amatya; Ge Sun; Carl C. Trettin; R. Wayne Skaggs
2003-01-01
Long-term hydrologic data are essential for understanding the hydrologic processes, as base line data for assessment of impacts and conservation of regional ecosystems, and for developing and testing eco-hydrological models. This study presents 6-year (1996-2001) of rainfall, water table and outflow data from a USDA Forest Service coastal experimental watershed on a...
Global separation of plant transpiration from groundwater and streamflow
Jaivime Evaristo; Scott Jasechko; Jeffrey J. McDonnell
2015-01-01
Current land surface models assume that groundwater, streamflow and plant transpiration are all sourced and mediated by the same well mixed water reservoirâthe soil. However, recent work in Oregon and Mexico has shown evidence of ecohydrological separation, whereby different subsurface compartmentalized pools of water supply either plant transpiration fluxes or the...
Ge Sun; Steven McNulty; Jianbiao Lu; James Vose; Devendra Amayta; Guoyi Zhou; Zhiqiang Zhang
2006-01-01
Watershed management and restoration practices require a clear understanding of the basic eco-hydrologic processes and ecosystem responses to disturbances at multiple scales (Bruijnzeel, 2004; Scott et al., 2005). Worldwide century-long forest hydrologic research has documented that deforestation and forestation (i.e. reforestation and afforestation) can have variable...
Geomorphology and landscape organization of a northern peatland complex
NASA Astrophysics Data System (ADS)
Richardson, M. C.
2012-12-01
The geomorphic evolution of northern peatlands is governed by complex ecohydrological feedback mechanisms and associated hydro-climatic drivers. For example, prevailing models of bog development (i.e. Ingram's groundwater mounding hypothesis and variants) attempt to explicitly link bog dome characteristics to the regional climate based on analytical and numerical models of lateral groundwater flow and the first-order control of water table position on rates of peat accumulation. In this talk I will present new results from quantitative geomorphic analyses of a northern peatland complex at the De Beers Victor diamond mine site in the Hudson Bay Lowlands of northern Ontario. This work capitalizes on spatially-extensive, high-resolution topographic (LiDAR) data to rigorously test analytical and numerical models of bog dome development in this landscape. The analysis and discussion are then expanded beyond individual bog formations to more broadly consider ecohydrological drivers of landscape organization, with implications for understanding and modeling catchment-scale runoff response. Results show that in this landscape, drainage patterns exhibit relatively well-organized characteristics consistent with observed runoff responses in six gauged research catchments. Interpreted together, the results of these geomorphic and hydrologic analyses help refine our understanding of water balance partitioning among different landcover types within northern peatland complexes. These findings can be used to help guide the development of appropriate numerical model structures for hydrologic prediction in ungauged peatland basins of northern Canada.
Coupled Modeling of Rhizosphere and Reactive Transport Processes
NASA Astrophysics Data System (ADS)
Roque-Malo, S.; Kumar, P.
2017-12-01
The rhizosphere, as a bio-diverse plant root-soil interface, hosts many hydrologic and biochemical processes, including nutrient cycling, hydraulic redistribution, and soil carbon dynamics among others. The biogeochemical function of root networks, including the facilitation of nutrient cycling through absorption and rhizodeposition, interaction with micro-organisms and fungi, contribution to biomass, etc., plays an important role in myriad Critical Zone processes. Despite this knowledge, the role of the rhizosphere on watershed-scale ecohydrologic functions in the Critical Zone has not been fully characterized, and specifically, the extensive capabilities of reactive transport models (RTMs) have not been applied to these hydrobiogeochemical dynamics. This study uniquely links rhizospheric processes with reactive transport modeling to couple soil biogeochemistry, biological processes, hydrologic flow, hydraulic redistribution, and vegetation dynamics. Key factors in the novel modeling approach are: (i) bi-directional effects of root-soil interaction, such as simultaneous root exudation and nutrient absorption; (ii) multi-state biomass fractions in soil (i.e. living, dormant, and dead biological and root materials); (iii) expression of three-dimensional fluxes to represent both vertical and lateral interconnected flows and processes; and (iv) the potential to include the influence of non-stationary external forcing and climatic factors. We anticipate that the resulting model will demonstrate the extensive effects of plant root dynamics on ecohydrologic functions at the watershed scale and will ultimately contribute to a better characterization of efflux from both agricultural and natural systems.
Ning Liu; Peng-Sen Sun; Shi-Rong Liu; Ge Sun
2013-01-01
Main publication is written in Chinese.Aims: Optimal spatial scale of hydrological response unit (HRU) is a precondition for eco-hydrological modeling as it is essential to improve accuracy. Our objective was to evaluate the spatial scale of HRU for application of the WASSSI-C model.Methods: We determined the best HRU scale for the eco-...
NASA Astrophysics Data System (ADS)
Arnone, E.; Dialynas, Y. G.; Noto, L. V.; Bras, R. L.
2013-12-01
Catchment slope distribution is one of the topographic characteristics that significantly control rainfall-triggered landslide modeling, in both direct and indirect ways. Slope directly determines the soil volume associated with instability. Indirectly slope also affects the subsurface lateral redistribution of soil moisture across the basin, which in turn determines the water pore pressure conditions that impact slope stability. In this study, we investigate the influence of DEM resolution on slope stability and the slope stability analysis by using a distributed eco-hydrological and landslide model, the tRIBS-VEGGIE (Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator - VEGetation Generator for Interactive Evolution). The model implements a triangulated irregular network to describe the topography, and it is capable of evaluating vegetation dynamics and predicting shallow landslides triggered by rainfall. The impact of DEM resolution on the landslide prediction was studied using five TINs derived from five grid DEMs at different resolutions, i.e. 10, 20, 30, 50 and 70 m respectively. The analysis was carried out on the Mameyes Basin, located in the Luquillo Experimental Forest in Puerto Rico, where previous landslide analyses have been carried out. Results showed that the use of the irregular mesh reduced the loss of accuracy in the derived slope distribution when coarser resolutions were used. The impact of the different resolutions on soil moisture patterns was important only when the lateral redistribution was considerable, depending on hydrological properties and rainfall forcing. In some cases, the use of different DEM resolutions did not significantly affect tRIBS-VEGGIE landslide output, in terms of landslide locations, and values of slope and soil moisture at failure.
NASA Astrophysics Data System (ADS)
Lepore, C.; Arnone, E.; Noto, L. V.; Sivandran, G.; Bras, R. L.
2013-01-01
This paper presents the development of a rainfall-triggered landslide module within a physically based spatially distributed ecohydrologic model. The model, Triangulated Irregular Networks Real-time Integrated Basin Simulator and VEGetation Generator for Interactive Evolution (tRIBS-VEGGIE), is capable of a sophisticated description of many hydrological processes; in particular, the soil moisture dynamics is resolved at a temporal and spatial resolution required to examine the triggering mechanisms of rainfall-induced landslides. The validity of the tRIBS-VEGGIE model to a tropical environment is shown with an evaluation of its performance against direct observations made within the Luquillo Forest (the study area). The newly developed landslide module builds upon the previous version of the tRIBS landslide component. This new module utilizes a numerical solution to the Richards equation to better represent the time evolution of soil moisture transport through the soil column. Moreover, the new landslide module utilizes an extended formulation of the Factor of Safety (FS) to correctly quantify the role of matric suction in slope stability and to account for unsaturated conditions in the evaluation of FS. The new modeling framework couples the capabilities of the detailed hydrologic model to describe soil moisture dynamics with the Infinite Slope model creating a powerful tool for the assessment of landslide risk.
Spatial and Temporal Patterns In Ecohydrological Separation
NASA Astrophysics Data System (ADS)
Jarvis, S. K.; Barnard, H. R.; Singha, K.; Harmon, R. E.; Szutu, D.
2017-12-01
The model of ecohydrological separation suggests that trees source water from a different subsurface pool than what is contributing to stream flow during dry periods, however diel fluctuations in stream flow and transpiration are tightly coupled. To better understand the mechanism of this coupling, this study examines spatiotemporal patterns in water isotopic relationships between tree, soil, and stream water. Preliminary analysis of data collected in 2015 show a trend in δ18O enrichment in xylem water, suggesting an increased reliance on enriched soil water not flowing to the stream as the growing season progresses, while xylem samples from 2016, a particularly wet year, do not have this trend. Variations in these temporal trends are explored with regard to distance from stream, aspect of hillslope, position in the watershed, size of the tree, and soil depth. Additionally, a near-stream site is examined at high resolution using water isotope data, sap flow, and electrical resistivity surveying to examine soil moisture and water use patterns across the riparian-hillslope transition.
FRAMES Metadata Reporting Templates for Ecohydrological Observations, version 1.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christianson, Danielle; Varadharajan, Charuleka; Christoffersen, Brad
FRAMES is a a set of Excel metadata files and package-level descriptive metadata that are designed to facilitate and improve capture of desired metadata for ecohydrological observations. The metadata are bundled with data files into a data package and submitted to a data repository (e.g. the NGEE Tropics Data Repository) via a web form. FRAMES standardizes reporting of diverse ecohydrological and biogeochemical data for synthesis across a range of spatiotemporal scales and incorporates many best data science practices. This version of FRAMES supports observations for primarily automated measurements collected by permanently located sensors, including sap flow (tree water use), leafmore » surface temperature, soil water content, dendrometry (stem diameter growth increment), and solar radiation. Version 1.1 extend the controlled vocabulary and incorporates functionality to facilitate programmatic use of data and FRAMES metadata (R code available at NGEE Tropics Data Repository).« less
Ecohydrologic separation of water between trees and streams in a Mediterranean climate
J. Renee Brooks; Holly R. Barnard; Rob Coulombe; Jeffrey J. McDonnell
2010-01-01
Here, we directly explore links between hydrology and transpiration at the small watershed scale in a seasonally dry climate. Our central questions were: to what extent do trees and streams return the same water pool to the hydrosphere and how does this vary spatially within a watershed? These questions are fundamental to testing watershed hydrology models and coupled...
USDA-ARS?s Scientific Manuscript database
Methods are developed to study hydrologic interactions across the surficial/groundwater interface in a native prairie ecosystem. Surficial ecohydrologic processes are simulated with the USDA’s EPIC model using daily climate data from the Kansas Weather Data Library, vegetation and soil data from the...
On the Performance of Alternate Conceptual Ecohydrological Models for Streamflow Prediction
NASA Astrophysics Data System (ADS)
Naseem, Bushra; Ajami, Hoori; Cordery, Ian; Sharma, Ashish
2016-04-01
A merging of a lumped conceptual hydrological model with two conceptual dynamic vegetation models is presented to assess the performance of these models for simultaneous simulations of streamflow and leaf area index (LAI). Two conceptual dynamic vegetation models with differing representation of ecological processes are merged with a lumped conceptual hydrological model (HYMOD) to predict catchment scale streamflow and LAI. The merged RR-LAI-I model computes relative leaf biomass based on transpiration rates while the RR-LAI-II model computes above ground green and dead biomass based on net primary productivity and water use efficiency in response to soil moisture dynamics. To assess the performance of these models, daily discharge and 8-day MODIS LAI product for 27 catchments of 90 - 1600km2 in size located in the Murray - Darling Basin in Australia are used. Our results illustrate that when single-objective optimisation was focussed on maximizing the objective function for streamflow or LAI, the other un-calibrated predicted outcome (LAI if streamflow is the focus) was consistently compromised. Thus, single-objective optimization cannot take into account the essence of all processes in the conceptual ecohydrological models. However, multi-objective optimisation showed great strength for streamflow and LAI predictions. Both response outputs were better simulated by RR-LAI-II than RR-LAI-I due to better representation of physical processes such as net primary productivity (NPP) in RR-LAI-II. Our results highlight that simultaneous calibration of streamflow and LAI using a multi-objective algorithm proves to be an attractive tool for improved streamflow predictions.
Ecohydrology of Graciosa semi-natural grasslands: water use and evapotranspiration partition
NASA Astrophysics Data System (ADS)
Paço, Teresa A.; Paredes, Paula; Azevedo, Eduardo B.; Madruga, João S.; Pereira, Luís S.
2016-04-01
Semi-natural grasslands are a main landscape of Graciosa and other Islands of Azores. The present study aims at calibrate and validate the soil water balance model SIMDualKc for those grasslands aiming at assessing the dynamics of soil water and evapotranspiration. This objective relates with the need to improve knowledge on the ecohydrology of grasslands established in (volcanic) Andosols. This model adopts the dual crop coefficient approach to compute daily crop evapotranspiration (ETc) and to perform its partition into transpiration (T) and soil evaporation (Es). The application refers to a semi-natural grassland sporadically sowed with ryegrass (Lolium multiflorum Lam.). Model calibration and validation were performed comparing simulated against observed grassland evapotranspiration throughout two periods in consecutive years. Daily ET values were derived from eddy covariance data collected at the Eastern North Atlantic (ENA) facility of the ARM programme (established and supported by the U.S. Department of Energy with the collaboration of the local government and University of the Azores), at Graciosa, Azores (Portugal). Various statistical performance indicators were used to assess model accuracy and results show a good adequacy of the model for predicting vegetation ET in such conditions. Surface flux energy balance was also evaluated throughout the observation period (2014-2016). The ratio Es/ET shows that soil evaporation is much small than T/ET due to high soil cover by vegetation. The model was then applied to contrasting climatic conditions (dry vs. wet years) to assess related impacts on water balance components and grassland transpiration.
Do ecohydrology and community dynamics feed back to banded-ecosystem structure and productivity?
NASA Astrophysics Data System (ADS)
Callegaro, Chiara; Ursino, Nadia
2016-04-01
Mixed communities including grass, shrubs and trees are often reported to populate self-organized vegetation patterns. Patterns of survey data suggest that species diversity and complementarity strengthen the dynamics of banded environments. Resource scarcity and local facilitation trigger self organization, whereas coexistence of multiple species in vegetated self-organizing patches, implying competition for water and nutrients and favorable reproduction sites, is made possible by differing adaptation strategies. Mixed community spatial self-organization has so far received relatively little attention, compared with local net facilitation of isolated species. We assumed that soil moisture availability is a proxy for the environmental niche of plant species according to Ursino and Callegaro (2016). Our modelling effort was focused on niche differentiation of coexisting species within a tiger bush type ecosystem. By minimal numerical modelling and stability analysis we try to answer a few open scientific questions: Is there an adaptation strategy that increases biodiversity and ecosystem functioning? Does specific adaptation to environmental niches influence the structure of self-organizing vegetation pattern? What specific niche distribution along the environmental gradient gives the highest global productivity?
An interdisciplinary swat ecohydrological model to define catchment-scale hydrologic partitioning
NASA Astrophysics Data System (ADS)
Shope, C. L.; Maharjan, G. R.; Tenhunen, J.; Seo, B.; Kim, K.; Riley, J.; Arnhold, S.; Koellner, T.; Ok, Y. S.; Peiffer, S.; Kim, B.; Park, J.-H.; Huwe, B.
2013-06-01
Land use and climate change have long been implicated in modifying ecosystem services, such as water quality and water yield, biodiversity, and agricultural production. To account for future effects on ecosystem services, the integration of physical, biological, economic, and social data over several scales must be implemented to assess the effects on natural resource availability and use. Our objective is to assess the capability of the SWAT model to capture short-duration monsoonal rainfall-runoff processes in complex mountainous terrain under rapid, event-driven processes in a monsoonal environment. To accomplish this, we developed a unique quality-control gap-filling algorithm for interpolation of high frequency meteorological data. We used a novel multi-location, multi-optimization calibration technique to improve estimations of catchment-wide hydrologic partitioning. We calibrated the interdisciplinary model to a combination of statistical, hydrologic, and plant growth metrics. In addition, we used multiple locations of different drainage area, aspect, elevation, and geologic substrata distributed throughout the catchment. Results indicate scale-dependent sensitivity of hydrologic partitioning and substantial influence of engineered features. While our model accurately reproduced observed discharge variability, the addition of hydrologic and plant growth objective functions identified the importance of culverts in catchment-wide flow distribution. The results of this study provide a valuable resource to describe landscape controls and their implication on discharge, sediment transport, and nutrient loading. This study also shows the challenges of applying the SWAT model to complex terrain and extreme environments. By incorporating anthropogenic features into modeling scenarios, we can greatly enhance our understanding of the hydroecological impacts on ecosystem services.
A simple approach to distinguish land-use and climate-change effects on watershed hydrology
Tomer, M.D.; Schilling, K.E.
2009-01-01
Impacts of climate change on watershed hydrology are subtle compared to cycles of drought and surplus precipitation (PPT), and difficult to separate from effects of land-use change. In the US Midwest, increasing baseflow has been more attributed to increased annual cropping than climate change. The agricultural changes have led to increased fertilizer use and nutrient losses, contributing to Gulf of Mexico hypoxia. In a 25-yr, small-watershed experiment in Iowa, when annual hydrologic budgets were accrued between droughts, a coupled water-energy budget (ecohydrologic) analysis showed effects of tillage and climate on hydrology could be distinguished. The fraction of PPT discharged increased with conservation tillage and time. However, unsatisfied evaporative demand (PET - Hargreaves method) increased under conservation tillage, but decreased with time. A conceptual model was developed and a similar analysis conducted on long-term (>1920s) records from four large, agricultural Midwest watersheds underlain by fine-grained tills. At least three of four watersheds showed decreases in PET, and increases in PPT, discharge, baseflow and PPT:PET ratios (p < 0.10). An analysis of covariance showed the fraction of precipitation discharged increased, while unsatisfied evaporative demand decreased with time among the four watersheds (p < 0.001). Within watersheds, agricultural changes were associated with ecohydrologic shifts that affected timing and significance, but not direction, of these trends. Thus, an ecohydrologic concept derived from small-watershed research, when regionally applied, suggests climate change has increased discharge from Midwest watersheds, especially since the 1970s. By inference, climate change has increased susceptibility of nutrients to water transport, exacerbating Gulf of Mexico hypoxia.
Training hydrologists to be ecohydrologists and play a leading role in environmental problem solving
NASA Astrophysics Data System (ADS)
McClain, M. E.; Chícharo, L.; Fohrer, N.; Gaviño Novillo, M.; Windhorst, W.; Zalewski, M.
2012-06-01
Ecohydrology is a relatively new and rapidly growing subject area in the hydrology curriculum. It is a trans-disciplinary science derived from the larger earth systems science movement and examining mutual interactions of the hydrological cycle and ecosystems. It is also an applied science focused on problem solving and providing sound guidance to catchment-scale integrated land and water resources management. The principle spheres of ecohydrology include (i) climate-soil-vegetation-groundwater interactions at the land surface with special implications for land use, food production and climate change; (ii) riparian runoff, flooding, and flow regime dynamics in river corridors with special implications for water supply, water quality, and inland fisheries; and (iii) fluvial and groundwater inputs to lakes/reservoirs, estuaries, and coastal zones with special implications for water quality and fisheries. We propose an educational vision focused on the development of professional and personal competencies to impart a depth of scientific knowledge in the theory and practice of ecohydrology and a breadth of cross-cutting knowledge and skills to enable ecohydrologists to effectively collaborate with associated scientists and communicate results to resource managers, policy-makers, and other stakeholders. In-depth knowledge in hydrology, ecology, and biogeochemistry is emphasized, as well as technical skills in data collection, modeling, and statistical analysis. Cross-cutting knowledge is framed in the context of integrated water resources management. Personal competencies to be fostered in educational programs include creative thinking, cooperation, communication, and leadership. We consider a life-long learning context but highlight the importance of master's level training in the professional formation of ecohydrologists.
Training hydrologists to be ecohydrologists and play a leading role in environmental problem solving
NASA Astrophysics Data System (ADS)
McClain, M. E.; Chícharo, L.; Fohrer, N.; Gaviño Novillo, M.; Windhorst, W.; Zalewski, M.
2012-02-01
Ecohydrology is a relatively new and rapidly growing subject area in the hydrology curriculum. It is a trans-disciplinary science derived from the larger earth systems science movement and examining mutual interactions of the hydrological cycle and ecosystems. It is also an applied science focused on problem solving and providing sound guidance to catchment-scale integrated land and water resources management. The principle spheres of ecohydrology include (i) climate-soil-vegetation-groundwater interactions at the land surface with special implications for land use, food production and climate change; (ii) riparian runoff, flooding, and flow regime dynamics in river corridors with special implications for water supply, water quality, and inland fisheries; and (iii) fluvial and groundwater inputs to lakes/reservoirs, estuaries, and coastal zones with special implications for water quality and fisheries. We propose an educational vision focused on the development of professional and personal competencies to impart a depth of scientific knowledge in the theory and practice of ecohydrology and a breadth of cross-cutting knowledge and skills to enable ecohydrologists to effectively collaborate with associated scientists and communicate results to resource managers, policy-makers, and other stakeholders. In-depth knowledge in hydrology, ecology, and biogeochemistry is emphasized, as well as technical skills in data collection, modeling, and statistical analysis. Cross-cutting knowledge is framed in the context of integrated water resources management. Personal competencies to be fostered in educational programs include creative thinking, cooperation, communication, and leadership. We consider a life-long learning context but highlight the importance of master's level training in the professional formation of ecohydrologists.
NASA Astrophysics Data System (ADS)
Waddington, J. M.; Kettridge, N.; Sherwood, J.; Thompson, D.; Morris, P. J.
2012-12-01
Peatlands are self-regulating ecosystems dominated by negative ecohydrological feedbacks that stabilize their net carbon sink function, producing a globally significant carbon store that is often resilient to disturbances such as drainage and wildfire. However, the effects of these disturbances on peatland ecohydrological function have only been considered previously in isolation. We capitalize on a unique long-term experiment to examine the response of a peatland in boreal western Canada to the compound disturbance of drying and wildfire. We show that the compound effect of such disturbances can reduce the ecohydrological resilience of these ecosystems leaving them vulnerable to irreversible shifts in their ecological, hydrological and biogeochemical function. Peatland ecosystems have a hydrology characterized generally by a long water residence times and a high water table position. Less-dense near-surface peat acts as a hydrological buffer, regulating water-table position and near-surface moisture content. This buffer is lost through combustion and compaction, increasing the flashiness of the peatland hydrology, increasing the vulnerability of the ecosystem to drought conditions. This greatly reduces the recolonization success of keystone Sphagnum moss species. As a result the peatland followed a previously unobserved development trajectory leading to the loss of globally important ecosystem services and the development of a novel 'peat forest' ecosystem. This ecosystem shift is self-reinforcing, as the establishment of invasive species reduces available light essential for Sphagnum establishment.
NASA Astrophysics Data System (ADS)
Mendez-Barroso, L. A.; Vivoni, E.; Robles-Morua, A.; Yepez, E. A.; Rodriguez, J. C.; Watts, C.; Saiz-Hernandez, J.
2013-05-01
Seasonal vegetation changes highly affect the energy and hydrologic fluxes in semiarid regions around the world. Accounting for different water use strategies among drought-deciduous ecosystems is important for understanding how these exploit the temporally brief and localized rainfall pulses of the North American Monsoon (NAM). Furthermore, quantifying these plant-water relations can help elucidate the spatial patterns of ecohydrological processes at catchment scale in the NAM region. In this effort, we focus on the San Miguel river basin (~ 3500 km2) in Sonora, Mexico, which exhibits seasonal vegetation greening that varies across ecosystems organized along mountain fronts. To assess the spatial variability of ecohydrological conditions, we relied on diverse tools that included multi-temporal remote sensing observations, model-based meteorological forcing, ground-based water and energy flux measurements and hydrologic simulations carried out at multiple scales. We evaluated the impact of seasonal vegetation dynamics on evapotranspiration (ET), its partitioning into soil evaporation (E) and plant transpiration (T), as well as their spatiotemporal patterns over the course of the NAM season. We utilized ground observations of soil moisture and evapotranspiration estimated by the eddy covariance method at two sites, as well as inferences of ET partitioning from stable isotope measurements, to test the numerical simulations. We found that ecosystem phenological differences lead to variations in the time to peak in transpiration during a season and in the overall seasonal ratio of transpiration to evapotranspiration (T/ET). A sensitivity analysis of the numerical simulations revealed that vegetation cover and the soil moisure threshold at which stomata close exert strong controls on the seasonal dominance of transpiration or evaporation. The dynamics of ET and its partitioning are then mapped spatially revealing that mountain front ecosystems utilize water differently. The results of this study aid in understanding how variations in water use and phenological strategies affect how soil water is returned to the atmosphere with implications on the watershed runoff response.
Mid-latitude shrub steppe plant communities: climate change consequences for soil water resources.
Palmquist, Kyle A; Schlaepfer, Daniel R; Bradford, John B; Lauenroth, William K
2016-09-01
In the coming century, climate change is projected to impact precipitation and temperature regimes worldwide, with especially large effects in drylands. We use big sagebrush ecosystems as a model dryland ecosystem to explore the impacts of altered climate on ecohydrology and the implications of those changes for big sagebrush plant communities using output from 10 Global Circulation Models (GCMs) for two representative concentration pathways (RCPs). We ask: (1) What is the magnitude of variability in future temperature and precipitation regimes among GCMs and RCPs for big sagebrush ecosystems, and (2) How will altered climate and uncertainty in climate forecasts influence key aspects of big sagebrush water balance? We explored these questions across 1980-2010, 2030-2060, and 2070-2100 to determine how changes in water balance might develop through the 21st century. We assessed ecohydrological variables at 898 sagebrush sites across the western US using a process-based soil water model, SOILWAT, to model all components of daily water balance using site-specific vegetation parameters and site-specific soil properties for multiple soil layers. Our modeling approach allowed for changes in vegetation based on climate. Temperature increased across all GCMs and RCPs, whereas changes in precipitation were more variable across GCMs. Winter and spring precipitation was predicted to increase in the future (7% by 2030-2060, 12% by 2070-2100), resulting in slight increases in soil water potential (SWP) in winter. Despite wetter winter soil conditions, SWP decreased in late spring and summer due to increased evapotranspiration (6% by 2030-2060, 10% by 2070-2100) and groundwater recharge (26% and 30% increase by 2030-2060 and 2070-2100). Thus, despite increased precipitation in the cold season, soils may dry out earlier in the year, resulting in potentially longer, drier summer conditions. If winter precipitation cannot offset drier summer conditions in the future, we expect big sagebrush regeneration and survival will be negatively impacted, potentially resulting in shifts in the relative abundance of big sagebrush plant functional groups. Our results also highlight the importance of assessing multiple GCMs to understand the range of climate change outcomes on ecohydrology, which was contingent on the GCM chosen. © 2016 by the Ecological Society of America.
Beyond the SCS-CN method: A theoretical framework for spatially lumped rainfall-runoff response
NASA Astrophysics Data System (ADS)
Bartlett, M. S.; Parolari, A. J.; McDonnell, J. J.; Porporato, A.
2016-06-01
Since its introduction in 1954, the Soil Conservation Service curve number (SCS-CN) method has become the standard tool, in practice, for estimating an event-based rainfall-runoff response. However, because of its empirical origins, the SCS-CN method is restricted to certain geographic regions and land use types. Moreover, it does not describe the spatial variability of runoff. To move beyond these limitations, we present a new theoretical framework for spatially lumped, event-based rainfall-runoff modeling. In this framework, we describe the spatially lumped runoff model as a point description of runoff that is upscaled to a watershed area based on probability distributions that are representative of watershed heterogeneities. The framework accommodates different runoff concepts and distributions of heterogeneities, and in doing so, it provides an implicit spatial description of runoff variability. Heterogeneity in storage capacity and soil moisture are the basis for upscaling a point runoff response and linking ecohydrological processes to runoff modeling. For the framework, we consider two different runoff responses for fractions of the watershed area: "prethreshold" and "threshold-excess" runoff. These occur before and after infiltration exceeds a storage capacity threshold. Our application of the framework results in a new model (called SCS-CNx) that extends the SCS-CN method with the prethreshold and threshold-excess runoff mechanisms and an implicit spatial description of runoff. We show proof of concept in four forested watersheds and further that the resulting model may better represent geographic regions and site types that previously have been beyond the scope of the traditional SCS-CN method.
Future permafrost degradation positively enhances Arctic ecohydrological processes
NASA Astrophysics Data System (ADS)
Park, Hotaek; Walsh, John
2013-04-01
Permafrost is considered vulnerable to increasing temperatures. Air temperatures over the Arctic have indeed increased considerably over the last century. Most climate models project that the warming will continue, enhancing permafrost degradation. The degradation of permafrost has the potential to initiate numerous feedbacks, predominantly positive, in the Arctic climatic, hydrological, and biogeochemical processes. For instance, the Arctic terrestrial evapotranspiration during summer season tends to overpass precipitation of the period. The unbalance of water budget seems to be offset by permafrost contribution. A considerable amount of soil carbon cumulating within the permafrost is also released with permafrost degradation. However, it is still uncertain on how much amount of soil carbon will be released. Furthermore, the largest uncertainty is on the magnitude of permafrost degradation under the future climate change. Therefore, the major purpose of this study is to reduce the uncertainties relating to permafrost degradation and then is to assess influences of permafrost dynamics on ecohydrological processes. A land surface model CHANGE, including hydrological and biogeochemical processes, was applied to the pan-Arctic terrestrial region over the period 1901-2100. For exploring the influence of permafrost dynamics on ecohydrological processes in the future, outputs from four scenarios (RCP 4.5, 6.0, and 8.5) of three GCMs (MIROC, CCSM4, and HadGCM2) were used for the simulation of CHANGE. Permafrost positively degraded with temperature warming. By 2091-2100, permafrost extent was decreased 30-75% and active layer thickness increased about 55-125 cm, compared to 1991-2010. Evapotranspiration (ET) and net primary productivity (NPP) also increased about 15-55%. However, higher ET resulted in soil dryness. On the other hand, the increased NPP enhanced soil organic matter, which increased soil water-holding capacity and limited soil warming due to its insulation effect. The model also predicted a cumulative efflux of 50-120 Gt C of permafrost carbon to the atmosphere by 2100. The thaw and decay of permafrost carbon is irreversible and amplify surface warming to initiate a positive permafrost carbon feedback on climate. On the other hand, the conditions implicated to permafrost degradation tended to keep summertime ET and NPP relatively high.
Bradford, John B.; Schlaepfer, Daniel R.; Lauenroth, William K.; Yackulic, Charles B.; Duniway, Michael C.; Hall, Sonia A.; Jia, Gensuo; Jamiyansharav, Khishigbayar; Munson, Seth M.; Wilson, Scott D.; Tietjen, Britta
2017-01-01
The distribution of rainfed agriculture is expected to respond to climate change and human population growth. However, conditions that support rainfed agriculture are driven by interactions among climate, including climate extremes, and soil moisture availability that have not been well defined. In the temperate regions that support much of the world’s agriculture, these interactions are complicated by seasonal temperature fluctuations that can decouple climate and soil moisture. Here, we show that suitability to support rainfed agriculture can be effectively represented by the interactive effects of just two variables: suitability increases where warm conditions occur with wet soil, and suitability decreases with extreme high temperatures. 21st century projections based on ecohydrological modeling of downscaled climate forecasts imply geographic shifts and overall increases in the area suitable for rainfed agriculture in temperate regions, especially at high latitudes, and pronounced, albeit less widespread, declines in suitable areas in low latitude drylands, especially in Europe. These results quantify the integrative direct and indirect impact of rising temperatures on rainfed agriculture.
Wildfire impacts on soil-water retention in the Colorado Front Range, United States
Ebel, Brian A.
2012-01-01
This work examined the plot-scale differences in soil-water retention caused by wildfire in the area of the 2010 Fourmile Canyon Fire in the Colorado Front Range, United States. We measured soil-water retention curves on intact cores and repacked samples, soil particle-size distributions, and organic matter content. Estimates were also made of plant-available water based on the soil-water retention curves. Parameters for use in soil-hydraulic property models were estimated; these parameters can be used in unsaturated flow modeling for comparing burned and unburned watersheds. The primary driver for measured differences in soil-water retention in burned and unburned soils was organic matter content and not soil-particle size distribution. The tendency for unburned south-facing soils to have greater organic matter content than unburned north-facing soils in this field area may explain why unburned south-facing soils had greater soil-water retention than unburned north-facing soils. Our results suggest that high-severity wildfire can “homogenize” soil-water retention across the landscape by erasing soil-water retention differences resulting from organic matter content, which for this site may be affected by slope aspect. This homogenization could have important implications for ecohydrology and plant succession/recovery in burned areas, which could be a factor in dictating the window of vulnerability of the landscape to flash floods and erosion that are a common consequence of wildfire.
Understanding relationships among abundance, extirpation, and climate at ecoregional scales.
Beever, Erik A; Dobrowski, S Z; Long, J; Mynsberge, A R; Piekielek, N B
2013-07-01
Recent research on mountain-dwelling species has illustrated changes in species distributional patterns in response to climate change. Abundance of a species will likely provide an earlier warning indicator of change than will occupancy, yet relationships between abundance and climatic factors have received less attention. We tested whether predictors of counts of American pikas (Ochotona princeps) during surveys from the Great Basin region in 1994-1999 and 2003-2008 differed between the two periods. Additionally, we tested whether various modeled aspects of ecohydrology better predicted relative density than did average annual precipitation, and whether risk of site-wide extirpation predicted subsequent population counts of pikas. We observed several patterns of change in pika abundance at range edges that likely constitute early warnings of distributional shifts. Predictors of pika abundance differed strongly between the survey periods, as did pika extirpation patterns previously reported from this region. Additionally, maximum snowpack and growing-season precipitation resulted in better-supported models than those using average annual precipitation, and constituted two of the top three predictors of pika density in the 2000s surveys (affecting pikas perhaps via vegetation). Unexpectedly, we found that extirpation risk positively predicted subsequent population size. Our results emphasize the need to clarify mechanisms underlying biotic responses to recent climate change at organism-relevant scales, to inform management and conservation strategies for species of concern.
Wildfire impacts on soil-water retention in the Colorado Front Range, United States
NASA Astrophysics Data System (ADS)
Ebel, Brian A.
2012-12-01
This work examined the plot-scale differences in soil-water retention caused by wildfire in the area of the 2010 Fourmile Canyon Fire in the Colorado Front Range, United States. We measured soil-water retention curves on intact cores and repacked samples, soil particle-size distributions, and organic matter content. Estimates were also made of plant-available water based on the soil-water retention curves. Parameters for use in soil-hydraulic property models were estimated; these parameters can be used in unsaturated flow modeling for comparing burned and unburned watersheds. The primary driver for measured differences in soil-water retention in burned and unburned soils was organic matter content and not soil-particle size distribution. The tendency for unburned south-facing soils to have greater organic matter content than unburned north-facing soils in this field area may explain why unburned south-facing soils had greater soil-water retention than unburned north-facing soils. Our results suggest that high-severity wildfire can "homogenize" soil-water retention across the landscape by erasing soil-water retention differences resulting from organic matter content, which for this site may be affected by slope aspect. This homogenization could have important implications for ecohydrology and plant succession/recovery in burned areas, which could be a factor in dictating the window of vulnerability of the landscape to flash floods and erosion that are a common consequence of wildfire.
Understanding relationships among abundance, extirpation,and climate at ecoregional scales
Beever, Erik A.; Solomon Dubrowski,; ,; ,; J. Long,; ,; A. Mysnberge,; Piekielek, N. B.
2014-01-01
Recent research on mountain-dwelling species has illustrated changes in species’ distributional patterns in response to climate change. Abundance of a species will likely provide an earlier warning indicator of change than will occupancy, yet relationships between abundance and climatic factors have received less attention. We tested whether predictors of counts of American pikas (Ochotona princeps) during surveys from the Great Basin region in 1994–1999 and 2003–2008 differed between the two periods. Additionally, we tested whether various modeled aspects of ecohydrology better predicted relative density than did average annual precipitation, and whether risk of site-wide extirpation predicted subsequent population counts of pikas. We observed several patterns of change in pika abundance at range edges that likely constitute early warnings of distributional shifts. Predictors of pika abundance differed strongly between the survey periods, as did pika extirpation patterns previously reported from this region. Additionally, maximum snowpack and growing-season precipitation resulted in better-supported models than those using average annual precipitation, and constituted two of the top three predictors of pika density in the 2000s surveys (affecting pikas perhaps via vegetation). Unexpectedly, we found that extirpation risk positively predicted subsequent population size. Our results emphasize the need to clarify mechanisms underlying biotic responses to recent climate change at organism-relevant scales, to inform management and conservation strategies for species of concern.
Ecohydrological Index, Native Fish, and Climate Trends and Relationships in the Kansas River Basin.
Sinnathamby, Sumathy; Douglas-Mankin, Kyle R; Muche, Muluken E; Hutchinson, Stacy L; Anandhi, Aavudai
2018-01-01
This study quantified climatological and hydrological trends and relationships to presence and distribution of two native aquatic species in the Kansas River Basin over the past half-century. Trend analyses were applied to indicators of hydrologic alteration (IHAs) at 34 streamgages over a 50-year period (1962-2012). Results showed a significant negative trend in annual streamflow for 10 of 12 western streamgages (up to -7.65 mm/50 yr) and smaller negative trends for most other streamgages. Significant negative trends in western Basin streamflow were more widespread in summer (12 stations) than winter or spring (6 stations). The negative-trend magnitude and significance decreased from west to east for maximum-flow IHAs. Minimum- flow IHAs, however, significantly decreased at High Plains streamgages but significantly increased at Central Great Plains streamgages. Number of zero-flow days showed positive trends in the High Plains. Most streamgages showed negative trends in low- and high-flow pulse frequency and high-flow pulse duration, and positive trends in low-flow pulse duration. These results were consistent with increasing occurrence of drought. Shift in occurrence from present (1860-1950) to absent (2000-2012) was significantly related (p<0.10) to negative trends of 1-day maximum flows (both species) and indices associated with reduced spawning-season flows for Plains Minnow and shifting annual-flow timing and increased flow intermittency for Common Shiner. Both species were absent for all western Basin sites and had different responses to hydrological index trends at eastern Basin sites. These results demonstrate ecohydrological index changes impact distributions of native fish and suggest target factors for assessment or restoration activities.
Scaling Hydrologic Processes in Boreal Forest Stands: New Eco-hydrological Perspectives or Deja vu?
NASA Astrophysics Data System (ADS)
Silins, U.; Lieffers, V. J.; Landhausser, S. M.; Mendoza, C. A.; Devito, K. J.; Petrone, R. M.; Gan, T. Y.
2006-12-01
The leaf area of forest canopies is both main attribute of stands controlling water balance through transpiration and interception, and "engine" driving stand growth, stand dynamics, and forest succession. While transpiration and interception dynamics are classic themes in forest hydrology, we present results from our eco-hydrological research on boreal trees to highlight how more recent eco-physiological insights into species specific controls over water use and leaf area such as hydraulic architecture, cavitation, sapwood-leaf area relationships, and root system controls over water uptake are providing new insights into integrated atmospheric-autecological controls over these hydrologic processes. These results are discussed in the context of newer eco-hydrological frameworks which may serve to aid in exploring how forest disturbance and subsequent trajectories of hydrologic recovery are likely to affect both forest growth dynamics and hydrology of forested landscapes in response to forest management, severe forest pest epidemics such as the Mountain Pine Beetle epidemic in Western Canada, and climate change.
A physically-based Distributed Hydrologic Model for Tropical Catchments
NASA Astrophysics Data System (ADS)
Abebe, N. A.; Ogden, F. L.
2010-12-01
Hydrological models are mathematical formulations intended to represent observed hydrological processes in a watershed. Simulated watersheds in turn vary in their nature based on their geographic location, altitude, climatic variables and geology and soil formation. Due to these variations, available hydrologic models vary in process formulation, spatial and temporal resolution and data demand. Many tropical watersheds are characterized by extensive and persistent biological activity and a large amount of rain. The Agua Salud catchments located within the Panama Canal Watershed, Panama, are such catchments identified by steep rolling topography, deep soils derived from weathered bedrock, and limited exposed bedrock. Tropical soils are highly affected by soil cracks, decayed tree roots and earthworm burrows forming a network of preferential flow paths that drain to a perched water table, which forms at a depth where the vertical hydraulic conductivity is significantly reduced near the bottom of the bioturbation layer. We have developed a physics-based, spatially distributed, multi-layered hydrologic model to simulate the dominant processes in these tropical watersheds. The model incorporates the major flow processes including overland flow, channel flow, matrix and non-Richards film flow infiltration, lateral downslope saturated matrix and non-Darcian pipe flow in the bioturbation layer, and deep saturated groundwater flow. Emphasis is given to the modeling of subsurface unsaturated zone soil moisture dynamics and the saturated preferential lateral flow from the network of macrospores. Preliminary results indicate that the model has the capability to simulate the complex hydrological processes in the catchment and will be a useful tool in the ongoing comprehensive ecohydrological studies in tropical catchments, and help improve our understanding of the hydrological effects of deforestation and aforestation.
NASA Astrophysics Data System (ADS)
Collins, C.; Maxwell, R. M.; Visser, A.
2016-12-01
The critical zone is the region of the Earth's crust where hydrogeology, ecology, and climate interact. As many critical zone processes are fundamental, the significance of studying critical zone processes goes beyond understanding the local ecohydrological setting. Therefore studying critical zone governing processes requires an interdisciplinary approach that integrates simulation and observation. In this study, a high-resolution integrated hydrologic model, ParFlow-CLM, was developed for the Providence Creek watershed. Providence Creek is a highly instrumented critical zone observatory (CZO) located in the southern Sierra Nevada Mountains, a region currently experiencing a range of short-term responses (i.e. tree mortality) to a severe four-year drought. Sources of plant water use, pathways and residence times of water through the subsurface are identified using a suite of isotopic signatures and numerical particle tracking. Implications of using a fully coupled integrated hydrologic model accompanied by tracer analysis include better understanding of water partitioning and water storage in the regolith and vegetation water use during drought time conditions. The importance of subsurface storage, plant available water and lateral flow during the 2012-2015 drought to mitigate vegetation stress are addressed and verified against observed tree mortality. The stream flow response to tree mortality in the aftermath of the drought, analogous to the Colorado Mountain Pine Beetle case, provides insight into the potential effects of proposed forest management practices.
Assessing and modelling ecohydrologic processes at the agricultural field scale
NASA Astrophysics Data System (ADS)
Basso, Bruno
2015-04-01
One of the primary goals of agricultural management is to increase the amount of crop produced per unit of fertilizer and water used. World record corn yields demonstrated that water use efficiency can increase fourfold with improved agronomic management and cultivars able to tolerate high densities. Planting crops with higher plant density can lead to significant yield increases, and increase plant transpiration vs. soil water evaporation. Precision agriculture technologies have been adopted for the last twenty years but seldom have the data collected been converted to information that led farmers to different agronomic management. These methods are intuitively appealing, but yield maps and other spatial layers of data need to be properly analyzed and interpreted to truly become valuable. Current agro-mechanic and geospatial technologies allow us to implement a spatially variable plan for agronomic inputs including seeding rate, cultivars, pesticides, herbicides, fertilizers, and water. Crop models are valuable tools to evaluate the impact of management strategies (e.g., cover crops, tile drains, and genetically-improved cultivars) on yield, soil carbon sequestration, leaching and greenhouse gas emissions. They can help farmers identify adaptation strategies to current and future climate conditions. In this paper I illustrate the key role that precision agriculture technologies (yield mapping technologies, within season soil and crop sensing), crop modeling and weather can play in dealing with the impact of climate variability on soil ecohydrologic processes. Case studies are presented to illustrate this concept.
Water management can reinforce plant competition in salt-affected semi-arid wetlands
NASA Astrophysics Data System (ADS)
Coletti, Janaine Z.; Vogwill, Ryan; Hipsey, Matthew R.
2017-09-01
The diversity of vegetation in semi-arid, ephemeral wetlands is determined by niche availability and species competition, both of which are influenced by changes in water availability and salinity. Here, we hypothesise that ignoring physiological differences and competition between species when managing wetland hydrologic regimes can lead to a decrease in vegetation diversity, even when the overall wetland carrying capacity is improved. Using an ecohydrological model capable of resolving water-vegetation-salt feedbacks, we investigate why water surface and groundwater management interventions to combat vegetation decline have been more beneficial to Casuarina obesa than to Melaleuca strobophylla, the co-dominant tree species in Lake Toolibin, a salt-affected wetland in Western Australia. The simulations reveal that in trying to reduce the negative effect of salinity, the management interventions have created an environment favouring C. obesa by intensifying the climate-induced trend that the wetland has been experiencing of lower water availability and higher root-zone salinity. By testing alternative scenarios, we show that interventions that improve M. strobophylla biomass are possible by promoting hydrologic conditions that are less specific to the niche requirements of C. obesa. Modelling uncertainties were explored via a Markov Chain Monte Carlo (MCMC) algorithm. Overall, the study demonstrates the importance of including species differentiation and competition in ecohydrological models that form the basis for wetland management.
Ecohydrological role of biological soil crusts across a gradient in levels of development
Whitney, Kristen M.; Vivoni, Enrique R.; Duniway, Michael C.; Bradford, John B.; Reed, Sasha C.; Belnap, Jayne
2017-01-01
Though biological soil crusts (biocrusts) form abundant covers in arid and semiarid regions, their competing effects on soil hydrologic conditions are rarely accounted for in models. This study presents the modification of a soil water balance model to account for the presence of biocrusts at different levels of development (LOD) and their impact on one-dimensional hydrologic processes during warm and cold seasons. The model is developed, tested, and applied to study the hydrologic controls of biocrusts in context of a long-term manipulative experiment equipped with meteorological and soil moisture measurements in a Colorado Plateau ecosystem near Moab, Utah. The climate manipulation treatments resulted in distinct biocrust communities, and model performance with respect to soil moisture was assessed in experimental plots with varying LOD as quantified through a field-based roughness index (RI). Model calibration and testing yielded excellent comparisons to observations and smooth variations of biocrust parameters with RI approximated through simple regressions. The model was then used to quantify how LOD affects soil infiltration, evapotranspiration, and runoff under calibrated conditions and in simulation experiments with gradual modifications in biocrust porosity and hydraulic conductivity. Simulation results show that highly developed biocrusts modulate soil moisture nonlinearly with LOD by altering soil infiltration and buffering against evapotranspiration losses, with small impacts on runoff. The nonlinear and threshold variations of the soil water balance in the presence of biocrusts of varying LOD helps explain conflicting outcomes of various field studies and sheds light on the ecohydrological role of biocrusts in arid and semiarid ecosystems.
Both riverine detritus and dissolved nutrients drive lagoon fisheries
NASA Astrophysics Data System (ADS)
Bonthu, Subbareddy; Ganguly, Dipnarayan; Ramachandran, Purvaja; Ramachandran, Ramesh; Pattnaik, Ajit K.; Wolanski, Eric
2016-12-01
The net ecosystem metabolism in lagoons has often been estimated from the net budget of dissolved nutrients. Such is the case of the LOICZ estuarine biogeochemistry nutrient budget model that considers riverine dissolved nutrients, but not riverine detritus. However the neglect of detritus can lead to inconsistencies; for instance, it results in an estimate of 5-10 times more seaward export of nutrients than there is import from rivers in Chilika Lagoon, India. To resolve that discrepancy the UNESCO estuarine ecohydrology model, that considers both dissolved nutrients and detritus, was used and, for Chilika Lagoon, it reproduced successfully the spatial distribution of salinity, dissolved nutrients, phytoplankton and zooplankton as well as the fish yield data. Thus the model suggests that the riverine input of both detritus and dissolved nutrients supports the pelagic food web. The model also reproduces well the observation of decreased fish yield when the mouth of the lagoon was choked in the 1990s, demonstrating the importance of the physics that determine the flushing rate of waterborne matter. Thus, both farming in the watershed by driving the nutrient and detritus inputs to the lagoon, and dredging and engineering management of the mouth by controlling the flushing rate of the lagoon, have a major influence on fish stocks in the lagoon.
A spatiotemporal analysis of hydrological patterns based on a wireless sensor network system
NASA Astrophysics Data System (ADS)
Plaza, F.; Slater, T. A.; Zhong, X.; Li, Y.; Liang, Y.; Liang, X.
2017-12-01
Understanding complicated spatiotemporal patterns of eco-hydrological variables at a small scale plays a profound role in improving predictability of high resolution distributed hydrological models. However, accurate and continuous monitoring of these complex patterns has become one of the main challenges in the environmental sciences. Wireless sensor networks (WSNs) have emerged as one of the most widespread potential solutions to achieve this. This study presents a spatiotemporal analysis of hydrological patterns (e.g., soil moisture, soil water potential, soil temperature and transpiration) based on observational data collected from a dense multi-hop wireless sensor network (WSN) in a steep-forested testbed located in Southwestern Pennsylvania, USA. At this WSN testbed with an approximate area of 3000 m2, environmental variables are collected from over 240 sensors that are connected to more than 100 heterogeneous motes. The sensors include the soil moisture of EC-5, soil temperature and soil water potential of MPS-1 and MPS-2, and sap flow sensors constructed in house. The motes consist of MICAz, IRIS and TelosB. In addition, several data loggers have been installed along the site to provide a comparative reference to the WSN measurements for the purpose of checking the WSN data quality. The edaphic properties monitored by the WSN sensors show strong agreement with the data logger measurements. Moreover, sap flow measurements, scaled to tree stand transpiration, are found to be reasonable. This study also investigates the feasibility and roles that these sensor measurements play in improving the performance of high-resolution distributed hydrological models. In particular, we explore this using a modified version of the Distributed Hydrological Soil Vegetation Model (DHSVM).
Stormwater pollution in suburban ecosystems: the role of residential rooftop connectivity
NASA Astrophysics Data System (ADS)
Miles, B.; Band, L. E.
2013-12-01
Stormwater pollution has been recognized as a major concern of urban sustainability. Understanding interactions between urban landcover and stormwater pollution can be advanced through the development of spatially explicit ecohydrology models that simulate fine-scale residential stormwater management; this requires high-resolution LIDAR and landcover data, as well as field observation at the household scale. The objective of my research is to improve understanding of how parcel-scale heterogeneity of impervious and previous surfaces effect stormwater volume. In support of this objective, I present results from work to: (1) perform field observation of existing patterns of residential rooftop connectivity to nearby impervious surfaces; (2) modify the Regional Hydro-Ecological Simulation System (RHESSys) to explicitly represent non-topographic surface flow routing of rooftops; and (3) develop RHESSys models for urban-suburban headwater watersheds in Baltimore, MD (as part of the Baltimore Ecosystem Study (BES) NSF Long-Term Ecological Research (LTER) site) and Durham, NC (as part of the NSF Urban Long-Term Research Area (ULTRA) program). I use these models to simulate stormwater volume resulting from both baseline residential rooftop impervious connectivity and for disconnection scenarios (e.g. roof drainage to lawn v. engineered rain garden, upslope v. riparian). This research will help to improve representation of fine-scale surface flow features in urban ecohydrology modeling while informing policy decisions over how best to implement parcel-scale retrofits in existing neighborhoods to reduce stormwater pollution at the watershed scale.
Runoff Generation Mechanisms and Mean Transit Time in a High-Elevation Tropical Ecosystem
NASA Astrophysics Data System (ADS)
Mosquera, G.
2015-12-01
Understanding runoff generation processes in tropical mountainous regions remains poorly understood, particularly in ecosystems above the tree line. Here, we provide insights on the process dominating the ecohydrology of the tropical alpine biome (i.e., páramo) of the Zhurucay River Ecohydrological Observatory. The study site is located in south Ecuador between 3400-3900 m in elevation. We used a nested monitoring system with eight catchments (20-753 ha) to measure hydrometric data since December 2010. Biweekly samples of rainfall, streamflow, and soil water at low tension were collected for three years (May 2011-May2014) and analyzed for water stable isotopes. We conducted an isotopic characterization of rainfall, streamflow, and soil waters to investigate runoff generation. These data were also integrated into a lumped model to estimate the mean transit time (MTT) and to investigate landscape features that control its variability. The isotopic characterization evidenced that the water stored in the shallow organic horizon of the Histosol soils (Andean wetlands) located near the streams is the major contributor of water to the streams year-round, whereas the water draining through the hillslope soils, the Andosols, regulates discharge by recharging the wetlands at the valley bottoms. The MTT evaluation indicated relatively short MTTs (0.15-0.73 yr) linked to short subsurface flow paths of water. We also found evidence for topographic controls on the MTT variability. These results reveal that: 1) the ecohydrology of this ecosystem is dominated by shallow subsurface flow in the organic horizon of the soils and 2) the combination of the high storage capacity of the Andean wetlands and the slope of the catchments controls runoff generation and the high water regulation capacity of the ecosystem.
NASA Astrophysics Data System (ADS)
Zaki, M. T.; Abdul-Aziz, O. I.; Ishtiaq, K. S.
2017-12-01
Wetlands are considered one of the most productive and ecologically valuable ecosystems on earth. We investigated the multi-temporal linkages of net ecosystem exchange (NEE) with the relevant climatic and ecohydrological drivers for a Florida Everglades short-hydroperiod freshwater wetland. Hourly NEE observations and the associated driving variables during 2008-12 were collected from the AmeriFlux and EDEN databases, and then averaged for the four temporal scales (1-day, 8-day, 15-day, and 30-day). Pearson correlation and factor analysis were employed to identify the interrelations and grouping patterns among the participatory variables for each time scale. The climatic and ecohydrological linkages of NEE were then reliably estimated using bootstrapped (1000 iterations) partial least squares regressions by resolving multicollinearity. The analytics identified four bio-physical components exhibiting relatively robust interrelations and grouping patterns with NEE across the temporal scales. In general, NEE was most strongly linked with the `radiation-energy (RE)' component, while having a moderate linkage with the `temperature-hydrology (TH)' and `aerodynamic (AD)' components. However, the `ambient atmospheric CO2 (AC)' component was very weakly linked to NEE. Further, RE and TH had a decreasing trend with the increasing time scales (1-30 days). In contrast, the linkages of AD and AC components increased from 1-day to 8-day scales, and then remained relatively invariable at the longer scales of aggregation. The estimated linkages provide insights into the dominant biophysical process components and drivers of ecosystem carbon in the Everglades. The invariant linking pattern and linkages would help to develop low-dimensional models to reliably predict CO2 fluxes from the tidal freshwater wetlands.
NASA Astrophysics Data System (ADS)
Lepore, C.; Arnone, E.; Noto, L. V.; Sivandran, G.; Bras, R. L.
2013-09-01
This paper presents the development of a rainfall-triggered landslide module within an existing physically based spatially distributed ecohydrologic model. The model, tRIBS-VEGGIE (Triangulated Irregular Networks-based Real-time Integrated Basin Simulator and Vegetation Generator for Interactive Evolution), is capable of a sophisticated description of many hydrological processes; in particular, the soil moisture dynamics are resolved at a temporal and spatial resolution required to examine the triggering mechanisms of rainfall-induced landslides. The validity of the tRIBS-VEGGIE model to a tropical environment is shown with an evaluation of its performance against direct observations made within the study area of Luquillo Forest. The newly developed landslide module builds upon the previous version of the tRIBS landslide component. This new module utilizes a numerical solution to the Richards' equation (present in tRIBS-VEGGIE but not in tRIBS), which better represents the time evolution of soil moisture transport through the soil column. Moreover, the new landslide module utilizes an extended formulation of the factor of safety (FS) to correctly quantify the role of matric suction in slope stability and to account for unsaturated conditions in the evaluation of FS. The new modeling framework couples the capabilities of the detailed hydrologic model to describe soil moisture dynamics with the infinite slope model, creating a powerful tool for the assessment of rainfall-triggered landslide risk.
An Investigation Into the Ecohydrology of Riparian Wetlands Along the Gila River, NM, USA
NASA Astrophysics Data System (ADS)
Samson, J.; Stone, M. C.
2013-12-01
The dynamism of the Gila River, in southwestern New Mexico, USA, has resulted in the creation of a topographically diverse floodplain that supports an array of riparian wetlands. The purpose of this study is to investigate the ecohydrologic and ecohydraulic processes of two of these wetlands, in order to predict their potential response to anthropogenic or natural changes in hydrology. One represents a natural wetland and the other a wetland that exists only as a result of an anthropogenic modification to the river system. A network of 30 wells and 2 weather stations were installed in early 2013 to provide a high resolution of data on surface water and ground water hydrologic conditions. Phreatic surface contour maps were produced to aid in the visualization of sub-surface gradients. Based on these results, an electrical resistivity investigation was conducted to identify paleoflow channels as well as depth to bedrock and other potential areas of interest. These data formed the development of three dimensional ModFlow models that were used to investigate potential future stream flow scenarios on wetland hydrology. The model outputs are being used in tandem with the results of quarterly ecological surveys on vegetation, algae, benthic, and bird communities, to make predictions of potential changes in community structure and function.
Observing Semi-Arid Ecoclimates across Mountain Gradients in the Great Basin, USA
NASA Astrophysics Data System (ADS)
Strachan, Scotty
Observation of climate and ecohydrological variables in mountain systems is a necessary (if challenging) endeavor for modern society. Water resources are often intimately tied to mountains, and high elevation environments are frequently home to unique landscapes and biota with limited geographical distributions. This is especially true in the temperate and semi-arid mountains of the western United States, and specifically the Great Basin. Stark contrasts in annual water balance and ecological populations are visible across steep elevational gradients in the region; and yet the bulk of our historical knowledge of climate and related processes comes from lowland observations. Interpolative models that strive to estimate conditions in mountains using existing datasets are often found to be inaccurate, making future projections of mountain climate and ecosystem response suspect. This study details the results of high-resolution topographically-diverse ecohydrological monitoring, and describes the character and seasonality of basic climatic variables such as temperature and precipitation as well as their impact on soil moisture and vegetation during the 2012-2015 drought sequence. Relationships of topography (elevation/aspect) to daily and seasonal temperatures are shown. Tests of the PRISM temperature model are performed at the large watershed scale, revealing magnitudes, modes, and potential sources of bias that could dramatically affect derivative scientific conclusions. A new method of precipitation phase partitioning to detect and quantify frozen precipitation on a sub-daily basis is described. Character of precipitation from sub-daily to annual scales is quantified across all major Great Basin vegetation/elevation zones, and the relationship of elevation to precipitation phase, intensity, and amount is explored. Water-stress responses of Great Basin conifers including Pinus flexilis, Pinus longaeva, and Pinus ponderosa are directly observed, showing potential differences in drought adaptation. Overall results highlight the seasonal flexibility of semi-arid conifer water use, as well as the tendency of topoclimate to buffer mountain ecosystems from extreme seasonal events. Methods and practices used in this study are globally applicable to mountain observatory efforts; especially the themes of topographic diversity, siting design, and leverage of technology and cyberinfrastructure.
NASA Astrophysics Data System (ADS)
Dialynas, Y. G.; Arnone, E.; Noto, L. V.; Bras, R. L.
2013-12-01
Slope stability depends on geotechnical and hydrological factors that exhibit wide natural spatial variability, yet sufficient measurements of the related parameters are rarely available over entire study areas. The uncertainty associated with the inability to fully characterize hydrologic behavior has an impact on any attempt to model landslide hazards. This work suggests a way to systematically account for this uncertainty in coupled distributed hydrological-stability models for shallow landslide hazard assessment. A probabilistic approach for the prediction of rainfall-triggered landslide occurrence at basin scale was implemented in an existing distributed eco-hydrological and landslide model, tRIBS-VEGGIE -landslide (Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator - VEGetation Generator for Interactive Evolution). More precisely, we upgraded tRIBS-VEGGIE- landslide to assess the likelihood of shallow landslides by accounting for uncertainty related to geotechnical and hydrological factors that directly affect slope stability. Natural variability of geotechnical soil characteristics was considered by randomizing soil cohesion and friction angle. Hydrological uncertainty related to the estimation of matric suction was taken into account by considering soil retention parameters as correlated random variables. The probability of failure is estimated through an assumed theoretical Factor of Safety (FS) distribution, conditioned on soil moisture content. At each cell, the temporally variant FS statistics are approximated by the First Order Second Moment (FOSM) method, as a function of parameters statistical properties. The model was applied on the Rio Mameyes Basin, located in the Luquillo Experimental Forest in Puerto Rico, where previous landslide analyses have been carried out. At each time step, model outputs include the probability of landslide occurrence across the basin, and the most probable depth of failure at each soil column. The use of the proposed probabilistic approach for shallow landslide prediction is able to reveal and quantify landslide risk at slopes assessed as stable by simpler deterministic methods.
NASA Astrophysics Data System (ADS)
Pavao-zuckerman, M.; Pope, A.; Chan, D.; Curl, K.; Gimblett, H. R.; Hough, M.; House-Peters, L.; Lee, R.; Scott, C. A.
2012-12-01
Riparian corridors in arid regions are highly valued for their relative scarcity, and because healthy riparian systems support high levels of biodiversity, can meet human demand for water and water-related resources and functions. Our team is taking a transdiciplinary social-ecological systems approach to assessing riparian corridor resilience in two watersheds (the San Pedro River in USA and Mexico, and the Rio San Miguel in Mexico) through a project funded by the NSF CNH program ("Strengthening Resilience of Arid Region Riparian Corridors"). Multiple perspectives are integrated in the project, including hydrology, ecology, institutional dynamics, and decision making (at the level of both policy and individual choice), as well as the perspectives of various stakeholder groups and individuals in the watersheds. Here we discuss initial findings that center around linking changes in ecohydrology and livelihoods related to decisions in response to climatic, ecological, and social change. The research team is implementing two approaches to integrate the disparate disciplines participating in the research (and the varied perspectives among the stakeholders in this binational riparian context): (1) ecosystem service assessment, and (2) agent based model simulation. We are developing an ecosystem service perspective that provides a bridge between ecological dynamics in the landscape and varied stakeholder perspectives on the implications of ecohydrology for well-being (economic, cultural, ecological). Services are linked on one hand to the spatial patterns of traits of individuals within species (allowing a more predictive application of ecosystem services as they vary with community change in time), and to stakeholder perspectives (facilitating integration of ecosystem services into our understanding of decision making processes) in a case study in the San Pedro River National Conservation Area. The agent- based model (ABM) approach incorporates the influence of human decision-making on spatially-explicit landscapes in a mechanistic way, taking into account social interaction, adaptation, and decision-making at different levels, allowing individual stakeholders to make decisions based on their unique perceptions of their environment, be it economic, social, or ecological awareness. Initial parameterization of the ABM proceeds from a case study centered in the town of Rayón, Sonora, Mexico, where semi-structured interviews were used to elicit perceptions by water resource users of CNH function, change, and solutions relating to livelihood changes in response to several drivers. In both case studies, we see the potential and limitations for an approach to adaptive management and decision support related to water resources that links ecosystem services and agent-based modeling. Methodologically, synthetic approaches such as these may allow coupling of systems for improved assessment and analysis, while at the same time lack a connection to the perspectives of water users and managers on the ground. There is thus potential for a either a loss of system resilience in the face of external change, or an opportunity to increase system resilience by building off perspectives already in place within these coupled socio-ecohydrologic systems.
NASA Astrophysics Data System (ADS)
Nakayama, T.; Maksyutov, S. S.
2016-12-01
Inland waters including rivers, lakes, and groundwater are suggested to act as a transport pathway for water and dissolved substances, and play some role in continental biogeochemical cycling (Cole et al., 2007; Battin et al., 2009). The authors have developed process-based National Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama, 2014, 2015, etc.), which includes feedback between hydrologic-geomorphic-ecological processes. In this study, NICE was further developed to couple with various biogeochemical cycle models in biosphere, those for water quality in aquatic ecosystems, and those for carbon weathering, etc. (NICE-BGC) (Nakayama, accepted). The new model incorporates connectivity of the biogeochemical cycle accompanied by hydrologic cycle between surface water and groundwater, hillslopes and river networks, and other intermediate regions. The model also includes reaction between inorganic and organic carbons, and its relation to nitrogen and phosphorus in terrestrial-aquatic continuum. The model results of CO2 evasion to the atmosphere, sediment storage, and carbon transport to the ocean (DOC, POC, and DIC flux) were reasonably in good agreement with previous compiled data. The model also showed carbon budget in major river basins and in each continent in global scale. In order to decrease uncertainty about carbon cycle, it became clear the previous empirical estimation by compiled data should be extended to this process-oriented model and higher resolution data to further clarify mechanistic interplay between inorganic and organic carbon and its relationship to nitrogen and phosphorus in terrestrial-aquatic linkages. NICE-BGC would play important role to re-evaluate greenhouse gas budget of the biosphere, and to bridge gap between top-down and bottom-up approaches (Battin et al., 2009; Regnier et al., 2013).
NASA Astrophysics Data System (ADS)
Schmalz, Britta; Kiesel, Jens; Kruse, Marion; Pfannerstill, Matthias; Sheludkov, Artyom; Khoroshavin, Vitaliy; Veshkurseva, Tatyana; Müller, Felix; Fohrer, Nicola
2015-04-01
For discussing and planning sustainable land management of river basins, stakeholders need suitable information on spatio-temporal patterns of hydrological components and ecosystem services. The ecosystem services concept, i.e., services provided by ecosystems that contribute to human welfare benefits, contributes comprehensive information for sustainable river management. This study shows an approach to use ecohydrological modelling results for quantifying and assessing water-related ecosystem services in three lowland river basins in Western Siberia, a region which is of global significance in terms of carbon sequestration, agricultural production and biodiversity preservation. Using the ecohydrological model SWAT, the three basins Pyschma (16762 km²), Vagai (3348 km²) and Loktinka (373 km²) were modelled following a gradient from the landscape units taiga, pre-taiga to forest steppe. For a correct representation of the Siberian lowland hydrology, the consideration of snow melt and retention of surface runoff as well as the implementation of a second groundwater aquifer was of great importance. Good to satisfying model performances were obtained for the extreme hydrological conditions. The simulated SWAT output variables of different hydrological processes were used as indicators for the two regulating services water flow and erosion regulation. The model results were translated into a relative ecosystem service valuation scale. The resulting ecosystem service maps show different spatial and seasonal patterns. Although the high resolution modelling results are averaged out within the aggregated relative valuation scale, seasonal differences can be depicted: during snowmelt, low relevant regulation can be determined, especially for water flow regulation, but a very high relevant regulation was calculated for the vegetation period during summer and for the winter period. The SWAT model serves as a suitable quantification method for the assessment of water-related ecosystem services on different spatial scales and ecoregions of the Western Siberian lowlands.
Challenging issues of urban biodiversity related to ecohydrology.
Mendiondo, E M
2008-11-01
This paper aims to outline challenging issues of urban biodiversity in order to address yardsticks related to ecohydrology, and with a complementary approach to eutrophication impacts. The vision of environmental services, urbanization's consequences and management aspects of water governance are also depicted. Factors of river restoration, environmental tradeoffs and socio-cultural constrains are envisaged through concept questions towards emerging aspects that figure out methodological guides, strategic challenges for stakeholders and inter-disciplinary opportunities. Examples from case studies on restoration and management, from experiences and lessons learned, are enclosed, with brief discussions and literature citation.
Application of time-lapse ERT to characterize soil-water-disease interactions of young citrus trees
NASA Astrophysics Data System (ADS)
Peddinti, S. R.; Kbvn, D. P.; Ranjan, S.; R M, P. G.
2016-12-01
Vidarbha region in Maharashtra, India is witnessing a continuous decrease in orange crop due to the propagation of `Phytopthora root rot', a water mold disease. Under favorable conditions, the disease causing bacteria can attack the plant root system and propagates to the surface (where first visual impression is made), making difficult to regain the plant health. This research aims at co-relating eco-hydrological fluxes with disease sensing parameters of orange trees. Two experimental plots around a healthy-young and declined-young orange trees were selected for our analysis. A 3-dimentional electrical resistivity tomography (ERT) (Figure) was carried at each plot to quantify the soil moisture distribution at a vadose zone. Pedo-electric relations were obtained considering modified Archie's law parameters. ERT derived moisture data was validated with time domain reflectometry (TDR) point observations. Soil moisture profiles derived from ERT were observed to be differ marginally between the two plots. Disease quantification was done by estimating the density of Phytopthora spp. inoculum in soils sampled along the root zone. Identification of Phytopthora spp. was done in the laboratory using taxonomic and morphologic criteria of the colonies. Spatio-temporal profiles of soil moisture and inoculum density were then co-related to comment on the eco-hydrological fluxes contributing to the health propagation of root rot in orange tree for implementing effective water management practices.
Ecohydrologic role of solar radiation on landscape evolution
NASA Astrophysics Data System (ADS)
Yetemen, Omer; Istanbulluoglu, Erkan; Flores-Cervantes, J. Homero; Vivoni, Enrique R.; Bras, Rafael L.
2015-02-01
Solar radiation has a clear signature on the spatial organization of ecohydrologic fluxes, vegetation patterns and dynamics, and landscape morphology in semiarid ecosystems. Existing landscape evolution models (LEMs) do not explicitly consider spatially explicit solar radiation as model forcing. Here, we improve an existing LEM to represent coupled processes of energy, water, and sediment balance for semiarid fluvial catchments. To ground model predictions, a study site is selected in central New Mexico where hillslope aspect has a marked influence on vegetation patterns and landscape morphology. Model predictions are corroborated using limited field observations in central NM and other locations with similar conditions. We design a set of comparative LEM simulations to investigate the role of spatially explicit solar radiation on landscape ecohydro-geomorphic development under different uplift scenarios. Aspect-control and network-control are identified as the two main drivers of soil moisture and vegetation organization on the landscape. Landscape-scale and long-term implications of these short-term ecohdrologic patterns emerged in modeled landscapes. As north facing slopes (NFS) get steeper by continuing uplift they support erosion-resistant denser vegetation cover which leads to further slope steepening until erosion and uplift attains a dynamic equilibrium. Conversely, on south facing slopes (SFS), as slopes grow with uplift, increased solar radiation exposure with slope supports sparser biomass and shallower slopes. At the landscape scale, these differential erosion processes lead to asymmetric development of catchment forms, consistent with regional observations. Understanding of ecohydrogeomorphic evolution will improve to assess the impacts of past and future climates on landscape response and morphology.
Co-evolution of landforms and vegetation under the influence of orographic precipitation
NASA Astrophysics Data System (ADS)
Yetemen, Omer; Srivastava, Ankur; Saco, Patricia M.
2017-04-01
Landforms are controlled by the interaction between tectonics, climate, and vegetation. Orography induced precipitation not only has implications on erosion resistance through vegetation dynamics but also affects erosive forces through modifying runoff production. The implications of elevated precipitation due to orography on landscape morphology requires a numerical framework that integrates a range of ecohydrologic and geomorphic processes to explore the competition between erosive and resisting forces in catchments where pronounced orographic precipitation prevails. In this study, our aim was to realistically represent ecohydrology driven by orographic precipitation and explore its implications on landscape evolution through a numerical model. The model was used to investigate how ecohydro-geomorphic differences caused by differential precipitation patterns as a result of orographic influence and rain-shadow effect lead to differences in the organization of modelled topography, soil moisture, and plant biomass. We use the CHILD landscape evolution model equipped with a vegetation dynamics component that explicitly tracks above- and below-ground biomass, and a precipitation forcing component that simulates rainfall as a function of elevation and orientation. The preliminary results of the model have shown how the competition between an increased shear stress through runoff production and an enhanced resistance force due to denser canopy cover, shape the landscape. Hillslope asymmetry between polar- and equator-facing hillslopes are enhanced (diminished) when they coincide with windward (leeward) side of the mountain series. The mountain divide accommodates itself by migrating toward the windward direction to increase (decrease) hillslope gradients on windward (leeward) slopes. These results clearly demonstrate the strong coupling between landform evolution and climate processes.
NEON: High Frequency Monitoring Network for Watershed-Scale Processes and Aquatic Ecology
NASA Astrophysics Data System (ADS)
Vance, J. M.; Fitzgerald, M.; Parker, S. M.; Roehm, C. L.; Goodman, K. J.; Bohall, C.; Utz, R.
2014-12-01
Networked high frequency hydrologic and water quality measurements needed to investigate physical and biogeochemical processes at the watershed scale and create robust models are limited and lacking standardization. Determining the drivers and mechanisms of ecological changes in aquatic systems in response to natural and anthropogenic pressures is challenging due to the large amounts of terrestrial, aquatic, atmospheric, biological, chemical, and physical data it requires at varied spatiotemporal scales. The National Ecological Observatory Network (NEON) is a continental-scale infrastructure project designed to provide data to address the impacts of climate change, land-use, and invasive species on ecosystem structure and function. Using a combination of standardized continuous in situ measurements and observational sampling, the NEON Aquatic array will produce over 200 data products across its spatially-distributed field sites for 30 years to facilitate spatiotemporal analysis of the drivers of ecosystem change. Three NEON sites in Alabama were chosen to address linkages between watershed-scale processes and ecosystem changes along an eco-hydrological gradient within the Tombigbee River Basin. The NEON Aquatic design, once deployed, will include continuous measurements of surface water physical, chemical, and biological parameters, groundwater level, temperature and conductivity and local meteorology. Observational sampling will include bathymetry, water chemistry and isotopes, and a suite of organismal sampling from microbes to macroinvertebrates to vertebrates. NEON deployed a buoy to measure the temperature profile of the Black Warrior River from July - November, 2013 to determine the spatiotemporal variability across the water column from a daily to seasonal scale. In July 2014 a series of water quality profiles were performed to assess the contribution of physical and biogeochemical drivers over a diurnal cycle. Additional river transects were performed across our site reach to capture the spatial variability of surface water parameters. Our preliminary data show differing response times to precipitation events and diurnal processes informing our infrastructure designs and sampling protocols aimed at providing data to address the eco-hydrological gradient.
NASA Astrophysics Data System (ADS)
Bowen, Gabriel J.; Kennedy, Casey D.; Liu, Zhongfang; Stalker, Jeremy
2011-12-01
The stable H and O isotope composition of river and stream water records information on runoff sources and land-atmosphere water fluxes within the catchment and is a potentially powerful tool for network-based monitoring of ecohydrological systems. Process-based hydrological models, however, have thus far shown limited power to replicate observed large-scale variation in U.S. surface water isotope ratios. Here we develop a geographic information system-based model to predict long-term annual average surface water isotope ratios across the contiguous United States. We use elevation-explicit, gridded precipitation isotope maps as model input and data from a U.S. Geological Survey monitoring program for validation. We find that models incorporating monthly variation in precipitation-evapotranspiration (P-E) amounts account for the majority (>89%) of isotopic variation and have reduced regional bias relative to models that do not consider intra-annual P-E effects on catchment water balance. Residuals from the water balance model exhibit strong spatial patterning and correlations that suggest model residuals isolate additional hydrological signal. We use interpolated model residuals to generate optimized prediction maps for U.S. surface water δ2H and δ18O values. We show that the modeled surface water values represent a relatively accurate and unbiased proxy for drinking water isotope ratios across the United States, making these data products useful in ecological and criminal forensics applications that require estimates of the local environmental water isotope variation across large geographic regions.
Dynamics of riparian plant communities, a new integrative ecohydrological modelling approach
NASA Astrophysics Data System (ADS)
García-Arias, Alicia; Francés, Félix
2015-04-01
The Riparian Vegetation Dynamic Model (RVDM) integrates the impacts of the hydrological extremes on the vegetation, the vegetation evolution and the competition between different vegetation classes. Considering a daily time step and a detailed spatial resolution, RVDM allows the analysis of the dynamic vegetation distribution in riverine areas during a simulated period. The riparian vegetation wellbeing and distribution are considered to be conditioned by the river hydrodynamics in RVDM. Using biomass loss functions, the stress caused by hydrological extreme events is translated into changes on the distribution of the vegetation. These extreme events are considered as removal and asphyxia associated to floods, and wilt related to droughts. The variables considered to determine the impacts are water shear stress, water table elevation and the soil moisture, respectively. RVDM includes the modelling of the natural evolution of the vegetation. The potential recruitment in bared areas, the plant growth and the succession/retrogression between plant categories are included in the model conceptualization. The recruitment takes place when seeds presence, germination and seedlings establishment overcome, so it depends on the plant reproductive period and the environmental conditions. Light use efficiency determines the vegetation growth in terms of biomass production while the soil moisture limits this biomass production and the successional evolution. Finally, the competition modelling considers the advantages between successional patterns under the specific soil moisture conditions of each unit area. Several meteorological, morphological, hydrological and hydraulic inputs are required. In addition, an initial vegetation condition is required for RVDM to start the simulation period. The model results on new vegetation maps that are considered as new inputs in the next model step. Following this approach the model simulates iteratively al the processes day by day. This model represents an improvement respect to previous models in the way of understanding the riparian dynamics. Currently, RVDM has been already implemented in a Mediterranean semi-arid river reach and a sensitivity analysis to analyze the influence of the different vegetation parameters has been performed. The good results obtained indicate that the model is suitable for scenarios analysis and for environmental flows establishment.
River networks as ecological corridors: A coherent ecohydrological perspective
NASA Astrophysics Data System (ADS)
Rinaldo, Andrea; Gatto, Marino; Rodriguez-Iturbe, Ignacio
2018-02-01
This paper draws together several lines of argument to suggest that an ecohydrological framework, i.e. laboratory, field and theoretical approaches focused on hydrologic controls on biota, has contributed substantially to our understanding of the function of river networks as ecological corridors. Such function proves relevant to: the spatial ecology of species; population dynamics and biological invasions; the spread of waterborne disease. As examples, we describe metacommunity predictions of fish diversity patterns in the Mississippi-Missouri basin, geomorphic controls imposed by the fluvial landscape on elevational gradients of species' richness, the zebra mussel invasion of the same Mississippi-Missouri river system, and the spread of proliferative kidney disease in salmonid fish. We conclude that spatial descriptions of ecological processes in the fluvial landscape, constrained by their specific hydrologic and ecological dynamics and by the ecosystem matrix for interactions, i.e. the directional dispersal embedded in fluvial and host/pathogen mobility networks, have already produced a remarkably broad range of significant results. Notable scientific and practical perspectives are thus open, in the authors' view, to future developments in ecohydrologic research.
Dryland ecohydrology and climate change: critical issues and technical advances
NASA Astrophysics Data System (ADS)
Wang, L.; D'Odorico, P.; Evans, J. P.; Eldridge, D.; McCabe, M. F.; Caylor, K. K.; King, E. G.
2012-04-01
Drylands cover about 40% of the terrestrial land surface and account for approximately 40% of global net primary productivity. Water is fundamental to the biophysical processes that sustain ecosystem function and food production, particularly in drylands, where a tight coupling exists between water resource availability and ecosystem productivity, surface energy balance, and biogeochemical cycles. Currently, drylands support at least 2 billion people and comprise both natural and managed ecosystems. In this synthesis, we identify some current critical issues in the understanding of dryland systems and discuss how arid and semiarid environments are responding to the changes in climate and land use. Specifically, we focus on dryland agriculture and food security, dryland population growth, desertification, shrub encroachment and dryland development issues as factors of change requiring increased understanding and management. We also review recent technical advances in the quantitative assessment of human versus climate change related drivers of desertification, evapotranspiration partitioning using field deployable stable water isotope systems and the remote sensing of key ecohydrological processes. These technological advances provide new tools that assist in addressing major critical issues in dryland ecohydrology under climate change
Ecohydrologic Dynamics in Areas of Complex Topography in Semiarid Ecosystems
NASA Astrophysics Data System (ADS)
Ivanov, V. Y.; Bras, R. L.; Vivoni, E. R.
2008-12-01
Topography strongly affects the state and distribution of vegetation and this control is normally considered to operate through the regulation of the incoming solar radiation and lateral redistribution of water and elements. One of the areas of active research is how plants adjust to terrain effects relative to their location in a landscape and what the implications are for the spatial distribution of the water balance. This study emphasizes the coupled nature of interactions among vegetation-water-energy dynamics and their corresponding controls in complex topography of a semiarid ecosystem. These dynamics are investigated by constructing a coupled modeling system, tRIBS+VEGGIE, based on physical, biochemical, or mechanistic representation of individual processes. In a set of numerical experiments, linkages between terrain attributes, patterns of grass and shrub productivity, and water balance components are examined. For different imposed regimes of lateral water transfer, regions of relative vegetation "favorability" are identified. Their principal controlling mechanisms, as mediated by topographic features of the landscape, are investigated. It is argued that the long-term effects of site-specific and non-local terrain characteristics are superimposed and the key features of the superposition appear to be of the same form, irrespective of the soil hydraulic type or the actual water transport mechanism involved.
NASA Astrophysics Data System (ADS)
van Walsum, P. E. V.; Supit, I.
2012-06-01
Hydrologic climate change modelling is hampered by climate-dependent model parameterizations. To reduce this dependency, we extended the regional hydrologic modelling framework SIMGRO to host a two-way coupling between the soil moisture model MetaSWAP and the crop growth simulation model WOFOST, accounting for ecohydrologic feedbacks in terms of radiation fraction that reaches the soil, crop coefficient, interception fraction of rainfall, interception storage capacity, and root zone depth. Except for the last, these feedbacks are dependent on the leaf area index (LAI). The influence of regional groundwater on crop growth is included via a coupling to MODFLOW. Two versions of the MetaSWAP-WOFOST coupling were set up: one with exogenous vegetation parameters, the "static" model, and one with endogenous crop growth simulation, the "dynamic" model. Parameterization of the static and dynamic models ensured that for the current climate the simulated long-term averages of actual evapotranspiration are the same for both models. Simulations were made for two climate scenarios and two crops: grass and potato. In the dynamic model, higher temperatures in a warm year under the current climate resulted in accelerated crop development, and in the case of potato a shorter growing season, thus partly avoiding the late summer heat. The static model has a higher potential transpiration; depending on the available soil moisture, this translates to a higher actual transpiration. This difference between static and dynamic models is enlarged by climate change in combination with higher CO2 concentrations. Including the dynamic crop simulation gives for potato (and other annual arable land crops) systematically higher effects on the predicted recharge change due to climate change. Crop yields from soils with poor water retention capacities strongly depend on capillary rise if moisture supply from other sources is limited. Thus, including a crop simulation model in an integrated hydrologic simulation provides a valuable addition for hydrologic modelling as well as for crop modelling.
Successional stage of biological soil crusts: an accurate indicator of ecohydrological condition
Belnap, Jayne; Wilcox, Bradford P.; Van Scoyoc, Matthew V.; Phillips, Susan L.
2013-01-01
Biological soil crusts are a key component of many dryland ecosystems. Following disturbance, biological soil crusts will recover in stages. Recently, a simple classification of these stages has been developed, largely on the basis of external features of the crusts, which reflects their level of development (LOD). The classification system has six LOD classes, from low (1) to high (6). To determine whether the LOD of a crust is related to its ecohydrological function, we used rainfall simulation to evaluate differences in infiltration, runoff, and erosion among crusts in the various LODs, across a range of soil depths and with different wetting pre-treatments. We found large differences between the lowest and highest LODs, with runoff and erosion being greatest from the lowest LOD. Under dry antecedent conditions, about 50% of the water applied ran off the lowest LOD plots, whereas less than 10% ran off the plots of the two highest LODs. Similarly, sediment loss was 400 g m-2 from the lowest LOD and almost zero from the higher LODs. We scaled up the results from these simulations using the Rangeland Hydrology and Erosion Model. Modelling results indicate that erosion increases dramatically as slope length and gradient increase, especially beyond the threshold values of 10 m for slope length and 10% for slope gradient. Our findings confirm that the LOD classification is a quick, easy, nondestructive, and accurate index of hydrological condition and should be incorporated in field and modelling assessments of ecosystem health.
NASA Astrophysics Data System (ADS)
Lee, E.; Kumar, P.; Barron-Gafford, G.; Scott, R. L.; Hendryx, S. M.; Sanchez-Canete, E. P.; Minor, R. L.; Colella, A.
2017-12-01
A key challenge in critical zone science is to understand and predict the interaction between aboveground and belowground ecohydrologic processes. One of the links that facilitates the interaction is hydraulic redistribution (HR), a phenomenon by which roots serve as preferential pathways for water movement from wet to dry soil layers. We use a multi-layer canopy model in conjunction with experimental data to examine the influence of HR on eco-hydrologic processes, such as transpiration, soil evaporation, and soil moisture, which characterize the competitive and facilitative dynamics between velvet mesquite and understory bunchgrass. Both measured and simulated results show that hydraulic descent (HD) dominates sap flux during the wet monsoon season, whereas hydraulic lift (HL) occurs between precipitation events. About 17% of precipitation is absorbed as soil-moisture, with the rest of the precipitation returning to the atmosphere as evapotranspiration. In the wet season, 13% of precipitation is transferred to deep soil (>2m) through mesquite roots, and in the dry season, 9% of this redistributed water is transported back to shallow soil depth (<0.5m). Assuming water supplied through HR is well-mixed with moisture transported directly through the soil matrix and supports vegetation evapotranspiration, HR supports about 47% of mesquite transpiration and 9% of understory transpiration. Through modeling and experimental synthesis, this study demonstrates that in the dry land ecosystem of southwestern U.S., Mesquite exhibits competitive advantage over understory bunchgrass through HR.
NASA Astrophysics Data System (ADS)
Zhang, K.; Castanho, A. D.; Moghim, S.; Bras, R. L.; Coe, M. T.; Costa, M. H.; Levine, N. M.; Longo, M.; McKnight, S.; Wang, J.; Moorcroft, P. R.
2012-12-01
Deforestation and drought have imposed regional-scale perturbations onto Amazonian ecosystems and are predicted to cause larger negative impacts on the Amazonian ecosystems and associated regional carbon dynamics in the 21st century. However, global climate models (GCMs) vary greatly in their projections of future climate change in Amazonia, giving rise to uncertainty in the expected fate of the Amazon over the coming century. In this study, we explore the possible eco-hydrological consequences of the Amazonian ecosystems under projected climate and land-use changes in the 21st century using two state-of-the-art terrestrial ecosystem models—Ecosystem Demography Model 2.1(ED2.1) and Integrated Biosphere Simulator model (IBIS)—driven by three representative, bias-corrected climate projections from three IPCC GCMs (NCARPCM1, NCARCCSM3 and HadCM3), coupled with two land-use change scenarios (a business-as-usual and a strict governance scenario). We also analyze the relative roles of climate change, CO2 fertilization, land-use change and fire in driving the projected composition and structure of the Amazonian ecosystems. Our results show that CO2 fertilization enhances vegetation productivity and above-ground biomass (AGB) in the region, while land-use change and fire cause AGB loss and the replacement of forests by the savanna-like vegetation. The impacts of climate change depend strongly on the direction and severity of projected precipitation changes in the region. In particular, when intensified water stress is superimposed on unregulated deforestation, both ecosystem models predict large-scale dieback of Amazonian rainforests.
Modeling ecohydrological impacts of land management and water use in the Silver Creek basin, Idaho
NASA Astrophysics Data System (ADS)
Loinaz, Maria C.; Gross, Dayna; Unnasch, Robert; Butts, Michael; Bauer-Gottwein, Peter
2014-03-01
A number of anthropogenic stressors, including land use change and intensive water use, have caused stream habitat deterioration in arid and semiarid climates throughout the western U.S. These often contribute to high stream temperatures, a widespread water quality problem. Stream temperature is an important indicator of stream ecosystem health and is affected by catchment-scale climate and hydrological processes, morphology, and riparian vegetation. To properly manage affected systems and achieve ecosystem sustainability, it is important to understand the relative impact of these factors. In this study, we predict relative impacts of different stressors using an integrated catchment-scale ecohydrological model that simulates hydrological processes, stream temperature, and fish growth. This type of model offers a suitable measure of ecosystem services because it provides information about the reproductive capability of fish under different conditions. We applied the model to Silver Creek, Idaho, a stream highly valued for its world-renowned trout fishery. The simulations indicated that intensive water use by agriculture and climate change are both major contributors to habitat degradation in the study area. Agricultural practices that increase water use efficiency and mitigate drainage runoff are feasible and can have positive impacts on the ecosystem. All of the mitigation strategies simulated reduced stream temperatures to varying degrees; however, not all resulted in increases in fish growth. The results indicate that temperature dynamics, rather than point statistics, determine optimal growth conditions for fish. Temperature dynamics are influenced by surface water-groundwater interactions. Combined restoration strategies that can achieve ecosystem stability under climate change should be further explored.
NASA Astrophysics Data System (ADS)
Christianson, D. S.; Varadharajan, C.; Detto, M.; Faybishenko, B.; Gimenez, B.; Jardine, K.; Negron Juarez, R. I.; Pastorello, G.; Powell, T.; Warren, J.; Wolfe, B.; McDowell, N. G.; Kueppers, L. M.; Chambers, J.; Agarwal, D.
2016-12-01
The U.S. Department of Energy's (DOE) Next Generation Ecosystem Experiment (NGEE) Tropics project aims to develop a process-rich tropical forest ecosystem model that is parameterized and benchmarked by field observations. Thus, data synthesis, quality assurance and quality control (QA/QC), and data product generation of a diverse and complex set of ecohydrological observations, including sapflux, leaf surface temperature, soil water content, and leaf gas exchange from sites across the Tropics, are required to support model simulations. We have developed a metadata reporting framework, implemented in conjunction with the NGEE Tropics Data Archive tool, to enable cross-site and cross-method comparison, data interpretability, and QA/QC. We employed a modified User-Centered Design approach, which involved short development cycles based on user-identified needs, and iterative testing with data providers and users. The metadata reporting framework currently has been implemented for sensor-based observations and leverages several existing metadata protocols. The framework consists of templates that define a multi-scale measurement position hierarchy, descriptions of measurement settings, and details about data collection and data file organization. The framework also enables data providers to define data-access permission settings, provenance, and referencing to enable appropriate data usage, citation, and attribution. In addition to describing the metadata reporting framework, we discuss tradeoffs and impressions from both data providers and users during the development process, focusing on the scalability, usability, and efficiency of the framework.
NASA Astrophysics Data System (ADS)
Sivandran, G.; Bisht, G.; Ivanov, V. Y.; Bras, R. L.
2008-12-01
A coupled, dynamic vegetation and hydrologic model, tRIBS+VEGGIE, was applied to the semiarid Walnut Gulch Experimental Watershed in Arizona. The physically-based, distributed nature of the coupled model allows for parameterization and simulation of watershed vegetation-water-energy dynamics on timescales varying from hourly to interannual. The model also allows for explicit spatial representation of processes that vary due to complex topography, such as lateral redistribution of moisture and partitioning of radiation with respect to aspect and slope. Model parameterization and forcing was conducted using readily available databases for topography, soil types, and land use cover as well as the data from network of meteorological stations located within the Walnut Gulch watershed. In order to test the performance of the model, three sets of simulations were conducted over an 11 year period from 1997 to 2007. Two simulations focus on heavily instrumented nested watersheds within the Walnut Gulch basin; (i) Kendall watershed, which is dominated by annual grasses; and (ii) Lucky Hills watershed, which is dominated by a mixture of deciduous and evergreen shrubs. The third set of simulations cover the entire Walnut Gulch Watershed. Model validation and performance were evaluated in relation to three broad categories; (i) energy balance components: the network of meteorological stations were used to validate the key energy fluxes; (ii) water balance components: the network of flumes, rain gauges and soil moisture stations installed within the watershed were utilized to validate the manner in which the model partitions moisture; and (iii) vegetation dynamics: remote sensing products from MODIS were used to validate spatial and temporal vegetation dynamics. Model results demonstrate satisfactory spatial and temporal agreement with observed data, giving confidence that key ecohydrological processes can be adequately represented for future applications of tRIBS+VEGGIE in regional modeling of land-atmosphere interactions.
Disturbance Impacts on Thermal Hot Spots and Hot Moments at the Peatland-Atmosphere Interface
NASA Astrophysics Data System (ADS)
Leonard, R. M.; Kettridge, N.; Devito, K. J.; Petrone, R. M.; Mendoza, C. A.; Waddington, J. M.; Krause, S.
2018-01-01
Soil-surface temperature acts as a master variable driving nonlinear terrestrial ecohydrological, biogeochemical, and micrometeorological processes, inducing short-lived or spatially isolated extremes across heterogeneous landscape surfaces. However, subcanopy soil-surface temperatures have been, to date, characterized through isolated, spatially discrete measurements. Using spatially complex forested northern peatlands as an exemplar ecosystem, we explore the high-resolution spatiotemporal thermal behavior of this critical interface and its response to disturbances by using Fiber-Optic Distributed Temperature Sensing. Soil-surface thermal patterning was identified from 1.9 million temperature measurements under undisturbed, trees removed and vascular subcanopy removed conditions. Removing layers of the structurally diverse vegetation canopy not only increased mean temperatures but it shifted the spatial and temporal distribution, range, and longevity of thermal hot spots and hot moments. We argue that linking hot spots and/or hot moments with spatially variable ecosystem processes and feedbacks is key for predicting ecosystem function and resilience.
Process connectivity reveals ecohydrologic sensitivity to drought and rainfall pulses
NASA Astrophysics Data System (ADS)
Goodwell, A. E.; Kumar, P.
2017-12-01
Ecohydrologic fluxes within atmosphere, canopy and soil systems exhibit complex and joint variability. This complexity arises from direct and indirect forcing and feedback interactions that can cause fluctuations to propagate between water, energy, and nutrient fluxes at various time scales. When an ecosystem is perturbed in the form of a single storm event, an accumulating drought, or changes in climate and land cover, this aspect of joint variability may dictate responsiveness and resilience of the entire system. A characterization of the time-dependent and multivariate connectivity between processes, fluxes, and states is necessary to identify and understand these aspects of ecohydrologic systems. We construct Temporal Information Partitioning Networks (TIPNets), based on information theory measures, to identify time-dependencies between variables measured at flux towers along elevation and climate gradients in relation to their responses to moisture-related perturbations. Along a flux tower transect in the Reynolds Creek Critical Zone Observatory (CZO) in Idaho, we detect a significant network response to a large 2015 dry season rainfall event that enhances microbial respiration and latent heat fluxes. At a transect in the Southern Sierra CZO in California, we explore network properties in relation to drought responses from 2011 to 2015. We find that both high and low elevation sites exhibit decreased connectivity between atmospheric and soil variables and latent heat fluxes, but the higher elevation site is less sensitive to this altered connectivity in terms of average monthly heat fluxes. Through a novel approach to gage the responsiveness of ecosystem fluxes to shifts in connectivity, this study aids our understanding of ecohydrologic sensitivity to short-term rainfall events and longer term droughts. This study is relevant to ecosystem resilience under a changing climate, and can lead to a greater understanding of shifting behaviors in many types of complex systems.
NASA Astrophysics Data System (ADS)
Bodin, M.; Habib, E. H.; Meselhe, E. A.; Visser, J.; Chimmula, S.
2014-12-01
Utilizing advances in hydrologic research and technology, learning modules can be developed to deliver visual, case-based, data and simulation driven educational experiences. This paper focuses on the development of web modules based on case studies in Coastal Louisiana, one of three ecosystems that comprise an ongoing hydrology education online system called HydroViz. The Chenier Plain ecosystem in Coastal Louisiana provides an abundance of concepts and scenarios appropriate for use in many undergraduate water resource and hydrology curricula. The modules rely on a set of hydrologic data collected within the Chenier Plain along with inputs and outputs of eco-hydrology and vegetation-change simulation models that were developed to analyze different restoration and protection projects within the 2012 Louisiana Costal Master Plan. The modules begin by investigating the basic features of the basin and it hydrologic characteristics. The eco-hydrology model is then introduced along with its governing equations, numerical solution scheme and how it represents the study domain. Concepts on water budget in a coastal basin are then introduced using the simulation model inputs, outputs and boundary conditions. The complex relationships between salinity, water level and vegetation changes are then investigated through the use of the simulation models and associated field data. Other student activities focus on using the simulation models to evaluate tradeoffs and impacts of actual restoration and protection projects that were proposed as part of 2012 Louisiana Master Plan. The hands-on learning activities stimulate student learning of hydrologic and water management concepts by providing real-world context and opportunity to build fundamental knowledge as well as practical skills. The modules are delivered through a carefully designed user interface using open source and free technologies which enable wide dissemination and encourage adaptation by others.
NASA Astrophysics Data System (ADS)
Mastrotheodoros, Theodoros; Fatichi, Simone; Pappas, Christoforos; Molnar, Peter; Burlando, Paolo
2016-04-01
The rise of atmospheric CO2 concentration is expected to stimulate plant productivity by enhancing photosynthesis and reducing stomatal conductance and thus increasing plant water use efficiency (WUE) worldwide. An analysis of eddy covariance flux tower data from 21 forested ecosystems across the north hemisphere detected an unexpectedly large increase in WUE (Keenan et al, 2013), which was six times larger than the increase found by most previous studies based on controlled experiments (e.g., FACE), leaf-scale analyses, and numerical modelling. This increase could be solely attributed to the increase in atmospheric CO2 since other confounding factors were ruled out. Here, we investigate the potential contribution of plant plasticity, reflected in the temporal adjustment of major plant physiological traits, on changes in WUE using the ecohydrological model Tethys and Chloris (T&C). We hypothesize that the increase in WUE can be attributed to small variations in plant physiological traits, undetectable through observations, eventually triggered by the atmospheric CO2 increase. Data from the 21 sites in the above mentioned study are used to force the model. Simulation results with and without plasticity in the physiological traits (i.e., model parameters in our numerical experiments) are compared with the observed trends in WUE. We test several plant adaptation strategies in being effective in explaining the observed increase in WUE using a multifactorial numerical experiment in which we perturb in a systematic way selected plant parameters. Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W., Schmid, H. P., and Richardson, A. D. (2013). Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature, 499(7458), 324-7.
NASA Astrophysics Data System (ADS)
Vico, Giulia; Manzoni, Stefano; Thompson, Sally; Molini, Annalisa; Porporato, Amilcare
2015-04-01
Seasonally-dry climates are particularly challenging for vegetation, as they are characterized by prolonged dry periods and often marked inter-annual variability. During the dry season plants face predictable physiological stress due to lack of water, whereas the inter-annual variability in rainfall timing and amounts requires plants to develop flexible adaptation strategies. The variety of strategies observed across seasonally-dry (Mediterranean and tropical) ecosystems is indeed wide - ranging from near-isohydric species that adjust stomatal conductance to avoid drought, to anisohydric species that maintain gas exchange during the dry season. A suite of phenological strategies are hypothesized to be associated to ecophysiological strategies. Here we synthetize current knowledge on ecophysiological and phenological adaptations through a comprehensive ecohydrological model linking a soil water balance to a vegetation carbon balance. Climatic regimes are found to select for different phenological strategies that maximize the long-term plant carbon uptake. Inter-annual variability of the duration of the wet season allows coexistence of different drought-deciduous strategies. In contrast, short dry seasons or access to groundwater favour evergreen species. Climatic changes causing more intermittent rainfall and/or shorter wet seasons are predicted to favour drought-deciduous species with opportunistic water use.
Spatial Distribution of Hydrologic Ecosystem Service Estimates: Comparing Two Models
NASA Astrophysics Data System (ADS)
Dennedy-Frank, P. J.; Ghile, Y.; Gorelick, S.; Logsdon, R. A.; Chaubey, I.; Ziv, G.
2014-12-01
We compare estimates of the spatial distribution of water quantity provided (annual water yield) from two ecohydrologic models: the widely-used Soil and Water Assessment Tool (SWAT) and the much simpler water models from the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) toolbox. These two models differ significantly in terms of complexity, timescale of operation, effort, and data required for calibration, and so are often used in different management contexts. We compare two study sites in the US: the Wildcat Creek Watershed (2083 km2) in Indiana, a largely agricultural watershed in a cold aseasonal climate, and the Upper Upatoi Creek Watershed (876 km2) in Georgia, a mostly forested watershed in a temperate aseasonal climate. We evaluate (1) quantitative estimates of water yield to explore how well each model represents this process, and (2) ranked estimates of water yield to indicate how useful the models are for management purposes where other social and financial factors may play significant roles. The SWAT and InVEST models provide very similar estimates of the water yield of individual subbasins in the Wildcat Creek Watershed (Pearson r = 0.92, slope = 0.89), and a similar ranking of the relative water yield of those subbasins (Spearman r = 0.86). However, the two models provide relatively different estimates of the water yield of individual subbasins in the Upper Upatoi Watershed (Pearson r = 0.25, slope = 0.14), and very different ranking of the relative water yield of those subbasins (Spearman r = -0.10). The Upper Upatoi watershed has a significant baseflow contribution due to its sandy, well-drained soils. InVEST's simple seasonality terms, which assume no change in storage over the time of the model run, may not accurately estimate water yield processes when baseflow provides such a strong contribution. Our results suggest that InVEST users take care in situations where storage changes are significant.
Ecohydrology of a Sphagnum peatland in transitional climate - an interdysciplinary study
NASA Astrophysics Data System (ADS)
Słowińska, S.; Słowiński, M.; Lamentowicz, M.; Skrzypek, G.
2012-04-01
Sphagnum peatlands of the Central Europe are regarded as the valuable and endangered habitats. Their existence depends on the complex climatic, hydrological, topographical and botanical conditions. Good understanding of peatlands' ecohydrology is crucial for the appropriate environmental management. Our long-term ecological study is focused on a poor fen located in Northern Poland - a unique floristic nature reserve and Nature 2000 area. Main aims of the research were to: a) understand an influence of the temperature and precipitation on the ground water, b) explain an impact of the local climate and the groundwater table level on testate amoebae communities, Sphagnum mosses growth and stable carbon, nitrogen and oxygen isotope compositions, c) use the neo- ecological data for the quantitative palaeoecological reconstructions. We have been conducting the monitoring of the growth of Sphagnum mosses in five plots. Vegetation was sampled three times during the growing season for the stable isotope and testate amoebae analyses (July, September and December 2009). Temperature of the air and acrotelm, air humidity, precipitation and groundwater table were recorded using automatic data loggers. Our research confirmed that even small fluctuation of temperature, precipitation and annual distribution of precipitation have a very strong impact on the hydrology of the peatland. Testate amoeba communities and stable isotopes from Sphagnum clearly indicated the hydrological response of the mire in the different parts of the peatland. The next step is a detailed seasonal study supported by the manipulative warming experiment.
Uncertainty analysis of hydrological modeling in a tropical area using different algorithms
NASA Astrophysics Data System (ADS)
Rafiei Emam, Ammar; Kappas, Martin; Fassnacht, Steven; Linh, Nguyen Hoang Khanh
2018-01-01
Hydrological modeling outputs are subject to uncertainty resulting from different sources of errors (e.g., error in input data, model structure, and model parameters), making quantification of uncertainty in hydrological modeling imperative and meant to improve reliability of modeling results. The uncertainty analysis must solve difficulties in calibration of hydrological models, which further increase in areas with data scarcity. The purpose of this study is to apply four uncertainty analysis algorithms to a semi-distributed hydrological model, quantifying different source of uncertainties (especially parameter uncertainty) and evaluate their performance. In this study, the Soil and Water Assessment Tools (SWAT) eco-hydrological model was implemented for the watershed in the center of Vietnam. The sensitivity of parameters was analyzed, and the model was calibrated. The uncertainty analysis for the hydrological model was conducted based on four algorithms: Generalized Likelihood Uncertainty Estimation (GLUE), Sequential Uncertainty Fitting (SUFI), Parameter Solution method (ParaSol) and Particle Swarm Optimization (PSO). The performance of the algorithms was compared using P-factor and Rfactor, coefficient of determination (R 2), the Nash Sutcliffe coefficient of efficiency (NSE) and Percent Bias (PBIAS). The results showed the high performance of SUFI and PSO with P-factor>0.83, R-factor <0.56 and R 2>0.91, NSE>0.89, and 0.18
Using Isotopic Age of Water as a Constraint on Model Identification at a Critical Zone Observatory
NASA Astrophysics Data System (ADS)
Duffy, C.; Thomas, E.; Bhatt, G.; George, H.; Boyer, E. W.; Sullivan, P. L.
2016-12-01
This paper presents an ecohydrologic model constrained by comprehensive space and time observations of water and stable isotopes of oxygen and hydrogen for an upland catchment, the Susquehanna/Shale Hills Critical Zone Observatory (SSH_CZO). The paper first develops the theoretical basis for simulation of flow, isotope ratios and "age" as water moves through the canopy, to the unsaturated and saturated zones and finally to an intermittent stream. The model formulation demonstrates that the residence time and age of environmental tracers can be directly simulated without knowledge of the form of the underlying residence time distribution function and without the addition of any new physical parameters. The model is used to explore the observed rapid attenuation of event and seasonal isotopic ratios in precipitation over the depth of the soil zone and the impact of decreasing hydraulic conductivity with depth on the dynamics of streamflow and stream isotope ratios. The results suggest the importance of mobile macropore flow on recharge to groundwater during the non-growing cold-wet season. The soil matrix is also recharged during this season with a cold-season isotope signature. During the growing-dry season, root uptake and evaporation from the soil matrix along with a declining water table provides the main source of water for plants and determines the growing season signature. Flow path changes during storm events and transient overland flow is inferred by comparing the frequency distribution of groundwater and stream isotope histories with model results. Model uncertainty is evaluated for conditions of matrix-macropore partitioning and heterogeneous variations in conductivity with depth. The paper concludes by comparing the fully dynamical model with the simplified mixing model form in dynamic equilibrium. The comparison illustrates the importance of system memory on the time scales for flow and mixing processes and the limitations of the dynamic equilibrium assumption on estimated age and residence time.
2016-04-01
vegetation arising due to contrasts in incoming solar radiation that is associated with hillslope aspects. At lower elevations, shrubs can be present on North...whereas shrubs are more prevalent on South-facing aspects. At watershed scales, the transition from grasses at lower elevations to coniferous evergreens...Mountain sage communities, adapted to cooler temperatures, are also found at higher elevations in RCEW, with ceanothus shrubs common Mean annual
Understanding the biological underpinnings of ecohydrological processes
NASA Astrophysics Data System (ADS)
Huxman, T. E.; Scott, R. L.; Barron-Gafford, G. A.; Hamerlynck, E. P.; Jenerette, D.; Tissue, D. T.; Breshears, D. D.; Saleska, S. R.
2012-12-01
Climate change presents a challenge for predicting ecosystem response, as multiple factors drive both the physical and life processes happening on the land surface and their interactions result in a complex, evolving coupled system. For example, changes in surface temperature and precipitation influence near-surface hydrology through impacts on system energy balance, affecting a range of physical processes. These changes in the salient features of the environment affect biological processes and elicit responses along the hierarchy of life (biochemistry to community composition). Many of these structural or process changes can alter patterns of soil water-use and influence land surface characteristics that affect local climate. Of the many features that affect our ability to predict the future dynamics of ecosystems, it is this hierarchical response of life that creates substantial complexity. Advances in the ability to predict or understand aspects of demography help describe thresholds in coupled ecohydrological system. Disentangling the physical and biological features that underlie land surface dynamics following disturbance are allowing a better understanding of the partitioning of water in the time-course of recovery. Better predicting the timing of phenology and key seasonal events allow for a more accurate description of the full functional response of the land surface to climate. In addition, explicitly considering the hierarchical structural features of life are helping to describe complex time-dependent behavior in ecosystems. However, despite this progress, we have yet to build an ability to fully account for the generalization of the main features of living systems into models that can describe ecohydrological processes, especially acclimation, assembly and adaptation. This is unfortunate, given that many key ecosystem services are functions of these coupled co-evolutionary processes. To date, both the lack of controlled measurements and experimentation has precluded determination of sufficient theoretical development. Understanding the land-surface response and feedback to climate change requires a mechanistic understanding of the coupling of ecological and hydrological processes and an expansion of theory from the life sciences to appropriately contribute to the broader Earth system science goal.
NASA Astrophysics Data System (ADS)
Maurer, Thomas; Gustavos Trujillo Siliézar, Carlos; Oeser, Anne; Pohle, Ina; Hinz, Christoph
2016-04-01
In evolving initial landscapes, vegetation development depends on a variety of feedback effects. One of the less understood feedback loops is the interaction between throughfall and plant canopy development. The amount of throughfall is governed by the characteristics of the vegetation canopy, whereas vegetation pattern evolution may in turn depend on the spatio-temporal distribution of throughfall. Meteorological factors that may influence throughfall, while at the same time interacting with the canopy, are e.g. wind speed, wind direction and rainfall intensity. Our objective is to investigate how throughfall, vegetation canopy and meteorological variables interact in an exemplary eco-hydrological system in its initial development phase, in which the canopy is very heterogeneous and rapidly changing. For that purpose, we developed a methodological approach combining field methods, raster image analysis and multivariate statistics. The research area for this study is the Hühnerwasser ('Chicken Creek') catchment in Lower Lusatia, Brandenburg, Germany, where after eight years of succession, the spatial distribution of plant species is highly heterogeneous, leading to increasingly differentiated throughfall patterns. The constructed 6-ha catchment offers ideal conditions for our study due to the rapidly changing vegetation structure and the availability of complementary monitoring data. Throughfall data were obtained by 50 tipping bucket rain gauges arranged in two transects and connected via a wireless sensor network that cover the predominant vegetation types on the catchment (locust copses, dense sallow thorn bushes and reeds, base herbaceous and medium-rise small-reed vegetation, and open areas covered by moss and lichens). The spatial configuration of the vegetation canopy for each measurement site was described via digital image analysis of hemispheric photographs of the canopy using the ArcGIS Spatial Analyst, GapLight and ImageJ software. Meteorological data from two on-site weather stations (wind direction, wind speed, air temperature, air humidity, insolation, soil temperature, precipitation) were provided by the 'Research Platform Chicken Creek' (https://www.tu-cottbus.de/projekte/en/oekosysteme/startseite.html). Data were combined and multivariate statistical analysis (PCA, cluster analysis, regression trees) were conducted using the R-software to i) obtain statistical indices describing the relevant characteristics of the data and ii) to identify the determining factors for throughfall intensity. The methodology is currently tested and results will be presented. Preliminary evaluation of the image analysis approach showed only marginal, systematic deviation of results for the different software tools applied, which makes the developed workflow a viable tool for canopy characterization. Results from this study will have a broad spectrum of possible applications, for instance the development / calibration of rainfall interception models, the incorporation into eco-hydrological models, or to test the fault tolerance of wireless rainfall sensor networks.
Lake and wetland ecosystem services measuring water storage and local climate regulation
NASA Astrophysics Data System (ADS)
Wong, Christina P.; Jiang, Bo; Bohn, Theodore J.; Lee, Kai N.; Lettenmaier, Dennis P.; Ma, Dongchun; Ouyang, Zhiyun
2017-04-01
Developing interdisciplinary methods to measure ecosystem services is a scientific priority, however, progress remains slow in part because we lack ecological production functions (EPFs) to quantitatively link ecohydrological processes to human benefits. In this study, we tested a new approach, combining a process-based model with regression models, to create EPFs to evaluate water storage and local climate regulation from a green infrastructure project on the Yongding River in Beijing, China. Seven artificial lakes and wetlands were established to improve local water storage and human comfort; evapotranspiration (ET) regulates both services. Managers want to minimize the trade-off between water losses and cooling to sustain water supplies while lowering the heat index (HI) to improve human comfort. We selected human benefit indicators using water storage targets and Beijing's HI, and the Variable Infiltration Capacity model to determine the change in ET from the new ecosystems. We created EPFs to quantify the ecosystem services as marginal values [Δfinal ecosystem service/Δecohydrological process]: (1) Δwater loss (lake evaporation/volume)/Δdepth and (2) Δsummer HI/ΔET. We estimate the new ecosystems increased local ET by 0.7 mm/d (20.3 W/m2) on the Yongding River. However, ET rates are causing water storage shortfalls while producing no improvements in human comfort. The shallow lakes/wetlands are vulnerable to drying when inflow rates fluctuate, low depths lead to higher evaporative losses, causing water storage shortfalls with minimal cooling effects. We recommend managers make the lakes deeper to increase water storage, and plant shade trees to improve human comfort in the parks.
Evaristo, Jaivime; McDonnell, Jeffrey J.; Scholl, Martha A.; Bruijnzeel, L. Adrian; Chun, Kwok P.
2016-01-01
Water transpired by trees has long been assumed to be sourced from the same subsurface water stocks that contribute to groundwater recharge and streamflow. However, recent investigations using dual water stable isotopes have shown an apparent ecohydrological separation between tree-transpired water and stream water. Here we present evidence for such ecohydrological separation in two tropical environments in Puerto Rico where precipitation seasonality is relatively low and where precipitation is positively correlated with primary productivity. We determined the stable isotope signature of xylem water of 30 mahogany (Swietenia spp.) trees sampled during two periods with contrasting moisture status. Our results suggest that the separation between transpiration water and groundwater recharge/streamflow water might be related less to the temporal phasing of hydrologic inputs and primary productivity, and more to the fundamental processes that drive evaporative isotopic enrichment of residual soil water within the soil matrix. The lack of an evaporative signature of both groundwater and streams in the study area suggests that these water balance components have a water source that is transported quickly to deeper subsurface storage compared to waters that trees use. A Bayesian mixing model used to partition source water proportions of xylem water showed that groundwater contribution was greater for valley-bottom, riparian trees than for ridge-top trees. Groundwater contribution was also greater at the xeric site than at the mesic–hydric site. These model results (1) underline the utility of a simple linear mixing model, implemented in a Bayesian inference framework, in quantifying source water contributions at sites with contrasting physiographic characteristics, and (2) highlight the informed judgement that should be made in interpreting mixing model results, of import particularly in surveying groundwater use patterns by vegetation from regional to global scales.
NASA Astrophysics Data System (ADS)
Palm, Juliane; Klaus, Julian; van Schaik, Loes; Zehe, Erwin; Schröder, Boris
2010-05-01
Soils provide central ecosystem functions in recycling nutrients, detoxifying harmful chemicals as well as regulating microclimate and local hydrological processes. The internal regulation of these functions and therefore the development of healthy and fertile soils mainly depend on the functional diversity of plants and animals. Soil organisms drive essential processes such as litter decomposition, nutrient cycling, water dynamics, and soil structure formation. Disturbances by different soil management practices (e.g., soil tillage, fertilization, pesticide application) affect the distribution and abundance of soil organisms and hence influence regulating processes. The strong relationship between environmental conditions and soil organisms gives us the opportunity to link spatiotemporal distribution patterns of indicator species with the potential provision of essential soil processes on different scales. Earthworms are key organisms for soil function and affect, among other things, water dynamics and solute transport in soils. Through their burrowing activity, earthworms increase the number of macropores by building semi-permanent burrow systems. In the unsaturated zone, earthworm burrows act as preferential flow pathways and affect water infiltration, surface-, subsurface- and matrix flow as well as the transport of water and solutes into deeper soil layers. Thereby different ecological earthworm types have different importance. Deep burrowing anecic earthworm species (e.g., Lumbricus terrestris) affect the vertical flow and thus increase the risk of potential contamination of ground water with agrochemicals. In contrast, horizontal burrowing endogeic (e.g., Aporrectodea caliginosa) and epigeic species (e.g., Lumbricus rubellus) increase water conductivity and the diffuse distribution of water and solutes in the upper soil layers. The question which processes are more relevant is pivotal for soil management and risk assessment. Thus, finding relevant environmental predictors which explain the distribution and dynamics of different ecological earthworm types can help us to understand where or when these processes are relevant in the landscape. Therefore, we develop species distribution models which are a useful tool to predict spatiotemporal distributions of earthworm occurrence and abundance under changing environmental conditions. On field scale, geostatistical distribution maps have shown that the spatial distribution of earthworms depends on soil parameters such as food supply, soil moisture, bulk density but with different patterns for earthworm stages (adult, juvenile) and ecological types (anecic, endogeic, epigeic). On landscape scales, earthworm distribution seems to be strongly controlled by management/disturbance-related factors. Our study shows different modelling approaches for predicting distribution patterns of earthworms in the Weiherbach area, an agricultural site in Kraichtal (Baden-Württemberg, Germany). We carried out field studies on arable fields differing in soil management practices (conventional, conservational), soil properties (organic matter content, texture, soil moisture), and topography (slope, elevation) in order to identify predictors for earthworm occurrence, abundance and biomass. Our earthworm distribution models consider all ecological groups as well as different life stages, accounting for the fact that the activity of juveniles is sometimes different from those of adults. Within our BIOPORE-project it is our final goal to couple our distribution models with population dynamic models and a preferential flow model to an integrated ecohydrological model to analyse feedbacks between earthworm engineering and transport characteristics affecting the functioning of (agro-) ecosystems.
NASA Astrophysics Data System (ADS)
Setegn, Shimelis
2017-04-01
Sustainable development integrates economic development, social development, and environmental protection. Land and Water resources are under severe pressure from increasing populations, fast development, deforestation, intensification of agriculture and the degrading environment in many part of the world. The demand for adequate and safe supplies of water is becoming crucial especially in the overpopulated urban centers of the Caribbean islands. Moreover, population growth coupled with environmental degradation and possible adverse impacts of land use and climate change are major factors limiting freshwater resource availability. The main objective of this study is to develop a hydrological model and analyze the spatiotemporal variability of hydrological processes in the Caribbean islands of Puerto Rico and Jamaica. Physically based eco-hydrological model was developed and calibrated in the Rio Grande Manati and Wag water watershed. Spatial distribution of annual hydrological processes, water balance components for wet and dry years, and annual hydrological water balance of the watershed are discussed. The impact of land use and climate change are addressed in the watersheds. Appropriate nature based adaptation strategies were evaluated. The study will present a good understanding of advantages and disadvantages of nature-based solutions for adapting climate change, hydro-meteorological risks and other extreme hydrological events.
NASA Astrophysics Data System (ADS)
Albano, Raffaele; Manfreda, Salvatore; Celano, Giuseppe
The paper introduces a minimalist water-driven crop model for sustainable irrigation management using an eco-hydrological approach. Such model, called MY SIRR, uses a relatively small number of parameters and attempts to balance simplicity, accuracy, and robustness. MY SIRR is a quantitative tool to assess water requirements and agricultural production across different climates, soil types, crops, and irrigation strategies. The MY SIRR source code is published under copyleft license. The FOSS approach could lower the financial barriers of smallholders, especially in developing countries, in the utilization of tools for better decision-making on the strategies for short- and long-term water resource management.
NASA Astrophysics Data System (ADS)
Wang, Yuanyuan; Xie, Zhenghui; Jia, Binghao
2016-09-01
Roots are responsible for the uptake of water and nutrients by plants and have the plasticity to dynamically respond to different environmental conditions. However, most land surface models currently prescribe rooting profiles as a function only of vegetation type, with no consideration of the surroundings. In this study, a dynamic rooting scheme, which describes root growth as a compromise between water and nitrogen availability, was incorporated into CLM4.5 with carbon-nitrogen (CN) interactions (CLM4.5-CN) to investigate the effects of a dynamic root distribution on eco-hydrological modeling. Two paired numerical simulations were conducted for the Tapajos National Forest km83 (BRSa3) site and the Amazon, one using CLM4.5-CN without the dynamic rooting scheme and the other including the proposed scheme. Simulations for the BRSa3 site showed that inclusion of the dynamic rooting scheme increased the amplitudes and peak values of diurnal gross primary production (GPP) and latent heat flux (LE) for the dry season, and improved the carbon (C) and water cycle modeling by reducing the RMSE of GPP by 0.4 g C m-2 d-1, net ecosystem exchange by 1.96 g C m-2 d-1, LE by 5.0 W m-2, and soil moisture by 0.03 m3 m-3, at the seasonal scale, compared with eddy flux measurements, while having little impact during the wet season. For the Amazon, regional analysis also revealed that vegetation responses (including GPP and LE) to seasonal drought and the severe drought of 2005 were better captured with the dynamic rooting scheme incorporated.
Climate refugia: The physical, hydrologic and disturbance basis
NASA Astrophysics Data System (ADS)
Holden, Z. A.; Maneta, M. P.; Forthofer, J.
2015-12-01
Projected changes in global climate and associated shifts in vegetation have increased interest in understanding species persistence at local scales. We examine the climatic and physical factors that could mediate changes in the distribution of vegetation in regions of complex topography. Using massive networks of low-cost temperature and humidity sensors, we developed topographically-resolved daily historical gridded temperature data for the US Northern Rockies. We used the WindNinja model to create daily historical wind speed maps across the same domain. Using a spatially distributed ecohydrology model (ECH2O) we examine separately the sensitivity of modeled evapotranspiration and soil moisture to wind, radiation, soil properties, minimum temperature and humidity. A suite of physical factors including lower wind speeds, cold air drainage, solar shading and increased soil depth reduce evapotranspiration and increase late season moisture availability in valley bottoms. Evapotranspiration shows strong sensitivity to spatial variability in surface wind speed, suggesting that sheltering effects from winds may be an important factor contributing to mountain refugia. Fundamental to our understanding of patterns of vegetation change is the role of stand-replacing wildfires, which modify the physical environment and subsequent patterns of species persistence and recruitment. Using satellite-derived maps of burn severity for recent fires in the US Northern Rockies we examined relationships between wind speed, cold air drainage potential and soil depth and the occurrence of unburned and low severity fire. Severe fire is less likely to occur in areas with high cold air drainage potential and low wind speeds, suggesting that sheltered valley bottoms have mediated the severity of recent wildfires. Our finding highlight the complex physical mechanisms by which mountain weather and climate mediate fire-induced vegetation changes in the US Northern Rocky Mountains.
NASA Astrophysics Data System (ADS)
Anderson, T.; Jencso, K. G.; Hoylman, Z. H.; Hu, J.
2015-12-01
Characterizing the mechanisms that lead to differences in forest ecosystem productivity across complex terrain remains a challenge. This difficulty can be partially attributed to the cost of installing networks of proprietary data loggers that monitor differences in the biophysical factors contributing to tree growth. Here, we describe the development and initial application of a network of open source data loggers. These data loggers are based on the Arduino platform, but were refined into a custom printed circuit board (PCB). This reduced the cost and complexity of the data loggers, which made them cheap to reproduce and reliable enough to withstand the harsh environmental conditions experienced in Ecohydrology studies. We demonstrate the utility of these loggers for high frequency, spatially-distributed measurements of sap-flux, stem growth, relative humidity, temperature, and soil water content across 36 landscape positions in the Lubrecht Experimental Forest, MT, USA. This new data logging technology made it possible to develop a spatially distributed monitoring network within the constraints of our research budget and may provide new insights into factors affecting forest productivity across complex terrain.
NASA Astrophysics Data System (ADS)
Maneta, M. P.; Simeone, C.; Dobrowski, S.; Holden, Z.; Sapes, G.; Sala, A.; Begueria, S.
2017-12-01
In semiarid regions, drought-induced seedling mortality is considered to be caused by failure in the tree hydraulic column. Understanding the mechanisms that cause hydraulic failure and death in seedlings is important, among other things, to diagnose where some tree species may fail to regenerate, triggering demographic imbalances in the forest that could result in climate-driven shifts of tree species. Ponderosa pine is a common lower tree line species in the western US. Seedlings of ponderosa pine are often subject to low soil water potentials, which require lower water potentials in the xylem and leaves to maintain the negative pressure gradient that drives water upward. The resilience of the hydraulic column to hydraulic tension is species dependent, but from greenhouse experiments, we have identified general tension thresholds beyond which loss of xylem conductivity becomes critical, and mortality in Ponderosa pine seedlings start to occur. We describe this hydraulic behavior of plants using a mechanistic soil-vegetation-atmosphere transfer model. Before we use this models to understand water-stress induced seedling mortality at the landscape scale, we perform a modeling analysis of the dynamics of soil moisture, transpiration, leaf water potential and loss of plant water conductivity using detailed data from our green house experiments. The analysis is done using a spatially distributed model that simulates water fluxes, energy exchanges and water potentials in the soil-vegetation-atmosphere continuum. Plant hydraulic and physiological parameters of this model were calibrated using Monte Carlo methods against information on soil moisture, soil hydraulic potential, transpiration, leaf water potential and percent loss of conductivity in the xylem. This analysis permits us to construct a full portrait of the parameter space for Ponderosa pine seedling and generate posterior predictive distributions of tree response to understand the sensitivity of transpiration, hydraulic tension in the plant, and percent loss of conductivity to environmental stresses.
Hybrid modeling of nitrate fate in large catchments using fuzzy-rules
NASA Astrophysics Data System (ADS)
van der Heijden, Sven; Haberlandt, Uwe
2010-05-01
Especially for nutrient balance simulations, physically based ecohydrological modeling needs an abundance of measured data and model parameters, which for large catchments all too often are not available in sufficient spatial or temporal resolution or are simply unknown. For efficient large-scale studies it is thus beneficial to have methods at one's disposal which are parsimonious concerning the number of model parameters and the necessary input data. One such method is fuzzy-rule based modeling, which compared to other machine-learning techniques has the advantages to produce models (the fuzzy-rules) which are physically interpretable to a certain extent, and to allow the explicit introduction of expert knowledge through pre-defined rules. The study focuses on the application of fuzzy-rule based modeling for nitrate simulation in large catchments, in particular concerning decision support. Fuzzy-rule based modeling enables the generation of simple, efficient, easily understandable models with nevertheless satisfactory accuracy for problems of decision support. The chosen approach encompasses a hybrid metamodeling, which includes the generation of fuzzy-rules with data originating from physically based models as well as a coupling with a physically based water balance model. For the generation of the needed training data and also as coupled water balance model the ecohydrological model SWAT is employed. The conceptual model divides the nitrate pathway into three parts. The first fuzzy-module calculates nitrate leaching with the percolating water from soil surface to groundwater, the second module simulates groundwater passage, and the final module replaces the in-stream processes. The aim of this modularization is to create flexibility for using each of the modules on its own, for changing or completely replacing it. For fuzzy-rule based modeling this can explicitly mean that the re-training of one of the modules with newly available data will be possible without problem, while the module assembly does not have to be modified. Apart from the concept of hybrid metamodeling first results are presented for the fuzzy-module for nitrate passage through the unsaturated zone.
NASA Astrophysics Data System (ADS)
Allen, C. D.
2006-12-01
In 1993 long-term research began on the runoff and erosion dynamics of a pinyon-juniper woodland hillslope at Bandelier National Monument in northern New Mexico (USA). In the 1.09 ha Frijolito watershed, erosion has been continuously studied at 3 spatial scales: 1 square meter, about 1000 square meters, and the entire watershed. This site is currently representative of degraded woodlands of pinyon (Pinus edulis) and one-seed juniper (Juniperus monosperma) in this region, exhibiting marked connectivity of exposed bare soil interspaces between tree canopy patches and obvious geomorphic signs of accelerated soil erosion (e.g., pedestalling, actively expanding rill networks). Ecological and land use histories show that this site has undergone a number of dramatic ecohydrological shifts since ca. C.E. 1850, transitioning from: 1) open ponderosa pine (Pinus ponderosa) overstory with limited pinyon-juniper component and substantial herbaceous understory that supported surface fires and constrained soil erosion, to; 2) ponderosa pine with reduced herbaceous cover due to livestock grazing after ca.1870, resulting in collapse of the surface fire regime and increased establishment of young pinyon and juniper trees, to; 3) mortality of all of the ponderosa pine during the extreme drought of the 1950s, leaving eroding pinyon-juniper woodland, to; 4) mortality of all mature pinyon at or above sapling size during the 2002-2003 drought, with juniper now the only dominant woody species. Detailed measurements since 1993 document high rates of soil erosion (> 2.75 Mg/ha/year on average at the watershed scale) that are rapidly stripping the local soils. Long-term observations are needed to distinguish short-term variability from longer term trends, as measurements of runoff and erosion show extreme variability at multiple time scales since 1993. The multi-scale erosion data from the Frijolito watershed reveal little dropoff in erosion rate (g/meter-squared) between the one meter-square scale and the 1.09 ha scale, in sharp contrast to the expected pattern observed at a nearby (7 km) relatively stable woodland watershed (cf. Wilcox et al. 2003). These results have important implications for modeling of soil erosion, highlighting the importance of including long-term field data and ecohydrological factors, particularly spatial patterns of canopy and intercanopy surface cover that are key determinants of scale-dependent erosion rates.
Excessive afforestation and soil drying on China's Loess Plateau
NASA Astrophysics Data System (ADS)
Zhang, Shulei; Yang, Dawen
2017-04-01
Afforestation and deforestation are human disturbances to vegetation, which have profound impacts on regional eco-hydrological processes, the water and carbon cycles, and consequently, ecosystem sustainability. Since 1999, large scale revegetation has been carried out across China's Loess Plateau following the "Grain-to-Green Program" implemented by the Chinese government. This revegetation, particularly with forest, has caused negative eco-hydrological consequences, including streamflow decline and soil drying. Here, we have used "ecosystem optimality theory" and satellite observations, to assess the water balance under the climate-defined optimal and actual vegetation cover during 1982-2010 and its responses to future climate change (2011-2050) over the Loess Plateau. Results show that the current vegetation cover (0.48 on average) has already exceeded the climate-defined optimal cover (0.43 on average) in the most recent decade, especially in the middle-to-east Loess Plateau, indicating that it is the widespread over-planting, which is primarily responsible for soil drying in the area. In addition, both the optimal vegetation cover and soil moisture tend to decrease under future climate scenarios. Our findings suggest that further revegetation on the Loess Plateau should be applied with caution. To maintain a sustainable eco-hydrological environment in the region, a revegetation threshold should be urgently set, to limit future planting.
Throughfall and stemflow dynamics in a riparian cedar swamp: possible ecohydrological feedbacks
NASA Astrophysics Data System (ADS)
Duval, T. P.
2012-12-01
Partitioning of rainfall through forest canopies as throughfall and stemflow have deservedly been the subject of much research in the past; however, very little is known about the fluxes of water and solutes through forested wetland communities. Temperate swamps are characterized by intermittent canopy coverage, with areas that are denser than upland forests of similar species, but also contain canopy gaps of meadow and marsh communities,. Understanding the role of vegetation on the distribution of precipitation in these ecosystems is necessary to effectively constrain water balance estimates and predict possible community responses to shifting climate regimes. This study examines throughfall, stemflow, and interception dynamics in a riparian cedar swamp in Alliston, Ontario, Canada over the 2012 growing season. Throughfall averaged 76 % of above-canopy rainfall; however, there were spatial-magnitude interaction variations within the swamp. For events less than 20 mm, between 17 and 75 % of the measured swamp floor received greater depth of rain than above the canopy, whereas for events greater than 20 mm only between 2 and 23 % of the sampled swamp floor received more water than the actual event. The observed spatial variability in throughfall was not related to leaf area index, suggesting remote sensing modelling efforts may not be an accurate method for quantification of wetland precipitation dynamics. Stemflow along the predominantly cedar trees averaged 5 %; therefore, net precipitation on a seasonal basis in this cedar swamp was 81 % of above canopy rainfall. Throughfall DOC and total nitrogen concentrations averaged 31 and 2.2 mg/L, respectively, with stemflow DOC and TN concentrations averaging 109 and 6.5 mg/L, respectively. These values are much higher than reported for upland forest species. In general, throughfall magnitudes increased and solute concentrations decreased with increasing distance from the existing forest boles. The delivery of high reactive-solute concentrations through stemflow and comparatively reduced throughfall water fluxes closer to the trees may represent an ecohydrological feedback to cedar maintenance in swamp ecosystems by enriching the root zone soil with nutrients and shedding water away from the roots in a system where the presence of water is viewed as a stress to optimal growth.
Ecoengineering with Ecohydrology: Successes and failures in estuarine restoration
NASA Astrophysics Data System (ADS)
Elliott, Michael; Mander, Lucas; Mazik, Krysia; Simenstad, Charles; Valesini, Fiona; Whitfield, Alan; Wolanski, Eric
2016-07-01
Ecological Engineering (or Ecoengineering) is increasingly used in estuaries to re-create and restore ecosystems degraded by human activities, including reduced water flow or land poldered for agricultural use. Here we focus on ecosystem recolonization by the biota and their functioning and we separate Type A Ecoengineering where the physico-chemical structure is modified on the basis that ecological structure and functioning will then follow, and Type B Ecoengineering where the biota are engineered directly such as through restocking or replanting. Modifying the physical system to create and restore natural processes and habitats relies on successfully applying Ecohydrology, where suitable physical conditions, especially hydrography and sedimentology, are created to recover estuarine ecology by natural or human-mediated colonisation of primary producers and consumers, or habitat creation. This successional process then allows wading birds and fish to reoccupy the rehabilitated areas, thus restoring the natural food web and recreating nursery areas for aquatic biota. We describe Ecohydrology principles applied during Ecoengineering restoration projects in Europe, Australia, Asia, South Africa and North America. These show some successful and sustainable approaches but also others that were less than successful and not sustainable despite the best of intentions (and which may even have harmed the ecology). Some schemes may be 'good for the ecologists', as conservationists consider it successful that at least some habitat was created, albeit in the short-term, but arguably did little for the overall ecology of the area in space or time. We indicate the trade-offs between the short- and long-term value of restored and created ecosystems, the success at developing natural structure and functioning in disturbed estuaries, the role of this in estuarine and wetland management, and the costs and benefits of Ecoengineering to the socio-ecological system. These global case studies provide important lessons for both the science and management of estuaries, including that successful estuarine restoration is a complex and often difficult process, and that Ecoengineering with Ecohydrology aims to control and/or simulate natural ecosystem processes.
NASA Astrophysics Data System (ADS)
Fraedrich, K.
2014-12-01
Processes along the continental rainfall-runoff chain cover a wide range of time and space scales which are presented here combining observations (ranging from minutes to decades) and minimalist concepts. (i) Rainfall, which can be simulated by a censored first-order autoregressive process (vertical moisture fluxes), exhibits 1/f-spectra if presented as binary events (tropics), while extrema world wide increase with duration according to Jennings' scaling law. (ii) Runoff volatility (Yangtze) shows data collapse which, linked to an intra-annual 1/f-spectrum, is represented by a single function not unlike physical systems at criticality and the short and long return times of extremes are Weibull-distributed. Atmospheric and soil moisture variabilities are also discussed. (iii) Soil moisture (in a bucket), whose variability is interpreted by a biased coinflip Ansatz for rainfall events, adds an equation of state to energy and water flux balances comprising Budyko's frame work for quasi-stationary watershed analysis. Eco-hydrologic state space presentations in terms of surface flux ratios of energy excess (loss by sensible heat over supply by net radiation) versus water excess (loss by discharge over gain by precipitation) allow attributions of state change to external (or climate) and internal (or anthropogenic) causes. Including the vegetation-greenness index (NDVI) as an active tracer extends the eco-hydrologic state space analysis to supplement the common geographical presentations. Two examples demonstrate the approach combining ERA and MODIS data sets: (a) global geobotanic classification by combining first and second moments of the dryness ratio (net radiation over precipitation) and (b) regional attributions (Tibetan Plateau) of vegetation changes.
Which resilience of the continental rainfall-runoff chain?
NASA Astrophysics Data System (ADS)
Fraedrich, Klaus
2015-04-01
Processes along the continental rainfall-runoff chain are extremely variable over a wide range of time and space scales. A key societal question is the multiscale resilience of this chain. We argue that the adequate framework to tackle this question can be obtained by combining observations (ranging from minutes to decades) and minimalist concepts: (i) Rainfall exhibits 1/f-spectra if presented as binary events (tropics) and extrema world wide increase with duration according to Jennings' scaling law as simulated by a censored first-order autoregressive process representing vertical moisture fluxes. (ii) Runoff volatility (Yangtze) shows data collapse which, linked to an intra-annual 1/f-spectrum, is represented by a single function (Gumbel) not unlike physical systems at criticality, while short and long return times of extremes are Weibull-distributed. (iii) Soil moisture, interpreted by a biased coinflip Ansatz for rainfall events, provides an equation of state to the surface energy and water flux balances comprising Budyko's framework for quasi-stationary watershed analysis. (iv) Vegetation-greenness (NDVI), included as an active tracer extends Budyko's eco-hydrologic state space analysis, supplements the common geographical presentations, and it may be linked to a minimalist biodiversity concept. (v) Finally, attributions of change to external (or climate) and internal (or anthropogenic) causes are determined by eco-hydrologic state space trajectories using surface flux ratios of energy excess (loss by sensible heat over supply by net radiation) versus water excess (loss by discharge over gain by precipitation). Risk-estimates (by GCM-emulators) and possible policy advice mechanisms enter the outlook.
NASA Astrophysics Data System (ADS)
Olschanowsky, C.; Flores, A. N.; FitzGerald, K.; Masarik, M. T.; Rudisill, W. J.; Aguayo, M.
2017-12-01
Dynamic models of the spatiotemporal evolution of water, energy, and nutrient cycling are important tools to assess impacts of climate and other environmental changes on ecohydrologic systems. These models require spatiotemporally varying environmental forcings like precipitation, temperature, humidity, windspeed, and solar radiation. These input data originate from a variety of sources, including global and regional weather and climate models, global and regional reanalysis products, and geostatistically interpolated surface observations. Data translation measures, often subsetting in space and/or time and transforming and converting variable units, represent a seemingly mundane, but critical step in the application workflows. Translation steps can introduce errors, misrepresentations of data, slow execution time, and interrupt data provenance. We leverage a workflow that subsets a large regional dataset derived from the Weather Research and Forecasting (WRF) model and prepares inputs to the Parflow integrated hydrologic model to demonstrate the impact translation tool software quality on scientific workflow results and performance. We propose that such workflows will benefit from a community approved collection of data transformation components. The components should be self-contained composable units of code. This design pattern enables automated parallelization and software verification, improving performance and reliability. Ensuring that individual translation components are self-contained and target minute tasks increases reliability. The small code size of each component enables effective unit and regression testing. The components can be automatically composed for efficient execution. An efficient data translation framework should be written to minimize data movement. Composing components within a single streaming process reduces data movement. Each component will typically have a low arithmetic intensity, meaning that it requires about the same number of bytes to be read as the number of computations it performs. When several components' executions are coordinated the overall arithmetic intensity increases, leading to increased efficiency.
NASA Astrophysics Data System (ADS)
Engel, Michael; Penna, Daniele; Frentress, Jay; Andreoli, Andrea; Hecher, Peter; Van Meerveld, Ilja; Comiti, Francesco
2017-04-01
In recent decades, restauration actions have been implemented in mountain rivers to face widespread morphological changes. Such natural and anthropogenic modifications can have relevant impacts on the ecological and ecohydrological functioning of riparian vegetation. Understanding the water sources used by riparian vegetation is important for the implementation of effective river restoration initiatives. Therefore, more ecohydrological research is needed to quantify the complex interactions between hydrology and vegetation in different alpine river systems. In this study we used water stable isotopes and electrical conductivity (EC) as tracers to better understand the hydrological and ecohydrological relationship between the riparian vegetation and the river bed of alpine river systems. We choose two catchments, Ahr/Aurino River and Mareit/Ridanna River catchments (South Tyrol, Italy) as study sites. In both catchments, we selected two sites comprising a younger (< 5 years) and an older (> 10 years) alder (Alnus incana) stand. At each site, soil moisture at different depths and groundwater levels were monitored. Suction lysimeters were installed at the same depths than the soil moisture sensors. Samples for tracer analysis were collected since June 2016 on a bi-weekly or monthly basis from precipitation, soil water, groundwater and stream water. EC was continuously measured in a piezometer at the Mareit River. In addition, we extracted sap water for isotopic analysis from alder trees. First results show that all water types sampled in both catchments fell along the global meteoric water line showing no evaporative enrichments. Sap samples are expected to deviate from the meteoric line but they have not been analysed yet. At both sites in the Ahr catchment, soil water seemed to be more variable and isotopically more enriched at 10 cm depth (δ2H: - 34 to -69 ‰) than at 50 cm (δ2H: -45 to -71 ‰), indicating a decreasing influence of precipitation with increasing soil depth. In contrast, soil water at Mareit River seemed to depend stronger on the topographical location of the site than on the soil depth. Groundwater in the Ahr catchment at the end of July 2016 showed isotopic depletion (δ2H: -89 ‰), which occurred about one month later than the isotopic depletion observed in the stream (δ2H: -96 ‰). This may indicate a stream-groundwater connectivity with a specific time lag. These observations may provide a first insight into the main controls on the complex interactions between stream and vegetation in the riparian zone. Keywords: stable isotopes of water; sap; alpine rivers; riparian zone connectivity; ecohydrology
Potential Stream Density in Mid-Atlantic U.S. Watersheds
Elmore, Andrew J.; Julian, Jason P.; Guinn, Steven M.; Fitzpatrick, Matthew C.
2013-01-01
Stream network density exerts a strong influence on ecohydrologic processes in watersheds, yet existing stream maps fail to capture most headwater streams and therefore underestimate stream density. Furthermore, discrepancies between mapped and actual stream length vary between watersheds, confounding efforts to understand the impacts of land use on stream ecosystems. Here we report on research that predicts stream presence from coupled field observations of headwater stream channels and terrain variables that were calculated both locally and as an average across the watershed upstream of any location on the landscape. Our approach used maximum entropy modeling (MaxEnt), a robust method commonly implemented to model species distributions that requires information only on the presence of the entity of interest. In validation, the method correctly predicts the presence of 86% of all 10-m stream segments and errors are low (<1%) for catchments larger than 10 ha. We apply this model to the entire Potomac River watershed (37,800 km2) and several adjacent watersheds to map stream density and compare our results with the National Hydrography Dataset (NHD). We find that NHD underestimates stream density by up to 250%, with errors being greatest in the densely urbanized cities of Washington, DC and Baltimore, MD and in regions where the NHD has never been updated from its original, coarse-grain mapping. This work is the most ambitious attempt yet to map stream networks over a large region and will have lasting implications for modeling and conservation efforts. PMID:24023704
Ng, Gene-Hua Crystal; Bedford, David R.; Miller, David M.
2015-01-01
The perennial shrub Larrea tridentata is widely successful in North American warm deserts but is also susceptible to climatic perturbations. Understanding its response to rainfall variability requires consideration of multiple timescales. We examine intra-annual to multi-year relationships using model simulations of soil moisture and vegetation growth over 50 years in the Mojave National Preserve in southeastern California (USA). Ecohydrological model parameters are conditioned on field and remote sensing data using an ensemble Kalman filter. Although no specific periodicities were detected in the rainfall record, simulated leaf-area-index exhibits multi-year dynamics that are driven by multi-year (∼3-years) rains, but with up to a 1-year delay in peak response. Within a multi-year period, Larrea tridentata is more sensitive to winter rains than summer. In the most active part of the root zone (above ∼80 cm), >1-year average soil moisture drives vegetation growth, but monthly average soil moisture is controlled by root uptake. Moisture inputs reach the lower part of the root zone (below ∼80 cm) infrequently, but once there they can persist over a year to help sustain plant growth. Parameter estimates highlight efficient plant physiological properties facilitating persistent growth and high soil hydraulic conductivity allowing deep soil moisture stores. We show that soil moisture as an ecological indicator is complicated by bidirectional interactions with vegetation that depend on timescale and depth. Under changing climate, Larrea tridentata will likely be relatively resilient to shorter-term moisture variability but will exhibit higher sensitivity to shifts in seasonal to multi-year moisture inputs.
Comparison and Validation of Hydrological E-Flow Methods through Hydrodynamic Modelling
NASA Astrophysics Data System (ADS)
Kuriqi, Alban; Rivaes, Rui; Sordo-Ward, Alvaro; Pinheiro, António N.; Garrote, Luis
2017-04-01
Flow regime determines physical habitat conditions and local biotic configuration. The development of environmental flow guidelines to support the river integrity is becoming a major concern in water resources management. In this study, we analysed two sites located in southern part of Portugal, respectively at Odelouca and Ocreza Rivers, characterised by the Mediterranean climate. Both rivers are almost in pristine condition, not regulated by dams or other diversion construction. This study presents an analysis of the effect on fish habitat suitability by the implementation of different hydrological e-flow methods. To conduct this study we employed certain hydrological e-flow methods recommended by the European Small Hydropower Association (ESHA). River hydrology assessment was based on approximately 30 years of mean daily flow data, provided by the Portuguese Water Information System (SNIRH). The biological data, bathymetry, physical and hydraulic features, and the Habitat Suitability Index for fish species were collected from extensive field works. We followed the Instream Flow Incremental Methodology (IFIM) to assess the flow-habitat relationship taking into account the habitat suitability of different instream flow releases. Initially, we analysed fish habitat suitability based on natural conditions, and we used it as reference condition for other scenarios considering the chosen hydrological e-flow methods. We accomplished the habitat modelling through hydrodynamic analysis by using River-2D model. The same methodology was applied to each scenario by considering as input the e-flows obtained from each of the hydrological method employed in this study. This contribution shows the significance of ecohydrological studies in establishing a foundation for water resources management actions. Keywords: ecohydrology, e-flow, Mediterranean rivers, river conservation, fish habitat, River-2D, Hydropower.
The Eco-Hydrological Role of Physical Surface Sealing in Dry Environments
NASA Astrophysics Data System (ADS)
Sela, Shai; Svoray, Tal; Assouline, Shmuel
2016-04-01
Soil surface sealing is a widespread natural process in dry environments occurring frequently in bare soil areas between vegetation patches. The low hydraulic conductivity that characterizes the seal layer reduces both infiltration and evaporation fluxes from the soil, and thus has the potential to affect local vegetation water availability and consequently transpiration rates. This effect is investigated here using two separate physically based models - a runoff model, and a root water uptake model. High resolution rainfall data is used to demonstrate the seal layer effect on runoff generation and vegetation water availability, while the seal layer effect on vegetation water uptake is studied using a long-term climatic dataset (44 years) from three dry sites presenting a climatic gradient in the Negev Desert, Israel. The Feddes water uptake parameters for the dominant shrub at the study site (Sarcopoterium spinosum) were acquired using an inverse calibration procedure using data from a lysimeter experiment. The results indicate that the presence of surface sealing increases significantly vegetation water availability through runoff generation. Following water infiltration, the shrub transpiration generally increases if the shrub is surrounded by a seal layer, but this effect can switch from positive to negative depending on initial soil water content, rainfall intensity, and the duration of the subsequent drying intervals. These factors have a marked effect on inter-annual variability of the seal layer effect on the shrub transpiration, which on average was found to be 26% higher under sealed conditions than in the case of unsealed soil surfaces. These results shed light on the importance of surface sealing on the eco-hydrology of dry environments and its contribution to the resilience of woody vegetation.
Ecohydrological dynamics of peatlands and adjacent upland forests in the Rocky Mountains
NASA Astrophysics Data System (ADS)
Millar, D.; Parsekian, A.; Mercer, J.; Ewers, B. E.; Mackay, D. S.; Williams, D. G.; Cooper, D. J.; Ronayne, M. J.
2017-12-01
Mountain peatlands are susceptible to a changing climate via changes in the water cycle. Understanding the impacts of such changes requires knowledge of the hydrological processes within these peatlands and in the upland forests that supply them with water. We investigated hydrological processes in peatland catchments in the Rocky Mountains by developing empirical models of groundwater dynamics, and are working to improve subsurface water dynamics in a ecohydrological process model, the Terrestrial Regional Ecosystem Exchange Simulator (TREES). Results from empirical models showed major differences in water budget components between two peatlands with differing climate, vegetation, and hydrogeological settings. Several-fold higher rates of evapotranspiration from the saturated zone, and groundwater inflow were observed for a sloping fen in southern Wyoming than that of a basin fen in southwestern Colorado, where rainfall was two-fold higher due to stronger influence of the North American monsoon. We also present ongoing work coupling stable water isotope and borehole nuclear magnetic resonance analyses to test which soil water pools (bound or mobile) are used by dominant upland and peatland vegetation in two catchments in southern Wyoming. These data are being used to test whether the root hydraulic mechanisms in TREES can simulate water uptake from these two soil water pools, and sap flux measurements are being used to evaluate simulated transpiration. Preliminary results from this work suggest that upland vegetation utilize tightly-bound soil water pools, as these pools comprise the largest amount of subsurface water (> 80%) in the vadose zone long after snow melt. Conversely, it appears that herbaceous peatland hydrophytes may preferentially utilize mobile soil water pools, since their roots extend below the water table. The results of this work are expected to increase predictive understanding of hydrological processes in these important ecosystems.
NASA Astrophysics Data System (ADS)
Reiss, Martin; Zaenker, Stefan; Chifflard, Peter
2017-04-01
Since 2002, spring habitat investigations and mapping campaigns were executed in the National Park Kellerwald-Edersee (Central Germany, Federal State of Hesse). 693 springs are currently assessed within an ongoing ecological-faunistic inventory with additional data about physico-chemical properties and hydrological conditions of the spring water (e.g. pH value, electrical conductivity, water temperature and flow velocity). 1029 taxa are found so far, whereby, springs are investigated as a land-water ecotone where aquatic and terrestrial fauna was detected. Data continuously stored in the data base of the Hesse Biospeleological Register (Reiss, Steiner, Zaenker 2009) coupled with a Geographical Information System. Spring habitats can be characterized as mostly undisturbed, oligotrophic and near natural structured with heterogenous microhabitat conditions. Nearly 90 percentages of the springs are helocrenic habitats with a diffuse and low discharge, temporally dried out, but staying under wet substrate conditions. 85 percentages of the springs occurring under forests without any cultivation or forest management use. Coarse mineral substrate dominating slightly, followed up by fine mineral substrate types. Most common mineral related microhabitats are microlithal (coarse gravel) and psammopelal (fine silt). The high microhabitat diversity depends mostly to forest correlated organic substrate types. Here, most dominant are CPOM (leaf litter) and woody debris (deadwood). Substrate richness is significantly correlated to preferential fauna colonization of different, partly rare or endangered species. Undisturbed conditions are also characterized by relative cold stenothermy and oligotrophy. The latter is indicated by a very low electrical conductivity (Mean: 236 µS*cm-1). The mean annual water temperature is 9° Celsius with low amplitudes of max. and min. values. Spring water is nearly neutral and there is no identifiable trend in acidification (mean pH value of 6,9). Due to nearly unaffected ecohydrological properties, in particular: relative consistently cold water temperature with low amplitudes (cold stenothermy), mostly low flow velocity and an intermittent discharge regime a very unique and specific adapted spring fauna composition for the German low mountain ranges can be characterized. Cold stenothermic and spring related species are very frequent in relative occurrence and abundance. We analyzed a map based and representative distribution for the entire large-scale protected area of the National Park Kellerwald-Edersee according to Bythinella dunkeri (spring snail), Crenobia alpina (planarian), Crunoecia irrorata (caddisfly) and Niphargus schellenbergi (groundwater amphipod). We discuss the potential of ecohydrological research on possible climate change predictions and consequences on the distribution of cold stenothermic and spring dwelling species within the special context of research goals in National Parks. Here, an idea of a new approach for an ecohydrological assessment by indicating cold stenothermic taxa is given as an outlook. References Reiss, M., Steiner, H. & S. Zaenker (2009): The Biospeleological Register of the Hesse Federation for Cave and Karst Research (Germany). Cave and Karst Science 35(1), pp.25-34.
Towards a physically-based multi-scale ecohydrological simulator for semi-arid regions
NASA Astrophysics Data System (ADS)
Caviedes-Voullième, Daniel; Josefik, Zoltan; Hinz, Christoph
2017-04-01
The use of numerical models as tools for describing and understanding complex ecohydrological systems has enabled to test hypothesis and propose fundamental, process-based explanations of the system system behaviour as a whole as well as its internal dynamics. Reaction-diffusion equations have been used to describe and generate organized pattern such as bands, spots, and labyrinths using simple feedback mechanisms and boundary conditions. Alternatively, pattern-matching cellular automaton models have been used to generate vegetation self-organization in arid and semi-arid regions also using simple description of surface hydrological processes. A key question is: How much physical realism is needed in order to adequately capture the pattern formation processes in semi-arid regions while reliably representing the water balance dynamics at the relevant time scales? In fact, redistribution of water by surface runoff at the hillslope scale occurs at temporal resolution of minutes while the vegetation development requires much lower temporal resolution and longer times spans. This generates a fundamental spatio-temporal multi-scale problem to be solved, for which high resolution rainfall and surface topography are required. Accordingly, the objective of this contribution is to provide proof-of-concept that governing processes can be described numerically at those multiple scales. The requirements for a simulating ecohydrological processes and pattern formation with increased physical realism are, amongst others: i. high resolution rainfall that adequately captures the triggers of growth as vegetation dynamics of arid regions respond as pulsed systems. ii. complex, natural topography in order to accurately model drainage patterns, as surface water redistribution is highly sensitive to topographic features. iii. microtopography and hydraulic roughness, as small scale variations do impact on large scale hillslope behaviour iv. moisture dependent infiltration as temporal dynamics of infiltration affects water storage under vegetation and in bare soil Despite the volume of research in this field, fundamental limitations still exist in the models regarding the aforementioned issues. Topography and hydrodynamics have been strongly simplified. Infiltration has been modelled as dependent on depth but independent of soil moisture. Temporal rainfall variability has only been addressed for seasonal rain. Spatial heterogenity of the topography as well as roughness and infiltration properties, has not been fully and explicitly represented. We hypothesize that physical processes must be robustly modelled and the drivers of complexity must be present with as much resolution as possible in order to provide the necessary realism to improve transient simulations, perhaps leading the way to virtual laboratories and, arguably, predictive tools. This work provides a first approach into a model with explicit hydrological processes represented by physically-based hydrodynamic models, coupled with well-accepted vegetation models. The model aims to enable new possibilities relating to spatiotemporal variability, arbitrary topography and representation of spatial heterogeneity, including sub-daily (in fact, arbitrary) temporal variability of rain as the main forcing of the model, explicit representation of infiltration processes, and various feedback mechanisms between the hydrodynamics and the vegetation. Preliminary testing strongly suggests that the model is viable, has the potential of producing new information of internal dynamics of the system, and allows to successfully aggregate many of the sources of complexity. Initial benchmarking of the model also reveals strengths to be exploited, thus providing an interesting research outlook, as well as weaknesses to be addressed in the immediate future.
Bradford, John B.; Schlaepfer, Daniel R.; Lauenroth, William K.
2014-01-01
Sagebrush steppe and lodgepole pine forests are two of the most widespread vegetation types in the western United States and they play crucial roles in the hydrologic cycle of these water-limited regions. We used a process-based ecosystem water model to characterize the potential impact of climate change and disturbance (wildfire and beetle mortality) on water cycling in adjacent sagebrush and lodgepole pine ecosystems. Despite similar climatic and topographic conditions between these ecosystems at the sites examined, lodgepole pine, and sagebrush exhibited consistent differences in water balance, notably more evaporation and drier summer soils in the sagebrush and greater transpiration and less water yield in lodgepole pine. Canopy disturbances (either fire or beetle) have dramatic impacts on water balance and availability: reducing transpiration while increasing evaporation and water yield. Results suggest that climate change may reduce snowpack, increase evaporation and transpiration, and lengthen the duration of dry soil conditions in the summer, but may have uncertain effects on drainage. Changes in the distribution of sagebrush and lodgepole pine ecosystems as a consequence of climate change and/or altered disturbance regimes will likely alter ecosystem water balance.
NASA Astrophysics Data System (ADS)
Fader, Marianela; von Bloh, Werner; Shi, Sinan; Bondeau, Alberte; Cramer, Wolfgang
2016-04-01
In the Mediterranean region, climate and land use change are expected to impact on natural and agricultural ecosystems by warming, reduced rainfall and direct degradation of ecosystems. Human population growth and socioeconomic changes, notably on the Eastern and Southern shores, will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive ecohydrological model. Here we present here the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (LPJmL, "Lund-Potsdam-Jena managed Land"): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was then successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. A first application of the model indicates that, currently, agricultural trees consume in average more irrigation water per hectare than annual crops. Also, different crops show different magnitude of changes in net irrigation requirements due to climate change, being the increases most pronounced in agricultural trees. This is very relevant since the Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 74% from climate change and population growth if irrigation systems and conveyance are not improved. Additionally, future water scarcity might pose further challenges to the agricultural sector: Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain have a high risk of not being able to sustainably meet future irrigation water requirements in some scenarios by the end of the century (1). The importance of including agricultural trees in the ecohydrological models is also shown in the results concerning soil organic carbon (SOC). Since in former model versions, areas with agricultural trees were simulated as perennial grasslands, implementing agricultural trees in LPJmL increased the carbon stock in soils in most of the Mediterranean area. We compared the SOC estimates before and after the implementation of agricultural trees, with the organic carbon density from the HWSD database (2). These data are produced by establishing functions between SOC and soil type, topography, climate variables and land use situation. The number of grid-cells with decreased differences to the HWSD estimates almost doubles the number of grid-cells with increased differences. This means that the development moved LPJmL's results for SOC closer to HWSD values (3). With the model development presented here, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture and its linkage with water use and resources. References: (1) Fader, M., von Bloh, W., Shi, S., Bondeau, A., Cramer, W. (2015) : Mediterranean irrigation under climate change: More efficient irrigation needed to compensate increases in irrigation water requirements. HESSD 12, 8459-8504. (2) Hiederer, R. and Köchy, M.: Global Soil Organic Carbon Estimates and the Harmonized World Soil Database. EUR Scientific and Technical Research series - ISSN 1831-9424 (online), doi: 10.2788/13267, 2012. (3) Fader, M., von Bloh, W., Shi, S., Bondeau, A., Cramer, W. (2015): Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model. Geosci. Model Dev., 8, 3545-3561, 2015.
Green infrastructure retrofits on residential parcels: Ecohydrologic modeling for stormwater design
NASA Astrophysics Data System (ADS)
Miles, B.; Band, L. E.
2014-12-01
To meet water quality goals stormwater utilities and not-for-profit watershed organizations in the U.S. are working with citizens to design and implement green infrastructure on residential land. Green infrastructure, as an alternative and complement to traditional (grey) stormwater infrastructure, has the potential to contribute to multiple ecosystem benefits including stormwater volume reduction, carbon sequestration, urban heat island mitigation, and to provide amenities to residents. However, in small (1-10-km2) medium-density urban watersheds with heterogeneous land cover it is unclear whether stormwater retrofits on residential parcels significantly contributes to reduce stormwater volume at the watershed scale. In this paper, we seek to improve understanding of how small-scale redistribution of water at the parcel scale as part of green infrastructure implementation affects urban water budgets and stormwater volume across spatial scales. As study sites we use two medium-density headwater watersheds in Baltimore, MD and Durham, NC. We develop ecohydrology modeling experiments to evaluate the effectiveness of redirecting residential rooftop runoff to un-altered pervious surfaces and to engineered rain gardens to reduce stormwater runoff. As baselines for these experiments, we performed field surveys of residential rooftop hydrologic connectivity to adjacent impervious surfaces, and found low rates of connectivity. Through simulations of pervasive adoption of downspout disconnection to un-altered pervious areas or to rain garden stormwater control measures (SCM) in these catchments, we find that most parcel-scale changes in stormwater fate are attenuated at larger spatial scales and that neither SCM alone is likely to provide significant changes in streamflow at the watershed scale.
An integrated multiscale river basin observing system in the Heihe River Basin, northwest China
NASA Astrophysics Data System (ADS)
Li, X.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.
2015-12-01
Using the watershed as the unit to establish an integrated watershed observing system has been an important trend in integrated eco-hydrologic studies in the past ten years. Thus far, a relatively comprehensive watershed observing system has been established in the Heihe River Basin, northwest China. In addition, two comprehensive remote sensing hydrology experiments have been conducted sequentially in the Heihe River Basin, including the Watershed Allied Telemetry Experimental Research (WATER) (2007-2010) and the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) (2012-2015). Among these two experiments, an important result of WATER has been the generation of some multi-scale, high-quality comprehensive datasets, which have greatly supported the development, improvement and validation of a series of ecological, hydrological and quantitative remote-sensing models. The goal of a breakthrough for solving the "data bottleneck" problem has been achieved. HiWATER was initiated in 2012. This project has established a world-class hydrological and meteorological observation network, a flux measurement matrix and an eco-hydrological wireless sensor network. A set of super high-resolution airborne remote-sensing data has also been obtained. In addition, there has been important progress with regard to the scaling research. Furthermore, the automatic acquisition, transmission, quality control and remote control of the observational data has been realized through the use of wireless sensor network technology. The observation and information systems have been highly integrated, which will provide a solid foundation for establishing a research platform that integrates observation, data management, model simulation, scenario analysis and decision-making support to foster 21st-century watershed science in China.
The ethics of socio-ecohydrological catchment management: towards hydrosolidarity
NASA Astrophysics Data System (ADS)
Falkenmark, M.; Folke, Carl
This paper attempts to clarify key biophysical issues and the problems involved in the ethics of socio-ecohydrological catchment management. The issue in managing complex systems is to live with unavoidable change while securing the capacity of the ecohydrological system of the catchment to sustain vital ecological goods and services, aquatic as well as terrestrial, on which humanity depends ultimately. Catchment management oriented to sustainability has to be based on ethical principles: human rights, international conventions, sustaining crucial ecological goods and services, and protecting ecosystem resilience, all of which have water linkages. Many weaknesses have to be identified, assessed and mitigated to improve the tools by which the ethical issues can be addressed and solved:
The new ethics have to incorporate principles that, on a catchment basis, allow for proper attention to the hungry and poor, upstream and downstream, to descendants, and to sites and habitats that need to be protected.
NASA Astrophysics Data System (ADS)
Hurley, Alexander; Kettridge, Nicholas; Devito, Kevin; Hokanson, Kelly; Krause, Stefan
2017-04-01
Hydrologic connectivity in the sub-humid Western Boreal Plain is largely controlled by storage-threshold dynamics where deep and coarse glacial deposits with high infiltration and storage capacities are prevalent. Here, vertical fluxes generally dominate over surface runoff, which has return periods of several years. Within this landscape, small, ephemeral wetlands with shallow peat soils are embedded in a matrix of other landscape units. They are typically gently-sloped and found in low-lying areas within forests or along margins of other wetlands. These ephemeral wetlands frequently saturate, and thus promote lateral water transfer as surface runoff or subsurface flows to adjacent and downstream systems. In the Western Boreal Plain, the importance of such water transmitting units (WTUs) is exacerbated by regional, multi-year water deficits resulting from inter-annual precipitation variability, and high evapotranspirative (ET) demand coinciding with most of the annual precipitation. Hence, the occurrence of WTUs may be key to maintaining the ecohydrological functioning of systems with temporary or missing connections to ground- or surface water. We present a conceptual model of these shallow, ephemeral wetlands based on our current understanding of dominant, ecohydrological processes promoting water transmission and highlight current knowledge gaps. Ongoing research focuses on quantifying individual water balance components, identifying potential feedback mechanisms between vegetation, soil properties and layering, and how climate modulates them. Key questions are: (1) What are dominant water balance components and their seasonal and internal dynamics? (2) Do vegetation structure and community composition decrease ET losses from the soil surface and wetland vegetation by shading and sheltering (i.e. decoupling from turbulent atmospheric exchange)? (3) Do adjacent upland and wetland systems depend on water transmission to maintain their functioning and productivity? (4) Are saturation and lateral water transport enhanced by the formation of surface-near ice layers by decreasing storage capacity, and does spatial variability of soil properties affect this process? Ultimately, this work will contribute to a growing knowledge base on the ecohydrological functioning of landscape units and catchment dynamics of the Western Boreal Plain.
The critical role of fire in catchment coevolution in South Eastern Australia
NASA Astrophysics Data System (ADS)
Nyman, P.; Inbar, A.; Lane, P. N. J.; Sheridan, G. J.
2016-12-01
Temperate south east Australian forested uplands are characterised by complex spatial patterns in forest types, soils and fire regimes, even within areas with similar geologies and landscape position. Preliminary measurements and experiments suggest that positive and negative feedbacks between the vegetation, fuels, fire frequency and soil erosion may control the coevolution of these observed system states. Here we propose the hypotheses that in this landscape post-fire soil erosion has played a dominant role in the coevolved system-state combinations of standing biomass, fire frequency and soil depth. To test the hypothesis a 1D simulation model was developed that links together an ecohydrological model to drive the biomass production and water and energy partitioning, a stochastic fire model that is controlled by climate, fuel load and moisture conditions, and a geomorphic model that controls soil production and fluvial and diffusive sediment transport rates. The model was calibrated to the range of existing observed quasi-equalibrium system-states of soil depth, standing biomass, fuel loading and fire frequency using field measurements from 12 instrumented eco-hydrologic microclimate research sites. The long-term partitioning of rainfall into evaporation, transpiration, and streamflow was calibrated against field and literature values. Fuel moisture and micro-climate variables were calibrated to the field microclimate stations. The calibrated model was able to reasonably replicate the observed quasi-equilibrium system-states and hydrologic outputs using current climate forcings operating over a 10,000 year period, providing confidence in the model structure and performance. The model was then used to test the hypothesis stated above, by alternatively including or excluding the post fire erosion process. An alternate hypothesis, whereby the observed system states are dominated by climate related differences in soil production rates was also tested in this way. The results support the hypothesis that feedbacks between fire, ecology, hydrology and geomorphology have played a critical role in the coevolution of south east Australian forested uplands. Similar pyro-eco-hydrologic feedbacks may play a critical role in catchment coevolution in other forested systems globally.
NASA Astrophysics Data System (ADS)
Korres, W.; Reichenau, T. G.; Schneider, K.
2012-12-01
Soil moisture is one of the fundamental variables in hydrology, meteorology and agriculture, influencing the partitioning of solar energy into latent and sensible heat flux as well as the partitioning of precipitation into runoff and percolation. Numerous studies have shown that in addition to natural factors (rainfall, soil, topography etc.) agricultural management is one of the key drivers for spatio-temporal patterns of soil moisture in agricultural landscapes. Interactions between plant growth, soil hydrology and soil nitrogen transformation processes are modeled by using a dynamically coupled modeling approach. The process-based ecohydrological model components of the integrated decision support system DANUBIA are used to identify the important processes and feedbacks determining soil moisture patterns in agroecosystems. Integrative validation of plant growth and surface soil moisture dynamics serves as a basis for a spatially distributed modeling analysis of surface soil moisture patterns in the northern part of the Rur catchment (1100 sq km), Western Germany. An extensive three year dataset (2007-2009) of surface soil moisture-, plant- (LAI, organ specific biomass and N) and soil- (texture, N, C) measurements was collected. Plant measurements were carried out biweekly for winter wheat, maize, and sugar beet during the growing season. Soil moisture was measured with three FDR soil moisture stations. Meteorological data was measured with an eddy flux station. The results of the model validation showed a very good agreement between the modeled plant parameters (biomass, green LAI) and the measured parameters with values between 0.84 and 0.98 (Willmotts index of agreement). The modeled surface soil moisture (0 - 20 cm) showed also a very favorable agreement with the measurements for winter wheat and sugar beet with an RMSE between 1.68 and 3.45 Vol.-%. For maize, the RMSE was less favorable particularly in the 1.5 months prior to harvest. The modeled soil moisture remained in contrast to the measurements very responsive to precipitation with high soil moisture after precipitation events. This behavior indicates that the soil properties might have changed due to the formation of a surface crust or seal towards the end of the growing season. Spatial soil moisture patterns were investigated using a grid resolution of 150 meter. Spatial autocorrelation was computed on a daily basis using patterns of soil texture as well as transpiration and precipitation indices as co-variables. Spatial patterns of surface soil moisture are mostly determined by the structure of the soil properties (soil type) during winter, early growing season and after harvest of all crops. Later in the growing season, after establishment of a closed canopy the dependence of the soil moisture patterns on soil texture patterns becomes smaller and diminishes quickly after precipitation events, due to differences of the transpiration rate of the different crops. When changing the spatial scale of the analysis, the highest autocorrelation values can be found on a grid cell size between 450 and 1200 meters. Thus, small scale variability of transpiration induced by the land use pattern almost averages out, leaving the larger scale structure of soil properties to explain the soil moisture patterns.
Water balance dynamics in the Nile Basin
Senay, Gabriel B.; Asante, Kwabena; Artan, Guleid A.
2009-01-01
Understanding the temporal and spatial dynamics of key water balance components of the Nile River will provide important information for the management of its water resources. This study used satellite-derived rainfall and other key weather variables derived from the Global Data Assimilation System to estimate and map the distribution of rainfall, actual evapotranspiration (ETa), and runoff. Daily water balance components were modelled in a grid-cell environment at 0·1 degree (∼10 km) spatial resolution for 7 years from 2001 through 2007. Annual maps of the key water balance components and derived variables such as runoff and ETa as a percent of rainfall were produced. Generally, the spatial patterns of rainfall and ETa indicate high values in the upstream watersheds (Uganda, southern Sudan, and southwestern Ethiopia) and low values in the downstream watersheds. However, runoff as a percent of rainfall is much higher in the Ethiopian highlands around the Blue Nile subwatershed. The analysis also showed the possible impact of land degradation in the Ethiopian highlands in reducing ETa magnitudes despite the availability of sufficient rainfall. Although the model estimates require field validation for the different subwatersheds, the runoff volume estimate for the Blue Nile subwatershed is within 7·0% of a figure reported from an earlier study. Further research is required for a thorough validation of the results and their integration with ecohydrologic models for better management of water and land resources in the various Nile Basin ecosystems.
NASA Astrophysics Data System (ADS)
Caracciolo, Domenico; Istanbulluoglu, Erkan; Noto, Leonardo Valerio; Collins, Scott L.
2016-05-01
Arid and semiarid grasslands of southwestern North America have changed dramatically over the last 150 years as a result of woody plant encroachment. Overgrazing, reduced fire frequency, and climate change are known drivers of woody plant encroachment into grasslands. In this study, relatively simple algorithms for encroachment factors (i.e., grazing, grassland fires, and seed dispersal by grazers) are proposed and implemented in the ecohydrological Cellular-Automata Tree Grass Shrub Simulator (CATGraSS). CATGraSS is used in a 7.3 km2 rectangular domain located in central New Mexico along a zone of grassland to shrubland transition, where shrub encroachment is currently active. CATGraSS is calibrated and used to investigate the relative contributions of grazing, fire frequency, seed dispersal by herbivores and climate change on shrub abundance over a 150-year period of historical shrub encroachment. The impact of future climate change is examined using a model output that realistically represents current vegetation cover as initial condition, in a series of stochastic CATGraSS future climate simulations. Model simulations are found to be highly sensitive to the initial distribution of shrub cover. Encroachment factors more actively lead to shrub propagation within the domain when the model starts with randomly distributed individual shrubs. However, when shrubs are naturally evolved into clusters, the model response to encroachment factors is muted unless the effect of seed dispersal by herbivores is amplified. The relative contribution of different drivers on modeled shrub encroachment varied based on the initial shrub cover condition used in the model. When historical weather data is used, CATGraSS predicted loss of shrub and grass cover during the 1950 s drought. While future climate change is found to amplify shrub encroachment (∼13% more shrub cover by 2100), grazing remains the dominant factor promoting shrub encroachment. When we modeled future climate change, however, encroachment still occurred at a reduced rate in the absence of grazing along with pre-grazing fire frequency because of lower shrub water stress leading to reduced shrub mortality which increases the probability of shrub establishment.
NASA Astrophysics Data System (ADS)
Mohseni, Neda; Hosseinzadeh, Seyed Reza; Sepehr, Adel; Golzarian, Mahmood Reza; Shabani, Farzin
2017-08-01
Debris flow fans are non-equilibrium landforms resulting from the spatial variations of debris flows deposited on them. This geomorphic disturbance involving the asymmetric redistribution of water and sediment may create spatially heterogeneous patterns of soil-vegetation along landforms. In this research, founded on field-based observations, we characterized the spatial patterns of some soil (e.g., particle size distribution including fine and coarse covers, and infiltration capacity) and vegetation (e.g., plant distance, vegetation density, patch size, and average number of patches) properties within different debris flow fan positions (Upper, Middle, and Lower fan) located at the base of the Binaloud Mountain hillslope in northeastern Iran. Thereafter, using a mathematical model of dry land vegetation dynamics, we calculated response trends of the different positions to the same environmental harshness gradient. Field measurements of soil-vegetation properties and infiltration rates showed that the asymmetric redistribution of debris flow depositions can cause statistically significant differences (P < 0.05) in the spatial patterns of soil and eco-hydrological characteristics along different landform positions. The results showed that mean plant distance, mean vegetation density, and the average number of patches decreased as the coarse covers increased toward the Lower fan plots. Conversely, an increase in infiltration rate was observed. The simulation results on the aerial images taken from different positions, illustrated that positions with a heterogeneous distribution of vegetation patterns were not desertified to the same degree of aridity. Thus, the Middle and Lower positions could survive under harsher aridity conditions, due to the emergence of more varied spatial vegetation patterns than at the Upper fan position. The findings, based on a combined field and modeling approach, highlighted that debris flow as a geomorphic process with the asymmetric distribution of depositions on the gentle slope of an alluvial fan, can incur multiple resilience thresholds with different degrees of self-organization under stressful conditions over the spatial heterogeneities of soil-dependent vegetation structures.
NASA Astrophysics Data System (ADS)
Vico, G.; Feng, X.; Dralle, D.; Thompson, S. E.; Manzoni, S.
2016-12-01
Drought deciduousness is a common phenological strategy to cope with water shortages during periodic dry spells or during the dry season in tropical forests. On one hand, shedding leaves allows avoiding drought stress, but implies leaf construction costs that evergreen species need to sustain less frequently. On the other hand, maintaining leaves during dry periods requires stable water sources, traits enabling leaves to remain active at low water potential, and carbon stores to sustain respiration costs in periods with little carbon uptake. Which of these strategies is the most competitive ultimately depends on the balance of carbon costs and gains in the long-term. In turn, this balance is affected by the hydro-climatic conditions, in terms of both length of the dry season and random rainfall occurrences during the wet season. To address the question as to which hydro-climatic conditions favor drought-deciduous vs. evergreen leaf habit in tropical forests, we develop a stochastic eco-hydrological framework that provides probability density functions of long-term carbon gain in tropical trees with a range of phenological strategies. From these distributions we compute the long-term mean carbon gain and use it as a measure of fitness and thus reproductive success. Finally, this measure is used to assess which phenological strategies are evolutionarily stable, providing an objective criterion to predict how likely a species with a certain phenological strategy is to invade a community dominated but another strategy. In general, we find that deciduous habit is evolutionary stable in more unpredictable climates for a given total rainfall, and in drier climates. However, a minimum annual rainfall is required for any strategy to have a positive carbon gain.
Patterns in woody vegetation structure across African savannas
NASA Astrophysics Data System (ADS)
Axelsson, Christoffer R.; Hanan, Niall P.
2017-07-01
Vegetation structure in water-limited systems is to a large degree controlled by ecohydrological processes, including mean annual precipitation (MAP) modulated by the characteristics of precipitation and geomorphology that collectively determine how rainfall is distributed vertically into soils or horizontally in the landscape. We anticipate that woody canopy cover, crown density, crown size, and the level of spatial aggregation among woody plants in the landscape will vary across environmental gradients. A high level of woody plant aggregation is most distinct in periodic vegetation patterns (PVPs), which emerge as a result of ecohydrological processes such as runoff generation and increased infiltration close to plants. Similar, albeit weaker, forces may influence the spatial distribution of woody plants elsewhere in savannas. Exploring these trends can extend our knowledge of how semi-arid vegetation structure is constrained by rainfall regime, soil type, topography, and disturbance processes such as fire. Using high-spatial-resolution imagery, a flexible classification framework, and a crown delineation method, we extracted woody vegetation properties from 876 sites spread over African savannas. At each site, we estimated woody cover, mean crown size, crown density, and the degree of aggregation among woody plants. This enabled us to elucidate the effects of rainfall regimes (MAP and seasonality), soil texture, slope, and fire frequency on woody vegetation properties. We found that previously documented increases in woody cover with rainfall is more consistently a result of increasing crown size than increasing density of woody plants. Along a gradient of mean annual precipitation from the driest (< 200 mm yr-1) to the wettest (1200-1400 mm yr-1) end, mean estimates of crown size, crown density, and woody cover increased by 233, 73, and 491 % respectively. We also found a unimodal relationship between mean crown size and sand content suggesting that maximal savanna tree sizes do not occur in either coarse sands or heavy clays. When examining the occurrence of PVPs, we found that the same factors that contribute to the formation of PVPs also correlate with higher levels of woody plant aggregation elsewhere in savannas and that rainfall seasonality plays a key role for the underlying processes.
NASA Astrophysics Data System (ADS)
Sun, Shanlei; Sun, Ge; Cohen, Erika; McNulty, Steven G.; Caldwell, Peter V.; Duan, Kai; Zhang, Yang
2016-03-01
Quantifying the potential impacts of climate change on water yield and ecosystem productivity is essential to developing sound watershed restoration plans, and ecosystem adaptation and mitigation strategies. This study links an ecohydrological model (Water Supply and Stress Index, WaSSI) with WRF (Weather Research and Forecasting Model) using dynamically downscaled climate data of the HadCM3 model under the IPCC SRES A2 emission scenario. We evaluated the future (2031-2060) changes in evapotranspiration (ET), water yield (Q) and gross primary productivity (GPP) from the baseline period of 1979-2007 across the 82 773 watersheds (12-digit Hydrologic Unit Code level) in the coterminous US (CONUS). Across the CONUS, the future multi-year means show increases in annual precipitation (P) of 45 mm yr-1 (6 %), 1.8° C increase in temperature (T), 37 mm yr-1 (7 %) increase in ET, 9 mm yr-1 (3 %) increase in Q, and 106 gC m-2 yr-1 (9 %) increase in GPP. We found a large spatial variability in response to climate change across the CONUS 12-digit HUC watersheds, but in general, the majority would see consistent increases all variables evaluated. Over half of the watersheds, mostly found in the northeast and the southern part of the southwest, would see an increase in annual Q (> 100 mm yr-1 or 20 %). In addition, we also evaluated the future annual and monthly changes of hydrology and ecosystem productivity for the 18 Water Resource Regions (WRRs) or two-digit HUCs. The study provides an integrated method and example for comprehensive assessment of the potential impacts of climate change on watershed water balances and ecosystem productivity at high spatial and temporal resolutions. Results may be useful for policy-makers and land managers to formulate appropriate watershed-specific strategies for sustaining water and carbon sources in the face of climate change.
NASA Astrophysics Data System (ADS)
Sun, S.; Sun, G.; Cohen, E.; McNulty, S. G.; Caldwell, P.; Duan, K.; Zhang, Y.
2015-12-01
Quantifying the potential impacts of climate change on water yield and ecosystem productivity (i.e., carbon balances) is essential to developing sound watershed restoration plans, and climate change adaptation and mitigation strategies. This study links an ecohydrological model (Water Supply and Stress Index, WaSSI) with WRF (Weather Research and Forecasting Model) dynamically downscaled climate projections of the HadCM3 model under the IPCC SRES A2 emission scenario. We evaluated the future (2031-2060) changes in evapotranspiration (ET), water yield (Q) and gross primary productivity (GPP) from the baseline period of 1979-2007 across the 82 773 watersheds (12 digit Hydrologic Unit Code level) in the conterminous US (CONUS), and evaluated the future annual and monthly changes of hydrology and ecosystem productivity for the 18 Water Resource Regions (WRRs) or 2-digit HUCs. Across the CONUS, the future multi-year means show increases in annual precipitation (P) of 45 mm yr-1 (6 %), 1.8 °C increase in temperature (T), 37 mm yr-1 (7 %) increase in ET, 9 mm yr-1 (3 %) increase in Q, and 106 g C m-2 yr-1 (9 %) increase in GPP. Response to climate change was highly variable across the 82, 773 watersheds, but in general, the majority would see consistent increases in all variables evaluated. Over half of the 82 773 watersheds, mostly found in the northeast and the southern part of the southwest would have an increase in annual Q (>100 mm yr-1 or 20 %). This study provides an integrated method and example for comprehensive assessment of the potential impacts of climate change on watershed water balances and ecosystem productivity at high spatial and temporal resolutions. Results will be useful for policy-makers and land managers in formulating appropriate watershed-specific strategies for sustaining water and carbon sources in the face of climate change.
NASA Astrophysics Data System (ADS)
Korres, W.; Reichenau, T. G.; Schneider, K.
2013-08-01
Soil moisture is a key variable in hydrology, meteorology and agriculture. Soil moisture, and surface soil moisture in particular, is highly variable in space and time. Its spatial and temporal patterns in agricultural landscapes are affected by multiple natural (precipitation, soil, topography, etc.) and agro-economic (soil management, fertilization, etc.) factors, making it difficult to identify unequivocal cause and effect relationships between soil moisture and its driving variables. The goal of this study is to characterize and analyze the spatial and temporal patterns of surface soil moisture (top 20 cm) in an intensively used agricultural landscape (1100 km2 northern part of the Rur catchment, Western Germany) and to determine the dominant factors and underlying processes controlling these patterns. A second goal is to analyze the scaling behavior of surface soil moisture patterns in order to investigate how spatial scale affects spatial patterns. To achieve these goals, a dynamically coupled, process-based and spatially distributed ecohydrological model was used to analyze the key processes as well as their interactions and feedbacks. The model was validated for two growing seasons for the three main crops in the investigation area: Winter wheat, sugar beet, and maize. This yielded RMSE values for surface soil moisture between 1.8 and 7.8 vol.% and average RMSE values for all three crops of 0.27 kg m-2 for total aboveground biomass and 0.93 for green LAI. Large deviations of measured and modeled soil moisture can be explained by a change of the infiltration properties towards the end of the growing season, especially in maize fields. The validated model was used to generate daily surface soil moisture maps, serving as a basis for an autocorrelation analysis of spatial patterns and scale. Outside of the growing season, surface soil moisture patterns at all spatial scales depend mainly upon soil properties. Within the main growing season, larger scale patterns that are induced by soil properties are superimposed by the small scale land use pattern and the resulting small scale variability of evapotranspiration. However, this influence decreases at larger spatial scales. Most precipitation events cause temporarily higher surface soil moisture autocorrelation lengths at all spatial scales for a short time even beyond the autocorrelation lengths induced by soil properties. The relation of daily spatial variance to the spatial scale of the analysis fits a power law scaling function, with negative values of the scaling exponent, indicating a decrease in spatial variability with increasing spatial resolution. High evapotranspiration rates cause an increase in the small scale soil moisture variability, thus leading to large negative values of the scaling exponent. Utilizing a multiple regression analysis, we found that 53% of the variance of the scaling exponent can be explained by a combination of an independent LAI parameter and the antecedent precipitation.
Tague, Christina L.; Moritz, Max A.
2016-01-01
Higher global temperatures and increased levels of disturbance are contributing to greater tree mortality in many forest ecosystems. These same drivers can also limit forest regeneration, leading to vegetation type conversion. For the Sierra Nevada of California, little is known about how type conversion may affect streamflow, a critical source of water supply for urban, agriculture and environmental purposes. In this paper, we examined the effects of tree-to-shrub type conversion, in combination with climate change, on streamflow in two lower montane forest watersheds in the Sierra Nevada. A spatially distributed ecohydrologic model was used to simulate changes in streamflow, evaporation, and transpiration following type conversion, with an explicit focus on the role of vegetation size and aspect. Model results indicated that streamflow may show negligible change or small decreases following type conversion when the difference between tree and shrub leaf areas is small, partly due to the higher stomatal conductivity and the deep rooting depth of shrubs. In contrast, streamflow may increase when post-conversion shrubs have a small leaf area relative to trees. Model estimates also suggested that vegetation change could have a greater impact on streamflow magnitude than the direct hydrologic impacts of increased temperatures. Temperature increases, however, may have a greater impact on streamflow timing. Tree-to-shrub type conversion increased streamflow only marginally during dry years (annual precipitation < 800 mm), with most streamflow change observed during wetter years. These modeling results underscore the importance of accounting for changes in vegetation communities to accurately characterize future hydrologic regimes for the Sierra Nevada. PMID:27575592
Bart, Ryan R; Tague, Christina L; Moritz, Max A
2016-01-01
Higher global temperatures and increased levels of disturbance are contributing to greater tree mortality in many forest ecosystems. These same drivers can also limit forest regeneration, leading to vegetation type conversion. For the Sierra Nevada of California, little is known about how type conversion may affect streamflow, a critical source of water supply for urban, agriculture and environmental purposes. In this paper, we examined the effects of tree-to-shrub type conversion, in combination with climate change, on streamflow in two lower montane forest watersheds in the Sierra Nevada. A spatially distributed ecohydrologic model was used to simulate changes in streamflow, evaporation, and transpiration following type conversion, with an explicit focus on the role of vegetation size and aspect. Model results indicated that streamflow may show negligible change or small decreases following type conversion when the difference between tree and shrub leaf areas is small, partly due to the higher stomatal conductivity and the deep rooting depth of shrubs. In contrast, streamflow may increase when post-conversion shrubs have a small leaf area relative to trees. Model estimates also suggested that vegetation change could have a greater impact on streamflow magnitude than the direct hydrologic impacts of increased temperatures. Temperature increases, however, may have a greater impact on streamflow timing. Tree-to-shrub type conversion increased streamflow only marginally during dry years (annual precipitation < 800 mm), with most streamflow change observed during wetter years. These modeling results underscore the importance of accounting for changes in vegetation communities to accurately characterize future hydrologic regimes for the Sierra Nevada.
Modeling Vegetation Growth Impact on Groundwater Recharge
NASA Astrophysics Data System (ADS)
Anurag, H.; Ng, G. H. C.; Tipping, R.
2017-12-01
Vegetation growth is affected by variability in climate and land-cover / land-use over a range of temporal and spatial scales. Vegetation also modifies water budget through interception and evapotranspiration and thus has a significant impact on groundwater recharge. Most groundwater recharge assessments represent vegetation using specified, static parameter, such as for leaf-area-index, but this neglects the effect of vegetation dynamics on recharge estimates. Our study addresses this gap by including vegetation growth in model simulations of recharge. We use NCAR's Community Land Model v4.5 with its BGC module (BGC is the new CLM4.5 biogeochemistry). It integrates prognostic vegetation growth with land-surface and subsurface hydrological processes and can thus capture the effect of vegetation on groundwater. A challenge, however, is the need to resolve uncertainties in model inputs ranging from vegetation growth parameters all the way down to the water table. We have compiled diverse data spanning meteorological inputs to subsurface geology and use these to implement ensemble model simulations to evaluate the possible effects of dynamic vegetation growth (versus specified, static vegetation parameterizations) on estimating groundwater recharge. We present preliminary results for select data-intensive test locations throughout the state of Minnesota (USA), which has a sharp east-west precipitation gradient that makes it an apt testbed for examining ecohydrologic relationships across different temperate climatic settings and ecosystems. Using the ensemble simulations, we examine the effect of seasonal to interannual variability of vegetation growth on recharge and water table depths, which has implications for predicting the combined impact of climate, vegetation, and geology on groundwater resources. Future work will include distributed model simulations over the entire state, as well as conditioning uncertain vegetation and subsurface parameters on remote sensing data and statewide water table records using data assimilation.
Defining the ecological hydrology of Taiwan Rivers using multivariate statistical methods
NASA Astrophysics Data System (ADS)
Chang, Fi-John; Wu, Tzu-Ching; Tsai, Wen-Ping; Herricks, Edwin E.
2009-09-01
SummaryThe identification and verification of ecohydrologic flow indicators has found new support as the importance of ecological flow regimes is recognized in modern water resources management, particularly in river restoration and reservoir management. An ecohydrologic indicator system reflecting the unique characteristics of Taiwan's water resources and hydrology has been developed, the Taiwan ecohydrological indicator system (TEIS). A major challenge for the water resources community is using the TEIS to provide environmental flow rules that improve existing water resources management. This paper examines data from the extensive network of flow monitoring stations in Taiwan using TEIS statistics to define and refine environmental flow options in Taiwan. Multivariate statistical methods were used to examine TEIS statistics for 102 stations representing the geographic and land use diversity of Taiwan. The Pearson correlation coefficient showed high multicollinearity between the TEIS statistics. Watersheds were separated into upper and lower-watershed locations. An analysis of variance indicated significant differences between upstream, more natural, and downstream, more developed, locations in the same basin with hydrologic indicator redundancy in flow change and magnitude statistics. Issues of multicollinearity were examined using a Principal Component Analysis (PCA) with the first three components related to general flow and high/low flow statistics, frequency and time statistics, and quantity statistics. These principle components would explain about 85% of the total variation. A major conclusion is that managers must be aware of differences among basins, as well as differences within basins that will require careful selection of management procedures to achieve needed flow regimes.
NASA Astrophysics Data System (ADS)
Goodwell, Allison E.; Kumar, Praveen
2017-07-01
In an ecohydrologic system, components of atmospheric, vegetation, and root-soil subsystems participate in forcing and feedback interactions at varying time scales and intensities. The structure of this network of complex interactions varies in terms of connectivity, strength, and time scale due to perturbations or changing conditions such as rainfall, drought, or land use. However, characterization of these interactions is difficult due to multivariate and weak dependencies in the presence of noise, nonlinearities, and limited data. We introduce a framework for Temporal Information Partitioning Networks (TIPNets), in which time-series variables are viewed as nodes, and lagged multivariate mutual information measures are links. These links are partitioned into synergistic, unique, and redundant information components, where synergy is information provided only jointly, unique information is only provided by a single source, and redundancy is overlapping information. We construct TIPNets from 1 min weather station data over several hour time windows. From a comparison of dry, wet, and rainy conditions, we find that information strengths increase when solar radiation and surface moisture are present, and surface moisture and wind variability are redundant and synergistic influences, respectively. Over a growing season, network trends reveal patterns that vary with vegetation and rainfall patterns. The framework presented here enables us to interpret process connectivity in a multivariate context, which can lead to better inference of behavioral shifts due to perturbations in ecohydrologic systems. This work contributes to more holistic characterizations of system behavior, and can benefit a wide variety of studies of complex systems.
Schlaepfer, Daniel R.; Taylor, Kyle A.; Pennington, Victoria E.; Nelson, Kellen N.; Martin, Trace E.; Rottler, Caitlin M.; Lauenroth, William K.; Bradford, John B.
2015-01-01
Many semi-arid plant communities in western North America are dominated by big sagebrush. These ecosystems are being reduced in extent and quality due to economic development, invasive species, and climate change. These pervasive modifications have generated concern about the long-term viability of sagebrush habitat and sagebrush-obligate wildlife species (notably greater sage-grouse), highlighting the need for better understanding of the future big sagebrush distribution, particularly at the species' range margins. These leading and trailing edges of potential climate-driven sagebrush distribution shifts are likely to be areas most sensitive to climate change. We used a process-based regeneration model for big sagebrush, which simulates potential germination and seedling survival in response to climatic and edaphic conditions and tested expectations about current and future regeneration responses at trailing and leading edges that were previously identified using traditional species distribution models. Our results confirmed expectations of increased probability of regeneration at the leading edge and decreased probability of regeneration at the trailing edge below current levels. Our simulations indicated that soil water dynamics at the leading edge became more similar to the typical seasonal ecohydrological conditions observed within the current range of big sagebrush ecosystems. At the trailing edge, an increased winter and spring dryness represented a departure from conditions typically supportive of big sagebrush. Our results highlighted that minimum and maximum daily temperatures as well as soil water recharge and summer dry periods are important constraints for big sagebrush regeneration. Overall, our results confirmed previous predictions, i.e., we see consistent changes in areas identified as trailing and leading edges; however, we also identified potential local refugia within the trailing edge, mostly at sites at higher elevation. Decreasing regeneration probability at the trailing edge underscores the Schlaepfer et al. Future regeneration potential of big sagebrush potential futility of efforts to preserve and/or restore big sagebrush in these areas. Conversely, increasing regeneration probability at the leading edge suggest a growing potential for conflicts in management goals between maintaining existing grasslands by preventing sagebrush expansion versus accepting a shift in plant community composition to sagebrush dominance.
Dong, Xiaoli; Cohen, Matthew J.; Martin, Jonathan B.; ...
2018-05-18
Here, chemical weathering of bedrock plays an essential role in the formation and evolution of Earth's critical zone. Over geologic time, the negative feedback between temperature and chemical weathering rates contributes to the regulation of Earth climate. The challenge of understanding weathering rates and the resulting evolution of critical zone structures lies in complicated interactions and feedbacks among environmental variables, local ecohydrologic processes, and soil thickness, the relative importance of which remains unresolved. We investigate these interactions using a reactive-transport kinetics model, focusing on a low-relief, wetland-dominated karst landscape (Big Cypress National Preserve, South Florida, USA) as a case study.more » Across a broad range of environmental variables, model simulations highlight primary controls of climate and soil biological respiration, where soil thickness both supplies and limits transport of biologically derived acidity. Consequently, the weathering rate maximum occurs at intermediate soil thickness. The value of the maximum weathering rate and the precise soil thickness at which it occurs depend on several environmental variables, including precipitation regime, soil inundation, vegetation characteristics, and rate of groundwater drainage. Simulations for environmental conditions specific to Big Cypress suggest that wetland depressions in this landscape began to form around beginning of the Holocene with gradual dissolution of limestone bedrock and attendant soil development, highlighting large influence of age-varying soil thickness on weathering rates and consequent landscape development. While climatic variables are often considered most important for chemical weathering, our results indicate that soil thickness and biotic activity are equally important. Weathering rates reflect complex interactions among soil thickness, climate, and local hydrologic and biotic processes, which jointly shape the supply and delivery of chemical reactants, and the resulting trajectories of critical zone and karst landscape development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Xiaoli; Cohen, Matthew J.; Martin, Jonathan B.
Here, chemical weathering of bedrock plays an essential role in the formation and evolution of Earth's critical zone. Over geologic time, the negative feedback between temperature and chemical weathering rates contributes to the regulation of Earth climate. The challenge of understanding weathering rates and the resulting evolution of critical zone structures lies in complicated interactions and feedbacks among environmental variables, local ecohydrologic processes, and soil thickness, the relative importance of which remains unresolved. We investigate these interactions using a reactive-transport kinetics model, focusing on a low-relief, wetland-dominated karst landscape (Big Cypress National Preserve, South Florida, USA) as a case study.more » Across a broad range of environmental variables, model simulations highlight primary controls of climate and soil biological respiration, where soil thickness both supplies and limits transport of biologically derived acidity. Consequently, the weathering rate maximum occurs at intermediate soil thickness. The value of the maximum weathering rate and the precise soil thickness at which it occurs depend on several environmental variables, including precipitation regime, soil inundation, vegetation characteristics, and rate of groundwater drainage. Simulations for environmental conditions specific to Big Cypress suggest that wetland depressions in this landscape began to form around beginning of the Holocene with gradual dissolution of limestone bedrock and attendant soil development, highlighting large influence of age-varying soil thickness on weathering rates and consequent landscape development. While climatic variables are often considered most important for chemical weathering, our results indicate that soil thickness and biotic activity are equally important. Weathering rates reflect complex interactions among soil thickness, climate, and local hydrologic and biotic processes, which jointly shape the supply and delivery of chemical reactants, and the resulting trajectories of critical zone and karst landscape development.« less
Holocene development of Amazonia's oldest peatland
NASA Astrophysics Data System (ADS)
Swindles, Graeme T.; Morris, Paul J.; Whitney, Bronwen; Galka, Mariusz; Galloway, Jennifer M.; Gallego-Sala, Angela; Macumber, Andrew L.; Mullan, Donal; Smith, Mark W.; Amesbury, Matt; Roland, Thomas; Sanei, Hameed; Patterson, R. Timothy; Parry, Lauren; Charman, Dan J.; Lopez, Omar R.; Valderamma, Elvis; Watson, Elizabeth J.; Lähteenoja, Outi; Baird, Andy J.
2017-04-01
Peatlands represent some of the most carbon-dense ecosystems of Amazonia. However, little is known about the mechanisms of Amazonian peatland development and their ecohydrological dynamics over time. We present a comprehensive multiproxy dataset from Aucayacu peat dome, the oldest peatland yet discovered in Amazonia (peat initiation occurred between 8.9 and 5.8 ka cal. BP). Our dataset includes analyses of peat physical properties, carbon and nitrogen, humification, organic matter characteristics, macrofossils, pollen, charcoal and testate amoebae. Sedimentological techniques were applied to minerogenic deposits underneath the peatland to understand the nature of the floodplain environment before peat initiation. A transfer function was used to reconstruct past hydrological conditions from subfossil testate amoeba assemblages and carbon accumulation (CA) rates were determined from bulk density and percentage carbon data. A robust chronology was achieved using 210Pb and 14C (14 radiocarbon dates on a 3-m core) determinations, modelled using a Bayesian approach. We used the datasets to investigate the long-term ecohydrological development and controls on carbon accumulation in an Amazonian peat dome. The peatland developed in three distinct stages; (i) abandoned river channel with standing open water and aquatic plants; (ii) inundated forest swamp; and (iii) ombrotrophic bog ( 3.9 ka cal. BP). Local burning occurred twice during the peatland's development as evidenced by macroscopic charcoal but appears to have become more pronounced in the last 100 years. We present a conceptual model of the role of autogenic and allogenic (climate, floodplain) processes on the long-term development of the peatland and the marked variations in carbon accumulation rates over the Holocene. Amazonian peatlands are important carbon stores and ecosystems, and represent important archives of past climatic and ecological information. They should form key foci for conservation efforts.
NASA Astrophysics Data System (ADS)
Flores, A. N.; Lakshmi, V.; Al-Barakat, R.; Maksimowicz, M.
2017-12-01
Land grabbing, the acquisition of large areas of land by external entities, results from interactions of complex global economic, social, and political processes. These transactions are controversial because they can result in large-scale disruptions to historical land uses, including increased intensity of agricultural practices and significant conversions in land cover. These large-scale disruptions have the potential to impact surface water and energy balance because vegetation controls the partitioning of incoming energy into latent and sensible heat fluxes and precipitation into runoff and infiltration. Because large-scale land acquisitions can impact local ecosystem services, it is important to document changes in terrestrial vegetation associated with these acquisitions to support the assessment of associated impacts on regional surface water and energy balance, spatiotemporal scales of those changes, and interactions and feedbacks with other processes, particularly in the atmosphere. We use remote sensing data from multiple satellite platforms to diagnose and characterize changes in terrestrial vegetation and ecohydrology in Mozambique during periods that bracket periods associated with significant. The Advanced very High Resolution Radiometer (AVHRR) sensor provides long-term continuous data that can document historical seasonal cycles of vegetation greenness. These data are augmented with analyses from Landsat multispectral data, which provides significantly higher spatial resolution. Here we quantify spatiotemporal changes in vegetation are associated with periods of significant land acquisitions in Mozambique. This analysis complements a suite of land-atmosphere modeling experiments designed to deduce potential changes in land surface water and energy budgets associated with these acquisitions. This work advance understanding of how telecouplings between global economic and political forcings and regional hydrology and climate.
Ecohydrology: When will the jungle burn?
NASA Astrophysics Data System (ADS)
Bowman, David
2017-06-01
Fire weather indices are unsuited to forecast fire in tropical rainforests. Now research shows the area burnt across Borneo is related to drought-depleted water tables, presenting the opportunity to predict fire danger in these environments.
NASA Astrophysics Data System (ADS)
Bastola, S.; Bras, R. L.
2017-12-01
Feedbacks between vegetation and the soil nutrient cycle are important in ecosystems where nitrogen limits plant growth, and consequently influences the carbon balance in the plant-soil system. However, many biosphere models do not include such feedbacks, because interactions between carbon and the nitrogen cycle can be complex, and remain poorly understood. In this study we coupled a nitrogen cycle model with an eco-hydrological model by using the concept of carbon cost economics. This concept accounts for different "costs" to the plant of acquiring nitrogen via different pathways. This study builds on tRIBS-VEGGIE, a spatially explicit hydrological model coupled with a model of photosynthesis, stomatal resistance, and energy balance, by combining it with a model of nitrogen recycling. Driven by climate and spatially explicit data of soils, vegetation and topography, the model (referred to as tRIBS-VEGGIE-CN) simulates the dynamics of carbon and nitrogen in the soil-plant system; the dynamics of vegetation; and different components of the hydrological cycle. The tRIBS-VEGGIE-CN is applied in a humid tropical watershed at the Luquillo Critical Zone Observatory (LCZO). The region is characterized by high availability and cycling of nitrogen, high soil respiration rates, and large carbon stocks.We drive the model under contemporary CO2 and hydro-climatic forcing and compare results to a simulation under doubling CO2 and a range of future climate scenarios. The results with parameterization of nitrogen limitation based on carbon cost economics show that the carbon cost of the acquisition of nitrogen is 14% of the net primary productivity (NPP) and the N uptake cost for different pathways vary over a large range depending on leaf nitrogen content, turnover rates of carbon in soil and nitrogen cycling processes. Moreover, the N fertilization simulation experiment shows that the application of N fertilizer does not significantly change the simulated NPP. Furthermore, an experiment with doubling of the CO2 concentration level shows a significant increase of the NPP and turnover of plant tissues. The simulation with future climate scenarios shows consistent decrease in NPP but the uncertainties in projected NPP arising from selection of climate model and scenario is large.
Impacts of Climate Change on Biofuels Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melillo, Jerry M.
2014-04-30
The overall goal of this research project was to improve and use our biogeochemistry model, TEM, to simulate the effects of climate change and other environmental changes on the production of biofuel feedstocks. We used the improved version of TEM that is coupled with the economic model, EPPA, a part of MIT’s Earth System Model, to explore how alternative uses of land, including land for biofuels production, can help society meet proposed climate targets. During the course of this project, we have made refinements to TEM that include development of a more mechanistic plant module, with improved ecohydrology and considerationmore » of plant-water relations, and a more detailed treatment of soil nitrogen dynamics, especially processes that add or remove nitrogen from ecosystems. We have documented our changes to TEM and used the model to explore the effects on production in land ecosystems, including changes in biofuels production.« less
A mesic maximum in biological water use demarcates biome sensitivity to aridity shifts.
Good, Stephen P; Moore, Georgianne W; Miralles, Diego G
2017-12-01
Biome function is largely governed by how efficiently available resources can be used and yet for water, the ratio of direct biological resource use (transpiration, E T ) to total supply (annual precipitation, P) at ecosystem scales remains poorly characterized. Here, we synthesize field, remote sensing and ecohydrological modelling estimates to show that the biological water use fraction (E T /P) reaches a maximum under mesic conditions; that is, when evaporative demand (potential evapotranspiration, E P ) slightly exceeds supplied precipitation. We estimate that this mesic maximum in E T /P occurs at an aridity index (defined as E P /P) between 1.3 and 1.9. The observed global average aridity of 1.8 falls within this range, suggesting that the biosphere is, on average, configured to transpire the largest possible fraction of global precipitation for the current climate. A unimodal E T /P distribution indicates that both dry regions subjected to increasing aridity and humid regions subjected to decreasing aridity will suffer declines in the fraction of precipitation that plants transpire for growth and metabolism. Given the uncertainties in the prediction of future biogeography, this framework provides a clear and concise determination of ecosystems' sensitivity to climatic shifts, as well as expected patterns in the amount of precipitation that ecosystems can effectively use.
Brierley, Gary; Reid, Helen; Fryirs, Kirstie; Trahan, Nadine
2010-04-01
Monitoring and assessment are integral components in adaptive management programmes that strive to improve the condition of river systems. Unfortunately, these procedures are generally applied with an emphasis upon biotic attributes and water quality, with limited regard for the geomorphic structure, function and evolutionary trajectory of a river system. Geomorphic principles convey an understanding of the landscape context within which ecohydrologic processes interact. Collectively, geo-eco-hydrologic understanding presents a coherent biophysical template that can be used to frame spatially and temporally rigorous approaches to monitoring that respect the inherent diversity, variability and complexity of any given river system. This understanding aids the development of management programmes that 'work with nature.' Unless an integrative perspective is used to monitor river condition, conservation and rehabilitation plans are unlikely to reach their true potential. (c) 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Schreiner-McGraw, A.; Vivoni, E. R.; Browning, D. M.
2017-12-01
A critical hydrologic process in arid regions is the contribution of episodic streamflow in ephemeral channels to groundwater recharge. This process has traditionally been studied in channels that drain large watersheds (10s to 100s km2). In this study, we aim to characterize the provision of the ecosystem services of surface and groundwater supply in a first-order watershed (4.6 ha) in an arid piedmont slope of the Jornada Experimental Range (JER). We use an observational and modeling approach to estimate deep percolation. During a 6 year study period, we observed 428 mm of percolation (P) and 39 mm of runoff (Q); ratios of P to rainfall (R) of P/R = 0.27 and Q/R = 0.02. Utilizing an instrument network and site measurements, we determine that percolation occurs primarily inside channel reaches when these receive runoff from upland hillslopes and find that a monthly rainfall threshold of 62 mm is needed for significant percolation to be generated. In order to quantify the mechanisms leading to this threshold response, we develop a channel transmission loss module for the TIN-based Real-time Integrated Basin Simulator (tRIBS) and test the model thoroughly against the available observations over the study period. For these purposes, we make use of image classifications from Unmanned Aerial Vehicle flights, a ground-based phenocam, and species-level measurements to parameterize vegetation processes in the model. We then conduct an extensive set of sensitivity experiments to determine the relative roles of channel, soil, and vegetation properties on modifying the relation between monthly rainfall and percolation. Additionally, we test how the observed vegetation transitions in the JER over the last 150 years affect the deep percolation and runoff estimates. By quantifying mechanisms through which vegetation changes affect water resource provision, this work provides new insights on the ecohydrological controls on the water yield of arid piedmont slopes.
Buttle, James; Carey, Sean K.; van Huijgevoort, Marjolein H. J.; Laudon, Hjalmar; McNamara, James P.; Mitchell, Carl P. J.; Spence, Chris; Gabor, Rachel S.; Soulsby, Chris
2015-01-01
Abstract We combined a conceptual rainfall‐runoff model and input–output relationships of stable isotopes to understand ecohydrological influences on hydrological partitioning in snow‐influenced northern catchments. Six sites in Sweden (Krycklan), Canada (Wolf Creek; Baker Creek; Dorset), Scotland (Girnock) and the USA (Dry Creek) span moisture and energy gradients found at high latitudes. A meta‐analysis was carried out using the Hydrologiska Byråns Vattenbalansavdelning (HBV) model to estimate the main storage changes characterizing annual water balances. Annual snowpack storage importance was ranked as Wolf Creek > Krycklan > Dorset > Baker Creek > Dry Creek > Girnock. The subsequent rate and longevity of melt were reflected in calibrated parameters that determine partitioning of waters between more rapid and slower flowpaths and associated variations in soil and groundwater storage. Variability of stream water isotopic composition depends on the following: (i) rate and duration of spring snowmelt; (ii) significance of summer/autumn rainfall; and (iii) relative importance of near‐surface and deeper flowpaths in routing water to the stream. Flowpath partitioning also regulates influences of summer evaporation on drainage waters. Deviations of isotope data from the Global Meteoric Water Line showed subtle effects of internal catchment processes on isotopic fractionation most likely through evaporation. Such effects are highly variable among sites and with seasonal differences at some sites. After accounting for climate, evaporative fractionation is strongest at sites where lakes and near‐surface runoff processes in wet riparian soils can mobilize isotopically enriched water during summer and autumn. Given close soil–vegetation coupling, this may result in spatial variability in soil water isotope pools available for plant uptake. We argue that stable isotope studies are crucial in addressing the many open questions on hydrological functioning of northern environments. © 2015 The Authors. Hydrological Processes published by John Wiley & Sons Ltd. PMID:27656040
Holistic irrigation water management approach based on stochastic soil water dynamics
NASA Astrophysics Data System (ADS)
Alizadeh, H.; Mousavi, S. J.
2012-04-01
Appreciating the essential gap between fundamental unsaturated zone transport processes and soil and water management due to low effectiveness of some of monitoring and modeling approaches, this study presents a mathematical programming model for irrigation management optimization based on stochastic soil water dynamics. The model is a nonlinear non-convex program with an economic objective function to address water productivity and profitability aspects in irrigation management through optimizing irrigation policy. Utilizing an optimization-simulation method, the model includes an eco-hydrological integrated simulation model consisting of an explicit stochastic module of soil moisture dynamics in the crop-root zone with shallow water table effects, a conceptual root-zone salt balance module, and the FAO crop yield module. Interdependent hydrology of soil unsaturated and saturated zones is treated in a semi-analytical approach in two steps. At first step analytical expressions are derived for the expected values of crop yield, total water requirement and soil water balance components assuming fixed level for shallow water table, while numerical Newton-Raphson procedure is employed at the second step to modify value of shallow water table level. Particle Swarm Optimization (PSO) algorithm, combined with the eco-hydrological simulation model, has been used to solve the non-convex program. Benefiting from semi-analytical framework of the simulation model, the optimization-simulation method with significantly better computational performance compared to a numerical Mote-Carlo simulation-based technique has led to an effective irrigation management tool that can contribute to bridging the gap between vadose zone theory and water management practice. In addition to precisely assessing the most influential processes at a growing season time scale, one can use the developed model in large scale systems such as irrigation districts and agricultural catchments. Accordingly, the model has been applied in Dasht-e-Abbas and Ein-khosh Fakkeh Irrigation Districts (DAID and EFID) of the Karkheh Basin in southwest of Iran. The area suffers from the water scarcity problem and therefore the trade-off between the level of deficit and economical profit should be assessed. Based on the results, while the maximum net benefit has been obtained for the stress-avoidance (SA) irrigation policy, the highest water profitability, defined by economical net benefit gained from unit irrigation water volume application, has been resulted when only about 60% of water used in the SA policy is applied.
NASA Astrophysics Data System (ADS)
Duffy, Christopher; Leonard, Lorne; Shi, Yuning; Bhatt, Gopal; Hanson, Paul; Gil, Yolanda; Yu, Xuan
2015-04-01
Using a series of recent examples and papers we explore some progress and potential for virtual (cyber-) collaboration inspired by access to high resolution, harmonized public-sector data at continental scales [1]. The first example describes 7 meso-scale catchments in Pennsylvania, USA where the watershed is forced by climate reanalysis and IPCC future climate scenarios (Intergovernmental Panel on Climate Change). We show how existing public-sector data and community models are currently able to resolve fine-scale eco-hydrologic processes regarding wetland response to climate change [2]. The results reveal that regional climate change is only part of the story, with large variations in flood and drought response associated with differences in terrain, physiography, landuse and/or hydrogeology. The importance of community-driven virtual testbeds are demonstrated in the context of Critical Zone Observatories, where earth scientists from around the world are organizing hydro-geophysical data and model results to explore new processes that couple hydrologic models with land-atmosphere interaction, biogeochemical weathering, carbon-nitrogen cycle, landscape evolution and ecosystem services [3][4]. Critical Zone cyber-research demonstrates how data-driven model development requires a flexible computational structure where process modules are relatively easy to incorporate and where new data structures can be implemented [5]. From the perspective of "Big-Data" the paper points out that extrapolating results from virtual observatories to catchments at continental scales, will require centralized or cloud-based cyberinfrastructure as a necessary condition for effectively sharing petabytes of data and model results [6]. Finally we outline how innovative cyber-science is supporting earth-science learning, sharing and exploration through the use of on-line tools where hydrologists and limnologists are sharing data and models for simulating the coupled impacts of catchment hydrology on lake eco-hydrology (NSF-INSPIRE, IIS1344272). The research attempts to use a virtual environment (www.organicdatascience.org) to break down disciplinary barriers and support emergent communities of science. [1] Source: Leonard and Duffy, 2013, Environmental Modelling & Software; [2] Source: Yu et al, 2014, Computers in Geoscience; [3] Source: Duffy et al, 2014, Procedia Earth and Planetary Science; [4] Source: Shi et al, Journal of Hydrometeorology, 2014; [5] Source: Bhatt et al, 2014, Environmental Modelling & Software ; [6] Leonard and Duffy, 2014, Environmental Modelling and Software.
NASA Astrophysics Data System (ADS)
Lowman, L.; Barros, A.
2015-12-01
Tropical cyclones (TCs) are an important source of freshwater input to the SE US eco-hydrologic function. Soil moisture, a temporal integral of precipitation, is critical to plant photosynthesis and carbon assimilation. In this study, we investigate the impact TCs have on gross primary productivity (GPP) in the SE US using the physically-based Duke Coupled Hydrology Model with Vegetation (DCHM-V) which includes coupled water and energy cycles and a biochemical representation of photosynthesis. A parsimonious evaluation of model-estimated GPP against all available AmeriFlux data in the SE US is presented. We characterize the seasonality of vegetation activity in the SE US by simulating water, energy, and carbon fluxes using the DCHM-V at high spatial (4 km) and temporal (30-min) resolution over the period 2002 - 2012. The model is run offline using atmospheric forcing data from NLDAS-2, precipitation from StageIV, and phenology indices from MODIS FPAR/LAI. Analysis of model results show the tendency for low GPP to occur in the Appalachian Mountains during peak summer months when water stress limits stomatal function. We contrast these simulations with model runs where periods of TC activity are replaced with the monthly climatological diurnal cycle from NARR. Results show that the timing and trajectory of TCs are key to understanding their impact on GPP across the SE US. Specifically: 1) Timing of moisture input from TCs greatly influences the vegetation response. TCs during peak summer months increase GPP and years with TCs falling in peak summer months see much higher annual GPP averages; 2) Years of drought and low plant productivity (2006-2007, 2011-2012) in the SE US tend to have TCs that fall later in the year when the additional moisture input does not have a significant impact on vegetation activity; and 3) TC path impacts regional GPP averages. The mountain region shows large inter- and intra-annual variability in plant productivity and high sensitivity to water stress. The Appalachian mountain region tends to have higher GPP when TC trajectories are closer in proximity.
A metadata reporting framework (FRAMES) for synthesis of ecohydrological observations
Christianson, Danielle S.; Varadharajan, Charuleka; Christoffersen, Bradley; ...
2017-06-20
Metadata describe the ancillary information needed for data interpretation, comparison across heterogeneous datasets, and quality control and quality assessment (QA/QC). Metadata enable the synthesis of diverse ecohydrological and biogeochemical observations, an essential step in advancing a predictive understanding of earth systems. Environmental observations can be taken across a wide range of spatiotemporal scales in a variety of measurement settings and approaches, and saved in multiple formats. Thus, well-organized, consistent metadata are required to produce usable data products from diverse observations collected in disparate field sites. However, existing metadata reporting protocols do not support the complex data synthesis needs of interdisciplinarymore » earth system research. We developed a metadata reporting framework (FRAMES) to enable predictive understanding of carbon cycling in tropical forests under global change. FRAMES adheres to best practices for data and metadata organization, enabling consistent data reporting and thus compatibility with a variety of standardized data protocols. We used an iterative scientist-centered design process to develop FRAMES. The resulting modular organization streamlines metadata reporting and can be expanded to incorporate additional data types. The flexible data reporting format incorporates existing field practices to maximize data-entry efficiency. With FRAMES’s multi-scale measurement position hierarchy, data can be reported at observed spatial resolutions and then easily aggregated and linked across measurement types to support model-data integration. FRAMES is in early use by both data providers and users. Here in this article, we describe FRAMES, identify lessons learned, and discuss areas of future development.« less
A Risk-Based Ecohydrological Approach to Assessing Environmental Flow Regimes
NASA Astrophysics Data System (ADS)
Mcgregor, Glenn B.; Marshall, Jonathan C.; Lobegeiger, Jaye S.; Holloway, Dean; Menke, Norbert; Coysh, Julie
2018-03-01
For several decades there has been recognition that water resource development alters river flow regimes and impacts ecosystem values. Determining strategies to protect or restore flow regimes to achieve ecological outcomes is a focus of water policy and legislation in many parts of the world. However, consideration of existing environmental flow assessment approaches for application in Queensland identified deficiencies precluding their adoption. Firstly, in managing flows and using ecosystem condition as an indicator of effectiveness, many approaches ignore the fact that river ecosystems are subjected to threatening processes other than flow regime alteration. Secondly, many focus on providing flows for responses without considering how often they are necessary to sustain ecological values in the long-term. Finally, few consider requirements at spatial-scales relevant to the desired outcomes, with frequent focus on individual places rather than the regions supporting sustainability. Consequently, we developed a risk-based ecohydrological approach that identifies ecosystem values linked to desired ecological outcomes, is sensitive to flow alteration and uses indicators of broader ecosystem requirements. Monitoring and research is undertaken to quantify flow-dependencies and ecological modelling is used to quantify flow-related ecological responses over an historical flow period. The relative risk from different flow management scenarios can be evaluated at relevant spatial-scales. This overcomes the deficiencies identified above and provides a robust and useful foundation upon which to build the information needed to support water planning decisions. Application of the risk assessment approach is illustrated here by two case studies.
A metadata reporting framework (FRAMES) for synthesis of ecohydrological observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christianson, Danielle S.; Varadharajan, Charuleka; Christoffersen, Bradley
Metadata describe the ancillary information needed for data interpretation, comparison across heterogeneous datasets, and quality control and quality assessment (QA/QC). Metadata enable the synthesis of diverse ecohydrological and biogeochemical observations, an essential step in advancing a predictive understanding of earth systems. Environmental observations can be taken across a wide range of spatiotemporal scales in a variety of measurement settings and approaches, and saved in multiple formats. Thus, well-organized, consistent metadata are required to produce usable data products from diverse observations collected in disparate field sites. However, existing metadata reporting protocols do not support the complex data synthesis needs of interdisciplinarymore » earth system research. We developed a metadata reporting framework (FRAMES) to enable predictive understanding of carbon cycling in tropical forests under global change. FRAMES adheres to best practices for data and metadata organization, enabling consistent data reporting and thus compatibility with a variety of standardized data protocols. We used an iterative scientist-centered design process to develop FRAMES. The resulting modular organization streamlines metadata reporting and can be expanded to incorporate additional data types. The flexible data reporting format incorporates existing field practices to maximize data-entry efficiency. With FRAMES’s multi-scale measurement position hierarchy, data can be reported at observed spatial resolutions and then easily aggregated and linked across measurement types to support model-data integration. FRAMES is in early use by both data providers and users. Here in this article, we describe FRAMES, identify lessons learned, and discuss areas of future development.« less
NASA Astrophysics Data System (ADS)
House, A. R.; Thompson, J. R.; Acreman, M. C.
2016-03-01
Projected changes in climate are likely to substantially impact wetland hydrological conditions that will in turn have implications for wetland ecology. Assessing ecohydrological impacts of climate change requires models that can accurately simulate water levels at the fine-scale resolution to which species and communities respond. Hydrological conditions within the Lambourn Observatory at Boxford, Berkshire, UK were simulated using the physically based, distributed model MIKE SHE, calibrated to contemporary surface and groundwater levels. The site is a 10 ha lowland riparian wetland where complex geological conditions and channel management exert strong influences on the hydrological regime. Projected changes in precipitation, potential evapotranspiration, channel discharge and groundwater level were derived from the UK Climate Projections 2009 ensemble of climate models for the 2080s under different scenarios. Hydrological impacts of climate change differ through the wetland over short distances depending on the degree of groundwater/surface-water interaction. Discrete areas of groundwater upwelling are associated with an exaggerated response of water levels to climate change compared to non-upwelling areas. These are coincident with regions where a weathered chalk layer, which otherwise separates two main aquifers, is absent. Simulated water levels were linked to requirements of the MG8 plant community and Desmoulin's whorl snail (Vertigo moulinsiana) for which the site is designated. Impacts on each are shown to differ spatially and in line with hydrological impacts. Differences in water level requirements for this vegetation community and single species highlight the need for separate management strategies in distinct areas of the wetland.
NASA Astrophysics Data System (ADS)
Reyes, W. M.; Jass, T. L.; Emanuel, R. E.
2016-12-01
The tropics play a central role in regulating Earth's environmental systems, not only cycling more water than any other region in the world but also influencing global biogeochemical and energy balances. Increasing and widespread deforestation, climate change, and other disturbances are rapidly altering Earth system processes in the tropics, yet our understanding of these processes and their implications is limited for certain locations. Honduras, located within the Mesoamerican region, is one such location. A combination of rapid land use change (including deforestation at 3% y-1), hurricanes, droughts, poor access to drinking water, and poverty place Honduras among the most environmentally vulnerable countries in the world. However, these factors also create an ideal scenario for understanding complex human-environment interactions and their effects on tropical eco-hydrological systems. To this end, we collected and analyzed hydrological and meteorological data from the upper Talgua River, a forested, montane catchment in the headwaters of Honduras' Patuca River, during 2015 and 2016. We characterized the water balance and basic water quality relationships for the Talgua River, an important accomplishment for such a data-sparse region. We place our results in the context of coupled human-water dynamics in this region of Mesoamerica and discuss implications for water resources and other environmental services. Our analyses, embedded research infrastructure, and long-term partnerships with local institutions help provide valuable insights that narrow the existing knowledge gap in tropical ecohydrology and related socio-environmental dynamics. Our work also helps local communities and governments plan and make well-informed decisions about water and related resources.
NASA Astrophysics Data System (ADS)
Michielon, Bruno; Campagnaro, Thomas; Porté, Annabel; Hoyle, Jo; Picco, Lorenzo; Sitzia, Tommaso
2017-04-01
Comparing the ecology of woody species in their alien and native ranges may provide interesting insights for theoretical ecology, invasion biology, restoration ecology and forestry. The literature which describes the biological evolution of successful plant invaders is rich and increasing. However, no general theories have been developed about the geomorphic settings which may limit or favour the alien woody species expansion along rivers. The aim of this contribution is to explore the research opportunities in the comparison of ecohydrological processes occurring in the alien vs. the native ranges of invasive tree and shrub species along the riverine corridor. We use the endangered shrub Myricaria germanica as an example. Myricaria germanica is an Euro-Asiatic pioneer species that, in the native range, develops along natural rivers, wide and dynamic. These conditions are increasingly limited by anthropogenic constraints in most European rivers. This species has been recently introduced in New Zealand, where it is spreading in some natural rivers of the Canterbury region (South Island). We present the current knowledge about the natural and anthropogenic factors influencing this species in its native range. We compare this information with the current knowledge about the same factors influencing M. germanica invasiveness and invasibility of riparian habitats in New Zealand. We stress the need to identify potential factors which could drive life-traits and growing strategies divergence which may hinder the application to the alien ranges of existing ecohydrological knowledge from native ranges. Moreover, the pattern of expansion of the alien range of species endangered in their native ranges opens new windows for research.
NASA Astrophysics Data System (ADS)
Auhl, A.; Rutlidge, H.; Andersen, M. S.; Eberhard, S. M.; Baker, A.; Holley, C.
2016-12-01
Our current understanding of ecohydrological processes in the ecotone between surface water and groundwater - the hyporheic zone - is limited. Groundwater drawdown is a key stressor for many groundwater dependent ecosystems, as groundwater levels are declining globally. It is caused by different perturbations, including agriculture, mine dewatering and climate change. Therefore, there is a pressing need to examine how different ecohydrological systems work under different types of stress. This research aims to investigate the impacts of groundwater drawdown on hyporheic zone microbial activity. For two six week sampling campaigns (winter and summer) at Maules Creek, Namoi, New South Wales, Australia, microbial activity was measured using the cotton strip degradation method. Unprimed cotton canvas was affixed to rulers which were then placed for six weeks in different habitats (dry bar, hyporheic zone and surface waters) at three different water regimes found at different sections of the creek (perennial, ephemeral, and losing). The microbial activity was related to the loss of cotton strip tensile strength. The water regimes were used as proxies for different stages of groundwater drawdown. Key physico-chemical variables were also measured. The preliminary results show that there is a positive correlation between moisture status (i.e. the degree of habitat saturation over six weeks) and microbial activity.This suggests that groundwater drawdown and desaturation of streambed sediments may lead to a decrease in microbial activity and therefore, the recycling of organic carbon and nutrients. This research has local implications for environmental impact assessments and global implications for the assessment and management of ecological impacts of declining shallow groundwater levels.
Germino, Matthew J.; Reinhardt, Keith
2013-01-01
1. Ecohydrological niches are important for understanding plant community responses to climate shifts, particularly in dry lands. According to the two-layer hypothesis, selective use of deep-soil water increases growth or persistence of woody species during warm and dry summer periods and thereby contributes to their coexistence with shallow-rooted herbs in dry ecosystems. The resource-pool hypothesis further suggests that shallow-soil water benefits growth of all plants while deep-soil water primarily enhances physiological maintenance and survival of woody species. Few studies have directly tested these by manipulating deep-soil water availability and observing the long-term outcomes. 2. We predicted that factors promoting infiltration and storage of water in deep soils, specifically greater winter precipitation and soil depth, would enhance Artemisia tridentata (big sagebrush) in cold, winter-wet/summer-dry desert. Sagebrush responses to 20 years of winter irrigation were compared to summer- or no irrigation, on plots having relatively deep or shallow soils (2 m vs. 1 m depths). 3. Winter irrigation increased sagebrush cover, and crown and canopy volumes, but not density (individuals/plot) compared to summer or no irrigation, on deep-soil plots. On shallow-soil plots, winter irrigation surprisingly decreased shrub cover and size, and summer irrigation had no effect. Furthermore, multiple regression suggested that the variations in growth were related (i) firstly to water in shallow soils (0-0.2 m) and secondly to deeper soils (> 1 m deep) and (ii) more by springtime than by midsummer soil water. Water-use efficiency increased considerably on shallow soils without irrigation and was lowest with winter irrigation. 4. Synthesis. Sagebrush was more responsive to the seasonal timing of precipitation than to total annual precipitation. Factors that enhanced deep-water storage (deeper soils plus more winter precipitation) led to increases in Artemisia tridentata that were consistent with the two-layer hypothesis, and the contribution of shallow water to growth on these plots was consistent with the resource-pool hypothesis. However, shallow-soil water also had negative effects on sagebrush, suggesting an ecohydrological trade-off not considered in these or related theories. The interaction between precipitation timing and soil depth indicates that increased winter precipitation could lead to a mosaic of increases and decreases in A. tridentata across landscapes having variable soil depth.
Ecosystem effects of environmental flows: Modelling and experimental floods in a dryland river
Shafroth, P.B.; Wilcox, A.C.; Lytle, D.A.; Hickey, J.T.; Andersen, D.C.; Beauchamp, Vanessa B.; Hautzinger, A.; McMullen, L.E.; Warner, A.
2010-01-01
Successful environmental flow prescriptions require an accurate understanding of the linkages among flow events, geomorphic processes and biotic responses. We describe models and results from experimental flow releases associated with an environmental flow program on the Bill Williams River (BWR), Arizona, in arid to semiarid western U.S.A. Two general approaches for improving knowledge and predictions of ecological responses to environmental flows are: (1) coupling physical system models to ecological responses and (2) clarifying empirical relationships between flow and ecological responses through implementation and monitoring of experimental flow releases. We modelled the BWR physical system using: (1) a reservoir operations model to simulate reservoir releases and reservoir water levels and estimate flow through the river system under a range of scenarios, (2) one- and two-dimensional river hydraulics models to estimate stage-discharge relationships at the whole-river and local scales, respectively, and (3) a groundwater model to estimate surface- and groundwater interactions in a large, alluvial valley on the BWR where surface flow is frequently absent. An example of a coupled, hydrology-ecology model is the Ecosystems Function Model, which we used to link a one-dimensional hydraulic model with riparian tree seedling establishment requirements to produce spatially explicit predictions of seedling recruitment locations in a Geographic Information System. We also quantified the effects of small experimental floods on the differential mortality of native and exotic riparian trees, on beaver dam integrity and distribution, and on the dynamics of differentially flow-adapted benthic macroinvertebrate groups. Results of model applications and experimental flow releases are contributing to adaptive flow management on the BWR and to the development of regional environmental flow standards. General themes that emerged from our work include the importance of response thresholds, which are commonly driven by geomorphic thresholds or mediated by geomorphic processes, and the importance of spatial and temporal variation in the effects of flows on ecosystems, which can result from factors such as longitudinal complexity and ecohydrological feedbacks. ?? Published 2009.
A Data-driven Approach for Forecasting Next-day River Discharge
NASA Astrophysics Data System (ADS)
Sharif, H. O.; Billah, K. S.
2017-12-01
This study focuses on evaluating the performance of the Soil and Water Assessment Tool (SWAT) eco-hydrological model, a simple Auto-Regressive with eXogenous input (ARX) model, and a Gene expression programming (GEP)-based model in one-day-ahead forecasting of discharge of a subtropical basin (the upper Kentucky River Basin). The three models were calibrated with daily flow at the US Geological Survey (USGS) stream gauging station not affected by flow regulation for the period of 2002-2005. The calibrated models were then validated at the same gauging station as well as another USGS gauge 88 km downstream for the period of 2008-2010. The results suggest that simple models outperform a sophisticated hydrological model with GEP having the advantage of being able to generate functional relationships that allow scientific investigation of the complex nonlinear interrelationships among input variables. Unlike SWAT, GEP, and to some extent, ARX are less sensitive to the length of the calibration time series and do not require a spin-up period.
NASA Astrophysics Data System (ADS)
Pradhan, N. R.
2015-12-01
Soil moisture conditions have an impact upon hydrological processes, biological and biogeochemical processes, eco-hydrology, floods and droughts due to changing climate, near-surface atmospheric conditions and the partition of incoming solar and long-wave radiation between sensible and latent heat fluxes. Hence, soil moisture conditions virtually effect on all aspects of engineering / military engineering activities such as operational mobility, detection of landmines and unexploded ordinance, natural material penetration/excavation, peaking factor analysis in dam design etc. Like other natural systems, soil moisture pattern can vary from completely disorganized (disordered, random) to highly organized. To understand this varying soil moisture pattern, this research utilized topographic wetness index from digital elevation models (DEM) along with vegetation index from remotely sensed measurements in red and near-infrared bands, as well as land surface temperature (LST) in the thermal infrared bands. This research developed a methodology to relate a combined index from DEM, LST and vegetation index with the physical soil moisture properties of soil types and the degree of saturation. The advantage in using this relationship is twofold: first it retrieves soil moisture content at the scale of soil data resolution even though the derived indexes are in a coarse resolution, and secondly the derived soil moisture distribution represents both organized and disorganized patterns of actual soil moisture. The derived soil moisture is used in driving the hydrological model simulations of runoff, sediment and nutrients.
Natural flow regimes of the Ozark-Ouachita Interior Highlands region
Leasure, D. R.; Magoulick, Daniel D.; Longing, S. D.
2016-01-01
Natural flow regimes represent the hydrologic conditions to which native aquatic organisms are best adapted. We completed a regional river classification and quantitative descriptions of each natural flow regime for the Ozark–Ouachita Interior Highlands region of Arkansas, Missouri and Oklahoma. On the basis of daily flow records from 64 reference streams, seven natural flow regimes were identified with mixture model cluster analysis: Groundwater Stable, Groundwater, Groundwater Flashy, Perennial Runoff, Runoff Flashy, Intermittent Runoff and Intermittent Flashy. Sets of flow metrics were selected that best quantified nine ecologically important components of these natural flow regimes. An uncertainty analysis was performed to avoid selecting metrics strongly affected by measurement uncertainty that can result from short periods of record. Measurement uncertainties (bias, precision and accuracy) were assessed for 170 commonly used flow metrics. The ranges of variability expected for select flow metrics under natural conditions were quantified for each flow regime to provide a reference for future assessments of hydrologic alteration. A random forest model was used to predict the natural flow regimes of all stream segments in the study area based on climate and catchment characteristics, and a map was produced. The geographic distribution of flow regimes suggested distinct ecohydrological regions that may be useful for conservation planning. This project provides a hydrologic foundation for future examination of flow–ecology relationships in the region. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
A coupled modeling framework for sustainable watershed management in transboundary river basins
NASA Astrophysics Data System (ADS)
Furqan Khan, Hassaan; Yang, Y. C. Ethan; Xie, Hua; Ringler, Claudia
2017-12-01
There is a growing recognition among water resource managers that sustainable watershed management needs to not only account for the diverse ways humans benefit from the environment, but also incorporate the impact of human actions on the natural system. Coupled natural-human system modeling through explicit modeling of both natural and human behavior can help reveal the reciprocal interactions and co-evolution of the natural and human systems. This study develops a spatially scalable, generalized agent-based modeling (ABM) framework consisting of a process-based semi-distributed hydrologic model (SWAT) and a decentralized water system model to simulate the impacts of water resource management decisions that affect the food-water-energy-environment (FWEE) nexus at a watershed scale. Agents within a river basin are geographically delineated based on both political and watershed boundaries and represent key stakeholders of ecosystem services. Agents decide about the priority across three primary water uses: food production, hydropower generation and ecosystem health within their geographical domains. Agents interact with the environment (streamflow) through the SWAT model and interact with other agents through a parameter representing willingness to cooperate. The innovative two-way coupling between the water system model and SWAT enables this framework to fully explore the feedback of human decisions on the environmental dynamics and vice versa. To support non-technical stakeholder interactions, a web-based user interface has been developed that allows for role-play and participatory modeling. The generalized ABM framework is also tested in two key transboundary river basins, the Mekong River basin in Southeast Asia and the Niger River basin in West Africa, where water uses for ecosystem health compete with growing human demands on food and energy resources. We present modeling results for crop production, energy generation and violation of eco-hydrological indicators at both the agent and basin-wide levels to shed light on holistic FWEE management policies in these two basins.
NASA Astrophysics Data System (ADS)
Nasta, Paolo; Penna, Daniele; Brocca, Luca; Zuecco, Giulia; Romano, Nunzio
2018-02-01
Indirect measurements of field-scale (hectometer grid-size) spatial-average near-surface soil moisture are becoming increasingly available by exploiting new-generation ground-based and satellite sensors. Nonetheless, modeling applications for water resources management require knowledge of plot-scale (1-5 m grid-size) soil moisture by using measurements through spatially-distributed sensor network systems. Since efforts to fulfill such requirements are not always possible due to time and budget constraints, alternative approaches are desirable. In this study, we explore the feasibility of determining spatial-average soil moisture and soil moisture patterns given the knowledge of long-term records of climate forcing data and topographic attributes. A downscaling approach is proposed that couples two different models: the Eco-Hydrological Bucket and Equilibrium Moisture from Topography. This approach helps identify the relative importance of two compound topographic indexes in explaining the spatial variation of soil moisture patterns, indicating valley- and hillslope-dependence controlled by lateral flow and radiative processes, respectively. The integrated model also detects temporal instability if the dominant type of topographic dependence changes with spatial-average soil moisture. Model application was carried out at three sites in different parts of Italy, each characterized by different environmental conditions. Prior calibration was performed by using sparse and sporadic soil moisture values measured by portable time domain reflectometry devices. Cross-site comparisons offer different interpretations in the explained spatial variation of soil moisture patterns, with time-invariant valley-dependence (site in northern Italy) and hillslope-dependence (site in southern Italy). The sources of soil moisture spatial variation at the site in central Italy are time-variant within the year and the seasonal change of topographic dependence can be conveniently correlated to a climate indicator such as the aridity index.
Regional Eco-hydrologic Sensitivity to Projected Amazonian Land Use Scenarios
NASA Astrophysics Data System (ADS)
Knox, R. G.; Longo, M.; Zhang, K.; Levine, N. M.; Moorcroft, P. R.; Bras, R. L.
2011-12-01
Given business as usual land-use practices, it is estimated that by 2050 roughly half of the Amazon's pre-anthropogenic closed-canopy forest stands would remain. Of this, eight of the Amazon's twelve major hydrologic basins would lose more than half of their forest cover to deforestation. With the availability of these land-use projections, we may start to question the associated response of the region's hydrologic climate to significant land-cover change. Here the Ecosystem-Demography Model 2 (EDM2, a dynamic and spatially distributed terrestrial model of plant structure and composition, succession, disturbance and thermodynamic transfer) is coupled with the Brazilian Regional Atmospheric Model (BRAMS, a three-dimensional limited area model of the atmospheric fluid momentum equations and physics parameterizations for closing the system of equations at the lower boundary, convection, radiative transfer, microphysics, etc). This experiment conducts decadal simulations, framed with high-reliability lateral boundary conditions of reanalysis atmospheric data (ERA-40 interim) and variable impact of land-use scenarios (SimAmazonia). This is done by initializing the regional ecosystem structure with both aggressive and conservationist deforestation scenarios, and also by differentially allowing and not-allowing dynamic vegetation processes. While the lateral boundaries of the simulation will not reflect the future climate in the region, reanalysis data has provided improved realism as compared to results derived from GCM boundary data. Therefore, the ecosystem response (forest composition and structure) and the time-space patterns of hydrologic information (soil moisture, rainfall, evapotranspiration) are objectively compared in the context of a sensitivity experiment, as opposed to a forecast. The following questions are addressed. How do aggressive and conservative scenarios of Amazonian deforestation effect the regional patterning of hydrologic information in the Amazon and South American Convergence Zone, and does forest response in these regions influence that patterning of hydrologic information?
Ecohydrologic function and disturbance of desert ephemeral stream channels
NASA Astrophysics Data System (ADS)
Bedford, D.; Macias, M.; Miller, D. M.; Newlander, A.; Perkins, K. S.; Sandquist, D. R.; Schwinning, S.
2011-12-01
In response to rare high-intensity or long duration rainstorms, runoff in desert ephemeral channels can redistribute water through landscapes and potentially serve as a resource subsidy. We are using transect studies, mapping, monitoring and manipulation experiments to investigate the ecohydrologic relations of these pervasive features with vegetation in the eastern Mojave Desert, USA. We focus on a gently sloping piedmont transected by a ~100 year old railroad that alters natural channel flow by diverting it through staggered culverts to areas downslope of the railroad. This creates three distinct ecohydrologic zones: 1) relatively undisturbed areas above the railroad, 2) areas below the railroad that receive enhanced flow where water is diverted through culverts (enhanced zones), and 3) areas below the railroad where water flow from upslope has been blocked (deprived zones). In all areas we found that vegetation cover and density are higher adjacent to stream channels and decrease with distance from the channels. Relative to the undisturbed areas, vegetation cover is higher in the enhanced areas, and lower in the deprived. Species-specific vegetation changes included higher cover of the drought deciduous sub-shrub Ambrosia dumosa in deprived zones and higher cover of the evergreen drought-tolerant shrub Larrea tridentata in enhanced zones. Using simulated channel runoff experiments, we found that most Larrea within 3 m, and Ambrosia within 1.5 m of an undisturbed stream channel physiologically responded to a water pulse and the responses persisted for over a month. Less pronounced responses were seen adjacent to channels in the deprived zones, and did not persist as long. Electrical resistance imaging of the watering experiments shows that water infiltrates vertically in channels and spreads laterally at depth; vegetation use of channel water in the deprived zones appears to be reduced. While we have no information on the pace of vegetation change due to channel modifications (diversions), we hypothesize that increased channel flow causes rapid changes that favor evergreen shrubs whose physiology and phenology allow them to utilize short pulses of moisture, while reduction or elimination of channel flow causes slower vegetation changes as plants become decoupled from the resource additions provided by runoff in channels. Furthermore, these deprived zones essentially operate in an enforced drought mode that likely favors drought-deciduous vegetation. Our results suggest that the spatial distribution of channels and conditions that generate runoff are key contributors to vegetation responses at the landscape scale, and are critical for understanding impacts of land use and climate change in this sensitive arid ecosystem. Further work will determine if the disturbances examined here extend outside the relatively small physical footprint affected by channel redistribution, blockage, and diversion.
NASA Astrophysics Data System (ADS)
Cable, J. M.; Ogle, K.; Cable, B.; Welker, J. M.
2010-12-01
The interior Alaskan boreal forest ecosystem is underlain by permafrost and thus has complex soil moisture and soil thermal properties, and this complexity is further amplified by its dry climate with low snow in winter and minimal summer rain. This combination of climate, cryosphere, and hydrology characteristics impact vegetation ecophysiological and ecohydrological processes, such as the distribution of plant-available water sources and the temporal dynamics of evapotranspiration (ET). As a major component of ET, plant transpiration is typically sustained throughout a variety of climatic conditions. The water sources (rain, thawing ground ice, etc) supporting plant transpiration are relatively unquantified, particularly on a seasonal time scale. In this study, we ask: what are the seasonal dynamics of plant water use in the boreal forest, and how are the trends at the plant scale translated into ecosystem-level water fluxes? Thus, the objective of this study was to characterize the spatial and temporal dynamics of boreal plant water use and water flux throughout the growing season. To do this, we measured the stable isotope (δ18O and δD) composition of water from precipitation, ground ice, soils, plants, and vapor from 5 heights in the ecosystem during the growing season in a boreal system near Fairbanks, Alaska underlain by permafrost. We analyzed the plant water, soil water, and vapor isotope data in a Bayesian framework to quantify the plant water uptake profiles and to explore the implications of shifting water sources for ecosystem ET. The vapor isotope data (across all heights) ranged from -216 to -190 ‰ (δD) and -27 to -21 ‰ (δ18O) in late July to slightly more depleted in late August, with values ranging from -232 to -203 ‰ (δD) and -29 to -20 ‰ (δ18O). Diurnal trends are such that the isotope composition of vapor became more enriched over the day as ET rates increased, and vapor at the 0.25 m height was generally more enriched relative to the 6 m height. Plant and soil isotope sampling from prior years shows that dwarf birch (B. nana, the dominant shrub in the ecosystem sampled by the vapor analyzer) gets about 50% of its water from surface, rain-fed soil layers and 50% of its water from deeper soil layers (fed by thawing ground ice). This is one of the first studies to show the patterns of boreal ecosystem water isotopes at diurnal (vapor) and seasonal (plant) scales. Understanding the isotopic composition of water vapor from northern ecosystems is paramount to advancing estimates of biosphere-atmosphere interactions and the nature of ecohydrologic feedbacks to the changing state of the North.
Southwestern Intermittent and Ephemeral Stream Connectivity
Ephemeral and intermittent streams are abundant in the arid and semiarid landscapes of the Western and Southwestern United States (U.S.). Connectivity of ephemeral and intermittent streams to the relatively few perennial reaches through runoff is a major driver of the ecohydrolog...
NASA Astrophysics Data System (ADS)
Arnold, Sven; Attinger, Sabine; Frank, Karin; Baxter, Peter; Hildebrandt, Anke
2010-05-01
Ephemeral rivers are located throughout the world's arid regions. They are characterised by temporary surface flow that strongly varies between seasons and years. Along the river course often a coupled eco-hydrological vegetation-groundwater system has established, which is referred to as linear oasis, reflecting the ecological and socio-economic importance of ephemeral rivers in otherwise dry areas. The Kuiseb River denotes such a linear oasis and is one of the most diversely used environments among the ephemeral rivers in Namibia. Along the entire river course surface runoff and ground water are exploited for drinking, farming, and mining. The middle section of the Kuiseb River is characterised by strong eco-hydrological feedbacks between the vegetation and the ground water resource. Temporary floods infiltrate into sediments, which are accumulated in geological pools of impermeable bedrocks. This enables the formation of shallow ground water. The low depth to ground water allows root water uptake by plants and the establishment of a thriving ecosystem. The sustainable use of ecological and hydrological resources along ephemeral rivers is crucial to preserve the natural ecosystem. However, the investigation of management strategies that consider both the regulation of water extraction and vegetation structure requires models that explicitly consider the feedbacks between the water resource and the ecosystem structure. Further, uncertainties arise from stochastic hydrologic drivers such as flash flood events. Particularly in the face of climate change, the management strategies have to be applicable to a wide range of possible flood regimes, i.e. they have to be robust to the uncertainty of future flood regimes. In this study we assess a variety of management strategies regarding their robustness under different theoretical ecosystems and under uncertainty in the future stochastic flood regimes along the Kuiseb River. We consider the trade-off between ecological and human requirements by investigating the management strategies in terms of their ability to sustainably exploit the ground water resource while preserving the natural vegetation structure (here: coexistence of three tree species). We apply a conceptual ecohydrological model and use the information gap decision theory to estimate the robustness of strategies to failure due to flood parameter uncertainty. The performance of every strategy decreased as flood parameter uncertainty increased. However, ecological performance was more vulnerable with increasing uncertainty than the water supply performance, suggesting that the vegetation structure can be used as sensitive indicator and pre-warning system for changing environmental conditions. With the integrated and adaptive strategy it was most likely to sustainably use the ground water while preserving the natural vegetation structure, however, with the effect of reducing the probability of a large total system biomass.
NASA Astrophysics Data System (ADS)
Randhir, Timothy O.; Raposa, Sarah
2014-11-01
Urbanization has a significant impact on water resources and requires a watershed-based approach to evaluate impacts of land use and urban development on watershed processes. This study uses a simulation with urban policy scenarios to model and strategize transferable recommendations for municipalities and cities to guide urban decisions using watershed ecohydrologic principles. The watershed simulation model is used to evaluation intensive (policy in existing built regions) and extensive (policy outside existing build regions) urban development scenarios with and without implementation of Best Management practices (BMPs). Water quantity and quality changes are simulated to assess effectiveness of five urban development scenarios. It is observed that optimal combination of intensive and extensive strategies can be used to sustain urban ecosystems. BMPs are found critical to reduce storm water and water quality impacts on urban development. Conservation zoning and incentives for voluntary adoption of BMPs can be used in sustaining urbanizing watersheds.
Groundwater dependent ecohydrology in a semi-arid oak savanna (Invited)
NASA Astrophysics Data System (ADS)
Miller, G. R.; Rubin, Y.; Baldocchi, D. D.; Chen, X.; Ma, S.
2010-12-01
Groundwater can serve as an important resource for woody vegetation in semi-arid landscapes, particularly when soil water is functionally depleted and unavailable to plants. This study examines the uptake of groundwater by deciduous blue oak trees (Quercus douglasii) in a California oak savanna. Here, we present a suite of direct and indirect measurement techniques, combined with modeling, that demonstrate its occurrence and quantify its rates. The study site is similar to others with shallow-soil ecohydrology: it is underlain by a thin, rocky soil layer followed fractured metavolcanic bedrock. Typical depth to groundwater is approximately 8 m and varies from 7- 10 m, both spatially and temporally. A variety of water storage and flux measurements were collected from 2005 to 2008, including groundwater levels, soil moisture contents, sap flows, and latent heat fluxes. During the dry season, groundwater uptake rates ranged from 4 to 25 mm per month, and approximately 80% of total ET during June, July, and August came from groundwater. Leaf and soil water potentials supported these results, indicating that groundwater uptake was thermodynamically favorable over soil water uptake for key portions of the growing season. Sap flow rates suggest differential access to groundwater by trees of varying size classes. Dynamic groundwater-soil-plant-atmosphere modeling has shown that in order to achieve these uptake rates, approximately 20% of roots must be exposed to groundwater. Modeled evapotranspiration rates drop dramatically during the late summer when this connection is severed (Figure 1). These findings strongly suggest that blue oaks should be considered obligate phreatophytes, and that groundwater reserves provide a buffer to rapid changes in their hydro-climate, if these assets are not otherwise depleted by prolonged drought or human consumption. While groundwater uptake may provide for short-term protection, it should be viewed not as a mechanism for continued plant growth. It allows the woody vegetation to subsist during the summer, but not to flourish. Figure 1: Modeled evapotranspiration is depressed during the summer dry season, as soil moisture is depleted. However, when plant access to groundwater is removed, evapotranspiration rates drop to near zero levels during the late summer.
Wen, Xin; Liu, Zhehua; Lei, Xiaohui; Lin, Rongjie; Fang, Guohua; Tan, Qiaofeng; Wang, Chao; Tian, Yu; Quan, Jin
2018-08-15
The eco-hydrological system in southwestern China is undergoing great changes in recent decades owing to climate change and extensive cascading hydropower exploitation. With a growing recognition that multiple drivers often interact in complex and nonadditive ways, the purpose of this study is to predict the potential future changes in streamflow and fish habitat quality in the Yuan River and quantify the individual and cumulative effect of cascade damming and climate change. The bias corrected and spatial downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5) General Circulation Model (GCM) projections are employed to drive the Soil and Water Assessment Tool (SWAT) hydrological model and to simulate and predict runoff responses under diverse scenarios. Physical habitat simulation model is established to quantify the relationship between river hydrology and fish habitat, and the relative change rate is used to assess the individual and combined effects of cascade damming and climate change. Mean annual temperature, precipitation and runoff in 2015-2100 show an increasing trend compared with that in 1951-2010, with a particularly pronounced difference between dry and wet years. The ecological habitat quality is improved under cascade hydropower development since that ecological requirement has been incorporated in the reservoir operation policy. As for middle reach, the runoff change from January to August is determined mainly by damming, and climate change influence becomes more pronounced in dry seasons from September to December. Cascade development has an effect on runoff of lower reach only in dry seasons due to the limited regulation capacity of reservoirs, and climate changes have an effect on runoff in wet seasons. Climate changes have a less significant effect on fish habitat quality in middle reach than damming, but a more significant effect in lower reach. In addition, the effect of climate changes on fish habitat quality in lower reach is high in dry seasons but low in flood seasons. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Belnap, J.; Deems, J. S.; Kind, A.; Munson, S.; Neff, J.; Okin, G.; Painter, T. H.; Reheis, M. C.; Reynolds, R. L.; Wilcox, B. P.
2011-12-01
Arid and semi-arid regions constitute over 35% of global lands. The utilization of these areas is increasing rapidly in response to rising human populations and attendant food needs. In addition, they are also foci for activities associated with energy production, mineral extraction, military training and conflict, and recreation. The resultant disturbance reduces the protective cover of plants and physical and biological soil crusts. This leads to accelerated soil loss by both wind and water, across a wide range of parent materials, textures, or soil surface ages. Further vulnerability to soil erosion is expected with predicted future drier and hotter climates, as plant cover declines and fires increase. Synergistic effects, such as surface disturbance occurring during drought periods in plant communities dominated by annual weeds, can exacerbate the situation further. At a local scale, the redistribution of soil by wind and water results in nutrients being more heterogeneously distributed, subsequently altering abundance and distribution of plants, animals, and rates of biogeochemical cycling. Particles transported by wind from disturbed settings can be deposited in washes, subsequently entering streams and rivers.Particles saltating across the soil surface are also frequently deposited in washes, subsequently entering streams and rivers. This process represents a local loss of soil fertility and a local and regional decrease in water quality, as sediment and salts enter water bodies. At the larger watershed scale, dust is deposited on nearby snow cover, darkening the snow and increasing melt rates. Increased melt rates decrease the length of the snow-cover season, increasing water losses to evapotranspiration and thus the amount of water entering streams and rivers. As water quantity decreases, salts and sediments are concentrated, thereby further decreasing water quality. As water becomes scarcer in drylands around the world, the diminishing integrity of the soil surface is likely to become a major issue for land managers. In addition, the spatial decoupling between the people engaged in the upstream activities that lower water availability/quality and the downstream users facing water shortages will likely result in new combinations of interest groups and the need for novel ways to address their differences. The science of ecohydrology has an important role to play in these conversations.
NASA Astrophysics Data System (ADS)
Urbaniak, M.; Zerihun Negussie, Y.; Zalewski, M.
2012-04-01
The transfer of dioxins along river continuum is a well know process which indicated permanent increase of their content in the river sediments. Despite this, there is still lack of empirical data highlighting the role of lakes and reservoirs in dioxins transfer along river continuum. Using the ecohydrology as a framework for water problem solving, the reduction of dioxins bioaccumulation in aquatic food chain should be based on two steps: 1) a reduction of dioxins emission to the water ecosystems and 2) an understanding of the role that the factors determining dioxins accumulation, transportation and transformation in the river and lake/reservoir system play for implementation of ecohydrological biotechnologies and system solutions. From limnological perspective lakes and reservoirs are considered as traps for organic and mineral sediments and bounded with them nutrients and other polluting substances. As effect of long term ecological succession the amount of sedimented matter, nutrients and loads and concentrations of pollutants usually increases. Such situation was observed in Asella lake, located in the Arsi zone of the Oromia region about 175 kilometers from Addis Ababa, Ethiopia. As the results of above processes the high concentration of dioxin concentrations in the sediments was observed, inducing decline in the water resources use. During this study the spatial pattern of dioxins concentration and toxicity (measured as WHO TEQ concentration) in the sediments of Asella river and lake taken before (in 2009) and after (in 2010) construction of Sequentional BioFiltering System (SBFS) were compared. The determination of dioxin concentrations were followed according to US EPA 1613 and 1668 Methods. Among the samples collected in the 2009 year, the contamination of lake sediments amounted for 127.65 ng kg-1 dry weight (d.w.), whereas concentration of dioxins in samples taken at the lake outflow decreased to the value of 26.65 ng kg-1 d.w. The WHO-TEQ concentrations also showed declining tendency along the river-lake system with the highest value in the inflow (2.32 ng TEQ kg-1 d.w.), middle in the lake (1.09 ng TEQ kg-1 d.w.) and the lowest at the lake outflow (0.55 ng TEQ kg-1 d.w.). Samples collected after one year of SBFS implementation showed 70% reduction of sediment toxicity in the lake indicating positive role of such ecohydrological solution on the quality of lake ecosystem and in consequence on the human health. The obtained data indicate that the reduction of dioxins contamination in the upper part of the river by construction of the SBFS is fundamental to the improvement of the quality of the lake and lower part of the river. Implementation of such system reduced the input of dioxins to the lake through sedimentation and possibly due to acceleration of photo- and biodegradation processes and in consequence improve the quality of the whole river-lake system. The study was financed by the Ministry of Foreign Affairs of the Republic of Poland within the Polish Aid Programme 2011 project no 23/2011 and 62/2012: "Implementation of Ecohydrology - a transdisciplinary science for integrated water management and sustainable development in Ethiopia".
Assessing the spatial and temporal variations of water quality in lowland areas, Northern Germany
NASA Astrophysics Data System (ADS)
Lam, Q. D.; Schmalz, B.; Fohrer, N.
2012-05-01
SummaryThe pollution of rivers and streams with agro-chemical contaminants has become one of the most crucial environmental problems in the world. The assessment of spatial and temporal variations of water quality influenced by point and diffuse source pollution is necessary to manage the environment sustainably in various watershed scales. The overall objectives of this study were to assess the transferability of parameter sets between lowland catchments on different scales using the ecohydrological model SWAT (Soil and Water Assessment Tool) and to evaluate the temporal and spatial patterns of water quality in the whole catchments before and after implementation of best management practices (BMPs). The study area Kielstau catchment is located in Northern Germany as typical example of lowland - flood plain landscape. Sandy, loamy and peat soils are characteristic for this area. Land use is dominated by arable land and pasture. In this study we examined two catchment areas including Kielstau catchment 50 km2 and its subcatchment, namely Moorau, with the area of 7.6 km2. The water quality of these catchments is not only influenced by diffuse sources from agricultural areas but also by point sources from municipal wastewater treatment plants (WWTPs). Diffuse sources as well as punctual entries from the WWTPs are considered in the model set-up. For this study, the calibration and validation of the model were carried out in a daily time step for flow and nutrients. The results indicate that the parameter sets could be transferred in lowland catchments with similar environmental conditions. Shallow groundwater is the major contributor to total nitrate load in the stream accounting for about 93% of the total nitrate load, while only about 7% originates in surface runoff and lateral flow. The study also indicates that applying a spatially distributed modeling approach was an appropriate method to generate source maps showing the spatial distribution of TN load from hydrologic response units (HRUs) as well as from subbasins and to identify the crucial pollution areas within a watershed whose management practices can be improved to control more effectively nitrogen loading to water bodies.
Forest cover change, climate variability, and hydrological responses
Xiaohua Wei; Rita Winkler; Ge Sun
2017-01-01
Understanding ecohydrological response to environmental change is critical for protecting watershed functions, sustaining clean water supply, and other ecosystem services, safeguarding public safety, floods mitigation, and drought response. Understanding ecohyhdrological processes and their implications to forest and water management has become increasingly important...
Measuring the pulse of urban green infrastructure: vegetation dynamics across residential landscapes
Vegetation can be an important component of urban green infrastructure. Its structure is a complex result of the socio-ecological milieu and management decisions, and it can influence numerous ecohydrological processes such as stormwater interception and evapotranspiration. Despi...
Does ecohydrological connectivity affect sensitivity to environmental change?
Our goal is to understand the influences of complex terrain on the sensitivity of carbon and water cycle processes to environmental drivers at different scales. Gravity-driven flowpaths of air and water transport material and energy across and through landscapes, creating connec...
Benchmarking test of empirical root water uptake models
NASA Astrophysics Data System (ADS)
dos Santos, Marcos Alex; de Jong van Lier, Quirijn; van Dam, Jos C.; Freire Bezerra, Andre Herman
2017-01-01
Detailed physical models describing root water uptake (RWU) are an important tool for the prediction of RWU and crop transpiration, but the hydraulic parameters involved are hardly ever available, making them less attractive for many studies. Empirical models are more readily used because of their simplicity and the associated lower data requirements. The purpose of this study is to evaluate the capability of some empirical models to mimic the RWU distribution under varying environmental conditions predicted from numerical simulations with a detailed physical model. A review of some empirical models used as sub-models in ecohydrological models is presented, and alternative empirical RWU models are proposed. All these empirical models are analogous to the standard Feddes model, but differ in how RWU is partitioned over depth or how the transpiration reduction function is defined. The parameters of the empirical models are determined by inverse modelling of simulated depth-dependent RWU. The performance of the empirical models and their optimized empirical parameters depends on the scenario. The standard empirical Feddes model only performs well in scenarios with low root length density R, i.e. for scenarios with low RWU compensation
. For medium and high R, the Feddes RWU model cannot mimic properly the root uptake dynamics as predicted by the physical model. The Jarvis RWU model in combination with the Feddes reduction function (JMf) only provides good predictions for low and medium R scenarios. For high R, it cannot mimic the uptake patterns predicted by the physical model. Incorporating a newly proposed reduction function into the Jarvis model improved RWU predictions. Regarding the ability of the models to predict plant transpiration, all models accounting for compensation show good performance. The Akaike information criterion (AIC) indicates that the Jarvis (2010) model (JMII), with no empirical parameters to be estimated, is the best model
. The proposed models are better in predicting RWU patterns similar to the physical model. The statistical indices point to them as the best alternatives for mimicking RWU predictions of the physical model.
Oerter, Erik J.; Bowen, Gabriel
2017-04-12
The water cycle in urban and hydrologically managed settings is subject to perturbations that are dynamic on small spatial and temporal scales; the effects of which may be especially profound in soils. We deploy a membrane inlet-based laser spectroscopy system in conjunction with soil moisture and temperature sensors to monitor soil water dynamics and H and O stable isotope ratios (δ 2H and δ 18O values) in a seasonally irrigated urban-landscaped garden soil over the course of 9 months between the cessation of irrigation in the autumn and the onset of irrigation through the summer. Here, we find that soilmore » water δ 2H and δ 18O values predominately reflect seasonal precipitation and irrigation inputs. A comparison of total soil water by cryogenic extraction and mobile soil water measured by in situ water vapor probes reveals that initial infiltration events after long periods of soil drying (the autumn season in this case) emplace water into the soil matrix that is not easily replaced by, or mixed with, successive pulses of infiltrating soil water. Tree stem xylem water H and O stable isotope composition did not match that of available water sources. Our findings suggest that partitioning of soil water into mobile and immobile “pools” and resulting ecohydrologic separation may occur in engineered and hydrologically managed soils and not be limited to natural settings. Furthermore, the laser spectroscopy method detailed here has potential to yield insights in a variety of critical zone and vadose zone studies, potential that is heightened by the simplicity and portability of the system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oerter, Erik J.; Bowen, Gabriel
The water cycle in urban and hydrologically managed settings is subject to perturbations that are dynamic on small spatial and temporal scales; the effects of which may be especially profound in soils. We deploy a membrane inlet-based laser spectroscopy system in conjunction with soil moisture and temperature sensors to monitor soil water dynamics and H and O stable isotope ratios (δ 2H and δ 18O values) in a seasonally irrigated urban-landscaped garden soil over the course of 9 months between the cessation of irrigation in the autumn and the onset of irrigation through the summer. Here, we find that soilmore » water δ 2H and δ 18O values predominately reflect seasonal precipitation and irrigation inputs. A comparison of total soil water by cryogenic extraction and mobile soil water measured by in situ water vapor probes reveals that initial infiltration events after long periods of soil drying (the autumn season in this case) emplace water into the soil matrix that is not easily replaced by, or mixed with, successive pulses of infiltrating soil water. Tree stem xylem water H and O stable isotope composition did not match that of available water sources. Our findings suggest that partitioning of soil water into mobile and immobile “pools” and resulting ecohydrologic separation may occur in engineered and hydrologically managed soils and not be limited to natural settings. Furthermore, the laser spectroscopy method detailed here has potential to yield insights in a variety of critical zone and vadose zone studies, potential that is heightened by the simplicity and portability of the system.« less
Ecohydrologic relationships of two juniper woodlands with different precipitation regimes
NASA Astrophysics Data System (ADS)
Ochoa, C. G.; Guldan, S. J.; Deboodt, T.; Fernald, A.; Ray, G.
2015-12-01
The significant expansion of juniper (Juniperus spp.) woodlands throughout the western U.S. during the last two centuries has disrupted important ecological functions and hydrologic processes. The relationships between water and vegetation distribution are highly impacted by the ongoing shift from shrub steppe and grassland to woodland-dominated landscapes. We investigated vegetation dynamics and hydrologic processes occurring in two distinct juniper landscapes with different precipitation regimes in the Intermountain West region: A winter snow-dominated (Oregon) and a summer rain-dominated with some winter precipitation (New Mexico) landscape. Results from the Oregon site showed marginal differences (1-2%) in soil moisture in treated vs untreated watersheds throughout the dry and wet seasons. In general, soil moisture was greater in the treated watershed in both seasons. Canopy cover affected soil moisture over time. Perennial grass cover was positively correlated with changes in soil moisture, whereas juniper cover was negatively correlated with changes in soil moisture. Shallow groundwater response observed in upland and valley monitoring wells indicate there are temporary hydrologic connections between upland and valley locations during the winter precipitation season. Results from the New Mexico site provided valuable information regarding timing and intensity of monsoon-driven precipitation and the rainfall threshold (5 mm/15 min) that triggers runoff. Long-term vegetation dynamics and hydrologic processes were evaluated based on pre- and post-juniper removal (70%) in three watersheds. In general, less runoff and greater forage response was observed in the treated watersheds. During rainfall events, soil moisture was less under juniper canopy compared with inter-canopy; this difference in soil moisture was intensified during high intensity, short duration rainstorms in the summer months. We found that winter snow precipitation helped recharge soil moisture prior to plant growth in the springtime, but it did not generate streamflow. Study results provide valuable information towards understanding ecohydrologic differences and similarities of woody vegetation expansion in semiarid areas on both sides of the continental divide in the Intermountain West.
Hultine, K R; Bush, S E; West, A G; Burtch, K G; Pataki, D E; Ehleringer, J R
2008-09-01
Acer negundo Sarg. (box elder) is a dioecious tree species that dominates riparian systems at mid elevations throughout the southwest and Intermountain West of the United States. Previous studies have shown that female A. negundo trees occur at higher frequencies along stream margins, whereas males occur at higher frequencies in drier microsites. To better understand the adaptive significance of sex ratio biases and their impact on the ecohydrology of riparian ecosystems, we examined whole-plant water relations and hydraulic properties of mature male and female A. negundo trees occurring within 1 m of a perennial stream channel. We hypothesized that (1) females would have significantly greater canopy water fluxes than males (particularly during periods of seed production: May-June), and (2) xylem in females is more hydraulically efficient but more vulnerable to cavitation than xylem in males. Mean sap flux density (J(s)) during the early growing season (May and June) was 43% higher in female trees than in male trees (n = 6 and 7 trees respectively, P < 0.0001). Mean J(s) in July and August remained 17% higher in females than in males (P = 0.0009). Mean canopy stomatal conductance per unit leaf area (g(s,leaf)) in May and June was on average 140% higher in females than in males (P < 0.0001). Mean g(s,leaf) in July and August remained 69% higher in female trees than in male trees (P < 0.0001). Canopy stomatal conductance scaled to basal area was 90 and 31% higher in females relative to males during May-June and July-August, respectively (P < 0.0001 during both periods). Conversely, there were no apparent differences in either branch hydraulic conductance or branch xylem cavitation vulnerability between genders. These results improve our capacity to describe the adaptive forces that shape the spatial distribution of male and female trees in dioecious species, and their consequences for ecohydrological processes in riparian ecosystems.
NASA Astrophysics Data System (ADS)
Madsen, Matthew; Zvirzdin, Daniel; Fernelius, Kaitlynn; McMillan, Mica; Kostka, Stanley
2014-05-01
Erosion and weed dominance often limit the recovery of piñon-juniper woodlands of western North America after high intensity wildfires. Soil water repellency (SWR) is one factor that may promote overland flow and impede seedling establishment. In spite of these effects, the influence of post-fire SWR on site recovery is poorly understood. Our presentation summarizes data collected within studies on burned piñon-juniper woodlands that provide new insight on: 1) the spatial distribution and severity of SWR, 2) influence of SWR on soil hydrology, nitrogen cycling, and site revegetation, and 3) the suitability of soil surfactants as a post-fire restoration tool. We demonstrate how patterns of SWR are highly correlated to pre-fire woodland canopy structure. At sites where SWR is present, infiltration, soil water content, and plant establishment is significantly less than at non-hydrophobic sites. We show how newly developed soil surfactants can significantly improve ecohydrologic properties required for plant growth by overcoming SWR; thus, increasing the amount and duration of available water for seed germination and plant growth. However, the application of soil surfactants in wildfire-affected ecosystems has been limited due to logistical and economic constraints associated with the standard practice of using large quantities of irrigation water as the surfactant carrier. We have developed a potential solution to this problem by using seed coating technology to use the seed as the carrier for the delivery of soil surfactant. Through this approach, precipitation leaches the surfactant from the seed into the soil where it absorbs onto the soil particles and ameliorates water repellency within the seeds microsite. We present findings from laboratory and field evaluations of surfactant seed coatings, which provide evidence that it may be plausible for the technology to improve post-fire seeding efforts by restoring soil hydrologic function and increasing seedling emergence and early seedling development.
Hydrological regime modifications induced by climate change in Mediterranean area
NASA Astrophysics Data System (ADS)
Pumo, Dario; Caracciolo, Domenico; Viola, Francesco; Valerio Noto, Leonardo
2015-04-01
The knowledge of river flow regimes has a capital importance for a variety of practical applications, in water resource management, including optimal and sustainable use. Hydrological regime is highly dependent on climatic factors, among which the most important is surely the precipitation, in terms of frequency, seasonal distribution and intensity of rainfall events. The streamflow frequency regime of river basins are often summarized by flow duration curves (FDCs), that offer a simple and comprehensive graphical view of the overall historical variability associated with streamflow, and characterize the ability of the basin to provide flows of various magnitudes. Climate change is likely to lead shifts in the hydrological regime, and, consequently, in the FDCs. Staring from this premise, the primary objective of the present study is to explore the effects of potential climate changes on the hydrological regime of some small Mediterranean basins. To this aim it is here used a recent hydrological model, the ModABa model (MODel for Annual flow duration curves assessment in ephemeral small BAsins), for the probabilistic characterization of the daily streamflows in small catchments. The model has been calibrated and successively validated in a unique small catchment, where it has shown a satisfactory accuracy in reproducing the empirical FDC starting from easily derivable parameters arising from basic ecohydrological knowledge of the basin and commonly available climatic data such as daily precipitation and temperatures. Thus, this work also represents a first attempt to apply the ModABa to basins different from that used for its preliminary design in order to testing its generality. Different case studies are selected within the Sicily region; the model is first calibrated at the sites and then forced by future climatic scenarios, highlighting the principal differences emerging from the current scenario and future FDCs. The future climate scenarios are generated using a stochastic downscaling technique based on the weather generator, AWE-GEN. This methodology allows for the downscaling of an ensemble of climate model outputs deriving the frequency distribution functions of factors of change for several statistics of temperature and precipitation from outputs of General Circulation Models (GCMs). The stochastic downscaling is carried out using simulations of GCMs adopted in the IPCC 5AR, for the future periods of 2046-2065 and 2081-2100.
Minimum Flows and Levels Method of the St. Johns River Water Management District, Florida, USA
NASA Astrophysics Data System (ADS)
Neubauer, Clifford P.; Hall, Greeneville B.; Lowe, Edgar F.; Robison, C. Price; Hupalo, Richard B.; Keenan, Lawrence W.
2008-12-01
The St. Johns River Water Management District (SJRWMD) has developed a minimum flows and levels (MFLs) method that has been applied to rivers, lakes, wetlands, and springs. The method is primarily focused on ecological protection to ensure systems meet or exceed minimum eco-hydrologic requirements. MFLs are not calculated from past hydrology. Information from elevation transects is typically used to determine MFLs. Multiple MFLs define a minimum hydrologic regime to ensure that high, intermediate, and low hydrologic conditions are protected. MFLs are often expressed as statistics of long-term hydrology incorporating magnitude (flow and/or level), duration (days), and return interval (years). Timing and rates of change, the two other critical hydrologic components, should be sufficiently natural. The method is an event-based, non-equilibrium approach. The method is used in a regulatory water management framework to ensure that surface and groundwater withdrawals do not cause significant harm to the water resources and ecology of the above referenced system types. MFLs are implemented with hydrologic water budget models that simulate long-term system hydrology. The method enables a priori hydrologic assessments that include the cumulative effects of water withdrawals. Additionally, the method can be used to evaluate management options for systems that may be over-allocated or for eco-hydrologic restoration projects. The method can be used outside of the SJRWMD. However, the goals, criteria, and indicators of protection used to establish MFLs are system-dependent. Development of regionally important criteria and indicators of protection may be required prior to use elsewhere.
NASA Astrophysics Data System (ADS)
Nyman, P.; Duff, T. J.; Sheridan, G. J.
2016-12-01
Moisture content in litter on the forest floor can control ignition and spread of forest fires. The micrometeorological factors driving variation in litter moisture at the landscape scale are poorly understood, particularly in areas with heterogeneous vegetation and complex terrain. In this research we seek to quantify how climate, vegetation and eco-hydrological feedbacks contribute to variation in net radiation and potential evaporation at the forest floor. Research sites were established at 12 locations in southeast Australia with variable precipitation, solar exposure, and drainage areas. Forests ranged from open woodland to tall temperate forests. We measured solar radiation, air temperature, relative humidity, litter moisture, soil moisture, and litter temperature. Forest structure was characterised using hemispherical photos and LIDAR. Using these data on microclimate and vegetation structure we parameterise a model of daily potential evaporation at the forest floor. Results show that variation in evaporation rates from litter is driven by net radiation and the role of vapour pressure deficit is almost negligible due to high aerodynamic resistance. In open woodlands the net radiation is directly related to short-wave radiation and evaporation remains high despite low temperatures. In the tall wet forests, commonly found along drainage lines and on slopes with polar-facing aspects, the long-wave radiation was just as important as the shortwave radiation. Air temperature is therefore important in determining the flammability of these more productive forests. By implication, in complex terrain with heterogeneous forests, the temperature in the wet parts of the landscape is important in controlling connectivity of fuels and large-scale fire activity.
Ding, Jing-yi; Zhao, Wen-wu; Fang, Xue-ning
2015-04-01
Socio-hydrology is an interdiscipline of hydrology, nature, society and humanity. It mainly explores the two-way feedbacks of coupled human-water system and its dynamic mechanism of co-evolution, and makes efforts to solve the issues that human faces today such as sustainable utilization of water resources. Starting from the background, formation process, and fundamental concept of socio-hydrology, this paper summarized the features of socio-hydrology. The main research content of socio-hydrology was reduced to three aspects: The tradeoff in coupled human-water system, interests in water resources management and virtual water research in coupled human-water system. And its differences as well as relations with traditional hydrology, eco-hydrology and hydro-sociology were dwelled on. Finally, with hope to promote the development of socio-hydrology researches in China, the paper made prospects for the development of the subject from following aspects: Completing academic content and deepening quantitative research, focusing on scale studies of socio-hydrology, fusing socio-hydrology and eco-hydrology.
NASA Astrophysics Data System (ADS)
Asbjornsen, H.; Alvarado-Barrientos, M. S.; Bruijnzeel, L. A.; Dawson, T. E.; Geissert, D.; Goldsmith, G. R.; Gomez-Cardenas, M.; Gomez-Tagle, A.; Gotsch, S. F.; Holwerda, F.; McDonnell, J. J.; Munoz Villers, L. E.; Tobon, C.
2013-05-01
Land use conversion and climate change threaten the hydrological services from tropical montane cloud forests (TMCFs), but knowledge about cloud forest ecohydrology and the effects of global change drivers is limited. Here, we present a synthesis of research that traced the hydrologic sources, fluxes and flowpaths under different land cover types degraded pasture, regenerating forest, mature forest, pine reforestation) in a seasonally dry TMCF in Veracruz, Mexico. We used hydrological (cloud water interception, CWI; streamflow) and ecophysiological measurements (transpiration, E; foliar uptake, FU) in combination with stable isotope techniques to elucidate to these ecohydrological processes. Results revealed that CWI was ≤2% of total annual rainfall due to low fog occurrence and wind speeds. Fog without rainfall reduced E by a factor of 4-5 relative to sunny conditions and by a factor of 2 relative to overcast conditions; the water 'gained' from fog suppression was ~80-100 mm year-1 relative to sunny conditions. At the canopy scale, FU resulted in the recovery of 9% of total E, suggesting a crucial role in alleviating water deficit; but not sufficient to offset the 17% water loss from nighttime E. Trees primarily utilized water from 30-50 cm soil depth, while water reaching the stream was derived from deep, 'old' water that was distinct from 'new' rainwater and plant water. Soils had high infiltration rates and water storage capacity, which contributed to the relatively low rainfall-runoff response, mainly generated from deep subsurface flowpaths. Conversion of mature forest to pasture or forest regeneration on former TMCF increased annual water yield by 600 mm and 300 mm, respectively, while planting pine on degraded pastures reduced water yield by 365 mm. Our results suggest that the ecophysiological effects of fog via suppressed E and FU have a greater impact on water yield than direct inputs from CWI in this TMCF. Rapid vertical rainfall percolation and recharge result in a largely groundwater driven system whereby streamflow dynamics is uncoupled from plant water uptake, and water storage and buffering capacity are exceptionally high. These factors, combined with the soil properties, resulted in reduced dry season flows due to land use conversion to pasture only being detected towards the end of the dry season. Projected lifting of the cloud base associated with regional climate change combined with declining rainfall may significantly alter ecohydrological functions of these TMCFs.
Projecting the Dependence of Sage-steppe Vegetation on Redistributed Snow in a Warming Climate.
NASA Astrophysics Data System (ADS)
Soderquist, B.; Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Strand, E. K.
2015-12-01
In mountainous regions, the redistribution of snow by wind can increase the effective precipitation available to vegetation. Moisture subsidies caused by drifting snow may be critical to plant productivity in semi-arid ecosystems. However, with increasing temperatures, the distribution of precipitation is becoming more uniform as rain replaces drifting snow. Understanding the ecohydrological interactions between sagebrush steppe vegetation communities and the heterogeneous distribution of soil moisture is essential for predicting and mitigating future losses in ecosystem diversity and productivity in regions characterized by snow dominated precipitation regimes. To address the dependence of vegetation productivity on redistributed snow, we simulated the net primary production (NPP) of aspen, sagebrush, and C3 grass plant functional types spanning a precipitation phase (rain:snow) gradient in the Reynolds Creek Experimental Watershed and Critical Zone Observatory (RCEW-CZO). The biogeochemical process model Biome-BGC was used to simulate NPP at three sites located directly below snowdrifts that provide melt water late into the spring. To assess climate change impacts on future plant productivity, mid-century (2046-2065) NPP was simulated using the average temperature increase from the Multivariate Adaptive Constructed Analogs (MACA) data set under the RCP 8.5 emission scenario. At the driest site, mid-century projections of decreased snow cover and increased growing season evaporative demand resulted in limiting soil moisture up to 30 and 40 days earlier for aspen and sage respectively. While spring green up for aspen occurred an average of 13 days earlier under climate change scenarios, NPP remained negative up to 40 days longer during the growing season. These results indicate that the loss of the soil moisture subsidy stemming from prolonged redistributed snow water resources can directly influence ecosystem productivity in the rain:snow transition zone.
Ecohydrological implications of aeolian sediment trapping by sparse vegetation in drylands
Gonzales, Howell B.; Ravi, Sujith; Li, Junran; Sankey, Joel B.
2018-01-01
Aeolian processes are important drivers of ecosystem dynamics in drylands, and important feedbacks exist among aeolian – hydrological processes and vegetation. The trapping of wind-borne sediments by vegetation may result in changes in soil properties beneath the vegetation, which, in turn, can alter hydrological and biogeochemical processes. Despite the relevance of aeolian transport to ecosystem dynamics, the interactions between aeolian transport and vegetation in shaping dryland landscapes where sediment distribution is altered by relatively rapid changes in vegetation composition such as shrub encroachment, is not well understood. Here, we used a computational fluid dynamics (CFD) modeling framework to investigate the sediment trapping efficiencies of vegetation canopies commonly found in a shrub-grass ecotone in the Chihuahuan Desert (New Mexico, USA) and related the results to spatial heterogeneity in soil texture and infiltration measured in the field. A CFD open-source software package was used to simulate aeolian sediment movement through three-dimensional architectural depictions of Creosote shrub (Larrea tridentata) and Black Grama grass (Bouteloua eriopoda) vegetation types. The vegetation structures were created using a computer-aided design software (Blender), with inherent canopy porosities, which were derived using LIDAR (Light Detection and Ranging) measurements of plant canopies. Results show that considerable heterogeneity in infiltration and soil grain size distribution exist between the microsites, with higher infiltration and coarser soil texture under shrubs. Numerical simulations also indicate that the differential trapping of canopies might contribute to the observed heterogeneity in soil texture. In the early stages of encroachment, the shrub canopies, by trapping coarser particles more efficiently, might maintain higher infiltration rates leading to faster development of the microsites (among other factors) with enhanced ecological productivity, which might provide positive feedbacks to shrub encroachment.
Communicating why land surface heterogeneity matters
NASA Astrophysics Data System (ADS)
Tague, C.; Burke, W.; Bart, R. R.; Turpin, E.; Wood, T.; Gordon, D.
2017-12-01
As hydrologic scientists, we know that land surface heterogeneity can have nuanced and sometimes dramatic impacts on the water cycle. Land surface characteristics, including the structure and composition of vegetation and soil storage and drainage properties, alter how incoming precipitation is translated into streamflow and evapotranspiration. Land surface heterogeneity can explain why this partitioning of incoming precipitation cannot always be computed by a simple water budget calculation. We also know that land surface characteristics are dynamic - vegetation grows and changes with fire, disease and human actions and these changes will alter the partitioning of water - how much so, however depends itself on other site characteristics - soil water storage and the timing and magnitude of precipitation. This complex impact of space-time dynamics on the water cycle is something we need to effectively communicate to non-experts. For example, we may want to explain why sometimes forest management practices increase water availability but sometimes they don't - or why the impacts of urbanization or fire are location specific. If we do not communicate these dependencies we risk over-simplifying and eroding scientific credibility when observed effects don't match simple generalizations. On the other hand excessive detail can overwhelm and disengage audiences. So how do we help different communities public, private landowners, other scientists, NGOs, governments to better understand the role of space-time heterogeneity. To address this issue, we present some results from ongoing work that looks at the impact of fuel treatment of forest ecohydrology. This work stem from a collaboration between an ecohydrologic modeling team, social-scientists, a visual artist and compute graphics students. We use a coupled model, validated with field measurements, to show why spatial heterogeneity matters for understanding the impact of fuel treatments on the water cycle for the Sierra Critical Zone Observatory. We summarize current findings and present initial designs for translating these science based results into interactive visualization and conceptual art installations with the goal of better communicating the different components of landscape heterogeneity and why it matters
Soil Structure - A Neglected Component of Land-Surface Models
NASA Astrophysics Data System (ADS)
Fatichi, S.; Or, D.; Walko, R. L.; Vereecken, H.; Kollet, S. J.; Young, M.; Ghezzehei, T. A.; Hengl, T.; Agam, N.; Avissar, R.
2017-12-01
Soil structure is largely absent in most standard sampling and measurements and in the subsequent parameterization of soil hydraulic properties deduced from soil maps and used in Earth System Models. The apparent omission propagates into the pedotransfer functions that deduce parameters of soil hydraulic properties primarily from soil textural information. Such simple parameterization is an essential ingredient in the practical application of any land surface model. Despite the critical role of soil structure (biopores formed by decaying roots, aggregates, etc.) in defining soil hydraulic functions, only a few studies have attempted to incorporate soil structure into models. They mostly looked at the effects on preferential flow and solute transport pathways at the soil profile scale; yet, the role of soil structure in mediating large-scale fluxes remains understudied. Here, we focus on rectifying this gap and demonstrating potential impacts on surface and subsurface fluxes and system wide eco-hydrologic responses. The study proposes a systematic way for correcting the soil water retention and hydraulic conductivity functions—accounting for soil-structure—with major implications for near saturated hydraulic conductivity. Modification to the basic soil hydraulic parameterization is assumed as a function of biological activity summarized by Gross Primary Production. A land-surface model with dynamic vegetation is used to carry out numerical simulations with and without the role of soil-structure for 20 locations characterized by different climates and biomes across the globe. Including soil structure affects considerably the partition between infiltration and runoff and consequently leakage at the base of the soil profile (recharge). In several locations characterized by wet climates, a few hundreds of mm per year of surface runoff become deep-recharge accounting for soil-structure. Changes in energy fluxes, total evapotranspiration and vegetation productivity are less significant but they can reach up to 10% in specific locations. Significance for land-surface and hydrological modeling and implications for distributed domains are discussed.
NASA Astrophysics Data System (ADS)
Rodríguez-Robles, Ulises; Arredondo, Tulio; Huber-Sannwald, Elisabeth; Alfredo Ramos-Leal, José; Yépez, Enrico A.
2017-11-01
While semiarid forests frequently colonize rocky substrates, knowledge is scarce on how roots garner resources in these extreme habitats. The Sierra San Miguelito Volcanic Complex in central Mexico exhibits shallow soils and impermeable rhyolitic-rock outcrops, which impede water movement and root placement beyond the soil matrix. However, rock fractures, exfoliated rocks and soil pockets potentially permit downward water percolation and root growth. With ground-penetrating radar (GPR) and electrical resistivity tomography (ERT), two geophysical methods advocated by Jayawickreme et al. (2014) to advance root ecology, we advanced in the method development studying root and water distribution in shallow rocky soils and rock fractures in a semiarid forest. We calibrated geophysical images with in situ root measurements, and then extrapolated root distribution over larger areas. Using GPR shielded antennas, we identified both fine and coarse pine and oak roots from 0.6 to 7.5 cm diameter at different depths into either soil or rock fractures. We also detected, trees anchoring their trunks using coarse roots underneath rock outcroppings. With ERT, we tracked monthly changes in humidity at the soil-bedrock interface, which clearly explained spatial root distribution of both tree species. Geophysical methods have enormous potential in elucidating root ecology. More interdisciplinary research could advance our understanding in belowground ecological niche functions and their role in forest ecohydrology and productivity.
Doing ecohydrology backward: Inferring wetland flow and hydroperiod from landscape patterns
NASA Astrophysics Data System (ADS)
Acharya, Subodh; Kaplan, David A.; Jawitz, James W.; Cohen, Matthew J.
2017-07-01
Human alterations to hydrology have globally impacted wetland ecosystems. Preventing or reversing these impacts is a principal focus of restoration efforts. However, restoration effectiveness is often hampered by limited information on historical landscape properties and hydrologic regime. To help address this gap, we developed a novel statistical approach for inferring flows and inundation frequency (i.e., hydroperiod, HP) in wetlands where changes in spatial vegetation and geomorphic patterns have occurred due to hydrologic alteration. We developed an analytical expression for HP as a transformation of the landscape-scale stage-discharge relationship. We applied this model to the Everglades "ridge-slough" (RS) landscape, a patterned, lotic peatland in southern Florida that has been drastically degraded by compartmentalization, drainage, and flow diversions. The new method reliably estimated flow and HP for a range of RS landscape patterns. Crucially, ridge-patch anisotropy and elevation above sloughs were strong drivers of flow-HP relationships. Increasing ridge heights markedly increased flow required to achieve sufficient HP to support peat accretion. Indeed, ridge heights inferred from historical accounts would require boundary flows 3-4 times greater than today, which agrees with restoration flow estimates from more complex, spatially distributed models. While observed loss of patch anisotropy allows HP targets to be met with lower flows, such landscapes likely fail to support other ecological functions. This work helps inform restoration flows required to restore stable ridge-slough patterning and positive peat accretion in this degraded ecosystem, and, more broadly, provides tools for exploring interactions between landscape and hydrology in lotic wetlands and floodplains.
GOES-derived fog and low cloud indices for coastal north and central California ecological analyses
Torregrosa, Alicia; Cindy Combs,; Peters, Jeff
2015-01-01
Fog and low cloud cover (FLCC) changes the water, energy, and nutrient flux of coastal ecosystems. Easy-to-use FLCC data are needed to quantify the impacts of FLC on ecosystem dynamics during hot, dry Mediterranean climate summers. FLCC indices were generated from 26,000 hourly night and day FLCC maps derived from Geostationary Environmental Operational Satellite (GOES) data for June, July, August, and September, 1999- 2009 for coastal California, latitude 34.50°N, south of Monterey Bay, to latitude 41.95°N, north of Crescent City. Monthly FLCC average hours per day (h/d) range from < 2 to 18. Average FLCC over the ocean increases from north (9 h/d) to south (14 h/d) whereas FLCC over land is reversed. Over land, FLCC is highest where land juts into the prevailing NW winds and is lowest in the lee of major capes. FLCC advects furthest inland through low-lying NW ocean-facing valleys. At night hours of FLCC is higher more frequently on land than over the ocean. Interannual FLCC coefficient of variation shows long term geographic stability strongly associated with landform position. Contours delineating homogeneous zones of FLCC, derived from average decadal h/d FLCC, provide data to refine the commonly used term ‘fog belt.’ FLCC indices are available for download from the California Landscape Conservation Cooperative Climate Commons website. FLCC indices can be used to improve analyses of biogeographic and bioclimatic species distribution models, meteorological mechanisms driving FLCC patterns, ecohydrological investigations of evapotranspiration, solar energy feasibility studies, agricultural irrigation demand and viticultural ripening models.
NASA Astrophysics Data System (ADS)
Nagler, P. L.; Glenn, E. P.
2012-12-01
With increased demand on water sources for human use and likely diminished supplies due to climate change, it is important to understand the variation in evapotranspiration (ET) and vegetation water use by transpiration (T) in arid and semi-arid zone riparian areas in the western U.S. Understanding riparian plant water use is critical for accuracy of climate models, predictions used in water resources management, and assessment of land use change impacts on the water balance of ecosystems. Moore and Heilman (2011) suggested the following three principles for predicting when vegetation changes will impact the local or regional water budget: (i) variation will result if energy balance partitioning has been altered, (ii) if deeper or shallower active rooting depth has changed the amount of soil moisture accessible to plants, or (iii) if temporary changes in water use add up over longer time scales. They note that large changes in vegetation types do not necessarily result in changes in water discharge. We will use these principles to consider the case of saltcedar (Tamarix spp.) on western U.S. rivers. Once considered a high-water-use plant that out-competed native trees, research over the past two decades has shown that saltcedar water use is low to moderate, and less than native trees. Consequently, the prospects of salvaging water for human use by replacing saltcedar with native trees, once thought to be bright, now appear questionable. Furthermore, saltcedar has come to occupy ecohydrological niches on altered river systems that are no longer available to native plants. However, with the widespread introduction and spread of saltcedar leaf beetles (Diorhabda carinulata) on western rivers, introduced in part to reduce riparian water use through reduction of saltcedar abundance, saltcedar ecology has now entered a new phase. The talk will present a synthesis of the recent literature on saltcedar water use and provide an overview of saltcedar ecohydrology in terms of the principles set forth in Moore and Heilman for determining when vegetation changes will lead to changes in the local water balance. Such an analysis is needed to develop adaptive management practices for maintaining riparian ecological values while providing water for human and ecosystem needs over the next 50 years. So far, none of the three principles for change in the riparian water balance through reduction of saltcedar cover has been fulfilled, and riparian water use is relatively unchanged following introduction of saltcedar leaf beetles.
USDA-ARS?s Scientific Manuscript database
Pinyon and juniper range expansion has altered plant community structure, hydrologic function, ecological condition, and the delivery of ecosystem goods and services on millions of hectares in the western US. On many rangeland sites, encroaching pinyon and juniper trees out-compete shrubs and herba...
Development of watershed hydrologic research at Santee Experimental Forest, coastal South Carolina
Devendra Amatya; Carl Trettin
2007-01-01
Managing forested wetland landscapes for water quality improvement and productivity requires a detailed understanding of functional linkages between ecohydrological processes and management practices. Watershed studies are being conducted at USDA Forest Service Santee Experimental Forest, South Carolina, to understand the fundamental hydrologic and biogeochemical...
Thin scale ecohydrological data and relations at semi-arid regions: a methodological approach
USDA-ARS?s Scientific Manuscript database
In semi-arid regions worldwide the vegetation is organized in patches surrounded by bare soil with marked differences in their soil properties that play important roles in runoff and infiltration. Chihuahuan-Sonoran and Patagonian Monte deserts regions show floristic similarity greater than that ex...
Challenging a trickle-down view of climate change on agriculture and groundwater
USDA-ARS?s Scientific Manuscript database
Global climate change is largely viewed as affecting ecohydrology of the Earth’s surface, but various studies are showing deeper effects on groundwater. Agricultural systems may be studied at the land surface and into the root zone with deeper effects of water and chemical movement to groundwater. ...
Ecohydrologic separation of water between trees and streams in a Mediterranean climate
Water movement in upland humid watersheds from the soil surface to the stream is often described using the concept of translatory flow, which assumes that water entering the soil as precipitation displaces the water that was present previously, pushing it deeper into the soil and...
Defining ecohydrological function to support low impact development in coastal South Carolina
Daniel Hitchcock; A.D. Jayakaran; T. H. Epps; J.A. Palazzolo; T.M. Williams; D.M. Amatya
2016-01-01
In the face of dual pressures in coastal South Carolina - residential and commercial development, along with potential climate change impacts - stakeholders need clear, accurate, relevant, and easily-accessible information for effective decision-making for watershed management and natural resource protection.
An Overview of Hydrologic Studies at Center for Forested Wetlands Research, USDA Forest Service
Devendra M. Amatya; Carl C. Trettin; R. Wayne Skaggs; Timothy J. Callahan; Ge Sun; Masato Miwa; John E. Parsons
2004-01-01
Managing forested wetland landscapes for water quality improvement and productivity requires a detailed understanding of functional linkages between ecohydrological processes and management practices. Studies are being conducted at Center for Forested Wetlands Research (CFWR), USDA Forest Service to understand the fundamental hydrologic and biogeochemical processes...
USDA-ARS?s Scientific Manuscript database
Vegetation acclimation to changing climate, in particular elevated atmospheric concentrations of carbon dioxide (CO2), has been observed to include modifications to the biochemical and eco physiological functioning of leaves and the structural components of the canopy. These responses have the poten...
Viruses as groundwater tracers: using ecohydrology to characterize short travel times in aquifers
USDA-ARS?s Scientific Manuscript database
Viruses are attractive tracers of short (<3 yr) travel times in aquifers because they have unique genetic signatures, are detectable in trace quantities, and are mobile and stable in groundwater. Virus “snaphots” result from infection and disappearance over time as a community develops resistance. T...
Exploring soils and ecohydrological structure in small watersheds using electromagnetic induction
USDA-ARS?s Scientific Manuscript database
Soil moisture sensors generally strive to use the real permittivity as the basis for estimating soil water content from measured electrical properties of soil. It has been shown that a reasonably good general calibration can be developed for mineral soils on this basis. However, at the low measureme...
Trees and vegetation can be key components of urban green infrastructure and green spaces such as parks and residential yards. Large trees, characterized by broad canopies, and high leaf and stem volumes, can intercept a substantial amount of stormwater while promoting evapotrans...
Mineralizing urban net-zero water treatment: Phase II field results and design recommendations
Net-zero water (NZW) systems, or water management systems achieving high recycling rates and low residuals generation so as to avoid water import and export, can also conserve energy used to heat and convey water, while economically restoring local eco-hydrology. However, design ...
Ecohydrological coupling at the watershed scale is poorly characterized. While soil-water storage is dynamic and strongly influenced by plants, few integrated tools exist for quantifying the spatial and temporal dynamics and interactions among the major components of the terrestr...
USDA-ARS?s Scientific Manuscript database
The encroachment of woody plants into historical semiarid grasslands has important ecohydrological and socioeconomic consequences. In this paper, we document the biosphere-atmosphere exchange of water and carbon dioxide that occurred from 2004 through 2007 over a semiarid, warm-season savanna in sou...
Climatological influences on site-specific ecohydrology are particularly germane in semiarid regions where instream flows are strongly influenced by effluent discharges. Because many traditional and emerging aquatic contaminants, such as pharmaceuticals, are ionizable, we examin...
Using Sap Flow Monitoring for Improved Process-based Ecohydrologic Understanding 2022
USDA-ARS?s Scientific Manuscript database
Sap flow measurements can be an important tool for unraveling the complex web of ecosystem fluxes, especially when it is combined with other measurements like eddy covariance, isotopes, remote sensing, etc. In this talk, we will demonstrate how sap flow measurements have improved our process-level u...
The structure of the urban forest represents the complex product of local biophysical conditions, socio-economic milieu, people preferences and management with rare counterparts in rural forests. However, urban forest structure, as similarly observed in rural forests, affects key...
USDA-ARS?s Scientific Manuscript database
The ability to accurately predict land-atmosphere exchange of mass, energy, and momentum over the coming century requires the consideration of plant biochemical, ecophysiological and structural acclimation to modifications of the ambient environment. Amongst the most important environmental changes ...
[Baseflow separation methods in hydrological process research: a review].
Xu, Lei-Lei; Liu, Jing-Lin; Jin, Chang-Jie; Wang, An-Zhi; Guan, De-Xin; Wu, Jia-Bing; Yuan, Feng-Hui
2011-11-01
Baseflow separation research is regarded as one of the most important and difficult issues in hydrology and ecohydrology, but lacked of unified standards in the concepts and methods. This paper introduced the theories of baseflow separation based on the definitions of baseflow components, and analyzed the development course of different baseflow separation methods. Among the methods developed, graph separation method is simple and applicable but arbitrary, balance method accords with hydrological mechanism but is difficult in application, whereas time series separation method and isotopic method can overcome the subjective and arbitrary defects caused by graph separation method, and thus can obtain the baseflow procedure quickly and efficiently. In recent years, hydrological modeling, digital filtering, and isotopic method are the main methods used for baseflow separation.
Varying effects of geomorphic change on floodplain inundation and forest communities
NASA Astrophysics Data System (ADS)
Keim, R.; Johnson, E. L.; Edwards, B. L.; King, S. L.; Hupp, C. R.
2015-12-01
Overbank flooding in floodplains is an important control on vegetation, but effects of changing flooding are difficult to predict because sensitivities of plant communities to multidimensional flooding (frequency, depth, duration, and timing) are not well understood. We used HEC-RAS to model the changing flooding regime in the lower White River floodplain, Arkansas, in response to rapid incision of the Mississippi River in the 1930s, and quantified flood frequency, depth, and duration by forest community type. Incision has decreased flooding especially in terms of frequency, which is one of the most important variables for ecological processes. Modeled depth-duration curves varied more among floodplain reaches than among forest communities within the same reach, but forest communities are now arranged in accordance with new flood regimes in place after river incision. Forest responses to subtle geomorphic change are slower than other vegetation communities, so detection of the full ramifications of ecohydrologic change may require decades.
Mitra, Soumita; Ghosh, Swayambhu; Satpathy, Kamala Kanta; Bhattacharya, Bhaskar Deb; Sarkar, Santosh Kumar; Mishra, Pravakar; Raja, P
2018-01-01
Spatio-temporal and seasonal variation of the water quality characteristics of the Hooghly River Estuary, India were studied considering eight stations of diverse eco-hydrological characteristics. Wide variations in turbidity, total dissolved solids and fecal coliform exceeded the permissible BIS drinking water level limit. The estuary is observed to be relatively low-oxygenated, mesotropic and phosphate limiting. Spatial heterogeneity and impact of the southwest monsoon were remarkably pronounced in the distribution of the inorganic nutrients revealing the following values (expressed in μgatml -1 ): nitrate+nitrite (2.42-37.19), phosphate (0.41-1.52) and silicate (38.5-187.75). Water Quality Index (WQI) values confirmed the prevailing 'bad' condition, detrimental for sustenance of aquatic biota. Results of Principal Component Analysis identified the major factors liable for water quality deterioration while cluster analysis categorized the stations on the basis of similar water quality status. The authors recommend adopting preventive measures for water quality improvement linked to biodiversity conservation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Steady nonuniform shallow flow within emergent vegetation
NASA Astrophysics Data System (ADS)
Wang, Wei-Jie; Huai, Wen-Xin; Thompson, Sally; Katul, Gabriel G.
2015-12-01
Surface flow redistribution on flat ground from crusted bare soil to vegetated patches following intense rainfall events elevates plant available water above that provided by rainfall. The significance of this surface water redistribution to sustaining vegetation in arid and semiarid regions is undisputed. What is disputed is the quantity and spatial distribution of the redistributed water. In ecohydrological models, such nonuniform flows are described using the Saint-Venant equation (SVE) subject to a Manning roughness coefficient closure. To explore these assumptions in the most idealized setting, flume experiments were conducted using rigid cylinders representing rigid vegetation with varying density. Flow was induced along the streamwise x direction by adjusting the free water surface height H(x) between the upstream and downstream boundaries mimicking the nonuniformity encountered in nature. In natural settings, such H(x) variations arise due to contrasts in infiltration capacity and ponded depths during storms. The measured H(x) values in the flume were interpreted using the SVE augmented with progressively elaborate approximations to the roughness representation. The simplest approximation employs a friction factor derived from a drag coefficient (Cd) for isolated cylinders in a locally (but not globally) uniform flow and upscaled using the rod density that was varied across experiments. Comparison between measured and modeled H(x) suggested that such a "naive" approach overpredicts H(x). Blockage was then incorporated into the SVE model calculations but resulted in underestimation of H(x). Biases in modeled H(x) suggest that Cd must be varying in x beyond what a local or bulk Reynolds number predicts. Inferred Cd(x) from the flume experiments exhibited a near-parabolic shape most peaked in the densest canopy cases. The outcome of such Cd(x) variations is then summarized in a bulk resistance formulation that may be beneficial to modeling runon-runoff processes on shallow slopes using SVE.
NASA Astrophysics Data System (ADS)
Lin, Y. S.; Medlyn, B. E.; Duursma, R.; Prentice, I. C.; Wang, H.
2014-12-01
Stomatal conductance (gs) is a key land surface attribute as it links transpiration, the dominant component of global land evapotranspiration and a key element of the global water cycle, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycles, a global scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. We present a unique database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We employed a model of optimal stomatal conductance to assess differences in stomatal behaviour, and estimated the model slope coefficient, g1, which is directly related to the marginal carbon cost of water, for each dataset. We found that g1 varies considerably among PFTs, with evergreen savanna trees having the largest g1 (least conservative water use), followed by C3 grasses and crops, angiosperm trees, gymnosperm trees, and C4 grasses. Amongst angiosperm trees, species with higher wood density had a higher marginal carbon cost of water, as predicted by the theory underpinning the optimal stomatal model. There was an interactive effect between temperature and moisture availability on g1: for wet environments, g1 was largest in high temperature environments, indicated by high mean annual temperature during the period when temperature above 0oC (Tm), but it did not vary with Tm across dry environments. We examine whether these differences in leaf-scale behaviour are reflected in ecosystem-scale differences in water-use efficiency. These findings provide a robust theoretical framework for understanding and predicting the behaviour of stomatal conductance across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of productivity and ecohydrological processes in a future changing climate.
NASA Astrophysics Data System (ADS)
He, L.; Ivanov, V. Y.; Bohrer, G.; Maurer, K.; Vogel, C. S.; Moghaddam, M.
2011-12-01
Vegetation is heterogeneous at different scales, influencing spatially variable energy and water exchanges between land-surface and atmosphere. Current land surface parameterizations of large-scale models consider spatial variability at a scale of a few kilometers and treat vegetation cover as aggregated patches with uniform properties. However, the coupling mechanisms between fine-scale soil moisture, vegetation, and energy fluxes such as evapotranspiration are strongly nonlinear; the aggregation of surface variations may produce biased energy fluxes. This study aims to improve the understanding of the scale impact in atmosphere-biosphere-hydrosphere interactions, which affects predictive capabilities of land surface models. The study uses a high-resolution, physically-based ecohydrological model tRIBS + VEGGIE as a data integration tool to upscale the heterogeneity of canopy distribution resolved at a few meters to the watershed scale. The study was carried out for a spatially heterogeneous, temperate mixed forest environment of Northern Michigan located near the University of Michigan Biological Station (UMBS). Energy and soil water dynamics were simulated at the tree-canopy resolution in the horizontal plane for a small domain (~2 sq. km) located within a footprint of the AmeriFlux tower. A variety of observational data were used to constrain and confirm the model, including a 3-m profile continuous soil moisture dataset and energy flux data (measured at the AmeriFlux tower footprint). A scenario with a spatially uniform canopy, corresponding to the commonly used 'big-leaf' scheme in land surface parameterizations was used to infer the effects of coarse-scale averaging. To gain insights on how heterogeneous canopy and soil moisture interact and contribute to the domain-averaged transpiration, several scenarios of tree-scale leaf area and soil moisture spatial variability were designed. Specifically, for the same mean states, the scenarios of variability of canopy biomass account for the spatial distribution of photosynthesis (and thus the stomatal resistance), the aerodynamic and leaf boundary layer resistances as well as the differential radiation forcing due to tall tree exposure and lateral shading of short trees. The numerical experiments show that by transpiring spatially varying amounts of water, heterogeneous canopies adjust the spatial soil water state to the scaled inverse of the canopy biomass regardless of the initial moisture state. Such a spatial distribution can be further wiped out because of the differential water stress. The aggregation of canopy-scale atmosphere-biosphere-hydrosphere interactions demonstrates non-linear relationship between soil moisture and evapotranspiration, influencing domain-averaged energy fluxes.
Tracers Show Ecohydrologic Influences on Runoff Generation Components at the Qinghai-Tibet Plateau
NASA Astrophysics Data System (ADS)
Liu, H.; Liu, J.; Peng, A.; Gu, W.; Wang, W.; Gao, F.
2017-12-01
In order to learn more about the critical zone ecohydrological dynamics at the Qinghai-Tibet Plateau, a research on the identification of runoff components using tracers was carried out in the Niyang River upstream, a tributary of the Yalung Zangbo River. In this study, four basins with the areas of 182, 216, 243, 213 km2 which are embed in a larger basin were sampled at altitudes between 3667 to 6140 m. The types of land use in the basins mainly include forest land, grassland and glacier. River water and precipitation were sampled monthly, while spring water, glacial ice, soil, and plants were sampled seasonally. Soil and plant samples were taken along the valleys with spatial interval of about 5 km. Soil and plant waters were extracted via cryogenic vacuum distillation method, and then analyzed for isotopes and ions. Preliminary results show that the δD and δ18O of the precipitation water spread approximately along the LMWL of the Namucuo Lake near Lasa city, which varied according to altitude. Stem water δD and δ18O from different elevations and tree species also varied regularly, albeit with no apparent relationship to recent precipitation. It appears that trees utilized fissure water and soil water formed by precipitation. Future efforts will involve (1) an expanded sampling strategy across basins, and (2) a series of experiments on the Hydrohill catchment in the Chuzhou Experimental Facility, whereby an improved understanding of K+, Na+, Ca2+ and Mg2+ export dynamics could aid in much better description and modeling of Niyang River runoff composition and generation. This research is funded by the NSFC project 91647111 and 91647203, which are included in the Runoff Change and its Adaptive Management in the Major Rivers in Southwestern China Major Research Plan.
An Ecohydrological Approach to Riparian Restoration Planning in the American Southwest
NASA Astrophysics Data System (ADS)
Leverich, G. T.; Orr, B.; Diggory, Z.; Dudley, T.; Hatten, J.; Hultine, K. R.; Johnson, M. P.; Orr, D.
2014-12-01
Riparian systems across the American southwest region are under threat from a growing and intertwined cast of natural and anthropogenic stressors, including flooding, drought, invasion by non-native plants, wildfire, urban encroachment, and land- and water-use practices. In relatively remote and unregulated systems like the upper Gila River in Arizona, riparian habitat value has persisted reasonably well despite much of it being densely infested with non-native tamarisk (salt cedar). A new concern in the watershed, however, is the eventual arrival of the tamarisk leaf beetle that is expected to soon colonize the tamarisk-infested riparian corridor as the beetle continues to spread across the southwest region. While there are numerous potential benefits to tamarisk suppression (e.g., groundwater conservation, riparian habitat recovery, fire-risk reduction), short-term negative consequences are also possible, such as altered channel hydraulics and canopy defoliation during bird nesting season (e.g., the endangered southwestern willow flycatcher). In preparation for anticipated impacts following beetle colonization, we developed a holistic restoration framework to promote recovery of native riparian habitat and subsequent local increases in avian population. Pivotal to this process was an ecohydrological assessment that identified sustainable restoration sites based on consideration of natural and anthropogenic factors that, together, influence restoration opportunities—flood-scour dynamics, vegetation community structure and resilience, surface- and groundwater availability, soil texture and salinity, wildfire potential, and land-use activities. Data collected included high-resolution remote-sensing products, GIS-based delineation of geomorphic activity, and vegetation field mapping. These data along with other information generated, including pre-biocontrol vegetation monitoring and flycatcher-habitat modeling, were synthesized to produce a comprehensive restoration plan that highlights those areas of the river best suited for active restoration and, ultimately, assist watershed managers in development and prioritization of ecologically appropriate restoration strategies.
Spatial and temporal controls on watershed ecohydrology in the northern Rocky Mountains
Ryan E. Emanuel; Howard E. Epstein; Brian L. McGlynn; Daniel L. Welsch; Daniel J. Muth; Paulo D& #65533; fOdorico
2010-01-01
Vegetation water stress plays an important role in the movement of water through the soil�]plant�]atmosphere continuum. However, the effects of water stress on evapotranspiration (ET) and other hydrological processes at the watershed scale remain poorly understood due in part to spatially and temporally heterogeneous conditions within the...
USDA-ARS?s Scientific Manuscript database
Ephemeral and intermittent streams are the predominant fluvial forms in arid and semi-arid environments. Various studies have shown biological and habitat diversity in these lands to be considerably higher along stream corridors in comparison to adjacent uplands, yet knowledge of how these streams f...
Community ecology, climate change and ecohydrology in desert grassland and shrubland
Mathew Daniel Petrie
2014-01-01
This dissertation explores the climate, ecology and hydrology of Chihuahuan Desert ecosystems in the context of global climate change. In coming decades, the southwestern United States is projected to experience greater temperature-driven aridity, possible small decreases in annual precipitation, and a later onset of summer monsoon rainfall. These changes may have...
How trees influence the hydrological cycle in forest ecosystems
Barbara J. Bond; Frederick C. Meinzer; J. Renee Brooks
2007-01-01
Ultimately, the quest of ecohydrology (or hydroecology) is to apply fundamental knowledge from hydrology, ecology, atmospheric science, and related disciplines to solve real world problems involving biological systems and hydrologic cycles. Achieving this goal requires sharing information across disciplines, and this chapter is structured toward that end. Our aim is to...
Uncertainty in Ecohydrological Modeling in an Arid Region Determined with Bayesian Methods
Yang, Junjun; He, Zhibin; Du, Jun; Chen, Longfei; Zhu, Xi
2016-01-01
In arid regions, water resources are a key forcing factor in ecosystem circulation, and soil moisture is the critical link that constrains plant and animal life on the soil surface and underground. Simulation of soil moisture in arid ecosystems is inherently difficult due to high variability. We assessed the applicability of the process-oriented CoupModel for forecasting of soil water relations in arid regions. We used vertical soil moisture profiling for model calibration. We determined that model-structural uncertainty constituted the largest error; the model did not capture the extremes of low soil moisture in the desert-oasis ecotone (DOE), particularly below 40 cm soil depth. Our results showed that total uncertainty in soil moisture prediction was improved when input and output data, parameter value array, and structure errors were characterized explicitly. Bayesian analysis was applied with prior information to reduce uncertainty. The need to provide independent descriptions of uncertainty analysis (UA) in the input and output data was demonstrated. Application of soil moisture simulation in arid regions will be useful for dune-stabilization and revegetation efforts in the DOE. PMID:26963523
Night-time lights as a proxy of human pressure on freshwater resources
NASA Astrophysics Data System (ADS)
Ceola, Serena; Montanari, Alberto; Laio, Francesco
2017-04-01
The presence and availability of freshwater resources at the global scale control the dynamics and the biodiversity of river ecosystems, as well as the human development and the security of people and economies. The increasing human pressure on freshwater is known to potentially drive significant alterations on both ecohydrological and social dynamics. To date, a spatially-detailed snapshot (i.e. single in time) analysis of human water security and river biodiversity threats revealed that the majority of the world's population and river ecosystems are exposed to high levels of endangerment. However, the temporal evolution of these effects at the global scale is still unexplored. To this aim, moving from the recent progress on remote sensing techniques, we employed yearly averaged night-time light images available from 1992 to 2013 as a proxy of anthropogenic presence and activity and we investigated how threats to human water security and river biodiversity evolved in time in 405 major river basins. Our results show a consistent correlation between nightlights and ecohydrological and threats, providing innovative support for freshwater resources management.
Potential effects of tree-to-shrub type conversion on streamflow in California's Sierra Nevada
NASA Astrophysics Data System (ADS)
Baguskas, S. A.; Bart, R.; Molinari, N.; Tague, C.; Moritz, M.
2014-12-01
There is widespread concern that changes in climate and fire regime may lead to vegetation change across California, which in turn may influence watershed hydrology. Although plant cover is known to affect numerous hydrological processes, sensitivities to vegetation type and spatial arrangement of species within watersheds are not well understood. The primary objective of our research was to generate mechanistically-based projections of how potential type conversion from forested to shrub dominated systems may affect streamflow. During the 2014 growing season, we measured ecophysiological responses (plant water status and leaf gas exchange rates) of two dominant tree and shrub species to changes in seasonal water availability at two sites within the southern Sierra Nevada Critical Zone Observatory. Plant physiological observations were used to parameterize a process-based eco-hydrological model, RHESSys. This model was used to evaluate the impact of changes in seasonal water availability and vegetation type-conversion on streamflow. Based on our field observations, shrubs and trees had similar access to water through the early part of the growing season (April-early June); however, by late July, available water to shrubs was twice that of trees (shrubs, -0.55 ± 0.08 MPa; trees, -1.07 ± 0.08 MPa, p<0.05). Likewise, maximum transpiration (E) and carbon assimilation (A) rates per unit leaf area were twice as high for shrubs then trees in July (shrubs, A= 21 ± 2.3 μmol m-2 s-1, E=6.6 ± 1.8 mmol m-2 s-1; trees, A=8.2 ± 1.9 μmol m-2 s-1, E=2.4 ± 0.3 mmol m-2 s-1). Preliminary modeled changes in streamflow following simulated vegetation conversion were found to affect both the timing and amount of discharge. Controls on pre vs. post-conversion streamflow included changes in interception, rooting depth, energy balance, and plant response to changes in seasonal water availability. Our research demonstrates how linking strategic field data collection and mechanistic ecohydrologic models can be used as a robust tool for assessing the potential impact of vegetation change on the water balance of an ecosystem. This is an increasingly valuable approach to inform management decisions focused on adapting strategies based on projected changes in climate.
NASA Astrophysics Data System (ADS)
Shuler, J.; McNamara, J. P.; Benner, S. G.; Kohn, M. J.; Evans, S.
2017-12-01
The ecohydrologic separation (ES) hypothesis states that streams and plants return different soil water compartments to the atmosphere and that these compartments bear distinct isotopic compositions that can be used to infer soil water mobility. Recent studies have found isotopic evidence for ES in a variety of ecosystems, though interpretations of these data vary. ES investigations frequently suffer from low sampling frequencies as well as incomplete or missing soil moisture and matric potential data to support assumptions of soil water mobility. We sampled bulk soil water every 2-3 weeks in the upper 1 m of a hillslope profile from May 2016 to July 2017 in a semi-arid watershed outside Boise, ID. Twig samples of three plant species were also collected concurrently. Plant and soil water samples extracted via cryogenic vacuum distillation were analyzed for δ2H and δ18O composition. Soil moisture and soil matric potential sensors were installed at five and four depths in the profile, respectively. Shallow bulk soil water was progressively enriched in both isotopes over the growing season and plotted along a soil evaporation line in a plot of δ2H versus δ18O. Plant water during the growing season plotted below both the Local Meteoric Water Line and soil evaporation line. Plant water isotopic composition could not be traced to any source sampled in this study. Additionally, soil moisture and matric potential data revealed that soils were well-drained and that mobile soil water was unavailable throughout most of the growing season at the depths sampled. Soil water isotopic composition alone failed to predict mobility as observed in soil moisture and matric potential data. These results underscore the need for standard hydrologic definitions for the mobile and immobile compartments of soil water in future studies of the ES hypothesis and ecohydrologic processes in general.
Ecohydrology applications to ecosystem reconstruction after oil-sand mining
NASA Astrophysics Data System (ADS)
Mendoza, Carl; Devito, Kevin
2014-05-01
Oil-sand deposits in northeast Alberta, Canada comprise some of the world's largest oil reserves. Open-pit mining of these resources leads to waste-rock piles, tailings ponds and open pits that must be reclaimed to "equivalent landscape capability", with viable forests and wetlands, using only native vegetation. Understanding ecohydrological processes in natural systems is critical for designing the necessary landforms and landscapes. A challenge is the cold, sub-humid climate, with highly variable precipitation. Furthermore, there are competing demands, needs or uses for water, in both quantity and quality, for reclamation and sustainability of forestlands, wetlands and end-pit lakes. On average there is a potential water deficit in the region, yet wetlands cover half of the undisturbed environment. Water budget analyses demonstrate that, although somewhat unpredictable and uncontrollable, the magnitude and timing of water delivery largely control water storage and conservation within the landscape. The opportunity is to design and manipulate these reconstructed landscapes so that water is stored and conserved, and water quality is naturally managed. Heterogeneous geologic materials can be arranged and layered, and landforms sculpted, to minimize runoff, enhance infiltration, and promote surface and subsurface storage. Similarly, discharge of poor quality water can be minimized or focused. And, appropriate vegetation choices are necessary to conserve water on the landscape. To achieve these ends, careful attention must be paid to the entire water budget, the variability in its components, interconnections between hydrologic units, in both space and time, and coupled vegetation processes. To date our knowledge is guided primarily by natural analogues. To move forward, it is apparent that numerous priorities and constraints, which are potentially competing, must be addressed. These include geotechnical and operational requirements, material limitations or excesses, time, money and performance expectations. Careful landform design and integration of ecohydrological principles can be used to address some of these issues.
Mosquera, Giovanny M; Celleri, Rolando; Lazo, Patricio X; Vache, Kellie B; Perakis, Steven; Crespo, Patricio
2016-01-01
Few high-elevation tropical catchments worldwide are gauged and even fewer are studied using combined hydrometric and isotopic data. Consequently, we lack information needed to understand processes governing rainfall-runoff dynamics and to predict their influence on downstream ecosystem functioning. To address this need, we present a combination of hydrometric and water stable isotopic observations in the wet Andean páramo ecosystem of the Zhurucay Ecohydrological Observatory (7.53 km2). The catchment is located in the Andes of south Ecuador between 3400 and 3900 m a.s.l. Water samples for stable isotopic analysis were collected during 2 years (May 2011 – May 2013), while rainfall and runoff measurements were continuously recorded since late 2010. The isotopic data reveal that Andosol soils predominantly situated on hillslopes drain laterally to Histosols (Andean páramo wetlands) mainly located at the valley bottom. Histosols, in turn, feed water to creeks and small rivers throughout the year, establishing hydrologic connectivity between wetlands and the drainage network. Runoff is primarily comprised of pre-event water stored in the Histosols, which is replenished by rainfall that infiltrates through the Andosols. Contributions from the mineral horizon and the top of the fractured bedrock are small and only seem to influence discharge in small catchments during low flow generation (non-exceedance flows < Q35). Variations in source contributions are controlled by antecedent soil moisture, rainfall intensity, and duration of rainy periods. Saturated hydraulic conductivity of the soils, higher than the year-round low precipitation intensity, indicates that Hortonian overland flow rarely occurs during high intensity precipitation events. Deep groundwater contributions to discharge seem to be minimal. These results suggest that, in this high-elevation tropical ecosystem: 1) subsurface flow is a dominant hydrological process and 2) (Histosols) wetlands are the major source of stream runoff. Our study highlights that detailed isotopic characterization during short time periods provides valuable information about ecohydrological processes in regions where very few basins are gauged.
NASA Astrophysics Data System (ADS)
Hausner, Mark B.; Wilson, Kevin P.; Gaines, D. Bailey; Tyler, Scott W.
2012-05-01
Devils Hole, a groundwater-filled fracture in the carbonate aquifer of the southern Nevada Mojave Desert, represents a unique ecohydrological setting, as home to the only extant population of Cyprinodon diabolis, the endangered Devils Hole pupfish. Using water column temperatures collected with a fiber-optic distributed temperature sensor (DTS) during four field campaigns in 2009, evidence of deep circulation and nutrient export are, for the first time, documented. The DTS was deployed to measure vertical temperature profiles in the system, and the raw data returned were postprocessed to refine the calibration beyond the precision of the instrument's native calibration routines. Calibrated temperature data serve as a tracer for water movement and reveal a seasonal pattern of convective mixing that is supported by numerical simulations of the system. The periodic presence of divers in the water is considered, and their impacts on the temperature profiles are examined and found to be minimal. The seasonal mixing cycle may deplete the pupfish's food supplies when nutrients are at their scarcest. The spatial and temporal scales of the DTS observations make it possible to observe temperature gradients on the order of 0.001°C m-1, revealing phenomena that would have been lost in instrument noise and uncertainty.
NASA Astrophysics Data System (ADS)
Hanan, E. J.; Tague, C.; Choate, J.; Liu, M.; Adam, J. C.
2016-12-01
Disturbance is a major force regulating C dynamics in terrestrial ecosystems. Evaluating future C balance in disturbance-prone systems requires understanding the underlying mechanisms that drive ecosystem processes over multiple scales of space and time. Simulation modeling is a powerful tool for bridging these scales, however, model projections are limited by large uncertainties in the initial state of vegetation C and N stores. Watershed models typically use one of two methods to initialize these stores. Spin up involves running a model until vegetation reaches steady state based on climate. This "potential" state however assumes the vegetation across the entire watershed has reached maturity and has a homogeneous age distribution. Yet to reliably represent C and N dynamics in disturbance-prone systems, models should be initialized to reflect their non-equilibrium conditions. Alternatively, remote sensing of a single vegetation parameter (typically leaf area index; LAI) can be combined with allometric relationships to allocate C and N to model stores and can reflect non-steady-state conditions. However, allometric relationships are species and region specific and do not account for environmental variation, thus resulting in C and N stores that may be unstable. To address this problem, we developed a new approach for initializing C and N pools using the watershed-scale ecohydrologic model RHESSys. The new approach merges the mechanistic stability of spinup with the spatial fidelity of remote sensing. Unlike traditional spin up, this approach supports non-homogeneous stand ages. We tested our approach in a pine-dominated watershed in central Idaho, which partially burned in July of 2000. We used LANDSAT and MODIS data to calculate LAI across the watershed following the 2000 fire. We then ran three sets of simulations using spin up, direct measurements, and the combined approach to initialize vegetation C and N stores, and compared our results to remotely sensed LAI following the simulation period. Model estimates of C, N, and water fluxes varied depending on which approach was used. The combined approach provided the best LAI estimates after 10 years of simulation. This method shows promise for improving projections of C, N, and water fluxes in disturbance-prone watersheds.
Application of LiDAR to hydrologic flux estimation in Australian eucalypt forests (Invited)
NASA Astrophysics Data System (ADS)
Lane, P. N.; Mitchell, P. J.; Jaskierniak, D.; Hawthorne, S. N.; Griebel, A.
2013-12-01
The potential of LiDAR in ecohydrology is significant as characterising catchment vegetation is crucial to accurate estimation of evapotranspiration (ET). While this may be done at large scales for model parameterisation, stand-scale applications are equally appropriate where traditional methods of measurement of LAI or sapwood areas are time consuming and reliant on assumptions of representative sampling. This is particularly challenging in mountain forests where aspect, soil properties and energy budgets can vary significantly, reflected in the vegetation or where there are changes in the spatial distribution of structural attributes following disturbance. Recent research has investigated the spatial distribution of ET in a eucalypt forest in SE Australia using plot-scale sapflow, interception and forest floor ET measurements. LiDAR was used scale up these measurements. LiDAR (0.16 m scanner footprint) canopy indices were correlated via stepwise regression with 4 water use scalars: basal area (BA), sapwood area (SA), leaf area index (LAI) and canopy coverage (C), with Hmed, Hmean, H80, H95 the best predictors. Combining these indices with empirical relationships between SA and BA, and SA and transpiration (T), and inventory plot 'ground truthing' transpiration was estimated across the 1.3 km2 catchment. Interception was scaled via the Gash model with LiDAR derived inputs. The up-scaling showed a significant variability in the spatial distribution of ET, related to the distribution of SA. The use of LiDAR meant scaling could be achieved at an appropriate spatial scale (20 x 20 m) to the measurements. The second example is the use of airborne LiDAR in developing growth forest models for hydrologic modeling. LiDAR indices were used to stratify multilayered forests using mixed-effect models with a wide range of theoretical distribution functions. When combined with historical plot-scale inventory data we show demonstrated improved growth modeling over traditional inventory methods.These models can be used to parameterize hydrologic models to explore disturbance and age-related ET changes, and develop spatial-temporal maps of ET based on accurate representation of sapwood areas in complex terrain. The third example involves analyses of stand growth and long term streamflow response to thinning treatments in eucalyptus regnans forests. These forests have a strong age-streamflow relationship that can lead to streamflow declines as disturbed stands regrow. A set of thinning treatments in small experimental catchments (uniform, strip and understorey removal) were implemented in 1978-1982. The streamflow analysis supported early findings that flows increase and then relaxed, but also detected a flow decline below expected undisturbed levels for most catchments. Airborne LiDAR was used to analyse the structural recovery of treated stands, estimate LAI and canopy coverage via gap-fraction analysis, and scale ET measurements. The LiDAR data revealed the association of treatment type and regrowth and demonstrated that despite a net reduction in overstorey stem density, stand LAI had recovered and may explain the flow response. Finally, new terrestrial LiDAR instruments are being used in conjunction with eddy-covariance flux tower and sapflow measurement to measure fine temporal scale carbon-water dynamics. These instruments can be combined with airborne derived data to produce 3 dimensional canopy profile for linkage with ET processes.
Williams, M.A.; Vondracek, B.
2010-01-01
Karst aquifers are important groundwater resources, but are vulnerable to contamination due to relatively rapid subsurface transport. Springs, points where the landscape and water table intersect and cold groundwater discharges, link aquifer systems with land surfaces and water bodies. As such, in many regions, they are critical to the viability of lakes, streams and cold-water fish communities. An understanding of where springs are located is important to watershed, fishery and environmental management efforts in karst regions. To better understand spatial distribution of springs and as a potential method for identifying variables that characterize locations of springs for improved land and watershed management, a nearest-neighbor analysis and a discriminant function analysis (DFA) of springs were conducted in Winona County, Minnesota USA, a karst landscape. Nearestneighbor analysis examined the spatial spring distribution. Twenty-two variables describing the locations of springs were analyzed to ascertain their ability to discriminate correct aquifer unit or bedrock unit classification for each spring. Springs were clumped with the highest densities in the lowest elevations. Springs were correctly assigned to aquifer units and bedrock units with eight and 11 landscape variables, respectively. Forest land cover was the only land cover type contributing to spring discrimination. Consideration of upland human activities, particularly in forested areas, on spring discharge along with a better understanding of characteristics describing spring locations could lead to better management activities that locate and protect springs and their important contributions to regional ecohydrology. ?? 2010 Springer-Verlag.
Vondracek, Bruce C.; Williams, Mary A.
2010-01-01
Karst aquifers are important groundwater resources, but are vulnerable to contamination due to relatively rapid subsurface transport. Springs, points where the landscape and water table intersect and cold groundwater discharges, link aquifer systems with land surfaces and water bodies. As such, in many regions, they are critical to the viability of lakes, streams and cold-water fish communities. An understanding of where springs are located is important to watershed, fishery and environmental management efforts in karst regions. To better understand spatial distribution of springs and as a potential method for identifying variables that characterize locations of springs for improved land and watershed management, a nearest-neighbor analysis and a discriminant function analysis (DFA) of springs were conducted in Winona County, Minnesota, USA, a karst landscape. Nearest-neighbor analysis examined the spatial spring distribution. Twenty-two variables describing the locations of springs were analyzed to ascertain their ability to discriminate correct aquifer unit or bedrock unit classification for each spring. Springs were clumped with the highest densities in the lowest elevations. Springs were correctly assigned to aquifer units and bedrock units with eight and 11 landscape variables, respectively. Forest land cover was the only land cover type contributing to spring discrimination. Consideration of upland human activities, particularly in forested areas, on spring discharge along with a better understanding of characteristics describing spring locations could lead to better management activities that locate and protect springs and their important contributions to regional ecohydrology.
Matthew J. Van Grinsven; Joseph P. Shannon; Joshua C. Davis; Nicholas W. Bolton; Joseph W. Wagenbrenner; Randall K. Kolka; Thomas Grant Pypker
2017-01-01
Forested wetlands dominated by black ash (Fraxinus nigra) are currently threatened by the rapid expansion of the exotic emerald ash borer (EAB) (Agrilus planipennis, Coleoptera: Buprestidae) in North America, and very little is known about the hydrology and ecology of black ash wetlands. The ecohydrological response of...
Urbanization alters watershed hydrology in the Piedmont of North Carolina
Johnny Boggs; Ge Sun
2011-01-01
The ecohydrologic effects of urbanization that is dominated by forests clearing are not well understood in the southeastern United States. We utilized long-term monitoring data to quantify the annual water balance, stormflow characteristics, and seasonal flow patterns of an urbanized watershed (UR) (0·70 km2) and compared it to a fully...
Explore the Impacts of River Flow and Water Quality on Fish Communities
NASA Astrophysics Data System (ADS)
Tsai, W. P.; Chang, F. J.; Lin, C. Y.; Hu, J. H.; Yu, C. J.; Chu, T. J.
2015-12-01
Owing to the limitation of geographical environment in Taiwan, the uneven temporal and spatial distribution of rainfall would cause significant impacts on river ecosystems. To pursue sustainable water resources development, integrity and rationality is important to water management planning. The water quality and the flow regimes of rivers are closely related to each other and affect river ecosystems simultaneously. Therefore, this study collects long-term observational heterogeneity data, which includes water quality parameters, stream flow and fish species in the Danshui River of norther Taiwan, and aims to explore the complex impacts of water quality and flow regime on fish communities in order to comprehend the situations of the eco-hydrological system in this river basin. First, this study improves the understanding of the relationship between water quality parameters, flow regime and fish species by using artificial neural networks (ANNs). The Self-organizing feature map (SOM) is an unsupervised learning process used to cluster, analyze and visualize a large number of data. The results of SOM show that nine clusters (3x3) forms the optimum map size based on the local minimum values of both quantization error (QE) and topographic error (TE). Second, the fish diversity indexes are estimated by using the Adapted network-based fuzzy inference system (ANFIS) based on key input factors determined by the Gamma Test (GT), which is a useful tool for reducing model dimension and the structure complexity of ANNs. The result reveals that the constructed models can effectively estimate fish diversity indexes and produce good estimation performance based on the 9 clusters identified by the SOM, in which RMSE is 0.18 and CE is 0.84 for the training data set while RMSE is 0.20 and CE is 0.80 for the testing data set.
Impact of the Three-Gorges Dam and water transfer project on Changjiang floods
NASA Astrophysics Data System (ADS)
Nakayama, Tadanobu; Shankman, David
2013-01-01
Increasing frequency of severe floods on the middle and lower Changjiang (Yangtze) River during the past few decades can be attributed to both abnormal monsoon rainfall and landscape changes that include extensive deforestation affecting river sedimentation, and shrinking lakes and levee construction that reduced the areas available for floodwater storage. The Three-Gorges Dam (TGD) and the South-to-North Water Transfer Project (SNWTP) will also affect frequency and intensity of severe floods in the Poyang Lake region of the middle Changjiang. Process-based National Integrated Catchment-based Eco-hydrology (NICE) model predicts that the TGD will increase flood risk during the early summer monsoon against the original justifications for building the dam, relating to complex river-lake-groundwater interactions. Several scenarios predict that morphological change will increase flood risk around the lake. This indicates the importance of managing both flood discharge and sediment deposition for the entire basin. Further, the authors assessed the impact of sand mining in the lake after its prohibition on the Changjiang, and clarified that alternative scenario of sand mining in lakes currently disconnected from the mainstream would reduce the flood risk to a greater extent than intensive dredging along junction channel. Because dry biomasses simulated by the model were linearly related to the Time-Integrated Normalized Difference Vegetation Index (TINDVI) estimated from satellite images, its decadal gradient during 1982-1999 showed a spatially heterogeneous distribution and generally decreasing trends beside the lakes, indicating that the increases in lake reclamation and the resultant decrease in rice productivity are closely related to the hydrologic changes. This integrated approach could help to minimize flood damage and promote better decisions addressing sustainable development.
Swindles, Graeme T; Reczuga, Monika; Lamentowicz, Mariusz; Raby, Cassandra L; Turner, T Edward; Charman, Dan J; Gallego-Sala, Angela; Valderrama, Elvis; Williams, Christopher; Draper, Frederick; Honorio Coronado, Euridice N; Roucoux, Katherine H; Baker, Tim; Mullan, Donal J
2014-08-01
Tropical peatlands represent globally important carbon sinks with a unique biodiversity and are currently threatened by climate change and human activities. It is now imperative that proxy methods are developed to understand the ecohydrological dynamics of these systems and for testing peatland development models. Testate amoebae have been used as environmental indicators in ecological and palaeoecological studies of peatlands, primarily in ombrotrophic Sphagnum-dominated peatlands in the mid- and high-latitudes. We present the first ecological analysis of testate amoebae in a tropical peatland, a nutrient-poor domed bog in western (Peruvian) Amazonia. Litter samples were collected from different hydrological microforms (hummock to pool) along a transect from the edge to the interior of the peatland. We recorded 47 taxa from 21 genera. The most common taxa are Cryptodifflugia oviformis, Euglypha rotunda type, Phryganella acropodia, Pseudodifflugia fulva type and Trinema lineare. One species found only in the southern hemisphere, Argynnia spicata, is present. Arcella spp., Centropyxis aculeata and Lesqueresia spiralis are indicators of pools containing standing water. Canonical correspondence analysis and non-metric multidimensional scaling illustrate that water table depth is a significant control on the distribution of testate amoebae, similar to the results from mid- and high-latitude peatlands. A transfer function model for water table based on weighted averaging partial least-squares (WAPLS) regression is presented and performs well under cross-validation (r(2)(apparent)= 0.76, RMSE = 4.29; r(2)(jack)= 0.68, RMSEP =5.18). The transfer function was applied to a 1-m peat core, and sample-specific reconstruction errors were generated using bootstrapping. The reconstruction generally suggests near-surface water tables over the last 3,000 years, with a shift to drier conditions at c. cal. 1218-1273 AD.
Estimating plant available water content from remotely sensed evapotranspiration
NASA Astrophysics Data System (ADS)
van Dijk, A. I. J. M.; Warren, G.; Doody, T.
2012-04-01
Plant available water content (PAWC) is an emergent soil property that is a critical variable in hydrological modelling. PAWC determines the active soil water storage and, in water-limited environments, is the main cause of different ecohydrological behaviour between (deep-rooted) perennial vegetation and (shallow-rooted) seasonal vegetation. Conventionally, PAWC is estimated for a combination of soil and vegetation from three variables: maximum rooting depth and the volumetric water content at field capacity and permanent wilting point, respectively. Without elaborate local field observation, large uncertainties in PAWC occur due to the assumptions associated with each of the three variables. We developed an alternative, observation-based method to estimate PAWC from precipitation observations and CSIRO MODIS Reflectance-based Evapotranspiration (CMRSET) estimates. Processing steps include (1) removing residual systematic bias in the CMRSET estimates, (2) making spatially appropriate assumptions about local water inputs and surface runoff losses, (3) using mean seasonal patterns in precipitation and CMRSET to estimate the seasonal pattern in soil water storage changes, (4) from these, calculating the mean seasonal storage range, which can be treated as an estimate of PAWC. We evaluate the resulting PAWC estimates against those determined in field experiments for 180 sites across Australia. We show that the method produces better estimates of PAWC than conventional techniques. In addition, the method provides detailed information with full continental coverage at moderate resolution (250 m) scale. The resulting maps can be used to identify likely groundwater dependent ecosystems and to derive PAWC distributions for each combination of soil and vegetation type.
NASA Astrophysics Data System (ADS)
Blettler, Martín. C. M.; Amsler, Mario L.; Eberle, Eliana G.; Szupiany, Ricardo; Latosinski, Francisco G.; Abrial, Elie; Oberholster, Paul J.; Espinola, Luis A.; Paira, Aldo; Poza, Ailen; Rodrigues Capítulo, Alberto
2016-12-01
Interdisciplinary research in the fields of ecohydrology and ecogeomorphology is becoming increasingly important as a way to understand how biological and physical processes interact with each other in river systems. The objectives of the current study were 1) to determine changes in invertebrate community due to hydrological stages, 2) to link local physical features [flow configuration, sediment composition and morphological feature) with the ecological structure between and within dissimilar morphological units (meander and confluence), and 3) to determine the existence and the origin of bed hydro-geomorphic patches, determining their ecological structure. Results were discussed in the frame of prevailing ecological models and concepts. The study site extends over a floodplain area of the large Paraná River (Argentina), including minor and major secondary channels as well as the main channel. Overall results suggested that hydrodynamics was the driving force determining distribution patterns of benthic assemblages in the floodplain. However, while the invertebrates living in minor secondary channels seem to benefit from flooding, this hydrological phase had the opposite effect on organisms from the main and major secondary channels. We also found a clear linkage between physical features and invertebrate ecology, which caused a dissimilar fauna structure between and within the meander and the confluence. Furthermore, several sandy-patches were recorded in the confluence. These patches were colonized by the particular benthic assemblage recorded in the main channel, supported the view of rivers as patchy discontinua, under uncertain ecological equilibrium.
NASA Astrophysics Data System (ADS)
Chalari, A.; Ciocca, F.; Krause, S.; Hannah, D. M.; Blaen, P.; Coleman, T. I.; Mondanos, M.
2015-12-01
The Birmingham Institute of Forestry Research (BIFoR) is using Free-Air Carbon Enrichment (FACE) experiments to quantify the long-term impact and resilience of forests into rising atmospheric CO2 concentrations. The FACE campaign critically relies on a successful monitoring and understanding of the large variety of ecohydrological processes occurring across many interfaces, from deep soil to above the tree canopy. At the land-atmosphere interface, soil moisture and temperature are key variables to determine the heat and water exchanges, crucial to the vegetation dynamics as well as to groundwater recharge. Traditional solutions for monitoring soil moisture and temperature such as remote techniques and point sensors show limitations in fast acquisition rates and spatial coverage, respectively. Hence, spatial patterns and temporal dynamics of heat and water fluxes at this interface can only be monitored to a certain degree, limiting deeper knowledge in dynamically evolving systems (e.g. in impact of growing vegetation). Fibre optics Distributed Temperature Sensors (DTS) can measure soil temperatures at high spatiotemporal resolutions and accuracy, along kilometers of optical cable buried in the soil. Heat pulse methods applied to electrical elements embedded in the optical cable can be used to obtain the soil moisture. In July 2015 a monitoring system based on DTS has been installed in a recently forested hillslope at BIFoR in order to quantify high-resolution spatial patterns and high-frequency temporal dynamics of soil heat fluxes and soil moisture conditions. Therefore, 1500m of optical cables have been carefully deployed in three overlapped loops at 0.05m, 0.25m and 0.4m from the soil surface and an electrical system to send heat pulses along the optical cable has been developed. This paper discussed both, installation and design details along with first results of the soil moisture and temperature monitoring carried out since July 2015. Moreover, interpretations of the collected data to investigate the impact on soil moisture dynamics of i) forest evolution (long timescale), (ii) seasonality and, (iii) high-frequency forcing, are discussed.
Shallow peatland ecohydrology - the control of peat depth on moss productivity
NASA Astrophysics Data System (ADS)
Dixon, Simon; Kettridge, Nicholas; Moore, Paul; Devito, Kevin; Tilak, Amey; Petrone, Rich; Mendoza, Carl; Waddington, Mike
2017-04-01
Northern peatlands represent an important sink in the global carbon cycle. Shallow peatlands and marginal connective wetlands can be essential components of many northern peatland landscape mosaics, playing a vital role in landscape connectivity and wider landscape hydrology. However the ecohydrological function of these shallow, marginal systems has been largely overlooked, with peatland hydrology research focused on relatively deep bog systems. In order to predict landscape scale wetland function and its vulnerability to climate change we need to understand how these shallow connective systems function. The balance between moss productivity and water loss provide a key component of these systems, as water use efficiency controls the rate of moss growth and thus controls the amount of atmospheric carbon sequestered in peat. Understanding how productivity of shallow peatland systems responds to changes in evaporative stress will aid predictions of peatland landscape hydrological function in a changing climate. To determine the factors influencing peat productivity, water balance simulations using Hydrus 1-D were conducted over annual growing seasons for different soil profile depths, compositions and antecedent moisture conditions. Our results demonstrate a bimodal distribution of peatland responses; either primarily conserving water by limiting evapotranspiration or, maximizing productivity. For sustained periods of evaporative stress, shallow marginal systems are least able to buffer periods of evaporative stress due to limited labile water storage, and will limit evaporation, conserve water and be less productive. Conversely, where present, both deep water storage and a shallow initial water table prolong the onset of high vegetative stress, thus maximizing moss productivity. However, a total depth of 0.8 m is identified as the threshold above which increasing peat depth has no further effect on changing vegetative stress response and thus landscape function. These results are important as moss productivity, along with rate of organic matter decay are the two principle factors controlling the build-up of peat, and therefore sequestration of carbon. With a predicted increase in the frequency and size of rain events in northern latitudes our results indicate the productivity of shallow wetland systems may increase, but greater moisture availability will increase the likelihood they remain as wetlands in a changing climate.
JAMS - a software platform for modular hydrological modelling
NASA Astrophysics Data System (ADS)
Kralisch, Sven; Fischer, Christian
2015-04-01
Current challenges of understanding and assessing the impacts of climate and land use changes on environmental systems demand for an ever-increasing integration of data and process knowledge in corresponding simulation models. Software frameworks that allow for a seamless creation of integrated models based on less complex components (domain models, process simulation routines) have therefore gained increasing attention during the last decade. JAMS is an Open-Source software framework that has been especially designed to cope with the challenges of eco-hydrological modelling. This is reflected by (i) its flexible approach for representing time and space, (ii) a strong separation of process simulation components from the declarative description of more complex models using domain specific XML, (iii) powerful analysis and visualization functions for spatial and temporal input and output data, and (iv) parameter optimization and uncertainty analysis functions commonly used in environmental modelling. Based on JAMS, different hydrological and nutrient-transport simulation models were implemented and successfully applied during the last years. We will present the JAMS core concepts and give an overview of models, simulation components and support tools available for that framework. Sample applications will be used to underline the advantages of component-based model designs and to show how JAMS can be used to address the challenges of integrated hydrological modelling.
Scaling biodiversity responses to hydrological regimes.
Rolls, Robert J; Heino, Jani; Ryder, Darren S; Chessman, Bruce C; Growns, Ivor O; Thompson, Ross M; Gido, Keith B
2018-05-01
Of all ecosystems, freshwaters support the most dynamic and highly concentrated biodiversity on Earth. These attributes of freshwater biodiversity along with increasing demand for water mean that these systems serve as significant models to understand drivers of global biodiversity change. Freshwater biodiversity changes are often attributed to hydrological alteration by water-resource development and climate change owing to the role of the hydrological regime of rivers, wetlands and floodplains affecting patterns of biodiversity. However, a major gap remains in conceptualising how the hydrological regime determines patterns in biodiversity's multiple spatial components and facets (taxonomic, functional and phylogenetic). We synthesised primary evidence of freshwater biodiversity responses to natural hydrological regimes to determine how distinct ecohydrological mechanisms affect freshwater biodiversity at local, landscape and regional spatial scales. Hydrological connectivity influences local and landscape biodiversity, yet responses vary depending on spatial scale. Biodiversity at local scales is generally positively associated with increasing connectivity whereas landscape-scale biodiversity is greater with increasing fragmentation among locations. The effects of hydrological disturbance on freshwater biodiversity are variable at separate spatial scales and depend on disturbance frequency and history and organism characteristics. The role of hydrology in determining habitat for freshwater biodiversity also depends on spatial scaling. At local scales, persistence, stability and size of habitat each contribute to patterns of freshwater biodiversity yet the responses are variable across the organism groups that constitute overall freshwater biodiversity. We present a conceptual model to unite the effects of different ecohydrological mechanisms on freshwater biodiversity across spatial scales, and develop four principles for applying a multi-scaled understanding of freshwater biodiversity responses to hydrological regimes. The protection and restoration of freshwater biodiversity is both a fundamental justification and a central goal of environmental water allocation worldwide. Clearer integration of concepts of spatial scaling in the context of understanding impacts of hydrological regimes on biodiversity will increase uptake of evidence into environmental flow implementation, identify suitable biodiversity targets responsive to hydrological change or restoration, and identify and manage risks of environmental flows contributing to biodiversity decline. © 2017 Cambridge Philosophical Society.
G.W. Moore; J.A. Jones; B.J. Bond
2011-01-01
The water balance equation dictates that streamflow may be reduced by transpiration. Yet temporal disequilibrium weakens the relationship between transpiration and streamflow in many cases where inputs and outputs are unbalanced. We address two critical knowledge barriers in ecohydrology with respect to time, scale dependence and lags. Study objectives were to...
Ecosystem processes at the watershed scale: extending optimality theory from plot to catchment
Taehee Hwang; Lawrence Band; T.C. Hale
2009-01-01
The adjustment of local vegetation conditions to limiting soil water by either maximizing productivity or minimizing water stress has been an area of central interest in ecohydrology since Eaglesonâs classic study. This work has typically been limited to consider one-dimensional exchange and cycling within patches and has not incorporated the effects of lateral...
T. L. Swetnam; A. M. Lynch; D. A. Falk; S. R. Yool; D. P. Guertin
2015-01-01
Discriminating amongst spatial configurations and climax size of trees in forests along varying physical gradients from time since last disturbance is a significant component of applied forest management. Understanding what has led to the existing vegetationâs structure has important implications for monitoring succession and eco-hydrological interactions within the...
Craig D. Allen
2008-01-01
(Please note, this is an extended abstract only) Woodlands of pinon (Pinus edulis) and oneseed juniper (Juniperus monosperma) in the Jemez Mountains at Bandelier National Monument in northern New Mexico exhibit greatly accelerated rates of soil erosion, triggered by historic land use practices (livestock grazing and fire suppression). This erosion is degrading these...
NASA Astrophysics Data System (ADS)
Vico, Giulia; Dralle, David; Feng, Xue; Thompson, Sally; Manzoni, Stefano
2017-06-01
Drought-deciduous and evergreen species are both common in tropical forests, where there is the need to cope with water shortages during periodic dry spells and over the course of the dry season. Which phenological strategy is favored depends on the long-term balance of carbon costs and gains that leaf phenology imposes as a result of the alternation of wet and dry seasons and the unpredictability of rainfall events. This study integrates a stochastic eco-hydrological framework with key plant economy traits to derive the long-term average annual net carbon gain of trees exhibiting different phenological strategies in tropical forests. The average net carbon gain is used as a measure of fitness to assess which phenological strategies are more productive and more evolutionarily stable (i.e. not prone to invasion by species with a different strategy). The evergreen strategy results in a higher net carbon gain and more evolutionarily stable communities with increasing wet season lengths. Reductions in the length of the wet season or the total rainfall, as predicted under climate change scenarios, should promote a shift towards more drought-deciduous communities, with ensuing implications for ecosystem functioning.
NASA Astrophysics Data System (ADS)
Allen, Craig D.
2010-05-01
On decadal and centennial time scales, multiple drivers can cause substantial changes in vegetation cover, which can trigger associated changes in runoff and erosion patterns and processes, with consequent feedbacks to the vegetation - cumulatively this can lead to a cascading series of non-equilibrial ecosystem changes through time. The work reported here provides a relatively detailed 500-year perspective of such changes on the mesas the eastern Jemez Mountains in northern New Mexico (USA), which today exhibit vegetation transitions along an elevational gradient between semiarid ponderosa pine (Pinus ponderosa) forests, mixed woodlands dominated by piñon (Pinus edulis) and one-seed juniper (Juniperus monosperma), and juniper savannas. Using multiple lines of evidence, a history of major ecosystem changes since ca. 1500 A.D. is reconstructed for a dynamic transition zone on one such mesa (Frijolito Mesa). Evidence includes intensive archaeological surveys, dendrochronological reconstructions of the demographic and spatial patterns of establishment and mortality for these three main tree species, dendrochronological reconstructions of fire regimes and climate patterns, broad-scale mapping of vegetation changes from historic aerial photographs since 1935, monitoring of vegetation from permanent transects since 1991, detailed soil maps and interpretations, intensive ecohydrological studies since 1993 on portions of this mesa, and research on the ecosystem effects of an experimental tree-thinning experiment conducted in 1997. Frijolito Mesa was fully occupied by large numbers of Native American farmers from the A.D. 1200's until the late 1500's, when they left these mesas for settlements in the adjoining Rio Grande Valley. Archaeological evidence and tree ages indicate that the mesa was likely quite deforested when abandoned, followed by episodic tree establishment dominated by ponderosa pine during the Little Ice Age. By the late 1700's Frijolito Mesa included ponderosa pine in open stands maintained by frequent surface fires burning through herbaceous ground cover adequate to maintain ancient (>100,000 year old) soils, interspersed with young piñon-juniper savannas and woodlands on rockier fire-safe sites. Intensive livestock grazing from the late 1800's thru 1932 reduced the herbaceous ground cover, interrupting the surface fire regime, triggering massive establishment of fire-sensitive piñon and juniper throughout much of the 1900's. Severe drought in the 1950's killed all the ponderosa pine across an irregular ecotone shift zone up to 2 km wide, with no subsequent regeneration, leaving piñon-juniper woodland with accelerated, unsustainable erosion in desertified areas between tree clumps (averaging ~4 Mg/ha/year for the period 1995-2007 in a 1.09 ha study watershed). Warm drought in the early 2000's caused mass mortality of essentially all overstory piñon, leaving juniper as the only remaining tree dominant across huge areas. Ecohydrological processes are shifting again with declining runoff/erosion trends since 2003 as dead piñon skeletons fall and with increased abundances of shrubs and herbaceous surface cover, decreasing the connectivity of bare soil patches. The history of Frijolito Mesa illustrates multiple major transitions in vegetation since 1500 A.D., and substantial changes in runoff and erosion processes. This research has been used by the National Park Service since 2007 to implement an ecosystem restoration treatment (mechanical thinning of small trees with chainsaws and application of branch slash mulch) at a landscape scale of ~2000 ha. The treatments effectively conserve more water and soil onsite, increasing herbaceous ground cover and decreasing soil erosion rates 100-fold, stabilizing hundreds of archaeological sites and restoring the potential for natural surface fires. The ecohydrological history of this mesa also provides insight into how similar vegetation changes, such as episodes of widespread and intensive tree mortality that are now emerging with climate stress around the world, may significantly affect ecohydrological patterns and processes in other regions.
Delineating wetland catchments and modeling hydrologic ...
In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In reality, however, many depressions in the DEM are actual wetland landscape features with seasonal to permanent inundation patterning characterized by nested hierarchical structures and dynamic filling–spilling–merging surface-water hydrological processes. Differentiating and appropriately processing such ecohydrologically meaningful features remains a major technical terrain-processing challenge, particularly as high-resolution spatial data are increasingly used to support modeling and geographic analysis needs. The objectives of this study were to delineate hierarchical wetland catchments and model their hydrologic connectivity using high-resolution lidar data and aerial imagery. The graph-theory-based contour tree method was used to delineate the hierarchical wetland catchments and characterize their geometric and topological properties. Potential hydrologic connectivity between wetlands and streams were simulated using the least-cost-path algorithm. The resulting flow network delineated potential flow paths connecting wetland depressions to each other or to the river network on scales finer than those available through the National Hydrography Dataset. The results demonstrated that
NASA Astrophysics Data System (ADS)
Yang, Fan; Xue, Lianqing; Zhang, Luochen; Chen, Xinfang; Chi, Yixia
2017-12-01
This article aims to explore the adaptive utilization strategies of flow regime versus traditional practices in the context of climate change and human activities in the arid area. The study presents quantitative analysis of climatic and anthropogenic factors to streamflow alteration in the Tarim River Basin (TRB) using the Budyko method and adaptive utilization strategies to eco-hydrological regime by comparing the applicability between autoregressive moving average model (ARMA) model and combined regression model. Our results suggest that human activities played a dominant role in streamflow deduction in the mainstream with contribution of 120.7%~190.1%. While in the headstreams, climatic variables were the primary determinant of streamflow by 56.5~152.6% of the increase. The comparison revealed that combined regression model performed better than ARMA model with the qualified rate of 80.49~90.24%. Based on the forecasts of streamflow for different purposes, the adaptive utilization scheme of water flow is established from the perspective of time and space. Our study presents an effective water resources scheduling scheme for the ecological environment and provides references for ecological protection and water allocation in the arid area.
NASA Astrophysics Data System (ADS)
Lundquist, Jessica D.; Dickerson-Lange, Susan E.; Lutz, James A.; Cristea, Nicoleta C.
2013-10-01
Many regions of the world are dependent on snow cover for frost protection and summer water supplies. These same regions are predominantly forested, with forests highly vulnerable to change. Here we combine a meta-analysis of observational studies across the globe with modeling to show that in regions with average December-January-February (DJF) temperatures greater than -1°C, forest cover reduces snow duration by 1-2 weeks compared to adjacent open areas. This occurs because the dominant effect of forest cover shifts from slowing snowmelt by shading the snow and blocking the wind to accelerating snowmelt from increasing longwave radiation. In many locations, midwinter melt removes forest snow before solar radiation is great enough for forest shading to matter, and with warming temperatures, midwinter melt is likely to become more widespread. This temperature-effect in forest-snow-climate interactions must be considered in representations of the combined ecohydrological system and can be used advantageously in forest management strategies.
NASA Astrophysics Data System (ADS)
Asbjornsen, H.; Alvarado-Barrientos, M. S.; Bruijnzeel, L. A.; Dawson, T. E.; Geissert, D. R.; Goldsmith, G. R.; Gomez-Cardenas, M.; Gomez-Tagle, A.; Gotsch, S.; Holwerda, F.; McDonnell, J. J.; Munoz Villers, L. E.; Tobon, C.
2012-12-01
Land use conversion and climate change threaten the hydrological services from tropical montane cloud forest (TMCFs) regions, but knowledge about the ecohydrological mechanisms controlling catchment response is limited. This project traced the hydrologic sources, fluxes and flowpaths across the atmosphere-plant-soil-stream continuum under different land cover types (degraded pasture, regenerating forest, mature forest, pine reforestation) in a seasonally dry TMCF in Veracruz, Mexico. We used hydrological (cloud water interception, CWI; streamflow) and ecophysiological measurements (transpiration, E; foliar uptake, FU) in combination with stable isotope techniques to identify the key ecohydrological processes of each land cover and quantify the hydrological effects of TMCF conversion. Results revealed that CWI was only ≤2% of total annual rainfall due to low fog occurrence and wind speeds. Fog without rainfall reduced E by a factor of 4-5 relative to sunny conditions and by a factor of 2 relative to overcast conditions, whereas the water 'gained' from the fog suppression effect was ~80-100mm year-1 relative to sunny conditions. At the canopy scale, FU resulted in the recovery of 9% of total E, suggesting a crucial role in alleviating plant water deficit; nevertheless, it was not sufficient to compensate for the 17% water loss from nighttime E. Trees primarily utilized water from 30-50cm soil depth, while water reaching the stream was derived from deep, 'old' water that was distinct from both 'new' rainwater and water accessed by plants. These findings suggest that plants mainly access a more tightly bound soil water pool that does not actively mix with the more mobile water recharging deep soil and groundwater pools. Soils had high porosity, saturated conductivity, infiltration rates, and water storage capacity, which contributed to the relatively low rainfall-runoff responses, mainly generated from deep subsurface flowpaths. Results showed that conversion of mature forest to pasture or forest regeneration on former TMCF increased annual water yield by 600mm and 300mm, respectively, while planting pine on degraded pastures reduced water yield by 365mm. Differences in water yield mainly reflect differences in rainfall interception loss. Runoff behavior was similar among land cover types, except for very high intensity storms when pasture showed higher surface runoff. Our results suggest that the ecophysiological effects of fog via suppressed E and FU has a greater impact on water yield than direct inputs from CWI in this TMCF. Rapid vertical rainfall percolation and recharge result in a largely groundwater driven system whereby streamflow dynamics is uncoupled from plant water uptake, and water storage capacity and buffering potential are exceptionally high. These factors, combined with the soil properties, resulted in reduced dry season flows due to land use conversion to pasture only being detected towards the end of the dry season. Projected lifting of the cloud base associated with regional climate change combined with declining rainfall may significantly alter ecohydrological functions of these TMCFs.
Constrained variability of modeled T:ET ratio across biomes
NASA Astrophysics Data System (ADS)
Fatichi, Simone; Pappas, Christoforos
2017-07-01
A large variability (35-90%) in the ratio of transpiration to total evapotranspiration (referred here as T:ET) across biomes or even at the global scale has been documented by a number of studies carried out with different methodologies. Previous empirical results also suggest that T:ET does not covary with mean precipitation and has a positive dependence on leaf area index (LAI). Here we use a mechanistic ecohydrological model, with a refined process-based description of evaporation from the soil surface, to investigate the variability of T:ET across biomes. Numerical results reveal a more constrained range and higher mean of T:ET (70 ± 9%, mean ± standard deviation) when compared to observation-based estimates. T:ET is confirmed to be independent from mean precipitation, while it is found to be correlated with LAI seasonally but uncorrelated across multiple sites. Larger LAI increases evaporation from interception but diminishes ground evaporation with the two effects largely compensating each other. These results offer mechanistic model-based evidence to the ongoing research about the patterns of T:ET and the factors influencing its magnitude across biomes.
Modelling insights on the partition of evapotranspiration components across biomes
NASA Astrophysics Data System (ADS)
Fatichi, Simone; Pappas, Christoforos
2017-04-01
Recent studies using various methodologies have found a large variability (from 35 to 90%) in the ratio of transpiration to total evapotranspiration (denoted as T:ET) across biomes or even at the global scale. Concurrently, previous results suggest that T:ET is independent of mean precipitation and has a positive correlation with Leaf Area Index (LAI). We used the mechanistic ecohydrological model, T&C, with a refined process-based description of soil resistance and a detailed treatment of canopy biophysics and ecophysiology, to investigate T:ET across multiple biomes. Contrary to observation-based estimates, simulation results highlight a well-constrained range of mean T:ET across biomes that is also robust to perturbations of the most sensitive parameters. Simulated T:ET was confirmed to be independent of average precipitation, while it was found to be uncorrelated with LAI across biomes. Higher values of LAI increase evaporation from interception but suppress ground evaporation with the two effects largely cancelling each other in many sites. These results offer mechanistic, model-based, evidence to the ongoing research about the range of T:ET and the factors affecting its magnitude across biomes.
NASA Astrophysics Data System (ADS)
Nakai, T.; Kumagai, T.; Saito, T.; Matsumoto, K.; Kume, T.; Nakagawa, M.; Sato, H.
2015-12-01
Bornean tropical rain forests are among the moistest biomes of the world with abundant rainfall throughout the year, and considered to be vulnerable to a change in the rainfall regime; e.g., high tree mortality was reported in such forests induced by a severe drought associated with the ENSO event in 1997-1998. In order to assess the effect (risk) of future climate change on eco-hydrology in such tropical rain forests, it is important to understand the water use of trees individually, because the vulnerability or mortality of trees against climate change can depend on the size of trees. Therefore, we refined the Spatially Explicit Individual-Based Dynamic Global Vegetation Model (SEIB-DGVM) so that the transpiration and its control by stomata are calculated for each individual tree. By using this model, we simulated the transpiration of each tree and its DBH-size dependency, and successfully reproduced the measured data of sap flow of trees and eddy covariance flux data obtained in a Bornean lowland tropical rain forest in Lambir Hills National Park, Sarawak, Malaysia.
NASA Astrophysics Data System (ADS)
Gower, D.; McCord, P. F.; Caylor, K. K.; Dell'Angelo, J.; Evans, T. P.
2016-12-01
Community water projects (CWPs) in the Laikipia region of Central Kenya distribute river water to smallholder farmers who otherwise lack access to municipal systems or private water sources. Participating farmers are better able to withstand climatic conditions commonly found in drylands, including high potential evapotranspiration combined with low and variable rainfall. To provide these benefits, however, CWPs must be able to deliver water in sufficient quantities and with sufficient regularity to all farmers in the network. Factors such as variable river flow, aging infrastructure and increasing membership pose challenges to the CWP management in fulfilling this task. During the dry season, river levels typically decline, reducing water available for CWP and increasing the importance of intake position within the catchment. CWPs with intakes in upstream areas have first access to river water but rely on a smaller drainage network while those in downstream areas are affected by the opposite conditions. Such conditions have pushed CWPs to jointly regulate their water consumption by setting withdrawal limits and coordinating withdrawal schedules with one another. Regulations also ensure that river water is not completely consumed by CWPs, allowing some flow to exit the catchment for human or environmental reasons. This paper uses a simple numerical model to calculate the monetary benefit that individual farmers receive from membership in a CWP. In the model, the CWP provides water to a variable number of farmers in exchange for membership fees while farmers must grow sufficient crops to feed themselves and pay fees. The model shows that, under conditions similar to those in Laikipia, CWP can consistently provide adequate benefits to its members only with intakes at particular locations within the catchment or with specific regulations in place. Otherwise, the economic benefits of CWP membership will gradually fall below the cost of membership. This result may help in developing recommendations as to how CWP should be located and managed in similar areas.
Scaling Soil Microbe-Water Interactions from Pores to Ecosystems
NASA Astrophysics Data System (ADS)
Manzoni, S.; Katul, G. G.
2014-12-01
The spatial scales relevant to soil microbial activity are much finer than scales relevant to whole-ecosystem function and biogeochemical cycling. On the one hand, how to link such different scales and develop scale-aware biogeochemical and ecohydrological models remains a major challenge. On the other hand, resolving these linkages is becoming necessary for testing ecological hypotheses and resolving data-theory inconsistencies. Here, the relation between microbial respiration and soil moisture expressed in water potential is explored. Such relation mediates the water availability effects on ecosystem-level heterotrophic respiration and is of paramount importance for understanding CO2 emissions under increasingly variable rainfall regimes. Respiration has been shown to decline as the soil dries in a remarkably consistent way across climates and soil types (open triangles in Figure). Empirical models based on these respiration-moisture relations are routinely used in Earth System Models to predict moisture effects on ecosystem respiration. It has been hypothesized that this consistency in microbial respiration decline is due to breakage of water film continuity causing in turn solute diffusion limitations in dry conditions. However, this hypothesis appears to be at odds with what is known about soil hydraulic properties. Water film continuity estimated from soil water retention (SWR) measurements at the 'Darcy' scale breaks at far less negative water potential (<-0.1 MPa) levels than where microbial respiration ceases (approximately -15 MPa) as shown in the Figure (violet frequency distribution). Also, this threshold point inferred from SWR shows strong texture dependence, in contrast to the respiration curves. Employing theoretical tools from percolation theory, it is demonstrated that hydrological measurements can be spatially downscaled at a micro-level relevant to microbial activity. Such downscaling resolves the inconsistency between respiration thresholds and hydrological thresholds. This result, together with observations of residual microbial activity well below -15 MPa (dashed back curve in Figure), lends support to the hypothesis that soil microbes are substrate-limited in dry conditions.
NASA Astrophysics Data System (ADS)
Mayer, A. S.; Jones, K.; Berry, Z. C.; Congalton, R.; Kolka, R. K.; López-Ramírez, S.; Manson, R.; Muñoz Villers, L.; Saenz, L.; Salcone, J.; Von Thaden Ugalde, J.; Asbjornsen, H.
2016-12-01
Trade-offs between ecosystem services (ES) occur due to management choices that impact the type, magnitude, and relative mix of services provided by ecosystems. Trade-offs arise when the provision of one ES is reduced as a consequence of increased use of another ES. Here, we assess ES tradeoffs with a coupled human-natural systems (CHNS) model, in response to payments for watershed services (PWS) programs in two watersheds in Veracruz, Mexico. An econometric component of the CHNS model is used to determine the effect of the PWS programs on a given land use-land cover (LULC). Eight LULC categories, corresponding to 95% of the watershed area, are used to force LULC feedbacks within the CHNS model. The LULC can transition from the present category to another, given the outcome of landowner participation in the PWS programs. Biophysical sub-models of watershed discharge and water quality, carbon storage, and biodiversity conservation are used to estimate values of ES indicators at the watershed scale. These biophysical models are derived from qualitative and quantitative observations in the study watersheds. Using these models, we gain first-approximation insights into ES tradeoffs and the sensitivity of estimated tradeoffs to model structure—serving as a critical platform for informing hypotheses about PWS program design and ES tradeoffs. With a CHNS model in place, and data collected collected from our field experiments, we explore first, baseline implications for ES of existing PWS programs in Xalapa, Veracruz; and second, we develop scenarios of potential PWS program pathways, with or without climate change projection forcings in order to improve our understanding of changes in ES distribution, magnitude and biophysical tradeoffs. Finally, the econometric component is parameterized with economic variables and indicators identified with local stakeholders in order to asses economic implications of ES tradeoffs. Outputs from the model provide important information to the local and national agencies involved in PWS program design in the study watersheds. This first tier model will be used to inform development of a more integrated process-based model using primary watershed socioeconomic and ecohydrological data, as well as household level data on participation in the PWS programs and spillover effects of PWS.
Using stable isotopes to resolve eco-hydrological dynamics of soil-plant-atmosphere feedbacks
NASA Astrophysics Data System (ADS)
Dubbert, M.; Piayda, A.; Kübert, A.; Cuntz, M.; Werner, C.
2016-12-01
Water is the main driver of ecosystem productivity in most terrestrial ecosystems worldwide. Extreme events are predicted to increase in frequency in many regions and dynamic responses in soil-vegetation-atmosphere feedbacks play a privotal role in understanding the ecosystem water balance and functioning. In this regard, more interdisciplinary approaches, bridging hydrology, ecophysiology and atmospheric sciences are needed and particularly water stable isotopes are a powerful tracer of water transfer in soils and at the soil-plant interface (Werner and Dubbert 2016). Here, we present observations 2 different ecosystems. Water fluxes, atmospheric concentrations and their isotopic compositions were measured using laser spectroscopy. Soil moisture and its isotopic composition in several depths as well as further water sources in the ecosystem were monitored throughout the year. Using these isotopic approaches we disentangled soil-plant-atmosphere feedback processes controlling the ecosystem water cycle including vegetation effects on soil water infiltration and distribution, event water use of vegetation and soil fluxes, vegetational soil water uptake depths plasticity and partitioning of ecosystem water fluxes. In this regard, we review current strategies of ET partitioning and highlight pitfalls in the presented strategies (Dubbert et al. 2013, Dubbert et al.2014a). We demonstrate that vegetation strongly influenced water cycling, altering infiltration and distribution of precipitation. In conclusion, application of stable water isotope tracers delivers a process based understanding of interactions between soil, understorey and trees governing ecosystem water cycling necessary for prediction of climate change impact on ecosystem productivity and vulnerability. ReferencesDubbert, M. et al. (2013): Partitioning evapotranspiration - Testing the Craig and Gordon model with field measurements of oxygen isotope ratios of evaporative fluxes. Journal of Hydrology Dubbert, M. et al. (2014a): Oxygen isotope signatures of transpired water vapor: the role of isotopic non-steady-state transpiration under natural conditions. New Phytologist. Werner, C. and Dubbert, M. (2016): Resolving rapid dynamics of soil-plant-atmosphere interactions. New Phytologist.
Precipitation pulses and carbon fluxes in semiarid and arid ecosystems.
Huxman, Travis E; Snyder, Keirith A; Tissue, David; Leffler, A Joshua; Ogle, Kiona; Pockman, William T; Sandquist, Darren R; Potts, Daniel L; Schwinning, Susan
2004-10-01
In the arid and semiarid regions of North America, discrete precipitation pulses are important triggers for biological activity. The timing and magnitude of these pulses may differentially affect the activity of plants and microbes, combining to influence the C balance of desert ecosystems. Here, we evaluate how a "pulse" of water influences physiological activity in plants, soils and ecosystems, and how characteristics, such as precipitation pulse size and frequency are important controllers of biological and physical processes in arid land ecosystems. We show that pulse size regulates C balance by determining the temporal duration of activity for different components of the biota. Microbial respiration responds to very small events, but the relationship between pulse size and duration of activity likely saturates at moderate event sizes. Photosynthetic activity of vascular plants generally increases following relatively larger pulses or a series of small pulses. In this case, the duration of physiological activity is an increasing function of pulse size up to events that are infrequent in these hydroclimatological regions. This differential responsiveness of photosynthesis and respiration results in arid ecosystems acting as immediate C sources to the atmosphere following rainfall, with subsequent periods of C accumulation should pulse size be sufficient to initiate vascular plant activity. Using the average pulse size distributions in the North American deserts, a simple modeling exercise shows that net ecosystem exchange of CO2 is sensitive to changes in the event size distribution representative of wet and dry years. An important regulator of the pulse response is initial soil and canopy conditions and the physical structuring of bare soil and beneath canopy patches on the landscape. Initial condition influences responses to pulses of varying magnitude, while bare soil/beneath canopy patches interact to introduce nonlinearity in the relationship between pulse size and soil water response. Building on this conceptual framework and developing a greater understanding of the complexities of these eco-hydrologic systems may enhance our ability to describe the ecology of desert ecosystems and their sensitivity to global change.
M.A. Cavaleri; R. Ostertag; S. Cordell; L. and Sack
2014-01-01
While the supply of freshwater is expected to decline in many regions in the coming decades, invasive plant species, often 'high water spenders', are greatly expanding their ranges worldwide. In this study, we quantified the ecohydrological differences between native and invasive trees and also the effects of woody invasive removal on plot-level water use in...
Synthesis of 10-years of Ecohydrologic studies on Turkey Creek watershed
Devendra Amatya; Timothy Callahan; Carl Trettin
2016-01-01
Since the establishment of a collaborative study 10 years ago, research on the third-order, 5240 ha forested Turkey Creek watershed in South Carolinaâs coastal plain has advanced the understanding of rainfall-runoff relationships, stream hydrograph characteristics, and water table dynamics for dominant soil types. Surface water dynamics were shown to be regulated...
Long-term variability in the water budget and its controls in an oak-dominated temperate forest
Jing Xie; Ge Sun; Hou-Sen Chu; Junguo Liu; Steven G. McNulty; Asko Noormets; Ranjeet John; Zutao Ouyang; Tianshan Zha; Haitao Li; Wenbin Guan; Jiquan Chen
2014-01-01
Water availability is one of the key environmental factors that control ecosystem functions in temperate forests. Changing climate is likely to alter the ecohydrology and other ecosystem processes, which affect forest structures and functions. We constructed a multi-year water budget (2004â2010) and quantified environmental controls on an evapotranspiration (ET) in a...
Nan Lu; Ge Sun; Xiaoming Feng; Bojie Fu
2013-01-01
China is facing a growing water crisis due to climate and land use change, and rise in human water demand across this rapidly developing country. Understanding the spatial and temporal ecohydrologic responses to climate change is critical to sustainable water resource management. We investigated water yield (WY) responses to historical (1981â2000) and projected...
Bradford, John B.; Schlaepfer, Daniel R.; Lauenroth, William K.; Burke, Ingrid C.
2014-01-01
5. Synthesis. This study provides a novel, regional-scale assessment of how plant functional type transitions may impact ecosystem water balance in sagebrush-dominated ecosystems of North America. Results illustrate that the ecohydrological consequences of changing vegetation depend strongly on climate and suggest that decreasing woody plant abundance may have only limited impact on evapotranspiration and water yield.
NASA Astrophysics Data System (ADS)
Williams, C. J.; Pierson, F. B.; Kormos, P.; Al-Hamdan, O. Z.; Nouwakpo, S.; Weltz, M.; Vega, S.; Lindsay, K.
2017-12-01
Range expansion of pinyon (Pinus spp.) and juniper (Juniperus spp.) conifers into sagebrush steppe (Artemisia spp.) communities has imperiled a vast domain in the western US. Encroachment of sagebrush ecosystems by pinyon and juniper conifers has negative ramifications to ecosystem structure and function and delivery of goods and services. Scientists, land management agencies, and private land owners throughout the western US are challenged with selecting from a suite of options to reduce pinyon and juniper woody fuels and re-establish sagebrush steppe structure and function. This study evaluated the effectiveness of prescribed fire to re-establish sagebrush vegetation and ecohydrologic function over a 9 yr period. Nine years post-fire hydrologic and erosion responses reflect the combination of pre-fire site conditions, perennial grass recruitment, delayed litter cover, and inherent site characteristics. Burning initially increased bare ground, runoff, and erosion for well-vegetated areas underneath tree and shrub canopies, but had minimal impact on hydrology and erosion for degraded interspaces between plants. The degraded interspaces were primarily bare ground and exhibited high runoff and erosion rates prior to burning. Initial fire effects persisted for two years, but increased productivity of grasses improved hydrologic function of interspaces over the full 9 yr period. At the hillslope scale, grass recruitment in the intercanopy between trees reduced runoff from rainsplash, sheetflow, and concentrated overland flow at one site, but did not reduce the high levels of runoff and erosion from a more degraded site. In areas formerly occupied by trees (tree zones), burning increased invasive annual grass cover due to fire removal of limited native perennial plants and competition for resources. The invasive annual grass cover had no net effect on runoff and erosion from tree zones however. Runoff and erosion increased in tree zones at the more degraded site due to delayed litter recruitment and persistence of bare ground conditions. Overall, the 9 yr study illustrates the ecohydrologic complexities with predicting sagebrush ecosystem responses to woodland encroachment and tree removal.
NASA Astrophysics Data System (ADS)
Woods, J.; Laattoe, T.
2016-12-01
Complex hydrological environments present management challenges where surface water-groundwater interactions involve interlinked processes at multiple scales. One example is Australia's River Murray, which flows through a semi-arid landscape with highly saline groundwater. In this region, the floodplain ecology depends on freshwater provided from the main river channel, anabranches, and floodwaters. However, in the past century access to freshwater has been further limited due to river regulation, land clearance, and irrigation. A programme to improve ecosystem health at Pike Floodplain, South Australia, is evaluating management options such as environmental watering and groundwater pumping. Due to the complicated interdependencies between processes moving water and salt within the floodplain, a series of inter-linked models were developed to assist with management decisions. The models differ by hydrological domain, scale, and dimensionality. Together they simulate surface water, the unsaturated zone, and groundwater on regional, floodplain, and local scales. Outputs from regional models provide boundary conditions for floodplain models, which in turn provide inputs for the local scale models. The results are interpreted based on (i) ecohydrological requirements for key species of tree and fish, and (ii) impacts on river salinity for downstream users. When combined, the models provide an integrated and interdiscplinary understanding of the hydrology and management of saline floodplains.
NASA Astrophysics Data System (ADS)
Reyes, J. J.; Liu, M.; Tague, C.; Choate, J. S.; Evans, R. D.; Johnson, K. A.; Adam, J. C.
2013-12-01
Rangelands provide an opportunity to investigate the coupled feedbacks between human activities and natural ecosystems. These areas comprise at least one-third of the Earth's surface and provide ecological support for birds, insects, wildlife and agricultural animals including grazing lands for livestock. Capturing the interactions among water, carbon, and nitrogen cycles within the context of regional scale patterns of climate and management is important to understand interactions, responses, and feedbacks between rangeland systems and humans, as well as provide relevant information to stakeholders and policymakers. The overarching objective of this research is to understand the full consequences, intended and unintended, of human activities and climate over time in rangelands by incorporating dynamics related to rangeland management into an eco-hydrologic model that also incorporates biogeochemical and soil processes. Here we evaluate our model over ungrazed and grazed sites for different rangeland ecosystems. The Regional Hydro-ecologic Simulation System (RHESSys) is a process-based, watershed-scale model that couples water with carbon and nitrogen cycles. Climate, soil, vegetation, and management effects within the watershed are represented in a nested landscape hierarchy to account for heterogeneity and the lateral movement of water and nutrients. We incorporated a daily time-series of plant biomass loss from rangeland to represent grazing. The TRY Plant Trait Database was used to parameterize genera of shrubs and grasses in different rangeland types, such as tallgrass prairie, Intermountain West cold desert, and shortgrass steppe. In addition, other model parameters captured the reallocation of carbon and nutrients after grass defoliation. Initial simulations were conducted at the Curlew Valley site in northern Utah, a former International Geosphere-Biosphere Programme Desert Biome site. We found that grasses were most sensitive to model parameters affecting the daily-to-yearly ratio of net primary productivity allocation of carbon, non-structural carbohydrate pool, rate of root turnover, and leaf on/off days. We also ran RHESSys over AmeriFlux sites representing a spectrum of rangeland ecosystems, such as at Konza Prairie (Kansas), Fort Peck (Montana), and Corral Pocket (Utah), as well as grazed versus ungrazed sites. We evaluated RHESSys using net ecosystem exchange . Competition between rangeland vegetation types with different physiological parameters, such as carbon:nitrogen ratio and specific leaf area within a single site were also tested. Preliminary results indicated both species-specific parameters and allocation controls were important to capturing the ecosystem response to environmental conditions. Furthermore, the addition of a grazing component allowed us to better capture impacts of management at grazed sites. Future research will involve incorporation of other grazing processes, such as impacts of excreta and increased nutrient availability and cycling.
NASA Astrophysics Data System (ADS)
Washington-Allen, R. A.; Buckwalter, E. H.; Moore, G. W.; Burns, J. N.; Dennis, A. R.; Dodge, O.; Guffin, E. C.; Morris, E. R.; Oien, R. P.; Orozco, G.; Peterson, A.; Teale, N. G.; Shibley, N. C.; Tourtellotte, N.; Houser, C.; Brooks, S. D.; Brumbelow, J. K.; Cahill, A. T.; Frauenfeld, O. W.; Gonzalez, E.; Hallmark, C. T.; McInnes, K. J.; Miller, G. R.; Morgan, C.; Quiring, S. M.; Rapp, A. D.; Roark, E.; Delgado, A.; Ackerson, J. P.; Arnott, R.
2012-12-01
The ecohydrology of transitional premontane cloud forests is not well understood. This problem is being addressed by a NSF Research Experience for Undergraduates (REU) study at the Texas A&M University Soltis Center for Research & Education in Costa Rica. Exploratory analysis of the water budget within a 20-ha watershed was used to connect three faculty-mentored research areas in ecohydrology, climate, and soil sciences and highlight the roles of 12 undergraduate researchers from 12 different universities. The water budget model is Q = Pn - E - T + ΔG + ΔS where Q = runoff, Pn = net precipitation, E = evaporation, T = transpiration, and ΔG and ΔS are change in groundwater soil water storage, respectively. Additionally, Pn = Pg - I = Tf + Sf + D, where Pg = gross precipitation, I/ΔI = canopy interception or storage, Tf = throughfall, Sf = stemflow, and D = canopy drip. The following terms were well understood Pg (satellite = 34-mm and tower = 38.1-mm) and Q from a recently constructed v-notch weir. We moderately understand Tf + D (30.9-mm from an array of forest rain gages), ΔI (7.2-mm) related to Sf, and T (10.4-mm measured with sapflow sensors). We found that soils were clay loam to silty loam textured Andisols on saprolitic tuft with a mean potential ΔS of 398 mm H2O under laboratory conditions, but in the field the following terms are almost completely unknown and require further field studies including E, ΔG, and ΔS. Recent installation of piezometers will address ΔG. Temporal scaling of measurements to a 1-week period was a challenge as well as the construction, deployment and calibration of instruments. However, this exploration allowed us to determine measurement uncertainties in the water budget, e.g., E, and to set future areas of research to address these uncertainties.
NASA Astrophysics Data System (ADS)
Strachan, Scotty; Slater, David; Fritzinger, Eric; Lyles, Bradley; Kent, Graham; Smith, Kenneth; Dascalu, Sergiu; Harris, Frederick
2017-04-01
Sensor-based data collection has changed the potential scale and resolution of in-situ environmental studies by orders of magnitude, increasing expertise and management requirements accordingly. Cost-effective management of these observing systems is possible by leveraging cyberinfrastructure resources. Presented is a case study environmental observation network in the Great Basin region, USA, the Nevada Climate-ecohydrological Assessment Network (NevCAN). NevCAN stretches hundreds of kilometers across several mountain ranges and monitors climate and ecohydrological conditions from low desert (900 m ASL) to high subalpine treeline (3360 m ASL) down to 1-minute timescales. The network has been operating continuously since 2010, collecting billions of sensor data points and millions of camera images that record hourly conditions at each site, despite requiring relatively low annual maintenance expenditure. These data have provided unique insight into fine-scale processes across mountain gradients, which is crucial scientific information for a water-scarce region. The key to maintaining data continuity for these remotely-located study sites has been use of uniform data transport and management systems, coupled with high-reliability power system designs. Enabling non-proprietary digital communication paths to all study sites and sensors allows the research team to acquire data in near-real-time, troubleshoot problems, and diversify sensor hardware. A wide-area network design based on common Internet Protocols (IP) has been extended into each study site, providing production bandwidth of between 2 Mbps and 60 Mbps, depending on local conditions. The network architecture and site-level support systems (such as power generation) have been implemented with the core objectives of capacity, redundancy, and modularity. NevCAN demonstrates that by following simple but uniform "best practices", the next generation of regionally-specific environmental observatories can evolve to provide dramatically improved levels of scientific and hazard monitoring that span complex topographies and remote geography.
NASA Astrophysics Data System (ADS)
Galle, S.; Grippa, M.; Peugeot, C.; Bouzou Moussa, I.; Cappelaere, B.; Demarty, J.; Mougin, E.; Lebel, T.; Chaffard, V.
2015-12-01
AMMA-CATCH is a multi-scale observation system dedicated to long-term monitoring of the water cycle, the vegetation dynamics and their interaction with climate and water resources in West Africa. In the context of the global change, long-term observations are required to i) gain understanding in eco-hydrological processes over this highly contrasted region, ii) help their representation in Earth System Models, and iii) detect trends and infer their impacts on water resources and living conditions. It is made of three meso-scale sites (~ 1°x1°) in Mali, Niger and Benin, extending along the West African eco-climatic gradient. Within this regional window (5° by 9°), each of the three sites comprises a multi-scale set-up which helps documenting the components of the hydrologic budget and the evolutions of the surface conditions over a range of time scales: raingages, piezometers, river discharge stations, soil moisture and temperature profiles, turbulent fluxes measurements, LAI/biomass monitoring. This observation system has been continuously generating coherent datasets for 10 to 25 years depending on the datasets. It is jointly operated by French and African (Mali, Niger and Benin) research institutions. The data-base is available to the community through the website (www.amma-catch.org). AMMA-CATCH is a member of the French critical zone observatory network "Réseau des Bassins Versants", (RBV). AMMA-CATH participates to several global or regional observation networks, such as FluxNet, CarboAfrica, International Soil Moisture Networks (ISMN) and to calibration/validation campaigns for satellite missions such as SMOS (CNES, ESA), MEGHA-TROPIQUES (France/India) or SWAP(NASA). AMMA-CATCH fills a gap over a region, West Africa, where environmental data are largely lacking, and thus, it can usefully contribute to the international networking effort for environmental monitoring and research. Recent results on regional evolution of land cover, rainfall intensity and their consequences on eco-hydrological processes and hydrosystems will be presented.
Space-time modeling of soil moisture
NASA Astrophysics Data System (ADS)
Chen, Zijuan; Mohanty, Binayak P.; Rodriguez-Iturbe, Ignacio
2017-11-01
A physically derived space-time mathematical representation of the soil moisture field is carried out via the soil moisture balance equation driven by stochastic rainfall forcing. The model incorporates spatial diffusion and in its original version, it is shown to be unable to reproduce the relative fast decay in the spatial correlation functions observed in empirical data. This decay resulting from variations in local topography as well as in local soil and vegetation conditions is well reproduced via a jitter process acting multiplicatively over the space-time soil moisture field. The jitter is a multiplicative noise acting on the soil moisture dynamics with the objective to deflate its correlation structure at small spatial scales which are not embedded in the probabilistic structure of the rainfall process that drives the dynamics. These scales of order of several meters to several hundred meters are of great importance in ecohydrologic dynamics. Properties of space-time correlation functions and spectral densities of the model with jitter are explored analytically, and the influence of the jitter parameters, reflecting variabilities of soil moisture at different spatial and temporal scales, is investigated. A case study fitting the derived model to a soil moisture dataset is presented in detail.
NASA Astrophysics Data System (ADS)
Jackisch, Conrad; van Schaik, Loes; Graeff, Thomas; Zehe, Erwin
2014-05-01
Preferential flow through macropores often determines hydrological characteristics - especially regarding runoff generation and fast transport of solutes. Macropore settings may yet be very different in nature and dynamics, depending on their origin. While biogenic structures follow activity cycles (e.g. earth worms) and population conditions (e.g. roots), pedogenic and geogenic structures may depend on water stress (e.g. cracks) or large events (e.g. flushed voids between skeleton and soil pipes) or simply persist (e.g. bedrock interface). On the one hand, such dynamic site characteristics can be observed in seasonal changes in its reaction to precipitation. On the other hand, sprinkling experiments accompanied by tracers or time-lapse 3D Ground-Penetrating-Radar are suitable tools to determine infiltration patterns and macropore configuration. However, model representation of the macropore-matrix system is still problematic, because models either rely on effective parameters (assuming well-mixed state) or on explicit advection strongly simplifying or neglecting interaction with the diffusive flow domain. Motivated by the dynamic nature of macropores, we present a novel model approach for interacting diffusive and advective water, solutes and energy transport in structured soils. It solely relies on scale- and process-aware observables. A representative set of macropores (data from sprinkling experiments) determines the process model scale through 1D advective domains. These are connected to a 2D matrix domain which is defined by pedo-physical retention properties. Water is represented as particles. Diffusive flow is governed by a 2D random walk of these particles while advection may take place in the macropore domain. Macropore-matrix interaction is computed as dissipation of the advective momentum of a particle by its experienced drag from the matrix domain. Through a representation of matrix and macropores as connected diffusive and advective domains for water transport we open up double domain concepts linking porescale physics to preferential macroscale fingerprints without effective parameterisation or mixing assumptions. Moreover, solute transport, energy balance aspects and lateral heterogeneity in soil moisture distribution are intrinsically captured. In addition, macropore and matrix domain settings may change over time based on physical and stochastic observations. The representativity concept allows scaleability from plotscale to the lower mesoscale.