Sample records for distributed feedback waveguide

  1. Distributed meandering waveguides (DMWs) for novel photonic circuits (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dag, Ceren B.; Anil, Mehmet Ali; Serpengüzel, Ali

    2017-05-01

    Meandering waveguide distributed feedback structures are novel integrated photonic lightwave and microwave circuit elements. Meandering waveguide distributed feedback structures with a variety of spectral responses can be designed for a variety of lightwave and microwave circuit element functions. Distributed meandering waveguide (DMW) structures [1] show a variety of spectral behaviors with respect to the number of meandering loop mirrors (MLMs) [2] used in their composition as well as their internal coupling constants (Cs). DMW spectral behaviors include Fano resonances, coupled resonator induced transparency (CRIT), notch, add-drop, comb, and hitless filters. What makes the DMW special is the self-coupling property intrinsic to the DMW's nature. The basic example of DMW's nature is motivated through the analogy between the so-called symmetric meandering resonator (SMR), which consists of two coupled MLMs, and the resonator enhanced Mach-Zehnder interferometer (REMZI) [3]. A SMR shows the same spectral characteristics of Fano resonances with its self-coupling property, similar to the single, distributed and binary self coupled optical waveguide (SCOW) resonators [4]. So far DMWs have been studied for their electric field intensity, phase [5] and phasor responses [6]. The spectral analysis is performed using the coupled electric field analysis and the generalization of single meandering loop mirrors to multiple meandering distributed feedback structures is performed with the transfer matrix method. The building block of the meandering waveguide structures, the meandering loop mirror (MLM), is the integrated analogue of the fiber optic loop mirrors. The meandering resonator (MR) is composed of two uncoupled MLM's. The meandering distributed feedback (MDFB) structure is the DFB of the MLM. The symmetric MR (SMR) is composed of two coupled MLM's, and has the characteristics of a Fano resonator in the general case, and tunable power divider or tunable hitless filter in special cases. The antisymmetric MR (AMR) is composed of two coupled MLM's. The AMR has the characteristics of an add-drop filter in the general case, and coupled resonator induced transparency (CRIT) filter in a special case. The symmetric MDFB (SMDFB) is composed of multiple coupled MLM's. The antisymmetric MDFB (AMDFB) is composed of multiple coupled MLM's. The SMDFB and AMDFB can be utilized as band-pass, Fano, or Lorentzian filters, or Rabi splitters. Distributed meandering waveguide elements with extremely rich spectral and phase responses can be designed with creative combinations of distributed meandering waveguides structures for various novel photonic circuits. References [1 ] C. B. Dağ, M. A. Anıl, and A. Serpengüzel, "Meandering Waveguide Distributed Feedback Lightwave Circuits," J. Lightwave Technol, vol. 33, no. 9, pp. 1691-1702, May 2015. [2] N. J. Doran and D. Wood, "Nonlinear-optical loop mirror," Opt. Lett. vol. 13, no. 1, pp. 56-58, Jan. 1988. [3] L. Zhou and A. W. Poon, "Fano resonance-based electrically reconfigurable add-drop filters in silicon microring resonator-coupled Mach-Zehnder interferometers," Opt. Lett. vol. 32, no. 7, pp. 781-783, Apr. 2007. [4] Z. Zou, L. Zhou, X. Sun, J. Xie, H. Zhu, L. Lu, X. Li, and J. Chen, "Tunable two-stage self-coupled optical waveguide resonators," Opt. Lett. vol. 38, no. 8, pp. 1215-1217, Apr. 2013. [5] C. B. Dağ, M. A. Anıl, and A. Serpengüzel, "Novel distributed feedback lightwave circuit elements," in Proc. SPIE, San Francisco, 2015, vol. 9366, p. 93660A. [6] C. B. Dağ, M. A. Anıl, and A. Serpengüzel, "Meandering Waveguide Distributed Feedback Lightwave Elements: Phasor Diagram Analysis," in Proc. PIERS, Prague, 1986-1990 (2015).

  2. Highly efficient single-pass frequency doubling of a continuous-wave distributed feedback laser diode using a PPLN waveguide crystal at 488 nm.

    PubMed

    Jechow, Andreas; Schedel, Marco; Stry, Sandra; Sacher, Joachim; Menzel, Ralf

    2007-10-15

    A continuous-wave distributed feedback diode laser emitting at 976 nm was frequency doubled by the use of a periodically poled lithium niobate waveguide crystal with a channel size of 3 microm x 5 microm and an interaction length of 10 mm. A laser to waveguide coupling efficiency of 75% could be achieved resulting in 304 mW of incident infrared light inside the waveguide. Blue laser light emission of 159 mW at 488 nm has been generated, which equals to a conversion efficiency of 52%. The resulting wall plug efficiency was 7.4%.

  3. Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature

    NASA Astrophysics Data System (ADS)

    Bousseksou, A.; Chassagneux, Y.; Coudevylle, J. R.; Colombelli, R.; Sirtori, C.; Patriarche, G.; Beaudoin, G.; Sagnes, I.

    2009-08-01

    We report distributed-feedback surface-plasmon quantum cascade lasers operating at λ ≈7.6μm. The distributed feedback is obtained by the sole patterning of the top metal contact on a surface plasmon waveguide. Single mode operation with more than 30dB side mode suppression ratio is obtained in pulsed mode and at room temperature. A careful experimental study confirms that by varying the grating duty cycle, one can reduce the waveguide losses with respect to standard, unpatterned surface-plasmon devices. This allows one to reduce the laser threshold current of more than a factor of 2 in the 200-300K temperature range. This approach may lead to a fabrication technology for midinfrared distributed-feedback lasers based on a very simple processing.

  4. The waveguide laser - A review

    NASA Technical Reports Server (NTRS)

    Degnan, J. J.

    1976-01-01

    The present article reviews the fundamental physical principles essential to an understanding of waveguide gas and liquid lasers, and the current technological state of these devices. At the present time, waveguide laser transitions span the visible through submillimeter regions of the wavelength spectrum. The introduction discusses the many applications of waveguide lasers and the wide variety of laser configurations that are possible. Section 1 summarizes the properties of modes in hollow dielectric waveguides of circular, rectangular, and planar cross section. Section 2 considers various approaches to optical feedback including internal and external mirror Fabry-Perot type resonators, hollow waveguide distributed feedback structures, and ring-resonant configurations. Section 3 discusses those aspects of molecular kinetic and laser theory pertinent to the design and optimization of waveguide gas lasers.

  5. Coupled ridge waveguide distributed feedback quantum cascade laser arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ying-Hui; Zhang, Jin-Chuan, E-mail: zhangjinchuan@semi.ac.cn; Yan, Fang-Liang

    2015-04-06

    A coupled ridge waveguide quantum cascade laser (QCL) array consisting of fifteen elements with parallel integration was presented. In-phase fundamental mode operation in each element is secured by both the index-guided nature of the ridge and delicate loss management by properly designed geometries of the ridges and interspaces. Single-lobe lateral far-field with a nearly diffraction limited beam pattern was obtained. By incorporating a one-dimensional buried distributed feedback grating, the in-phase-operating coupled ridge waveguide QCL design provides an efficient solution to obtaining high output power and stable single longitudinal mode emission. The simplicity of this structure and fabrication process makes thismore » approach attractive to many practical applications.« less

  6. Laterally Coupled Quantum-Dot Distributed-Feedback Lasers

    NASA Technical Reports Server (NTRS)

    Qui, Yueming; Gogna, Pawan; Muller, Richard; Maker, paul; Wilson, Daniel; Stintz, Andreas; Lester, Luke

    2003-01-01

    InAs quantum-dot lasers that feature distributed feedback and lateral evanescent- wave coupling have been demonstrated in operation at a wavelength of 1.3 m. These lasers are prototypes of optical-communication oscillators that are required to be capable of stable single-frequency, single-spatial-mode operation. A laser of this type (see figure) includes an active layer that comprises multiple stacks of InAs quantum dots embedded within InGaAs quantum wells. Distributed feedback is provided by gratings formed on both sides of a ridge by electron lithography and reactive-ion etching on the surfaces of an AlGaAs/GaAs waveguide. The lateral evanescent-wave coupling between the gratings and the wave propagating in the waveguide is strong enough to ensure operation at a single frequency, and the waveguide is thick enough to sustain a stable single spatial mode. In tests, the lasers were found to emit continuous-wave radiation at temperatures up to about 90 C. Side modes were found to be suppressed by more than 30 dB.

  7. Photonic generation of stable microwave signals from a dual-wavelength Al2O3:Yb3+ distributed-feedback waveguide laser.

    PubMed

    Bernhardi, E H; Khan, M R H; Roeloffzen, C G H; van Wolferen, H A G M; Wörhoff, K; de Ridder, R M; Pollnau, M

    2012-01-15

    We report the fabrication and characterization of a dual-wavelength distributed-feedback channel waveguide laser in ytterbium-doped aluminum oxide. Operation of the device is based on the optical resonances that are induced by two local phase shifts in the distributed-feedback structure. A stable microwave signal at ~15 GHz with a -3 dB width of 9 kHz was subsequently created via the heterodyne photodetection of the two laser wavelengths. The long-term frequency stability of the microwave signal produced by the free-running laser is better than ±2.5 MHz, while the power of the microwave signal is stable within ±0.35 dB.

  8. Distributed-feedback Terahertz Quantum-cascade Lasers with Laterally Corrugated Metal Waveguides

    NASA Technical Reports Server (NTRS)

    Williams, Benjamin S.; Kumar, Sushil; Hu, Qing; Reno, John L.

    2005-01-01

    We report the demonstration of distributed-feedback terahertz quantum-cascade lasers based on a first-order grating fabricated via a lateral corrugation in a double-sided metal ridge waveguide. The phase of the facet reflection was precisely set by lithographically defined facets by dry etching. Single-mode emission was observed at low to moderate injection currents, although multimode emission was observed far beyond threshold owing to spatial hole burning. Finite-element simulations were used to calculate the modal and threshold characteristics for these devices, with results in good agreement with experiments.

  9. Plasmonic distributed feedback lasers at telecommunications wavelengths.

    PubMed

    Marell, Milan J H; Smalbrugge, Barry; Geluk, Erik Jan; van Veldhoven, Peter J; Barcones, Beatrix; Koopmans, Bert; Nötzel, Richard; Smit, Meint K; Hill, Martin T

    2011-08-01

    We investigate electrically pumped, distributed feedback (DFB) lasers, based on gap-plasmon mode metallic waveguides. The waveguides have nano-scale widths below the diffraction limit and incorporate vertical groove Bragg gratings. These metallic Bragg gratings provide a broad bandwidth stop band (~500 nm) with grating coupling coefficients of over 5000/cm. A strong suppression of spontaneous emission occurs in these Bragg grating cavities, over the stop band frequencies. This strong suppression manifests itself in our experimental results as a near absence of spontaneous emission and significantly reduced lasing thresholds when compared to similar length Fabry-Pérot waveguide cavities. Furthermore, the reduced threshold pumping requirements permits us to show strong line narrowing and super linear light current curves for these plasmon mode devices even at room temperature.

  10. Lasing in a nematic liquid crystal cell with an interdigitated electrode system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shtykov, N M; Palto, S P; Umanskii, B A

    2015-04-30

    Waveguide lasing in a layer of a dye-doped nematic liquid crystal has been observed. The liquid-crystal layer was sandwiched between a quartz substrate and a glass cover plate on whose surface was deposited an interdigitated electrode system. This system had a period of 3.75 μm and played a dual role, namely, it created a spatial periodicity of the waveguide medium refractive index (thus creating distributed feedback) and served as a diffraction grating coupling out a part of waveguide radiation into the glass cover plate. The distributed feedback ensured lasing in the 18th diffraction order for the TE modes and inmore » the 19th order for the TM modes of the waveguide. The generated radiation was observed at the exit from the glass plate end face at the angles to the waveguide plane of 33.1 ± 1.5° for TM modes and 21.8 ± 1.8° for TE modes. The intensity and position of the TE emission line showed no regular dependence on the voltage on the electrodes. In the case of TM radiation, an increase in the voltage led to a short-wavelength shift of the laser line and to a decrease in its intensity. (lasers)« less

  11. A 16-Channel Distributed-Feedback Laser Array with a Monolithic Integrated Arrayed Waveguide Grating Multiplexer for a Wavelength Division Multiplex-Passive Optical Network System Network

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Yi; Chen, Xin; Zhou, Ning; Huang, Xiao-Dong; Cao, Ming-De; Liu, Wen

    2014-07-01

    A 16-channel distributed-feedback (DFB) laser array with a monolithic integrated arrayed waveguide grating multiplexer for a wavelength division multiplex-passive optical network system is fabricated by using the butt-joint metal organic chemical vapor deposition technology and nanoimpirnt technology. The results show that the threshold current is about 20-30 mA at 25°C. The DFB laser side output power is about 16 mW with a 150 mA injection current. The lasing wavelength is from 1550 nm to 1575 nm covering a more than 25 nm range with 200 GHz channel space. A more than 55 dB sidemode suppression ratio is obtained.

  12. Plasmon-polariton distributed-feedback laser pumped by a fast drift current in graphene

    NASA Astrophysics Data System (ADS)

    Zolotovskii, Igor O.; Dadoenkova, Yuliya S.; Moiseev, Sergey G.; Kadochkin, Aleksei S.; Svetukhin, Vyacheslav V.; Fotiadi, Andrei A.

    2018-05-01

    We propose a model of a slow surface plasmon-polariton distributed-feedback laser with pump by drift current. The amplification in the dielectric-semiconducting film-dielectric waveguide structure is created by fast drift current in the graphene layer, placed at the semiconductor/dielectric interface. The feedback is provided due to a periodic change in the thickness of the semiconducting film. We have shown that in such a system it is possible to achieve surface plasmon-polariton generation in the terahertz region.

  13. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Continuous-wave distributed-feedback InGaAsP (λ = 1.55 μm) injection heterolasers

    NASA Astrophysics Data System (ADS)

    Baryshev, V. I.; Golikova, E. G.; Duraev, V. P.; Kuchinskiĭ, V. I.; Kizhaev, K. Yu; Kuksenkov, D. V.; Portnoĭ, E. L.; Smirnitskiĭ, V. B.

    1988-11-01

    A study was made of stimulated emission from mesa-stripe distributed-feedback lasers in the form of double heterostructures with separate electron and optical confinement. A diffraction grating with a period Λ = 0.46 μm, formed on the surface of the upper waveguide layer by holographic lithography, ensured distributed feedback in the second order. The threshold current for cw operation at room temperature was 35-70 mA, the shift of the emission wavelength with temperature was ~ 0.08 nm/K, and the feedback coefficient deduced from the width of a "Bragg gap" was 110-150 cm- 1.

  14. Single-Mode, Distributed Feedback Interband Cascade Lasers

    NASA Technical Reports Server (NTRS)

    Frez, Clifford F. (Inventor); Borgentun, Carl E. (Inventor); Briggs, Ryan M. (Inventor); Bagheri, Mahmood (Inventor); Forouhar, Siamak (Inventor)

    2016-01-01

    Single-mode, distributed feedback interband cascade lasers (ICLs) using distributed-feedback gratings (e.g., lateral Bragg gratings) and methods of fabricating such ICLs are provided. The ICLs incorporate distributed-feedback gratings that are formed above the laser active region and adjacent the ridge waveguide (RWG) of the ICL. The ICLs may incorporate a double-ridge system comprising an optical confinement structure (e.g., a RWG) disposed above the laser active region that comprises the first ridge of the double ridge system, a DFB grating (e.g., lateral Bragg grating) disposed above the laser active region and adjacent the optical confinement structure, and an electric confinement structure that passes at least partially through the laser active region and that defines the boundary of the second ridge comprises and the termination of the DFB grating.

  15. Nanocrystal waveguide (NOW) laser

    DOEpatents

    Simpson, John T.; Simpson, Marcus L.; Withrow, Stephen P.; White, Clark W.; Jaiswal, Supriya L.

    2005-02-08

    A solid state laser includes an optical waveguide and a laser cavity including at least one subwavelength mirror disposed in or on the optical waveguide. A plurality of photoluminescent nanocrystals are disposed in the laser cavity. The reflective subwavelength mirror can be a pair of subwavelength resonant gratings (SWG), a pair of photonic crystal structures (PC), or a distributed feedback structure. In the case of a pair of mirrors, a PC which is substantially transmissive at an operating wavelength of the laser can be disposed in the laser cavity between the subwavelength mirrors to improve the mode structure, coherence and overall efficiency of the laser. A method for forming a solid state laser includes the steps of providing an optical waveguide, creating a laser cavity in the optical waveguide by disposing at least one subwavelength mirror on or in the waveguide, and positioning a plurality of photoluminescent nanocrystals in the laser cavity.

  16. All-Union Conference on Laser Optics, 4th, Leningrad, USSR, January 13-18, 1984, Proceedings

    NASA Astrophysics Data System (ADS)

    Bukhenskii, M. F.

    1984-08-01

    The papers presented in this volume provide an overview of current theoretical and experimental research in laser optics. Topics discussed include electronically controlled tunable lasers, nonlinear phenomena in fiber-optic waveguides, holographic distributed-feedback dye lasers, and new developments in solid-state lasers. Papers are also presented on the generation of picosecond pulses through self-Q-switching in a distributed-feedback laser, temporal compression of light pulses during stimulated backscattering, and optimization of second harmonic generation in a multimode Nd:glass laser.

  17. Surface-Emitting Distributed Feedback Terahertz Quantum-Cascade Lasers in Metal-Metal Waveguides

    NASA Technical Reports Server (NTRS)

    Kumar, Sushil; Williams, Benjamin S.; Qin, Qi; Lee, Alan W. M.; Hu, Qing; Reno, John L.

    2007-01-01

    Single-mode surface-emitting distributed feedback terahertz quantumcascade lasers operating around 2.9 THz are developed in metal-metal waveguides. A combination of techniques including precise control of phase of reflection at the facets, and u e of metal on the sidewalls to eliminate higher-order lateral modes allow robust single-mode operation over a range of approximately 0.35 THz. Single-lobed far-field radiation pattern is obtained using a pi phase-shift in center of the second-order Bragg grating. A grating device operating at 2.93 THz lased up to 149 K in pulsed mode and a temperature tuning of 19 .7 GHz was observed from 5 K to 147 K. The same device lased up to 78 K in continuous-wave (cw) mode emitting more than 6 m W of cw power at 5 K. ln general, maximum temperature of pulsed operation for grating devices was within a few Kelvin of that of multi-mode Fabry-Perot ridge lasers

  18. Dynamics of a gain-switched distributed feedback ridge waveguide laser in nanoseconds time scale under very high current injection conditions.

    PubMed

    Klehr, A; Wenzel, H; Brox, O; Schwertfeger, S; Staske, R; Erbert, G

    2013-02-11

    We present detailed experimental investigations of the temporal, spectral and spatial behavior of a gain-switched distributed feedback (DFB) laser emitting at a wavelength of 1064 nm. Gain-switching is achieved by injecting nearly rectangular shaped current pulses having a length of 50 ns and a very high amplitude up to 2.5 A. The repetition frequency is 200 kHz. The laser has a ridge waveguide (RW) for lateral waveguiding with a ridge width of 3 µm and a cavity length of 1.5 mm. Time resolved investigations show, depending on the amplitude of the current pulses, that the optical power exhibits different types of oscillatory behavior during the pulses, accompanied by changes in the lateral near field intensity profiles and optical spectra. Three different types of instabilities can be distinguished: mode beating with frequencies between 25 GHz and 30 GHz, switching between different lateral intensity profiles with a frequency of 0.4 GHz and self-sustained oscillations with a frequency of 4 GHz. The investigations are of great relevance for the utilization of gain-switched DFB-RW lasers as seed lasers for fiber laser systems and in other applications, which require a high optical power.

  19. Single transverse mode protein laser

    NASA Astrophysics Data System (ADS)

    Dogru, Itir Bakis; Min, Kyungtaek; Umar, Muhammad; Bahmani Jalali, Houman; Begar, Efe; Conkar, Deniz; Firat Karalar, Elif Nur; Kim, Sunghwan; Nizamoglu, Sedat

    2017-12-01

    Here, we report a single transverse mode distributed feedback (DFB) protein laser. The gain medium that is composed of enhanced green fluorescent protein in a silk fibroin matrix yields a waveguiding gain layer on a DFB resonator. The thin TiO2 layer on the quartz grating improves optical feedback due to the increased effective refractive index. The protein laser shows a single transverse mode lasing at the wavelength of 520 nm with the threshold level of 92.1 μJ/ mm2.

  20. Coherent random lasing from liquid waveguide gain channels with biological scatters

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Feng, Guoying; Wang, Shutong; Yang, Chao; Yin, Jiajia; Zhou, Shouhuan

    2014-12-01

    A unidirectional coherent random laser based on liquid waveguide gain channels with biological scatters is demonstrated. The optical feedback of the random laser is provided by both light scattering and waveguide confinement. This waveguide-scattering-feedback scheme not only reduces the pump threshold but also makes the output of random laser directional. The threshold of our random laser is about 11 μJ. The emission spectra can be sensitively tuned by changing pump position due to the micro/nano-scale randomness of butterfly wings. It shows the potential applications of optofluidic random lasers for bio-chemical sensors on-chip.

  1. Design of bent waveguide semiconductor lasers using nonlinear equivalent chirp

    NASA Astrophysics Data System (ADS)

    Li, Lianyan; Shi, Yuechun; Zhang, Yunshan; Chen, Xiangfei

    2018-01-01

    Reconstruction equivalent chirp (REC) technique is widely used in the design and fabrication of semiconductor laser arrays and tunable lasers with low cost and high wavelength accuracy. Bent waveguide is a promising method to suppress the zeroth order resonance, which is an intrinsic problem in REC technique. However, it may introduce basic grating chirp and deteriorate the single longitudinal mode (SLM) property of the laser. A nonlinear equivalent chirp pattern is proposed in this paper to compensate the grating chirp and improve the SLM property. It will benefit the realization of low-cost Distributed feedback (DFB) semiconductor laser arrays with accurate lasing wavelength.

  2. Infrared evanescent field sensing with quantum cascade lasers and planar silver halide waveguides.

    PubMed

    Charlton, Christy; Katzir, Abraham; Mizaikoff, Boris

    2005-07-15

    We demonstrate the first midinfrared evanescent field absorption measurements with an InGaAs/AlInAs/InP distributed feedback (DFB) quantum cascade laser (QCL) light source operated at room temperature coupled to a free-standing, thin-film, planar, silver halide waveguide. Two different analytes, each matched to the emission frequency of a QCL, were investigated to verify the potential of this technique. The emission of a 1650 cm(-1) QCL overlaps with the amide absorption band of urea, which was deposited from methanol solution, forming urea crystals at the waveguide surface after solvent evaporation. Solid urea was detected down to 80.7 microg of precipitate at the waveguide surface. The emission frequency of a 974 cm(-1) QCL overlaps with the CH3-C absorption feature of acetic anhydride. Solutions of acetic anhydride in acetonitrile have been detected down to a volume of 0.01 microL (10.8 microg) of acetic anhydride solution after deposition at the planar waveguide (PWG) surface. Free-standing, thin-film, planar, silver halide waveguides were produced by press-tapering heated, cylindrical, silver halide fiber segments to create waveguides with a thickness of 300-190 microm, a width of 3 mm, and a length of 35 mm. In addition, Fourier transform infrared (FT-IR) evanescent field absorption measurements with planar silver halide waveguides and transmission absorption QCL measurements verify the obtained results.

  3. Comparison of distributed Bragg reflector ridge waveguide diode lasers and monolithic master oscillator power amplifiers

    NASA Astrophysics Data System (ADS)

    Werner, Nils; Wegemund, Jan; Gerke, Sebastian; Feise, David; Bugge, Frank; Paschke, Katrin; Tränkle, Günther

    2018-02-01

    Diode lasers with ridge waveguide structures and wavelength stabilization by a distributed Bragg-reflector (DBR) are key components for many different applications. These lasers provide diffraction limited laser emission in a single spectral mode, while an arbitrary emission wavelength can be chosen as long as the semiconductor allows for amplification. Furthermore, the DBR grating can be fabricated during the lateral structuring of the device which makes them well suited for mass production. A variety of different concepts can be used for the actual realization of the laser. While standard DBR ridge waveguide lasers (DBR-RWL) with a DBR as reflection grating provide up to 1W optical output power, the DBR can be also used as transmission grating for improved efficiency. Furthermore, more complex structures like monolithic master oscillator power amplifiers (MOPA), which show less spectral mode hops than DBR-RWLs, have been fabricated. The wide range of possible applications have different requirements on the emission characteristic of the used lasers. While the lasers can fulfill the requirements on the emission spectrum and the optical output power, the effects due to optical feedback from optical elements of the setup may limit their practical use in the respective application. Thus, it is of high importance to analyze the emission behavior of the different laser designs at various operation conditions with and without optical feedback. Here, the detailed investigation of the emission characteristics of lasers at an exemplary emission wavelength of 1120 nm is be presented.

  4. Integrated-optic current sensors with a multimode interference waveguide device.

    PubMed

    Kim, Sung-Moon; Chu, Woo-Sung; Kim, Sang-Guk; Oh, Min-Cheol

    2016-04-04

    Optical current sensors based on polarization-rotated reflection interferometry are demonstrated using polymeric integrated optics and various functional optical waveguide devices. Interferometric sensors normally require bias feedback control for maintaining the operating point, which increases the cost. In order to resolve this constraint of feedback control, a multimode interference (MMI) waveguide device is integrated onto the current-sensor optical chip in this work. From the multiple outputs of the MMI, a 90° phase-shifted transfer function is obtained. Using passive quadrature demodulation, we demonstrate that the sensor could maintain the output signal regardless of the drift in the operating bias-point.

  5. High-power waveguide resonator second harmonic device with external conversion efficiency up to 75%

    NASA Astrophysics Data System (ADS)

    Stefszky, M.; Ricken, R.; Eigner, C.; Quiring, V.; Herrmann, H.; Silberhorn, C.

    2018-06-01

    We report on a highly efficient waveguide resonator device for the production of 775 nm light using a titanium indiffused LiNbO3 waveguide resonator. When scanning the resonance, the device produces up to 110 mW of second harmonic power with 140 mW incident on the device—an external conversion efficiency of 75%. The cavity length is also locked, using a Pound–Drever–Hall type locking scheme, involving feedback to either the cavity temperature or the laser frequency. With laser frequency feedback, a stable output power of approximately 28 mW from a 52 mW pump is seen over one hour.

  6. Free-standing membrane polymer laser on the end of an optical fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Tianrui, E-mail: trzhai@bjut.edu.cn, E-mail: zhangxinping@bjut.edu.cn; Li, Songtao; Hu, Yujie

    2016-01-25

    One- and two-dimensional distributed feedback cavities were constructed on free-standing polymer membranes using spin-coating and lift-off techniques. Low threshold lasing was generated through feedback amplification when the 290-nm membrane device was optically pumped, which was attributed to the strong confinement mechanism provided by the active waveguide layer without a substrate. The free-standing membrane polymer laser is flexible and can be transplanted. Single- and dual-wavelength fiber lasers were achieved by directly attaching the membrane polymer laser on the optical fiber end face. This technique provides potential to fabricate polymer lasers on surfaces with arbitrary shapes.

  7. Distributed feedback interband cascade lasers with top grating and corrugated sidewalls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Feng; Stocker, Michael; Pham, John

    Distributed feedback (DFB) interband cascade lasers (ICLs) with a 1st order top surface grating were designed and fabricated. Partially corrugated sidewalls were implemented to suppress high order lateral modes. The DFB ICLs have 4 mm long and 4.5 mu m wide ridge waveguides and are mounted epi-up on AlN submounts. We demonstrated a continuous-wave (CW) DFB ICL, from a first wafer which has a large detuning of the gain peak from the DFB wavelength, with a side mode suppression ratio of 30 dB. With proper matching of grating feedback and the gain peak wavelength for the second wafer, a DFBmore » ICL was demonstrated with a maximum CW output power and a maximum wall plug efficiency reaching 42 mW and 2%, respectively, at 25 degrees C. The lasing wavelengths of both lasers are around 3.3 mu m at 25 degrees C. Published by AIP Publishing.« less

  8. Simultaneous RGB lasing from a single-chip polymer device.

    PubMed

    Yamashita, Kenichi; Takeuchi, Nobutaka; Oe, Kunishige; Yanagi, Hisao

    2010-07-15

    This Letter describes the fabrication and operation of a single-chip white-laser device. The laser device has a multilayered structure consisting of three laser layers. Each laser layer comprises polymer claddings and a waveguide core doped with organic dye. In each laser layer, grating corrugations were fabricated by UV-nanoimprint lithography that act as distributed-feedback cavity structures. Under optical pumping, lasing output with red, green, and blue colors was simultaneously obtained from the sample edge.

  9. Distributed feedback lasers

    NASA Technical Reports Server (NTRS)

    Ladany, I.; Andrews, J. T.; Evans, G. A.

    1988-01-01

    A ridge waveguide distributed feedback laser was developed in InGaAsP. These devices have demonstrated CW output powers over 7 mW with threshold currents as low as 60 mA at 25 C. Measurements of the frequency response of these devices show a 3 dB bandwidth of about 2 GHz, which may be limited by the mount. The best devices have a single mode spectra over the entire temperature range tested with a side mode suppression of about 20 dB in both CW and pulsed modes. The design of this device, including detailed modeling of the ridge guide structure, effective index calculations, and a discussion of the grating configuration are presented. Also, the fabrication of the devices is presented in some detail, especially the fabrication of and subsequent growth over the grating. In addition, a high frequency fiber pigtailed package was designed and tested, which is a suitable prototype for a commercial package.

  10. Efficient Third-Order Distributed Feedback Laser with Enhanced Beam Pattern

    NASA Technical Reports Server (NTRS)

    Hu, Qing (Inventor); Lee, Alan Wei Min (Inventor); Kao, Tsung-Yu (Inventor)

    2015-01-01

    A third-order distributed feedback laser has an active medium disposed on a substrate as a linear array of segments having a series of periodically spaced interstices therebetween and a first conductive layer disposed on a surface of the active medium on each of the segments and along a strip from each of the segments to a conductive electrical contact pad for application of current along a path including the active medium. Upon application of a current through the active medium, the active medium functions as an optical waveguide, and there is established an alternating electric field, at a THz frequency, both in the active medium and emerging from the interstices. Spacing of adjacent segments is approximately half of a wavelength of the THz frequency in free space or an odd integral multiple thereof, so that the linear array has a coherence length greater than the length of the linear array.

  11. Distributed feedback guided surface acoustic wave microresonator

    NASA Astrophysics Data System (ADS)

    Golan, G.; Griffel, G.; Seidman, A.; Croitoru, N.

    1989-08-01

    Surface acoustic wave resonators have been used in a number of applications: high-Q frequency filtering, very accurate frequency sources, etc. A major disadvantage of conventional resonators is their large dimensions, which makes them inadequate for integrated acoustics applications. In order to overcome these size limitations a new type of microresonator was designed, developed, and tested. In this paper, theoretical calculations and measurements on two kinds of such devices (a corrugated waveguide filter and a microresonator structure) are presented and their possible applications are discussed.

  12. Dielectric Waveguides Splitter and Hybrid/Isolator for Bidirectional Link

    NASA Technical Reports Server (NTRS)

    Tang, Adrian Joseph (Inventor); Chattopadhyay, Goutam (Inventor); Chahat, Nacer E. (Inventor); Decrossas, Emmanuel (Inventor)

    2016-01-01

    A system, method, device, and apparatus provide a dielectric waveguide splitter/bi-directional link. A dielectric substrate fabricated into a first Y-junction waveguide with a first port splitting into a first branch leading to a second port and a second branch leading to a third port. An angle between the first branch and the second branch is below ninety degrees (90.degree.). The dielectric waveguide splitter enables millimeter-wave (mmWave) transmission between the first port and the second port while reducing feedback of the mmWave between the second and third port. Two Y-junction waveguides may be fabricated back-to-back to provide simultaneous bidirectional mmWave transmission at a single frequency.

  13. Tunable organic distributed feedback dye laser device excited through Förster mechanism

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Naoto; Hinode, Taiki

    2017-03-01

    Tunable organic distributed feedback (DFB) dye laser performances are re-investigated and characterized. The slab-type waveguide DFB device consists of air/active layer/glass substrate. Active layer consisted of tris(8-quinolinolato)aluminum (Alq3), 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) dye, and polystyrene (PS) matrix. Effective energy transfer from Alq3 to DCM through Förster mechanism enhances the laser emission. Slope efficiency in the range of 4.9 and 10% is observed at pump energy region higher than 0.10-0.15 mJ cm-2 (lower threshold), which is due to the amplified spontaneous emission (ASE) and lasing. Typical slope efficiency for lasing in the range of 2.0 and 3.0% is observed at pump energy region higher than 0.25-0.30 mJ cm-2 (higher threshold). The tuning wavelength for the laser emission is ranged from 620 to 645 nm depending on the ASE region.

  14. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II.

    PubMed

    Cao, Wenyi; Muñoz, Antonio; Palffy-Muhoray, Peter; Taheri, Bahman

    2002-10-01

    Photonic-bandgap materials, with periodicity in one, two or three dimensions, offer control of spontaneous emission and photon localization. Low-threshold lasing has been demonstrated in two-dimensional photonic-bandgap materials, both with distributed feedback and defect modes. Liquid crystals with chiral constituents exhibit mesophases with modulated ground states. Helical cholesterics are one-dimensional, whereas blue phases are three-dimensional self-assembled photonic-bandgap structures. Although mirrorless lasing was predicted and observed in one-dimensional helical cholesteric materials and chiral ferroelectric smectic materials, it is of great interest to probe light confinement in three dimensions. Here, we report the first observations of lasing in three-dimensional photonic crystals, in the cholesteric blue phase II. Our results show that distributed feedback is realized in three dimensions, resulting in almost diffraction-limited lasing with significantly lower thresholds than in one dimension. In addition to mirrorless lasing, these self-assembled soft photonic-bandgap materials may also be useful for waveguiding, switching and sensing applications.

  15. Off-axis spectral beam combining of Bragg reflection waveguide photonic crystal diode lasers

    NASA Astrophysics Data System (ADS)

    Sun, Fangyuan; Wang, Lijie; Zhao, Yufei; Hou, Guanyu; Shu, Shili; Zhang, Jun; Peng, Hangyu; Tian, Sicong; Tong, Cunzhu; Wang, Lijun

    2018-06-01

    The spectral beam combining (SBC) of Bragg reflection waveguide photonic crystal (BRW-PC) diode lasers was studied for the first time. An off-axis feedback system was constructed using a stripe mirror and a spatial filter to control beam quality in the external cavity. It was found that the BRW-PC diode lasers with a low divergence and a circular beam provided a simplified and cost-effective SBC. The off-axis feedback broke the beam quality limit of a single element, and an M 2 factor of 3.8 times lower than that of a single emitter in the slow axis was demonstrated.

  16. Nonlinear optical coupler using a doped optical waveguide

    DOEpatents

    Pantell, Richard H.; Sadowski, Robert W.; Digonnet, Michel J. F.; Shaw, Herbert J.

    1994-01-01

    An optical mode coupling apparatus includes an Erbium-doped optical waveguide in which an optical signal at a signal wavelength propagates in a first spatial propagation mode and a second spatial propagation mode of the waveguide. The optical signal propagating in the waveguide has a beat length. The coupling apparatus includes a pump source of perturbational light signal at a perturbational wavelength that propagates in the waveguide in the first spatial propagation mode. The perturbational signal has a sufficient intensity distribution in the waveguide that it causes a perturbation of the effective refractive index of the first spatial propagation mode of the waveguide in accordance with the optical Kerr effect. The perturbation of the effective refractive index of the first spatial propagation mode of the optical waveguide causes a change in the differential phase delay in the optical signal propagating in the first and second spatial propagation modes. The change in the differential phase delay is detected as a change in the intensity distribution between two lobes of the optical intensity distribution pattern of an output signal. The perturbational light signal can be selectively enabled and disabled to selectively change the intensity distribution in the two lobes of the optical intensity distribution pattern.

  17. Novel hybrid laser modes in composite VCSEL-DFB microcavities (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mischok, Andreas; Wagner, Tim; Sudzius, Markas; Brückner, Robert; Fröb, Hartmut; Lyssenko, Vadim G.; Leo, Karl

    2017-02-01

    Two of the most successful microcresonator concepts are the vertical cavity surface emitting laser (VCSEL), where light is confined between distributed Bragg reflectors (DBRs), and the distributed feedback (DFB) laser, where a periodic grating provides positive optical feedback to selected modes in an active waveguide (WG) layer. Our work concerns the combination of both into a composite device, facilitating coherent interaction between both regimes and giving rise to novel laser modes in the system. In a first realization, a full VCSEL stack with an organic active layer is evaporated on top of a diffraction grating with a large period (approximately 1 micron), leading to diffraction of waveguided modes into the surface emission of the device. Here, the coherent interaction between VCSEL and WG modes, as observed in an anticrossing of the dispersion lines, facilitates novel hybrid lasing modes with macroscopic in-plane coherence [1]. In further studies, we decrease the grating period of such devices to realise DFB conditions in a second-order Bragg grating which strongly couples photons via first-order light diffraction to the VCSEL. This efficient coupling can be compared to more classical cascade-coupled cavities and is successfully described by a coupled oscillator model [2]. When both resonators are non-degenerate, they are able to function as independent structures without substantial diffraction losses. The realization of such novel devices provides a promising platform for photonic circuits based on organic microlasers. [1] A. Mischok et al., Adv. Opt. Mater., early online, DOI: 10.1002/adom.201600282, (2016) [2] T. Wagner et al., Appl. Phys. Lett., accepted, in production, (2016)

  18. GaSb-based single-mode distributed feedback lasers for sensing (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gupta, James A.; Bezinger, Andrew; Lapointe, Jean; Poitras, Daniel; Aers, Geof C.

    2017-02-01

    GaSb-based tunable single-mode diode lasers can enable rapid, highly-selective and highly-sensitive absorption spectroscopy systems for gas sensing. In this work, single-mode distributed feedback (DFB) laser diodes were developed for the detection of various trace gases in the 2-3.3um range, including CO2, CO, HF, H2S, H2O and CH4. The lasers were fabricated using an index-coupled grating process without epitaxial regrowth, making the process significantly less expensive than conventional DFB fabrication. The devices are based on InGaAsSb/AlGaAsSb separate confinement heterostructures grown on GaSb by molecular beam epitaxy. DFB lasers were produced using a two step etch process. Narrow ridge waveguides were first defined by optical lithography and etched into the semiconductor. Lateral gratings were then defined on both sides of the ridge using electron-beam lithography and etched to produce the index-grating. Effective index modeling was used to optimize the ridge width, etch depths and the grating pitch to ensure single-lateral-mode operation and adequate coupling strength. The effective index method was further used to simulate the DFB laser emission spectrum, based on a transfer matrix model for light transmission through the periodic structure. The fabricated lasers exhibit single-mode operation which is tunable through the absorption features of the various target gases by adjustment of the drive current. In addition to the established open-path sensing applications, these devices have great potential for optoelectronic integrated gas sensors, making use of integrated photodetectors and possibly on-chip Si photonics waveguide structures.

  19. Commissioning of inline ECE system within waveguide based ECRH transmission systems on ASDEX upgrade

    NASA Astrophysics Data System (ADS)

    Bongers, W. A.; Kasparek, W.; Doelman, N.; van den Braber, R.; van den Brand, H.; Meo, F.; de Baar, M. R.; Amerongen, F. J.; Donné, A. J. H.; Elzendoorn, B. S. Q.; Erckmann, V.; Goede, A. P. H.; Giannone, L.; Grünwald, G.; Hollman, F.; Kaas, G.; Krijger, B.; Michel, G.; Lubyako, L.; Monaco, F.; Noke, F.; Petelin, M.; Plaum, B.; Purps, F.; ten Pierik, J. G. W.; Schüller, C.; Slob, J. W.; Stober, J. K.; Schütz, H.; Wagner, D.; Westerhof, E.; Ronden, D. M. S.

    2012-09-01

    A CW capable inline electron cyclotron emission (ECE) separation system for feedback control, featuring oversized corrugated waveguides, is commissioned on ASDEX upgrade (AUG). The system is based on a combination of a polarization independent, non-resonant, Mach-Zehnder diplexer equipped with dielectric plate beam splitters [2, 3] employed as corrugated oversized waveguide filter, and a resonant Fast Directional Switch, FADIS [4, 5, 6, 7] as ECE/ECCD separation system. This paper presents an overview of the system, the low power characterisation tests and first high power commissioning on AUG.

  20. FIBER AND INTEGRATED OPTICS: Use of the offset method in an analysis of a non-Gaussian field distribution in single-mode fiber waveguides

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Kurkov, Andrei S.; Chikolini, A. V.

    1990-08-01

    An offset method is modified to allow an analysis of the distribution of fields in a single-mode fiber waveguide without recourse to the Gaussian approximation. A new approximation for the field is obtained for fiber waveguides with a step refractive index profile and a special analysis employing the Hankel transformation is applied to waveguides with a distributed refractive index. The field distributions determined by this method are compared with the corresponding distributions calculated from the refractive index of a preform from which the fibers are drawn. It is shown that these new approaches can be used to determine the dimensions of a mode spot defined in different ways and to forecast the dispersion characteristics of single-mode fiber waveguides.

  1. Passive estimation of the waveguide invariant per pair of modes.

    PubMed

    Le Gall, Yann; Bonnel, Julien

    2013-08-01

    In many oceanic waveguides, acoustic propagation is characterized by a parameter called waveguide invariant. This property is used in many passive and active sonar applications where knowledge of the waveguide invariant value is required. The waveguide invariant is classically considered as scalar but several studies show that it is better modeled by a distribution because of its dependence on frequency and mode pairs. This paper presents a new method for estimating the waveguide invariant distribution. Using the noise radiated by a distant ship and a single hydrophone, the proposed methodology allows estimating the waveguide invariant for each pair of modes in shallow water. Performance is evaluated on simulated data.

  2. Distributed coupling and multi-frequency microwave accelerators

    DOEpatents

    Tantawi, Sami G.; Li, Zenghai; Borchard, Philipp

    2016-07-05

    A microwave circuit for a linear accelerator has multiple metallic cell sections, a pair of distribution waveguide manifolds, and a sequence of feed arms connecting the manifolds to the cell sections. The distribution waveguide manifolds are connected to the cell sections so that alternating pairs of cell sections are connected to opposite distribution waveguide manifolds. The distribution waveguide manifolds have concave modifications of their walls opposite the feed arms, and the feed arms have portions of two distinct widths. In some embodiments, the distribution waveguide manifolds are connected to the cell sections by two different types of junctions adapted to allow two frequency operation. The microwave circuit may be manufactured by making two quasi-identical parts, and joining the two parts to form the microwave circuit, thereby allowing for many manufacturing techniques including electron beam welding, and thereby allowing the use of un-annealled copper alloys, and hence greater tolerance to high gradient operation.

  3. Analysis and design of optically pumped far infrared oscillators and amplifiers

    NASA Technical Reports Server (NTRS)

    Galantowicz, T. A.

    1978-01-01

    A waveguide laser oscillator was designed and experimental measurements made of relationships among output power, pressure, pump power, pump frequency, cavity tuning, output beam pattern, and cavity mirror properties for various active gases. A waveguide regenerative amplifier was designed and gain measurements were made for various active gases. An external Fabry-Perot interferometer was fabricated and used for accurate wavelength determination and for measurements of the refractive indices of solids transparent in the far infrared. An electronic system was designed and constructed to provide an appropriate error signal for use in feedback control of pump frequency. Pump feedback from the FIR laser was decoupled using a vibrating mirror to phase modulate the pump signal.

  4. Experimental demonstration of monolithically integrated 16 channel DFB laser array fabricated by nanoimprint lithography with AWG multiplexer and SOA for WDM-PON application

    NASA Astrophysics Data System (ADS)

    Zhao, Jianyi; Chen, Xin; Zhou, Ning; Huang, Xiaodong; Cao, Mingde; Wang, Lei; Liu, Wen

    2015-03-01

    A 16-channel monolithically integrated distributed feedback (DFB) laser array with arrayed waveguide gratings (AWGs) multiplexer and semiconductor optical amplifier (SOA) has been fabricated using nanoimprint technology. Selective lasing wavelength with 200 GHz frequency space has been obtained. The typical threshold current is between 20 mA and 30 mA. The output power is higher than 1 mW with 350 mA current in SOA. The side mode suppression ratio (SMSR) of the spectrum is better than 40 dB.

  5. Amplification and generation of surface plasmon polaritons in a semiconductor film - dielectric structure

    NASA Astrophysics Data System (ADS)

    Abramov, A. S.; Zolotovskii, I. O.; Moiseev, S. G.; Sementsov, D. I.

    2018-01-01

    The peculiarities of propagation and amplification of surface waves of plasmon polariton type in a planar semiconductor film - dielectric structure are considered for the THz frequency region, with allowance for dissipation in a semiconductor. Two spectral regions are found, where the group velocity of surface plasmon polaritons is negative. It is shown that in these regions the structure can be considered as an amplifying waveguide with distributed feedback and a high gain with respect to the reflected and transmitted signals. The possibility of generation of electromagnetic radiation in such structures is established.

  6. Device and method for skull-melting depth measurement

    DOEpatents

    Lauf, R.J.; Heestand, R.L.

    1993-02-09

    A method of skull-melting comprises the steps of: (a) providing a vessel adapted for a skull-melting process, the vessel having an interior, an underside, and an orifice connecting the interior and the underside; (b) disposing a waveguide in the orifice so that the waveguide protrudes sufficiently into the interior to interact with the skull-melting process; (c) providing a signal energy transducer in signal communication with the waveguide; (d) introducing into the vessel a molten working material; (e) carrying out the skull-melting process so that a solidified skull of the working material is formed, the skull and the vessel having an interface therebetween, the skull becoming fused to the waveguide so the signal energy can be transmitted through the waveguide and the skull without interference from the interface; (f) activating the signal energy transducer so that a signal is propagated through the waveguide; and, (g) controlling at least one variable of the skull-melting process utilizing feedback information derived from the propagated signal energy.

  7. Device and method for skull-melting depth measurement

    DOEpatents

    Lauf, Robert J.; Heestand, Richard L.

    1993-01-01

    A method of skull-melting comprises the steps of: a. providing a vessel adapted for a skull-melting process, the vessel having an interior, an underside, and an orifice in connecting the interior and the underside; b. disposing a waveguide in the orifice so that the waveguide protrudes sufficiently into the interior to interact with the skull-melting process; c. providing a signal energy transducer in signal communication with the waveguide; d. introducing into the vessel a molten working material; e. carrying out the skull-melting process so that a solidified skull of the working material is formed, the skull and the vessel having an interface therebetween, the skull becoming fused to the waveguide so the signal energy can be transmitted through the waveguide and the skull without interference from the interface; f. activating the signal energy transducer so that a signal is propagated through the waveguide; and, g. controlling at least one variable of the skull-melting process utilizing feedback information derived from the propagated signal energy.

  8. InP-based monolithically integrated 1310/1550nm diplexer/triplexer

    NASA Astrophysics Data System (ADS)

    Silfvenius, C.; Swillo, M.; Claesson, J.; Forsberg, E.; Akram, N.; Chacinski, M.; Thylén, L.

    2008-11-01

    Multiple streams of high definition television (HDTV) and improved home-working infrastructure are currently driving forces for potential fiber to the home (FTTH) customers [1]. There is an interest to reduce the cost and physical size of the FTTH equipment. The current fabrication methods have reached a cost minimum. We have addressed the costchallenge by developing 1310/(1490)/1550nm bidirectional diplexers, by monolithic seamless integration of lasers, photodiodes and wavelength division multiplexing (WDM) couplers into one single InP-based device. A 250nm wide optical gain profile covers the spectrum from 1310 to 1550nm and is the principal building block. The device fabrication is basically based on the established configuration of using split-contacts on continuos waveguides. Optical and electrical cross-talks are further addressed by using a Y-configuration to physically separate the components from each other and avoid inline configurations such as when the incoming signal travels through the laser component or vice versa. By the eliminated butt-joint interfaces which can reflect light between components or be a current leakage path and by leaving optically absorbing (unpumped active) material to surround the components to absorb spontaneous emission and nonintentional reflections the devices are optically and electrically isolated from each other. Ridge waveguides (RWG) form the waveguides and which also maintain the absorbing material between them. The WDM functionality is designed for a large optical bandwidth complying with the wide spectral range in FTTH applications and also reducing the polarization dependence of the WDM-coupler. Lasing is achieved by forming facet-free, λ/4-shifted, DFB (distributed feedback laser) lasers emitting directly into the waveguide. The photodiodes are waveguide photo-diodes (WGPD). Our seamless technology is also able to array the single channel diplexers to 4 to 12 channel diplexer arrays with 250μm fiber port waveguide spacing to comply with fiber optic ribbons. This is an important feature in central office applications were small physical space is important.

  9. FIBER AND INTEGRATED OPTICS: Detection of the optical anisotropy in KTP:Rb waveguides

    NASA Astrophysics Data System (ADS)

    Buritskiĭ, K. S.; Dianov, Evgenii M.; Maslov, Vladislav A.; Chernykh, V. A.; Shcherbakov, E. A.

    1990-10-01

    The optical characteristics of channel waveguides made of rubidium-activated potassium titanyl phosphate (KTP:Rb) were determined. The refractive index increment of such waveguides was found to exhibit a considerable anisotropy: Δnx / Δnz approx 2. A deviation of the distribution of the refractive index in a channel waveguide from the model distribution was observed for ion-exchange times in excess of 1 h.

  10. Low-loss curved subwavelength grating waveguide based on index engineering

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Xu, Xiaochuan; Fan, D. L.; Wang, Yaoguo; Chen, Ray T.

    2016-03-01

    Subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to its freedom to tune a few important waveguide properties such as dispersion and refractive index. Devices based on SWG waveguide have demonstrated impressive performances compared to those of conventional waveguides. However, the large loss of SWG waveguide bends jeopardizes their applications in integrated photonics circuits. In this work, we propose that a predistorted refractive index distribution in SWG waveguide bends can effectively decrease the mode mismatch noise and radiation loss simultaneously, and thus significantly reduce the bend loss. Here, we achieved the pre-distortion refractive index distribution by using trapezoidal silicon pillars. This geometry tuning approach is numerically optimized and experimentally demonstrated. The average insertion loss of a 5 μm SWG waveguide bend can be reduced drastically from 5.58 dB to 1.37 dB per 90° bend for quasi-TE polarization. In the future, the proposed approach can be readily adopted to enhance performance of an array of SWG waveguide-based photonics devices.

  11. Distributed temperature sensors development using an stepped-helical ultrasonic waveguide

    NASA Astrophysics Data System (ADS)

    Periyannan, Suresh; Rajagopal, Prabhu; Balasubramaniam, Krishnan

    2018-04-01

    This paper presents the design and development of the distributed ultrasonic waveguide temperature sensors using some stepped-helical structures. Distributed sensing has several applications in various industries (oil, glass, steel) for measurement of physical parameters such as level, temperature, viscosity, etc. This waveguide incorporates a special notch or bend for obtaining ultrasonic wave reflections from the desired locations (Gage-lengths) where local measurements are desired. In this paper, a multi-location measurement wave-guide, with a measurement capability of 18 locations in a single wire, has been fabricated. The distribution of these sensors is both in the axial as well as radial directions using a stepped-helical spring configuration. Also, different high temperature materials have been chosen for the wave-guide. Both lower order axi-symmetric guided ultrasonic modes (L(0,1) and T(0,1)) were employed. These wave modes were generated/received (pulse-echo approach) using conventional longitudinal and shear transducers, respectively. Also, both the wave modes were simultaneously generated/received and compared using shear transducer for developing the distributed helical wave-guide sensors. The effect of dispersion of the wave modes due to curvature effects will also be discussed.

  12. Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides

    PubMed Central

    Navarro-Cía, Miguel; Wu, Jiang; Liu, Huiyun; Mitrofanov, Oleg

    2016-01-01

    Coaxial waveguides exhibit no dispersion and therefore can serve as an ideal channel for transmission of broadband THz pulses. Implementation of THz coaxial waveguide systems however requires THz beams with radially-polarized distribution. We demonstrate the launching of THz pulses into coaxial waveguides using the effect of THz pulse generation at semiconductor surfaces. We find that the radial transient photo-currents produced upon optical excitation of the surface at normal incidence radiate a THz pulse with the field distribution matching the mode of the coaxial waveguide. In this simple scheme, the optical excitation beam diameter controls the spatial profile of the generated radially-polarized THz pulse and allows us to achieve efficient coupling into the TEM waveguide mode in a hollow coaxial THz waveguide. The TEM quasi-single mode THz waveguide excitation and non-dispersive propagation of a short THz pulse is verified experimentally by time-resolved near-field mapping of the THz field at the waveguide output. PMID:27941845

  13. Investigation of local strain distribution and linear electro-optic effect in strained silicon waveguides.

    PubMed

    Chmielak, Bartos; Matheisen, Christopher; Ripperda, Christian; Bolten, Jens; Wahlbrink, Thorsten; Waldow, Michael; Kurz, Heinrich

    2013-10-21

    We present detailed investigations of the local strain distribution and the induced second-order optical nonlinearity within strained silicon waveguides cladded with a Si₃N₄ strain layer. Micro-Raman Spectroscopy mappings and electro-optic characterization of waveguides with varying width w(WG) show that strain gradients in the waveguide core and the effective second-order susceptibility χ(2)(yyz) increase with reduced w(WG). For 300 nm wide waveguides a mean effective χ(2)(yyz) of 190 pm/V is achieved, which is the highest value reported for silicon so far. To gain more insight into the origin of the extraordinary large optical second-order nonlinearity of strained silicon waveguides numerical simulations of edge induced strain gradients in these structures are presented and discussed.

  14. Stacked waveguide reactors with gradient embedded scatterers for high-capacity water cleaning

    DOE PAGES

    Ahsan, Syed Saad; Gumus, Abdurrahman; Erickson, David

    2015-11-04

    We present a compact water-cleaning reactor with stacked layers of waveguides containing gradient patterns of optical scatterers that enable uniform light distribution and augmented water-cleaning rates. Previous photocatalytic reactors using immersion, external, or distributive lamps suffer from poor light distribution that impedes scalability. Here, we use an external UV-source to direct photons into stacked waveguide reactors where we scatter the photons uniformly over the length of the waveguide to thin films of TiO 2-catalysts. In conclusion, we also show 4.5 times improvement in activity over uniform scatterer designs, demonstrate a degradation of 67% of the organic dye, and characterize themore » degradation rate constant.« less

  15. Stacked waveguide reactors with gradient embedded scatterers for high-capacity water cleaning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahsan, Syed Saad; Gumus, Abdurrahman; Erickson, David

    We present a compact water-cleaning reactor with stacked layers of waveguides containing gradient patterns of optical scatterers that enable uniform light distribution and augmented water-cleaning rates. Previous photocatalytic reactors using immersion, external, or distributive lamps suffer from poor light distribution that impedes scalability. Here, we use an external UV-source to direct photons into stacked waveguide reactors where we scatter the photons uniformly over the length of the waveguide to thin films of TiO 2-catalysts. In conclusion, we also show 4.5 times improvement in activity over uniform scatterer designs, demonstrate a degradation of 67% of the organic dye, and characterize themore » degradation rate constant.« less

  16. Optical waveguides in Nd:GdVO4 crystals fabricated by swift N3+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Dong, Ningning; Yao, Yicun; Chen, Feng

    2012-12-01

    Optical planar waveguides have been manufactured in Nd:GdVO4 crystal by swift N3+ ions irradiation at fluence of 1.5 × 1014 ions/cm2. A typical "barrier"-style refractive index profile was formed and the light can be well confined in the waveguide region. The modal distribution of the guided modes obtained from numerical calculation has a good agreement with the experimental modal distribution. The measured photoluminescence spectra revealed that the fluorescence properties of the Nd3+ ions have been modified to some extent in the waveguide's volume. The propagation loss of the planar waveguide can decrease to lower than 1 dB/cm after adequate annealing.

  17. Rf Feedback free electron laser

    DOEpatents

    Brau, Charles A.; Swenson, Donald A.; Boyd, Jr., Thomas J.

    1981-01-01

    A free electron laser system and electron beam system for a free electron laser which use rf feedback to enhance efficiency. Rf energy is extracted from an electron beam by decelerating cavities and returned to accelerating cavities using rf returns such as rf waveguides, rf feedthroughs, etc. This rf energy is added to rf klystron energy to lower the required input energy and thereby enhance energy efficiency of the system.

  18. Optimization of the Laser Properties of Polymer Films Doped with N,N´-Bis(3-methylphenyl)-N,N´-diphenylbenzidine

    PubMed Central

    Calzado, Eva M.; Boj, Pedro G.; Díaz-García, María A.

    2009-01-01

    This review compiles the work performed in the field of organic solid-state lasers with the hole-transporting organic molecule N,N´-bis(3-methylphenyl)-N,N´-diphenyl-benzidine system (TPD), in view of improving active laser material properties. The optimization of the amplified spontaneous emission characteristics, i.e., threshold, linewidth, emission wavelength and photostability, of polystyrene films doped with TPD in waveguide configuration has been achieved by investigating the influence of several materials parameters such as film thickness and TPD concentration. In addition, the influence in the emission properties of the inclusion of a second-order distributed feedback grating in the substrate is discussed.

  19. Propagation of a laser beam in a time-varying waveguide. [plasma heating for controlled fusion

    NASA Technical Reports Server (NTRS)

    Chapman, J. M.; Kevorkian, J.

    1978-01-01

    The propagation of an axisymmetric laser beam in a plasma column having a radially parabolic electron density distribution is reported. For the case of an axially uniform waveguide it is found that the basic characteristics of alternating focusing and defocusing beams are maintained. However, the intensity distribution is changed at the foci and outer-beam regions. The features of paraxial beam propagation are discussed with reference to axially varying waveguides. Laser plasma coupling is considered noting the case where laser heating produces a density distribution radially parabolic near the axis and the energy absorbed over the focal length of the plasma is small. It is found that: (1) beam-propagation stability is governed by the relative magnitude of the density fluctuations existing in the axial variation of the waveguides due to laser heating, and (2) for beam propagation in a time-varying waveguide, the global instability of the propagation is a function of the initial fluctuation growth rate as compared to the initial time rate of change in the radial curvature of the waveguide.

  20. Matrix method for two-dimensional waveguide mode solution

    NASA Astrophysics Data System (ADS)

    Sun, Baoguang; Cai, Congzhong; Venkatesh, Balajee Seshasayee

    2018-05-01

    In this paper, we show that the transfer matrix theory of multilayer optics can be used to solve the modes of any two-dimensional (2D) waveguide for their effective indices and field distributions. A 2D waveguide, even composed of numerous layers, is essentially a multilayer stack and the transmission through the stack can be analysed using the transfer matrix theory. The result is a transfer matrix with four complex value elements, namely A, B, C and D. The effective index of a guided mode satisfies two conditions: (1) evanescent waves exist simultaneously in the first (cladding) layer and last (substrate) layer, and (2) the complex element D vanishes. For a given mode, the field distribution in the waveguide is the result of a 'folded' plane wave. In each layer, there is only propagation and absorption; at each boundary, only reflection and refraction occur, which can be calculated according to the Fresnel equations. As examples, we show that this method can be used to solve modes supported by the multilayer step-index dielectric waveguide, slot waveguide, gradient-index waveguide and various plasmonic waveguides. The results indicate the transfer matrix method is effective for 2D waveguide mode solution in general.

  1. Monolithically integrated mid-infrared sensor using narrow mode operation and temperature feedback

    NASA Astrophysics Data System (ADS)

    Ristanic, Daniela; Schwarz, Benedikt; Reininger, Peter; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried

    2015-01-01

    A method to improve the sensitivity and selectivity of a monolithically integrated mid-infrared sensor using a distributed feedback laser (DFB) is presented in this paper. The sensor is based on a quantum cascade laser/detector system built from the same epitaxial structure and with the same fabrication approach. The devices are connected via a dielectric-loaded surface plasmon polariton waveguide with a twofold function: it provides high light coupling efficiency and a strong interaction of the light with the environment (e.g., a surrounding fluid). The weakly coupled DFB quantum cascade laser emits narrow mode light with a FWHM of 2 cm-1 at 1586 cm-1. The room temperature laser threshold current density is 3 kA/cm2 and a pulsed output power of around 200 mW was measured. With the superior laser noise performance, due to narrow mode emission and the compensation of thermal fluctuations, the lower limit of detection was expanded by one order of magnitude to the 10 ppm range.

  2. Universal photonic quantum computation via time-delayed feedback

    PubMed Central

    Pichler, Hannes; Choi, Soonwon; Zoller, Peter; Lukin, Mikhail D.

    2017-01-01

    We propose and analyze a deterministic protocol to generate two-dimensional photonic cluster states using a single quantum emitter via time-delayed quantum feedback. As a physical implementation, we consider a single atom or atom-like system coupled to a 1D waveguide with a distant mirror, where guided photons represent the qubits, while the mirror allows the implementation of feedback. We identify the class of many-body quantum states that can be produced using this approach and characterize them in terms of 2D tensor network states. PMID:29073057

  3. Rf feedback free electron laser

    DOEpatents

    Brau, C.A.; Swenson, D.A.; Boyd, T.J. Jr.

    1979-11-02

    A free electron laser system and electron beam system for a free electron laser are provided which use rf feedback to enhance efficiency. Rf energy is extracted from an electron beam by decelerating cavities and returned to accelerating cavities using rf returns such as rf waveguides, rf feedthroughs, etc. This rf energy is added to rf klystron energy to lower the required input energy and thereby enhance energy efficiency of the system.

  4. Enhancing a slow and weak optomechanical nonlinearity with delayed quantum feedback

    PubMed Central

    Wang, Zhaoyou; Safavi-Naeini, Amir H.

    2017-01-01

    A central goal of quantum optics is to generate large interactions between single photons so that one photon can strongly modify the state of another one. In cavity optomechanics, photons interact with the motional degrees of freedom of an optical resonator, for example, by imparting radiation pressure forces on a movable mirror or sensing minute fluctuations in the position of the mirror. Here, we show that the optical nonlinearity arising from these effects, typically too small to operate on single photons, can be sufficiently enhanced with feedback to generate large interactions between single photons. We propose a protocol that allows photons propagating in a waveguide to interact with each other through multiple bounces off an optomechanical system. The protocol is analysed by evolving the full many-body quantum state of the waveguide-coupled system, illustrating that large photon–photon interactions mediated by mechanical motion may be within experimental reach. PMID:28677674

  5. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Electrical response of InGaAsP/InP heterolasers

    NASA Astrophysics Data System (ADS)

    Luc, Vu V.; Eliseev, P. G.; Man'ko, Margarita A.; Tsotsorya, M. V.

    1988-11-01

    An investigation was made of the change in the voltage across laser diodes emitting in the 1.3 μm range as a result of introduction of an external optical feedback in the form of an electrical response to interruption of the feedback ("optoelectronic" signal). Measurements were made on single-mode buried stripe heterostructures, using both unpackaged laboratory lasers and also serially manufactured ILPN-202 devices with radiation coupled out via a fiber waveguide. The optoelectronic signal reached 10-16 mV, but when a fiber waveguide was used, it was only 0.1-0.8 mV, depending on the quality of the contact between the laser and the fiber. Experiments showed that the ILPN-202 lasers could be used without any additional optics as sensors capable of detection of submicron displacements with a sensitivity in excess of 10 kV/m.

  6. Enhancing a slow and weak optomechanical nonlinearity with delayed quantum feedback

    NASA Astrophysics Data System (ADS)

    Wang, Zhaoyou; Safavi-Naeini, Amir H.

    2017-07-01

    A central goal of quantum optics is to generate large interactions between single photons so that one photon can strongly modify the state of another one. In cavity optomechanics, photons interact with the motional degrees of freedom of an optical resonator, for example, by imparting radiation pressure forces on a movable mirror or sensing minute fluctuations in the position of the mirror. Here, we show that the optical nonlinearity arising from these effects, typically too small to operate on single photons, can be sufficiently enhanced with feedback to generate large interactions between single photons. We propose a protocol that allows photons propagating in a waveguide to interact with each other through multiple bounces off an optomechanical system. The protocol is analysed by evolving the full many-body quantum state of the waveguide-coupled system, illustrating that large photon-photon interactions mediated by mechanical motion may be within experimental reach.

  7. Correlation between optical return loss and transmission fringe noise in high-index contrast waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Chi; Martin, Yves; Khater, Marwan

    2017-05-15

    We present a phenomenological model correlating optical return loss and amplitude of fringes in transmission spectrum due to distributed backscattering in high-index-contrast waveguides. The model is validated experimentally using four different waveguide cross sections.

  8. Hybrid silica coarse wavelength-division multiplexer transmitter optical subassembly

    NASA Astrophysics Data System (ADS)

    An, Jun-Ming; Zhang, Jia-Shun; Wang, Liang-Liang; Zhu, Kaiwu; Sun, Bingli; Li, Yong; Hou, Jie; Li, Jian-Guang; Wu, Yuan-Da; Wang, Yue; Yin, Xiao-Jie

    2018-01-01

    Based on silica arrayed waveguide grating technology, a hybrid integrated transmitter optical subassembly was developed. Four direct-modulating distributed feedback lasers and four focusing microlenses were integrated to a coarse wavelength-division multiplexer (CWDM) on a CuW substrate. The four-channel silica-on-silicon CWDM was fabricated with 1.5% refractive index difference and 20-nm wavelength spacing. The experimental results showed that the output optical power was >3 mW with 45 mA of injection current, the slope efficiency was >0.0833 W/A, and the 3-dB bandwidth was broader than 18.15 GHz. The 1-dB compress points were higher than 18 and 15.8 dBm for frequency of 10 and 18 GHz, respectively.

  9. Optical waveguides in magneto-optical glasses fabricated by proton implantation

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Xiao; Li, Yu-Wen; Zheng, Rui-Lin; Fu, Li-Li; Zhang, Liao-Lin; Guo, Hai-Tao; Zhou, Zhi-Guang; Li, Wei-Nan; Lin, She-Bao; Wei, Wei

    2016-11-01

    Planar waveguides in magneto-optical glasses (Tb3+-doped aluminum borosilicate glasses) have been produced by a 550-keV proton implantation at a dose of 4.0×1016 ions/cm2 for the first time to our knowledge. After annealing at 260 °C for 1.0 h, the dark-mode spectra and near-field intensity distributions are measured by the prism-coupling and end-face coupling methods. The damage profile, refractive index distribution and light propagation mode of the planar waveguide are numerically calculated by SRIM 2010, RCM and FD-BPM, respectively. The effects of implantation on the structural and optical properties are investigated by Raman and absorption spectra. It suggests that the proton-implanted Tb3+-doped aluminum borosilicate glass waveguide is a good candidate for a waveguide isolator in optical fiber communication and all-optical communication.

  10. Liquid Level Sensing System

    NASA Technical Reports Server (NTRS)

    Korman, Valentin (Inventor); Wiley, John T. (Inventor); Duffell, Amanda G. (Inventor)

    2014-01-01

    A liquid level sensing system includes waveguides disposed in a liquid and distributed along a path with a gap between adjacent waveguides. A source introduces electromagnetic energy into the waveguides at a first end of the path. A portion of the electromagnetic energy exits the waveguides at a second end of the path. A detector measures the portion of the electromagnetic energy exiting the second end of the path.

  11. The concept for realization of quantum-cascade lasers emitting at 7.5 μm wavelength

    NASA Astrophysics Data System (ADS)

    Novikov, I. I.; Babichev, A. V.; Bugrov, V. E.; Gladyshev, A. G.; Karachinsky, L. Ya; Kolodeznyi, E. S.; Kurochkin, A. S.; Savelyev, A. V.; Sokolovskii, G. S.; Egorov, A. Yu

    2017-11-01

    We consider the advantages and disadvantages of various designs of waveguide for heterostructures of quantum cascade lasers (QCL) in a spectral region of 7.5 μm. Based on a numerical calculation we make a comparison of light wave distribution in QCL waveguides with different designs. We demonstrate the benefits of practical QCL realization with an extended five-layered waveguide formed by introducing extra layers of InGaAs, which allows to modify the spatial distribution of the light wave and get the rectangular shape of the spatial distribution of light wave intensity in the laser active area.

  12. Single electron beam rf feedback free electron laser

    DOEpatents

    Brau, C.A.; Stein, W.E.; Rockwood, S.D.

    1981-02-11

    A free electron laser system and electron beam system for a free electron laser which uses rf feedback to enhance efficiency are described. Rf energy is extracted from a single electron beam by decelerating cavities and energy is returned to accelerating cavities using rf returns, such as rf waveguides, rf feedthroughs, resonant feedthroughs, etc. This rf energy is added to rf klystron energy to reduce the required input energy and thereby enhance energy efficiency of the system.

  13. Laterally coupled distributed feedback lasers emitting at 2 μm with quantum dash active region and high-duty-cycle etched semiconductor gratings

    NASA Astrophysics Data System (ADS)

    Papatryfonos, Konstantinos; Saladukha, Dzianis; Merghem, Kamel; Joshi, Siddharth; Lelarge, Francois; Bouchoule, Sophie; Kazazis, Dimitrios; Guilet, Stephane; Le Gratiet, Luc; Ochalski, Tomasz J.; Huyet, Guillaume; Martinez, Anthony; Ramdane, Abderrahim

    2017-02-01

    Single-mode diode lasers on an InP(001) substrate have been developed using InAs/In0.53Ga0.47As quantum dash (Qdash) active regions and etched lateral Bragg gratings. The lasers have been designed to operate at wavelengths near 2 μm and exhibit a threshold current of 65 mA for a 600 μm long cavity, and a room temperature continuous wave output power per facet >5 mW. Using our novel growth approach based on the low ternary In0.53Ga0.47As barriers, we also demonstrate ridge-waveguide lasers emitting up to 2.1 μm and underline the possibilities for further pushing the emission wavelength out towards longer wavelengths with this material system. By introducing experimentally the concept of high-duty-cycle lateral Bragg gratings, a side mode suppression ratio of >37 dB has been achieved, owing to an appreciably increased grating coupling coefficient of κ ˜ 40 cm-1. These laterally coupled distributed feedback (LC-DFB) lasers combine the advantage of high and well-controlled coupling coefficients achieved in conventional DFB lasers, with the regrowth-free fabrication process of lateral gratings, and exhibit substantially lower optical losses compared to the conventional metal-based LC-DFB lasers.

  14. Specific features of waveguide recombination in laser structures with asymmetric barrier layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polubavkina, Yu. S., E-mail: polubavkina@mail.ru; Zubov, F. I.; Moiseev, E. I.

    2017-02-15

    The spatial distribution of the intensity of the emission caused by recombination appearing at a high injection level (up to 30 kA/cm{sup 2}) in the waveguide layer of a GaAs/AlGaAs laser structure with GaInP and AlGaInAs asymmetric barrier layers is studied by means of near-field scanning optical microscopy. It is found that the waveguide luminescence in such a laser, which is on the whole less intense as compared to that observed in a similar laser without asymmetric barriers, is non-uniformly distributed in the waveguide, so that the distribution maximum is shifted closer to the p-type cladding layer. This can bemore » attributed to the ability of the GaInP barrier adjoining the quantum well on the side of the n-type cladding layer to suppress the hole transport.« less

  15. Modes in light wave propagating in semiconductor laser

    NASA Technical Reports Server (NTRS)

    Manko, Margarita A.

    1994-01-01

    The study of semiconductor laser based on an analogy of the Schrodinger equation and an equation describing light wave propagation in nonhomogeneous medium is developed. The active region of semiconductor laser is considered as optical waveguide confining the electromagnetic field in the cross-section (x,y) and allowing waveguide propagation along the laser resonator (z). The mode structure is investigated taking into account the transversal and what is the important part of the suggested consideration longitudinal nonhomogeneity of the optical waveguide. It is shown that the Gaussian modes in the case correspond to spatial squeezing and correlation. Spatially squeezed two-mode structure of nonhomogeneous optical waveguide is given explicitly. Distribution of light among the laser discrete modes is presented. Properties of the spatially squeezed two-mode field are described. The analog of Franck-Condon principle for finding the maxima of the distribution function and the analog of Ramsauer effect for control of spatial distribution of laser emission are discussed.

  16. Theoretical modeling and experiments on a DBR waveguide laser fabricated by the femtosecond laser direct-write technique.

    PubMed

    Duan, Yuwen; McKay, Aaron; Jovanovic, Nemanja; Ams, Martin; Marshall, Graham D; Steel, M J; Withford, Michael J

    2013-07-29

    We present a model for a Yb-doped distributed Bragg reflector (DBR) waveguide laser fabricated in phosphate glass using the femtosecond laser direct-write technique. The model gives emphasis to transverse integrals to investigate the energy distribution in a homogenously doped glass, which is an important feature of femtosecond laser inscribed waveguide lasers (WGLs). The model was validated with experiments comparing a DBR WGL and a fiber laser, and then used to study the influence of distributed rare earth dopants on the performance of such lasers. Approximately 15% of the pump power was absorbed by the doped "cladding" in the femtosecond laser inscribed Yb doped WGL case with the length of 9.8 mm. Finally, we used the model to determine the parameters that optimize the laser output such as the waveguide length, output coupler reflectivity and refractive index contrast.

  17. Passive thermo-optic feedback for robust athermal photonic systems

    DOEpatents

    Rakich, Peter T.; Watts, Michael R.; Nielson, Gregory N.

    2015-06-23

    Thermal control devices, photonic systems and methods of stabilizing a temperature of a photonic system are provided. A thermal control device thermally coupled to a substrate includes a waveguide for receiving light, an absorption element optically coupled to the waveguide for converting the received light to heat and an optical filter. The optical filter is optically coupled to the waveguide and thermally coupled to the absorption element. An operating point of the optical filter is tuned responsive to the heat from the absorption element. When the operating point is less than a predetermined temperature, the received light is passed to the absorption element via the optical filter. When the operating point is greater than or equal to the predetermined temperature, the received light is transmitted out of the thermal control device via the optical filter, without being passed to the absorption element.

  18. FIBER AND INTEGRATED OPTICS. OPTOELECTRONICS: Method for calculation of the parameters of guided waves in anisotropic dielectric waveguides

    NASA Astrophysics Data System (ADS)

    Goncharenko, I. A.

    1989-07-01

    The method of shift formulas is applied to anisotropic dielectric waveguides capable of conserving a given state of polarization of the transmitted signal. Equations are derived for calculation of the propagation constants and of the dispersion of the fundamental modes in waveguides with an anisotropic permittivity and a noncircular shape of the transverse cross section. Distributions of electric and magnetic fields of these modes are obtained in a transverse cross section of the waveguide. It is shown that under the influence of the anisotropy of the dielectric an energy spot describing the distribution of the mode field becomes of an ellipse with its axes oriented along the coordinates coinciding with the principal axes of the permittivity tensor.

  19. Board-level optical clock signal distribution using Si CMOS-compatible polyimide-based 1- to 48-fanout H-tree

    NASA Astrophysics Data System (ADS)

    Wu, Linghui; Bihari, Bipin; Gan, Jianhua; Chen, Ray T.; Tang, Suning

    1998-08-01

    Si-CMOS compatible polymer-based waveguides for optoelectronic interconnects and packaging have been fabricated and characterized. A 1-to-48 fanout optoelectronic interconnection layer (OIL) structure based on Ultradel 9120/9020 for the high-speed massive clock signal distribution for a Cray T-90 supercomputer board has been constructed. The OIL employs multimode polymeric channel waveguides in conjunction with surface-normal waveguide output coupler and 1-to-2 splitter. A total insertion loss of 7.98 dB at 850 nm was measured experimentally.

  20. Placement of clock gates in time-of-flight optoelectronic circuits

    NASA Astrophysics Data System (ADS)

    Feehrer, John R.; Jordan, Harry F.

    1995-12-01

    Time-of-flight synchronized optoelectronic circuits capitalize on the highly controllable delays of optical waveguides. Circuits have no latches; synchronization is achieved by adjustment of the lengths of waveguides that connect circuit elements. Clock gating and pulse stretching are used to restore timing and power. A functional circuit requires that every feedback loop contain at least one clock gate to prevent cumulative timing drift and power loss. A designer specifies an ideal circuit, which contains no or very few clock gates. To make the circuit functional, we must identify locations in which to place clock gates. Because clock gates are expensive, add area, and increase delay, a minimal set of locations is desired. We cast this problem in graph-theoretical form as the minimum feedback edge set problem and solve it by using an adaptation of an algorithm proposed in 1966 [IEEE Trans. Circuit Theory CT-13, 399 (1966)]. We discuss a computer-aided-design implementation of the algorithm that reduces computational complexity and demonstrate it on a set of circuits.

  1. Monolithically integrated mid-infrared sensor using narrow mode operation and temperature feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ristanic, Daniela; Schwarz, Benedikt, E-mail: benedikt.schwarz@tuwien.ac.at; Reininger, Peter

    A method to improve the sensitivity and selectivity of a monolithically integrated mid-infrared sensor using a distributed feedback laser (DFB) is presented in this paper. The sensor is based on a quantum cascade laser/detector system built from the same epitaxial structure and with the same fabrication approach. The devices are connected via a dielectric-loaded surface plasmon polariton waveguide with a twofold function: it provides high light coupling efficiency and a strong interaction of the light with the environment (e.g., a surrounding fluid). The weakly coupled DFB quantum cascade laser emits narrow mode light with a FWHM of 2 cm{sup −1} atmore » 1586 cm{sup −1}. The room temperature laser threshold current density is 3 kA∕cm{sup 2} and a pulsed output power of around 200 mW was measured. With the superior laser noise performance, due to narrow mode emission and the compensation of thermal fluctuations, the lower limit of detection was expanded by one order of magnitude to the 10 ppm range.« less

  2. Porous silicon omnidirectional mirrors and distributed Bragg reflectors for planar waveguide applications

    NASA Astrophysics Data System (ADS)

    Xifré-Pérez, E.; Marsal, L. F.; Ferré-Borrull, J.; Pallarès, J.

    2007-09-01

    The use of omnidirectional mirrors (an special case of distributed Bragg reflectors) as cladding for planar waveguides is proposed and analyzed. The proposed structure is an all-porous silicon multilayer consisting of a core layer inserted between two omnidirectional mirrors. The transfer matrix method is applied for the modal analysis. The influence of the parameters of the waveguide structure on the guided modes is analyzed. These parameters are the layer thickness and number of periods of the omnidirectional mirror, and the refractive index and thickness of the core layer. Finally, the confinement of the omnidirectional mirror cladding is analyzed with respect to two other different distributed Bragg reflector claddings.

  3. Modeling of Optical Waveguide Poling and Thermally Stimulated Discharge (TSD) Charge and Current Densities for Guest/Host Electro Optic Polymers

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Ashley, Paul R.; Abushagur, Mustafa

    2004-01-01

    A charge density and current density model of a waveguide system has been developed to explore the effects of electric field electrode poling. An optical waveguide may be modeled during poling by considering the dielectric charge distribution, polarization charge distribution, and conduction charge generated by the poling field. These charge distributions are the source of poling current densities. The model shows that boundary charge current density and polarization current density are the major source of currents measured during poling and thermally stimulated discharge These charge distributions provide insight into the poling mechanisms and are directly related to E(sub A), and, alpha(sub r). Initial comparisons with experimental data show excellent correlation to the model results.

  4. 10th order laterally coupled GaN-based DFB laser diodes with V-shaped surface gratings

    NASA Astrophysics Data System (ADS)

    Kang, J. H.; Wenzel, H.; Hoffmann, V.; Freier, E.; Sulmoni, L.; Unger, R.-S.; Einfeldt, S.; Wernicke, T.; Kneissl, M.

    2018-02-01

    Single longitudinal mode operation of laterally coupled distributed feedback (DFB) laser diodes (LDs) based on GaN containing 10th-order surface Bragg gratings with V-shaped grooves is demonstrated using i-line stepper lithography and inductively coupled plasma etching. A threshold current of 82 mA, a slope efficiency of 1.7 W/A, a single peak emission at 404.5 nm with a full width at half maximum of 0.04 nm and a side mode suppression ratio of > 23 dB at an output power of about 46 mW were achieved under pulsed operation. The shift of the lasing wavelength of DFB LDs with temperature was around three times smaller than that of conventional ridge waveguide LDs.

  5. Optical set-reset latch

    DOEpatents

    Skogen, Erik J.

    2013-01-29

    An optical set-reset (SR) latch is formed from a first electroabsorption modulator (EAM), a second EAM and a waveguide photodetector (PD) which are arranged in an optical and electrical feedback loop which controls the transmission of light through the first EAM to latch the first EAM in a light-transmissive state in response to a Set light input. A second waveguide PD controls the transmission of light through the second EAM and is used to switch the first EAM to a light-absorptive state in response to a Reset light input provided to the second waveguide PD. The optical SR latch, which may be formed on a III-V compound semiconductor substrate (e.g. an InP or a GaAs substrate) as a photonic integrated circuit (PIC), stores a bit of optical information and has an optical output for the logic state of that bit of information.

  6. TE modes of UV-laser generated waveguides in a planar polymer chip of parabolic refractive index profile

    NASA Astrophysics Data System (ADS)

    Shams El-Din, M. A.

    2018-04-01

    The UV-laser lithographic method is used for the preparation of Polymeric integrated-optical waveguides in a planar polymer chip. The waveguide samples are irradiated by an excimer laser of wavelength 248 nm with different doses and with the same fluencies. The refractive index depth profile for the waveguides, in the first zone is found to have a parabolic shape and Gaussian shape in the second one that can be determined by Mach-Zehnder interferometer. Both the mode field distribution and the effective mode indices for the first zone only are determined by making use of the theoretical mode and the experimental data. It is found that the model field distribution is strongly dependent on the refractive indices for each zone.

  7. Efficient high-power frequency doubling of distributed Bragg reflector tapered laser radiation in a periodically poled MgO-doped lithium niobate planar waveguide.

    PubMed

    Jedrzejczyk, Daniel; Güther, Reiner; Paschke, Katrin; Jeong, Woo-Jin; Lee, Han-Young; Erbert, Götz

    2011-02-01

    We report on efficient single-pass, high-power second-harmonic generation in a periodically poled MgO-doped LiNbO3 planar waveguide using a distributed Bragg reflector tapered diode laser as a pump source. A coupling efficiency into the planar waveguide of 73% was realized, and 1.07 W of visible laser light at 532 nm was generated. Corresponding optical and electro-optical conversion efficiencies of 26% and 8.4%, respectively, were achieved. Good agreement between the experimental data and the theoretical predictions was observed.

  8. Uncovering dispersion properties in semiconductor waveguides to study photon-pair generation

    NASA Astrophysics Data System (ADS)

    Laiho, K.; Pressl, B.; Schlager, A.; Suchomel, H.; Kamp, M.; Höfling, S.; Schneider, C.; Weihs, G.

    2016-10-01

    We investigate the dispersion properties of ridge Bragg-reflection waveguides to deduce their phasematching characteristics. These are crucial for exploiting them as sources of parametric down-conversion (PDC). In order to estimate the phasematching bandwidth we first determine the group refractive indices of the interacting modes via Fabry-Perot experiments in two distant wavelength regions. Second, by measuring the spectra of the emitted PDC photons, we gain access to their group index dispersion. Our results offer a simple approach for determining the PDC process parameters in the spectral domain, and provide important feedback for designing such sources, especially in the broadband case.

  9. Ultra-fast all-optical plasmon induced transparency in a metal–insulator–metal waveguide containing two Kerr nonlinear ring resonators

    NASA Astrophysics Data System (ADS)

    Nurmohammadi, Tofiq; Abbasian, Karim; Yadipour, Reza

    2018-05-01

    In this work, an ultra-fast all-optical plasmon induced transparency based on a metal–insulator–metal nanoplasmonic waveguide with two Kerr nonlinear ring resonators is studied. Two-dimensional simulations utilizing the finite-difference time-domain method are used to show an obvious optical bistability and significant switching mechanisms of the signal light by varying the pump-light intensity. The proposed all-optical switching based on plasmon induced transparency demonstrates femtosecond-scale feedback time (90 fs), meaning ultra-fast switching can be achieved. The presented all-optical switch may have potential significant applications in integrated optical circuits.

  10. Digitally controlled distributed phase shifter

    DOEpatents

    Hietala, V.M.; Kravitz, S.H.; Vawter, G.A.

    1993-08-17

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  11. Digitally controlled distributed phase shifter

    DOEpatents

    Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.

    1993-01-01

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  12. Multiple temperature sensors embedded in an ultrasonic "spiral-like" waveguide

    NASA Astrophysics Data System (ADS)

    Periyannan, Suresh; Rajagopal, Prabhu; Balasubramaniam, Krishnan

    2017-03-01

    This paper studies the propagation of ultrasound in spiral waveguides, towards distributed temperature measurements on a plane. Finite Element (FE) approach was used for understanding the velocity behaviour and consequently designing the spiral waveguide. Temperature measurements were experimentally carried out on planar surface inside a hot chamber. Transduction was performed using a piezo-electric crystal that is attached to one end of the waveguide. Lower order axisymmetric guided ultrasonic modes L(0,1) and T(0,1) were employed. Notches were introduced along the waveguide to obtain ultrasonic wave reflections. Time of fight (TOF) differences between the pre-defined reflectors (notches) located on the waveguides were used to infer local temperatures. The ultrasonic temperature measurements were compared with commercially available thermocouples.

  13. Fabrication of planar waveguide in KNSBN crystal by swift heavy ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Guan, Jing; Wang, Lei; Qin, Xifeng

    2013-11-01

    We report on the fabrication of the planar waveguides in the KNSBN crystal by using 17 MeV C5+ ions at a fluence of 2 × 1014 ions/cm2. After implantation, near surface regions of the crystal, there has a positive extraordinary refractive index (ne) change and the light inside the waveguides can propagate in a non-leaky manner. The two-dimensional modal profiles of the planar waveguides, measured by using the end-coupling arrangement, are in good agreement with the reconstructed modal distributions. The propagation loss for C5+ irradiated waveguide is ∼0.8 dB/cm at 633 nm and ∼0.72 dB/cm at 1064 nm. The waveguide gives good confinement of waveguide modes, which exhibits acceptable guiding qualities for potential applications in integrated optics.

  14. Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance.

    PubMed

    Liu, Hongliang; Jia, Yuechen; Vázquez de Aldana, Javier Rodríguez; Jaque, Daniel; Chen, Feng

    2012-08-13

    We report on the fabrication of depressed cladding waveguide lasers in Nd:YAG (neodymium doped yttrium aluminum garnet, Nd:Y3Al5O12) ceramics microstructured by femtosecond laser pulses. Full control over the confined light spatial distribution is demonstrated by the fabrication of high contrast waveguides with hexagonal, circular and trapezoidal configurations. The confocal fluorescence measurements of the waveguides reveal that the original luminescence features of Nd3+ ions are well-preserved in the waveguide regions. Under optical pump at 808 nm, cladding waveguides showed continuous wave efficient laser oscillation. The maximum output power obtained at 1064.5 nm is ~181 mW with a slope efficiency as high as 44%, which suggests that the fabricated Nd:YAG ceramic waveguides are promising candidates for efficient integrated laser sources.

  15. A theoretical examination of the performances of wavelength multiplexers utilizing planar optical waveguides

    NASA Astrophysics Data System (ADS)

    Gomaa, M. L.; Chartier, G.

    1985-04-01

    The performances of distributed coupling wavelength multiplexer-demultiplexer devices for optical telecommunications applications, i.e., data transfer, are assessed theoretically. The values used for the refraction indices and waveguide dimensions are based on the ionic exchange between the glass layer and a base salt bath. Gradients in the indices are also considered. A shift of indices is assumed to be present between parallel waveguides of different thicknesses separated by a liquid bath. The behavior of the two waveguides is then the variations of the coupling and energy exchanged as functions of the wavelength transmitted. Attention is also given to the case of identical coupled waveguides.

  16. Distributed temperature sensing using a SPIRAL configuration ultrasonic waveguide

    NASA Astrophysics Data System (ADS)

    Periyannan, Suresh; Balasubramaniam, Krishnan

    2017-02-01

    Distributed temperature sensing has important applications in the long term monitoring of critical enclosures such as containment vessels, flue gas stacks, furnaces, underground storage tanks and buildings for fire risk. This paper presents novel techniques for such measurements, using wire in a spiral configuration and having special embodiments such a notch for obtaining wave reflections from desired locations. Transduction is performed using commercially available Piezo-electric crystal that is bonded to one end of the waveguide. Lower order axisymmetric guided ultrasonic modes were employed. Time of fight (TOF) differences between predefined reflectors located on the waveguides are used to infer temperature profile in a chamber with different temperatures. The L(0,1) wave mode (pulse echo approach) was generated/received in a spiral waveguide at different temperatures for this work. The ultrasonic measurements were compared with commercially available thermocouples.

  17. Spectrally high performing quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Toor, Fatima

    Quantum cascade (QC) lasers are versatile semiconductor light sources that can be engineered to emit light of almost any wavelength in the mid- to far-infrared (IR) and terahertz region from 3 to 300 mum [1-5]. Furthermore QC laser technology in the mid-IR range has great potential for applications in environmental, medical and industrial trace gas sensing [6-10] since several chemical vapors have strong rovibrational frequencies in this range and are uniquely identifiable by their absorption spectra through optical probing of absorption and transmission. Therefore, having a wide range of mid-IR wavelengths in a single QC laser source would greatly increase the specificity of QC laser-based spectroscopic systems, and also make them more compact and field deployable. This thesis presents work on several different approaches to multi-wavelength QC laser sources that take advantage of band-structure engineering and the uni-polar nature of QC lasers. Also, since for chemical sensing, lasers with narrow linewidth are needed, work is presented on a single mode distributed feedback (DFB) QC laser. First, a compact four-wavelength QC laser source, which is based on a 2-by-2 module design, with two waveguides having QC laser stacks for two different emission wavelengths each, one with 7.0 mum/11.2 mum, and the other with 8.7 mum/12.0 mum is presented. This is the first design of a four-wavelength QC laser source with widely different emission wavelengths that uses minimal optics and electronics. Second, since there are still several unknown factors that affect QC laser performance, results on a first ever study conducted to determine the effects of waveguide side-wall roughness on QC laser performance using the two-wavelength waveguides is presented. The results are consistent with Rayleigh scattering effects in the waveguides, with roughness effecting shorter wavelengths more than longer wavelengths. Third, a versatile time-multiplexed multi-wavelength QC laser system that emits at lambda = 10.8 mum for positive and lambda = 8.6 mum for negative polarity current with microsecond time delay is presented. Such a system is the first demonstration of a time and wavelength multiplexed system that uses a single QC laser. Fourth, work on the design and fabrication of a single-mode distributed feedback (DFB) QC laser emitting at lambda ≈ 7.7 mum to be used in a QC laser based photoacoustic sensor is presented. The DFB QC laser had a temperature tuning co-efficient of 0.45 nm/K for a temperature range of 80 K to 320 K, and a side mode suppression ratio of greater than 30 dB. Finally, study on the lateral mode patterns of wide ridge QC lasers is presented. The results include the observation of degenerate and non-degenerate lateral modes in wide ridge QC lasers emitting at lambda ≈ 5.0 mum. This study was conducted with the end goal of using wide ridge QC lasers in a novel technique to spatiospectrally combine multiple transverse modes to obtain an ultra high power single spot QC laser beam.

  18. Mode-independent attenuation in evanescent-field sensors

    NASA Astrophysics Data System (ADS)

    Gnewuch, Harald; Renner, Hagen

    1995-03-01

    Generally, the total power attenuation in multimode evanescent-field sensor waveguides is nonproportional to the bulk absorbance because the modal attenuation constants differ. Hence a direct measurement is difficult and is additionally aggravated because the waveguide absorbance is highly sensitive to the specific launching conditions at the waveguide input. A general asymptotic formula for the modal power attenuation in strongly asymmetric inhomogeneous planar waveguides with arbitrarily distributed weak absorption in the low-index superstrate is derived. Explicit expressions for typical refractive-index profiles are given. Except when very close to the cutoff, the predicted asymptotic attenuation behavior agrees well with exact calculations. The ratio of TM versus TE absorption has been derived to be (2 - n0 2/nf2 ) for arbitrary profiles. Waveguides with a linear refractive-index profile show mode-independent attenuation coefficients within each polarization. Further, the asymptotic sensitivity is independent of the wavelength, so that it should be possible to directly measure the spectral variation of the bulk absorption. The mode independence of the attenuation has been verified experimentally for a second-order polynomial profile, which is close to a linear refractive-index distribution. In contrast, the attenuation in the step-profile waveguide has been found to depend strongly on the mode number, as predicted by theory. A strong spread of the modal attenuation coefficients is also predicted for the parabolic-profile waveguide sensor.

  19. Two-photon Anderson localization in a disordered quadratic waveguide array

    NASA Astrophysics Data System (ADS)

    Bai, Y. F.; Xu, P.; Lu, L. L.; Zhong, M. L.; Zhu, S. N.

    2016-05-01

    We theoretically investigate two-photon Anderson localization in a χ (2) waveguide array with off-diagonal disorder. The nonlinear parametric down-conversion process would enhance both the single-photon and the two-photon Anderson localization. In the strong disorder regime, the two-photon position correlation exhibits a bunching distribution around the pumped waveguides, which is independent of pumping conditions and geometrical structures of waveguide arrays. Quadratic nonlinearity can be supplied as a new ingredient for Anderson localization. Also, our results pave the way for engineering quantum states through nonlinear quantum walks.

  20. THz wavefront manipulation based on metal waveguides

    NASA Astrophysics Data System (ADS)

    Wu, Mengru; Lang, Tingting; Shen, Changyu; Shi, Guohua; Han, Zhanghua

    2018-07-01

    In this paper, two waveguiding structures for arbitrary wavefront manipulation in the terahertz spectral region were proposed, designed and characterized. The first structure consists of parallel stack copper plates forming an array of parallel-plate waveguides (PPWGs). The second structure is three-dimensional metal rectangular waveguides array. The phase delay of the input wave after passing through the waveguide array is mainly determined by the effective index of the waveguides. Therefore, the waveguide array can be engineered using different core width distribution to generate any desired light beam. Examples, working at the frequency of 0.3 THz show that good focusing phenomenon with different focus lengths and spot sizes were observed, as well as arbitrarily tilted propagation of incident plane waves. The structure introduces a new method to perform wavefront manipulation, and can be utilized in many important applications in terahertz imaging and communication systems.

  1. Ultra-narrow-linewidth erbium-doped lasers on a silicon photonics platform

    NASA Astrophysics Data System (ADS)

    Li, Nanxi; Purnawirman, Purnawirman; Magden, E. Salih; Singh, Gurpreet; Singh, Neetesh; Baldycheva, Anna; Hosseini, Ehsan S.; Sun, Jie; Moresco, Michele; Adam, Thomas N.; Leake, Gerald; Coolbaugh, Douglas; Bradley, Jonathan D. B.; Watts, Michael R.

    2018-02-01

    We report ultra-narrow-linewidth erbium-doped aluminum oxide (Al2O3:Er3+) distributed feedback (DFB) lasers with a wavelength-insensitive silicon-compatible waveguide design. The waveguide consists of five silicon nitride (SiNx) segments buried under silicon dioxide (SiO2) with a layer Al2O3:Er3+ deposited on top. This design has a high confinement factor (> 85%) and a near perfect (> 98%) intensity overlap for an octave-spanning range across near infrared wavelengths (950-2000 nm). We compare the performance of DFB lasers in discrete quarter phase shifted (QPS) cavity and distributed phase shifted (DPS) cavity. Using QPS-DFB configuration, we obtain maximum output powers of 0.41 mW, 0.76 mW, and 0.47 mW at widely spaced wavelengths within both the C and L bands of the erbium gain spectrum (1536 nm, 1566 nm, and 1596 nm). In a DPS cavity, we achieve an order of magnitude improvement in maximum output power (5.43 mW) and a side mode suppression ratio (SMSR) of > 59.4 dB at an emission wavelength of 1565 nm. We observe an ultra-narrow linewidth of ΔνDPS = 5.3 +/- 0.3 kHz for the DPS-DFB laser, as compared to ΔγQPS = 30.4 +/- 1.1 kHz for the QPS-DFB laser, measured by a recirculating self-heterodyne delayed interferometer (RSHDI). Even narrower linewidth can be achieved by mechanical stabilization of the setup, increasing the pump absorption efficiency, increasing the output power, or enhancing the cavity Q.

  2. Nonlinear digital out-of-plane waveguide coupler based on nonlinear scattering of a single graphene layer

    NASA Astrophysics Data System (ADS)

    Asadi, Reza; Ouyang, Zhengbiao

    2018-03-01

    A new mechanism for out-of-plane coupling into a waveguide is presented and numerically studied based on nonlinear scattering of a single nano-scale Graphene layer inside the waveguide. In this mechanism, the refractive index nonlinearity of Graphene and nonhomogeneous light intensity distribution occurred due to the interference between the out-of-plane incident pump light and the waveguide mode provide a virtual grating inside the waveguide, coupling the out-of-plane pump light into the waveguide. It has been shown that the coupling efficiency has two distinct values with high contrast around a threshold pump intensity, providing suitable condition for digital optical applications. The structure operates at a resonance mode due to band edge effect, which enhances the nonlinearity and decreases the required threshold intensity.

  3. Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses.

    PubMed

    Okhrimchuk, Andrey; Mezentsev, Vladimir; Shestakov, Alexander; Bennion, Ian

    2012-02-13

    A depressed cladding waveguide with record low loss of 0.12 dB/cm is inscribed in YAG:Nd(0.3at.%) crystal by femtosecond laser pulses with an elliptical beam waist. The waveguide is formed by a set of parallel tracks which constitute the depressed cladding. It is a key element for compact and efficient CW waveguide laser operating at 1064 nm and pumped by a multimode laser diode. Special attention is paid to mechanical stress resulting from the inscription process. Numerical calculation of mode distribution and propagation loss with the elasto-optical effect taken into account leads to the conclusion that the depressed cladding is a dominating factor in waveguide mode formation, while the mechanical stress only slightly distorts waveguide modes.

  4. Optical clock signal distribution and packaging optimization

    NASA Astrophysics Data System (ADS)

    Wu, Linghui

    Polymer-based waveguides for optoelectronic interconnects and packagings were fabricated by a fabrication process that is compatible with the Si CMOS packaging process. An optoelectronic interconnection layer (OIL) for the high-speed massive clock signal distribution for the Cray T-90 supercomputer board employing optical multimode channel waveguides in conjunction with surface-normal waveguide grating couplers and a 1-to-2 3 dB splitter was constructed. Equalized optical paths were realized using an optical H-tree structure having 48 optical fanouts. This device could be increased to 64 without introducing any additional complications. A 1-to-48 fanout H-tree structure using Ultradel 9000D series polyimide was fabricated. The propagation loss and splitting loss have been measured as 0.21 dB/cm and 0.4 dB/splitter at 850 nm. The power budget was discussed, and the H-tree waveguide fully satisfies the power budget requirement. A tapered waveguide coupler was employed to match the mode profile between the single-mode fiber and the multimode channel waveguides of the OIL. A thermo-optical based multimode switch was designed, fabricated, and tested. The finite difference method was used to simulate the thermal distribution in the polymer waveguide. Both stable and transient conditions have been calculated. The thermo-optical switch was fabricated and tested. The switching speed of 1 ms was experimentally confirmed, fitting well with the simulation results. Thermo-optic switching for randomly polarized light at wavelengths of 850 nm was experimental confirmed, as was a stable attenuation of 25 dB. The details of tapered waveguide fabrication were investigated. Compression-molded 3-D tapered waveguides were demonstrated for the first time. Not only the vertical depth variation but also the linear dimensions of the molded waveguides were well beyond the limits of what any other conventional waveguide fabrication method is capable of providing. Molded waveguides with vertical depths of 100 mum at one end and 5 mum at the other end and lengths of 1.0 cm were fabricated using a photolime gel polymer. A propagation loss of 0.5 dB/cm was achieved when light was coupled from the 5 mum x 5 mum end to the 100 mum x 100 mum end and that of 1.1 dB/cm was observed when light was coupled from the 100 mum x 100 mum end to the 5 mum x 5 mum. By confining the energy to the fundamental mode when coupling from the large end to the small end, low-loss packaging can be achieved bi-directionally. 3-D compression-molded polymeric waveguides present a promising solution to bridging the huge dynamic range of different optoelectronic device-depths varying from a few microns to several hundred microns.

  5. Highly localized distributed Brillouin scattering response in a photonic integrated circuit

    NASA Astrophysics Data System (ADS)

    Zarifi, Atiyeh; Stiller, Birgit; Merklein, Moritz; Li, Neuton; Vu, Khu; Choi, Duk-Yong; Ma, Pan; Madden, Stephen J.; Eggleton, Benjamin J.

    2018-03-01

    The interaction of optical and acoustic waves via stimulated Brillouin scattering (SBS) has recently reached on-chip platforms, which has opened new fields of applications ranging from integrated microwave photonics and on-chip narrow-linewidth lasers, to phonon-based optical delay and signal processing schemes. Since SBS is an effect that scales exponentially with interaction length, on-chip implementation on a short length scale is challenging, requiring carefully designed waveguides with optimized opto-acoustic overlap. In this work, we use the principle of Brillouin optical correlation domain analysis to locally measure the SBS spectrum with high spatial resolution of 800 μm and perform a distributed measurement of the Brillouin spectrum along a spiral waveguide in a photonic integrated circuit. This approach gives access to local opto-acoustic properties of the waveguides, including the Brillouin frequency shift and linewidth, essential information for the further development of high quality photonic-phononic waveguides for SBS applications.

  6. Localized parallel parametric generation of spin waves in a Ni{sub 81}Fe{sub 19} waveguide by spatial variation of the pumping field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brächer, T.; Graduate School Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, D-67663 Kaiserslautern; Pirro, P.

    2014-03-03

    We present the experimental observation of localized parallel parametric generation of spin waves in a transversally in-plane magnetized Ni{sub 81}Fe{sub 19} magnonic waveguide. The localization is realized by combining the threshold character of parametric generation with a spatially confined enhancement of the amplifying microwave field. The latter is achieved by modulating the width of the microstrip transmission line which is used to provide the pumping field. By employing microfocussed Brillouin light scattering spectroscopy, we analyze the spatial distribution of the generated spin waves and compare it with numerical calculations of the field distribution along the Ni{sub 81}Fe{sub 19} waveguide. Thismore » provides a local spin-wave excitation in transversally in-plane magnetized waveguides for a wide wave-vector range which is not restricted by the size of the generation area.« less

  7. Optical clock distribution in supercomputers using polyimide-based waveguides

    NASA Astrophysics Data System (ADS)

    Bihari, Bipin; Gan, Jianhua; Wu, Linghui; Liu, Yujie; Tang, Suning; Chen, Ray T.

    1999-04-01

    Guided-wave optics is a promising way to deliver high-speed clock-signal in supercomputer with minimized clock-skew. Si- CMOS compatible polymer-based waveguides for optoelectronic interconnects and packaging have been fabricated and characterized. A 1-to-48 fanout optoelectronic interconnection layer (OIL) structure based on Ultradel 9120/9020 for the high-speed massive clock signal distribution for a Cray T-90 supercomputer board has been constructed. The OIL employs multimode polymeric channel waveguides in conjunction with surface-normal waveguide output coupler and 1-to-2 splitters. Surface-normal couplers can couple the optical clock signals into and out from the H-tree polyimide waveguides surface-normally, which facilitates the integration of photodetectors to convert optical-signal to electrical-signal. A 45-degree surface- normal couplers has been integrated at each output end. The measured output coupling efficiency is nearly 100 percent. The output profile from 45-degree surface-normal coupler were calculated using Fresnel approximation. the theoretical result is in good agreement with experimental result. A total insertion loss of 7.98 dB at 850 nm was measured experimentally.

  8. Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, Kazuue, E-mail: kfujita@crl.hpk.co.jp; Hitaka, Masahiro; Ito, Akio

    2015-06-22

    We report the performance of room temperature terahertz sources based on intracavity difference-frequency generation in mid-infrared quantum cascade lasers with a dual-upper-state (DAU) active region. DAU active region design is theoretically expected to produce larger optical nonlinearity for terahertz difference-frequency generation, compared to the active region designs of the bound-to-continuum type used previously. Fabricated buried heterostructure devices with a two-section buried distributed feedback grating and the waveguide designed for Cherenkov difference-frequency phase-matching scheme operate in two single-mode mid-infrared wavelengths at 10.7 μm and 9.7 μm and produce terahertz output at 2.9 THz with mid-infrared to terahertz conversion efficiency of 0.8 mW/W{sup 2}more » at room temperature.« less

  9. Single-mode interband cascade laser multiemitter structure for two-wavelength absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Scheuermann, Julian; Weih, Robert; Becker, Steffen; Fischer, Marc; Koeth, Johannes; Höfling, Sven

    2018-01-01

    An interband cascade laser multiemitter with single-mode distributed feedback (DFB) emission at two wavelengths is presented. Continuous-wave laser operation is measured from 0°C to 40°C with threshold currents of around 25 mA and output powers of around 9 mW at 20°C. The ridge waveguide DFB structures are monolithically integrated with a spacing of 70 μm and each is provided with an individual metal DFB grating to select specific single-mode wavelengths of interest for absorption spectroscopy. The emission windows at 3.92 and 4.01 μm are targeting hydrogen sulfide and sulfur dioxide, which are of importance for industrial applications since both gases are reagents of the Claus process in sulfur recovery units, recovering elemental sulfur from gaseous hydrogen sulfide.

  10. FIBER AND INTEGRATED OPTICS: Magnetooptic interaction in fiber waveguides

    NASA Astrophysics Data System (ADS)

    Antonov, S. N.; Bulyuk, A. N.; Gulyaev, Yurii V.

    1989-11-01

    Theoretical and experimental studies were made of the effects of a distributed magnetooptic interaction in fiber waveguides. Analytic solutions were obtained for relating light modulation at the exit of a waveguide to the parameters of its winding in the form of a coil and to an external magnetic field under conditions ensuring the exact spatial phase matching. It was confirmed experimentally that the interaction length of the order of several tens of meters was quite acceptable and could ensure a sensitivity of at least 10 - 4 Oe in the case of a quartz fiber waveguide.

  11. Femtosecond-laser-written superficial cladding waveguides in Nd:CaF2 crystal

    NASA Astrophysics Data System (ADS)

    Li, Rang; Nie, Weijie; Lu, Qingming; Cheng, Chen; Shang, Zhen; Vázquez de Aldana, Javier R.; Chen, Feng

    2017-07-01

    We report on the superficial cladding waveguides fabricated by direct femtosecond laser writing in Nd: CaF2 crystal with three different groups of parameters. The lowest propagation loss of waveguides has been determined to be 0.7 dB/cm at wavelength of 632.8 nm along TE polarization. The near fundamental modal distributions have been imaged through the end-face coupling technique. The guidance of the waveguides is found to possess low sensitivity on polarization of the probe light. By using a confocal microscope system, the micro-photoluminescence mappings and micro-fluorescence spectra are also obtained, which indicates the photoluminescence features of the Nd3+ ions are well preserved in the waveguide cores after direct femtosecond laser writing.

  12. Microwave impedance matching strategies of an applicator supplied by a bi-directional magnetron waveguide launcher.

    PubMed

    Roussy, Georges; Kongmark, Nils

    2003-01-01

    It is shown that a bi-directional waveguide launcher can be used advantageously for reducing the reflection coefficient mismatch of an input impedance of an applicator. In a simple bi-directional waveguide launcher, the magnetron is placed in the waveguide and generates a nominal field distribution with significant output impedance in both directions of the waveguide. If a standing wave is tolerated in the torus, which connects the launcher and the applicator, the power transfer from the magnetron to the applicator can be optimal, without using special matching devices. It is also possible to match the bi-directional launcher with two inductance stubs near the antenna of the magnetron and use them for supplying a two-input applicator without reflection.

  13. Single scan femtosecond laser transverse writing of depressed cladding waveguides enabled by three-dimensional focal field engineering.

    PubMed

    Zhang, Qian; Yang, Dong; Qi, Jia; Cheng, Ya; Gong, Qihuang; Li, Yan

    2017-06-12

    We report single scan transverse writing of depressed cladding waveguides inside ZBLAN glass with the longitudinally oriented annular ring-shaped focal intensity distribution of the femtosecond laser. The entire region of depressed cladding at the cross section, where a negative change of refraction index is induced, can be modified simultaneously with the ring-shaped focal intensity profile. The fabricated waveguides exhibit good single guided mode.

  14. Ring resonator based narrow-linewidth semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Ksendzov, Alexander (Inventor)

    2005-01-01

    The present invention is a method and apparatus for using ring resonators to produce narrow linewidth hybrid semiconductor lasers. According to one embodiment of the present invention, the narrow linewidths are produced by combining the semiconductor gain chip with a narrow pass band external feedback element. The semi conductor laser is produced using a ring resonator which, combined with a Bragg grating, acts as the external feedback element. According to another embodiment of the present invention, the proposed integrated optics ring resonator is based on plasma enhanced chemical vapor deposition (PECVD) SiO.sub.2 /SiON/SiO.sub.2 waveguide technology.

  15. Fabrication of planar optical waveguides by 6.0 MeV silicon ion implantation in Nd-doped phosphate glasses

    NASA Astrophysics Data System (ADS)

    Shen, Xiao-Liang; Dai, Han-Qing; Zhang, Liao-Lin; Wang, Yue; Zhu, Qi-Feng; Guo, Hai-Tao; Li, Wei-Nan; Liu, Chun-Xiao

    2018-04-01

    We report the fabrication of a planar optical waveguide by silicon ion implantation into Nd-doped phosphate glass at an energy of 6.0 MeV and a dose of 5.0 × 1014 ions/cm2. The change in the surface morphology of the glass after the implantation can be clearly observed by scanning electron microscopy. The measurement of the dark mode spectrum of the waveguide is conducted using a prism coupler at 632.8 nm. The refractive index distribution of the waveguide is reconstructed by the reflectivity calculation method. The near-field optical intensity profile of the waveguide is measured using an end-face coupling system. The waveguide with good optical properties on the glass matrix may be valuable for the application of the Nd-doped phosphate glass in integrated optical devices.

  16. Waveguides fabricated by femtosecond laser exploiting both depressed cladding and stress-induced guiding core.

    PubMed

    Dong, Ming-Ming; Wang, Cheng-Wei; Wu, Zheng-Xiang; Zhang, Yang; Pan, Huai-Hai; Zhao, Quan-Zhong

    2013-07-01

    We report on the fabrication of stress-induced optical channel waveguides and waveguide splitters with laser-depressed cladding by femtosecond laser. The laser beam was focused into neodymium doped phosphate glass by an objective producing a destructive filament. By moving the sample along an enclosed routine in the horizontal plane followed by a minor descent less than the filament length in the vertical direction, a cylinder with rarified periphery and densified center region was fabricated. Lining up the segments in partially overlapping sequence enabled waveguiding therein. The refractive-index contrast, near- and far-field mode distribution and confocal microscope fluorescence image of the waveguide were obtained. 1-to-2, 1-to-3 and 1-to-4 splitters were also machined with adjustable splitting ratio. Compared with traditional femtosecond laser writing methods, waveguides prepared by this approach showed controllable mode conduction, strong field confinement, large numerical aperture, low propagation loss and intact core region.

  17. Analysis of LH Launcher Arrays (Like the ITER One) Using the TOPLHA Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maggiora, R.; Milanesio, D.; Vecchi, G.

    2009-11-26

    TOPLHA (Torino Polytechnic Lower Hybrid Antenna) code is an innovative tool for the 3D/1D simulation of Lower Hybrid (LH) antennas, i.e. accounting for realistic 3D waveguides geometry and for accurate 1D plasma models, and without restrictions on waveguide shape, including curvature. This tool provides a detailed performances prediction of any LH launcher, by computing the antenna scattering parameters, the current distribution, electric field maps and power spectra for any user-specified waveguide excitation. In addition, a fully parallelized and multi-cavity version of TOPLHA permits the analysis of large and complex waveguide arrays in a reasonable simulation time. A detailed analysis ofmore » the performances of the proposed ITER LH antenna geometry has been carried out, underlining the strong dependence of the antenna input parameters with respect to plasma conditions. A preliminary optimization of the antenna dimensions has also been accomplished. Electric current distribution on conductors, electric field distribution at the interface with plasma, and power spectra have been calculated as well. The analysis shows the strong capabilities of the TOPLHA code as a predictive tool and its usefulness to LH launcher arrays detailed design.« less

  18. FIBRE AND INTEGRATED OPTICS. OPTICAL PROCESSING OF INFORMATION: Mechanism of lock-in detection with the aid of an alternating field perpendicular to the surface of a planar photorefractive waveguide

    NASA Astrophysics Data System (ADS)

    Zel'dovich, Boris Ya; Miklyaev, Yu V.; Safonov, V. I.

    1995-02-01

    An analysis is made of the mechanism of formation of a stationary grating in a planar photorefractive waveguide by a travelling interference pattern with the aid of an alternating electric field applied perpendicular to the waveguide layer. A theoretical calculation is reported of the distribution of the space-charge field in a transverse section of the waveguide. Finite drift lengths and trap saturation are taken into account in these calculations, which are carried out on the assumption of a weak contrast in the interference pattern.

  19. Traveling-wave photodetector

    DOEpatents

    Hietala, V.M.; Vawter, G.A.

    1993-12-14

    The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.

  20. Traveling-wave photodetector

    DOEpatents

    Hietala, Vincent M.; Vawter, Gregory A.

    1993-01-01

    The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.

  1. Waves in a plane graphene - dielectric waveguide structure

    NASA Astrophysics Data System (ADS)

    Evseev, Dmitry A.; Eliseeva, Svetlana V.; Sementsov, Dmitry I.

    2017-10-01

    The features of the guided TE modes propagation have been investigated on the basis of computer simulations in a planar structure consisting of a set of alternating layers of dielectric and graphene. Within the framework of the effective medium approximation, the dispersion relations have been received for symmetric and antisymmetric waveguide modes, determined by the frequency range of their existence. The wave field distribution by structure, frequency dependences of the constants of propagation and transverse components of the wave vectors, as well as group and phase velocities of waveguide modes have been obtained, the effect of the graphene part in a structure on the waveguide mode behavior has been shown.

  2. Free-space quantum key distribution with a high generation rate potassium titanyl phosphate waveguide photon-pair source

    NASA Astrophysics Data System (ADS)

    Wilson, Jeffrey D.; Chaffee, Dalton W.; Wilson, Nathaniel C.; Lekki, John D.; Tokars, Roger P.; Pouch, John J.; Roberts, Tony D.; Battle, Philip R.; Floyd, Bertram; Lind, Alexander J.; Cavin, John D.; Helmick, Spencer R.

    2016-09-01

    A high generation rate photon-pair source using a dual element periodically-poled potassium titanyl phosphate (PP KTP) waveguide is described. The fully integrated photon-pair source consists of a 1064-nm pump diode laser, fiber-coupled to a dual element waveguide within which a pair of 1064-nm photons are up-converted to a single 532-nm photon in the first stage. In the second stage, the 532-nm photon is down-converted to an entangled photon-pair at 800 nm and 1600 nm which are fiber-coupled at the waveguide output. The photon-pair source features a high pair generation rate, a compact power-efficient package, and continuous wave (CW) or pulsed operation. This is a significant step towards the long term goal of developing sources for high-rate Quantum Key Distribution (QKD) to enable Earth-space secure communications. Characterization and test results are presented. Details and preliminary results of a laboratory free space QKD experiment with the B92 protocol are also presented.

  3. Free-Space Quantum Key Distribution with a High Generation Rate Potassium Titanyl Phosphate Waveguide Photon-Pair Source

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Chaffee, Dalton W.; Wilson, Nathaniel C.; Lekki, John D.; Tokars, Roger P.; Pouch, John J.; Roberts, Tony D.; Battle, Philip; Floyd, Bertram M.; Lind, Alexander J.; hide

    2016-01-01

    A high generation rate photon-pair source using a dual element periodically-poled potassium titanyl phosphate (PP KTP) waveguide is described. The fully integrated photon-pair source consists of a 1064-nanometer pump diode laser, fiber-coupled to a dual element waveguide within which a pair of 1064-nanometer photons are up-converted to a single 532-nanometer photon in the first stage. In the second stage, the 532-nanometer photon is down-converted to an entangled photon-pair at 800 nanometer and 1600 nanometer which are fiber-coupled at the waveguide output. The photon-pair source features a high pair generation rate, a compact power-efficient package, and continuous wave (CW) or pulsed operation. This is a significant step towards the long term goal of developing sources for high-rate Quantum Key Distribution (QKD) to enable Earth-space secure communications. Characterization and test results are presented. Details and preliminary results of a laboratory free-space QKD experiment with the B92 protocol are also presented.

  4. Efficient upconversion-pumped continuous wave Er3+:LiLuF4 lasers

    NASA Astrophysics Data System (ADS)

    Moglia, Francesca; Müller, Sebastian; Reichert, Fabian; Metz, Philip W.; Calmano, Thomas; Kränkel, Christian; Heumann, Ernst; Huber, Günter

    2015-04-01

    We report on detailed spectroscopic investigations and efficient visible upconversion laser operation of Er3+:LiLuF4. This material allows for efficient resonant excited-state-absorption (ESA) pumping at 974 nm. Under spectroscopic conditions without external feedback, ESA at the laser wavelength of 552 nm prevails stimulated emission. Under lasing conditions in a resonant cavity, the high intracavity photon density bleaches the ESA at 552 nm, allowing for efficient cw laser operation. We obtained the highest output power of any room-temperature crystalline upconversion laser. The laser achieves a cw output power of 774 mW at a slope efficiency of 19% with respect to the incident pump power delivered by an optically-pumped semiconductor laser. The absorption efficiency of the pump radiation is estimated to be below 50%. To exploit the high confinement in waveguides for this laser, we employed femtosecond-laser pulses to inscribe a cladding of parallel tracks of modified material into Er3+:LiLuF4 crystals. The core material allows for low-loss waveguiding at pump and laser wavelengths. Under Ti:sapphire pumping at 974 nm, the first crystalline upconversion waveguide laser has been realized. We obtained waveguide-laser operation with up to 10 mW of output power at 553 nm.

  5. Analytical study of optical bistability in silicon-waveguide resonators.

    PubMed

    Rukhlenko, Ivan D; Premaratne, Malin; Agrawal, Govind P

    2009-11-23

    We present a theoretical model that describes accurately the nonlinear phenomenon of optical bistability in silicon-waveguide resonators but remains amenable to analytical results. Using this model, we derive a transcendental equation governing the intensity of a continuous wave transmitted through a Fabry-Perot resonator formed using a silicon-on-insulator waveguide. This equation reveals a dual role of free carriers in the formation of optical bistability in silicon. First, it shows that free-carrier absorption results in a saturation of the transmitted intensity. Second, the free-carrier dispersion and the thermo-optic effect may introduce phase shifts far exceeding those resulting from the Kerr effect alone, thus enabling one to achieve optical bistability in ultrashort resonators that are only a few micrometers long. Bistability can occur even when waveguide facets are not coated because natural reflectivity of the silicon- r interface can provide sufficient feedback. We find that it is possible to control the input-output characteristics of silicon-based resonators by changing the free-carrier lifetime using a reverse-biased p-n junction. We show theoretically that such a technique is suitable for realization of electronically assisted optical switching at a fixed input power and it may lead to silicon-based, nanometer-size, optical memories.

  6. Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers.

    PubMed

    Vannahme, Christoph; Klinkhammer, Sönke; Lemmer, Uli; Mappes, Timo

    2011-04-25

    Laser light excitation of fluorescent markers offers highly sensitive and specific analysis for bio-medical or chemical analysis. To profit from these advantages for applications in the field or at the point-of-care, a plastic lab-on-a-chip with integrated organic semiconductor lasers is presented here. First order distributed feedback lasers based on the organic semiconductor tris(8-hydroxyquinoline) aluminum (Alq3) doped with the laser dye 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyril)-4H-pyrane (DCM), deep ultraviolet induced waveguides, and a nanostructured microfluidic channel are integrated into a poly(methyl methacrylate) (PMMA) substrate. A simple and parallel fabrication process is used comprising thermal imprint, DUV exposure, evaporation of the laser material, and sealing by thermal bonding. The excitation of two fluorescent marker model systems including labeled antibodies with light emitted by integrated lasers is demonstrated.

  7. Rare-earth-ion-doped ultra-narrow-linewidth lasers on a silicon chip and applications to intra-laser-cavity optical sensing

    NASA Astrophysics Data System (ADS)

    Bernhardi, E. H.; de Ridder, R. M.; Wörhoff, K.; Pollnau, M.

    2013-03-01

    We report on diode-pumped distributed-feedback (DFB) and distributed-Bragg-reflector (DBR) channel waveguide lasers in Er-doped and Yb-doped Al2O3 on standard thermally oxidized silicon substrates. Uniform surface-relief Bragg gratings were patterned by laser-interference lithography and etched into the SiO2 top cladding. The maximum grating reflectivity exceeded 99%. Monolithic DFB and DBR cavities with Q-factors of up to 1.35×106 were realized. The Erdoped DFB laser delivered 3 mW of output power with a slope efficiency of 41% versus absorbed pump power. Singlelongitudinal- mode operation at a wavelength of 1545.2 nm was achieved with an emission line width of 1.70 0.58 kHz, corresponding to a laser Q-factor of 1.14×1011. Yb-doped DFB and DBR lasers were demonstrated at wavelengths near 1020 nm with output powers of 55 mW and a slope efficiency of 67% versus launched pump power. An Yb-doped dualwavelength laser was achieved based on the optical resonances induced by two local phase shifts in the DFB structure. A stable microwave signal at ~15 GHz with a -3-dB width of 9 kHz and a long-term frequency stability of +/- 2.5 MHz was created via the heterodyne photo-detection of the two laser wavelengths. By measuring changes in the microwave beat signal as the intra-cavity evanescent laser field interacts with micro-particles on the waveguide surface, we achieved real-time detection and accurate size measurement of single micro-particles with diameters ranging between 1 μm and 20 μm, which represents the typical size of many fungal and bacterial pathogens. A limit of detection of ~500 nm was deduced.

  8. Delayed coherent quantum feedback from a scattering theory and a matrix product state perspective

    NASA Astrophysics Data System (ADS)

    Guimond, P.-O.; Pletyukhov, M.; Pichler, H.; Zoller, P.

    2017-12-01

    We study the scattering of photons propagating in a semi-infinite waveguide terminated by a mirror and interacting with a quantum emitter. This paradigm constitutes an example of coherent quantum feedback, where light emitted towards the mirror gets redirected back to the emitter. We derive an analytical solution for the scattering of two-photon states, which is based on an exact resummation of the perturbative expansion of the scattering matrix, in a regime where the time delay of the coherent feedback is comparable to the timescale of the quantum emitter’s dynamics. We compare the results with numerical simulations based on matrix product state techniques simulating the full dynamics of the system, and extend the study to the scattering of coherent states beyond the low-power limit.

  9. Brillouin scattering in planar waveguides. II. Experiments

    NASA Astrophysics Data System (ADS)

    Chiasera, A.; Montagna, M.; Moser, E.; Rossi, F.; Tosello, C.; Ferrari, M.; Zampedri, L.; Caponi, S.; Gonçalves, R. R.; Chaussedent, S.; Monteil, A.; Fioretto, D.; Battaglin, G.; Gonella, F.; Mazzoldi, P.; Righini, G. C.

    2003-10-01

    Silica-titania planar waveguides of different thicknesses and compositions have been produced by radio-frequency sputtering and dip coating on silica substrates. Waveguides were also produced by silver exchange on a soda-lime silicate glass substrate. Brillouin scattering of the samples has been studied by coupling the exciting laser beam with a prism to different transverse-electric (TE) modes of the waveguides, and collecting the scattered light from the front surface. In multimode waveguides, the spectra depend on the m mode of excitation. For waveguides with a step index profile, two main peaks due to longitudinal phonons are present, apart from the case of the TE0 excitation, where a single peak is observed. The energy separation between the two peaks increases with the mode index. In graded-index waveguides, m-1 peaks of comparable intensities are observed. The spectra are reproduced very well by a model which considers the space distribution of the exciting field in the mode, a simple space dependence of the elasto-optic coefficients, through the value of the refraction index, and neglects the refraction of phonons. A single-fit parameter, i.e., the longitudinal sound velocity, is used to calculate as many spectra as is the number of modes in the waveguide.

  10. Strongly Confined Spoof Surface Plasmon Polaritons Waveguiding Enabled by Planar Staggered Plasmonic Waveguides

    NASA Astrophysics Data System (ADS)

    Ye, Longfang; Xiao, Yifan; Liu, Yanhui; Zhang, Liang; Cai, Guoxiong; Liu, Qing Huo

    2016-12-01

    We demonstrate a novel route to achieving highly efficient and strongly confined spoof surface plasmon polaritons (SPPs) waveguides at subwavelength scale enabled by planar staggered plasmonic waveguides (PSPWs). The structure of these new waveguides consists of an ultrathin metallic strip with periodic subwavelength staggered double groove arrays supported by a flexible dielectric substrate, leading to unique staggered EM coupling and waveguiding phenomenon. The spoof SPP propagation properties, including dispersion relations and near field distributions, are numerically investigated. Furthermore, broadband coplanar waveguide (CPW) to planar staggered plasmonic waveguide (PSPW) transitions are designed to achieve smooth momentum matching and highly efficient spoof SPP mode conversion. By applying these transitions, a CPW-PSPW-CPW structure is designed, fabricated and measured to verify the PSPW’s propagation performance at microwave frequencies. The investigation results show the proposed PSPWs have excellent performance of deep subwavelength spoof SPPs confinement, long propagation length and low bend loss, as well as great design flexibility to engineer the propagation properties by adjusting their geometry dimensions and material parameters. Our work opens up a new avenue for development of various advanced planar integrated plasmonic devices and circuits in microwave and terahertz regimes.

  11. Strongly Confined Spoof Surface Plasmon Polaritons Waveguiding Enabled by Planar Staggered Plasmonic Waveguides.

    PubMed

    Ye, Longfang; Xiao, Yifan; Liu, Yanhui; Zhang, Liang; Cai, Guoxiong; Liu, Qing Huo

    2016-12-05

    We demonstrate a novel route to achieving highly efficient and strongly confined spoof surface plasmon polaritons (SPPs) waveguides at subwavelength scale enabled by planar staggered plasmonic waveguides (PSPWs). The structure of these new waveguides consists of an ultrathin metallic strip with periodic subwavelength staggered double groove arrays supported by a flexible dielectric substrate, leading to unique staggered EM coupling and waveguiding phenomenon. The spoof SPP propagation properties, including dispersion relations and near field distributions, are numerically investigated. Furthermore, broadband coplanar waveguide (CPW) to planar staggered plasmonic waveguide (PSPW) transitions are designed to achieve smooth momentum matching and highly efficient spoof SPP mode conversion. By applying these transitions, a CPW-PSPW-CPW structure is designed, fabricated and measured to verify the PSPW's propagation performance at microwave frequencies. The investigation results show the proposed PSPWs have excellent performance of deep subwavelength spoof SPPs confinement, long propagation length and low bend loss, as well as great design flexibility to engineer the propagation properties by adjusting their geometry dimensions and material parameters. Our work opens up a new avenue for development of various advanced planar integrated plasmonic devices and circuits in microwave and terahertz regimes.

  12. Optical waveguide loop for planar trapping of blood cells and microspheres

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Balpreet S.; Hellesø, Olav G.

    2013-09-01

    The evanescent field from a waveguide can be used to trap and propel a particle. An optical waveguide loop with an intentional gap at the center is used for planar transport and stable trapping of particles. The waveguide acts as a conveyor belt to trap and deliver spheres towards the gap. At the gap, the counter-diverging light fields hold the sphere at a fixed position. Numerical simulation based on the finite element method was performed in three dimensions using a computer cluster. The field distribution and optical forces for rib and strip waveguide designs are compared and discussed. The optical force on a single particle was computed for various positions of the particle in the gap. Simulation predicted stable trapping of particles in the gap. Depending on the gap separation (2-50 μm) a single or multiple spheres and red blood cells were trapped at the gap. Waveguides were made of tantalum pentaoxide material. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip.

  13. Fabrication and characterization of carbon/oxygen-implanted waveguides in Nd3+-doped phosphate glasses

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Xiao; Xu, Jun; Fu, Li-Li; Zheng, Rui-Lin; Zhou, Zhi-Guang; Li, Wei-Nan; Guo, Hai-Tao; Lin, She-Bao; Wei, Wei

    2015-06-01

    Optical planar waveguides in Nd3+-doped phosphate glasses are fabricated by a 6.0-MeV carbon ion implantation with a dose of 6.0×1014 ions/cm2 and a 6.0-MeV oxygen ion implantation at a fluence of 6.0×1014 ions/cm2, respectively. The guided modes and the corresponding effective refractive indices were measured by a modal 2010 prism coupler. The refractive index profiles of the waveguides were analyzed based on the stopping and range of ions in matter and the RCM reflectivity calculation method. The near-field light intensity distributions were measured and simulated by an end-face coupling method and a finite-difference beam propagation method, respectively. The comparison of optical properties between the carbon-implanted waveguide and the oxygen-implanted waveguide was carried out. The microluminescence and Raman spectroscopy investigations reveal that fluorescent properties of Nd3+ ions and glass microstructure are well preserved in the waveguide region, which suggests that the carbon/oxygen-implanted waveguide is a good candidate for integrated photonic devices.

  14. Simultaneous enhancement of Chlorella vulgaris growth and lipid accumulation through the synergy effect between light and nitrate in a planar waveguide flat-plate photobioreactor.

    PubMed

    Liao, Qiang; Sun, Yahui; Huang, Yun; Xia, Ao; Fu, Qian; Zhu, Xun

    2017-11-01

    Interval between adjacent planar waveguides and light intensity emitted from waveguide surface were the primary two factors affecting light distribution characteristics in the planar waveguide flat-plate photobioreactor (PW-PBR). In this paper, the synergy effect between light and nitrate in the PW-PBR was realized to simultaneously enhance microalgae growth and lipid accumulation. Under an interval of 10mm between adjacent planar waveguides, 100% of microalgae cells in regions between adjacent waveguides could be illuminated. Chlorella vulgaris growth and lipid accumulation were synchronously elevated as light intensities emitted from planar waveguide surface increasing. With an identical initial nitrate concentration of 18mM, the maximum lipid content (41.66% in dry biomass) and lipid yield (2200.25mgL -1 ) were attained under 560μmolm -2 s -1 , which were 86.82% and 133.56% higher relative to those obtained under 160μmolm -2 s -1 , respectively. The PW-PBR provides a promising way for microalgae lipid production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Optical planar waveguides in photo-thermal-refractive glasses fabricated by single- or double-energy carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Shen, Xiao-Liang; Zheng, Rui-Lin; Guo, Hai-Tao; Lv, Peng; Liu, Chun-Xiao

    2018-01-01

    Ion implantation has demonstrated to be an efficient and reliable technique for the fabrication of optical waveguides in a diversity of transparent materials. Photo-thermal-refractive glass (PTR) is considered to be durable and stable holographic recording medium. Optical planar waveguide structures in the PTR glasses were formed, for the first time to our knowledge, by the C3+-ion implantation with single-energy (6.0 MeV) and double-energy (5.5+6.0 MeV), respectively. The process of the carbon ion implantation was simulated by the stopping and range of ions in matter code. The morphologies of the waveguides were recorded by a microscope operating in transmission mode. The guided beam distributions of the waveguides were measured by the end-face coupling technique. Comparing with the single-energy implantation, the double-energy implantation improves the light confinement for the dark-mode spectrum. The guiding properties suggest that the carbon-implanted PTR glass waveguides have potential for the manufacture of photonic devices.

  16. Controlling plasma distributions as driving forces for ion migration during fs laser writing

    NASA Astrophysics Data System (ADS)

    Teddy Fernandez, Toney; Siegel, Jan; Hoyo, Jesus; Sotillo, Belen; Fernandez, Paloma; Solis, Javier

    2015-04-01

    The properties of structures written inside dielectrics with high repetition rate femtosecond lasers are known to depend strongly on the complex interplay of a large number of writing parameters. Recently, ion migration within the laser-excited volume has been identified as a powerful mechanism for changing the local element distribution and producing efficient optical waveguides. In this work it is shown that the transient plasma distribution induced during laser irradiation is a reliable monitor for predicting the final refractive index distribution of the waveguide caused by ion migration. By performing in situ plasma emission microscopy during the writing process inside a La-phosphate glass it is found that the long axis of the plasma distribution determines the axis of ion migration, being responsible for the local refractive index increase. This observation is also valid when strong positive or negative spherical aberration is induced, greatly deforming the focal volume and inverting the index profile. Even subtle changes in the writing conditions, such as an inversion of the writing direction (quill writing effect), show up in the form of a modified plasma distribution, which manifests as a modified index distribution. Finally, it is shown that the superior control over the waveguide properties employing the slit shaping technique is caused by the more confined plasma distribution produced. The underlying reasons for this unexpected result are discussed in terms of non-linear propagation and heat accumulation.

  17. The near-infrared waveguide properties of an LGS crystal formed by swift Kr8+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Fan; Liu, Peng; Liu, Tao; Zhang, Lian; Sun, Jian-Rong; Wang, Zhi-Guang; Wang, Xue-Lin

    2013-11-01

    In this work, we report on the optical properties in the near-infrared region of a LGS crystal planar waveguide formed by swift heavy ion irradiation. The planar optical waveguide in a LGS crystal was fabricated by 330 MeV Kr8+-ion implantation at a fluence of 1 × 1012 cm-2. The initial beam had an energy of 2.1 GeV and was slowed down by passing it through a 259 μm thick Al foil. The guided mode was measured using a prism coupler at a wavelength of 1539 nm. The near-field intensity distribution of the mode was recorded by a CCD camera using the end-face coupling method. The FD-BPM was used to simulate the guided mode profile. The lattice damage induced by SHI irradiation in the LGS crystal was studied using micro-Raman spectroscopy. The Raman spectra are consistent with the stopping power distributions of the Kr8+ ions simulated by SRIM and with the micro-photograph of the waveguide taken by a microscope using polarized light.

  18. FIBER AND INTEGRATED OPTICS: Reflection of electromagnetic radiation from a multilayer waveguide structure with an absorbing metal layer

    NASA Astrophysics Data System (ADS)

    Chernushich, A. P.; Shkerdin, G. N.; Shukin, Yu M.

    1992-10-01

    The angular distribution of the reflection coefficient of an asymmetric multilayer planar structure containing a thin metal film and a planar optical waveguide has been found by accurate numerical calculations. There are resonances in the reflection coefficient associated with hybrid modes of the structure. The cases of strong and weak coupling of the surface polariton modes with the waveguide modes are discussed. The results of the numerical analysis agree with solutions of Maxwell's equations for a multilayer planar structure.

  19. FIBER OPTICS: Ray invariants and wave equations for transverse modes in three-dimensional graded-index waveguides

    NASA Astrophysics Data System (ADS)

    Voevodin, V. G.; Morozov, A. N.; Stepanov, V. E.

    1992-09-01

    A theory of the second ray invariant is proposed using the theory of plane Frenet curves. Its existence requires that the coordinate dependence of the refractive index in the waveguide cross section should satisfy the regularity condition: curves of equal refractive index differ only by an amount which can be obtained using an isotropic scaling transformation. The theoretical conclusions are illustrated using the example of waveguides having the generalized refractive index distribution n ( r ) = n [ (x/ a) + (y/ b)q].

  20. Waveguide Y-Circulator,

    DTIC Science & Technology

    1982-03-03

    8217 AD-A112 086 FOREIGNl TECHNOL4OGY QIV WRIGHT-PATTERSON AFB OH F/6 9/1 WAVEB4JIDE Y -CIRCULATOR. 1W MAR 82 A A SH4IMKO, V N SHAKHGEOANOV UNCLASSIFIED...WAVEGUIDE Y -CIRCULATOR by A.A. Shimko, V.N. Shakhgedanov, et al °/ 1 tt, S N ,R 1 7 1982 :LE JApproved for public release; distribution unlimited. 82 03...csc csch csch arc csch csch-1 Russian English rot curl lg log , t ....... 0710 copy NS I,- j,’.D Waveguide Y -Circulator A. A. Shimko, V. N

  1. Hybrid plasmonic waveguide-assisted Metal–Insulator–Metal ring resonator for refractive index sensing

    NASA Astrophysics Data System (ADS)

    Butt, M. A.; Khonina, S. N.; Kazanskiy, N. L.

    2018-05-01

    A highly sensitive refractive index sensor based on an integrated hybrid plasmonic waveguide (HPWG) and a Metal-Insulator-Metal (M-I-M) micro-ring resonator is presented. In our design, there are two slot-waveguide-based micro-rings that encircle a gold disc. The outer slot WG is formed by the combination of Silicon-Air-Gold ring and the inner slot-waveguide is formed by Gold ring-Air-Gold disc. The slot-waveguide rings provide an interaction length sufficient to accumulate a detectable wavelength shift. The transmission spectrum and electric field distribution of this sensor structure are simulated using Finite Element Method (FEM). The sensitivity of this micro-ring resonator is achieved at 800 nm/RIU which is about six times higher than that of the conventional Si ring with the same geometry. Our proposed sensor design has a potential to find further applications in biomedical science and nano-photonic circuits.

  2. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Calculation of the temperature distribution in ridged-waveguide laser diodes

    NASA Astrophysics Data System (ADS)

    Piprek, J.; Nürnberg, R.

    1988-11-01

    A numerical solution is obtained of the steady-state heat conduction equation for InGaAsP/InP ridge-waveguide lasers (λ = 1.3 μm) soldered upside down to a heat sink. Two-dimensional temperature distributions perpendicular to the ridge are obtained. It is assumed that the heat sources inside such a laser are the active region and the contact at the top of the ridge. An increase in the temperature of the junction and the corresponding thermal resistance of a laser chip and solder are calculated for several sets of laser parameters. The results indicate that the thermal properties are particularly sensitive to the width of the ridge and the thickness of the solder. The results obtained should be useful in thermal optimization of ridge-waveguide laser diodes.

  3. Radio-over-optical waveguide system-on-wafer for massive delivery capacity 5G MIMO access networks

    NASA Astrophysics Data System (ADS)

    Binh, Le N.

    2017-01-01

    Delivering maximum information capacity over MIMO antennae systems beam steering is critical so as to achieve the flexibility via beam steering, maximizing the number of users or community of users in Gb/s rate per user over distributed cloud-based optical-wireless access networks. This paper gives an overview of (i) demands of optical - wireless delivery with high flexibility, especially the beam steering of multi-Tbps information channels to information hungry community of users via virtualized beam steering MIMO antenna systems at the free-license mmW region; (ii) Proposing a novel photonic planar integrated waveguide systems composing several passive and active, passive and amplification photonic devices so as to generate mmW carrier and embedded baseband information channels to feed to antenna elements; (iii) Integration techniques to generate a radio over optical waveguide (RoOW) system-on-wafer (SoW) comprising MIMO planar antenna elements and associate photonic integrated circuits for both up- and down- links; (iv) Challenges encountered in the implementation of the SoW in both wireless and photonic domains; (v) Photonic modulation techniques to achieve maximum transmission capacity per wavelength per MIMO antenna system. (vi) A view on control-feedback systems for fast and accurate generation of phase pattern for MIMO beam steering via a bank of optical phase modulators to mmW carrier phases and their preservation in the converted mmW domain . (vi) The overall operational principles of the novel techniques and technologies based on the coherent mixing of two lightwave channels The entire SoW can be implemented on SOI Si-photonic technology or via hybrid integration. These technological developments and their pros- and cons- will be discussed to achieve 50Tera-bps over the extended 110 channel Cband single mode fiber with mmW centered at 58.6GHz and 7GHz free-license band.

  4. Low-loss tunable 1D ITO-slot photonic crystal nanobeam cavity

    NASA Astrophysics Data System (ADS)

    Amin, Rubab; Tahersima, Mohammad H.; Ma, Zhizhen; Suer, Can; Liu, Ke; Dalir, Hamed; Sorger, Volker J.

    2018-05-01

    Tunable optical material properties enable novel applications in both versatile metamaterials and photonic components including optical sources and modulators. Transparent conductive oxides (TCOs) are able to highly tune their optical properties with applied bias via altering their free carrier concentration and hence plasma dispersion. The TCO material indium tin oxide (ITO) exhibits unity-strong index change and epsilon-near-zero behavior. However, with such tuning the corresponding high optical losses, originating from the fundamental Kramers–Kronig relations, result in low cavity finesse. However, achieving efficient tuning in ITO-cavities without using light–matter interaction enhancement techniques such as polaritonic modes, which are inherently lossy, is a challenge. Here we discuss a novel one-dimensional photonic crystal nanobeam cavity to deliver a cavity system offering a wide range of resonance tuning range, while preserving physical compact footprints. We show that a vertical silicon-slot waveguide incorporating an actively gated-ITO layer delivers ∼3.4 nm of tuning. By deploying distributed feedback, we are able to keep the Q-factor moderately high with tuning. Combining this with the sub-diffraction limited mode volume (0.1 (λ/2n)3) from the photonic (non-plasmonic) slot waveguide, facilitates a high Purcell factor exceeding 1000. This strong light–matter-interaction shows that reducing the mode volume of a cavity outweighs reducing the losses in diffraction limited modal cavities such as those from bulk Si3N4. These tunable cavities enable future modulators and optical sources such as tunable lasers.

  5. Free-Space Quantum Key Distribution with a High Generation Rate KTP Waveguide Photon-Pair Source

    NASA Technical Reports Server (NTRS)

    Wilson, J.; Chaffee, D.; Wilson, N.; Lekki, J.; Tokars, R.; Pouch, J.; Lind, A.; Cavin, J.; Helmick, S.; Roberts, T.; hide

    2016-01-01

    NASA awarded Small Business Innovative Research (SBIR) contracts to AdvR, Inc to develop a high generation rate source of entangled photons that could be used to explore quantum key distribution (QKD) protocols. The final product, a photon pair source using a dual-element periodically- poled potassium titanyl phosphate (KTP) waveguide, was delivered to NASA Glenn Research Center in June of 2015. This paper describes the source, its characterization, and its performance in a B92 (Bennett, 1992) protocol QKD experiment.

  6. Thermocapillary Technique for Shaping and Fabricating Optical Ribbon Waveguides

    NASA Astrophysics Data System (ADS)

    Fiedler, Kevin; Troian, Sandra

    The demand for ever increasing bandwidth and higher speed communication has ushered the next generation optoelectronic integrated circuits which directly incorporate polymer optical waveguide devices. Polymer melts are very versatile materials which have been successfully cast into planar single- and multimode waveguides using techniques such as embossing, photolithography and direct laser writing. In this talk, we describe a novel thermocapillary patterning method for fabricating waveguides in which the free surface of an ultrathin molten polymer film is exposed to a spatially inhomogeneous temperature field via thermal conduction from a nearby cooled mask pattern held in close proximity. The ensuring surface temperature distribution is purposely designed to pool liquid selectively into ribbon shapes suitable for optical waveguiding, but with rounded and not rectangular cross sectional areas due to capillary forces. The solidified waveguide patterns which result from this non-contact one step procedure exhibit ultrasmooth interfaces suitable for demanding optoelectronic applications. To complement these studies, we have also conducted finite element simulations for quantifying the influence of non-rectangular cross-sectional shapes on mode propagation and losses. Kf gratefully acknowledges support from a NASA Space Technology Research Fellowship.

  7. Spatial mode discriminator based on leaky waveguides

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Liu, Jialing; Shi, Hongkang; Chen, Yuntian

    2018-06-01

    We propose a conceptually simple and experimentally compatible configuration to discriminate the spatial mode based on leaky waveguides, which are inserted in-between the transmission link. The essence of such a spatial mode discriminator is to introduce the leakage of the power flux on purpose for detection. Importantly, the leaky angle of each individual spatial mode with respect to the propagation direction are different for non-degenerated modes, while the radiation patterns of the degenerated spatial modes in the plane perpendicular to the propagation direction are also distinguishable. Based on these two facts, we illustrate the operation principle of the spatial mode discriminators via two concrete examples; a w-type slab leaky waveguide without degeneracy, and a cylindrical leaky waveguide with degeneracy. The correlation between the leakage angle and the spatial mode distribution for a slab leaky waveguide, as well as differences between the in-plane radiation patterns of degenerated modes in a cylindrical leaky waveguide, are verified numerically and analytically. Such findings can be readily useful in discriminating the spatial modes for optical communication or optical sensing.

  8. Silicon photonic dynamic optical channel leveler with external feedback loop.

    PubMed

    Doylend, J K; Jessop, P E; Knights, A P

    2010-06-21

    We demonstrate a dynamic optical channel leveler composed of a variable optical attenuator (VOA) integrated monolithically with a defect-mediated photodiode in a silicon photonic waveguide device. An external feedback loop mimics an analog circuit such that the photodiode directly controls the VOA to provide blind channel leveling within +/-1 dB across a 7-10 dB dynamic range for wavelengths from 1530 nm to 1570 nm. The device consumes approximately 50 mW electrical power and occupies a 6 mm x 0.1 mm footprint per channel. Dynamic leveling is accomplished without tapping optical power from the output path to the photodiode and thus the loss penalty is minimized.

  9. Low Average Sidelobe Slot Array Antennas for Radiometer Applications

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam; Zawardzki, Mark S.; Hodges, Richard E.

    2012-01-01

    In radiometer applications, it is required to design antennas that meet low average sidelobe levels and low average return loss over a specified frequency bandwidth. It is a challenge to meet such specifications over a frequency range when one uses resonant elements such as waveguide feed slots. In addition to their inherent narrow frequency band performance, the problem is exacerbated due to modeling errors and manufacturing tolerances. There was a need to develop a design methodology to solve the problem. An iterative design procedure was developed by starting with an array architecture, lattice spacing, aperture distribution, waveguide dimensions, etc. The array was designed using Elliott s technique with appropriate values of the total slot conductance in each radiating waveguide, and the total resistance in each feed waveguide. Subsequently, the array performance was analyzed by the full wave method of moments solution to the pertinent integral equations. Monte Carlo simulations were also carried out to account for amplitude and phase errors introduced for the aperture distribution due to modeling errors as well as manufacturing tolerances. If the design margins for the average sidelobe level and the average return loss were not adequate, array architecture, lattice spacing, aperture distribution, and waveguide dimensions were varied in subsequent iterations. Once the design margins were found to be adequate, the iteration was stopped and a good design was achieved. A symmetric array architecture was found to meet the design specification with adequate margin. The specifications were near 40 dB for angular regions beyond 30 degrees from broadside. Separable Taylor distribution with nbar=4 and 35 dB sidelobe specification was chosen for each principal plane. A non-separable distribution obtained by the genetic algorithm was found to have similar characteristics. The element spacing was obtained to provide the required beamwidth and close to a null in the E-plane end-fire direction. Because of the alternating slot offsets, grating lobes called butterfly lobes are produced in non-principal planes close to the H-plane. An attempt to reduce the influence of such grating lobes resulted in a symmetric design.

  10. Semiconductor ring lasers subject to both on-chip filtered optical feedback and external conventional optical feedback

    NASA Astrophysics Data System (ADS)

    Khoder, Mulham; Van der Sande, Guy; Danckaert, Jan; Verschaffelt, Guy

    2016-05-01

    It is well known that the performance of semiconductor lasers is very sensitive to external optical feedback. This feedback can lead to changes in lasing characteristics and a variety of dynamical effects including chaos and coherence collapse. One way to avoid this external feedback is by using optical isolation, but these isolators and their packaging will increase the cost of the total system. Semiconductor ring lasers nowadays are promising sources in photonic integrated circuits because they do not require cleaved facets or mirrors to form a laser cavity. Recently, some of us proposed to combine semiconductor ring lasers with on chip filtered optical feedback to achieve tunable lasers. The feedback is realized by employing two arrayed waveguide gratings to split/recombine light into different wavelength channels. Semiconductor optical amplifier gates are used to control the feedback strength. In this work, we investigate how such lasers with filtered feedback are influenced by an external conventional optical feedback. The experimental results show intensity fluctuations in the time traces in both the clockwise and counterclockwise directions due to the conventional feedback. We quantify the strength of the conventional feedback induced dynamics be extracting the standard deviation of the intensity fluctuations in the time traces. By using filtered feedback, we can shift the onset of the conventional feedback induced dynamics to larger values of the feedback rate [ Khoder et al, IEEE Photon. Technol. Lett. DOI: 10.1109/LPT.2016.2522184]. The on-chip filtered optical feedback thus makes the semiconductor ring laser less senstive to the effect of (long) conventional optical feedback. We think these conclusions can be extended to other types of lasers.

  11. Forecast analysis of optical waveguide bus performance

    NASA Technical Reports Server (NTRS)

    Ledesma, R.; Rourke, M. D.

    1979-01-01

    Elements to be considered in the design of a data bus include: architecture; data rate; modulation, encoding, detection; power distribution requirements; protocol, work structure; bus reliability, maintainability; interterminal transmission medium; cost; and others specific to application. Fiber- optic data bus considerations for a 32 port transmissive star architecture, are discussed in a tutorial format. General optical-waveguide bus concepts, are reviewed. The electrical and optical performance of a 32 port transmissive star bus, and the effects of temperature on the performance of optical-waveguide buses are examined. A bibliography of pertinent references and the bus receiver test results are included.

  12. How to obtain a shortest mode converter based on periodic waveguide with limited index contrast?

    NASA Astrophysics Data System (ADS)

    Zhang, Lingxuan; Zhang, Wenfu; Wang, Guoxi; Hu, Yaowei; Ge, Zhiqiang; Wang, Leiran; Sun, Qibing; Wang, Weiqiang; Gong, Yongkang; Zhao, Wei

    2017-05-01

    Mode converter is one of most significant elements in photonic integrated circuits. It relies on increasing index contrast to shorten its length. However, index contrast is limited for technology. In addition, an overlarge index contrast leads to some disadvantages, such as large scattering loss, reflection loss, and small tolerance for manufacturing. Thus, an approximate scheme to design a mode converter is manipulating the transverse distribution of index to achieve the minimum length when the index contrast is given. We have analytically deduced the theoretical maximum coupled efficiency in periodic waveguide, which determines the minimum coupling length of mode converter. What is more, we have demonstrated how to construct a distribution function of indices in a cross section of waveguide to achieve the minimum length and a case is also given to illustrate the process. Proofs, based on both mathematic derivation and numerical simulation, have been exhibited in the paper.

  13. Analyzing the power coupled between partially coherent waveguide fields in different states of coherence.

    PubMed

    Withington, Stafford; Yassin, Ghassan

    2002-07-01

    A procedure is described for calculating the power coupled between partially coherent waveguide fields that are in different states of coherence. The method becomes important when it is necessary to calculate the power transferred from a distributed source S to a distributed load L through a length of multimode metallic, or dielectric, waveguide. It is shown that if the correlations between the transverse components of the electric and magnetic fields of S and L are described by coherence matrices M and M', respectively, then the normalized average power coupled between them is (eta) = Tr[MM']/Tr[M]Tr[M'], where Tr denotes the trace. When the modal impedances are equal, this expression for the coupled power reduces to an equation derived in a previous paper [J. Opt. Soc. Am. A 18, 3061 (2001)], by use of thermodynamic arguments, for the power coupled between partially coherent free-space beams.

  14. Optical waveguides in fluoride lead silicate glasses fabricated by carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Shen, Xiao-liang; Wang, Yue; Zhu, Qi-feng; Lü, Peng; Li, Wei-nan; Liu, Chun-xiao

    2018-03-01

    The carbon ion implantation with energy of 4.0 MeV and a dose of 4.0×1014 ions/cm2 is employed for fabricating the optical waveguide in fluoride lead silicate glasses. The optical modes as well as the effective refractive indices are measured by the prism coupling method. The refractive index distribution in the fluoride lead silicate glass waveguide is simulated by the reflectivity calculation method (RCM). The light intensity profile and the energy losses are calculated by the finite-difference beam propagation method (FD-BPM) and the program of stopping and range of ions in matter (SRIM), respectively. The propagation properties indicate that the C2+ ion-implanted fluoride lead silicate glass waveguide is a candidate for fabricating optical devices.

  15. Engineered surface scatterers in edge-lit slab waveguides to improve light delivery in algae cultivation.

    PubMed

    Ahsan, Syed Saad; Pereyra, Brandon; Jung, Erica E; Erickson, David

    2014-10-20

    Most existing photobioreactors do a poor job of distributing light uniformly due to shading effects. One method by which this could be improved is through the use of internal wave-guiding structures incorporating engineered light scattering schemes. By varying the density of these scatterers, one can control the spatial distribution of light inside the reactor enabling better uniformity of illumination. Here, we compare a number of light scattering schemes and evaluate their ability to enhance biomass accumulation. We demonstrate a design for a gradient distribution of surface scatterers with uniform lateral scattering intensity that is superior for algal biomass accumulation, resulting in a 40% increase in the growth rate.

  16. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Computer model for quasioptic waveguide lasers

    NASA Astrophysics Data System (ADS)

    Wenzel, H.; Wünsche, H. J.

    1988-11-01

    A description is given of a numerical model of a semiconductor laser with a quasioptic waveguide (index guide). This model can be used on a personal computer. The model can be used to find the radiation field distributions in the vertical and lateral directions, the pump currents at the threshold, and also to solve dynamic rate equations.

  17. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Phase locking of the radiation of ring waveguide CO2 lasers

    NASA Astrophysics Data System (ADS)

    Glova, A. F.; Lebedev, E. A.; Lysikov, A. Yu; Shchetnikov, S. B.

    1999-12-01

    Phase locking of the radiation of two ring waveguide CO2 lasers with a common cavity and unidirectional lasing was achieved for an output power of about 20 W. Measurements of the fringe visibility of the radiation intensity distributions in the far-field zone agreed qualitatively with the calculations for plane waves.

  18. Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides.

    PubMed

    Nguyen, Huu-Dat; Ródenas, Airán; Vázquez de Aldana, Javier R; Martínez, Javier; Chen, Feng; Aguiló, Magdalena; Pujol, Maria Cinta; Díaz, Francesc

    2016-04-04

    Mid-infrared lithium niobate cladding waveguides have great potential in low-loss on-chip non-linear optical instruments such as mid-infrared spectrometers and frequency converters, but their three-dimensional femtosecond-laser fabrication is currently not well understood due to the complex interplay between achievable depressed index values and the stress-optic refractive index changes arising as a function of both laser fabrication parameters, and cladding arrangement. Moreover, both the stress-field anisotropy and the asymmetric shape of low-index tracks yield highly birefringent waveguides not useful for most applications where controlling and manipulating the polarization state of a light beam is crucial. To achieve true high performance devices a fundamental understanding on how these waveguides behave and how they can be ultimately optimized is required. In this work we employ a heuristic modelling approach based on the use of standard optical characterization data along with standard computational numerical methods to obtain a satisfactory approximate solution to the problem of designing realistic laser-written circuit building-blocks, such as straight waveguides, bends and evanescent splitters. We infer basic waveguide design parameters such as the complex index of refraction of laser-written tracks at 3.68 µm mid-infrared wavelengths, as well as the cross-sectional stress-optic index maps, obtaining an overall waveguide simulation that closely matches the measured mid-infrared waveguide properties in terms of anisotropy, mode field distributions and propagation losses. We then explore experimentally feasible waveguide designs in the search of a single-mode low-loss behaviour for both ordinary and extraordinary polarizations. We evaluate the overall losses of s-bend components unveiling the expected radiation bend losses of this type of waveguides, and finally showcase a prototype design of a low-loss evanescent splitter. Developing a realistic waveguide model with which robust waveguide designs can be developed will be key for exploiting the potential of the technology.

  19. Ultrafast direct laser writing of cladding waveguides in the 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass doped with Nd3+ ions

    NASA Astrophysics Data System (ADS)

    Martínez de Mendívil, J.; Sola, D.; Vázquez de Aldana, J. R.; Lifante, G.; de Aza, A. H.; Pena, P.; Peña, J. I.

    2015-01-01

    We report on tubular cladding optical waveguides fabricated in Neodymium doped Wollastonite-Tricalcium Phosphate glass in the eutectic composition. The glass samples were prepared by melting the eutectic powder mixture in a Pt-Rh crucible at 1600 °C and pouring it in a preheated brass mould. Afterwards, the glass was annealed to relieve the inner stresses. Cladding waveguides were fabricated by focusing beneath the sample surface using a pulsed Ti:sapphire laser with a pulsewidth of 120 fs working at 1 kHz. The optical properties of these waveguides have been assessed in terms of near-field intensity distribution and transmitted power, and these results have been compared to previously reported waveguides with double-line configuration. Optical properties have also been studied as function of the temperature. Heat treatments up to 700 °C were carried out to diminish colour centre losses where waveguide's modes and transmitted power were compared in order to establish the annealing temperature at which the optimal optical properties were reached. Laser experiments are in progress to evaluate the ability of the waveguides for 1064 nm laser light generation under 800 nm optical pumping.

  20. FIBER OPTICS. ACOUSTOOPTICS: High-frequency magnetooptics of fiber waveguides

    NASA Astrophysics Data System (ADS)

    Antonov, S. N.; Bulyuk, A. N.; Vetoshko, P. M.; Shkerdin, G. N.

    1990-07-01

    An investigation is made of the hf distributed magnetooptic interaction in fiber waveguides associated with the Faraday effect observed under the conditions of both spatial and temporal phase matching between the normal modes of the waveguide and an external magentic field. Analytic expressions are obtained for the main relationships governing modulation of the state of polarization of light in a long fiber waveguide at high and ultrahigh frequencies. An analysis is made of several variants of hf magnetooptic modulators. It is shown that in the specific case when a 10-m long quartz fiber waveguide wound to form a cylindrical coil is placed inside the cavity of a coaxial microwave resonator and the microwave control power is 10 W, the efficiency of modulation of light should be 50%. The main theoretical predictions were supported by the reported experiments. These experiments showed that at a frequency of 80 MHz the modulation efficiency was 1% when the control power was 0.5 W.

  1. Goos-Hänchen effect in semiconductor metamaterial waveguide and its application as a biosensor

    NASA Astrophysics Data System (ADS)

    Tang, Tingting; Li, Chaoyang; Luo, Li; Zhang, Yanfen; Li, Jie

    2016-06-01

    We investigate Goos-Hänchen (GH) effect in a prism waveguide coupling structure with semiconductor metamaterial (SMM) of ZnGaO/ZnO multilayer and explore the possibility as a biosensor. The GH effect in three different waveguides and their performances as a refractive index sensor to detect glycerol concentration in water are analyzed. The SMM brings a periodic property of GH shift peaks which is not found in other waveguides. It is also verified that setting coupling layer of the prism waveguide coupling structure as sensing area is an effective method to significantly increase the sensitivity to refractive index variation. A schematic diagram for the biosensor configuration is designed, and the sensitivity distribution for different glycerol water index is given. Calculation results show that in the proposed biosensor the maximum sensitivity reaches 3.2 × 106 μm/RIU and resolution reaches 1.6 × 10-7 (around 1.33306) with high sensitive position sensitive detector.

  2. Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate.

    PubMed

    Nishi, Hidetaka; Fujii, Takuro; Takeda, Koji; Hasebe, Koichi; Kakitsuka, Takaaki; Tsuchizawa, Tai; Yamamoto, Tsuyoshi; Yamada, Koji; Matsuo, Shinji

    2016-08-08

    We demonstrate monolithic integration of a 50-μm-long-cavity membrane distributed-reflector laser with a spot-size converter, consisting of a tapered InP wire waveguide and an SiOx waveguide, on SiO2/Si substrate. The device exhibits 9.4-GHz/mA0.5 modulation efficiency with a 2.2-dB fiber coupling loss. We demonstrate 25.8-Gbit/s direct modulation with a bias current of 2.5 mA, resulting in a low energy cost of 132 fJ/bit.

  3. Multicolored Emission and Lasing in DCM-Adamantane Plasma Nanocomposite Optical Films.

    PubMed

    Alcaire, María; Cerdán, Luis; Zamarro, Fernando Lahoz; Aparicio, Francisco J; González, Juan Carlos; Ferrer, Francisco J; Borras, Ana; Espinós, Juan Pedro; Barranco, Angel

    2017-03-15

    We present a low-temperature versatile protocol for the fabrication of plasma nanocomposite thin films to act as tunable emitters and optical gain media. The films are obtained by the remote plasma-assisted deposition of a 4-(dicyano-methylene)-2-methyl-6-(4-dimethylamino-styryl)-4H-pyran (DCM) laser dye alongside adamantane. The experimental parameters that determine the concentration of the dye in the films and their optical properties, including light absorption, the refractive index, and luminescence, are evaluated. Amplified spontaneous emission experiments in the DCM/adamantane nanocomposite waveguides show the improvement of the copolymerized nanocomposites' properties compared to films that were deposited with DCM as the sole precursor. Moreover, one-dimensional distributed feed-back laser emission is demonstrated and characterized in some of the nanocomposite films that are studied. These results open new paths for the optimization of the optical and lasing properties of plasma nanocomposite polymers, which can be straightforwardly integrated as active components in optoelectronic devices.

  4. Terahertz light-emitting graphene-channel transistor toward single-mode lasing

    NASA Astrophysics Data System (ADS)

    Yadav, Deepika; Tamamushi, Gen; Watanabe, Takayuki; Mitsushio, Junki; Tobah, Youssef; Sugawara, Kenta; Dubinov, Alexander A.; Satou, Akira; Ryzhii, Maxim; Ryzhii, Victor; Otsuji, Taiichi

    2018-03-01

    A distributed feedback dual-gate graphene-channel field-effect transistor (DFB-DG-GFET) was fabricated as a current-injection terahertz (THz) light-emitting laser transistor. We observed a broadband emission in a 1-7.6-THz range with a maximum radiation power of 10 μW as well as a single-mode emission at 5.2 THz with a radiation power of 0.1 μW both at 100 K when the carrier injection stays between the lower cutoff and upper cutoff threshold levels. The device also exhibited peculiar nonlinear threshold-like behavior with respect to the current-injection level. The LED-like broadband emission is interpreted as an amplified spontaneous THz emission being transcended to a single-mode lasing. Design constraints on waveguide structures for better THz photon field confinement with higher gain overlapping as well as DFB cavity structures with higher Q factors are also addressed towards intense, single-mode continuous wave THz lasing at room temperature.

  5. High Efficiency, Low Power-Consumption DFB Quantum Cascade Lasers Without Lateral Regrowth

    NASA Astrophysics Data System (ADS)

    Jia, Zhi-Wei; Wang, Li-Jun; Zhang, Jin-Chuan; Liu, Feng-Qi; Zhou, Yu-Hong; Wang, Dong-Bo; Jia, Xue-Feng; Zhuo, Ning; Liu, Jun-Qi; Zhai, Shen-Qiang; Wang, Zhan-Guo

    2017-04-01

    Very low power-consumption distributed feedback (DFB) quantum cascade lasers (QCLs) at the wavelength around 4.9 μm were fabricated by conventional process without lateral regrowth of InP:Fe or using sidewall grating. Benefitted from the optimized materials and low waveguide loss, very low threshold current density of 0.5 kA/cm2 was obtained for a device with cavity length of 2 mm. Combined with the partial-high-reflection coating, the 1-mm-long DFB QCL achieved low power-consumption continuous wave (CW) operation up to 105 °C. The CW threshold power-consumptions were 0.72 and 0.78 W at 15 and 25 °C, respectively. The maximum CW output power was over 110 mW at 15 °C and still more than 35 mW at 105 °C. At 15 °C, wall-plug efficiency of 5.5% and slope efficiency of 1.8 W/A were deduced, which were very high for low power-consumption DFB QCLs.

  6. Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µm

    NASA Astrophysics Data System (ADS)

    Yan, Y. C.; Faber, A. J.; de Waal, H.; Kik, P. G.; Polman, A.

    1997-11-01

    Erbium-doped multicomponent phosphate glass waveguides were deposited by rf sputtering techniques. The Er concentration was 5.3×1020cm-3. By pumping the waveguide at 980 nm with a power of ˜21 mW, a net optical gain of 4.1 dB at 1.535 μm was achieved. This high gain per unit length at low pump power could be achieved because the Er-Er cooperative upconversion interactions in this heavily Er-doped phosphate glass are very weak [the upconversion coefficient is (2.0±0.5)×10-18 cm3/s], presumably due to the homogeneous distribution of Er in the glass and due to the high optical mode confinement in the waveguide which leads to high pump power density at low pump power.

  7. Corrugated Waveguide Mode Content Analysis Using Irradiance Moments

    PubMed Central

    Jawla, Sudheer K.; Shapiro, Michael A.; Idei, Hiroshi; Temkin, Richard J.

    2015-01-01

    We present a novel, relatively simple method for determining the mode content of the linearly polarized modes of a corrugated waveguide using the moments of the intensity pattern of the field radiated from the end of the waveguide. This irradiance moment method is based on calculating the low-order irradiance moments, using measured intensity profiles only, of the radiated field from the waveguide aperture. Unlike the phase retrieval method, this method does not use or determine the phase distribution at the waveguide aperture. The new method was benchmarked numerically by comparison with sample mode mixtures. The results predict less than ±0.7% error bar in the retrieval of the mode content. The method was also tested using high-resolution experimental data from beams radiated from 63.5 mm and 19 mm corrugated waveguides at 170 and 250 GHz, respectively. The results showed a very good agreement of the mode content retrieved using the irradiance moment method versus the phase retrieval technique. The irradiance moment method is most suitable for cases where the modal power is primarily in the fundamental HE11 mode, with <8% of the power in high-order modes. PMID:25821260

  8. Electrically driven hybrid Si/III-V Fabry-Pérot lasers based on adiabatic mode transformers.

    PubMed

    Ben Bakir, B; Descos, A; Olivier, N; Bordel, D; Grosse, P; Augendre, E; Fulbert, L; Fedeli, J M

    2011-05-23

    We report the first demonstration of an electrically driven hybrid silicon/III-V laser based on adiabatic mode transformers. The hybrid structure is formed by two vertically superimposed waveguides separated by a 100-nm-thick SiO2 layer. The top waveguide, fabricated in an InP/InGaAsP-based heterostructure, serves to provide optical gain. The bottom Si-waveguides system, which supports all optical functions, is constituted by two tapered rib-waveguides (mode transformers), two distributed Bragg reflectors (DBRs) and a surface-grating coupler. The supermodes of this hybrid structure are controlled by an appropriate design of the tapers located at the edges of the gain region. In the middle part of the device almost all the field resides in the III-V waveguide so that the optical mode experiences maximal gain, while in regions near the III-V facets, mode transformers ensure an efficient transfer of the power flow towards Si-waveguides. The investigated device operates under quasi-continuous wave regime. The room temperature threshold current is 100 mA, the side-mode suppression ratio is as high as 20 dB, and the fiber-coupled output power is ~7 mW.

  9. Analysis of a Waveguide-Fed Metasurface Antenna

    NASA Astrophysics Data System (ADS)

    Smith, David R.; Yurduseven, Okan; Mancera, Laura Pulido; Bowen, Patrick; Kundtz, Nathan B.

    2017-11-01

    The metasurface concept has emerged as an advantageous reconfigurable antenna architecture for beam forming and wave-front shaping, with applications that include satellite and terrestrial communications, radar, imaging, and wireless power transfer. The metasurface antenna consists of an array of metamaterial elements distributed over an electrically large structure, each subwavelength in dimension and with subwavelength separation between elements. In the antenna configuration we consider, the metasurface is excited by the fields from an attached waveguide. Each metamaterial element can be modeled as a polarizable dipole that couples the waveguide mode to radiation modes. Distinct from the phased array and electronically-scanned-antenna architectures, a dynamic metasurface antenna does not require active phase shifters and amplifiers but rather achieves reconfigurability by shifting the resonance frequency of each individual metamaterial element. We derive the basic properties of a one-dimensional waveguide-fed metasurface antenna in the approximation in which the metamaterial elements do not perturb the waveguide mode and are noninteracting. We derive analytical approximations for the array factors of the one-dimensional antenna, including the effective polarizabilities needed for amplitude-only, phase-only, and binary constraints. Using full-wave numerical simulations, we confirm the analysis, modeling waveguides with slots or complementary metamaterial elements patterned into one of the surfaces.

  10. Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates.

    PubMed

    Wang, Yipei; Ma, Yaoguang; Guo, Xin; Tong, Limin

    2012-08-13

    Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates are investigated using a finite-element method. Au and Ag are selected as plasmonic materials for nanowire waveguides with diameters down to 5-nm-level. Typical dielectric materials with relatively low to high refractive indices, including magnesium fluoride (MgF2), silica (SiO2), indium tin oxide (ITO) and titanium dioxide (TiO2), are used as supporting substrates. Basic waveguiding properties, including propagation constants, power distributions, effective mode areas, propagation distances and losses are obtained at the typical plasmonic resonance wavelength of 660 nm. Compared to that of a freestanding nanowire, the mode area of a substrate-supported nanowire could be much smaller while maintaining an acceptable propagation length. For example, the mode area and propagation length of a 100-nm-diameter Ag nanowire with a MgF2 substrate are about 0.004 μm2 and 3.4 μm, respectively. The dependences of waveguiding properties on geometric and material parameters of the nanowire-substrate system are also provided. Our results may provide valuable references for waveguiding dielectric-supported metal nanowires for practical applications.

  11. Towards an integrated AlGaAs waveguide platform for phase and polarisation shaping

    NASA Astrophysics Data System (ADS)

    Maltese, G.; Halioua, Y.; Lemaître, A.; Gomez-Carbonell, C.; Karimi, E.; Banzer, P.; Ducci, S.

    2018-05-01

    We propose, design and fabricate an on-chip AlGaAs waveguide capable of generating a controlled phase delay of π/2 between the guided transverse electric and magnetic modes. These modes possess significantly strong longitudinal field components as a direct consequence of their strong lateral confinement in the waveguide. We demonstrate that the effect of the device on a linearly polarised input beam is the generation of a field, which is circularly polarised in its transverse components and carries a phase vortex in its longitudinal component. We believe that the discussed integrated platform enables the generation of light beams with tailored phase and polarisation distributions.

  12. III-V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2-4 μm Wavelength Range.

    PubMed

    Wang, Ruijun; Vasiliev, Anton; Muneeb, Muhammad; Malik, Aditya; Sprengel, Stephan; Boehm, Gerhard; Amann, Markus-Christian; Šimonytė, Ieva; Vizbaras, Augustinas; Vizbaras, Kristijonas; Baets, Roel; Roelkens, Gunther

    2017-08-04

    The availability of silicon photonic integrated circuits (ICs) in the 2-4 μm wavelength range enables miniature optical sensors for trace gas and bio-molecule detection. In this paper, we review our recent work on III-V-on-silicon waveguide circuits for spectroscopic sensing in this wavelength range. We first present results on the heterogeneous integration of 2.3 μm wavelength III-V laser sources and photodetectors on silicon photonic ICs for fully integrated optical sensors. Then a compact 2 μm wavelength widely tunable external cavity laser using a silicon photonic IC for the wavelength selective feedback is shown. High-performance silicon arrayed waveguide grating spectrometers are also presented. Further we show an on-chip photothermal transducer using a suspended silicon-on-insulator microring resonator used for mid-infrared photothermal spectroscopy.

  13. III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range

    PubMed Central

    Wang, Ruijun; Vasiliev, Anton; Muneeb, Muhammad; Malik, Aditya; Sprengel, Stephan; Boehm, Gerhard; Amann, Markus-Christian; Šimonytė, Ieva; Vizbaras, Augustinas; Vizbaras, Kristijonas; Baets, Roel; Roelkens, Gunther

    2017-01-01

    The availability of silicon photonic integrated circuits (ICs) in the 2–4 μm wavelength range enables miniature optical sensors for trace gas and bio-molecule detection. In this paper, we review our recent work on III–V-on-silicon waveguide circuits for spectroscopic sensing in this wavelength range. We first present results on the heterogeneous integration of 2.3 μm wavelength III–V laser sources and photodetectors on silicon photonic ICs for fully integrated optical sensors. Then a compact 2 μm wavelength widely tunable external cavity laser using a silicon photonic IC for the wavelength selective feedback is shown. High-performance silicon arrayed waveguide grating spectrometers are also presented. Further we show an on-chip photothermal transducer using a suspended silicon-on-insulator microring resonator used for mid-infrared photothermal spectroscopy. PMID:28777291

  14. Ultrafast direct laser writing of cladding waveguides in the 0.8CaSiO{sub 3}-0.2Ca{sub 3}(PO{sub 4}){sub 2} eutectic glass doped with Nd{sup 3+} ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez de Mendívil, J., E-mail: jon.martinez@uam.es; Lifante, G.; Sola, D.

    2015-01-28

    We report on tubular cladding optical waveguides fabricated in Neodymium doped Wollastonite-Tricalcium Phosphate glass in the eutectic composition. The glass samples were prepared by melting the eutectic powder mixture in a Pt-Rh crucible at 1600 °C and pouring it in a preheated brass mould. Afterwards, the glass was annealed to relieve the inner stresses. Cladding waveguides were fabricated by focusing beneath the sample surface using a pulsed Ti:sapphire laser with a pulsewidth of 120 fs working at 1 kHz. The optical properties of these waveguides have been assessed in terms of near-field intensity distribution and transmitted power, and these results have been comparedmore » to previously reported waveguides with double-line configuration. Optical properties have also been studied as function of the temperature. Heat treatments up to 700 °C were carried out to diminish colour centre losses where waveguide's modes and transmitted power were compared in order to establish the annealing temperature at which the optimal optical properties were reached. Laser experiments are in progress to evaluate the ability of the waveguides for 1064 nm laser light generation under 800 nm optical pumping.« less

  15. High-Power Single-Mode 2.65-micron InGaAsSb/AlInGaAsSb Diode Lasers

    NASA Technical Reports Server (NTRS)

    Frez, Clifford F.; Briggs, Ryan M.; Forouhar, Siamak; Borgentun, Carl E.; Gupta, James

    2013-01-01

    Central to the advancement of both satellite and in-situ science are improvements in continuous-wave and pulsed infrared laser systems coupled with integrated miniaturized optics and electronics, allowing for the use of powerful, single-mode light sources aboard both satellite and unmanned aerial vehicle platforms. There is a technological gap in supplying adequate laser sources to address the mid-infrared spectral window for spectroscopic characterization of important atmospheric gases. For high-power applications between 2 to 3 micron, commercial laser technologies are unsuitable because of limitations in output power. For instance, existing InP-based laser systems developed for fiber-based telecommunications cannot be extended to wavelengths longer than 2 micron. For emission wavelengths shorter than 3 micron, intersubband devices, such as infrared quantum cascade lasers, become inefficient due to band-offset limitations. To date, successfully demonstrated singlemode GaSb-based laser diodes emitting between 2 and 3 micron have employed lossy metal Bragg gratings for distributed- feedback coupling, which limits output power due to optical absorption. By optimizing both the quantum well design and the grating fabrication process, index-coupled distributed-feedback 2.65-micron lasers capable of emitting in excess of 25 mW at room temperature have been demonstrated. Specifically, lasers at 3,777/cm (2.65 micron) have been realized to interact with strong absorption lines of HDO and other isotopologues of H2O. With minor modifications of the optical cavity and quantum well designs, lasers can be fabricated at any wavelength within the 2-to-3-micron spectral window with similar performance. At the time of this reporting, lasers with this output power and wavelength accuracy are not commercially available. Monolithic ridge-waveguide GaSb lasers were fabricated that utilize secondorder lateral Bragg gratings to generate single-mode emission from InGaAsSb/ AlInGaAsSb multi-quantum well structures. The device fabrication utilizes etched index-coupled gratings in the top AlGaAsSb cladding of the laser chip along the ridge waveguide, whereas commercial lasers that emit close to this wavelength include loss-coupled metal gratings that limit the output power of the laser. Semiconductor-laser-based spectrometers can be used to replace gas sensors currently used in industry and government. With the availability of high-power laser sources at mid-infrared wavelengths, sensors can target strong fundamental gas absorption lines to maximize instrument sensitivity.

  16. Particle-in-cell simulation of multipactor discharge on a dielectric in a parallel-plate waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakharov, A. S., E-mail: sakharov-as@mail.ru; Ivanov, V. A.; Konyzhev, M. E.

    2016-06-15

    An original 2D3V (two-dimensional in coordinate space and three-dimensional in velocity space) particle-in-cell code has been developed for simulation of multipactor discharge on a dielectric in a parallelplate metal waveguide with allowance for secondary electron emission (SEE) from the dielectric surface and waveguide walls, finite temperature of secondary electrons, electron space charge, and elastic and inelastic scattering of electrons from the dielectric and metal surfaces. The code allows one to simulate all stages of the multipactor discharge, from the onset of the electron avalanche to saturation. It is shown that the threshold for the excitation of a single-surface multipactor onmore » a dielectric placed in a low-profile waveguide with absorbing walls increases as compared to that in the case of an unbounded dielectric surface due to escape of electrons onto the waveguide walls. It is found that, depending on the microwave field amplitude and the SEE characteristics of the waveguide walls, the multipactor may operate in two modes. In the first mode, which takes place at relatively low microwave amplitudes, a single-surface multipactor develops only on the dielectric, the surface of which acquires a positively potential with respect to the waveguide walls. In the second mode, which occurs at sufficiently high microwave intensities, a single-surface multipactor on the dielectric and a two-surface multipactor between the waveguide walls operate simultaneously. In this case, both the dielectric surface and the interwall space acquire a negative potential. It is shown that electron scattering from the dielectric surface and waveguide walls results in the appearance of high-energy tails in the electron distribution function.« less

  17. Finite Ground Coplanar (FGC) Waveguide: Characteristics and Advantages Evaluated for Radiofrequency and Wireless Communication Circuits

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.

    1999-01-01

    Researchers in NASA Lewis Research Center s Electron Device Technology Branch are developing transmission lines for radiofrequency and wireless circuits that are more efficient, smaller, and make lower cost circuits possible. Traditionally, radiofrequency and wireless circuits have employed a microstrip or coplanar waveguide to interconnect the various electrical elements that comprise a circuit. Although a coplanar waveguide (CPW) is widely viewed as better than a microstrip for most applications, it too has problems. To solve these problems, NASA Lewis and the University of Michigan developed a new version of a coplanar waveguide with electrically narrow ground planes. Through extensive numerical modeling and experimental measurements, we have characterized the propagation constant of the FGC waveguide, the lumped and distributed circuit elements integrated in the FGC waveguide, and the coupling between parallel transmission lines. Although the attenuation per unit length is higher for the FGC waveguide because of higher conductor loss, the attenuation is comparable when the ground plane width is twice the center conductor width as shown in the following graph. An upper limit to the line width is derived from observations that when the total line width is greater than ld/2, spurious resonances due to the parallel plate waveguide mode are established. Thus, the ground plane width must be less than ld/4 where ld is the wavelength in the dielectric. Since the center conductor width S is typically less than l/10 to maintain good transverse electromagnetic mode characteristics, it follows that a ground plane width of B = 2S would also be electrically narrow. Thus, we can now treat the ground strips of the FGC waveguide the same way that the center conductor is treated.

  18. Highly nonlinear sub-micron silicon nitride trench waveguide coated with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Huang, Yuewang; Zhao, Qiancheng; Sharac, Nicholas; Ragan, Regina; Boyraz, Ozdal

    2015-05-01

    We demonstrate the fabrication of a highly nonlinear sub-micron silicon nitride trench waveguide coated with gold nanoparticles for plasmonic enhancement. The average enhancement effect is evaluated by measuring the spectral broadening effect caused by self-phase-modulation. The nonlinear refractive index n2 was measured to be 7.0917×10-19 m2/W for a waveguide whose Wopen is 5 μm. Several waveguides at different locations on one wafer were measured in order to take the randomness of the nanoparticle distribution into consideration. The largest enhancement is measured to be as high as 10 times. Fabrication of this waveguide started with a MEMS grade photomask. By using conventional optical lithography, the wide linewidth was transferred to a <100> wafer. Then the wafer was etched anisotropically by potassium hydroxide (KOH) to engrave trapezoidal trenches with an angle of 54.7º. Side wall roughness was mitigated by KOH etching and thermal oxidation that was used to generate a buffer layer for silicon nitride waveguide. The guiding material silicon nitride was then deposited by low pressure chemical vapor deposition. The waveguide was then patterned with a chemical template, with 20 nm gold particles being chemically attached to the functionalized poly(methyl methacrylate) domains. Since the particles attached only to the PMMA domains, they were confined to localized regions, therefore forcing the nanoparticles into clusters of various numbers and geometries. Experiments reveal that the waveguide has negligible nonlinear absorption loss, and its nonlinear refractive index can be greatly enhanced by gold nano clusters. The silicon nitride trench waveguide has large nonlinear refractive index, rendering itself promising for nonlinear applications.

  19. Finite Ground Coplanar (FGC) Waveguide: It's Characteristics and Advantages for Use in RF and Wireless Communication Circuits

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Katehi, Linda P. B.; Tentzeris, Emmanouil M.

    1998-01-01

    To solve many of the problems encountered when using conventional coplanar waveguide (CPW) with its semi-infinite ground planes, a new version of coplanar waveguide with electrically narrow ground planes has been developed. This new transmission line which we call Finite Ground Coplanar (FGC) waveguide has several advantages which make it a better transmission line for RF and wireless circuits. Since the ground planes are electrically narrow, spurious resonances created by the CPW ground planes and the metal carrier or package base are eliminated. In addition, lumped and distributed circuit elements may now be integrated into the ground strips in the same way as they traditionally have been integrated into the center conductor to realize novel circuit layouts that are smaller and have less parasitic reactance. Lastly, FGC is shown to have lower coupling between adjacent transmission lines than conventional CPW.

  20. Design and experimental observation of valley-Hall edge states in diatomic-graphene-like elastic waveguides

    NASA Astrophysics Data System (ADS)

    Zhu, Hongfei; Liu, Ting-Wei; Semperlotti, Fabio

    2018-05-01

    We report on the design and experimental validation of a two-dimensional phononic elastic waveguide exhibiting topological valley-Hall edge states. The lattice structure of the waveguide is inspired by diatomic graphene, and it is imprinted in an initially flat plate by means of geometric indentations. The indentations are distributed according to a hexagonal lattice structure which guarantees the existence of Dirac dispersion at the boundary of the Brillouin zone. Starting from this basic material, domain walls capable of supporting edge states can be obtained by contrasting waveguides having broken space-inversion symmetry (SIS) achieved by using local resonant elements. Our theoretical study shows that such material maps into the acoustic analog of the quantum valley-Hall effect, while numerical and experimental results confirm the existence of protected edge states traveling along the walls of topologically distinct domains.

  1. Wavelength-division multiplexed optical integrated circuit with vertical diffraction grating

    NASA Technical Reports Server (NTRS)

    Lang, Robert J. (Inventor); Forouhar, Siamak (Inventor)

    1994-01-01

    A semiconductor optical integrated circuit for wave division multiplexing has a semiconductor waveguide layer, a succession of diffraction grating points in the waveguide layer along a predetermined diffraction grating contour, a semiconductor diode array in the waveguide layer having plural optical ports facing the succession of diffraction grating points along a first direction, respective semiconductor diodes in the array corresponding to respective ones of a predetermined succession of wavelengths, an optical fiber having one end thereof terminated at the waveguide layer, the one end of the optical fiber facing the succession of diffraction grating points along a second direction, wherein the diffraction grating points are spatially distributed along the predetermined contour in such a manner that the succession of diffraction grating points diffracts light of respective ones of the succession of wavelengths between the one end of the optical fiber and corresponding ones of the optical ports.

  2. High intersubband absorption in long-wave quantum well infrared photodetector based on waveguide resonance

    NASA Astrophysics Data System (ADS)

    Zheng, Yuanliao; Chen, Pingping; Ding, Jiayi; Yang, Heming; Nie, Xiaofei; Zhou, Xiaohao; Chen, Xiaoshuang; Lu, Wei

    2018-06-01

    A hybrid structure consisting of periodic gold stripes and an overlaying gold film has been proposed as the optical coupler of a long-wave quantum well infrared photodetector. Absorption spectra and field distributions of the structure at back-side normal incidence are calculated by the finite difference time-domain method. The results indicate that the intersubband absorption can be greatly enhanced based on the waveguide resonance as well as the surface plasmon polariton (SPP) mode. With the optimized structural parameters of the periodic gold stripes, the maximal intersubband absorption can exceed 80%, which is much higher than the SPP-enhanced intersubband absorption (<50%) and about 6 times the one of the standard device. The relationship between the structural parameters and the waveguide resonant wavelength is derived. Other advantages of the efficient optical coupling based on waveguide resonance are also discussed.

  3. Slab waveguide photobioreactors for microalgae based biofuel production.

    PubMed

    Jung, Erica Eunjung; Kalontarov, Michael; Doud, Devin F R; Ooms, Matthew D; Angenent, Largus T; Sinton, David; Erickson, David

    2012-10-07

    Microalgae are a promising feedstock for sustainable biofuel production. At present, however, there are a number of challenges that limit the economic viability of the process. Two of the major challenges are the non-uniform distribution of light in photobioreactors and the inefficiencies associated with traditional biomass processing. To address the latter limitation, a number of studies have demonstrated organisms that directly secrete fuels without requiring organism harvesting. In this paper, we demonstrate a novel optofluidic photobioreactor that can help address the light distribution challenge while being compatible with these chemical secreting organisms. Our approach is based on light delivery to surface bound photosynthetic organisms through the evanescent field of an optically excited slab waveguide. In addition to characterizing organism growth-rates in the system, we also show here, for the first time, that the photon usage efficiency of evanescent field illumination is comparable to the direct illumination used in traditional photobioreactors. We also show that the stackable nature of the slab waveguide approach could yield a 12-fold improvement in the volumetric productivity.

  4. Two-dimensional interferometric characterization of laser-induced refractive index profiles in bulk Topas polymer

    NASA Astrophysics Data System (ADS)

    Hessler, Steffen; Rosenberger, Manuel; Schmauss, Bernhard; Hellmann, Ralf

    2018-01-01

    In this paper we precisely determine laser-induced refractive index profiles created in cyclic olefin copolymer Topas 6017 employing a sophisticated phase shifting Mach-Zehnder interferometry approach. Beyond the usual one-dimensional modification depth measurement we highlight that for straight waveguide structures also a two-dimensional refractive index distribution can be directly obtained providing full information of a waveguide's exact cross section and its gradient refractive index contrast. Deployed as direct data input in optical waveguide simulation, the evaluated 2D refractive index profiles permit a detailed calculation of the waveguides' actual mode profiles. Furthermore, conventional one-dimensional interferometric measurements for refractive index depth profiles with varying total imposed laser fluence of a 248 nm KrF excimer laser are included to investigate the effect on refractive index modification depth. Maximum surface refractive index increase turns out to attain up to 1.86 ·10-3 enabling laser-written optical waveguide channels. Additionally, a comprehensive optical material characterization in terms of dispersion, thermo-optic coefficient and absorption measurement of unmodified and UV-modified Topas 6017 is carried out.

  5. Improved power steering with double and triple ring waveguide systems: the impact of the operating frequency.

    PubMed

    Kok, H P; de Greef, M; Borsboom, P P; Bel, A; Crezee, J

    2011-01-01

    Regional hyperthermia systems with 3D power steering have been introduced to improve tumour temperatures. The 3D 70-MHz AMC-8 system has two rings of four waveguides. The aim of this study is to evaluate whether T(90) will improve by using a higher operating frequency and whether further improvement is possible by adding a third ring. Optimised specific absorption rate (SAR) distributions were evaluated for a centrally located target in tissue-equivalent phantoms, and temperature optimisation was performed for five cervical carcinoma patients with constraints to normal tissue temperatures. The resulting T(90) and the thermal iso-effect dose (i.e. the number of equivalent min at 43°C) were evaluated and compared to the 2D 70-MHz AMC-4 system with a single ring of four waveguides. FDTD simulations were performed at 2.5 × 2.5 × 5 mm(3) resolution. The applied frequencies were 70, 100, 120, 130, 140 and 150 MHz. Optimised SAR distributions in phantoms showed an optimal SAR distribution at 140 MHz. For the patient simulations, an optimal increase in T(90) was observed at 130 MHz. For a two-ring system at 70 MHz the gain in T(90) was about 0.5°C compared to the AMC-4 system, averaged over the five patients. At 130 MHz the average gain in T(90) was ~1.5°C and ~2°C for a two and three-ring system, respectively. This implies an improvement of the thermal iso-effect dose with a factor ~12 and ~30, respectively. Simulations showed that a 130-MHz two-ring waveguide system yields significantly higher tumour temperatures compared to 70-MHz single-ring and double-ring waveguide systems. Temperatures were further improved with a 130-MHz triple-ring system.

  6. Analytical relation between effective mode field area and waveguide dispersion in microstructure fibers.

    PubMed

    Moenster, Mathias; Steinmeyer, Günter; Iliew, Rumen; Lederer, Falk; Petermann, Klaus

    2006-11-15

    For optical fibers exhibiting a radially symmetric refractive index profile, there exists an analytical relation that connects waveguide dispersion and the Petermann-II mode field radius. We extend the usefulness of this relation to the nonradially symmetric case of microstructure fibers in the anomalous dispersion regime, yielding a simple relation between dispersion and effective mode field area. Assuming a Gaussian mode distribution, we derive a fundamental upper limit for the effective mode field area that is required to obtain a certain amount of anomalous waveguide dispersion. This relation is demonstrated to show excellent agreement for fiber designs suited for supercontinuum generation and soliton lasers in the near infrared.

  7. Surface enhanced Raman scattering spectroscopic waveguide

    DOEpatents

    Lascola, Robert J; McWhorter, Christopher S; Murph, Simona H

    2015-04-14

    A waveguide for use with surface-enhanced Raman spectroscopy is provided that includes a base structure with an inner surface that defines a cavity and that has an axis. Multiple molecules of an analyte are capable of being located within the cavity at the same time. A base layer is located on the inner surface of the base structure. The base layer extends in an axial direction along an axial length of an excitation section. Nanoparticles are carried by the base layer and may be uniformly distributed along the entire axial length of the excitation section. A flow cell for introducing analyte and excitation light into the waveguide and a method of applying nanoparticles may also be provided.

  8. Integrated plasmonic semi-circular launcher for dielectric-loaded surface plasmon-polariton waveguide.

    PubMed

    Li, Xiaowei; Huang, Lingling; Tan, Qiaofeng; Bai, Benfeng; Jin, Guofan

    2011-03-28

    A semi-circular plasmonic launcher integrated with dielectric-loaded surface plasmon-polaritons waveguide (DLSPPW) is proposed and analyzed theoretically, which can focus and efficiently couple the excited surface plasmon polaritons (SPPs) into the DLSPPW via the highly matched spatial field distribution with the waveguide mode in the focal plane. By tuning the incident angle or polarization of the illuminating beam, it is shown that the launcher may be conveniently used as a switch or a multiplexer that have potential applications in plasmonic circuitry. Furthermore, from an applicational point of view, it is analyzed how the coupling performance of the launcher can be further improved by employing multiple semi-circular slits.

  9. Quasi Eighth-Mode Substrate Integrated Waveguide (SIW) Fractal Resonator Filter Utilizing Gap Coupling Compensation

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Rao, Jia-Yu; Tai, Wen-Si; Wang, Ting; Liu, Fa-Lin

    2016-09-01

    In this paper, a kind of quasi eighth substrate integrated waveguide resonator (QESIWR) with defected fractal structure (DFS) is proposed firstly. Compared with the eighth substrate integrated waveguide resonator (ESIWR), this kind of resonator has lower resonant frequency (f0), acceptable unloaded quality (Qu) value and almost unchanged electric field distribution. In order to validate the properties of QESIWR, a cascaded quadruplet QESIWRs filter is designed and optimized. By using cross coupling and gap coupling compensation, this filter has two transmission zeros (TZs) at each side of the passband. Meanwhile, in comparison with the conventional ones, its size is cut down over 90 %. The measured results agree well with the simulated ones.

  10. Sub-wavelength grating structure on the planar waveguide (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Qing-Song, Zhu; Sheng-Hui, Chen

    2016-10-01

    Making progress in recent years, with the technology of the grating, the grating period can be reduced to shrink the size of the light coupler on a waveguide. The working wavelength of the light coupler can be in the range from the near-infrared to visible. In this study , we used E-gun evaporation system with ion-beam-assisted deposition system to fabricate bottom cladding (SiO2), guiding layer (Ta2O5) and Distributed Bragg Reflector(DBR) of the waveguide on the silicon substrate. Electron-beam lithography is used to make sub-wavelength gratings and reflector grating on the planar waveguide which is a coupling device on the guiding layer. The best fabrication parameters were analyzed to deposit the film. The exposure and development times also influenced to fabricate the grating quality. The purpose is to reduce the device size and enhance coupling efficiency which maintain normal incidence of the light . We designed and developed the device using the Finite-Difference Time-Domain (FDTD) method. The grating period, depth, fill factor, film thickness, Distributed Bragg Reflector(DBR) numbers and reflector grating period have been discussed to enhance coupling efficiency and maintained normal incidence of the light. According to the simulation results, when the wavelength is 1300 nm, the coupling grating period is 720 nm and the Ta2O5 film is 460 nm with 360 nm of reflector grating period and 2 layers of Distributed Bragg Reflector, which had the optimum coupling efficiency and normal incidence angle. In the measurement, We successfully measured the TE wave coupling efficiency of the photoresist grating coupling device.

  11. New waveguide-type HOM damper for ALS storage ring cavities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwiatkowski, Slawomir; Baptiste, Kenneth; Julian, James

    2004-06-28

    The ALS storage ring 500 MHz RF system uses two re-entrant accelerating cavities powered by a single 320kW PHILLIPS YK1305 klystron. During several years of initial operation, the RF cavities were not equipped with effective passive HOM damper systems. Longitudinal beam stability was achieved through cavity temperature control and the longitudinal feedback system (LFB), which was often operating at the edge of its capabilities. As a result, longitudinal beam stability was a significant operations issue at the ALS. During two consecutive shutdown periods (April 2002 and 2003) we installed E-type HOM dampers on the main and third harmonic cavities. Thesemore » devices dramatically decreased the Q-values of the longitudinal anti-symmetric HOM modes. The next step is to damp the rest of the longitudinal HOM modes in the main cavities below the synchrotron radiation damping level. This will hopefully eliminate the need for the LFB and set the stage for a possible increase in beam current. The ''waveguide'' type of HOM damper was the only option that didn't significantly compromise the vacuum performance of the RF cavity. The design process and the results of the low level measurements of the new waveguide dampers are presented in this paper.« less

  12. Micromanipulation and microfabrication for optical microrobotics

    NASA Astrophysics Data System (ADS)

    Palima, Darwin; Bañas, Andrew Rafael; Vizsnyiczai, Gaszton; Kelemen, Lóránd; Aabo, Thomas; Ormos, Pál.; Glückstad, Jesper

    2012-10-01

    Robotics can use optics feedback in vision-based control of intelligent robotic guidance systems. With light's miniscule momentum, shrinking robots down to the microscale regime creates opportunities for exploiting optical forces and torques in microrobotic actuation and control. Indeed, the literature on optical trapping and micromanipulation attests to the possibilities for optical microrobotics. This work presents an optical microrobotics perspective on the optical microfabrication and micromanipulation work that we performed. We designed different three-dimensional microstructures and fabricated them by two-photon polymerization. These microstructures were then handled using our biophotonics workstation (BWS) for proof-of-principle demonstrations of optical actuation, akin to 6DOF actuation of robotic micromanipulators. Furthermore, we also show an example of dynamic behavior of the trapped microstructure that can be achieved when using static traps in the BWS. This can be generalized, in the future, towards a structural shaping optimization strategy for optimally controlling microstructures to complement approaches based on lightshaping. We also show that light channeled to microfabricated, free-standing waveguides can be used not only to redirect light for targeted delivery of optical energy but can also for targeted delivery of optical force, which can serve to further extend the manipulation arms in optical robotics. Moreover, light deflection with waveguide also creates a recoil force on the waveguide, which can be exploited for controlling the optical force.

  13. Two different ways for waveguides and optoelectronics components on top of C-MOS

    NASA Astrophysics Data System (ADS)

    Fedeli, J. M.; Jeannot, S.; Kostrzewa, M.; Di Cioccio, L.; Jousseaume, V.; Orobtchouk, R.; Maury, P.; Zussy, M.

    2006-02-01

    While fabrication of photonic components at the wafer level is a long standing goal of integrated optics, new applications such as optical interconnects are introducing new challenges for waveguides and optoelectronic component fabrication. Indeed, global interconnects are expected to face severe limitations in the near future. To face this problem, optical links on top of a CMOS circuits could be an alternative. The critical points to perform an optical link on a chip are firstly the realization of compact passive optical distribution and secondly the report of optoelectronic components for the sources and detectors. This paper presents two different approaches for the integration of both waveguides and optoelectronic components. In a first "total bonding" approach, waveguides have been elaborated using classical "Silicon On Insulators" technology and then reported using molecular bonding on top off Si wafers. The S0I substrate was then chemically etched, after what InP dies were moleculary bonded on top of the waveguides. With this approach, optical components with low loses and a good equilibrium are demonsrated. Using molecular bonding, InP dies were reported with no degradation of the optoelectronic properties of the films. In a second approach, using PECVD silicon nitride or amorphous silicon coupled to PECVD silicon oxide, basic optical components are demonstrated. This low temperature technology is compatible with a microelectronic Back End process, allowing an integration of the waveguides directly on top of CMOS circuits. InP dies can then be bonded on top of the waveguides.

  14. Optical solver for a system of ordinary differential equations based on an external feedback assisted microring resonator.

    PubMed

    Hou, Jie; Dong, Jianji; Zhang, Xinliang

    2017-06-15

    Systems of ordinary differential equations (SODEs) are crucial for describing the dynamic behaviors in various systems such as modern control systems which require observability and controllability. In this Letter, we propose and experimentally demonstrate an all-optical SODE solver based on the silicon-on-insulator platform. We use an add/drop microring resonator to construct two different ordinary differential equations (ODEs) and then introduce two external feedback waveguides to realize the coupling between these ODEs, thus forming the SODE solver. A temporal coupled mode theory is used to deduce the expression of the SODE. A system experiment is carried out for further demonstration. For the input 10 GHz NRZ-like pulses, the measured output waveforms of the SODE solver agree well with the calculated results.

  15. Wavelength-controlled external-cavity laser with a silicon photonic crystal resonant reflector

    NASA Astrophysics Data System (ADS)

    Gonzalez-Fernandez, A. A.; Liles, Alexandros A.; Persheyev, Saydulla; Debnath, Kapil; O'Faolain, Liam

    2016-03-01

    We report the experimental demonstration of an alternative design of external-cavity hybrid lasers consisting of a III-V Semiconductor Optical Amplifier with fiber reflector and a Photonic Crystal (PhC) based resonant reflector on SOI. The Silicon reflector comprises a polymer (SU8) bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and sidemode suppression ratio of more than 25 dB.

  16. Spectroscopic Feedback for High Density Data Storage and Micromachining

    DOEpatents

    Carr, Christopher W.; Demos, Stavros; Feit, Michael D.; Rubenchik, Alexander M.

    2008-09-16

    Optical breakdown by predetermined laser pulses in transparent dielectrics produces an ionized region of dense plasma confined within the bulk of the material. Such an ionized region is responsible for broadband radiation that accompanies a desired breakdown process. Spectroscopic monitoring of the accompanying light in real-time is utilized to ascertain the morphology of the radiated interaction volume. Such a method and apparatus as presented herein, provides commercial realization of rapid prototyping of optoelectronic devices, optical three-dimensional data storage devices, and waveguide writing.

  17. Study on photonic angular momentum states in coaxial magneto-optical waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Mu; Wu, Li-Ting; Guo, Tian-Jing

    2014-10-21

    By rigorously solving Maxwell's equations, we develop a full-wave electromagnetic theory for the study of photonic angular momentum states (PAMSs) in coaxial magneto-optical (MO) waveguides. Paying attention to a metal-MO-metal coaxial configuration, we show that the dispersion curves of the originally degenerated PAMSs experience a splitting, which are determined by the off-diagonal permittivity tensor element of the MO medium. We emphasize that this broken degeneracy in dispersion relation is accompanied by modified distributions of field component and transverse energy flux. A qualitative analysis about the connection between the split dispersion behavior and the field distribution is provided. Potential applications aremore » discussed.« less

  18. Integrated Optics Anisotropic Waveguides and Devices

    DTIC Science & Technology

    1989-04-30

    INTEGRATED OPTICS ANISOTROPIC WAVEGUIDES AND DEVICESto N FINAL REPORT Thomas K. Gaylord April 30, 1989 U. S. ARMY RESEARCH OFFICE Grant Number...DAAL03-86-K-0157 Georgia Institute of Technology ELECTE S JAN2 2 1990 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 90 01 22 13j4 THE VIEW, OPINIONS...Electrical Engr. (if appicable) Georgia Institute of Technolog] U. S. Army Research Office k. ADDRESS (City, State, a"d ZIP Code) 7b. ADDRESS (City, State

  19. FIBER AND INTEGRATED OPTICS. FIBER WAVEGUIDE DEVICES: Fiber Michelson interferometer with a 50-km difference between its arms

    NASA Astrophysics Data System (ADS)

    Dianov, Evgenii M.; Kuznetsov, A. V.; Makarenko, A. Yu; Okhotnikov, O. G.; Prokhorov, A. M.; Shcherbakov, E. A.

    1990-12-01

    Single-mode fiber waveguides were used in constructing a Michelson interferometer with a 50-km difference between its arm lengths. An analysis was made of its resolving power as a function of the parameters of the optical part and of the characteristics of the electronic apparatus used in the system. The width of a spectral emission line of a semiconductor laser with a distributed Rayleigh fiber resonator was determined.

  20. Microbubble-assisted optofluidic control using a photothermal waveguide

    NASA Astrophysics Data System (ADS)

    Cheng, YuPeng; Yang, JianXin; Li, ZongBao; Zhu, DeBin; Cai, Xiang; Hu, Xiaowen; Huang, Wen; Xing, XiaoBo

    2017-10-01

    A convenient and easily controllable microfluidic system was proposed based on a photothermal device. Here, graphene oxide was assembled on an optical waveguide, which could serve as a miniature heat source to generate a microbubble and to control dynamic behaviors of flow by adjusting optical power at the micrometer scale. Micro/nanoparticles were used to demonstrate the trace of fluid flow around the microbubble, which displayed the ability of the flow to capture, transmit, and rotate particles in thermal convection. Correspondingly, three-dimensional theoretical simulation combining thermodynamics with hydrodynamics analyzed the distribution of the velocity field induced by the microbubble for collection and driving of particles. Furthermore, the photothermal waveguide would be developed into a microbubble-based device in the manipulation or transmission of micro/nanoparticles.

  1. Design of Planar Leaky Wave Antenna Fed by Substrate Integrated Waveguide Horn

    NASA Astrophysics Data System (ADS)

    Cai, Yang; Zhang, Yingsong; Qian, Zuping

    2017-12-01

    A metal strip grating leaky wave antenna (MSG-LWA) fed by substrate integrated waveguide (SIW) horn is proposed. The planar horn shares the same substrate with the MSG-LWA, which leads to a compact structure of the proposed antenna. Furthermore, through introducing phase-corrected structure by embedding metallized vias into the SIW horn, a nearly uniform phase distribution at the horn aperture is obtained, which effectively enhances the radiating performance of the MSG-LWA. Results indicate that the proposed antenna scans from -50° to -25° in the frequency band ranging from 15.3 GHz to 17.3 GHz. Besides, effectiveness of the proposed design is validated by comparing with a same MSG-LWA fed by an ideal rectangular waveguide.

  2. Quantum interference and complex photon statistics in waveguide QED

    NASA Astrophysics Data System (ADS)

    Zhang, Xin H. H.; Baranger, Harold U.

    2018-02-01

    We obtain photon statistics by using a quantum jump approach tailored to a system in which one or two qubits are coupled to a one-dimensional waveguide. Photons confined in the waveguide have strong interference effects, which are shown to play a vital role in quantum jumps and photon statistics. For a single qubit, for instance, the bunching of transmitted photons is heralded by a jump that increases the qubit population. We show that the distribution and correlations of waiting times offer a clearer and more precise characterization of photon bunching and antibunching. Further, the waiting times can be used to characterize complex correlations of photons which are hidden in g(2 )(τ ) , such as a mixture of bunching and antibunching.

  3. Theoretical Study of Monolayer and Double-Layer Waveguide Love Wave Sensors for Achieving High Sensitivity.

    PubMed

    Li, Shuangming; Wan, Ying; Fan, Chunhai; Su, Yan

    2017-03-22

    Love wave sensors have been widely used for sensing applications. In this work, we introduce the theoretical analysis of the monolayer and double-layer waveguide Love wave sensors. The velocity, particle displacement and energy distribution of Love waves were analyzed. Using the variations of the energy repartition, the sensitivity coefficients of Love wave sensors were calculated. To achieve a higher sensitivity coefficient, a thin gold layer was added as the second waveguide on top of the silicon dioxide (SiO₂) waveguide-based, 36 degree-rotated, Y-cut, X-propagating lithium tantalate (36° YX LiTaO₃) Love wave sensor. The Love wave velocity was significantly reduced by the added gold layer, and the flow of wave energy into the waveguide layer from the substrate was enhanced. By using the double-layer structure, almost a 72-fold enhancement in the sensitivity coefficient was achieved compared to the monolayer structure. Additionally, the thickness of the SiO₂ layer was also reduced with the application of the gold layer, resulting in easier device fabrication. This study allows for the possibility of designing and realizing robust Love wave sensors with high sensitivity and a low limit of detection.

  4. Corrugated metal surface with pillars for terahertz surface plasmon polariton waveguide components

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Xu, Yuehong; Tian, Chunxiu; Xu, Quan; Zhang, Xueqian; Li, Yanfeng; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2018-01-01

    In the terahertz regime, due to perfect conductivity of most metals, it is hard to realize a strong confinement of Surface plasmon polaritons (SPPs) although a propagation loss could be sufficiently low. We experimentally demonstrated a structure with periodic pillars arranged on a thin metal surface that supports bound modes of spoof SPPs at terahertz (THz) frequencies. By using scanning near-field THz microscopy, the electric field distribution above the metal surface within a distance of 130 μm was mapped. The results proved that this structure could guide spoof SPPs propagating along subwavelength waveguides, and at the same time reduce field expansion into free space. Further, for the development of integrated optical circuits, several components including straight waveguide, S-bend, Y-splitter and directional couplers were designed and characterized by the same method. We believe that the waveguide components proposed here will pave a new way for the development of flexible, wideband and compact photonic circuits operating at THz frequencies.

  5. Single Spatial-Mode Room-Temperature-Operated 3.0 to 3.4 micrometer Diode Lasers

    NASA Technical Reports Server (NTRS)

    Frez, Clifford F.; Soibel, Alexander; Belenky, Gregory; Shterengas, Leon; Kipshidze, Gela

    2010-01-01

    Compact, highly efficient, 3.0 to 3.4 m light emitters are in demand for spectroscopic analysis and identification of chemical substances (including methane and formaldehyde), infrared countermeasures technologies, and development of advanced infrared scene projectors. The need for these light emitters can be currently addressed either by bulky solid-state light emitters with limited power conversion efficiency, or cooled Interband Cascade (IC) semiconductor lasers. Researchers here have developed a breakthrough approach to fabrication of diode mid-IR lasers that have several advantages over IC lasers used for the Mars 2009 mission. This breakthrough is due to a novel design utilizing the strain-engineered quantum-well (QW) active region and quinternary barriers, and due to optimization of device material composition and growth conditions (growth temperatures and rates). However, in their present form, these GaSb-based laser diodes cannot be directly used as a part of sensor systems. The device spectrum is too broad to perform spectroscopic analysis of gas species, and operating currents and voltages are too high. In the current work, the emitters were fabricated as narrow-ridge waveguide index-guided lasers rather than broad stripe-gain guided multimode Fabry-Perot (FP) lasers as was done previously. These narrow-ridge waveguide mid-IR lasers exhibit much lower power consumptions, and can operate in a single spatial mode that is necessary for demonstration of single-mode distributed feedback (DBF) devices for spectroscopic applications. These lasers will enable a new generation of compact, tunable diode laser spectrometers with lower power consumption, reduced complexity, and significantly reduced development costs. These lasers can be used for the detection of HCN, C2H2, methane, and ethane.

  6. High Efficiency, Low Power-Consumption DFB Quantum Cascade Lasers Without Lateral Regrowth.

    PubMed

    Jia, Zhi-Wei; Wang, Li-Jun; Zhang, Jin-Chuan; Liu, Feng-Qi; Zhou, Yu-Hong; Wang, Dong-Bo; Jia, Xue-Feng; Zhuo, Ning; Liu, Jun-Qi; Zhai, Shen-Qiang; Wang, Zhan-Guo

    2017-12-01

    Very low power-consumption distributed feedback (DFB) quantum cascade lasers (QCLs) at the wavelength around 4.9 μm were fabricated by conventional process without lateral regrowth of InP:Fe or using sidewall grating. Benefitted from the optimized materials and low waveguide loss, very low threshold current density of 0.5 kA/cm 2 was obtained for a device with cavity length of 2 mm. Combined with the partial-high-reflection coating, the 1-mm-long DFB QCL achieved low power-consumption continuous wave (CW) operation up to 105 °C. The CW threshold power-consumptions were 0.72 and 0.78 W at 15 and 25 °C, respectively. The maximum CW output power was over 110 mW at 15 °C and still more than 35 mW at 105 °C. At 15 °C, wall-plug efficiency of 5.5% and slope efficiency of 1.8 W/A were deduced, which were very high for low power-consumption DFB QCLs.

  7. Interfacing ion-exchanged waveguide for the efficient excitation of surface plasmons (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Beltran Madrigal, Josslyn; Berthel, Martin; Gardillou, Florent; Tellez Limon, Ricardo; Couteau, Christophe; Barbier, Denis; Drezet, Aurelien; Salas-Montiel, Rafael; Huant, Serge; Blaize, Sylvain

    2015-09-01

    Several works have already shown that the excitation of plasmonic structures through waveguides enables a strong light confinement and low propagation losses [1]. This kind of excitation is currently exploited in areas such as biosensing [2], nanocircuits[3] and spectroscopy[4]. Efficient excitation of surface plasmon modes (SPP) with guided modes supported by high-index-contrast waveguides, such as silicon-on-insulator waveguides, had already been shown [1,5], however, the use of weak-confined guided modes of an ion exchanged waveguide on glass as a source of excitation of SPP represents a scientific and technological breakthrough. This is because the integration of plasmonic structures into low-index-contrast waveguide increases the bandwidth of operation and compatibility with conventional optical fibers. In this work, we describe how an adiabatic tapered coupler formed by an intermediate high-index-contrast layer placed between a plasmonic structure and an ion-exchanged waveguide decreases the mismatch between effective indices, size, and shape of the guided modes. This hybrid structure concentrates the electromagnetic energy from the micrometer to the nanometer scale with low coupling losses to radiative modes. The electromagnetic mode confined to the high-index-contrast waveguide then works as an efficient source of SPP supported by metallic nanostructures placed on its surface. We theoretically studied the modal properties and field distribution along the adiabatic coupler structure. In addition, we fabricated a high-index-contrast waveguide by electron beam lithography and thermal evaporation on top of an ion-exchanged waveguide on glass. This structure was characterized with the use of near field scanning optical microscopy (NSOM). Numerical simulations were compared with the experimental results. [1] N. Djaker, R. Hostein, E. Devaux, T. W. Ebbesen, and H. Rigneault, and J. Wenger, J. Phys. Chem. C 114, 16250 (2010). [2] P. Debackere, S. Scheerlinck, P. Bienstman, R. Baets, Opt. Express 14, 7063 (2006).] [3] A. A. Reiserer, J.-S. Huang, B. Hecht, and T. Brixner. Opt. Express 18(11), 11810-11820 (2010). [4] R. Salas-Montiel, A. Apuzzo, C. Delacour, Z. Sedaghat, A. Bruyant et al. Appl. Phys Lett 100, 231109 (2012) [5] A. Apuzzo M. Févier, M. Salas-Montiel et al. Nano letters, 13, 1000-1006

  8. Control of deviations and prediction of surface roughness from micro machining of THz waveguides using acoustic emission signals

    NASA Astrophysics Data System (ADS)

    Griffin, James M.; Diaz, Fernanda; Geerling, Edgar; Clasing, Matias; Ponce, Vicente; Taylor, Chris; Turner, Sam; Michael, Ernest A.; Patricio Mena, F.; Bronfman, Leonardo

    2017-02-01

    By using acoustic emission (AE) it is possible to control deviations and surface quality during micro milling operations. The method of micro milling is used to manufacture a submillimetre waveguide where micro machining is employed to achieve the required superior finish and geometrical tolerances. Submillimetre waveguide technology is used in deep space signal retrieval where highest detection efficiencies are needed and therefore every possible signal loss in the receiver has to be avoided and stringent tolerances achieved. With a sub-standard surface finish the signals travelling along the waveguides dissipate away faster than with perfect surfaces where the residual roughness becomes comparable with the electromagnetic skin depth. Therefore, the higher the radio frequency the more critical this becomes. The method of time-frequency analysis (STFT) is used to transfer raw AE into more meaningful salient signal features (SF). This information was then correlated against the measured geometrical deviations and, the onset of catastrophic tool wear. Such deviations can be offset from different AE signals (different deviations from subsequent tests) and feedback for a final spring cut ensuring the geometrical accuracies are met. Geometrical differences can impact on the required transfer of AE signals (change in cut off frequencies and diminished SNR at the interface) and therefore errors have to be minimised to within 1 μm. Rules based on both Classification and Regression Trees (CART) and Neural Networks (NN) were used to implement a simulation displaying how such a control regime could be used as a real time controller, be it corrective measures (via spring cuts) over several initial machining passes or, with a micron cut introducing a level plain measure for allowing setup corrective measures (similar to a spirit level).

  9. Propagation of eigenmodes and transfer functions in waveguide WDM structures

    NASA Astrophysics Data System (ADS)

    Mashkov, Vladimir A.; Francoeur, S.; Geuss, U.; Neiser, K.; Temkin, Henryk

    1998-02-01

    A method of propagation functions and transfer amplitudes suitable for the design of integrated optical circuits is presented. The method is based on vectorial formulation of electrodynamics: the distributions and propagation of electromagnetic fields in optical circuits is described by equivalent surface sources. This approach permits a division of complex optical waveguide structures into sets of primitive blocks and to separately calculate the transfer function and the transfer amplitude for each block. The transfer amplitude of the entire optical system is represented by a convolution of transfer amplitudes of its primitive blocks. The eigenvalues and eigenfunctions of arbitrary waveguide structure are obtained in the WKB approximation and compared with other methods. The general approach is illustrated with the transfer amplitude calculations for Dragone's star coupler and router.

  10. FIBER AND INTEGRAL OPTICS: Mode composition of radiation in graded-index waveguides with random microbending of the axis

    NASA Astrophysics Data System (ADS)

    Valyaev, A. B.; Krivoshlykov, S. G.

    1989-06-01

    It is shown that the problem of investigating the mode composition of a partly coherent radiation beam in a randomly inhomogeneous medium can be reduced to a study of evolution of the energy of individual modes and of the coefficients of correlations between the modes. General expressions are obtained for the coupling coefficients of modes in a parabolic waveguide with a random microbending of the axis and an analysis is made of their evolution as a function of the excitation conditions. An estimate is obtained of the distance in which a steady-state energy distribution between the modes is established. Explicit expressions are obtained for the correlation function in the case when a waveguide is excited by off-axial Gaussian beams or Gauss-Hermite modes.

  11. Thermographic analysis of waveguide-irradiated insect pupae

    NASA Astrophysics Data System (ADS)

    Olsen, Richard G.; Hammer, Wayne C.

    1982-01-01

    Pupae of the insect Tenebrio molitor L. were thermographically imaged during waveguide irradiation through longitudinal slots. T. molitor pupae have been subjects of microwave-induced teratology for a number of years, but until now the smallness of the insect has prevented detailed dosimetry. High-resolution thermographic imaging equipment was used to obtain the magnitude and spatial distribution of absorbed microwave energy at three frequencies, 1.3, 5.95, and 10 GHz. The detail of the thermal images obtained is sufficient to show the differential heating of structures as small as a single insect leg. Results show that the electrical properties of the head, thorax, and abdomen are sufficiently different to seriously impair the usefulness of any theoretical dosimetric model of homogeneous composition. Some general features of correlation with a slab model in waveguide are given.

  12. Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing.

    PubMed

    Ródenas, Airán; Nejadmalayeri, Amir H; Jaque, Daniel; Herman, Peter

    2008-09-01

    We report on the confocal Raman characterization of the micro-structural lattice changes induced during the high-repetition rate ultrafast laser writing of buried optical waveguides in lithium niobate (LiNbO(3)) crystals. While the laser beam focal volume is characterized by a significant lattice expansion together with a high defect concentration, the adjacent waveguide zone is largely free of defects, undergoing only slight rearrangement of the oxygen octahedron in the LiNbO(3) lattice. The close proximity of these two zones has been found responsible for the propagation losses of the guided light. Subjacent laser-induced periodic micro-structures have been also observed inside the laser focal volume, and identified with a strong periodic distribution of lattice defects.

  13. Design of novel dual-port tapered waveguide plasma apparatus by numerical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, D.; Zhou, R.; Yang, X. Q., E-mail: yyxxqq-mail@163.com

    Microwave plasma apparatus is often of particular interest due to their superiority of low cost, electrode contamination free, and suitability for industrial production. However, there exist problems of unstable plasma and low electron density in conventional waveguide apparatus based on single port, due to low strength and non-uniformity of microwave field. This study proposes a novel dual-port tapered waveguide plasma apparatus based on power-combining technique, to improve the strength and uniformity of microwave field for the applications of plasma. A 3D model of microwave-induced plasma (field frequency 2.45 GHz) in argon at atmospheric pressure is presented. On the condition thatmore » the total input power is 500 W, simulations indicate that coherent power-combining will maximize the electric-field strength to 3.32 × 10{sup 5 }V/m and improve the uniformity of distributed microwave field, which raised 36.7% and 47.2%, respectively, compared to conventional waveguide apparatus of single port. To study the optimum conditions for industrial application, a 2D argon fluid model based on above structure is presented. It demonstrates that relatively uniform and high-density plasma is obtained at an argon flow rate of 200 ml/min. The contrastive result of electric-field distribution, electron density, and gas temperature is also valid and clearly proves the superiority of coherent power-combining to conventional technique in flow field.« less

  14. Lithographic wavelength control of an external cavity laser with a silicon photonic crystal cavity-based resonant reflector.

    PubMed

    Liles, Alexandros A; Debnath, Kapil; O'Faolain, Liam

    2016-03-01

    We report the experimental demonstration of a new design for external cavity hybrid lasers consisting of a III-V semiconductor optical amplifier (SOA) with fiber reflector and a photonic crystal (PhC)-based resonant reflector on SOI. The silicon reflector is composed of an SU8 polymer bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and side-mode suppression ratios of more than 25 dB.

  15. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription

    PubMed Central

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R.; Chen, Feng

    2016-01-01

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions. PMID:26924255

  16. Study of multipactor suppression of microwave components using perforated waveguide technology for space applications

    NASA Astrophysics Data System (ADS)

    Ye, Ming; Li, Yun; He, Yongning; Daneshmand, Mojgan

    2017-05-01

    With the development of space technology, microwave components with increased power handling capability and reduced weight have been urgently required. In this work, the perforated waveguide technology is proposed to suppress the multipactor effect of high power microwave components. Meanwhile, this novel method has the advantage of reducing components' weight, which makes it to have great potential in space applications. The perforated part of the waveguide components can be seen as an electron absorber (namely, its total electron emission yield is zero) since most of the electrons impacting on this part will go out of the components. Based on thoroughly benchmarked numerical simulation procedures, we simulated an S band and an X band waveguide transformer to conceptually verify this idea. Both electron dynamic simulations and electrical loss simulations demonstrate that the perforation technology can improve the multipactor threshold at least ˜8 dB while maintaining the acceptable insertion loss level compared with its un-perforated components. We also found that the component with larger minimum gap is easier to achieve multipactor suppression. This effect is interpreted by a parallel plate waveguide model. What's more, to improve the multipactor threshold of the X band waveguide transformer with a minimum gap of ˜0.1 mm, we proposed a perforation structure with the slope edge and explained its mechanism. Future study will focus on further optimization of the perforation structure, size, and distribution to maximize the comprehensive performances of microwave components.

  17. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription.

    PubMed

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R; Chen, Feng

    2016-02-29

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions.

  18. Engineered Quasi-Phase Matching for Nonlinear Quantum Optics in Waveguides

    NASA Astrophysics Data System (ADS)

    Van Camp, Mackenzie A.

    Entanglement is the hallmark of quantum mechanics. Quantum entanglement--putting two or more identical particles into a non-factorable state--has been leveraged for applications ranging from quantum computation and encryption to high-precision metrology. Entanglement is a practical engineering resource and a tool for sidestepping certain limitations of classical measurement and communication. Engineered nonlinear optical waveguides are an enabling technology for generating entangled photon pairs and manipulating the state of single photons. This dissertation reports on: i) frequency conversion of single photons from the mid-infrared to 843nm as a tool for incorporating quantum memories in quantum networks, ii) the design, fabrication, and test of a prototype broadband source of polarization and frequency entangled photons; and iii) a roadmap for further investigations of this source, including applications in quantum interferometry and high-precision optical metrology. The devices presented herein are quasi-phase-matched lithium niobate waveguides. Lithium niobate is a second-order nonlinear optical material and can mediate optical energy conversion to different wavelengths. This nonlinear effect is the basis of both quantum frequency conversion and entangled photon generation, and is enhanced by i) confining light in waveguides to increase conversion efficiency, and ii) quasi-phase matching, a technique for engineering the second-order nonlinear response by locally altering the direction of a material's polarization vector. Waveguides are formed by diffusing titanium into a lithium niobate wafer. Quasi-phase matching is achieved by electric field poling, with multiple stages of process development and optimization to fabricate the delicate structures necessary for broadband entangled photon generation. The results presented herein update and optimize past fabrication techniques, demonstrate novel optical devices, and propose future avenues for device development. Quantum frequency conversion from 1848nm to 843nm is demonstrated for the first time, with >75% single-photon conversion efficiency. A new electric field poling methodology is presented, combining elements from multiple historical techniques with a new fast-feedback control system. This poling technique is used to fabricate the first chirped-and-apodized Type-II quasi-phase-matched structures in titanium-diffused lithium niobate waveguides, culminating in a measured phasematching spectrum that is predominantly Gaussian ( R2 = 0.80), nearly eight times broader than the unchirped spectrum, and agrees well with simulations.

  19. Multi-layer topological transmissions of spoof surface plasmon polaritons.

    PubMed

    Pan, Bai Cao; Zhao, Jie; Liao, Zhen; Zhang, Hao Chi; Cui, Tie Jun

    2016-03-04

    Spoof surface plasmon polaritons (SPPs) in microwave frequency provide a high field confinement in subwavelength scale and low-loss and flexible transmissions, which have been widely used in novel transmission waveguides and functional devices. To play more important roles in modern integrated circuits and systems, it is necessary and helpful for the SPP modes to propagate among different layers of devices and chips. Owing to the highly confined property and organized near-field distribution, we show that the spoof SPPs could be easily transmitted from one layer into another layer via metallic holes and arc-shaped transitions. Such designs are suitable for both the ultrathin and flexible single-strip SPP waveguide and double-strip SPP waveguide for active SPP devices. Numerical simulations and experimental results demonstrate the broadband and high-efficiency multi-layer topological transmissions with controllable absorption that is related to the superposition area of corrugated metallic strips. The transmission coefficient of single-strip SPP waveguide is no worse than -0.8 dB within frequency band from 2.67 GHz to 10.2 GHz while the transmission of double-strip SPP waveguide keeps above -1 dB within frequency band from 2.26 GHz to 11.8 GHz. The proposed method will enhance the realizations of highly complicated plasmonic integrated circuits.

  20. Characterisation of slab waveguides, fabricated in CaF2 and Er-doped tungsten-tellurite glass by MeV energy N+ ion implantation, using spectroscopic ellipsometry and m-line spectroscopy

    NASA Astrophysics Data System (ADS)

    Bányász, I.; Berneschi, S.; Lohner, T.; Fried, M.; Petrik, P.; Khanh, N. Q.; Zolnai, Z.; Watterich, A.; Bettinelli, M.; Brenci, M.; Nunzi-Conti, G.; Pelli, S.; Righini, G. C.; Speghini, A.

    2010-05-01

    Slab waveguides were fabricated in Er-doped tungsten-tellurite glass and CaF2 crystal samples via ion implantation. Waveguides were fabricated by implantation of MeV energy N+ ions at the Van de Graaff accelerator of the Research Institute for Particle and Nuclear Physics, Budapest, Hungary. Part of the samples was annealed. Implantations were carried out at energies of 1.5 MeV (tungsten-tellurite glass) and 3.5 MeV (CaF2). The implanted doses were between 5 x 1012 and 8 x 1016 ions/cm2. Refractive index profile of the waveguides was measured using SOPRA ES4G and Woollam M-2000DI spectroscopic ellipsometers at the Research Institute for Technical Physics and Materials Science, Budapest. Functionality of the waveguides was tested using a home-made instrument (COMPASSO), based on m-line spectroscopy and prism coupling technique, which was developed at the Materials and Photonics Devices Laboratory (MDF Lab.) of the Institute of Applied Physics in Sesto Fiorentino, Italy. Results of both types of measurements were compared to depth distributions of nuclear damage in the samples, calculated by SRIM 2007 code. Thicknesses of the guiding layer and of the implanted barrier obtained by spectroscopic ellipsometry correspond well to SRIM simulations. Irradiationinduced refractive index modulation saturated around a dose of 8 x 1016 ions/cm2 in tungsten-tellurite glass. Annealing of the implanted waveguides resulted in a reduction of the propagation loss, but also reduced the number of supported guiding modes at the lower doses. We report on the first working waveguides fabricated in an alkali earth halide crystal implanted by MeV energy medium-mass ions.

  1. Radiation of charged particle bunches in corrugated waveguides with small period

    NASA Astrophysics Data System (ADS)

    Tyukhtin, A. V.; Vorobev, V. V.; Akhmatova, E. R.; Antipov, S.

    2018-04-01

    Bunch radiation in periodical waveguides was mainly analyzed for situations when wavelengths are comparable to the structure period (Smith-Purcell emission). However, it is also interesting to study long wave radiation with wavelengths which are much greater than the structure period. In this paper, the electromagnetic field is analyzed using the method of equivalent boundary conditions. According to this approach, the exact boundary conditions on the complex periodic surface are replaced with certain equivalent conditions which must be fulfilled on the smooth surface. We consider a vacuum circular waveguide with a corrugated conductive wall (corrugation has rectangular form). The charge moves along the waveguide axis. The period and the depth of corrugation are much less than the waveguide radius and wavelengths under consideration. Expressions for the full field components and the wave field components are obtained. It is established that radiation consists of the only one TM waveguide mode which is excited if the charge velocity is more than certain limit value. Dependencies of the frequency and amplitude of the mode on the charge velocity and parameters of corrugation are analyzed. It is demonstrated that typical amplitude of waveguide mode from the ultra relativistic bunch has the same order as one in the ordinary regular waveguides with dielectric filling. In order to verify the method applied in this work we have simulated the electromagnetic field using the CST Particle Studio. For this purpose, we have considered the charged particle bunch with negligible thickness and Gaussian longitudinal distribution. It has been shown that the coincidence between theoretical and simulated results is good. This fact confirms that the theory based on the equivalent boundary conditions adequately describe the radiation process in the situation under consideration. The obtained results can be useful for development of methods of the electromagnetic radiation generation and technique of the wakefield acceleration of charged particles.

  2. Optical coupling of bare optoelectronic components and flexographically printed polymer waveguides in planar optronic systems

    NASA Astrophysics Data System (ADS)

    Wang, Yixiao; Wolfer, Tim; Lange, Alex; Overmeyer, Ludger

    2016-05-01

    Large scale, planar optronic systems allowing spatially distributed functionalities can be well used in diverse sensor networks, such as for monitoring the environment by measuring various physical quantities in medicine or aeronautics. In these systems, mechanically flexible and optically transparent polymeric foils, e.g. polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET), are employed as carrier materials. A benefit of using these materials is their low cost. The optical interconnections from light sources to light transmission structures in planar optronic systems occupy a pivotal position for the sensing functions. As light sources, we employ the optoelectronic components, such as edgeemitting laser diodes, in form of bare chips, since their extremely small structures facilitate a high integration compactness and ensure sufficient system flexibility. Flexographically printed polymer optical waveguides are deployed as light guiding structures for short-distance communication in planar optronic systems. Printing processes are utilized for this generation of waveguides to achieve a cost-efficient large scale and high-throughput production. In order to attain a high-functional optronic system for sensing applications, one of the most essential prerequisites is the high coupling efficiency between the light sources and the waveguides. Therefore, in this work, we focus on the multimode polymer waveguide with a parabolic cross-section and investigate its optical coupling with the bare laser diode. We establish the geometrical model of the alignment based on the previous works on the optodic bonding of bare laser diodes and the fabrication process of polymer waveguides with consideration of various parameters, such as the beam profile of the laser diode, the employed polymer properties of the waveguides as well as the carrier substrates etc. Accordingly, the optical coupling of the bare laser diodes and the polymer waveguides was simulated. Additionally, we demonstrate optical links by adopting the aforementioned processes used for defining the simulation. We verify the feasibility of the developed processes for planar optronic systems by using an active alignment and conduct discussions for further improvements of optical alignment.

  3. Guided-wave approaches to spectrally selective energy absorption

    NASA Technical Reports Server (NTRS)

    Stegeman, G. I.; Burke, J. J.

    1987-01-01

    Results of experiments designed to demonstrate spectrally selective absorption in dielectric waveguides on semiconductor substrates are reported. These experiments were conducted with three waveguides formed by sputtering films of PSK2 glass onto silicon-oxide layers grown on silicon substrates. The three waveguide samples were studied at 633 and 532 nm. The samples differed only in the thickness of the silicon-oxide layer, specifically 256 nm, 506 nm, and 740 nm. Agreement between theoretical predictions and measurements of propagation constants (mode angles) of the six or seven modes supported by these samples was excellent. However, the loss measurements were inconclusive because of high scattering losses in the structures fabricated (in excess of 10 dB/cm). Theoretical calculations indicated that the power distribution among all the modes supported by these structures will reach its steady state value after a propagation length of only 1 mm. Accordingly, the measured loss rates were found to be almost independent of which mode was initially excited. The excellent agreement between theory and experiment leads to the conclusion that low loss waveguides confirm the predicted loss rates.

  4. Brillouin-Mandelstam spectroscopy of standing spin waves in a ferrite waveguide

    NASA Astrophysics Data System (ADS)

    Balinskiy, Michael; Kargar, Fariborz; Chiang, Howard; Balandin, Alexander A.; Khitun, Alexander G.

    2018-05-01

    This article reports results of experimental investigation of the spin wave interference over large distances in the Y3Fe2(FeO4)3 waveguide using Brillouin-Mandelstam spectroscopy. Two coherent spin waves are excited by the micro-antennas fabricated at the edges of the waveguide. The amplitudes of the input spin waves are adjusted to provide approximately the same intensity in the central region of the waveguide. The relative phase between the excited spin waves is controlled by the phase shifter. The change of the local intensity distribution in the standing spin wave is monitored using Brillouin-Mandelstam light scattering spectroscopy. Experimental data demonstrate the oscillation of the scattered light intensity depending on the relative phase of the interfering spin waves. The oscillations of the intensity, tunable via the relative phase shift, are observed as far as 7.5 mm away from the spin-wave generating antennas at room temperature. The obtained results are important for developing techniques for remote control of spin currents, with potential applications in spin-based memory and logic devices.

  5. Nonlinear Kerr enhancement of the Sagnac effect in a coherently coupled array of optical microresonators

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Search, Christopher

    2013-03-01

    Optical gyroscopes based on the Sagnac effect are of great interest both theoretically and practically. Previously it has been suggested a nonlinear Kerr medium inserted into a ring resonator gyroscope can largely increase the rotation sensitivity due to an instability caused by the non-reciprocal self-phase and cross-phase modulations. Recently, coupled microresonator arrays such as Side-Coupled Integrated Spaced Sequence of Resonators (SCISSOR) and Coupled Resonator Optical Waveguides (CROW) have drawn interest as potential integrated gyroscopes due to the sensitivity enhancement resulting from distributed interference between resonators. Here we analyze a SCISSOR system, which consists of an array of microresonators evanescently coupled to two parallel bus waveguides in the presence of a strong intra-resonator Kerr nonlinearity. We show that the distributed interference in the waveguides combined with the nonlinearly enhanced Sagnac effect in the resonators can further improve the sensitivity compared with either a single resonator of equal footprint or SCISSOR without a Kerr nonlinearity. Numerical simulation shows that bistability in the SCISSOR occurs and the rotation sensitivity dIoutput/dω can go to infinity near the boundaries of the bistable region.

  6. Mode and polarization state selected guided wave spectroscopy of orientational anisotrophy in model membrane cellulosic polymer films: relevance to lab-on-a-chip

    NASA Astrophysics Data System (ADS)

    Andrews, Mark P.; Kanigan, Tanya

    2007-06-01

    Orientation anisotropies in structural properties relevant to the use of cellulosic polymers as membranes for lab-on-chips were investigated for cellulose acetate (CA) and regenerated cellulose (RC) films deposited as slab waveguides. Anisotropy was probed with mode and polarization state selected guided wave Raman spectroscopy. CA exhibits partial chain orientation in the plane of the film, and this orientation is independent of sample substrate and film preparation conditions. RC films also show in-plane anisotropy, where the hexose sugar rings lie roughly in the plane of the film. Explanations are given of the role of artifacts in interpreting waveguide Raman spectra, including anomalous contributions to Raman spectra that arise from deviations from right angle scattering geometry, mode-dependent contributions to longitudinal electric field components and TE<-->TM mode conversion. We explore diffusion profiles of small molecules in cellulosic films by adaptations of an inverse-Wentzel-Kramers-Brillouin (iWKB) recursive, noninteger virtual mode index algorithm. Perturbations in the refractive index distribution, n(z), are recovered from the measured relative propagation constants, neffective,m, of the planar waveguide. The refractive index distribution then yields the diffusion profile.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogatskaya, A. V., E-mail: annabogatskaya@gmail.com; Volkova, E. A.; Popov, A. M.

    The time evolution of a nonequilibrium plasma channel created in a noble gas by a high-power femtosecond KrF laser pulse is investigated. It is shown that such a channel possesses specific electrodynamic properties and can be used as a waveguide for efficient transportation and amplification of microwave pulses. The propagation of microwave radiation in a plasma waveguide is analyzed by self-consistently solving (i) the Boltzmann kinetic equation for the electron energy distribution function at different spatial points and (ii) the wave equation in the parabolic approximation for a microwave pulse transported along the plasma channel.

  8. Realization of non-linear coherent states by photonic lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehdashti, Shahram, E-mail: shdehdashti@zju.edu.cn; Li, Rujiang; Chen, Hongsheng, E-mail: hansomchen@zju.edu.cn

    2015-06-15

    In this paper, first, by introducing Holstein-Primakoff representation of α-deformed algebra, we achieve the associated non-linear coherent states, including su(2) and su(1, 1) coherent states. Second, by using waveguide lattices with specific coupling coefficients between neighbouring channels, we generate these non-linear coherent states. In the case of positive values of α, we indicate that the Hilbert size space is finite; therefore, we construct this coherent state with finite channels of waveguide lattices. Finally, we study the field distribution behaviours of these coherent states, by using Mandel Q parameter.

  9. NONLINEAR AND FIBER OPTICS: Analysis of the mode noise in interference fiber channels used for the distribution of microwave signals

    NASA Astrophysics Data System (ADS)

    Bratchikov, A. N.; Glukhov, I. P.

    1991-03-01

    The results are given of a statistical theory of the speckle generalized to interference channels used for the distribution of microwave signals using multimode fiber waveguides with step and graded refractive-index profiles. A method is described for estimating the mode noise level in the open and closed regimes with one longitudinal speckle. The influence of the degree of mode filtering, losses at microbends, and spectral properties of a laser source on the statistical properties and the mode noise level is demonstrated. Numerical estimates are obtained of the ratio of the powers of the signal and mode noise for interference channels with typical parameters of fiber waveguides and a qualitative description is given of the effect of the mode noise.

  10. Ge-on-Si PIN-photodetectors with Al nanoantennas: The effect of nanoantenna size on light scattering into waveguide modes

    NASA Astrophysics Data System (ADS)

    Fischer, Inga A.; Augel, Lion; Kropp, Timo; Jitpakdeebodin, Songchai; Franz, Nuno; Oliveira, Filipe; Rolseth, Erlend; Maß, Tobias; Taubner, Thomas; Schulze, Jörg

    2016-02-01

    Metallic nanoantennas can be used to enhance the efficiency of optical device operation by re-distributing electromagnetic energy. Here, we investigate the effect of a random distribution of disc-shaped Al nanoantennas of different diameters deposited on Ge-on-Si PIN-photodetectors on the wavelength-dependent responsivity. We compare our experimental results to simulations and find that the largest responsivity enhancement is obtained for wavelengths that correspond to energies at or below the bandgap energy of Ge. We argue that this is the result of antenna-mediated scattering of light into waveguide modes within the Ge-on-Si PIN-photodetectors, which is effectively influenced by nanoantenna size, and we discuss a possible application of the concept for integrated biosensing.

  11. Analysis of foliage effects on mobile propagation in dense urban environments

    NASA Astrophysics Data System (ADS)

    Bronshtein, Alexander; Mazar, Reuven; Lu, I.-Tai

    2000-07-01

    Attempts to reduce the interference level and to increase the spectral efficiency of cellular radio communication systems operating in dense urban and suburban areas lead to the microcellular approach with a consequent requirement to lower antenna heights. In large metropolitan areas having high buildings this requirement causes a situation where the transmitting and receiving antennas are both located below the rooftops, and the city street acts as a type of a waveguiding channel for the propagating signal. In this work, the city street is modeled as a random multislit waveguide with randomly distributed regions of foliage parallel to the building boundaries. The statistical propagation characteristics are expressed in terms of multiple ray-fields approaching the observer. Algorithms for predicting the path-loss along the waveguide and for computing the transverse field structure are presented.

  12. FIBER OPTICS: Investigation of the spectral dependences of some of the polarization characteristics of fiber waveguides with an elliptic stress-inducing cladding and a circular core

    NASA Astrophysics Data System (ADS)

    Arutyunyan, Z. É.; Grudinin, A. B.; Gur'yanov, A. N.; Gusovskiĭ, D. D.; Dianov, Evgenii M.; Ignat'ev, S. V.; Smirnov, O. B.; Surin, S. Yu

    1991-01-01

    An experimental investigation was made of the spectral dependences of the modal birefringence B, of the polarization dispersion τp, and of the difference Dx-Dy between the chromatic dispersions of polarization modes in fiber waveguides with an elliptic stress-inducing cladding, a second circular buffer cladding, and a circular core. The investigation was carried out in the wavelength range 1.15-1.75 μm. The magnitude of the changes in B, τp, and Dx-Dy depended on the dimensions of the buffer cladding. The dependences obtained were explained satisfactorily by an analysis of the similarity of the distributions of the intensity of the fundamental mode and of the difference of the stresses along the optic axes of the investigated fiber waveguides.

  13. Multiwaveguide implantable probe for light delivery to sets of distributed brain targets.

    PubMed

    Zorzos, Anthony N; Boyden, Edward S; Fonstad, Clifton G

    2010-12-15

    Optical fibers are commonly inserted into living tissues such as the brain in order to deliver light to deep targets for neuroscientific and neuroengineering applications such as optogenetics, in which light is used to activate or silence neurons expressing specific photosensitive proteins. However, an optical fiber is limited to delivering light to a single target within the three-dimensional structure of the brain. We here demonstrate a multiwaveguide probe capable of independently delivering light to multiple targets along the probe axis, thus enabling versatile optical control of sets of distributed brain targets. The 1.45-cm-long probe is microfabricated in the form of a 360-μm-wide array of 12 parallel silicon oxynitride (SiON) multimode waveguides clad with SiO(2) and coated with aluminum; probes of custom dimensions are easily created as well. The waveguide array accepts light from a set of sources at the input end and guides the light down each waveguide to an aluminum corner mirror that efficiently deflects light away from the probe axis. Light losses at each stage are small (input coupling loss, 0.4 ± 0.3 dB; bend loss, negligible; propagation loss, 3.1 ± 1 dB/cm using the outscattering method and 3.2 ± 0.4 dB/cm using the cutback method; corner mirror loss, 1.5 ± 0.4 dB); a waveguide coupled, for example, to a 5 mW source will deliver over 1.5 mW to a target at a depth of 1 cm.

  14. Frequency Domain Modelling of Electromagnetic Wave Propagation in Layered Media

    NASA Astrophysics Data System (ADS)

    Schmidt, Felix; Lünenschloss, Peter; Mai, Juliane; Wagner, Norman; Töpfer, Hannes; Bumberger, Jan

    2016-04-01

    The amount of water in porous media such as soils and rocks is a key parameter when water resources are under investigation. Especially the quantitative spatial distribution and temporal evolution of water contents in soil formations are needed. In high frequency electromagnetic applications soil water content is quantitatively derived from the propagation behavior of electromagnetic waves along waveguides embedded in soil formations. The spatial distribution of the dielectric material properties along the waveguide can be estimated by numerical solving of the inverse problem based on the full wave forward model in time or frequency domain. However, current approaches mostly neglect or approximate the frequency dependence of the electromagnetic material properties of transfer function of the waveguide. As a first prove of concept a full two port broadband frequency domain forward model for propagation of transverse electromagnetic (TEM) waves in coaxial waveguide has been implemented. It is based on the propagation matrix approach for layered transmission line sections. Depending on the complexity of the material different models for the frequency dependent complex permittivity were applied. For the validation of the model a broadband frequency domain measurement with network analyzer technique was used. The measurement is based on a 20 cm long 50 Ohm 20/46 coaxial transmission line cell considering inhomogeneous material distributions. This approach allows (i) an increase of the waveguide calibration accuracy in comparison to conventional TDR based technique and (ii) the consideration of the broadband permittivity spectrum of the porous material. In order to systematic analyze the model, theoretical results were compared with measurements as well as 3D broadband finite element modeling of homogeneous and layered media in the coaxial transmission line cell. Defined standards (Teflon, dry glass beads, de-ionized water) were placed inside the line as the dielectric layers in different configurations. With a Thru Reflect Line calibration (TRL) the influences of connectors and adapters at the coaxial line sample holder were removed. The combination of the full two port calibration procedure and broadband modeling approach turns out to achieve a good accordance of modeling and experimental results. The next step is the implementation of an inversion to calculate the material parameters of every layer out of the s-parameters of the layered sample.

  15. Frequency Domain Modelling of Electromagnetic Wave Propagation in Layered Media

    NASA Astrophysics Data System (ADS)

    Schmidt, Felix; Wagner, Norman; Lünenschloß, Peter; Toepfer, Hannes; Dietrich, Peter; Kaliorias, Andreas; Bumberger, Jan

    2015-04-01

    The amount of water in porous media such as soils and rocks is a key parameter when water resources are under investigation. Especially the quantitative spatial distribution and temporal evolution of water contents in soil formations are needed. In high frequency electromagnetic applications soil water content is quantitatively derived from the propagation behavior of electromagnetic waves along waveguides embedded in soil formations. The spatial distribution of the dielectric material properties along the waveguide can be estimated by numerical solving of the inverse problem based on the full wave forward model in time or frequency domain. However, current approaches mostly neglect or approximate the frequency dependence of the electromagnetic material properties of transfer function of the waveguide. As a first prove of concept a full two port broadband frequency domain forward model for propagation of transverse electromagnetic (TEM) waves in coaxial waveguide has been implemented. It is based on the propagation matrix approach for layered transmission line sections Depending on the complexity of the material different models for the frequency dependent complex permittivity were applied. For the validation of the model a broadband frequency domain measurement with network analyzer technique was used. The measurement is based on a 20 cm long 50 Ohm 20/46 coaxial transmission line cell considering inhomogeneous material distributions. This approach allows (i) an increase of the waveguide calibration accuracy in comparison to conventional TDR based technique and (ii) the consideration of the broadband permittivity spectrum of the porous material. In order to systematic analyze the model, theoretical results were compared with measurements as well as 3D broadband finite element modeling of homogeneous and layered media in the coaxial transmission line cell. Defined standards (Teflon, dry glass beads, de-ionized water) were placed inside the line as the dielectric layers in different configurations. With a Thru Reflect Line calibration (TRL) the influences of connectors and adapters at the coaxial line sample holder were removed. The combination of the full two port calibration procedure and broadband modeling approach turns out to achieve a good accordance of modeling and experimental results. The next step is the implementation of an inversion to calculate the material parameters of every layer out of the s-parameters of the layered sample.

  16. Opening and closing of band gaps in magnonic waveguide by rotating the triangular antidots - A micromagnetic study

    NASA Astrophysics Data System (ADS)

    Vivek, T.; Bhoomeeswaran, H.; Sabareesan, P.

    2018-05-01

    Spin waves in ID periodic triangular array of antidots are encarved in a permalloy magnonic waveguide is investigated through micromagnetic simulation. The effect of the rotating array of antidots and in-plane rotation of the scattering centers on the band structure are investigated, to indicate new possibilities of fine tuning of spin-wave filter pass and stop bands. The results show that, the opening and closing of band gaps paves a way for band pass and stop filters on waveguide. From the results, the scattering center and strong spatial distribution field plays crucible role for controlling opening and closing bandgap width of ˜12 GHz for 0° rotation. We have obtained a single narrow bandgap of width 1GHz is obtained for 90° rotation of the antidot. Similarly, the tunability is achieved for desired microwave applications done by rotating triangular antidots with different orientation.

  17. Weakly modulated silicon-dioxide-cladding gratings for silicon waveguide Fabry-Pérot cavities.

    PubMed

    Grote, Richard R; Driscoll, Jeffrey B; Biris, Claudiu G; Panoiu, Nicolae C; Osgood, Richard M

    2011-12-19

    We show by theory and experiment that silicon-dioxide-cladding gratings for Fabry-Pérot cavities on silicon-on-insulator channel ("wire") waveguides provide a low-refractive-index perturbation, which is required for several important integrated photonics components. The underlying refractive index perturbation of these gratings is significantly weaker than that of analogous silicon gratings, leading to finer control of the coupling coefficient κ. Our Fabry-Pérot cavities are designed using the transfer-matrix method (TMM) in conjunction with the finite element method (FEM) for calculating the effective index of each waveguide section. Device parameters such as coupling coefficient, κ, Bragg mirror stop band, Bragg mirror reflectivity, and quality factor Q are examined via TMM modeling. Devices are fabricated with representative values of distributed Bragg reflector lengths, cavity lengths, and propagation losses. The measured transmission spectra show excellent agreement with the FEM/TMM calculations.

  18. Dry silver electromigration process for optical glass waveguide fabrication and fluxless bonding technology for photonics and MEMS packaging

    NASA Astrophysics Data System (ADS)

    Chuang, Ricky Wenkuei

    2001-07-01

    An effectively simple dry silver electromigration technology without the need of evaporating separate gold or aluminum film electrodes onto both sides of glass is reported to fabricate low-loss deep multimode planar and channel waveguides on BK7 and BF450 glass substrates. A relatively high electrical field ranging from 440 to 545 V/mm was applied to the glass to speed up the migration, while at the same time preventing silver ions that were driven into the glass from reducing into silver atom; a major contributor to waveguide loss. The deep planar and channel waveguides thus fabricated showed no discolors or cracks, of which the attenuation losses of less than 2dB/cm and 0.1dB/cm were later measured from channel waveguides constructed on the BK7 and BF450 glass substrates, respectively, using our 0.6328mum He-Ne laser edge-coupling setup. To complete the waveguide studies, the scanning electron microscope (SEM) equipped with energy-dispersive X-ray (EDX) detector was adopted to obtain the concentration profiles of silver and sodium ions distributed in a waveguiding region after the exchange. The EDX measurements acquired hereafter were then utilized along with the Gladstone-Dale relation altogether to deduce the refractive index profile; of which a nearly step-like profile was consistently deduced from every deep planar and channel waveguides fabricated. Finally, a numerical model utilizing the space charge approach was devised to explain the nonlinear current effect often observed during the actual waveguide fabrication. The simulation results have confirmed that the nonlinear current-versus-time profile obtained is mainly attributed to the inhomogeneous distribution of the electric field in the glass substrate due to a space charge region created by the separation between silver- and sodium-ion migration fronts as a result of their unequal mobilities; a phenomenon which is ultimately responsible for the eventual slow down in the ion exchange rate as monitored during the actual electromigration process. A fluxless oxidation-free bonding technology using multilayer composite solders based on the non eutectic binary alloys of indium-tin (In-Sn), silver-indium (Ag-In), gold-tin (Au-Sn), and bismuth-tin (Bi-Sn) has been established and studied to determine its applicability to photonics and MEMS packaging. The scanning acoustic microscopy (SAM) conducted on these solder samples has consistently shown that a nearly void-free joint fabricated from each non-eutectic binary alloy system can be reliably achieved. In addition, the scanning electron microscopy (SEM) equipped with the energy dispersive X-ray (EDX) detector was also performed on the cross section of each sample to determine its joint composition, especially of any sign of intermetallic compounds. These results will demonstrate that any intermetallic compound or phase present in a joint fabricated with a pre-determined multilayer composition based on a specific binary alloy system can be well understood and fully justified by correlating the experimental outcome with its respective binary phase diagram.

  19. Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons

    PubMed Central

    Yao, Yung-Chi; Hwang, Jung-Min; Yang, Zu-Po; Haung, Jing-Yu; Lin, Chia-Ching; Shen, Wei-Chen; Chou, Chun-Yang; Wang, Mei-Tan; Huang, Chun-Ying; Chen, Ching-Yu; Tsai, Meng-Tsan; Lin, Tzu-Neng; Shen, Ji-Lin; Lee, Ya-Ju

    2016-01-01

    Enhancement of the external quantum efficiency of a GaN-based vertical-type light emitting diode (VLED) through the coupling of localized surface plasmon (LSP) resonance with the wave-guided mode light is studied. To achieve this experimentally, Ag nanoparticles (NPs), as the LSP resonant source, are drop-casted on the most top layer of waveguide channel, which is composed of hydrothermally synthesized ZnO nanorods capped on the top of GaN-based VLED. Enhanced light-output power and external quantum efficiency are observed, and the amount of enhancement remains steady with the increase of the injected currents. To understand the observations theoretically, the absorption spectra and the electric field distributions of the VLED with and without Ag NPs decorated on ZnO NRs are determined using the finite-difference time-domain (FDTD) method. The results prove that the observation of enhancement of the external quantum efficiency can be attributed to the creation of an extra escape channel for trapped light due to the coupling of the LSP with wave-guided mode light, by which the energy of wave-guided mode light can be transferred to the efficient light scattering center of the LSP. PMID:26935648

  20. A platform-based foot pressure/shear sensor

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Te; Liu, Chao Shih; Soetanto, William; Wang, Wei-Chih

    2012-04-01

    The proposed research is aimed at developing, fabricating and implementing a flexible fiber optic bend loss sensor for the measurement of plantar pressure and shear stress for diabetic patients. The successful development of the sensor will greatly impact the study of diabetic foot ulcers by allowing clinicians to measure a parameter (namely, shear stress) that has been implicated in ulceration, but heretofore, has not been routinely quantified on high risk patients. A full-scale foot pressure/shear sensor involves a tactile sensor array using intersecting optical waveguides is presented. The basic configuration of the optical sensor systems incorporates a mesh that is comprised of two sets of parallel optical waveguide planes; the planes are configured so the parallel rows of waveguides of the top and bottom planes are perpendicular to each other. The planes are sandwiched together creating one sensing sheet. Two-dimensional information is determined by measuring the loss of light from each of the waveguide to map the overall pressure distribution. The shifting of the layers relative to each other allows determination of the shear stress in the plane of the sensor. This paper presents latest development and improvement in the sensors design. Fabrication and results from the latest tests will be described.

  1. A systematic optimization of design parameters in strained silicon waveguides to further enhance the linear electro-optic effect

    NASA Astrophysics Data System (ADS)

    Olivares, Irene; Angelova, Todora I.; Pinilla-Cienfuegos, Elena; Sanchis, Pablo

    2016-05-01

    The electro-optic Pockels effect may be generated in silicon photonics structures by breaking the crystal symmetry by means of a highly stressing cladding layer (typically silicon nitride, SiN) deposited on top of the silicon waveguide. In this work, the influence of the waveguide parameters on the strain distribution and its overlap with the optical mode to enhance the Pockels effect has been analyzed. The optimum waveguide structure have been designed based on the definition and quantification of a figure of merit. The fabrication of highly stressing SiN layers by PECVD has also been optimized to characterize the designed structures. The residual stress has been controlled during the growth process by analyzing the influence of the main deposition parameters. Therefore, two identical samples with low and high stress conditions were fabricated and electro-optically characterized to test the induced Pockels effect and the influence of carrier effects. Electro-optical modulation was only measured in the sample with the high stressing SiN layer that could be attributed to the Pockels effect. Nevertheless, the influence of carriers were also observed thus making necessary additional experiments to decouple both effects.

  2. Echo Statistics of Aggregations of Scatterers in a Random Waveguide: Application to Biologic Sonar Clutter

    DTIC Science & Technology

    2012-09-01

    used in this paper to compare probability density functions, the Lilliefors test and the Kullback - Leibler distance. The Lilliefors test is a goodness ... of interest in this study are the Rayleigh distribution and the exponential distribution. The Lilliefors test is used to test goodness - of - fit for...Lilliefors test for goodness of fit with an exponential distribution. These results suggests that,

  3. Relaxed tolerance adiabatic silicon coupler for high I/O port-density optical interconnects (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fard, Erfan; Norwood, Robert A.; Peyghambarian, Nasser N.; Koch, Thomas L.

    2017-02-01

    Widespread deployment of silicon photonics will benefit strongly from improved high-port-density interconnect solutions between chips, interposers, and other waveguide fabrics. We present an adiabatic silicon waveguide to polymer waveguide coupler design incorporating strong vertical asymmetries offering high efficiency, small footprint, and improved tolerance to lateral misalignment. The design incorporates a standard 450nm-wide silicon waveguide tapered down to 50nm over a distance of 200μm with a 1.6μm-thick polymer waveguide having a 4μm-wide core atop the taper. The coupler exhibits <0.1dB loss for both TE and TM modes based on 3-dimensional finite element modeling. Moreover, the modeled device exhibits less than 0.1dB excess loss with lateral misalignment of +/-2μm between polymer and silicon waveguide for TE mode, and 0.2dB excess loss with +/-1.6μm offset for the TM mode, and 1dB excess loss for both TE and TM modes with +/-2.7μm misalignment. This taper design should enable reduction in manufacturing costs due to a reduced on-chip footprint and the potential for lower-precision, higher-throughput assembly tools. The authors would like to acknowledge the support of AIM Photonics. This material is based on research sponsored by Air Force Research Laboratory under agreement number FA8650-15-2-5220. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of Air Force Research Laboratory or the U.S. Government.

  4. Waveguide arrangements based on adiabatic elimination

    DOEpatents

    Suchowski, Haim; Mrejen, Michael; Wu, Chihhui; Zhang, Xiang

    2016-09-13

    This disclosure provides systems, methods, and apparatus related to nanophotonics. In one aspect, an arrangement of waveguides includes a substrate and three waveguides. Each of the three waveguides may be a linear waveguide. A second waveguide is positioned between a first waveguide and a third waveguide. The dimensions and positions of the first, the second, and the third waveguides are specified to substantially eliminate coupling between the first waveguide and the third waveguide over a distance of about 1 millimeter to 2 millimeters along lengths of the first waveguide, the second waveguide, and the third waveguide.

  5. Thermal considerations in the cryogenic regime for the BNL double ridge higher order mode waveguide

    DOE PAGES

    Ravikumar, Dhananjay K.; Than, Yatming; Xu, Wencan; ...

    2017-09-06

    Brookhaven National Laboratory (BNL) has proposed to build an electron ion collider (EIC) as an upgrade to the existing Relativistic Heavy Ion Collider (RHIC). One part of the new design is to use superconducting radio frequency (SRF) cavities for acceleration, which sit in a bath of superfluid helium at a temperature of 2 K. SRF cavities designed for the BNL EIC create a standing electromagnetic wave, oscillating at a fundamental frequency of 647 MHz. Interaction of the charged particle beam with the EM field in the cavity creates higher order modes (HOM) of oscillation which have adverse effects on themore » beam when allowed to propagate down the beam tube. HOM waveguides are thus designed to remove this excess energy which is then damped at room temperature. Thus, these waveguides provide a direct thermal link between room temperature and the superconducting cavities adding a static thermal load. The EM wave propagating through the warmer sections of the waveguide creates an additional dynamic thermal load. This study calculates these thermal loads, concluding that the dynamic load is small in comparison to the static load. Temperature distributions are mapped on the waveguide and the number of heat intercepts required to efficiently manage thermal loads have been determined. Additonally, a thermal radiation study has been performed and it is found that this contribution is around three orders of magnitude smaller than the static conduction and dynamic loads.« less

  6. Thermal considerations in the cryogenic regime for the BNL double ridge higher order mode waveguide

    NASA Astrophysics Data System (ADS)

    Ravikumar, Dhananjay K.; Than, Yatming; Xu, Wencan; Longtin, Jon

    2017-09-01

    Brookhaven National Laboratory (BNL) has proposed to build an electron ion collider (EIC) as an upgrade to the existing Relativistic Heavy Ion Collider (RHIC). A part of the new design is to use superconducting radio frequency (SRF) cavities for acceleration, which sit in a bath of superfluid helium at a temperature of 2 K. SRF cavities designed for the BNL EIC create a standing electromagnetic wave, oscillating at a fundamental frequency of 647 MHz. Interaction of the charged particle beam with the EM field in the cavity creates higher order modes (HOM) of oscillation which have adverse effects on the beam when allowed to propagate down the beam tube. HOM waveguides are thus designed to remove this excess energy which is then damped at room temperature. As a result, these waveguides provide a direct thermal link between room temperature and the superconducting cavities adding a static thermal load. The EM wave propagating through the warmer sections of the waveguide creates an additional dynamic thermal load. This study calculates these thermal loads, concluding that the dynamic load is small in comparison to the static load. Temperature distributions are mapped on the waveguide and the number of heat intercepts required to efficiently manage thermal loads have been determined. In addition, a thermal radiation study has been performed and it is found that this contribution is around three orders of magnitude smaller than the static conduction and dynamic loads.

  7. Thermal considerations in the cryogenic regime for the BNL double ridge higher order mode waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravikumar, Dhananjay K.; Than, Yatming; Xu, Wencan

    Brookhaven National Laboratory (BNL) has proposed to build an electron ion collider (EIC) as an upgrade to the existing Relativistic Heavy Ion Collider (RHIC). One part of the new design is to use superconducting radio frequency (SRF) cavities for acceleration, which sit in a bath of superfluid helium at a temperature of 2 K. SRF cavities designed for the BNL EIC create a standing electromagnetic wave, oscillating at a fundamental frequency of 647 MHz. Interaction of the charged particle beam with the EM field in the cavity creates higher order modes (HOM) of oscillation which have adverse effects on themore » beam when allowed to propagate down the beam tube. HOM waveguides are thus designed to remove this excess energy which is then damped at room temperature. Thus, these waveguides provide a direct thermal link between room temperature and the superconducting cavities adding a static thermal load. The EM wave propagating through the warmer sections of the waveguide creates an additional dynamic thermal load. This study calculates these thermal loads, concluding that the dynamic load is small in comparison to the static load. Temperature distributions are mapped on the waveguide and the number of heat intercepts required to efficiently manage thermal loads have been determined. Additonally, a thermal radiation study has been performed and it is found that this contribution is around three orders of magnitude smaller than the static conduction and dynamic loads.« less

  8. Adaptive gain, equalization, and wavelength stabilization techniques for silicon photonic microring resonator-based optical receivers

    NASA Astrophysics Data System (ADS)

    Palermo, Samuel; Chiang, Patrick; Yu, Kunzhi; Bai, Rui; Li, Cheng; Chen, Chin-Hui; Fiorentino, Marco; Beausoleil, Ray; Li, Hao; Shafik, Ayman; Titriku, Alex

    2016-03-01

    Interconnect architectures based on high-Q silicon photonic microring resonator devices offer a promising solution to address the dramatic increase in datacenter I/O bandwidth demands due to their ability to realize wavelength-division multiplexing (WDM) in a compact and energy efficient manner. However, challenges exist in realizing efficient receivers for these systems due to varying per-channel link budgets, sensitivity requirements, and ring resonance wavelength shifts. This paper reports on adaptive optical receiver design techniques which address these issues and have been demonstrated in two hybrid-integrated prototypes based on microring drop filters and waveguide photodetectors implemented in a 130nm SOI process and high-speed optical front-ends designed in 65nm CMOS. A 10Gb/s powerscalable architecture employs supply voltage scaling of a three inverter-stage transimpedance amplifier (TIA) that is adapted with an eye-monitor control loop to yield the necessary sensitivity for a given channel. As reduction of TIA input-referred noise is more critical at higher data rates, a 25Gb/s design utilizes a large input-stage feedback resistor TIA cascaded with a continuous-time linear equalizer (CTLE) that compensates for the increased input pole. When tested with a waveguide Ge PD with 0.45A/W responsivity, this topology achieves 25Gb/s operation with -8.2dBm sensitivity at a BER=10-12. In order to address microring drop filters sensitivity to fabrication tolerances and thermal variations, efficient wavelength-stabilization control loops are necessary. A peak-power-based monitoring loop which locks the drop filter to the input wavelength, while achieving compatibility with the high-speed TIA offset-correction feedback loop is implemented with a 0.7nm tuning range at 43μW/GHz efficiency.

  9. Development of a Radar-Frequency Metamaterial Measurement and Characterization Apparatus

    DTIC Science & Technology

    2012-03-01

    Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. The views expressed...17 GTRI Focused Beam System ................................................................................... 22 Shelby Parallel-Plate Waveguide...System ......................................................... 23 Figure 4: CST Model of Shelby PPWG

  10. Theory of a Traveling Wave Feed for a Planar Slot Array Antenna

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam

    2012-01-01

    Planar arrays of waveguide-fed slots have been employed in many radar and remote sensing applications. Such arrays are designed in the standing wave configuration because of high efficiency. Traveling wave arrays can produce greater bandwidth at the expense of efficiency due to power loss in the load or loads. Traveling wave planar slot arrays may be designed with a long feed waveguide consisting of centered-inclined coupling slots. The feed waveguide is terminated in a matched load, and the element spacing in the feed waveguide is chosen to produce a beam squinted from the broadside. The traveling wave planar slot array consists of a long feed waveguide containing resonant-centered inclined coupling slots in the broad wall, coupling power into an array of stacked radiating waveguides orthogonal to it. The radiating waveguides consist of longitudinal offset radiating slots in a standing wave configuration. For the traveling wave feed of a planar slot array, one has to design the tilt angle and length of each coupling slot such that the amplitude and phase of excitation of each radiating waveguide are close to the desired values. The coupling slot spacing is chosen for an appropriate beam squint. Scattering matrix parameters of resonant coupling slots are used in the design process to produce appropriate excitations of radiating waveguides with constraints placed only on amplitudes. Since the radiating slots in each radiating waveguide are designed to produce a certain total admittance, the scattering (S) matrix of each coupling slot is reduced to a 2x2 matrix. Elements of each 2x2 S-matrix and the amount of coupling into the corresponding radiating waveguide are expressed in terms of the element S11. S matrices are converted into transmission (T) matrices, and the T matrices are multiplied to cascade the coupling slots and waveguide sections, starting from the load end and proceeding towards the source. While the use of non-resonant coupling slots may provide an additional degree of freedom in the design, resonant coupling slots simplify the design process. The amplitude of the wave going to the load is set at unity. The S11 parameter, r of the coupling slot closest to the load, is assigned an arbitrary value. A larger value of r will reduce the power dissipated in the load while increasing the reflection coefficient at the input port. It is now possible to obtain the excitation of the radiating waveguide closest to the load and the coefficients of the wave incident and reflected at the input port of this coupling slot. The next coupling slot parameter, r , is chosen to realize the excitation of that radiating waveguide. One continues this process moving towards the source, until all the coupling slot parameters r and hence the S11 parameter of the 4-port coupler, r, are known for each coupling slot. The goal is to produce the desired array aperture distribution in the feed direction. From an interpolation of the computed moment method data for the slot parameters, all the coupling slot tilt angles and lengths are obtained. From the excitations of the radiating waveguides computed from the coupling values, radiating slot parameters may be obtained so as to attain the desired total normalized slot admittances. This process yields the radiating slot parameters, offsets, and lengths. The design is repeated by choosing different values of r for the last coupling slot until the percentage of power dissipated in the load and the input reflection coefficient values are satisfactory. Numerical results computed for the radiation pattern, the tilt angles and lengths of coupling slots, and excitation phases of the radiating waveguides, are presented for an array with uniform amplitude excitation. The design process has been validated using computer simulations. This design procedure is valid for non-uniform amplitude excitations as well.

  11. 1.5- μm single photon counting using polarization-independent up-conversion detector

    NASA Astrophysics Data System (ADS)

    Takesue, Hiroki; Diamanti, Eleni; Langrock, Carsten; Fejer, M. M.; Yamamoto, Yoshihisa

    2006-12-01

    We report a 1.5- μm band polarization independent single photon detector based on frequency up-conversion in periodically poled lithium niobate (PPLN) waveguides. To overcome the polarization dependence of the PPLN waveguides, we employed a polarization diversity configuration composed of two up-conversion detectors connected with a polarization beam splitter. We experimentally confirmed polarization independent single photon counting using our detector. We undertook a proof-of-principle differential phase shift quantum key distribution experiment using the detector, and confirmed that the sifted key rate and error rate remained stable when the polarization state was changed during single photon transmission.

  12. Exploring quantum thermodynamics in continuous measurement of superconducting qubits

    NASA Astrophysics Data System (ADS)

    Murch, Kater

    The extension of thermodynamics into the realm of quantum mechanics, where quantum fluctuations dominate and systems need not occupy definite states, poses unique challenges. Superconducting quantum circuits offer exquisite control over the environment of simple quantum systems allowing the exploration of thermodynamics at the quantum level through measurement and feedback control. We use a superconducting transmon qubit that is resonantly coupled to a waveguide cavity as an effectively one-dimensional quantum emitter. By driving the emitter and detecting the fluorescence with a near-quantum-limited Josephson parametric amplifier, we track the evolution of the quantum state and characterize the work and heat along single quantum trajectories. By using quantum feedback control to compensate for heat exchanged with the emitter's environment we are able to extract the work statistics associated with the quantum evolution and examine fundamental fluctuation theorems in non-equilibrium thermodynamics. This work was supported by the Alfred P. Sloan Foundation, the National Science Foundation, and the Office of Naval Research.

  13. Compact waveguide circular polarizer

    DOEpatents

    Tantawi, Sami G.

    2016-08-16

    A multi-port waveguide is provided having a rectangular waveguide that includes a Y-shape structure with first top arm having a first rectangular waveguide port, a second top arm with second rectangular waveguide port, and a base arm with a third rectangular waveguide port for supporting a TE.sub.10 mode and a TE.sub.20 mode, where the end of the third rectangular waveguide port includes rounded edges that are parallel to a z-axis of the waveguide, a circular waveguide having a circular waveguide port for supporting a left hand and a right hand circular polarization TE.sub.11 mode and is coupled to a base arm broad wall, and a matching feature disposed on the base arm broad wall opposite of the circular waveguide for terminating the third rectangular waveguide port, where the first rectangular waveguide port, the second rectangular waveguide port and the circular waveguide port are capable of supporting 4-modes of operation.

  14. Directional coupler based on an elliptic cylindrical nanowire hybrid plasmonic waveguide.

    PubMed

    Zeng, Dezheng; Zhang, Li; Xiong, Qiulin; Ma, Junxian

    2018-06-01

    We present what we believe is a novel directional coupler based on an elliptic cylindrical nanowire hybrid plasmonic waveguide. Using the finite element method, the electric field distributions of y-polarized symmetric and antisymmetric modes of the coupler are compared, and the coupling and transmission characteristics are analyzed; then the optimized separation distance between the two parallel waveguides, 100 nm, is obtained. This optimized architecture fits in the weak coupling regime. Furthermore, the energy transfer is studied, and the performances of the directional coupler are evaluated, including excess loss, coupling degree, and directionality. The results show that when the separation distance is set to 100 nm, the coupling length reaches the shorter value of 1.646 μm, and the propagation loss is as low as 0.076 dB/μm, and the maximum energy transfer can reach 80%. The proposed directional coupler features good energy confinement, ultracompact and low propagation loss, which has potential application in dense photonic-integrated circuits and other photonic devices.

  15. Interconnect Between a Waveguide and a Dielectric Waveguide Comprising an Impedance Matched Dielectric Lens

    NASA Technical Reports Server (NTRS)

    Decrossas, Emmanuel (Inventor); Chattopadhyay, Goutam (Inventor); Chahat, Nacer (Inventor); Tang, Adrian J. (Inventor)

    2016-01-01

    A lens for interconnecting a metallic waveguide with a dielectric waveguide is provided. The lens may be coupled a metallic waveguide and a dielectric waveguide, and minimize a signal loss between the metallic waveguide and the dielectric waveguide.

  16. RF window assembly comprising a ceramic disk disposed within a cylindrical waveguide which is connected to rectangular waveguides through elliptical joints

    DOEpatents

    Tantawi, Sami G.; Dolgashev, Valery A.; Yeremian, Anahid D.

    2016-03-15

    A high-power microwave RF window is provided that includes a cylindrical waveguide, where the cylindrical waveguide includes a ceramic disk concentrically housed in a central region of the cylindrical waveguide, a first rectangular waveguide, where the first rectangular waveguide is connected by a first elliptical joint to a proximal end of the cylindrical waveguide, and a second rectangular waveguide, where the second rectangular waveguide is connected by a second elliptical joint to a distal end of the cylindrical waveguide.

  17. Picosecond pulsed micro-module emitting near 560 nm using a frequency doubled gain-switched DBR ridge waveguide semiconductor laser

    NASA Astrophysics Data System (ADS)

    Kaltenbach, André; Hofmann, Julian; Seidel, Dirk; Lauritsen, Kristian; Bugge, Frank; Fricke, Jörg; Paschke, Katrin; Erdmann, Rainer; Tränkle, Günther

    2017-02-01

    A miniaturized picosecond pulsed semiconductor laser source in the spectral range around 560nm is realized by integrating a frequency doubled distributed Bragg reflector ridge waveguide laser (DBR-RWL) into a micromodule. Such compact laser sources are suitable for mobile application, e.g. in microscopes. The picosecond optical pulses are generated by gain-switching which allows for arbitrary pulse repetition frequencies. For frequency conversion a periodically poled magnesium doped lithium niobate ridge waveguide crystal (PPLN) is used to provide high conversion efficiency with single-pass second harmonic generation (SHG). The coupling of the pulsed radiation into the PPLN crystal is realized by a GRIN-lens. Such types of lenses collect the divergent laser radiation and focus it into the crystal waveguide providing high coupling efficiency at a minimum of space compared to the usage of fast axis collimator(FAC)/slow axis collimator (SAC) lens combinations. The frequency doubled output pulses show a pulse width of about 60 ps FWHM and a spectral width around 0.06nm FWHM at a central wavelength of 557nm at 15Å. The pulse peak power could be determined to be more than 300mW at a repetition frequency of 40 MHz.

  18. The design of a simulated in-line side-coupled 6 MV linear accelerator waveguide.

    PubMed

    St Aubin, Joel; Steciw, Stephen; Fallone, B G

    2010-02-01

    The design of a 3D in-line side-coupled 6 MV linac waveguide for medical use is given, and the effect of the side-coupling and port irises on the radio frequency (RF), beam dynamics, and dosimetric solutions is examined. This work was motivated by our research on a linac-MR hybrid system, where accurate electron trajectory information for a clinical medical waveguide in the presence of an external magnetic field was needed. For this work, the design of the linac waveguide was generated using the finite element method. The design outlined here incorporates the necessary geometric changes needed to incorporate a full-end accelerating cavity with a single-coupling iris, a waveguide-cavity coupling port iris that allows power transfer into the waveguide from the magnetron, as well as a method to control the RF field magnitude within the first half accelerating cavity into which the electrons from the gun are injected. With the full waveguide designed to resonate at 2998.5 +/- 0.1 MHz, a full 3D RF field solution was obtained. The accuracy of the 3D RF field solution was estimated through a comparison of important linac parameters (Q factor, shunt impedance, transit time factor, and resonant frequency) calculated for one accelerating cavity with the benchmarked program SUPERFISH. It was found that the maximum difference between the 3D solution and SUPERFISH was less than 0.03%. The eigenvalue solver, which determines the resonant frequencies of the 3D side-coupled waveguide simulation, was shown to be highly accurate through a comparison with lumped circuit theory. Two different waveguide geometries were examined, one incorporating a 0.5 mm first side cavity shift and another with a 1.5 mm first side cavity shift. The asymmetrically placed side-coupling irises and the port iris for both models were shown to introduce asymmetries in the RF field large enough to cause a peak shift and skewing (center of gravity minus peak shift) of an initially cylindrically uniform electron beam accelerating within the waveguide. The shifting and skewing of the electron beam were found to be greatest due to the effects of the side-coupling irises on the RF field. A further Monte Carlo study showed that this effect translated into a 1% asymmetry in a 40 x 40 cm2 field dose profile. A full 3D design for an in-line side-coupled 6 MV linear accelerator that emulates a common commercial waveguide has been given. The effect of the side coupling on the dose distribution has been shown to create a slight asymmetry, but overall does not affect the clinical applicability of the linac. The 3D in-line side-coupled linac model further provides a tool for the investigation of linac performance within an external magnetic field, which exists in an integrated linac-MR system.

  19. Random bit generation at tunable rates using a chaotic semiconductor laser under distributed feedback.

    PubMed

    Li, Xiao-Zhou; Li, Song-Sui; Zhuang, Jun-Ping; Chan, Sze-Chun

    2015-09-01

    A semiconductor laser with distributed feedback from a fiber Bragg grating (FBG) is investigated for random bit generation (RBG). The feedback perturbs the laser to emit chaotically with the intensity being sampled periodically. The samples are then converted into random bits by a simple postprocessing of self-differencing and selecting bits. Unlike a conventional mirror that provides localized feedback, the FBG provides distributed feedback which effectively suppresses the information of the round-trip feedback delay time. Randomness is ensured even when the sampling period is commensurate with the feedback delay between the laser and the grating. Consequently, in RBG, the FBG feedback enables continuous tuning of the output bit rate, reduces the minimum sampling period, and increases the number of bits selected per sample. RBG is experimentally investigated at a sampling period continuously tunable from over 16 ns down to 50 ps, while the feedback delay is fixed at 7.7 ns. By selecting 5 least-significant bits per sample, output bit rates from 0.3 to 100 Gbps are achieved with randomness examined by the National Institute of Standards and Technology test suite.

  20. Index-antiguided planar waveguide lasers with large mode area

    NASA Astrophysics Data System (ADS)

    Liu, Yuanye

    The on-going research and application interests with high power large-mode-area (LMA) waveguide lasers, especially in fiber geometry, at the beginning of this century drive the development of many novel waveguide designs. Index antiguiding, proposed by Siegman in 2003, is among one of them. The goal for index antiguiding is to introduce transversal modal loss with the relative simple waveguide design while maintain single transverse mode operation for good beam quality. The idea which is selectively support of fundamental mode is facilitated by involving certain level of signal regeneration inside the waveguide core. Since the modal loss is closed associated with waveguide design parameters such as core size and refractive index, the amount of gain inside the core provides active control of transverse modes inside index-antiguiding waveguide. For example, fundamental transverse mode inside such waveguide can be excited and propagate lossless when sufficient optical gain is provided. This often requires doped waveguide core and optical pumping at corresponding absorption band. However, the involvement of optical pumping also has its consequences. Phenomena such as thermal-optic effect and gain spatial hole-burning which are commonly found in bulk lasers request attention when scaling up output power with LMA index-antiguided waveguide amplifiers and resonators. In response, three key challenges of index-antiguided planar waveguide lasers, namely, guiding mechanism, power efficiency and transverse mode discrimination, are analyzed theoretically and experimentally in this dissertation. Experiments are based on two index-antiguided planar waveguide chips, whose core thickness are 220 microm and 400 microm respectively. The material of waveguide core is 1% Neodymium-doped Yttrium Aluminium garnet, or Nd:YAG while the cladding is made from Terbium Gallium garnet, or TGG. Due to the face pumping and limited pump power, it is found, with 220 microm-thick-core chip, that the guidance of the fundamental transverse mode along two orthogonal directions in a transverse plane is different. Along the bounded direction, index antiguiding prevails with negligible thermal refractive focusing while along the unbounded direction, the lasing mode is guided by thermal refractive focusing with negligible quadratic gain focusing. It is also founded that the quadratic thermal focusing will dominate the mode guidance in 220 microm chip with the help of additional pump. All these discovery calls for an active thermal control. The modal discriminative loss, though beneficial for transverse mode control, yet reduces the lasing efficiency. To model it, a 3-D lasing output power calculation model is developed based on spatial rate equations. The simulation results show good agreement with experiment data where slope efficiency curve are measured using multiple output couplers. The 10% slope efficiency with respect to incident pump power is the highest slope efficiency recorded in index-antiguided waveguide continuous-wave lasers. The model indicates more efficient pump absorption can facilitate further power scaling. The role of the modal discriminative loss in transverse mode competition is discussed. A theoretical model based on Rigrod analysis and spatial hole-burning is developed. The simulation shows reasonable agreement with experiment results in both chips. The single fundamental mode operation up to 10 times above the lasing threshold for 220 microm chip is achieved, which is limited by the incident pump power. However, as the core size increases, the modal distributed loss due to the index antiguiding is found to be less effective in transverse mode control. Other modal loss is needed to facilitate the suppression of higher-order modes. Based on the model, a strategy is proposed aiming to maximize the single mode output. It is also noted that the transverse mode competition model is also suitable for other lasers system with well-defined modal loss. Based on the models and experiment data, the index-antiguided planar waveguide lasers are proved to be capable of maintaining large-mode-area single transverse mode operation with the potential of power scaling. However, it is also shown that proper waveguide design is essential. The remaining challenges are the material choices for waveguide fabrication, especially for high power applications.

  1. Strained-layer indium gallium arsenide-gallium arsenide- aluminum galium arsenide photonic devices by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Osowski, Mark Louis

    With the arrival of advanced growth technologies such as molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD), research in III-V compound semiconductor photonic devices has flourished. Advances in fabrication processes have allowed the realization of high-performance quantum well lasers which emit over a wide spectral range and operate with low threshold currents. As a result, semiconductor lasers are presently employed in a wide variety of applications, including fiber-optic telecommunications, optical spectroscopy, solid-state laser pumping, and photonic integrated circuits. The work in this dissertation addresses three photonic device structures which are currently receiving a great deal of attention in the research community: integrable quantum well laser devices, distributed feedback (DFB) laser devices, and quantum wire arrays. For the realization of the integrable and integrated photonic devices described-in Chapter 2, a three-step selective-area growth technique was utilized. The selective epitaxy process was used to produce discrete buried-heterostructure Fabry Perot lasers with threshold currents as low as 2.6 mA. Based on this process, broad- spectrum edge-emitting superluminescent diodes are demonstrated which display spectral widths of over 80 nm. In addition, the monolithic integration of a multiwavelength emitter is demonstrated in which two distinct laser sources are coupled into a single output waveguide. The dissertation also describes the development of a single-growth-step ridge waveguide DFB laser. The DFB laser utilizes an asymmetric cladding waveguide structure to enhance the interaction of the optical mode with the titanium surface metal to promote single frequency emission via gain coupling. These lasers exhibit low threshold currents (11 mA), high side mode suppression ratios (50 dB), and narrow linewidths (45 kHz). In light of the substantial performance advantages of quantum well lasers relative to double heterostructure lasers, extensive efforts have been directed toward producing quantum wire systems. In view of this, the final subject of this dissertation details the fabrication and characterization of quantum wire arrays by selective-area MOCVD. The method employs a silicon dioxide grating mask with sub-micron oxide dimensions to achieve selective deposition of high-quality buried layers in the open areas of the patterned substrate. This allows the fabrication of embedded nanostructures in a single growth step, and the crystallographic nature of the growth allows for control of their lateral size. Using this process, the growth of strained InGaAs wires with a lateral dimension of less than 50 nm are obtained. Subsequent characterization by photoluminescence, scanning electron microscopy and transmission electron microscopy is also presented.

  2. A V-band wafer probe using ridge-trough waveguide

    NASA Astrophysics Data System (ADS)

    Godshalk, Edward M.

    1991-12-01

    A V-band (50-75 GHz) wafer probe is presented. The probe features a type of waveguide developed to allow transition from rectangular waveguide to coplanar waveguide. The waveguide consists of a ridge extending from the upper waveguide wall into a trough in the lower waveguide wall, and is known as the ridge-trough waveguide. A mathematical model is presented that allows important properties of the ridge-trough waveguide, such as the cutoff frequency and characteristic impedance, to be calculated.

  3. Transmitting Information by Propagation in an Ocean Waveguide: Computation of Acoustic Field Capacity

    DTIC Science & Technology

    2015-06-17

    progress, Eq. (4) is evaluated in terms of the differential entropy h. The integrals can be identified as differential entropy terms by expanding the log...all ran- dom vectors p with a given covariance matrix, the entropy of p is maximized when p is ZMCSCG since a normal distribution maximizes the... entropy over all distributions with the same covariance [9, 18], implying that this is the optimal distribution on s as well. In addition, of all the

  4. Inductively coupled plasma etching of GaAs low loss waveguides for a traveling waveguide polarization converter, using chlorine chemistry

    NASA Astrophysics Data System (ADS)

    Lu, J.; Meng, X.; Springthorpe, A. J.; Shepherd, F. R.; Poirier, M.

    2004-05-01

    A traveling waveguide polarization converter [M. Poirier et al.] has been developed, which involves long, low loss, weakly confined waveguides etched in GaAs (epitaxially grown by molecular beam epitaxy), with electroplated ``T electrodes'' distributed along the etched floor adjacent to the ridge walls, and airbridge interconnect metallization. This article describes the development of the waveguide fabrication, based on inductively coupled plasma (ICP) etching of GaAs using Cl2 chemistry; the special processes required to fabricate the electrodes and metallization [X. Meng et al.], and the device characteristics [M. Poirier et al.], are described elsewhere. The required waveguide has dimensions nominally 4 μm wide and 2.1 μm deep, with dimensional tolerances ~0.1 μm across the wafer and wafer to wafer. A vertical etch profile with very smooth sidewalls and floors is required to enable the plated metal electrodes to be fabricated within 0.1 μm of the ridge. The ridges were fabricated using Cl2 ICP etching and a photoresist mask patterned with an I-line stepper; He backside cooling, combined with an electrostatic chuck, was employed to ensure good heat transfer to prevent resist reticulation. The experimental results showed that the ridge profile is very sensitive to ICP power and platen rf power. High ICP power and low platen power tend to result in more isotropic etching, whereas increasing platen power increases the photoresist etch rate, which causes rougher ridge sidewalls. No strong dependence of GaAs etch rate and ridge profile were observed with small changes in process temperature (chuck temperature). However, when the chuck temperature was decreased from 25 to 0 °C, etch uniformity across a 3 in. wafer improved from 6% to 3%. Photoresist and polymer residues present after the ICP etch were removed using a combination of wet and dry processes. .

  5. Beamed microwave power transmitting and receiving subsystems radiation characteristics

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1980-01-01

    Measured characteristics of the spectrum of typical converters and the distribution of radiated Radio Frequency (RF) energy from the terminals (transmitting antenna and rectenna) of a beamed microwave power subsystem are presented for small transmitting and receiving S-band (2.45 GHz) subarrays. Noise and harmonic levels of tube and solid-state RF power amplifiers are shown. The RF patterns and envelope of a 64 element slotted waveguide antenna are given for the fundamental frequency and harmonics through the fifth. Reflected fundamental and harmonic patterns through the fourth for a 42 element rectenna subarray are presented for various dc load and illumination conditions. Bandwidth measurements for the waveguide antenna and rectenna are shown.

  6. 1 kW peak power passively Q-switched Nd(3+)-doped glass integrated waveguide laser.

    PubMed

    Charlet, B; Bastard, L; Broquin, J E

    2011-06-01

    Embedded optical sensors always require more compact, stable, and powerful laser sources. In this Letter, we present a fully integrated passively Q-switched laser, which has been realized by a Ag(+)/Na(+) ion exchange on a Nd(3+)-doped phosphate glass. A BDN-doped cellulose acetate thick film is deposited on the waveguide, acting as an upper cladding and providing a distributed saturable absorption. At λ=1054 nm, the device emits pulses of 1.3 ns FWHM with a repetition rate of 28 kHz. These performances, coupled with the 1 kW peak power, are promising for applications such as supercontinuum generation. © 2011 Optical Society of America

  7. Electron beam transport with current above the Alfven--Lawson limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al'terkop, B.A.; Sokulin, A.Y.; Tarakanov, V.P.

    1989-08-01

    The quasisteady state of a magnetized electron beam with a current above the Alfven-Lawson limit in a cylindrical waveguide of finite length is analyzed. The distribution of the electrostatic field, the limiting current, and the critical length of the waveguide are found in a two-dimensional system. The basic characteristics of the beam for the injection of a current above the limit---the position of the virtual cathode, the beam thickness, and the current which can be transported---are determined. The current which can be transported may exceed the theoretical limit. The accuracy of the analytic results is confirmed by comparison with themore » results of experiments and numerical simulations.« less

  8. Electromagnetic Modeling of Distributed-Source-Excitation of Coplanar Waveguides: Applications to Traveling-Wave Photomixers

    NASA Technical Reports Server (NTRS)

    Pasqualini, Davide; Neto, Andrea; Wyss, Rolf A.

    2001-01-01

    In this work an electromagnetic model and subsequent design is presented for a traveling-wave, coplanar waveguide (CPW) based source that will operate in the THz frequency regime. The radio frequency (RF) driving current is a result of photoexcitation of a thin GaAs membrane using two frequency-offset lasers. The GaAs film is grown by molecular-beam-epitaxy (MBE) and displays sub-ps carrier lifetimes which enable the material conductivity to be modulated at a very high rate. The RF current flows between electrodes deposited on the GaAs membrane which are biased with a DC voltage source. The electrodes form a CPW and are terminated with a double slot antenna that couples the power to a quasi-optical system. The membrane is suspended above a metallic reflector to launch all radiation in one direction. The theoretical investigation and consequent design is performed in two steps. The first step consists of a direct evaluation of the magnetic current distribution on an infinitely extended coplanar waveguide excited by an impressed electric current distributed over a finite area. The result of the analysis is the difference between the incident angle of the laser beams and the length of the excited area that maximizes the RF power coupled to the CPW. The optimal values for both parameters are found as functions of the CPW and membrane dimensions as well as the dielectric constants of the layers. In the second step, a design is presented of a double slot antenna that matches the CPW characteristic impedance and gives good overall performance. The design is presently being implemented and measurements will soon be available.

  9. Transversely bounded DFB lasers. [bounded distributed-feedback lasers

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Evans, G.; Yeh, C.

    1975-01-01

    Bounded distributed-feedback (DFB) lasers are studied in detail. Threshold gain and field distribution for a number of configurations are derived and analyzed. More specifically, the thin-film guide, fiber, diffusion guide, and hollow channel with inhomogeneous-cladding DFB lasers are considered. Optimum points exist and must be used in DFB laser design. Different-modes feedback and the effects of the transverse boundaries are included. A number of applications are also discussed.

  10. Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation.

    PubMed

    El-Taher, A E; Harper, P; Babin, S A; Churkin, D V; Podivilov, E V; Ania-Castanon, J D; Turitsyn, S K

    2011-01-15

    We experimentally demonstrate a Raman fiber laser based on multiple point-action fiber Bragg grating reflectors and distributed feedback via Rayleigh scattering in an ~22-km-long optical fiber. Twenty-two lasing lines with spacing of ~100 GHz (close to International Telecommunication Union grid) in the C band are generated at the watt level. In contrast to the normal cavity with competition between laser lines, the random distributed feedback cavity exhibits highly stable multiwavelength generation with a power-equalized uniform distribution, which is almost independent on power.

  11. Low Frequency Acoustic Intensity Propagation Modeling in Shallow Water Waveguides

    DTIC Science & Technology

    2016-06-01

    REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of...release; distribution is unlimited 12b. DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) Three popular numerical techniques are employed to...planar interfacial two-fluid transmission and reflection are used to benchmark the commercial software package COMSOL. Canonical Pekeris-type

  12. Ranging bowhead whale calls in a shallow-water dispersive waveguide.

    PubMed

    Abadi, Shima H; Thode, Aaron M; Blackwell, Susanna B; Dowling, David R

    2014-07-01

    This paper presents the performance of three methods for estimating the range of broadband (50-500 Hz) bowhead whale calls in a nominally 55-m-deep waveguide: Conventional mode filtering (CMF), synthetic time reversal (STR), and triangulation. The first two methods use a linear vertical array to exploit dispersive propagation effects in the underwater sound channel. The triangulation technique used here, while requiring no knowledge about the propagation environment, relies on a distributed array of directional autonomous seafloor acoustics recorders (DASARs) arranged in triangular grid with 7 km spacing. This study uses simulations and acoustic data collected in 2010 from coastal waters near Kaktovik, Alaska. At that time, a 12-element vertical array, spanning the bottom 63% of the water column, was deployed alongside a distributed array of seven DASARs. The estimated call location-to-array ranges determined from CMF and STR are compared with DASAR triangulation results for 19 whale calls. The vertical-array ranging results are generally within ±10% of the DASAR results with the STR results providing slightly better agreement. The results also indicate that the vertical array can range calls over larger ranges and with greater precision than the particular distributed array discussed here, whenever the call locations are beyond the distributed array boundaries.

  13. Photonics and Optoelectronics

    DTIC Science & Technology

    2013-03-07

    Distribution Outline/Agenda • Nanophotonics: plasmonics, nanostructures, metasurfaces etc • Integrated Nanophotonics & Silicon Photonics...Highlights Nanophotonics Nanophotonics: metasurfaces , nanostructures, plasmonics etc • Shalaev – Broadband Light Bending with Plasmonic...solitons, slot waveguide, “ Metasurface ” collimator etc " World Changing Ideas 2012” Electronic Tattoos, sciencemag , J. Rogers UICU P

  14. Remote coding scheme based on waveguide Bragg grating in PLC splitter chip for PON monitoring.

    PubMed

    Zhang, Xuan; Lu, Fengjun; Chen, Si; Zhao, Xingqun; Zhu, Min; Sun, Xiaohan

    2016-03-07

    A distributing arranged waveguide Bragg gratings (WBGs) in PLC splitter chip based remote coding scheme is proposed and analyzed for passive optical network (PON) monitoring, by which the management system can identify each drop fiber link through the same reflector in the terminal of each optical network unit, even though there exist several equidistant users. The corresponding coding and capacity models are respectively established and investigated so that we can obtain a minimum number of the WBGs needed under the condition of the distributed structure. Signal-to-noise ratio (SNR) model related to the number of equidistant users is also developed to extend the analyses for the overall performance of the system. Simulation results show the proposed scheme is feasible and allow the monitoring of a 64 users PON with SNR range of 7.5~10.6dB. The scheme can solve some of difficulties of construction site at the lower user cost for PON system.

  15. Real-time CO2 sensor for the optimal control of electronic EGR system

    NASA Astrophysics Data System (ADS)

    Kim, Gwang-jung; Choi, Byungchul; Choi, Inchul

    2013-12-01

    In modern diesel engines, EGR (Exhaust Gas Recirculation) is an important technique used in nitrogen oxide (NOx) emission reduction. This paper describes the development and experimental results of a fiber-optical sensor using a 2.7 μm wavelength absorption to quantify the simultaneous CO2 concentration which is the primary variable of EGR rate (CO2 in the exhaust gas versus CO2 in the intake gas, %). A real-time laser absorption method was developed using a DFB (distributed feedback) diode laser and waveguide to make optimal design and control of electronic EGR system required for `Euro-6' and `Tier 4 Final' NOx emission regulations. While EGR is effective to reduce NOx significantly, the amount of HC and CO is increased in the exhaust gas if EGR rate is not controlled based on driving conditions. Therefore, it is important to recirculate an appropriate amount of exhaust gas in the operation condition generating high volume of NOx. In this study, we evaluated basic characteristics and functions of our optical sensor and studied basically in order to find out optimal design condition. We demonstrated CO2 measurement speed, accuracy and linearity as making a condition similar to real engine through the bench-scale experiment.

  16. Semi-automatic engineering and tailoring of high-efficiency Bragg-reflection waveguide samples for quantum photonic applications

    NASA Astrophysics Data System (ADS)

    Pressl, B.; Laiho, K.; Chen, H.; Günthner, T.; Schlager, A.; Auchter, S.; Suchomel, H.; Kamp, M.; Höfling, S.; Schneider, C.; Weihs, G.

    2018-04-01

    Semiconductor alloys of aluminum gallium arsenide (AlGaAs) exhibit strong second-order optical nonlinearities. This makes them prime candidates for the integration of devices for classical nonlinear optical frequency conversion or photon-pair production, for example, through the parametric down-conversion (PDC) process. Within this material system, Bragg-reflection waveguides (BRW) are a promising platform, but the specifics of the fabrication process and the peculiar optical properties of the alloys require careful engineering. Previously, BRW samples have been mostly derived analytically from design equations using a fixed set of aluminum concentrations. This approach limits the variety and flexibility of the device design. Here, we present a comprehensive guide to the design and analysis of advanced BRW samples and show how to automatize these tasks. Then, nonlinear optimization techniques are employed to tailor the BRW epitaxial structure towards a specific design goal. As a demonstration of our approach, we search for the optimal effective nonlinearity and mode overlap which indicate an improved conversion efficiency or PDC pair production rate. However, the methodology itself is much more versatile as any parameter related to the optical properties of the waveguide, for example the phasematching wavelength or modal dispersion, may be incorporated as design goals. Further, we use the developed tools to gain a reliable insight in the fabrication tolerances and challenges of real-world sample imperfections. One such example is the common thickness gradient along the wafer, which strongly influences the photon-pair rate and spectral properties of the PDC process. Detailed models and a better understanding of the optical properties of a realistic BRW structure are not only useful for investigating current samples, but also provide important feedback for the design and fabrication of potential future turn-key devices.

  17. Efficient active waveguiding properties of Mo6 nano-cluster-doped polymer nanotubes

    NASA Astrophysics Data System (ADS)

    Bigeon, J.; Huby, N.; Amela-Cortes, M.; Molard, Y.; Garreau, A.; Cordier, S.; Bêche, B.; Duvail, J.-L.

    2016-06-01

    We investigate 1D nanostructures based on a Mo6@SU8 hybrid nanocomposite in which photoluminescent Mo6 clusters are embedded in the photosensitive SU8 resist. Tens of micrometers long Mo6@SU8-based tubular nanostructures were fabricated by the wetting template method, enabling the control of the inner and outer diameter to about 190 nm and 240 nm respectively, as supported by structural and optical characterizations. The image plane optical study of these nanotubes under optical pumping highlights the efficient waveguiding phenomenon of the red luminescence emitted by the clusters. Moreover, the wave vector distribution in the Fourier plane determined by leakage radiation microscopy gives additional features of the emission and waveguiding. First, the anisotropic red luminescence of the whole system can be attributed to the guided mode along the nanotube. Then, a low-loss propagation behavior is evidenced in the Mo6@SU8-based nanotubes. This result contrasts with the weaker waveguiding signature in the case of UV210-based nanotubes embedding PFO (poly(9,9-di-n-octylfluorenyl-2,7-diyl)). It is attributed to the strong reabsorption phenomenon, owing to overlapping between absorption and emission bands in the semi-conducting conjugated polymer PFO. These results make this Mo6@SU8 original class of nanocomposite a promising candidate as nanosources for submicronic photonic integration.

  18. Efficient active waveguiding properties of Mo6 nano-cluster-doped polymer nanotubes.

    PubMed

    Bigeon, J; Huby, N; Amela-Cortes, M; Molard, Y; Garreau, A; Cordier, S; Bêche, B; Duvail, J-L

    2016-06-24

    We investigate 1D nanostructures based on a Mo6@SU8 hybrid nanocomposite in which photoluminescent Mo6 clusters are embedded in the photosensitive SU8 resist. Tens of micrometers long Mo6@SU8-based tubular nanostructures were fabricated by the wetting template method, enabling the control of the inner and outer diameter to about 190 nm and 240 nm respectively, as supported by structural and optical characterizations. The image plane optical study of these nanotubes under optical pumping highlights the efficient waveguiding phenomenon of the red luminescence emitted by the clusters. Moreover, the wave vector distribution in the Fourier plane determined by leakage radiation microscopy gives additional features of the emission and waveguiding. First, the anisotropic red luminescence of the whole system can be attributed to the guided mode along the nanotube. Then, a low-loss propagation behavior is evidenced in the Mo6@SU8-based nanotubes. This result contrasts with the weaker waveguiding signature in the case of UV210-based nanotubes embedding PFO (poly(9,9-di-n-octylfluorenyl-2,7-diyl)). It is attributed to the strong reabsorption phenomenon, owing to overlapping between absorption and emission bands in the semi-conducting conjugated polymer PFO. These results make this Mo6@SU8 original class of nanocomposite a promising candidate as nanosources for submicronic photonic integration.

  19. Hard and flexible optical printed circuit board

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Lee, Hyun Sik; Lee, S. G.; O, B. H.; Park, S. G.; Kim, K. H.

    2007-02-01

    We report on the design and fabrication of hard and flexible optical printed circuit boards (O-PCBs). The objective is to realize generic and application-specific O-PCBs, either in hard form or flexible form, that are compact, light-weight, low-energy, high-speed, intelligent, and environmentally friendly, for low-cost and high-volume universal applications. The O-PCBs consist of 2-dimensional planar arrays of micro/nano-scale optical wires, circuits and devices that are interconnected and integrated to perform the functions of sensing, storing, transporting, processing, switching, routing and distributing optical signals on flat modular boards. For fabrication, the polymer and organic optical wires and waveguides are first fabricated on a board and are used to interconnect and integrate micro/nano-scale photonic devices. The micro/nano-optical functional devices include lasers, detectors, switches, sensors, directional couplers, multi-mode interference devices, ring-resonators, photonic crystal devices, plasmonic devices, and quantum devices. For flexible boards, the optical waveguide arrays are fabricated on flexible poly-ethylen terephthalate (PET) substrates by UV embossing. Electrical layer carrying VCSEL and PD array is laminated with the optical layer carrying waveguide arrays. Both hard and flexible electrical lines are replaced with high speed optical interconnection between chips over four waveguide channels up to 10Gbps on each. We discuss uses of hard or flexible O-PCBs for telecommunication systems, computer systems, transportation systems, space/avionic systems, and bio-sensor systems.

  20. Wave chaos in a randomly inhomogeneous waveguide: spectral analysis of the finite-range evolution operator.

    PubMed

    Makarov, D V; Kon'kov, L E; Uleysky, M Yu; Petrov, P S

    2013-01-01

    The problem of sound propagation in a randomly inhomogeneous oceanic waveguide is considered. An underwater sound channel in the Sea of Japan is taken as an example. Our attention is concentrated on the domains of finite-range ray stability in phase space and their influence on wave dynamics. These domains can be found by means of the one-step Poincare map. To study manifestations of finite-range ray stability, we introduce the finite-range evolution operator (FREO) describing transformation of a wave field in the course of propagation along a finite segment of a waveguide. Carrying out statistical analysis of the FREO spectrum, we estimate the contribution of regular domains and explore their evanescence with increasing length of the segment. We utilize several methods of spectral analysis: analysis of eigenfunctions by expanding them over modes of the unperturbed waveguide, approximation of level-spacing statistics by means of the Berry-Robnik distribution, and the procedure used by A. Relano and coworkers [Relano et al., Phys. Rev. Lett. 89, 244102 (2002); Relano, Phys. Rev. Lett. 100, 224101 (2008)]. Comparing the results obtained with different methods, we find that the method based on the statistical analysis of FREO eigenfunctions is the most favorable for estimating the contribution of regular domains. It allows one to find directly the waveguide modes whose refraction is regular despite the random inhomogeneity. For example, it is found that near-axial sound propagation in the Sea of Japan preserves stability even over distances of hundreds of kilometers due to the presence of a shearless torus in the classical phase space. Increasing the acoustic wavelength degrades scattering, resulting in recovery of eigenfunction localization near periodic orbits of the one-step Poincaré map.

  1. Using a conformal water bolus to adjust heating patterns of microwave waveguide applicators

    NASA Astrophysics Data System (ADS)

    Stauffer, Paul R.; Rodrigues, Dario B.; Sinahon, Randolf; Sbarro, Lyndsey; Beckhoff, Valeria; Hurwitz, Mark D.

    2017-02-01

    Background: Hyperthermia, i.e., raising tissue temperature to 40-45°C for 60 min, has been demonstrated to increase the effectiveness of radiation and chemotherapy for cancer. Although multi-element conformal heat applicators are under development to provide more adjustable heating of contoured anatomy, to date the most often used applicator to heat superficial disease is the simple microwave waveguide. With only a single power input, the operator must be resourceful to adjust heat treatment to accommodate variable size and shape tumors spreading across contoured anatomy. Methods: We used multiphysics simulation software that couples electromagnetic, thermal and fluid dynamics physics to simulate heating patterns in superficial tumors from commercially available microwave waveguide applicators. Temperature distributions were calculated inside homogenous muscle and layered skin-fat-muscle-tumor-bone tissue loads for a typical range of applicator coupling configurations and size of waterbolus. Variable thickness waterbolus was simulated as necessary to accommodate contoured anatomy. Physical models of several treatment configurations were constructed for comparison of simulation results with experimental specific absorption rate (SAR) measurements in homogenous muscle phantom. Results: Accuracy of the simulation model was confirmed with experimental SAR measurements of three unique applicator setups. Simulations demonstrated the ability to generate a wide range of power deposition patterns with commercially available waveguide antennas by controllably varying size and thickness of the waterbolus layer. Conclusion: Heating characteristics of 915 MHz waveguide antennas can be varied over a wide range by controlled adjustment of microwave power, coupling configuration, and waterbolus lateral size and thickness. The uniformity of thermal dose delivered to superficial tumors can be improved by cyclic switching of waterbolus thickness during treatment to proactively shift heat peaks and nulls around under the aperture, thereby reducing patient pain while increasing minimum thermal dose by end of treatment.

  2. Microminiature optical waveguide structure and method for fabrication

    DOEpatents

    Strand, O.T.; Deri, R.J.; Pocha, M.D.

    1998-12-08

    A method for manufacturing low-cost, nearly circular cross section waveguides comprises starting with a substrate material that a molten waveguide material can not wet or coat. A thin layer is deposited of an opposite material that the molten waveguide material will wet and is patterned to describe the desired surface-contact path pedestals for a waveguide. A waveguide material, e.g., polymer or doped silica, is deposited. A resist material is deposited and unwanted excess is removed to form pattern masks. The waveguide material is etched away to form waveguide precursors and the masks are removed. Heat is applied to reflow the waveguide precursors into near-circular cross-section waveguides that sit atop the pedestals. The waveguide material naturally forms nearly circular cross sections due to the surface tension effects. After cooling, the waveguides will maintain the round shape. If the width and length are the same, then spherical ball lenses are formed. Alternatively, the pedestals can be patterned to taper along their lengths on the surface of the substrate. This will cause the waveguides to assume a conical taper after reflowing by heat. 32 figs.

  3. Microminiature optical waveguide structure and method for fabrication

    DOEpatents

    Strand, Oliver T.; Deri, Robert J.; Pocha, Michael D.

    1998-01-01

    A method for manufacturing low-cost, nearly circular cross section waveguides comprises starting with a substrate material that a molten waveguide material can not wet or coat. A thin layer is deposited of an opposite material that the molten waveguide material will wet and is patterned to describe the desired surface-contact path pedestals for a waveguide. A waveguide material, e.g., polymer or doped silica, is deposited. A resist material is deposited and unwanted excess is removed to form pattern masks. The waveguide material is etched away to form waveguide precursors and the masks are removed. Heat is applied to reflow the waveguide precursors into near-circular cross-section waveguides that sit atop the pedestals. The waveguide material naturally forms nearly circular cross sections due to the surface tension effects. After cooling, the waveguides will maintain the round shape. If the width and length are the same, then spherical ball lenses are formed. Alternatively, the pedestals can be patterned to taper along their lengths on the surface of the substrate. This will cause the waveguides to assume a conical taper after reflowing by heat.

  4. CWG - MUTUAL COUPLING PROGRAM FOR CIRCULAR WAVEGUIDE-FED APERTURE ARRAY (IBM PC VERSION)

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1994-01-01

    Mutual Coupling Program for Circular Waveguide-fed Aperture Array (CWG) was developed to calculate the electromagnetic interaction between elements of an antenna array of circular apertures with specified aperture field distributions. The field distributions were assumed to be a superposition of the modes which could exist in a circular waveguide. Various external media were included to provide flexibility of use, for example, the flexibility to determine the effects of dielectric covers (i.e., thermal protection system tiles) upon the impedance of aperture type antennas. The impedance and radiation characteristics of planar array antennas depend upon the mutual interaction between all the elements of the array. These interactions are influenced by several parameters (e.g., the array grid geometry, the geometry and excitation of each array element, the medium outside the array, and the internal network feeding the array.) For the class of array antenna whose radiating elements consist of small holes in a flat conducting plate, the electromagnetic problem can be divided into two parts, the internal and the external. In solving the external problem for an array of circular apertures, CWG will compute the mutual interaction between various combinations of circular modal distributions and apertures. CWG computes the mutual coupling between various modes assumed to exist in circular apertures that are located in a flat conducting plane of infinite dimensions. The apertures can radiate into free space, a homogeneous medium, a multilayered region or a reflecting surface. These apertures are assumed to be excited by one or more modes corresponding to the modal distributions in circular waveguides of the same cross sections as the apertures. The apertures may be of different sizes and also of different polarizations. However, the program assumes that each aperture field contains the same modal distributions, and calculates the complex scattering matrix between all mode and aperture combinations. The scattering matrix can then be used to determine the complex modal field amplitudes for each aperture with a specified array excitation. CWG is written in VAX FORTRAN for DEC VAX series computers running VMS (LAR-15236) and IBM PC series and compatible computers running MS-DOS (LAR-15226). It requires 360K of RAM for execution. To compile the source code for the PC version, the NDP Fortran compiler and linker will be required; however, the distribution medium for the PC version of CWG includes a sample MS-DOS executable which was created using NDP Fortran with the -vms compiler option. The standard distribution medium for the PC version of CWG is a 3.5 inch 1.44Mb MS-DOS format diskette. The standard distribution medium for the VAX version of CWG is a 1600 BPI 9track magnetic tape in DEC VAX BACKUP format. The VAX version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. Both machine versions of CWG include an electronic version of the documentation in Microsoft Word for Windows format. CWG was developed in 1993 and is a copyrighted work with all copyright vested in NASA.

  5. CWG - MUTUAL COUPLING PROGRAM FOR CIRCULAR WAVEGUIDE-FED APERTURE ARRAY (VAX VMS VERSION)

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1994-01-01

    Mutual Coupling Program for Circular Waveguide-fed Aperture Array (CWG) was developed to calculate the electromagnetic interaction between elements of an antenna array of circular apertures with specified aperture field distributions. The field distributions were assumed to be a superposition of the modes which could exist in a circular waveguide. Various external media were included to provide flexibility of use, for example, the flexibility to determine the effects of dielectric covers (i.e., thermal protection system tiles) upon the impedance of aperture type antennas. The impedance and radiation characteristics of planar array antennas depend upon the mutual interaction between all the elements of the array. These interactions are influenced by several parameters (e.g., the array grid geometry, the geometry and excitation of each array element, the medium outside the array, and the internal network feeding the array.) For the class of array antenna whose radiating elements consist of small holes in a flat conducting plate, the electromagnetic problem can be divided into two parts, the internal and the external. In solving the external problem for an array of circular apertures, CWG will compute the mutual interaction between various combinations of circular modal distributions and apertures. CWG computes the mutual coupling between various modes assumed to exist in circular apertures that are located in a flat conducting plane of infinite dimensions. The apertures can radiate into free space, a homogeneous medium, a multilayered region or a reflecting surface. These apertures are assumed to be excited by one or more modes corresponding to the modal distributions in circular waveguides of the same cross sections as the apertures. The apertures may be of different sizes and also of different polarizations. However, the program assumes that each aperture field contains the same modal distributions, and calculates the complex scattering matrix between all mode and aperture combinations. The scattering matrix can then be used to determine the complex modal field amplitudes for each aperture with a specified array excitation. CWG is written in VAX FORTRAN for DEC VAX series computers running VMS (LAR-15236) and IBM PC series and compatible computers running MS-DOS (LAR-15226). It requires 360K of RAM for execution. To compile the source code for the PC version, the NDP Fortran compiler and linker will be required; however, the distribution medium for the PC version of CWG includes a sample MS-DOS executable which was created using NDP Fortran with the -vms compiler option. The standard distribution medium for the PC version of CWG is a 3.5 inch 1.44Mb MS-DOS format diskette. The standard distribution medium for the VAX version of CWG is a 1600 BPI 9track magnetic tape in DEC VAX BACKUP format. The VAX version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. Both machine versions of CWG include an electronic version of the documentation in Microsoft Word for Windows format. CWG was developed in 1993 and is a copyrighted work with all copyright vested in NASA.

  6. Method and apparatus for preventing cyclotron breakdown in partially evacuated waveguide

    DOEpatents

    Moeller, Charles P.

    1987-01-01

    Cyclotron breakdown is prevented in a partially evacuated waveguide by providing a section of waveguide having an axial cut therein in order to apply a potential across the two halves of the waveguide. This section is positioned in the waveguide crossing the area of electron cyclotron resonance. The potential applied across the waveguide halves is used to deflect seed electrons into the wall of the waveguide in order to prevent ionization of gas molecules and creation of more electron ion pairs which would result in cyclotron breakdown. Support means is also disclosed for electrically isolating the waveguide halves and transition means is provided between the section of the waveguide with the axial cut and the solid waveguide at either end thereof.

  7. Evaluation of slot-to-slot coupling between dielectric slot waveguides and metal-insulator-metal slot waveguides.

    PubMed

    Kong, Deqing; Tsubokawa, Makoto

    2015-07-27

    We numerically analyzed the power-coupling characteristics between a high-index-contrast dielectric slot waveguide and a metal-insulator-metal (MIM) plasmonic slot waveguide as functions of structural parameters. Couplings due mainly to the transfer of evanescent components in two waveguides generated high transmission efficiencies of 62% when the slot widths of the two waveguides were the same and 73% when the waveguides were optimized by slightly different widths. The maximum transmission efficiency in the slot-to-slot coupling was about 10% higher than that in the coupling between a normal slab waveguide and an MIM waveguide. Large alignment tolerance of the slot-to-slot coupling was also proved. Moreover, a small gap inserted into the interface between two waveguides effectively enhances the transmission efficiency, as in the case of couplings between a normal slab waveguide and an MIM waveguide. In addition, couplings with very wideband transmissions over a wavelength region of a few hundred nanometers were validated.

  8. Improving the beam quality of high-power laser diodes by introducing lateral periodicity into waveguides

    NASA Astrophysics Data System (ADS)

    Sobczak, Grzegorz; DÄ browska, ElŻbieta; Teodorczyk, Marian; Kalbarczyk, Joanna; MalÄ g, Andrzej

    2013-01-01

    Low quality of the optical beam emitted by high-power laser diodes is the main disadvantage of these devices. The two most important reasons are highly non-Gaussian beam profile with relatively wide divergence in the junction plane and the filamentation effect. Designing laser diode as an array of narrow, close to each other single-mode waveguides is one of the solutions to this problem. In such devices called phase locked arrays (PLA) there is no room for filaments formation. The consequence of optical coupling of many single-mode waveguides is the device emission in the form of few almost diffraction limited beams. Because of losses in regions between active stripes the PLA devices have, however, somewhat higher threshold current and lower slope efficiencies compared to wide-stripe devices of similar geometry. In this work the concept of the high-power laser diode resonator consisted of joined PLA and wide stripe segments is proposed. Resulting changes of electro-optical characteristics of PLA are discussed. The devices are based on the asymmetric heterostructure designed for improvement of the catastrophic optical damage threshold as well as thermal and electrical resistances. Due to reduced distance from the active layer to surface in this heterostructure, better stability of current (and gain) distribution with changing drive level is expected. This could lead to better stability of optical field distribution and supermodes control. The beam divergence reduction in the direction perpendicular of the junction plane has been also achieved.

  9. Projecting light beams with 3D waveguide arrays

    NASA Astrophysics Data System (ADS)

    Crespi, Andrea; Bragheri, Francesca

    2017-01-01

    Free-space light beams with complex intensity patterns, or non-trivial phase structure, are demanded in diverse fields, ranging from classical and quantum optical communications, to manipulation and imaging of microparticles and cells. Static or dynamic spatial light modulators, acting on the phase or intensity of an incoming light wave, are the conventional choices to produce beams with such non-trivial characteristics. However, interfacing these devices with optical fibers or integrated optical circuits often requires difficult alignment or cumbersome optical setups. Here we explore theoretically and with numerical simulations the potentialities of directly using the output of engineered three-dimensional waveguide arrays, illuminated with linearly polarized light, to project light beams with peculiar structures. We investigate through a collection of illustrative configurations the far field distribution, showing the possibility to achieve orbital angular momentum, or to produce elaborate intensity or phase patterns with several singularity points. We also simulate the propagation of the projected beam, showing the possibility to concentrate light. We note that these devices should be at reach of current technology, thus perspectives are open for the generation of complex free-space optical beams from integrated waveguide circuits.

  10. Interaction and dispersion of waveguide modes in an optical fiber with microirregularities of the core surface

    NASA Astrophysics Data System (ADS)

    Zadorin, A. S.; Kruglov, R. S.; Surkova, G. A.

    2012-08-01

    A self-consistent linear model is proposed for the transformation of the average intensity of the mode spectrum I( z) of the waveguide field in a multimode optical fiber with a stepped refractive index profile and the core having a rough surface. The model is based on the concept of the intermodal dispersion matrix of an elementary segment of the fiber, ∆, whose elements characterize the mutual transfer of energy between the waveguide modes, as well as their conversion to radiation modes on the specified interval. On this basis, the features of the transformation of the mode spectrum I( z) in a multimode optical fiber with a stepped refractive index profile are considered that is due to the effects of multiple dispersion of the signal by the stochastic irregularities of the duct. The effect of self-filtering of I( z) is described that results in the formation of a stable (normalized) distribution I*. The features of the normalization of the radiative damping of a group of modes I i ( z) in an optical fiber are considered.

  11. New SPUDT cell structures.

    PubMed

    Martin, Guenter; Schmidt, Hagen; Wall, Bert

    2004-07-01

    The present paper describes single-phase unidirectional transducers (SPUDT) cells with all fingers wider than lambda/8 while maintaining the unidirectional effect. The first solution is related to a SPUDT consisting of lambda/4 and lambda/2 wide fingers arranged in two tracks. Each track has no significant unidirectional effect. Both tracks form a waveguide, and the waveguide coupling generates the interaction of the tracks. As a result of that interaction, a unidirectional effect arises as verified by experiment. This transducer type is called double-track (DT) SPUDT. A second solution is suggested that includes, in contrast to distributed acoustic reflection transducer (DART), electrode width control (EWC), and Hunsinger cells, SPUDT cell fingers with one and the same width only. Cell types with lambda/6, lambda/5, and lambda/3 wide fingers called uniform width electrode (UWE) cells are considered. One of these cell types, including exclusively lambda/5 wide fingers, is experimentally investigated and a unidirectional effect is found. Moreover, a filter example using the lambda/5 cell type has been designed for reducing SPUDT reflections. The echo suppression expected could be verified experimentally. No waveguide coupling is required for this cell type.

  12. Scalable waveguide design for three-level operation in Neodymium doped fiber laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pax, Paul H.; Khitrov, Victor V.; Drachenberg, Derrek R.

    We have constructed a double clad neodymium doped fiber laser operating on the three-level 4F 3/2 → 4I 9/2 transition. The laser has produced 11.5 W at 925 nm with 55% slope efficiency when pumped at 808 nm, comparable to the best previous results for a double-clad fiber configuration on this transition. Higher power pumping with both 808 nm and 880 nm sources resulted in an output of 27 W, albeit at lower slope efficiency. In both cases, output power was limited by available pump, indicating the potential for further power scaling. To suppress the stronger four-level 4F 3/2 →more » 4I 11/2 transition we developed a waveguide that provides spectral filtering distributed along the length of the fiber, based on an all-solid micro-structured optical fiber design, with resonant inclusions creating a leakage path to the cladding. Furthermore, the waveguide supports large mode areas and provides strong suppression at selectable wavelength bands, thus easing the restrictions on core and cladding sizes that limited power scaling of previous approaches.« less

  13. Scalable waveguide design for three-level operation in Neodymium doped fiber laser

    DOE PAGES

    Pax, Paul H.; Khitrov, Victor V.; Drachenberg, Derrek R.; ...

    2016-12-12

    We have constructed a double clad neodymium doped fiber laser operating on the three-level 4F 3/2 → 4I 9/2 transition. The laser has produced 11.5 W at 925 nm with 55% slope efficiency when pumped at 808 nm, comparable to the best previous results for a double-clad fiber configuration on this transition. Higher power pumping with both 808 nm and 880 nm sources resulted in an output of 27 W, albeit at lower slope efficiency. In both cases, output power was limited by available pump, indicating the potential for further power scaling. To suppress the stronger four-level 4F 3/2 →more » 4I 11/2 transition we developed a waveguide that provides spectral filtering distributed along the length of the fiber, based on an all-solid micro-structured optical fiber design, with resonant inclusions creating a leakage path to the cladding. Furthermore, the waveguide supports large mode areas and provides strong suppression at selectable wavelength bands, thus easing the restrictions on core and cladding sizes that limited power scaling of previous approaches.« less

  14. Electromagnetic Design of a Magnetically-Coupled Spatial Power Combiner

    NASA Technical Reports Server (NTRS)

    Bulcha, B.; Cataldo, G.; Stevenson, T. R.; U-Yen, K.; Moseley, S. H.; Wollack, E. J.

    2017-01-01

    The design of a two-dimensional beam-combining network employing a parallel-plate superconducting waveguide with a mono-crystalline silicon dielectric is presented. This novel beam-combining network structure employs an array of magnetically coupled antenna elements to achieve high coupling efficiency and full sampling of the intensity distribution while avoiding diffractive losses in the multi-mode region defined by the parallel-plate waveguide. These attributes enable the structures use in realizing compact far-infrared spectrometers for astrophysical and instrumentation applications. When configured with a suitable corporate-feed power-combiner, this fully sampled array can be used to realize a low-sidelobe apodized response without incurring a reduction in coupling efficiency. To control undesired reflections over a wide range of angles in the finite-sized parallel-plate waveguide region, a wideband meta-material electromagnetic absorber structure is implemented. This adiabatic structure absorbs greater than 99 of the power over the 1.7:1 operational band at angles ranging from normal (0 degree) to near parallel (180 degree) incidence. Design, simulations, and application of the device will be presented.

  15. Low reflectance high power RF load

    DOEpatents

    Ives, R. Lawrence; Mizuhara, Yosuke M.

    2016-02-02

    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  16. Low reflectance radio frequency load

    DOEpatents

    Ives, R. Lawrence; Mizuhara, Yosuke M

    2014-04-01

    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  17. Slotted Polyimide-Aerogel-Filled-Waveguide Arrays

    NASA Technical Reports Server (NTRS)

    Rodriguez-Solis, Rafael A.; Pacheco, Hector L.; Miranda, Felix A.; Meador, Mary Ann B.

    2013-01-01

    Polyimide aerogels were considered to serve as a filling for millimeter-wave waveguides. While these waveguides present a slightly higher loss than hollow waveguides, they have less losses than Duroid substrate integrated waveguides (less than 0.15 dB at Ka-band, in a 20 mm section), and exhibit an order of magnitude of mass reduction when compared to commercial waveguides. A Ka-band slotted aerogel-filled-waveguide array was designed, which provided the same gain (9 dBi) as its standard waveguide counterpart, and a slotted aerogel-filled-waveguide array using folded-slots was designed for comparison, obtaining a gain of 9 dB and a bandwidth of 590 MHz.

  18. Competition and evolution of dielectric waveguide mode and plasmonic waveguide mode

    NASA Astrophysics Data System (ADS)

    Yuan, Sheng-Nan; Fang, Yun-Tuan

    2017-10-01

    In order to study the coupling and evolution law of the waveguide mode and two plasmonic surface modes, we construct a line defect waveguide based on hexagonal honeycomb plasmonic photonic crystal. Through adjusting the radius of the edge dielectric rods, the competition and evolution behaviors occur between dielectric waveguide mode and plasmonic waveguide mode. There are three status: only plasmonic waveguide modes occur for rA < 0.09a; only dielectric waveguide modes occur for rA > 0.25a; two kinds of modes coexist for 0.09a < rA < 0.25a. The plasmonic waveguide mode has advantages in achieving slow light.

  19. Narrow-band generation in random distributed feedback fiber laser.

    PubMed

    Sugavanam, Srikanth; Tarasov, Nikita; Shu, Xuewen; Churkin, Dmitry V

    2013-07-15

    Narrow-band emission of spectral width down to ~0.05 nm line-width is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ~10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning.

  20. Distributed force feedback in the spinal cord and the regulation of limb mechanics.

    PubMed

    Nichols, T Richard

    2018-03-01

    This review is an update on the role of force feedback from Golgi tendon organs in the regulation of limb mechanics during voluntary movement. Current ideas about the role of force feedback are based on modular circuits linking idealized systems of agonists, synergists, and antagonistic muscles. In contrast, force feedback is widely distributed across the muscles of a limb and cannot be understood based on these circuit motifs. Similarly, muscle architecture cannot be understood in terms of idealized systems, since muscles cross multiple joints and axes of rotation and further influence remote joints through inertial coupling. It is hypothesized that distributed force feedback better represents the complex mechanical interactions of muscles, including the stresses in the musculoskeletal network born by muscle articulations, myofascial force transmission, and inertial coupling. Together with the strains of muscle fascicles measured by length feedback from muscle spindle receptors, this integrated proprioceptive feedback represents the mechanical state of the musculoskeletal system. Within the spinal cord, force feedback has excitatory and inhibitory components that coexist in various combinations based on motor task and integrated with length feedback at the premotoneuronal and motoneuronal levels. It is concluded that, in agreement with other investigators, autogenic, excitatory force feedback contributes to propulsion and weight support. It is further concluded that coexistent inhibitory force feedback, together with length feedback, functions to manage interjoint coordination and the mechanical properties of the limb in the face of destabilizing inertial forces and positive force feedback, as required by the accelerations and changing directions of both predator and prey.

  1. Diffracted field distributions from the HE11 mode in a hollow optical fibre for an atomic funnel

    NASA Astrophysics Data System (ADS)

    Ni, Yun; Liu, Nanchun; Yin, Jianping

    2003-06-01

    The diffracted near field distribution from an LP01 mode in a hollow optical fibre was recently calculated using a scalar model based on the weakly waveguiding approximation (Yoo et al 1999 J. Opt. B: Quantum Semiclass. Opt. 1 364). It showed a dominant Gaussian-like distribution with an increased axial intensity in the central region (not a doughnut-like distribution), so the diffracted output beam from the hollow fibre cannot be used to form an atomic funnel. Using exact solutions of the Maxwell equations based on a vector model, however, we calculate the electric field and intensity distributions of the HE11 mode in the same hollow fibre and study the diffracted near- and far-field distributions of the HE11-mode output beam under the Fresnel approximation. We analyse and compare the differences between the output beams from the HE11 and LP01 modes. Our study shows that both the near- and far-field intensity distributions of the HE11-mode output beam are doughnut-like and can be used to form a simple atomic funnel. However, it is not suitable to use the weakly waveguiding approximation to calculate the diffracted near-field distribution of the hollow fibre due to the greater refractive-index difference between the hollow region (n0 = 1) and the core (n1 = 1.45 or 1.5). Finally, the 3D intensity distribution of the HE11-mode output beam is modelled and the corresponding optical potentials for cold atoms are calculated. Some potential applications of the HE11-mode output beam in an atomic guide and funnel are briefly discussed.

  2. Realization of discrete quantum billiards in a two-dimensional optical lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krimer, Dmitry O.; Max-Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, D-01187 Dresden; Khomeriki, Ramaz

    2011-10-15

    We propose a method for optical visualization of the Bose-Hubbard model with two interacting bosons in the form of two-dimensional (2D) optical lattices consisting of optical waveguides, where the waveguides at the diagonal are characterized by different refractive indices than others elsewhere, modeling the boson-boson interaction. We study the light intensity distribution function averaged over the direction of propagation for both ordered and disordered cases, exploring the sensitivity of the averaged picture with respect to the beam injection position. For our finite systems, the resulting patterns are reminiscent the ones set in billiards, and therefore we introduce a definition ofmore » discrete quantum billiards and discuss the possible relevance to its well-established continuous counterpart.« less

  3. FIBER AND INTEGRATED OPTICS: Analysis of the characteristics of a radio signal at the output of a multimode interference-type fiber channel

    NASA Astrophysics Data System (ADS)

    Bratchikov, A. N.; Glukhov, I. P.

    1992-02-01

    An analysis is made of a theoretical model of an interference fiber channel for transmission of microwave signals. It is assumed that the channel consists of a multimode fiber waveguide with a step or graded refractive-index profile. A typical statistic of a longitudinal distribution of inhomogeneities is also assumed. Calculations are reported of the interference losses, the spectral profile of the output radio signal, the signal/noise ratio in the channel, and of the dependences of these parameters on: the type, diameter, and the length of the multimode fiber waveguide; the spectral width of the radiation source; the frequency offset between the interfering optical signals.

  4. Wavelength-scale photonic-crystal laser formed by electron-beam-induced nano-block deposition.

    PubMed

    Seo, Min-Kyo; Kang, Ju-Hyung; Kim, Myung-Ki; Ahn, Byeong-Hyeon; Kim, Ju-Young; Jeong, Kwang-Yong; Park, Hong-Gyu; Lee, Yong-Hee

    2009-04-13

    A wavelength-scale cavity is generated by printing a carbonaceous nano-block on a photonic-crystal waveguide. The nanometer-size carbonaceous block is grown at a pre-determined region by the electron-beam-induced deposition method. The wavelength-scale photonic-crystal cavity operates as a single mode laser, near 1550 nm with threshold of approximately 100 microW at room temperature. Finite-difference time-domain computations show that a high-quality-factor cavity mode is defined around the nano-block with resonant wavelength slightly longer than the dispersion-edge of the photonic-crystal waveguide. Measured near-field images exhibit photon distribution well-localized in the proximity of the printed nano-block. Linearly-polarized emission along the vertical direction is also observed.

  5. Waveguide-mode polarization gaps in square spiral photonic crystals

    NASA Astrophysics Data System (ADS)

    Liu, Rong-Juan; John, Sajeev; Li, Zhi-Yuan

    2015-09-01

    We designed waveguide channels in two types of square spiral photonic crystals. Wide polarization gaps, in which only one circular polarization wave is allowed while the other counter-direction circular polarization wave is forbidden, can be opened up on the waveguide modes within the fundamental photonic band gap according to the calculation of band structures and transmission spectra. This phenomenon is ascribed to the chirality of the waveguide and is independent of the chirality of the background photonic crystal. Moreover, the transmission spectra show a good one-way property of the waveguide channels. The chiral quality factor demonstrates the handedness of the allowed and impeded chiral waveguide modes, and further proved the property of the waveguide-mode polarization gap. Such waveguides with waveguide-mode polarization gap are a good candidate for one-way waveguides with robust backscattering-immune transport.

  6. Multimode Directional Coupler

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor)

    2016-01-01

    A multimode directional coupler is provided. In some embodiments, the multimode directional coupler is configured to receive a primary signal and a secondary signal at a first port of a primary waveguide. The primary signal is configured to propagate through the primary waveguide and be outputted at a second port of the primary waveguide. The multimode directional coupler also includes a secondary waveguide configured to couple the secondary signal from the primary waveguide with no coupling of the primary signal into the secondary waveguide. The secondary signal is configured to propagate through the secondary waveguide and be outputted from a port of the secondary waveguide.

  7. Random distributed feedback fiber laser at 2.1  μm.

    PubMed

    Jin, Xiaoxi; Lou, Zhaokai; Zhang, Hanwei; Xu, Jiangming; Zhou, Pu; Liu, Zejin

    2016-11-01

    We demonstrate a random distributed feedback fiber laser at 2.1 μm. A high-power pulsed Tm-doped fiber laser operating at 1.94 μm with a temporal duty ratio of 30% was employed as a pump laser to increase the equivalent incident pump power. A piece of 150 m highly GeO2-doped silica fiber that provides a strong Raman gain and random distributed feedbacks was used to act as the gain medium. The maximum output power reached 0.5 W with the optical efficiency of 9%, which could be further improved by more pump power and optimized fiber length. To the best of our knowledge, this is the first demonstration of random distributed feedback fiber laser at 2 μm band based on Raman gain.

  8. Photonic Waveguide Choke Joint with Absorptive Loading

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J. (Inventor); U-Yen, Kongpop (Inventor); Chuss, David T. (Inventor)

    2016-01-01

    A photonic waveguide choke includes a first waveguide flange member having periodic metal tiling pillars, a dissipative dielectric material positioned within an area between the periodic metal tiling pillars and a second waveguide flange member disposed to be coupled with the first waveguide flange member and in spaced-apart relationship separated by a gap. The first waveguide flange member has a substantially smooth surface, and the second waveguide flange member has an array of two-dimensional pillar structures formed therein.

  9. Auto-locking waveguide amplifier system for lidar and magnetometric applications

    NASA Astrophysics Data System (ADS)

    Pouliot, A.; Beica, H. C.; Carew, A.; Vorozcovs, A.; Carlse, G.; Kumarakrishnan, A.

    2018-02-01

    We describe a compact waveguide amplifier system that is suitable for optically pumping rubidium magnetometers. The system consists of an auto-locking vacuum-sealed external cavity diode laser, a semiconductor tapered amplifier and a pulsing unit based on an acousto-optic modulator. The diode laser utilises optical feedback from an interference filter to narrow the linewidth of an inexpensive laser diode to 500 kHz. This output is scannable over an 8 GHz range (at 780 nm) and can be locked without human intervention to any spectral marker in an expandable library of reference spectra, using the autolocking controller. The tapered amplifier amplifies the output from 50 mW up to 2 W with negligible distortions in the spectral quality. The system can operate at visible and near infrared wavelengths with MHz repetition rates. We demonstrate optical pumping of rubidium vapour with this system for magnetometric applications. The magnetometer detects the differential absorption of two orthogonally polarized components of a linearly polarized probe laser following optical pumping by a circularly polarized pump laser. The differential absorption signal is studied for a range of pulse lengths, pulse amplitudes and DC magnetic fields. Our results suggest that this laser system is suitable for optically pumping spin-exchange free magnetometers.

  10. Acoustic one-way mode conversion and transmission by sonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Ouyang, Shiliang; He, Hailong; He, Zhaojian; Deng, Ke; Zhao, Heping

    2016-09-01

    We proposed a scheme to achieve one-way acoustic propagation and even-odd mode switching in two mutually perpendicular sonic crystal waveguides connected by a resonant cavity. The even mode in the entrance waveguide is able to switch to the odd mode in the exit waveguide through a symmetry match between the cavity resonant modes and the waveguide modes. Conversely, the odd mode in the exit waveguide is unable to be converted into the even mode in the entrance waveguide as incident waves and eigenmodes are mismatched in their symmetries at the waveguide exit. This one-way mechanism can be applied to design an acoustic diode for acoustic integration devices and can be used as a convertor of the acoustic waveguide modes.

  11. Optical waveguide device with an adiabatically-varying width

    DOEpatents

    Watts,; Michael R. , Nielson; Gregory, N [Albuquerque, NM

    2011-05-10

    Optical waveguide devices are disclosed which utilize an optical waveguide having a waveguide bend therein with a width that varies adiabatically between a minimum value and a maximum value of the width. One or more connecting members can be attached to the waveguide bend near the maximum value of the width thereof to support the waveguide bend or to supply electrical power to an impurity-doped region located within the waveguide bend near the maximum value of the width. The impurity-doped region can form an electrical heater or a semiconductor junction which can be activated with a voltage to provide a variable optical path length in the optical waveguide. The optical waveguide devices can be used to form a tunable interferometer (e.g. a Mach-Zehnder interferometer) which can be used for optical modulation or switching. The optical waveguide devices can also be used to form an optical delay line.

  12. Photonic crystal slab waveguides in moderate index contrast media: Generalized transverse Bragg waveguides

    NASA Astrophysics Data System (ADS)

    Burckel, David Bruce

    One of the anticipated advantages of photonic crystal waveguides is the ability to tune waveguide dispersion and propagation characteristics to achieve desired properties. The majority of research into photonic crystal waveguides centers around high index contrast photonic crystal waveguides with complete in-plane bandgaps in the photonic crystal cladding. This work focuses on linear photonic crystal waveguides in moderate index materials, with insufficient index contrast to guarantee a complete in-plane bandgap. Using a technique called Interferometric Lithography (IL) as well as standard semiconductor processing steps, a process flow for creating large area (˜cm 2), linear photonic crystal waveguides in a spin-deposited photocurable polymer is outlined. The study of such low index contrast photonic crystal waveguides offers a unique opportunity to explore the mechanisms governing waveguide confinement and photonic crystal behavior in general. Results from two optical characterization experiments are provided. In the first set of experiments, rhodamine 590 organic laser dye was incorporated into the polymer prior to fabrication of the photonic crystal slab. Emission spectra from waveguide core modes exhibit no obvious spectral selectivity owing to variation in the periodicity or geometry of the photonic crystal. In addition, grating coupled waveguides were fabricated, and a single frequency diode laser was coupled into the waveguide in order to study the transverse mode structure. To this author's knowledge, the optical mode profile images are the first taken of photonic crystal slab waveguides, exhibiting both simple low order mode structure as well as complex high order mode structure inconsistent with effective index theory. However, no obvious correlation between the mode structure and photonic crystal period or geometry was evident. Furthermore, in both the laser dye-doped and grating coupled waveguides, low loss waveguiding was observed regardless of wavelength to period ratio. These optical results indicated a need for a deeper understanding of the confinement/guiding mechanisms in such waveguide structures. A simplification of the full 2-D problem to a more tractable "tilted 1-D" geometry led to the proposal of a new waveguide geometry, Generalized Transverse Bragg Waveguides (GTBW), as well as a new propagation mode characterized by spatial variation in both the transverse direction as well as the direction of propagation. GTBW demonstrate many of the same dispersion tunability traits exhibited in complete bandgap photonic crystal waveguides, under more modest fabrication demands, and moreover provide much insight into photonic crystal waveguide modes of all types. Generalized Transverse Bragg Waveguides are presented in terms of the standard physical properties associated with waveguides, including the dispersion relation, expressions for the spatial field profile, and the concepts of phase and group velocity. In addition, the proposal of at least one obvious application, semiconductor optical amplifiers, is offered.

  13. Integration of a waveguide self-electrooptic effect device and a vertically coupled interconnect waveguide

    DOEpatents

    Vawter, G Allen [Corrales, NM

    2008-02-26

    A self-electrooptic effect device ("SEED") is integrated with waveguide interconnects through the use of vertical directional couplers. Light initially propagating in the interconnect waveguide is vertically coupled to the active waveguide layer of the SEED and, if the SEED is in the transparent state, the light is coupled back to the interconnect waveguide.

  14. Apparatus For Linewidth Reduction in Distributed Feedback or Distributed Bragg Reflector Semiconductor Lasers Using Vertical Emission

    NASA Technical Reports Server (NTRS)

    Cook, Anthony L. (Inventor); Hendricks, Herbert D. (Inventor)

    2000-01-01

    The linewidth of a distributed feedback semiconductor laser or a distributed Bragg reflector laser having one or more second order gratings is reduced by using an external cavity to couple the vertical emission back into the laser. This method and device prevent disturbance of the main laser beam, provide unobstructed access to laser emission for the formation of the external cavity, and do not require a very narrow heat sink. Any distributed Bragg reflector semiconductor laser or distributed feedback semiconductor laser that can produce a vertical emission through the epitaxial material and through a window in the top metallization can be used. The external cavity can be formed with an optical fiber or with a lens and a mirror or grating.

  15. Method and Apparatus for Linewidth Reduction in Distributed Feedback or Distributed Bragg Reflector Semiconductor Lasers using Vertical Emission

    NASA Technical Reports Server (NTRS)

    Cook, Anthony L. (Inventor); Hendricks, Herbert D. (Inventor)

    1998-01-01

    The linewidth of a distributed feedback semiconductor laser or a distributed Bragg reflector laser having one or more second order gratings is reduced by using an external cavity to couple the vertical emission back into the laser. This method and device prevent disturbance of the main laser beam. provide unobstructed access to laser emission for the formation of the external cavity. and do not require a very narrow heat sink. Any distributed Bragg reflector semiconductor laser or distributed feedback semiconductor laser that can produce a vertical emission through the epitaxial material and through a window in the top metallization can be used. The external cavity can be formed with an optical fiber or with a lens and a mirror of grating.

  16. Simplified flangeless unisex waveguide coupler assembly

    DOEpatents

    Michelangelo, Dimartino; Moeller, Charles P.

    1993-01-01

    A unisex coupler assembly is disclosed capable of providing a leak tight coupling for waveguides with axial alignment of the waveguides and rotational capability. The sealing means of the coupler assembly are not exposed to RF energy, and the coupler assembly does not require the provision of external flanges on the waveguides. In a preferred embodiment, O ring seals are not used and the coupler assembly is, therefore, bakeable at a temperature up to about 150.degree. C. The coupler assembly comprises a split collar which clamps around the waveguides and a second collar which fastens to the split collar. The split collar contains an inner annular groove. Each of the waveguides is provided with an external annular groove which receives a retaining ring. The split collar is clamped around one of the waveguides with the inner annular groove of the split collar engaging the retaining ring carried in the external annular groove in the waveguide. The second collar is then slipped over the second waveguide behind the annular groove and retaining ring therein and the second collar is coaxially secured by fastening means to the split collar to draw the respective waveguides together by coaxial force exerted by the second collar against the retaining ring on the second waveguide. A sealing ring is placed against an external sealing surface at a reduced external diameter end formed on one waveguide to sealingly engage a corresponding sealing surface on the other waveguide as the waveguides are urged toward each other.

  17. Simplified flangeless unisex waveguide coupler assembly

    DOEpatents

    Michelangelo, D.; Moeller, C.P.

    1993-05-04

    A unisex coupler assembly is disclosed capable of providing a leak tight coupling for waveguides with axial alignment of the waveguides and rotational capability. The sealing means of the coupler assembly are not exposed to RF energy, and the coupler assembly does not require the provision of external flanges on the waveguides. In a preferred embodiment, O ring seals are not used and the coupler assembly is, therefore, bakeable at a temperature up to about 150 C. The coupler assembly comprises a split collar which clamps around the waveguides and a second collar which fastens to the split collar. The split collar contains an inner annular groove. Each of the waveguides is provided with an external annular groove which receives a retaining ring. The split collar is clamped around one of the waveguides with the inner annular groove of the split collar engaging the retaining ring carried in the external annular groove in the waveguide. The second collar is then slipped over the second waveguide behind the annular groove and retaining ring therein and the second collar is coaxially secured by fastening means to the split collar to draw the respective waveguides together by coaxial force exerted by the second collar against the retaining ring on the second waveguide. A sealing ring is placed against an external sealing surface at a reduced external diameter end formed on one waveguide to sealingly engage a corresponding sealing surface on the other waveguide as the waveguides are urged toward each other.

  18. Simplified flangeless unisex waveguide coupler assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michelangelo, D.; Moeller, C.P.

    1993-05-04

    A unisex coupler assembly is disclosed capable of providing a leak tight coupling for waveguides with axial alignment of the waveguides and rotational capability. The sealing means of the coupler assembly are not exposed to RF energy, and the coupler assembly does not require the provision of external flanges on the waveguides. In a preferred embodiment, O ring seals are not used and the coupler assembly is, therefore, bakeable at a temperature up to about 150 C. The coupler assembly comprises a split collar which clamps around the waveguides and a second collar which fastens to the split collar. Themore » split collar contains an inner annular groove. Each of the waveguides is provided with an external annular groove which receives a retaining ring. The split collar is clamped around one of the waveguides with the inner annular groove of the split collar engaging the retaining ring carried in the external annular groove in the waveguide. The second collar is then slipped over the second waveguide behind the annular groove and retaining ring therein and the second collar is coaxially secured by fastening means to the split collar to draw the respective waveguides together by coaxial force exerted by the second collar against the retaining ring on the second waveguide. A sealing ring is placed against an external sealing surface at a reduced external diameter end formed on one waveguide to sealingly engage a corresponding sealing surface on the other waveguide as the waveguides are urged toward each other.« less

  19. Very low frequency radio events with a reduced intensity observed by the low-altitude DEMETER spacecraft

    NASA Astrophysics Data System (ADS)

    Záhlava, J.; Němec, F.; Santolík, O.; Kolmašová, I.; Parrot, M.; Rodger, C. J.

    2015-11-01

    We present results of a systematic study of unusual very low frequency (VLF) radio events with a reduced intensity observed in the frequency-time spectrograms measured by the low-orbiting Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) spacecraft. They occur exclusively on the nightside. During these events, the intensity of fractional hop whistlers at specific frequencies is significantly reduced. These frequencies are usually above about 3.4 kHz (second Earth-ionosphere waveguide cutoff frequency), but about 20% of events extend down to about 1.7 kHz (first Earth-ionosphere waveguide cutoff frequency). The frequencies of a reduced intensity vary smoothly with time. We have inspected 6.5 years of DEMETER data, and we identified in total 1601 such events. We present a simple model of the event formation based on the wave propagation in the Earth-ionosphere waveguide. We apply the model to two selected events, and we demonstrate that the model is able to reproduce both the minimum frequencies of the events and their approximate frequency-time shapes. The overall geographic distribution of the events is shifted by about 3000 km westward and slightly southward with respect to the areas with high long-term average lightning activity. We demonstrate that this shift is related to the specific DEMETER orbit, and we suggest its qualitative explanation by the east-west asymmetry of the wave propagation in the Earth-ionosphere waveguide.

  20. Analysis and design of wedge projection display system based on ray retracing method.

    PubMed

    Lee, Chang-Kun; Lee, Taewon; Sung, Hyunsik; Min, Sung-Wook

    2013-06-10

    A design method for the wedge projection display system based on the ray retracing method is proposed. To analyze the principle of image formation on the inclined surface of the wedge-shaped waveguide, the bundle of rays is retraced from an imaging point on the inclined surface to the aperture of the waveguide. In consequence of ray retracing, we obtain the incident conditions of the ray, such as the position and the angle at the aperture, which provide clues for image formation. To illuminate the image formation, the concept of the equivalent imaging point is proposed, which is the intersection where the incident rays are extended over the space regardless of the refraction and reflection in the waveguide. Since the initial value of the rays arriving at the equivalent imaging point corresponds to that of the rays converging into the imaging point on the inclined surface, the image formation can be visualized by calculating the equivalent imaging point over the entire inclined surface. Then, we can find image characteristics, such as their size and position, and their degree of blur--by analyzing the distribution of the equivalent imaging point--and design the optimized wedge projection system by attaching the prism structure at the aperture. The simulation results show the feasibility of the ray retracing analysis and characterize the numerical relation between the waveguide parameters and the aperture structure for on-axis configuration. The experimental results verify the designed system based on the proposed method.

  1. Evanescent fields of laser written waveguides

    NASA Astrophysics Data System (ADS)

    Jukić, Dario; Pohl, Thomas; Götte, Jörg B.

    2015-03-01

    We investigate the evanescent field at the surface of laser written waveguides. The waveguides are written by a direct femtosecond laser writing process into fused silica, which is then sanded down to expose the guiding layer. These waveguides support eigenmodes which have an evanescent field reaching into the vacuum above the waveguide. We study the governing wave equations and present solution for the fundamental eigenmodes of the modified waveguides.

  2. Vertical waveguides integrated with silicon photodetectors: Towards high efficiency and low cross-talk image sensors

    NASA Astrophysics Data System (ADS)

    Tut, Turgut; Dan, Yaping; Duane, Peter; Yu, Young; Wober, Munib; Crozier, Kenneth B.

    2012-01-01

    We describe the experimental realization of vertical silicon nitride waveguides integrated with silicon photodetectors. The waveguides are embedded in a silicon dioxide layer. Scanning photocurrent microscopy is performed on a device containing a waveguide, and on a device containing the silicon dioxide layer, but without the waveguide. The results confirm the waveguide's ability to guide light onto the photodetector with high efficiency. We anticipate that the use of these structures in image sensors, with one waveguide per pixel, would greatly improve efficiency and significantly reduce inter-pixel crosstalk.

  3. Remote Sensing of Marine Life and Submerged Target Motions with Ocean Waveguide Acoustics

    NASA Astrophysics Data System (ADS)

    Gong, Zheng

    Many species of fish that inhabit the continental shelf waters can cause significant acoustic scattering at low- to mid-frequencies due to the large impedance contrast between their air-filled swimbladders and the surrounding water. In this thesis, we investigate the acoustic resonance scattering response from distributed fish groups both experimentally and theoretically including the effects of multiple scattering, attenuation, and dispersion in a random range-dependent ocean waveguide using an instantaneous wide-area imaging system. In navy sonar operations, the biological organisms can cause high false alarm rates or missed target detections since the biological scattering can be confused with or camouflage the returns from other discrete and distributed objects, such as underwater vehicles and geologic features. From an ecological perspective, the ability to instantaneously survey fish populations distributed over wide areas is important for fisheries management. The low-frequency target strength of shoaling Atlantic herring ( Clupea harengus) in the Gulf of Maine during their Autumn 2006 spawning season is estimated from experimental data acquired simultaneously at multiple frequencies in the 300 to 1200 Hz range using (1) a low-frequency ocean acoustic waveguide remote sensing (OAWRS) system, (2) areal population density calibration with several conventional fish finding sonar (CFFS) systems, and (3) low-frequency transmission loss measurements. The OAWRS system's instantaneous imaging diameter of 100 km and regular updating enabled unaliased monitoring of fish populations over ecosystem scales including shoals of Atlantic herring containing as many as 200 million individuals, as estimated based on single scattering assumption and confirmed by concurrent trawl and CFFS sampling. The mean scattering cross-section of an individual shoaling herring is found to consistently exhibit a strong, roughly 20 dB/octave roll-off with decreasing frequency over all days of the roughly 2-week experiment, consistent with the steep roll-offs expected for sub-resonance scattering from fish with air-filled swimbladders. A numerical Monte-Carlo model is developed to determine the statistical moments of the broadband matched filtered scattered returns from fish groups spanning over multiple range and cross-range resolution cells of a waveguide remote sensing system. It uses the parabolic equation to simulate acoustic field propagation in a random range-dependent ocean waveguide. The effects of (1) multiple scattering, (2) attenuation due to scattering, and (3) fish group 3D spatial configuration on fish population density imaging are examined. The model is applied to investigate (a) population density imaging of shoaling Atlantic herring during the 2006 Gulf of Maine Experiment (GOME06) and (b) examine the wide-area imaging of sparse aggregation of ground fish species, such as Atlantic Cod, in Ipswich Bay continental shelf environment using the waveguide remote sensing system. Incoherent intensities are shown to dominate the total scattered returns from distributed fish groups making single scattering assumption valid for inferring fish areal population densities from their matched filtered scattered intensities. Multiple scattering, attenuation, fish group 3D spatial configuration, and coherent effects, such as resonance shift, sub- and super-local-maxima are found to be negligible at the imaging frequencies employed and for the herring densities observed. Similar results are obtained for the sparsely aggregated cod, but coherent effects such as the double-peak in school resonance can be prominent at much lower fish densities. Attenuation due to scattering can be significant when the fish flesh viscosity is high, especially true for cod. We also investigate approaches for instantaneous long-range passive source localization and tracking with a towed horizontal line-array in a random range-dependent ocean waveguide using passive waveguide acoustics. This is very important for many sonar applications, such as localizing and tracking underwater vehicles and vocalizing marine mammal populations. Instantaneous passive source localization applying the (1) synthetic aperture tracking, (2) array invariant, (3) bearings-only target motion analysis in modified polar coordinates via the extended Kalman filter, and (4) bearings-migration minimum mean-square error methods using measurements made on a single towed horizontal receiver array in a random range-dependent ocean waveguide are examined. These methods are employed to localize and track a vertical source array deployed in the far-field of a towed horizontal receiver array during the Gulf of Maine 2006 Experiment. The source transmitted intermittent broadband pulses in the 300--1200 Hz frequency range. All four methods are found to be comparable with average errors of between 9% to 13% in estimating the mean source positions in a wide variety of source-receiver geometries and range separations up to 20 km. In the case of a relatively stationary source, the synthetic aperture tracking outperformed the other three methods by a factor of two with only 4% error. For a moving source, the Kalman filter method yielded the best performance with 8% error. The array invariant was the best approach for localizing sources within the endfire beam of the receiver array with less than 10% error.

  4. Microoptoelectromechanical system (MOEMS) based laser

    DOEpatents

    Hutchinson, Donald P.

    2003-11-04

    A method for forming a folded laser and associated laser device includes providing a waveguide substrate, micromachining the waveguide substrate to form a folded waveguide structure including a plurality of intersecting folded waveguide paths, forming a single fold mirror having a plurality of facets which bound all ends of said waveguide paths except those reserved for resonator mirrors, and disposing a pair of resonator mirrors on opposite sides of the waveguide to form a lasing cavity. A lasing material is provided in the lasing cavity. The laser can be sealed by disposing a top on the waveguide substrate. The laser can include a re-entrant cavity, where the waveguide substrate is disposed therein, the re-entrant cavity including the single fold mirror.

  5. Femtosecond laser inscribed cladding waveguide lasers in Nd:LiYF4 crystals

    NASA Astrophysics Data System (ADS)

    Li, Shi-Ling; Huang, Ze-Ping; Ye, Yong-Kai; Wang, Hai-Long

    2018-06-01

    Depressed circular cladding, buried waveguides were fabricated in Nd:LiYF4 crystals with an ultrafast Yb-doped fiber master-oscillator power amplifier laser. Waveguides were optimized by varying the laser writing conditions, such as pulse energy, focus depth, femtosecond laser polarization and scanning velocity. Under optical pump at 799 nm, cladding waveguides showed continuous-wave laser oscillation at 1047 nm. Single- and multi-transverse modes waveguide laser were realized by varying the waveguide diameter. The maximum output power in the 40 μm waveguide is ∼195 mW with a slope efficiency of 34.3%. The waveguide lasers with hexagonal and cubic cladding geometry were also realized.

  6. Electrically Tunable Nd:YAG waveguide laser based on Graphene

    PubMed Central

    Ma, Linan; Tan, Yang; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng

    2016-01-01

    We demonstrate a tunable hybrid Graphene-Nd:YAG cladding waveguide laser exploiting the electro-optic and the Joule heating effects of Graphene. A cladding Nd:YAG waveguide was fabricated by the ion irradiation. The multi-layer graphene were transferred onto the waveguide surface as the saturable absorber to get the Q-switched pulsed laser oscillation in the waveguide. Composing with appropriate electrodes, graphene based capacitance and heater were formed on the surface of the Nd:YAG waveguide. Through electrical control of graphene, the state of the hybrid waveguide laser was turned on or off. And the laser operation of the hybrid waveguide was electrically tuned between the continuous wave laser and the nanosecond pulsed laser. PMID:27833114

  7. Dissociating error-based and reinforcement-based loss functions during sensorimotor learning

    PubMed Central

    McGregor, Heather R.; Mohatarem, Ayman

    2017-01-01

    It has been proposed that the sensorimotor system uses a loss (cost) function to evaluate potential movements in the presence of random noise. Here we test this idea in the context of both error-based and reinforcement-based learning. In a reaching task, we laterally shifted a cursor relative to true hand position using a skewed probability distribution. This skewed probability distribution had its mean and mode separated, allowing us to dissociate the optimal predictions of an error-based loss function (corresponding to the mean of the lateral shifts) and a reinforcement-based loss function (corresponding to the mode). We then examined how the sensorimotor system uses error feedback and reinforcement feedback, in isolation and combination, when deciding where to aim the hand during a reach. We found that participants compensated differently to the same skewed lateral shift distribution depending on the form of feedback they received. When provided with error feedback, participants compensated based on the mean of the skewed noise. When provided with reinforcement feedback, participants compensated based on the mode. Participants receiving both error and reinforcement feedback continued to compensate based on the mean while repeatedly missing the target, despite receiving auditory, visual and monetary reinforcement feedback that rewarded hitting the target. Our work shows that reinforcement-based and error-based learning are separable and can occur independently. Further, when error and reinforcement feedback are in conflict, the sensorimotor system heavily weights error feedback over reinforcement feedback. PMID:28753634

  8. Dissociating error-based and reinforcement-based loss functions during sensorimotor learning.

    PubMed

    Cashaback, Joshua G A; McGregor, Heather R; Mohatarem, Ayman; Gribble, Paul L

    2017-07-01

    It has been proposed that the sensorimotor system uses a loss (cost) function to evaluate potential movements in the presence of random noise. Here we test this idea in the context of both error-based and reinforcement-based learning. In a reaching task, we laterally shifted a cursor relative to true hand position using a skewed probability distribution. This skewed probability distribution had its mean and mode separated, allowing us to dissociate the optimal predictions of an error-based loss function (corresponding to the mean of the lateral shifts) and a reinforcement-based loss function (corresponding to the mode). We then examined how the sensorimotor system uses error feedback and reinforcement feedback, in isolation and combination, when deciding where to aim the hand during a reach. We found that participants compensated differently to the same skewed lateral shift distribution depending on the form of feedback they received. When provided with error feedback, participants compensated based on the mean of the skewed noise. When provided with reinforcement feedback, participants compensated based on the mode. Participants receiving both error and reinforcement feedback continued to compensate based on the mean while repeatedly missing the target, despite receiving auditory, visual and monetary reinforcement feedback that rewarded hitting the target. Our work shows that reinforcement-based and error-based learning are separable and can occur independently. Further, when error and reinforcement feedback are in conflict, the sensorimotor system heavily weights error feedback over reinforcement feedback.

  9. Distributed micro-radar system for detection and tracking of low-profile, low-altitude targets

    NASA Astrophysics Data System (ADS)

    Gorwara, Ashok; Molchanov, Pavlo

    2016-05-01

    Proposed airborne surveillance radar system can detect, locate, track, and classify low-profile, low-altitude targets: from traditional fixed and rotary wing aircraft to non-traditional targets like unmanned aircraft systems (drones) and even small projectiles. Distributed micro-radar system is the next step in the development of passive monopulse direction finder proposed by Stephen E. Lipsky in the 80s. To extend high frequency limit and provide high sensitivity over the broadband of frequencies, multiple angularly spaced directional antennas are coupled with front end circuits and separately connected to a direction finder processor by a digital interface. Integration of antennas with front end circuits allows to exclude waveguide lines which limits system bandwidth and creates frequency dependent phase errors. Digitizing of received signals proximate to antennas allows loose distribution of antennas and dramatically decrease phase errors connected with waveguides. Accuracy of direction finding in proposed micro-radar in this case will be determined by time accuracy of digital processor and sampling frequency. Multi-band, multi-functional antennas can be distributed around the perimeter of a Unmanned Aircraft System (UAS) and connected to the processor by digital interface or can be distributed between swarm/formation of mini/micro UAS and connected wirelessly. Expendable micro-radars can be distributed by perimeter of defense object and create multi-static radar network. Low-profile, lowaltitude, high speed targets, like small projectiles, create a Doppler shift in a narrow frequency band. This signal can be effectively filtrated and detected with high probability. Proposed micro-radar can work in passive, monostatic or bistatic regime.

  10. Quasi-phase matching and quantum control of high harmonic generation in waveguides using counterpropagating beams

    DOEpatents

    Zhang, Xiaoshi; Lytle, Amy L.; Cohen, Oren; Kapteyn, Henry C.; Murnane, Margaret M.

    2010-11-09

    All-optical quasi-phase matching (QPM) uses a train of counterpropagating pulses to enhance high-order harmonic generation (HHG) in a hollow waveguide. A pump pulse enters one end of the waveguide, and causes HHG in the waveguide. The counterpropagation pulses enter the other end of the waveguide and interact with the pump pulses to cause QPM within the waveguide, enhancing the HHG.

  11. Sferic propagation perturbations caused by energetic particle events as seen in global lightning data

    NASA Astrophysics Data System (ADS)

    Anderson, T.; Holzworth, R. H., II; Brundell, J. B.

    2017-12-01

    Energetic particle precipitation associated with solar events have been known to cause changes in the Earth-ionosphere waveguide. Previous studies of solar proton events (SPEs) have shown that high-energy protons can ionize lower-altitude layers of the ionosphere, leading to changes in Schumann resonance parameters (Schlegel and Fullekrug, 1999) and absorption of radio waves over the polar cap (Kundu and Haddock, 1960). We use the World-Wide Lightning Location Network (WWLLN) to study propagation of VLF waves during SPEs. WWLLN detects lightning-generated sferics in the VLF band using 80 stations distributed around the world. By comparing received power at individual stations from specific lightning source regions during SPEs, we can infer changes in the lower ionosphere conductivity profile caused by high-energy proton precipitation. In particular, we find that some WWLLN stations see different distributions of sferic power and range during SPEs. We also use the power/propagation analysis to improve WWLLN's lightning detection accuracy, by developing a better model for ionosphere parameters and speed of light in the waveguide than we have previously used.

  12. Dynamics and density distributions in a capillary-discharge waveguide with an embedded supersonic jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlis, N. H., E-mail: nmatlis@gmail.com; Gonsalves, A. J.; Steinke, S.

    We present an analysis of the gas dynamics and density distributions within a capillary-discharge waveguide with an embedded supersonic jet. This device provides a target for a laser plasma accelerator which uses longitudinal structuring of the gas-density profile to enable control of electron trapping and acceleration. The functionality of the device depends sensitively on the details of the density profile, which are determined by the interaction between the pulsed gas in the jet and the continuously-flowing gas in the capillary. These dynamics are captured by spatially resolving recombination light from several emission lines of the plasma as a function ofmore » the delay between the jet and the discharge. We provide a phenomenological description of the gas dynamics as well as a quantitative evaluation of the density evolution. In particular, we show that the pressure difference between the jet and the capillary defines three regimes of operation with qualitatively different longitudinal density profiles and show that jet timing provides a sensitive method for tuning between these regimes.« less

  13. Feedback-Equivalence of Nonlinear Systems with Applications to Power System Equations.

    NASA Astrophysics Data System (ADS)

    Marino, Riccardo

    The key concept of the dissertation is feedback equivalence among systems affine in control. Feedback equivalence to linear systems in Brunovsky canonical form and the construction of the corresponding feedback transformation are used to: (i) design a nonlinear regulator for a detailed nonlinear model of a synchronous generator connected to an infinite bus; (ii) establish which power system network structures enjoy the feedback linearizability property and design a stabilizing control law for these networks with a constraint on the control space which comes from the use of d.c. lines. It is also shown that the feedback linearizability property allows the use of state feedback to contruct a linear controllable system with a positive definite linear Hamiltonian structure for the uncontrolled part if the state space is even; a stabilizing control law is derived for such systems. Feedback linearizability property is characterized by the involutivity of certain nested distributions for strongly accessible analytic systems; if the system is defined on a manifold M diffeomorphic to the Euclidean space, it is established that the set where the property holds is a submanifold open and dense in M. If an analytic output map is defined, a set of nested involutive distributions can be always defined and that allows the introduction of an observability property which is the dual concept, in some sense, to feedback linearizability: the goal is to investigate when a nonlinear system affine in control with an analytic output map is feedback equivalent to a linear controllable and observable system. Finally a nested involutive structure of distributions is shown to guarantee the existence of a state feedback that takes a nonlinear system affine in control to a single input one, both feedback equivalent to linear controllable systems, preserving one controlled vector field.

  14. Analysis and design of tunable wideband microwave photonics phase shifter based on Fabry-Perot cavity and Bragg mirrors in silicon-on-insulator waveguide.

    PubMed

    Qu, Pengfei; Zhou, Jingran; Chen, Weiyou; Li, Fumin; Li, Haibin; Liu, Caixia; Ruan, Shengping; Dong, Wei

    2010-04-20

    We designed a microwave (MW) photonics phase shifter, consisting of a Fabry-Perot filter, a phase modulation region (PMR), and distributed Bragg reflectors, in a silicon-on-insulator rib waveguide. The thermo-optics effect was employed to tune the PMR. It was theoretically demonstrated that the linear MW phase shift of 0-2pi could be achieved by a refractive index variation of 0-9.68x10(-3) in an ultrawideband (about 38?GHz-1.9?THz), and the corresponding tuning resolution was about 6.92 degrees / degrees C. The device had a very compact size. It could be easily integrated in silicon optoelectronic chips and expected to be widely used in the high-frequency MW photonics field.

  15. Noninvasive and Real-Time Plasmon Waveguide Resonance Thermometry

    PubMed Central

    Zhang, Pengfei; Liu, Le; He, Yonghong; Zhou, Yanfei; Ji, Yanhong; Ma, Hui

    2015-01-01

    In this paper, the noninvasive and real-time plasmon waveguide resonance (PWR) thermometry is reported theoretically and demonstrated experimentally. Owing to the enhanced evanescent field and thermal shield effect of its dielectric layer, a PWR thermometer permits accurate temperature sensing and has a wide dynamic range. A temperature measurement sensitivity of 9.4 × 10−3 °C is achieved and the thermo optic coefficient nonlinearity is measured in the experiment. The measurement of water cooling processes distributed in one dimension reveals that a PWR thermometer allows real-time temperature sensing and has potential to be applied for thermal gradient analysis. Apart from this, the PWR thermometer has the advantages of low cost and simple structure, since our transduction scheme can be constructed with conventional optical components and commercial coating techniques. PMID:25871718

  16. Compound semiconductor optical waveguide switch

    DOEpatents

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  17. FIBER AND INTEGRATED OPTICS: New method for determination of the parameters of a channel waveguide

    NASA Astrophysics Data System (ADS)

    Galechyan, M. G.; Dianov, Evgenii M.; Lyndin, N. M.; Sychugov, V. A.; Tishchenko, A. V.; Usievich, B. A.

    1992-02-01

    A new method for the determination of the parameters of channel integrated optical waveguides is proposed. This method is based on measuring the spectral transmission of a system comprising the investigated waveguide and single-mode fiber waveguides, which are brought into contact with the channel waveguide. The results are reported of an investigation of two channel waveguides formed in glass by a variety of methods and characterized by different refractive index profiles. The proposed method is found to be suitable for determination of the parameters of the refractive index profile of the investigated channel waveguides.

  18. Optical panel system including stackable waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSanto, Leonard; Veligdan, James T.

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, whereinmore » each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.« less

  19. Microfabricated Waveguide Atom Traps.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jau, Yuan-Yu

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading coldmore » atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.« less

  20. Dielectric-loaded waveguide circulator for cryogenically cooled and cascaded maser waveguide structures

    NASA Technical Reports Server (NTRS)

    Clauss, R. C.; Quinn, R. B. (Inventor)

    1980-01-01

    A dielectrically loaded four port waveguide circulator is used with a reflected wave maser connected to a second port between first and third ports to form one of a plurality of cascaded maser waveguide structures. The fourth port is connected to a waveguide loaded with microwave energy absorbing material. The third (output signal) port of one maser waveguide structure is connected by a waveguide loaded with dielectric material to the first (input) port of an adjacent maser waveguide structure, and the second port is connected to a reflected wave maser by a matching transformer which passes the signal to be amplified into and out of the reflected wavemaser and blocks pumping energy in the reflected wave maser from entering the circulator. A number of cascaded maser waveguide structures are thus housed in a relatively small volume of conductive material placed within a cryogenically cooled magnet assembly.

  1. An analog of photon-assisted tunneling in a periodically modulated waveguide array

    PubMed Central

    Li, Liping; Luo, Xiaobing; Yang, Xiaoxue; Wang, Mei; Lü, Xinyou; Wu, Ying

    2016-01-01

    We theoretically report an analog of photon-assisted tunneling (PAT) originated from dark Floquet state in a periodically driven lattice array without a static biased potential by studying a three-channel waveguide system in a non-high-frequency regime. This analog of PAT can be achieved by only periodically modulating the top waveguide and adjusting the distance between the bottom and its adjacent waveguide. It is numerically shown that the PAT resonances also exist in the five-channel waveguide system and probably exist in the waveguide arrays with other odd numbers of waveguides, but they will become weak as the number of waveguides increases. With origin different from traditional PAT, this type of PAT found in our work is closely linked to the existence of the zero-energy (dark) Floquet states. It is readily observable under currently accessible experimental conditions and may be useful for controlling light propagation in waveguide arrays. PMID:27767189

  2. Optical panel system including stackable waveguides

    DOEpatents

    DeSanto, Leonard; Veligdan, James T.

    2007-03-06

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  3. Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors.

    PubMed

    Huang, Yin; Min, Changjun; Dastmalchi, Pouya; Veronis, Georgios

    2015-06-01

    We introduce slow-light enhanced subwavelength scale refractive index sensors which consist of a plasmonic metal-dielectric-metal (MDM) waveguide based slow-light system sandwiched between two conventional MDM waveguides. We first consider a MDM waveguide with small width structrue for comparison, and then consider two MDM waveguide based slow light systems: a MDM waveguide side-coupled to arrays of stub resonators system and a MDM waveguide side-coupled to arrays of double-stub resonators system. We find that, as the group velocity decreases, the sensitivity of the effective index of the waveguide mode to variations of the refractive index of the fluid filling the sensors as well as the sensitivities of the reflection and transmission coefficients of the waveguide mode increase. The sensing characteristics of the slow-light waveguide based sensor structures are systematically analyzed. We show that the slow-light enhanced sensors lead to not only 3.9 and 3.5 times enhancements in the refractive index sensitivity, and therefore in the minimum detectable refractive index change, but also to 2 and 3 times reductions in the required sensing length, respectively, compared to a sensor using a MDM waveguide with small width structure.

  4. Polymer taper bridge for silicon waveguide to single mode waveguide coupling

    NASA Astrophysics Data System (ADS)

    Kruse, Kevin; Middlebrook, Christopher T.

    2016-03-01

    Coupling of optical power from high-density silicon waveguides to silica optical fibers for signal routing can incur high losses and often requires complex end-face preparation/processing. Novel coupling device taper structures are proposed for low coupling loss between silicon photonic waveguides and single mode fibers are proposed and devices are fabricated and measured in terms of performance. Theoretical mode conversion models for waveguide tapers are derived for optimal device structure design and performance. Commercially viable vertical and multi-layer taper designs using polymer waveguide materials are proposed as innovative, cost-efficient, and mass-manufacturable optical coupling devices. The coupling efficiency for both designs is determined to evaluate optimal device dimensions and alignment tolerances with both silicon rib waveguides and silicon nanowire waveguides. Propagation loss as a function of waveguide roughness and metallic loss are determined and correlated to waveguide dimensions to obtain total insertion loss for the proposed taper designs. Multi-layer tapers on gold-sputtered substrates are fabricated through photolithography as proof-of-concept devices and evaluated for device loss optimization. Tapered waveguide coupling loss with Si WGs (2.74 dB) was experimentally measured with high correlation to theoretical results.

  5. Ultra-fast all-optical plasmonic switching in near infra-red spectrum using a Kerr nonlinear ring resonator

    NASA Astrophysics Data System (ADS)

    Nurmohammadi, Tofiq; Abbasian, Karim; Yadipour, Reza

    2018-03-01

    In this paper, an all-optical plasmonic switch based on metal-insulator-metal (MIM) nanoplasmonic waveguide with a Kerr nonlinear ring resonator is introduced and studied. Two-dimensional simulations utilizing the finite-difference time-domain algorithm are used to demonstrate an apparent optical bistability and significant switching mechanisms (in enabled-low condition: T(ON/OFF) =21.9 and in enabled-high condition: T(ON/OFF) =24.9) of the signal light arisen by altering the pump-light intensity. The proposed all-optical switching demonstrates femtosecond-scale feedback time (90 fs) and then ultra-fast switching can be achieved. The offered all-optical switch may recognize potential significant applications in integrated optical circuits.

  6. Resonator modes and mode dynamics for an external cavity-coupled laser array

    NASA Astrophysics Data System (ADS)

    Nair, Niketh; Bochove, Erik J.; Aceves, Alejandro B.; Zunoubi, Mohammad R.; Braiman, Yehuda

    2015-03-01

    Employing a Fox-Li approach, we derived the cold-cavity mode structure and a coupled mode theory for a phased array of N single-transverse-mode active waveguides with feedback from an external cavity. We applied the analysis to a system with arbitrary laser lengths, external cavity design and coupling strengths to the external cavity. The entire system was treated as a single resonator. The effect of the external cavity was modeled by a set of boundary conditions expressed by an N-by-N frequency-dependent matrix relation between incident and reflected fields at the interface with the external cavity. The coupled mode theory can be adapted to various types of gain media and internal and external cavity designs.

  7. Full State Feedback Control for Virtual Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jay Tillay

    This report presents an object-oriented implementation of full state feedback control for virtual power plants (VPP). The components of the VPP full state feedback control are (1) objectoriented high-fidelity modeling for all devices in the VPP; (2) Distribution System Distributed Quasi-Dynamic State Estimation (DS-DQSE) that enables full observability of the VPP by augmenting actual measurements with virtual, derived and pseudo measurements and performing the Quasi-Dynamic State Estimation (QSE) in a distributed manner, and (3) automated formulation of the Optimal Power Flow (OPF) in real time using the output of the DS-DQSE, and solving the distributed OPF to provide the optimalmore » control commands to the DERs of the VPP.« less

  8. Imaging optical fields below metal films and metal-dielectric waveguides by a scanning microscope

    NASA Astrophysics Data System (ADS)

    Zhu, Liangfu; Wang, Yong; Zhang, Douguo; Wang, Ruxue; Qiu, Dong; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Rosenfeld, Mary; Lakowicz, Joseph R.

    2017-09-01

    Laser scanning confocal fluorescence microscopy (LSCM) is now an important method for tissue and cell imaging when the samples are located on the surfaces of glass slides. In the past decade, there has been extensive development of nano-optical structures that display unique effects on incident and transmitted light, which will be used with novel configurations for medical and consumer products. For these applications, it is necessary to characterize the light distribution within short distances from the structures for efficient detection and elimination of bulky optical components. These devices will minimize or possibly eliminate the need for free-space light propagation outside of the device itself. We describe the use of the scanning function of a LSCM to obtain 3D images of the light intensities below the surface of nano-optical structures. More specifically, we image the spatial distributions inside the substrate of fluorescence emission coupled to waveguide modes after it leaks through thin metal films or dielectric-coated metal films. The observed spatial distribution were in general agreement with far-field calculations, but the scanning images also revealed light intensities at angles not observed with classical back focal plane imaging. Knowledge of the subsurface optical intensities will be crucial in the combination of nano-optical structures with rapidly evolving imaging detectors.

  9. Fiber optic reference frequency distribution to remote beam waveguide antennas

    NASA Technical Reports Server (NTRS)

    Calhoun, Malcolm; Kuhnle, Paul; Law, Julius

    1995-01-01

    In the NASA/JPL Deep Space Network (DSN), radio science experiments (probing outer planet atmospheres, rings, gravitational waves, etc.) and very long-base interferometry (VLBI) require ultra-stable, low phase noise reference frequency signals at the user locations. Typical locations for radio science/VLBI exciters and down-converters are the cone areas of the 34 m high efficiency antennas or the 70 m antennas, located several hundred meters from the reference frequency standards. Over the past three years, fiber optic distribution links have replaced coaxial cable distribution for reference frequencies to these antenna sites. Optical fibers are the preferred medium for distribution because of their low attenuation, immunity to EMI/IWI, and temperature stability. A new network of Beam Waveguide (BWG) antennas presently under construction in the DSN requires hydrogen maser stability at tens of kilometers distance from the frequency standards central location. The topic of this paper is the design and implementation of an optical fiber distribution link which provides ultra-stable reference frequencies to users at a remote BWG antenna. The temperature profile from the earth's surface to a depth of six feet over a time period of six months was used to optimize the placement of the fiber optic cables. In-situ evaluation of the fiber optic link performance indicates Allan deviation on the order of parts in 10(exp -15) at 1000 and 10,000 seconds averaging time; thus, the link stability degradation due to environmental conditions still preserves hydrogen maser stability at the user locations. This paper reports on the implementation of optical fibers and electro-optic devices for distributing very stable, low phase noise reference signals to remote BWG antenna locations. Allan deviation and phase noise test results for a 16 km fiber optic distribution link are presented in the paper.

  10. Fiber optic reference frequency distribution to remote beam waveguide antennas

    NASA Astrophysics Data System (ADS)

    Calhoun, Malcolm; Kuhnle, Paul; Law, Julius

    1995-05-01

    In the NASA/JPL Deep Space Network (DSN), radio science experiments (probing outer planet atmospheres, rings, gravitational waves, etc.) and very long-base interferometry (VLBI) require ultra-stable, low phase noise reference frequency signals at the user locations. Typical locations for radio science/VLBI exciters and down-converters are the cone areas of the 34 m high efficiency antennas or the 70 m antennas, located several hundred meters from the reference frequency standards. Over the past three years, fiber optic distribution links have replaced coaxial cable distribution for reference frequencies to these antenna sites. Optical fibers are the preferred medium for distribution because of their low attenuation, immunity to EMI/IWI, and temperature stability. A new network of Beam Waveguide (BWG) antennas presently under construction in the DSN requires hydrogen maser stability at tens of kilometers distance from the frequency standards central location. The topic of this paper is the design and implementation of an optical fiber distribution link which provides ultra-stable reference frequencies to users at a remote BWG antenna. The temperature profile from the earth's surface to a depth of six feet over a time period of six months was used to optimize the placement of the fiber optic cables. In-situ evaluation of the fiber optic link performance indicates Allan deviation on the order of parts in 10(exp -15) at 1000 and 10,000 seconds averaging time; thus, the link stability degradation due to environmental conditions still preserves hydrogen maser stability at the user locations. This paper reports on the implementation of optical fibers and electro-optic devices for distributing very stable, low phase noise reference signals to remote BWG antenna locations. Allan deviation and phase noise test results for a 16 km fiber optic distribution link are presented in the paper.

  11. Independent control of beam astigmatism and ellipticity using a SLM for fs-laser waveguide writing.

    PubMed

    Ruiz de la Cruz, A; Ferrer, A; Gawelda, W; Puerto, D; Sosa, M Galván; Siegel, J; Solis, J

    2009-11-09

    We have used a low repetition rate (1 kHz), femtosecond laser amplifier in combination with a spatial light modulator (SLM) to write optical waveguides with controllable cross-section inside a phosphate glass sample. The SLM is used to induce a controllable amount of astigmatism in the beam wavefront while the beam ellipticity is controlled through the propagation distance from the SLM to the focusing optics of the writing set-up. The beam astigmatism leads to the formation of two separate disk-shaped foci lying in orthogonal planes. Additionally, the ellipticity has the effect of enabling control over the relative peak irradiances of the two foci, making it possible to bring the peak irradiance of one of them below the material transformation threshold. This allows producing a single waveguide with controllable cross-section. Numerical simulations of the irradiance distribution at the focal region under different beam shaping conditions are compared to in situ obtained experimental plasma emission images and structures produced inside the glass, leading to a very satisfactory agreement. Finally, guiding structures with controllable cross-section are successfully produced in the phosphate glass using this approach.

  12. PPLN-waveguide-based polarization entangled QKD simulator

    NASA Astrophysics Data System (ADS)

    Gariano, John; Djordjevic, Ivan B.

    2017-08-01

    We have developed a comprehensive simulator to study the polarization entangled quantum key distribution (QKD) system, which takes various imperfections into account. We assume that a type-II SPDC source using a PPLN-based nonlinear optical waveguide is used to generate entangled photon pairs and implements the BB84 protocol, using two mutually unbiased basis with two orthogonal polarizations in each basis. The entangled photon pairs are then simulated to be transmitted to both parties; Alice and Bob, through the optical channel, imperfect optical elements and onto the imperfect detector. It is assumed that Eve has no control over the detectors, and can only gain information from the public channel and the intercept resend attack. The secure key rate (SKR) is calculated using an upper bound and by using actual code rates of LDPC codes implementable in FPGA hardware. After the verification of the simulation results, such as the pair generation rate and the number of error due to multiple pairs, for the ideal scenario, available in the literature, we then introduce various imperfections. Then, the results are compared to previously reported experimental results where a BBO nonlinear crystal is used, and the improvements in SKRs are determined for when a PPLN-waveguide is used instead.

  13. Propagation losses in undoped and n-doped polycrystalline silicon wire waveguides.

    PubMed

    Zhu, Shiyang; Fang, Q; Yu, M B; Lo, G Q; Kwong, D L

    2009-11-09

    Polycrystalline silicon (polySi) wire waveguides with width ranging from 200 to 500 nm are fabricated by solid-phase crystallization (SPC) of deposited amorphous silicon (a-Si) on SiO(2) at a maximum temperature of 1000 degrees C. The propagation loss at 1550 nm decreases from 13.0 to 9.8 dB/cm with the waveguide width shrinking from 500 to 300 nm while the 200-nm-wide waveguides exhibit quite large loss (>70 dB/cm) mainly due to the relatively rough sidewall of waveguides induced by the polySi dry etch. By modifying the process sequence, i.e., first patterning the a-Si layer into waveguides by dry etch and then SPC, the sidewall roughness is significantly improved but the polySi crystallinity is degraded, leading to 13.9 dB/cm loss in the 200-nm-wide waveguides while larger losses in the wider waveguides. Phosphorus implantation causes an additional loss in the polySi waveguides. The doping-induced optical loss increases relatively slowly with the phosphorus concentration increasing up to 1 x 10(18) cm(-3), whereas the 5 x 10(18) cm(-3) doped waveguides exhibit large loss due to the dominant free carrier absorption. For all undoped polySi waveguides, further 1-2 dB/cm loss reduction is obtained by a standard forming gas (10%H(2) + 90%N(2)) annealing owing to the hydrogen passivation of Si dangling bonds present in polySi waveguides, achieving the lowest loss of 7.9 dB/cm in the 300-nm-wide polySi waveguides. However, for the phosphorus doped polySi waveguides, the propagation loss is slightly increased by the forming gas annealing.

  14. Radio frequency (RF) microwave components and subsystems using loaded ridge waveguide

    DOEpatents

    Kang, Yoon W.

    2013-08-20

    A waveguide having a non-conductive material with a high permeability (.mu., .mu..sub.r for relative permeability) and/or a high permittivity (.di-elect cons., .di-elect cons..sub.r for relative permittivity) positioned within a housing. When compared to a hollow waveguide, the waveguide of this invention, reduces waveguide dimensions by .varies..mu. ##EQU00001## The waveguide of this invention further includes ridges which further reduce the size and increases the usable frequency bandwidth.

  15. Silicone polymer waveguide bridge for Si to glass optical fibers

    NASA Astrophysics Data System (ADS)

    Kruse, Kevin L.; Riegel, Nicholas J.; Middlebrook, Christopher T.

    2015-03-01

    Multimode step index polymer waveguides achieve high-speed, (<10 Gb/s) low bit-error-rates for onboard and embedded circuit applications. Using several multimode waveguides in parallel enables overall capacity to reach beyond 100 Gb/s, but the intrinsic bandwidth limitations due to intermodal dispersion limit the data transmission rates within multimode waveguides. Single mode waveguides, where intermodal dispersion is not present, have the potential to further improve data transmission rates. Single mode waveguide size is significantly less than their multimode counterparts allowing for greater density of channels leading to higher bandwidth capacity per layer. Challenges in implementation of embedded single mode waveguides within printed circuit boards involves mass production fabrication techniques to create precision dimensional waveguides, precision alignment tolerances necessary to launch a mode, and effective coupling between adjoining waveguides and devices. An emerging need in which single mode waveguides can be utilized is providing low loss fan out techniques and coupling between on-chip transceiver devices containing Si waveguide structures to traditional single mode optical fiber. A polymer waveguide bridge for Si to glass optical fibers can be implemented using silicone polymers at 1310 nm. Fabricated and measured prototype devices with modeling and simulation analysis are reported for a 12 member 1-D tapered PWG. Recommendations and designs are generated with performance factors such as numerical aperture and alignment tolerances.

  16. Ultra-large nonlinear parameter in graphene-silicon waveguide structures.

    PubMed

    Donnelly, Christine; Tan, Dawn T H

    2014-09-22

    Mono-layer graphene integrated with optical waveguides is studied for the purpose of maximizing E-field interaction with the graphene layer, for the generation of ultra-large nonlinear parameters. It is shown that the common approach used to minimize the waveguide effective modal area does not accurately predict the configuration with the maximum nonlinear parameter. Both photonic and plasmonic waveguide configurations and graphene integration techniques realizable with today's fabrication tools are studied. Importantly, nonlinear parameters exceeding 10(4) W(-1)/m, two orders of magnitude larger than that in silicon on insulator waveguides without graphene, are obtained for the quasi-TE mode in silicon waveguides incorporating mono-layer graphene in the evanescent part of the optical field. Dielectric loaded surface plasmon polariton waveguides incorporating mono-layer graphene are observed to generate nonlinear parameters as large as 10(5) W(-1)/m, three orders of magnitude larger than that in silicon on insulator waveguides without graphene. The ultra-large nonlinear parameters make such waveguides promising platforms for nonlinear integrated optics at ultra-low powers, and for previously unobserved nonlinear optical effects to be studied in a waveguide platform.

  17. Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits

    DOE PAGES

    Wang, Zheng; Xu, Xiaochuan; Fan, Donglei; ...

    2016-05-05

    Here, subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to the extra degree of freedom it offers in tuning a few important waveguide properties, such as dispersion and refractive index. Devices based on SWG waveguides have demonstrated impressive performances compared to conventional waveguides. However, the high loss of SWG waveguide bends jeopardizes their applications in integrated photonic circuits. In this work, we propose a geometrical tuning art, which realizes a pre-distorted refractive index profile in SWG waveguide bends. The pre-distorted refractive index profile can effectively reduce the mode mismatch and radiation loss simultaneously, thus significantlymore » reduce the bend loss. This geometry tuning art has been numerically optimized and experimentally demonstrated in present study. Through such tuning, the average insertion loss of a 5 μm SWG waveguide bend is reduced drastically from 5.43 dB to 1.10 dB per 90° bend for quasi-TE polarization. In the future, the proposed scheme will be utilized to enhance performance of a wide range of SWG waveguide based photonics devices.« less

  18. Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits

    PubMed Central

    Wang, Zheng; Xu, Xiaochuan; Fan, Donglei; Wang, Yaguo; Subbaraman, Harish; Chen, Ray T.

    2016-01-01

    Subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to the extra degree of freedom it offers in tuning a few important waveguide properties, such as dispersion and refractive index. Devices based on SWG waveguides have demonstrated impressive performances compared to conventional waveguides. However, the high loss of SWG waveguide bends jeopardizes their applications in integrated photonic circuits. In this work, we propose a geometrical tuning art, which realizes a pre-distorted refractive index profile in SWG waveguide bends. The pre-distorted refractive index profile can effectively reduce the mode mismatch and radiation loss simultaneously, thus significantly reduce the bend loss. This geometry tuning art has been numerically optimized and experimentally demonstrated in present study. Through such tuning, the average insertion loss of a 5 μm SWG waveguide bend is reduced drastically from 5.43 dB to 1.10 dB per 90° bend for quasi-TE polarization. In the future, the proposed scheme will be utilized to enhance performance of a wide range of SWG waveguide based photonics devices. PMID:27145872

  19. Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits.

    PubMed

    Wang, Zheng; Xu, Xiaochuan; Fan, Donglei; Wang, Yaguo; Subbaraman, Harish; Chen, Ray T

    2016-05-05

    Subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to the extra degree of freedom it offers in tuning a few important waveguide properties, such as dispersion and refractive index. Devices based on SWG waveguides have demonstrated impressive performances compared to conventional waveguides. However, the high loss of SWG waveguide bends jeopardizes their applications in integrated photonic circuits. In this work, we propose a geometrical tuning art, which realizes a pre-distorted refractive index profile in SWG waveguide bends. The pre-distorted refractive index profile can effectively reduce the mode mismatch and radiation loss simultaneously, thus significantly reduce the bend loss. This geometry tuning art has been numerically optimized and experimentally demonstrated in present study. Through such tuning, the average insertion loss of a 5 μm SWG waveguide bend is reduced drastically from 5.43 dB to 1.10 dB per 90° bend for quasi-TE polarization. In the future, the proposed scheme will be utilized to enhance performance of a wide range of SWG waveguide based photonics devices.

  20. Ammonia detection using hollow waveguide enhanced laser absorption spectroscopy based on a 9.56 μm quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Li, Jinyi; Yang, Sen; Wang, Ruixue; Du, Zhenhui; Wei, Yingying

    2017-10-01

    Ammonia (NH3) is the most abundant alkalescency trace gas in the atmosphere having a foul odor, which is produced by both natural and anthropogenic sources. Chinese Emission Standard for Odor Pollutants has listed NH3 as one of the eight malodorous pollutants since 1993, specifying the emission concentration less than 1 mg/m3 (1.44ppmv). NH3 detection continuously from ppb to ppm levels is significant for protection of environmental atmosphere and safety of industrial and agricultural production. Tunable laser absorption spectroscopy (TLAS) is an increasingly important optical method for trace gas detection. TLAS do not require pretreatment and accumulation of the concentration of the analyzed sample, unlike, for example, more conventional methods such as mass spectrometry or gas chromatography. In addition, TLAS can provide high precision remote sensing capabilities, high sensitivities and fast response. Hollow waveguide (HWG) has recently emerged as a novel concept serving as an efficient optical waveguide and as a highly miniaturized gas cell. Among the main advantages of HWG gas cell compared with conventional multi-pass gas cells is the considerably decreased sample which facilitates gas exchanging. An ammonia sensor based on TLAS using a 5m HWG as the gas cell is report here. A 9.56μm, continuous-wave, distributed feed-back (DFB), room temperature quantum cascade laser (QCL), is employed as the optical source. The interference-free NH3 absorption line located at 1046.4cm-1 (λ 9556.6nm) is selected for detection by analyzing absorption spectrum from 1045-1047 cm-1 within the ν2 fundamental absorption band of ammonia. Direct absorption spectroscopy (DAS) technique is utilized and the measured spectral line is fitted by a simulation model by HITRAN database to obtain the NH3 concentration. The sensor performance is tested with standard gas and the result shows a 1σ minimum detectable concentration of ammonia is about 200 ppb with 1 sec time resolution. Benefitting from the use of QCL and HWG, the sensor is simple and compact. Moreover, the concentration inversion algorithm is simple and suitable for embedding into the microprocessor to form a more compact and miniaturized system. The absolute measurement based on DAS without calibration can reduce the influence of light variation on measurement which may attribute to the instability of electrocircuit, optical path and laser source. Therefore, the sensor based on HWG gas cell is very well suited for sensitive and real-time monitoring ammonia in the atmosphere. Furthermore, this sensor provides the capabilities for improved the in-situ gas-phase NH3 sensing relevant for emission source characterization and exhaled breath measurements.

  1. Broadband photonic transport between waveguides by adiabatic elimination

    NASA Astrophysics Data System (ADS)

    Oukraou, Hassan; Coda, Virginie; Rangelov, Andon A.; Montemezzani, Germano

    2018-02-01

    We propose an adiabatic method for the robust transfer of light between the two outer waveguides in a three-waveguide directional coupler. Unlike the established technique inherited from stimulated Raman adiabatic passage (STIRAP), the method proposed here is symmetric with respect to an exchange of the left and right waveguides in the structure and permits the transfer in both directions. The technique uses the adiabatic elimination of the middle waveguide together with level crossing and adiabatic passage in an effective two-state system involving only the external waveguides. It requires a strong detuning between the outer and the middle waveguide and does not rely on the adiabatic transfer state (dark state) underlying the STIRAP process. The suggested technique is generalized to an array of N waveguides and verified by numerical beam propagation calculations.

  2. Antenna design for propagating spin wave spectroscopy in ferromagnetic thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Yu, Ting; Chen, Ji-lei; Zhang, You-guang; Feng, Jian; Tu, Sa; Yu, Haiming

    2018-03-01

    In this paper, we investigate the characteristics of antenna for propagating-spin-wave-spectroscopy (PSWS) experiment in ferromagnetic thin films. Firstly, we simulate the amplitude and phase distribution of the high-frequency magnetic field around antenna by high frequency structure simulator (HFSS). And then k distribution of the antenna is obtained by fast Fourier transformation (FFT). Furthermore, three kinds of antenna designs, i.e. micro-strip line, coplanar waveguide (CPW), loop, are studied and compared. How the dimension parameter of antenna influence the corresponding high-frequency magnetic field amplitude and k distribution are investigated in details.

  3. Diffraction of an Electromagnetic Wave on a Dielectric Rod in a Rectangular Waveguide. A Method of Partial Waveguide Filling

    NASA Astrophysics Data System (ADS)

    Zav'yalov, A. S.

    2018-04-01

    A variant of the method of partial waveguide filling is considered in which a sample is put into a waveguide through holes in wide waveguide walls at the distance equal to a quarter of the wavelength in the waveguide from a short-circuiter, and the total input impedance of the sample in the waveguide is directly measured. The equivalent circuit of the sample is found both without and with account of the hole. It is demonstrated that consideration of the edge effect makes it possible to obtain more exact values of the dielectric permittivity.

  4. FIBER AND INTEGRATED OPTICS: Noncollinear geometry for highly efficient excitation of a corrugated waveguide

    NASA Astrophysics Data System (ADS)

    Klimov, M. S.; Sychugov, V. A.; Tishchenko, A. V.

    1992-02-01

    An analysis is made of the process of light emission from a corrugated waveguide into air and into a substrate in a noncollinear geometry, i.e., when the direction along which the waveguide mode propagates does not coincide with the plane in which the emitted wave lies. Calculations show that when a TE mode is excited in a corrugated waveguide by a light beam with the TM polarization incident from air on the waveguide at a grazing angle, one can achieve a high waveguide excitation efficiency (~ 60%) if the waveguide mode propagates along the normal to the plane of incidence.

  5. Guiding properties of asymmetric hybrid plasmonic waveguides on dielectric substrates

    PubMed Central

    2014-01-01

    We proposed an asymmetric hybrid plasmonic waveguide which is placed on a substrate for practical applications by introducing an asymmetry into a symmetric hybrid plasmonic waveguide. The guiding properties of the asymmetric hybrid plasmonic waveguide are investigated using finite element method. The results show that, with proper waveguide sizes, the proposed waveguide can eliminate the influence of the substrate on its guiding properties and restore its broken symmetric mode. We obtained the maximum propagation length of 2.49 × 103 μm. It is approximately equal to that of the symmetric hybrid plasmonic waveguide embedded in air cladding with comparable nanoscale confinement. PMID:24406096

  6. Waveguide Power-Amplifier Module for 80 to 150 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Weinreb, Sander; Peralta, Alejandro

    2006-01-01

    A waveguide power-amplifier module capable of operating over the frequency range from 80 to 150 GHz has been constructed. The module comprises a previously reported power amplifier packaged in a waveguide housing that is compatible with WR-8 waveguides. (WR- 8 is a standard waveguide size for the nominal frequency range from 90 to 140 GHz.) The waveguide power-amplifier module is robust and can be bolted to test equipment and to other electronic circuits with which the amplifier must be connected for normal operation.

  7. Dielectric waveguides for ultrahigh field magnetic resonance imaging.

    PubMed

    Bluemink, Johanna J; Raaijmakers, Alexander J E; Koning, Wouter; Andreychenko, Anna; Rivera, Debra S; Luijten, Peter R; Klomp, Dennis W J; van den Berg, Cornelis A T

    2016-10-01

    The design of RF coils for MRI transmit becomes increasingly challenging at high frequencies required for MRI at 7T and above. Our goal is to show a proof of principle of a new type of transmit coil for higher field strengths. We demonstrate an alternative transmit coil design based on dielectric waveguide principles which transfers energy via evanescent wave coupling. The operating principles and conditions are explored by simulations. The waveguide is applied for in vivo imaging at 7T. The waveguide can be an efficient transmit coil when four conditions are fulfilled: (1) the waveguide should be operated just above the cutoff frequency of the lowest order transverse electric mode, (2) the waveguide should not operate at a frequency where the wavelength fits an integer number of times in the waveguide length and standing wave patterns become very prominent, (3) for homogeneous excitation, the waveguide should be bent around the object, and (4) there should be an air gap between the waveguide and the object. By choosing the dielectric and the dimensions adequately, the dielectric waveguide couples the magnetic field efficiently into the body. The waveguide can be redesigned for higher frequencies by simple adaptations and may be a promising transmit alternative. Magn Reson Med 76:1314-1324, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  8. Nanoscale devices based on plasmonic coaxial waveguide resonators

    NASA Astrophysics Data System (ADS)

    Mahigir, A.; Dastmalchi, P.; Shin, W.; Fan, S.; Veronis, G.

    2015-02-01

    Waveguide-resonator systems are particularly useful for the development of several integrated photonic devices, such as tunable filters, optical switches, channel drop filters, reflectors, and impedance matching elements. In this paper, we introduce nanoscale devices based on plasmonic coaxial waveguide resonators. In particular, we investigate threedimensional nanostructures consisting of plasmonic coaxial stub resonators side-coupled to a plasmonic coaxial waveguide. We use coaxial waveguides with square cross sections, which can be fabricated using lithography-based techniques. The waveguides are placed on top of a silicon substrate, and the space between inner and outer coaxial metals is filled with silica. We use silver as the metal. We investigate structures consisting of a single plasmonic coaxial resonator, which is terminated either in a short or an open circuit, side-coupled to a coaxial waveguide. We show that the incident waveguide mode is almost completely reflected on resonance, while far from the resonance the waveguide mode is almost completely transmitted. We also show that the properties of the waveguide systems can be accurately described using a single-mode scattering matrix theory. The transmission and reflection coefficients at waveguide junctions are either calculated using the concept of the characteristic impedance or are directly numerically extracted using full-wave three-dimensional finite-difference frequency-domain simulations.

  9. Distributed feedback acoustic surface wave oscillator

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1974-01-01

    Using a simple model, the feasibility of applying the distributed feedback concept to the generation of acoustic surface waves is evaluated. It is shown that surface corrugation of the piezoelectric boundary in a semiconductor-piezoelectric surface acoustic wave amplifier could lead to self-sustained oscillations.

  10. Silicon Photonic Waveguides for Near- and Mid-Infrared Regions

    NASA Astrophysics Data System (ADS)

    Stankovic, S.; Milosevic, M.; Timotijevic, B.; Yang, P. Y.; Teo, E. J.; Crnjanski, J.; Matavulj, P.; Mashanovich, G. Z.

    2007-11-01

    The basic building block of every photonic circuit is a waveguide. In this paper we investigate the most popular silicon waveguide structures in the form of a silicon-on-insulator rib waveguide. We also analyse two structures that can find applications in mid- and long-wave infrared regions: free-standing and hollow core omnidirectional waveguides.

  11. Resolving precipitation-induced water content profiles through inversion of dispersive GPR data

    NASA Astrophysics Data System (ADS)

    Mangel, A. R.; Moysey, S. M.; Van Der Kruk, J.

    2015-12-01

    Ground-penetrating radar (GPR) has become a popular tool for monitoring hydrologic processes. When monitoring infiltration, the thin wetted zone that occurs near the ground surface at early times may act as a dispersive waveguide. This low-velocity layer traps the GPR waves, causing specific frequencies of the signal to travel at different phase velocities, confounding standard traveltime analysis. In a previous numerical study we demonstrated the potential of dispersion analysis for estimating the depth distribution of waveguide water contents. Here, we evaluate the effectiveness of the methodology when applying it to experimental time-lapse dispersive GPR data collected during a laboratory infiltration experiment in a relatively homogenous soil. A large sand-filled tank is equipped with an automated gantry to independently control the position of 1000 MHz source and receiver antennas. The system was programmed to repeatedly collect a common mid-point (CMP) profile at the center of the tank followed by two constant offset profiles (COP) in the x and y direction. Each collection was completed in 30 s and repeated 50 times during a 28 min experiment. Two minutes after the start of measurements, the surface of the sand was irrigated at a constant flux rate of 0.006 cm/sec for 23 minutes. Time-lapse COPs show increases in traveltime to reflectors in the tank associated with increasing water content, as well as the development of a wetting front reflection. From 4-10 min, the CMPs show a distinct shingling characteristic that is indicative of waveguide dispersion. Forward models where the waveguide is conceptualized as discrete layers and a piece-wise linear function were used to invert picked dispersion curves for waveguide properties. We show the results from both inversion approaches for multiple dispersive CMPs and show how the single layer model fails to represent the gradational nature of the wetting front.

  12. Photon spectral characteristics of dissimilar 6 MV linear accelerators.

    PubMed

    Hinson, William H; Kearns, William T; deGuzman, Allan F; Bourland, J Daniel

    2008-05-01

    This work measures and compares the energy spectra of four dosimetrically matched 6 MV beams, generated from four physically different linear accelerators. The goal of this work is twofold. First, this study determines whether the spectra of dosimetrically matched beams are measurably different. This study also demonstrates that the spectra of clinical photon beams can be measured as a part of the beam data collection process for input to a three-dimensional (3D) treatment planning system. The spectra of 6 MV beams that are dosimetrically matched for clinical use were studied to determine if the beam spectra are similarly matched. Each of the four accelerators examined had a standing waveguide, but with different physical designs. The four accelerators were two Varian 2100C/Ds (one 6 MV/18 MV waveguide and one 6 MV/10 MV waveguide), one Varian 600 C with a vertically mounted waveguide and no bending magnet, and one Siemens MD 6740 with a 6 MV/10 MV waveguide. All four accelerators had percent depth dose curves for the 6 MV beam that were matched within 1.3%. Beam spectra were determined from narrow beam transmission measurements through successive thicknesses of pure aluminum along the central axis of the accelerator, made with a graphite Farmer ion chamber with a Lucite buildup cap. An iterative nonlinear fit using a Marquardt algorithm was used to find each spectrum. Reconstructed spectra show that all four beams have similar energy distributions with only subtle differences, despite the differences in accelerator design. The measured spectra of different 6 MV beams are similar regardless of accelerator design. The measured spectra show excellent agreement with those found by the auto-modeling algorithm in a commercial 3D treatment planning system that uses a convolution dose calculation algorithm. Thus, beam spectra can be acquired in a clinical setting at the time of commissioning as a part of the routine beam data collection.

  13. Broadband monolithic extractors for terahertz quantum cascade laser based frequency combs (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rösch, Markus; Benea-Chelmus, Ileana-Cristina; Scalari, Giacomo; Bonzon, Christopher B.; Süess, Martin J.; Beck, Mattias; Faist, Jérôme

    2017-02-01

    Recent work has been showing the possibility of generating frequency combs at terahertz frequencies using terahertz quantum cascade lasers. The main efforts so far were on getting the laser to work in a stable comb operation over an as broad as possible spectral bandwidth. Another issue is the scattered farfield of such combs due to their subwavelength facets of the used metal-metal waveguide. In contrast to single mode lasers the monolithic approaches of distributed feedback lasers or photonic crystals cannot be used. We present here a monolithic broadband extractor compatible with frequency comb operation based on the concept of an end-fire antenna. The antenna can be fabricated using standard fabrication techniques. It has been designed to support a bandwidth of up to 600 GHz at a central frequency of 2.5 THz. The fabricated devices show single lobed farfields with only minor asymmetries, increased output power along an increased dynamical range of frequency comb operation. A side-absorber schematics using a thin film of Nickel has been used to suppress any higher-order lateral modes in the laser. The reported frequency combs with monolithic extractors are ideal candidates for spectroscopic applications at terahertz frequencies using a self-detected dual-comb spectroscopy setup due to the increased dynamical range along with the improved farfield leading to more output power of the frequency combs.

  14. Analysis of an optically controlled photonic switch.

    PubMed

    Attard, A E

    1999-05-20

    The principle that the coupling of light between two fiber waveguides can be controlled by the resonant interference of a third waveguide has been developed [Attard, Appl. Opt. 37, 2296-2302 (1998)]. Here significant details concerning the operation of a photonic switch are obtained, and a more complete analysis is presented. Multiple-resonant conditions are identified for slab and fiber control waveguides at large indices of refraction. Thus a selection of materials with an appropriate refractive index and a Kerr coefficient is rendered more easily. Furthermore it is shown that the light used to control the index of refraction in the control waveguide does not enter the output of the photonic switch but remains confined to the control waveguide, for either a slab or a multimode fiber control waveguide. Spatial fluctuations of the control light beam in the control waveguide do not affect the operation of the photonic switch. Tolerances have been determined for the spacing between the control waveguide and the photonic coupler and also for the index of refraction of the control waveguide.

  15. FIBER AND INTEGRATED OPTICS: Waveguide characteristics of real optical strip waveguides

    NASA Astrophysics Data System (ADS)

    Shmal'ko, A. V.; Frolov, V. V.

    1990-01-01

    A study is reported of the influence of the parameters of real thin-film optical strip waveguides on their waveguide characteristics (propagation constants, localization of the mode field, etc.) allowing for the presence of transition layers in a transverse cross section of the base planar waveguide, for the real geometry of this section (which is nearly trapezoidal), and for the thickness of the guiding strip. Analytic expressions are obtained for the optical confinement coefficient and the effective mode format of a weakly guiding symmetric strip waveguide. It is shown that the coefficient representing the fundamental E11x(y) mode is practically independent of the relative thickness t /h (h is the thickness of the base planar waveguide) of the guiding strip provided t /h>=0.5. The corrections to the normalized effective refractive indices of the base planar and strip waveguides are found in order to allow for the real geometry and for the refractive index profile in the strip waveguide.

  16. Practical microstructured and plasmonic terahertz waveguides

    NASA Astrophysics Data System (ADS)

    Markov, Andrey

    The terahertz frequency range, with frequencies lying between 100 GHz and 10 THz, has strong potential for various technological and scientific applications such as sensing, imaging, communications, and spectroscopy. Most terahertz (THz) sources are immobile and THz systems use free-space propagation in dry air where losses are minimal. Designing efficient THz waveguides for flexible delivery of broadband THz radiation is an important step towards practical applications of terahertz techniques. THz waveguides can be very useful on the system integration level when used for connection of the diverse THz point devices, such as sources, filters, sensor cells, detectors, etc. The most straightforward application of waveguides is to deliver electromagnetic waves from the source to the point of detection. Cumbersome free-space optics can be replaced by waveguides operating in the THz range, which could lead to the development of compact THz time domain spectroscopy systems. Other promising applications of THz waveguides are in sensing and imaging. THz waveguides have also been shown to operate in subwavelength regimes, offering mode confinement in waveguide structures with a size smaller than the diffraction limit, and thus, surpassing the resolution of free-space THz imaging systems. In order to design efficient terahertz waveguides, the frequency dependent loss and dispersion of the waveguide must be minimized. A possible solution would be to increase the fraction of mode power propagating through air. In this thesis, the usage of planar porous air/dielectric waveguides and metal wire/dielectric hybrid terahertz fibers will be discussed. First, I present a novel design of a planar porous low-loss waveguide, describe its fabrication, and characterize it in view of its potential applications as a low-loss waveguide and sensor in the THz spectral range. The waveguide structure features a periodic sequence of layers of thin (25-50 mum) polyethylene film that are separated by low-loss air layers of comparable thickness. A large fraction of the modal fields in these waveguides is guided in the low-loss air region, thus effectively reducing the waveguide transmission losses. I consider that such waveguides can be useful not only for low-loss THz wave delivery, but also for sensing of biological and chemical specimens in the terahertz region, by placing the recognition elements directly into the waveguide microstructure. The main advantage of the proposed planar porous waveguide is the convenient access to its optical mode, since the major portion of THz power launched into such a waveguide is confined within the air layers. Moreover, small spacing between the layers promotes rapid loading of the analyte into the waveguide due to strong capillary effect (< 1 s filling of a 10 cm long waveguide with an analyte). The transmission and absorption properties of such waveguides have been investigated both experimentally using THz-TDS spectroscopy and theoretically using finite element software. The modal refractive index of porous waveguides is smaller compared to pure polymer and it is easy to adjust by changing the air spacing between the layers, as well as the number of layers in the core. The porous waveguide exhibits considerably smaller transmission losses than bulk material. In the following chapters I review another promising approach towards designing of low-loss, low-dispersion THz waveguides. The hybrid metal/dielectric waveguides use a plasmonic mode guided in the gap between two parallel wires that are, in turn, encapsulated inside a low-loss, low-refractive index, micro-structured cladding that provides mechanical stability and isolation from the environment. I describe several promising techniques that can be used to encapsulate the two-wire waveguides, while minimizing the negative impact of dielectric cladding on the waveguide optical properties. In particular, I detail the use of low-density foams and microstructured plastic claddings as two enabling materials for the two-wire waveguide encapsulation. The hybrid fiber design is more convenient for practical applications than a classic two metal wire THz waveguide as it allows direct manipulations of the fiber without the risk of perturbing its core-guided mode. I present a detailed analysis of the modal properties of the hybrid metal/dielectric waveguides, compare them with the properties of a classic two-wire waveguide, and then present strategies for the improvement of hybrid waveguide performance by using higher cladding porosity or utilizing inherently porous cladding material. I study coupling efficiency into hybrid waveguides and conclude that it can be relatively high (>50%) in the broad frequency range ˜0.5 THz. Not surprisingly, optical properties of such fibers are inferior to those of a classic two-wire waveguide due to the presence of lossy dielectric near an inter-wire gap. At the same time, composite fibers outperform porous fibers of the same geometry both in bandwidth of operation and in lower dispersion. I demonstrate that hybrid metal/dielectric porous waveguides can have a very large operational bandwidth, while supporting tightly confined, air-bound modes both at high and low frequencies. This is possible as, at higher frequencies, hybrid fibers can support ARROW-like low-loss air-bound modes, while changing their guidance mechanism to plasmonic confinement in the inter-wire air gap at lower frequencies. Finally, I describe an intriguing resonant property of some hybrid plasmonic modes of metal / dielectric waveguides that manifests itself in the strong frequency dependent change in the modal confinement from dielectric-bound to air-bound. I discuss how this property can be used to construct THz refractometers. Introduction of even lossless analytes into the fiber core leads to significant changes in the modal losses, which is used as a transduction mechanism. The resolution of the refractometer has been investigated numerically as a function of the operation frequency and the geometric parameters of the fiber. With a refractive index resolution on the order of ˜10-3 RIU, the composite fiber-based sensor is capable of identifying various gaseous analytes and aerosols or measuring the concentration of dust particles in the air.

  17. Integrated optical refractometer based on bend waveguide with air trench structure

    NASA Astrophysics Data System (ADS)

    Ryu, Jin Hwa; Park, Jaehoon; Kang, Chan-mo; Son, Youngdal; Do, Lee-Mi; Baek, Kyu-Ha

    2015-07-01

    This study proposed a novel optical sensor based on a refractometer integrating a bend waveguide and a trench structure. The optical sensor is a planar lightwave circuit (PLC) device involving a bend waveguide with maximum optical loss. A trench structure was aligned with the partially exposed core layer's sidewall of the bend waveguide, providing a quantitative measurement condition. The insertion losses of the proposed 1 x 2 single-mode optical splitter-type sensor were 4.38 dB and 8.67 dB for the reference waveguide and sensing waveguide, respectively, at a wavelength of 1,550 nm. The optical loss of the sensing waveguide depends on the change in the refractive index of the material in contact with the trench, but the reference waveguide had stable optical propagating characteristic regardless of the variations of the refractive index.

  18. Tapered waveguides for guided wave optics.

    PubMed

    Campbell, J C

    1979-03-15

    Strip waveguides having half-paraboloid shaped tapers that permit efficient fiber to waveguide coupling have been fabricated by Ag ion exchange in soda-lime glass. A reduction in the input coupling loss has been accomplished by tailoring the diffusion to provide a gradual transition from a single-mode waveguide to a multimode waveguide having cross-sectional dimensions comparable to the core diameter of a single-mode fiber. Waveguides without tapers exhibit an attenuation of 1.0 dB/cm and an input coupling loss of 0.6 dB. The additional loss introduced by the tapered region is 0.5 dB. By way of contrast, an input coupling loss of 2.4 dB is obtained by coupling directly to a single-mode waveguide, indicating a net improvement of 1.3 dB for the tapered waveguides.

  19. An efficient high-frequency analysis of modal reflection and transmission coefficients for a class of waveguide discontinuities

    NASA Technical Reports Server (NTRS)

    Pathak, P. H.; Altintas, A.

    1988-01-01

    A high-frequency analysis of electromagnetic modal reflection and transmission coefficients is presented for waveguide discontinuities formed by joining different waveguide sections. The analysis uses an extended version of the concept of geometrical theory of diffraction based equivalent edge currents in conjunction with the reciprocity theorem to describe interior scattering effects. If the waveguide modes and their associated modal rays can be found explicitly, general two- and three-dimensional waveguide geometries can be analyzed. Expressions are developed for two-dimensional reflection and transmission coefficients. Numerical results are given for a flanged, semi-infinite parallel plate waveguide and for the junction between two linearly tapered waveguides.

  20. Polarization-dependent coupling between a polarization-independent high-index-contrast subwavelength grating and waveguides

    NASA Astrophysics Data System (ADS)

    Katayama, Takeo; Ito, Jun; Kawaguchi, Hitoshi

    2016-07-01

    We investigated the optical coupling between a polarization-independent high-index-contrast subwavelength grating (HCG) and two orthogonal in-plane waveguides. We fabricated the HCG with waveguides on a silicon-on-insulator substrate and demonstrated that a waveguide with a strong output is switched by changing the polarization of light injected into the HCG. The light coupled more strongly to the waveguide in the direction perpendicular to the polarization of the incident light than to that in the parallel direction. If this waveguide-coupled HCG is incorporated into a polarization bistable vertical-cavity surface-emitting laser (VCSEL), the output waveguide can be switched by changing the lasing polarization of the VCSEL.

  1. Dielectric waveguide with transverse index variation that support a zero group velocity mode at a non-zero longitudinal wavevector

    DOEpatents

    Ibanescu, Mihai; Joannopoious, John D.; Fink, Yoel; Johnson, Steven G.; Fan, Shanhui

    2005-06-21

    Optical components including a laser based on a dielectric waveguide extending along a waveguide axis and having a refractive index cross-section perpendicular to the waveguide axis, the refractive index cross-section supporting an electromagnetic mode having a zero group velocity for a non-zero wavevector along the waveguide axis.

  2. System and method for ultrafast optical signal detecting via a synchronously coupled anamorphic light pulse encoded laterally

    DOEpatents

    Heebner, John E [Livermore, CA

    2010-08-03

    In one general embodiment, a method for ultrafast optical signal detecting is provided. In operation, a first optical input signal is propagated through a first wave guiding layer of a waveguide. Additionally, a second optical input signal is propagated through a second wave guiding layer of the waveguide. Furthermore, an optical control signal is applied to a top of the waveguide, the optical control signal being oriented diagonally relative to the top of the waveguide such that the application is used to influence at least a portion of the first optical input signal propagating through the first wave guiding layer of the waveguide. In addition, the first and the second optical input signals output from the waveguide are combined. Further, the combined optical signals output from the waveguide are detected. In another general embodiment, a system for ultrafast optical signal recording is provided comprising a waveguide including a plurality of wave guiding layers, an optical control source positioned to propagate an optical control signal towards the waveguide in a diagonal orientation relative to a top of the waveguide, at least one optical input source positioned to input an optical input signal into at least a first and a second wave guiding layer of the waveguide, and a detector for detecting at least one interference pattern output from the waveguide, where at least one of the interference patterns results from a combination of the optical input signals input into the first and the second wave guiding layer. Furthermore, propagation of the optical control signal is used to influence at least a portion of the optical input signal propagating through the first wave guiding layer of the waveguide.

  3. Grating-coupled surface plasmons on InSb: a versatile platform for terahertz plasmonic sensing (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Talbayev, Diyar; Zhou, Jiangfeng; Lin, Shuai; Bhattarai, Khagendra

    2017-05-01

    Detection and identification of molecular materials based on their THz frequency vibrational resonances remains an open technological challenge. The need for such technology is illustrated by its potential uses in explosives detection (e.g., RDX) or identification of large biomolecules based on their THz-frequency vibrational fingerprints. The prevailing approaches to THz sensing often rely on a form of waveguide spectroscopy, either utilizing geometric waveguides, such as metallic parallel plate, or plasmonic waveguides made of structured metallic surfaces with sub-wavelength corrugation. The sensitivity of waveguide-based sensing devices is derived from the long (1 cm or longer) propagation and interaction distance of the THz wave with the analyte. We have demonstrated that thin InSb layers with metallic gratings can support high quality factor "true" surface plasmon (SP) resonances that can be used for THz plasmonic sensing. We find two strong SP absorption resonances in normal-incidence transmission and investigate their dispersion relations, dependence on InSb thickness, and the spatial distribution of the electric field. The sensitivity of this approach relies on the frequency shift of the SP resonance when the dielectric function changes in the immediate vicinity of the sensor, in the region of deeply sub-wavelength thickness. Our computational modeling indicates that the sensor sensitivity can exceed 0.25 THz per refractive index unit. One of the SP resonances also exhibits a splitting when tuned in resonance with a vibrational mode of an analyte, which could lead to new sensing modalities for the detection of THz vibrational features of the analyte.

  4. Pseudo-One-Dimensional Magnonic Crystals for High-Frequency Nanoscale Devices

    NASA Astrophysics Data System (ADS)

    Banerjee, Chandrima; Choudhury, Samiran; Sinha, Jaivardhan; Barman, Anjan

    2017-07-01

    The synthetic magnonic crystals (i.e., periodic composites consisting of different magnetic materials) form one fascinating class of emerging research field, which aims to command the process and flow of information by means of spin waves, such as in magnonic waveguides. One of the intriguing features of magnonic crystals is the presence and tunability of band gaps in the spin-wave spectrum, where the high attenuation of the frequency bands can be utilized for frequency-dependent control on the spin waves. However, to find a feasible way of band tuning in terms of a realistic integrated device is still a challenge. Here, we introduce an array of asymmetric saw-tooth-shaped width-modulated nanoscale ferromagnetic waveguides forming a pseudo-one-dimensional magnonic crystal. The frequency dispersion of collective modes measured by the Brillouin light-scattering technique is compared with the band diagram obtained by numerically solving the eigenvalue problem derived from the linearized Landau-Lifshitz magnetic torque equation. We find that the magnonic band-gap width, position, and the slope of dispersion curves are controllable by changing the angle between the spin-wave propagation channel and the magnetic field. The calculated profiles of the dynamic magnetization reveal that the corrugation at the lateral boundary of the waveguide effectively engineers the edge modes, which forms the basis of the interactive control in magnonic circuits. The results represent a prospective direction towards managing the internal field distribution as well as the dispersion properties, which find potential applications in dynamic spin-wave filters and magnonic waveguides in the gigahertz frequency range.

  5. A flexible 70 MHz phase-controlled double waveguide system for hyperthermia treatment of superficial tumours with deep infiltration.

    PubMed

    van Stam, Gerard; Kok, H Petra; Hulshof, Maarten C C M; Kolff, M Willemijn; van Tienhoven, Geertjan; Sijbrands, Jan; Bakker, Akke; Zum Vörde Sive Vörding, Paul J; Oldenborg, Sabine; de Greef, Martijn; Rasch, Coen R N; Crezee, Hans

    2017-11-01

    Superficial tumours with deep infiltration in the upper 15 cm of the trunk cannot be treated adequately with existing hyperthermia systems. The aim of this study was to develop, characterise and evaluate a new flexible two-channel hyperthermia system (AMC-2) for tumours in this region. The two-channel AMC-2 system has two horizontally revolving and height adjustable 70 MHz waveguides. Three different interchangeable antennas with sizes 20 × 34, 15 × 34 and 8.5 × 34 cm were developed and their electrical properties were determined. The performance of the AMC-2 system was tested by measurements of the electric field distribution in a saline water filled elliptical phantom, using an electric field vector probe. Clinical feasibility was demonstrated by treatment of a melanoma in the axillary region. Phantom measurements showed a good performance for all waveguides. The large reflection of the smallest antenna has to be compensated by increased forward power. Field patterns become asymmetrical when using smaller top antennas, necessitating phase corrections. The clinical application showed that tumours deeper than 4 cm can be heated adequately. A median tumour temperature of 42 °C can be reached up to 12 cm depth with adequate antenna positioning and phase-amplitude steering. This 70 MHz AMC-2 waveguide system is a useful addition to existing loco-regional hyperthermia equipment as it is capable of heating axillary tumours and other tumours deeper than 4 cm.

  6. FIBER AND INTEGRATED OPTICS: Optimization of optical film waveguides

    NASA Astrophysics Data System (ADS)

    Adamson, P. V.

    1990-10-01

    Theoretical investigations were made of the possibility of optimization of the effective thickness, of the optical confinement factor Γ1, and of the birefringence of a planar dielectric waveguide as a function of the waveguide parameter V and the waveguide asymmetry. For a given value of V it is possible to ensure higher values of Γ1, for an asymmetric waveguide than for a symmetric one. An approximate expression is proposed for the factor Γ1, of an asymmetric waveguide directly in terms of its thickness and the refractive indices of the layers.

  7. Method for ultrafast optical deflection enabling optical recording via serrated or graded light illumination

    DOEpatents

    Heebner, John E [Livermore, CA

    2009-09-08

    In one general embodiment, a method for deflecting an optical signal input into a waveguide is provided. In operation, an optical input signal is propagated through a waveguide. Additionally, an optical control signal is applied to a mask positioned relative to the waveguide such that the application of the optical control signal to the mask is used to influence the optical input signal propagating in the waveguide. Furthermore, the deflected optical input signal output from the waveguide is detected in parallel on an array of detectors. In another general embodiment, a beam deflecting structure is provided for deflecting an optical signal input into a waveguide, the structure comprising at least one wave guiding layer for guiding an optical input signal and at least one masking layer including a pattern configured to influence characteristics of a material of the guiding layer when an optical control signal is passed through the masking layer in a direction of the guiding layer. In another general embodiment, a system is provided including a waveguide, an attenuating mask positioned on the waveguide, and an optical control source positioned to propagate pulsed laser light towards the attenuating mask and the waveguide such that a pattern of the attenuating mask is applied to the waveguide and material properties of at least a portion of the waveguide are influenced.

  8. FDTD simulation of amorphous silicon waveguides for microphotonics applications

    NASA Astrophysics Data System (ADS)

    Fantoni, A.; Lourenço, P.; Pinho, P.; Vieira, M.,

    2017-05-01

    In this work we correlate the dimension of the waveguide with small variations of the refractive index of the material used for the waveguide core. We calculate the effective modal refractive index for different dimensions of the waveguide and with slightly variation of the refractive index of the core material. These results are used as an input for a set of Finite Difference Time Domain simulation, directed to study the characteristics of amorphous silicon waveguides embedded in a SiO2 cladding. The study considers simple linear waveguides with rectangular section for studying the modal attenuation expected at different wavelengths. Transmission efficiency is determined analyzing the decay of the light power along the waveguides. As far as near infrared wavelengths are considered, a-Si:H shows a behavior highly dependent on the light wavelength and its extinction coefficient rapidly increases as operating frequency goes into visible spectrum range. The simulation results show that amorphous silicon can be considered a good candidate for waveguide material core whenever the waveguide length is as short as a few centimeters. The maximum transmission length is highly affected by the a-Si:H defect density, the mid-gap density of states and by the waveguide section area. The simulation results address a minimum requirement of 300nm×400nm waveguide section in order to keep attenuation below 1 dB cm-1.

  9. Influence of an Interfacial Effect on the Laser Performance of a Rhodamine 6G/Cellulose Acetate Waveguide on a Vinylidene Fluoride Copolymer Layer.

    PubMed

    Tsutsumi, Naoto; Hirano, Yoshinori; Kinashi, Kenji; Sakai, Wataru

    2018-06-12

    The fluorescent properties of dyes and fluorophores in condensed matter significantly affect the laser performance of organic dye lasers and fluorescent polymer lasers. Concentration quenching of fluorescence is commonly observed in condensed matter. Several approaches have been presented to suppress such quenching, such as the use of a dendrimer and the use of effective energy transfer in a guest-host system. The enhanced fluorescence of rhodamine 6G (R6G) dye on a vinylidene fluoride polymer is an alternative method for enhancing laser performance because of the roughness of the P(VDF-TrFE) surface and the interaction between polar β-crystals of P(VDF-TrFE) and R6G dye. In this paper, a significant improvement in slope efficiency (SE) is demonstrated without a significant depression in the lasing threshold for distributed feedback (DFB) and distributed Bragg reflector (DBR) lasers fabricated using an R6G-dispersed cellulose acetate (CA) matrix spin-coated onto a copolymer of vinylidene fluoride and trifluoroethylene P(VDF-TrFE) thin film. SEs of 3.4 and 1.3% were measured for DBR and DFB laser devices with CA/R6G on a P(VDF-TrFE) thin film, respectively, whereas an SE of less than 1.0% was measured for both corresponding laser devices without a P(VDF-TrFE) thin film. From the aspect of simple fabrication procedures, repeatability in device fabrication and performance, stability of the device, time for device fabrication, the present approach is the most preferable way for industrial applications, requiring only the additional step of spin-coating of a P(VDF-TrFE) thin film.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jatana, Gurneesh; Geckler, Sam; Koeberlein, David

    We designed and developed a 4-probe multiplexed multi-species absorption spectroscopy sensor system for gas property measurements on the intake side of commercial multi-cylinder internal-combustion (I.C.) engines; the resulting cycle- and cylinder-resolved concentration, temperature and pressure measurements are applicable for assessing spatial and temporal variations in the recirculated exhaust gas (EGR) distribution at various locations along the intake gas path, which in turn is relevant to assessing cylinder charge uniformity, control strategies, and CFD models. Furthermore, the diagnostic is based on absorption spectroscopy and includes an H 2O absorption system (utilizing a 1.39 m distributed feedback (DFB) diode laser) for measuringmore » gas temperature, pressure, and H 2O concentration, and a CO 2 absorption system (utilizing a 2.7 m DFB laser) for measuring CO 2 concentration. The various lasers, optical components and detectors were housed in an instrument box, and the 1.39- m and 2.7- m lasers were guided to and from the engine-mounted probes via optical fibers and hollow waveguides, respectively. The 5kHz measurement bandwidth allows for near-crank angle resolved measurements, with a resolution of 1.2 crank angle degrees at 1000 RPM. Our use of compact stainless steel measurement probes enables simultaneous multi-point measurements at various locations on the engine with minimal changes to the base engine hardware; in addition to resolving large-scale spatial variations via simultaneous multi-probe measurements, local spatial gradients can be resolved by translating individual probes. Along with details of various sensor design features and performance, we also demonstrate validation of the spectral parameters of the associated CO 2 absorption transitions using both a multi-pass heated cell and the sensor probes.« less

  11. Event-triggered output feedback control for distributed networked systems.

    PubMed

    Mahmoud, Magdi S; Sabih, Muhammad; Elshafei, Moustafa

    2016-01-01

    This paper addresses the problem of output-feedback communication and control with event-triggered framework in the context of distributed networked control systems. The design problem of the event-triggered output-feedback control is proposed as a linear matrix inequality (LMI) feasibility problem. The scheme is developed for the distributed system where only partial states are available. In this scheme, a subsystem uses local observers and share its information to its neighbors only when the subsystem's local error exceeds a specified threshold. The developed method is illustrated by using a coupled cart example from the literature. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Mass distribution in galaxy clusters: the role of Active Galactic Nuclei feedback

    NASA Astrophysics Data System (ADS)

    Teyssier, Romain; Moore, Ben; Martizzi, Davide; Dubois, Yohan; Mayer, Lucio

    2011-06-01

    We use 1-kpc resolution cosmological Adaptive Mesh Refinement (AMR) simulations of a Virgo-like galaxy cluster to investigate the effect of feedback from supermassive black holes on the mass distribution of dark matter, gas and stars. We compared three different models: (i) a standard galaxy formation model featuring gas cooling, star formation and supernovae feedback, (ii) a 'quenching' model for which star formation is artificially suppressed in massive haloes and finally (iii) the recently proposed active galactic nucleus (AGN) feedback model of Booth and Schaye. Without AGN feedback (even in the quenching case), our simulated cluster suffers from a strong overcooling problem, with a stellar mass fraction significantly above observed values in M87. The baryon distribution is highly concentrated, resulting in a strong adiabatic contraction (AC) of dark matter. With AGN feedback, on the contrary, the stellar mass in the brightest cluster galaxy (BCG) lies below observational estimates and the overcooling problem disappears. The stellar mass of the BCG is seen to increase with increasing mass resolution, suggesting that our stellar masses converge to the correct value from below. The gas and total mass distributions are in better agreement with observations. We also find a slight deficit (˜10 per cent) of baryons at the virial radius, due to the combined effect of AGN-driven convective motions in the inner parts and shock waves in the outer regions, pushing gas to Mpc scales and beyond. This baryon deficit results in a slight adiabatic expansion of the dark matter distribution that can be explained quantitatively by AC theory.

  13. Low-loss bloch wave guiding in open structures and highly compact efficient waveguide-crossing arrays

    DOEpatents

    Popovic, Milos

    2011-03-08

    Low-loss waveguide structures may comprise a multimode waveguide supporting a periodic light intensity pattern, and attachments disposed at the waveguide adjacent low-intensity regions of the light intensity pattern.

  14. Theory of absorption integrated optical sensor of gaseous materials

    NASA Astrophysics Data System (ADS)

    Egorov, A. A.

    2010-10-01

    The eigen and noneigen (leaky) modes of a three-layer planar integrated optical waveguide are described. The dispersion relation of a three-layer planar waveguide and other dependences are derived, and the cutoff conditions are analyzed. The diagram of propagation constants of the guided and radiation modes of an irregular asymmetric three-layer waveguide and the dependence of the electric field amplitudes of radiation modes of substrate on vertical coordinate in a tantalum integrated optical waveguide are presented. The operating principles of an absorption integrated optical waveguide sensor are investigated. The dependences of sensitivity of an integrated optical waveguide sensor on the sensory cell length, the coupling efficiency of the laser radiation into the waveguide, the absorption cross-section of the studied material, and the level of additive statistical noise are investigated. Some of the prospective areas of application of integrated-optical waveguide sensors are outlined.

  15. Nearly-octave wavelength tuning of a continuous wave fiber laser

    PubMed Central

    Zhang, Lei; Jiang, Huawei; Yang, Xuezong; Pan, Weiwei; Cui, Shuzhen; Feng, Yan

    2017-01-01

    The wavelength tunability of conventional fiber lasers are limited by the bandwidth of gain spectrum and the tunability of feedback mechanism. Here a fiber laser which is continuously tunable from 1 to 1.9 μm is reported. It is a random distributed feedback Raman fiber laser, pumped by a tunable Yb doped fiber laser. The ultra-wide wavelength tunability is enabled by the unique property of random distributed feedback Raman fiber laser that both stimulated Raman scattering gain and Rayleigh scattering feedback are available at any wavelength. The dispersion property of the gain fiber is used to control the spectral purity of the laser output. PMID:28198414

  16. Hyperbolic-cosine waveguide tapers and oversize rectangular waveguide for reduced broadband insertion loss in W-band electron paramagnetic resonance spectroscopy. II. Broadband characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidabras, Jason W.; Anderson, James R.; Mainali, Laxman

    Experimental results have been reported on an oversize rectangular waveguide assembly operating nominally at 94 GHz. It was formed using commercially available WR28 waveguide as well as a pair of specially designed tapers with a hyperbolic-cosine shape from WR28 to WR10 waveguide [R. R. Mett et al., Rev. Sci. Instrum. 82, 074704 (2011)]. The oversize section reduces broadband insertion loss for an Electron Paramagnetic Resonance (EPR) probe placed in a 3.36 T magnet. Hyperbolic-cosine tapers minimize reflection of the main mode and the excitation of unwanted propagating waveguide modes. Oversize waveguide is distinguished from corrugated waveguide, overmoded waveguide, or quasi-opticmore » techniques by minimal coupling to higher-order modes. Only the TE{sub 10} mode of the parent WR10 waveguide is propagated. In the present work, a new oversize assembly with a gradual 90° twist was implemented. Microwave power measurements show that the twisted oversize waveguide assembly reduces the power loss in the observe and pump arms of a W-band bridge by an average of 2.35 dB and 2.41 dB, respectively, over a measured 1.25 GHz bandwidth relative to a straight length of WR10 waveguide. Network analyzer measurements confirm a decrease in insertion loss of 2.37 dB over a 4 GHz bandwidth and show minimal amplitude distortion of approximately 0.15 dB. Continuous wave EPR experiments confirm these results. The measured phase variations of the twisted oversize waveguide assembly, relative to an ideal distortionless transmission line, are reduced by a factor of two compared to a straight length of WR10 waveguide. Oversize waveguide with proper transitions is demonstrated as an effective way to increase incident power and the return signal for broadband EPR experiments. Detailed performance characteristics, including continuous wave experiment using 1 μM 2,2,6,6-tetramethylpiperidine-1-oxyl in aqueous solution, provided here serve as a benchmark for other broadband low-loss probes in millimeter-wave EPR bridges.« less

  17. All-optical intensity modulation based on graphene-coated microfibre waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Ruiduo; Li, Diao; Jiang, Man; Wu, Hao; Xu, Xiang; Ren, Zhaoyu

    2018-03-01

    We investigate graphene-covered microfibre (GCM) waveguides, and analyse the microfibres' evanescent field distributions in different diameters and lengths by numerically simulation. According to the simulation results, we designed a graphene-based all-optical modulator using 980 nm and Amplified Spontaneous Emission (ASE) lasers, employing the microfibre's evanescent field induced light-graphene interaction. We studied the modulation effect that is influenced by the microfibre's diameter, number of graphene layers, and effective graphene length. Compared to a single graphene layer of shorter length, the double graphene layer with longer length presents stronger absorption and higher modulation depth. Using a 2- μm diameter microfibre covered by ∼0.3 cm double graphene sheets, we achieved a modulation depth of 8.45 dB. This modulator features ease of fabrication, low cost, and a controllable modulation depth.

  18. Millimeter-Wave Chemical Sensor Using Substrate-Integrated-Waveguide Cavity

    PubMed Central

    Memon, Muhammad Usman; Lim, Sungjoon

    2016-01-01

    This research proposes a substrate-integrated waveguide (SIW) cavity sensor to detect several chemicals using the millimeter-wave frequency range. The frequency response of the presented SIW sensor is switched by filling a very small quantity of chemical inside of the fluidic channel, which also causes a difference in the effective permittivity. The fluidic channel on this structure is either empty or filled with a chemical; when it is empty the structure resonates at 17.08 GHz. There is always a different resonant frequency when any chemical is injected into the fluidic channel. The maximum amount of chemical after injection is held in the center of the SIW structure, which has the maximum magnitude of the electric field distribution. Thus, the objective of sensing chemicals in this research is achieved by perturbing the electric fields of the SIW structure. PMID:27809240

  19. Rotated waveplates in integrated waveguide optics.

    PubMed

    Corrielli, Giacomo; Crespi, Andrea; Geremia, Riccardo; Ramponi, Roberta; Sansoni, Linda; Santinelli, Andrea; Mataloni, Paolo; Sciarrino, Fabio; Osellame, Roberto

    2014-06-25

    Controlling and manipulating the polarization state of a light beam is crucial in applications ranging from optical sensing to optical communications, both in the classical and quantum regime, and ultimately whenever interference phenomena are to be exploited. In addition, many of these applications present severe requirements of phase stability and greatly benefit from a monolithic integrated-optics approach. However, integrated devices that allow arbitrary transformations of the polarization state are very difficult to produce with conventional lithographic technologies. Here we demonstrate waveguide-based optical waveplates, with arbitrarily rotated birefringence axis, fabricated by femtosecond laser pulses. To validate our approach, we exploit this component to realize a compact device for the quantum state tomography of two polarization-entangled photons. This work opens perspectives for integrated manipulation of polarization-encoded information with relevant applications ranging from integrated polarimetric sensing to quantum key distribution.

  20. Efficient Light Extraction from Organic Light-Emitting Diodes Using Plasmonic Scattering Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothberg, Lewis

    2012-11-30

    Our project addressed the DOE MYPP 2020 goal to improve light extraction from organic light-emitting diodes (OLEDs) to 75% (Core task 6.3). As noted in the 2010 MYPP, “the greatest opportunity for improvement is in the extraction of light from [OLED] panels”. There are many approaches to avoiding waveguiding limitations intrinsic to the planar OLED structure including use of textured substrates, microcavity designs and incorporating scattering layers into the device structure. We have chosen to pursue scattering layers since it addresses the largest source of loss which is waveguiding in the OLED itself. Scattering layers also have the potential tomore » be relatively robust to color, polarization and angular distributions. We note that this can be combined with textured or microlens decorated substrates to achieve additional enhancement.« less

  1. Cylindrical waveguide filled with radially inhomogeneous magnetized plasma as a microwave accelerating structure

    NASA Astrophysics Data System (ADS)

    Hedayatian, F.; Salem, M. K.; Saviz, S.

    2018-01-01

    In this study, microwave radiation is used to excite hybrid modes in a radially inhomogeneous cold plasma-filled cylindrical waveguide in the presence of external static magnetic field applied along the waveguide axis. The analytical expressions for EH0l field components, which accelerate an injected electron in the waveguide, are calculated. To study the effects of radial inhomogeneity on the electron dynamics and its acceleration, a model based on the Bessel-Fourier expansion is used while considering hybrid modes E H0 l(l =1 ,2 ,3 ,4 ) inside the waveguide, and the results are compared with the homogeneous plasma waveguide. The numerical results show that the field components related to the coupled EH0l modes are amplified due to radial inhomogeneity, which leads to an increase in the electron's energy gain. It is found that, if the waveguide is filled with radially inhomogeneous plasma, the electron acquires a higher energy gain while covering a shorter distance along the waveguide length (60 MeV energy gain in 1.1 cm distance along the waveguide length), so, a waveguide with a lesser length and a higher energy gain can be designed. The effects of radial inhomogeneity are studied on the deflection angle, the radial position, and the trajectory of an electron in the waveguide. The effects of the initial phase of the wave, injection point of the electron, and microwave power density are also investigated on the electron's energy gain. It is shown that the present model is applicable to both homogeneous and radially inhomogeneous plasma waveguides.

  2. FIBER AND INTEGRATED OPTICS: New type of heterogeneous nanophotonic silicon-on-insulator optical waveguides

    NASA Astrophysics Data System (ADS)

    Tsarev, Andrei V.

    2007-08-01

    A new type of optical waveguides in silicon-on-insulator nanostructures is proposed and studied. Their optical properties are simulated by the beam propagation method and discussed. A new design in the form of heterogeneous waveguide structures is based on the production of additionally heavily doped p+-regions on the sides of a multimode stripe waveguide (the silicon core cross section is ~200 nm × 16 μm). Such doping provides the 'single-mode' behaviour of the heterogeneous waveguide due to the decrease in the optical losses for the fundamental mode and increase in losses for higher-order modes. Single-mode heterogeneous waveguides can be used as base waveguides in photonic and integrated optical elements.

  3. Theoretical description and design of nanomaterial slab waveguides: application to compensation of optical diffraction.

    PubMed

    Kivijärvi, Ville; Nyman, Markus; Shevchenko, Andriy; Kaivola, Matti

    2018-04-02

    Planar optical waveguides made of designable spatially dispersive nanomaterials can offer new capabilities for nanophotonic components. As an example, a thin slab waveguide can be designed to compensate for optical diffraction and provide divergence-free propagation for strongly focused optical beams. Optical signals in such waveguides can be transferred in narrow channels formed by the light itself. We introduce here a theoretical method for characterization and design of nanostructured waveguides taking into account their inherent spatial dispersion and anisotropy. Using the method, we design a diffraction-compensating slab waveguide that contains only a single layer of silver nanorods. The waveguide shows low propagation loss and broadband diffraction compensation, potentially allowing transfer of optical information at a THz rate.

  4. Birefringent corrugated waveguide

    DOEpatents

    Moeller, Charles P.

    1990-01-01

    A corrugated waveguide having a circular bore and noncircularly symmetric corrugations, and preferably elliptical corrugations, provides birefringence for rotation of polarization in the HE.sub.11 mode. The corrugated waveguide may be fabricated by cutting circular grooves on a lathe in a cylindrical tube or rod of aluminum of a diameter suitable for the bore of the waveguide, and then cutting an approximation to ellipses for the corrugations using a cutting radius R.sub.0 from the bore axis that is greater than the bore radius, and then making two circular cuts using a radius R.sub.1 less than R.sub.0 at centers +b and -b from the axis of the waveguide bore. Alternatively, stock for the mandrel may be formed with an elliptical transverse cross section, and then only the circular grooves need be cut on a lathe, leaving elliptical corrugations between the grooves. In either case, the mandrel is first electroplated and then dissolved leaving a corrugated waveguide with noncircularly symmetric corrugations. A transition waveguide is used that gradually varies from circular to elliptical corrugations to couple a circularly corrugated waveguide to an elliptically corrugated waveguide.

  5. High-speed electro-optic switch based on nonlinear polymer-clad waveguide incorporated with quasi-in-plane coplanar waveguide electrodes

    NASA Astrophysics Data System (ADS)

    Jiang, Ming-Hui; Wang, Xi-Bin; Xu, Qiang; Li, Ming; Niu, Dong-Hai; Sun, Xiao-Qiang; Wang, Fei; Li, Zhi-Yong; Zhang, Da-Ming

    2018-01-01

    Nonlinear optical (NLO) polymer is a promising material for active waveguide devices that can provide large bandwidth and high-speed response time. However, the performance of the active devices is not only related to the waveguide materials, but also related to the waveguide and electrode structures. In this paper, a high-speed Mach-Zehnder interferometer (MZI) type of electro-optic (EO) switch based on NLO polymer-clad waveguide was fabricated. The quasi-in-plane coplanar waveguide electrodes were also introduced to enhance the poling and modulating efficiency. The characteristic parameters of the waveguide and electrode were carefully designed and simulated. The switches were fabricated by the conventional micro-fabrication process. Under 1550-nm operating wavelength, a typical fabricated switch showed a low insertion loss of 10.2 dB, and the switching rise time and fall time were 55.58 and 57.98 ns, respectively. The proposed waveguide and electrode structures could be developed into other active EO devices and also used as the component in the polymer-based large-scale photonic integrated circuit.

  6. Direct Wafer Bonding and Its Application to Waveguide Optical Isolators

    PubMed Central

    Mizumoto, Tetsuya; Shoji, Yuya; Takei, Ryohei

    2012-01-01

    This paper reviews the direct bonding technique focusing on the waveguide optical isolator application. A surface activated direct bonding technique is a powerful tool to realize a tight contact between dissimilar materials. This technique has the potential advantage that dissimilar materials are bonded at low temperature, which enables one to avoid the issue associated with the difference in thermal expansion. Using this technique, a magneto-optic garnet is successfully bonded on silicon, III-V compound semiconductors and LiNbO3. As an application of this technique, waveguide optical isolators are investigated including an interferometric waveguide optical isolator and a semileaky waveguide optical isolator. The interferometric waveguide optical isolator that uses nonreciprocal phase shift is applicable to a variety of waveguide platforms. The low refractive index of buried oxide layer in a silicon-on-insulator (SOI) waveguide enhances the magneto-optic phase shift, which contributes to the size reduction of the isolator. A semileaky waveguide optical isolator has the advantage of large fabrication-tolerance as well as a wide operation wavelength range. PMID:28817020

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zheng; Xu, Xiaochuan; Fan, Donglei

    Here, subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to the extra degree of freedom it offers in tuning a few important waveguide properties, such as dispersion and refractive index. Devices based on SWG waveguides have demonstrated impressive performances compared to conventional waveguides. However, the high loss of SWG waveguide bends jeopardizes their applications in integrated photonic circuits. In this work, we propose a geometrical tuning art, which realizes a pre-distorted refractive index profile in SWG waveguide bends. The pre-distorted refractive index profile can effectively reduce the mode mismatch and radiation loss simultaneously, thus significantlymore » reduce the bend loss. This geometry tuning art has been numerically optimized and experimentally demonstrated in present study. Through such tuning, the average insertion loss of a 5 μm SWG waveguide bend is reduced drastically from 5.43 dB to 1.10 dB per 90° bend for quasi-TE polarization. In the future, the proposed scheme will be utilized to enhance performance of a wide range of SWG waveguide based photonics devices.« less

  8. Design and development of a probe-based multiplexed multi-species absorption spectroscopy sensor for characterizing transient gas-parameter distributions in the intake systems of I.C. engines

    DOE PAGES

    Jatana, Gurneesh; Geckler, Sam; Koeberlein, David; ...

    2016-09-01

    We designed and developed a 4-probe multiplexed multi-species absorption spectroscopy sensor system for gas property measurements on the intake side of commercial multi-cylinder internal-combustion (I.C.) engines; the resulting cycle- and cylinder-resolved concentration, temperature and pressure measurements are applicable for assessing spatial and temporal variations in the recirculated exhaust gas (EGR) distribution at various locations along the intake gas path, which in turn is relevant to assessing cylinder charge uniformity, control strategies, and CFD models. Furthermore, the diagnostic is based on absorption spectroscopy and includes an H 2O absorption system (utilizing a 1.39 m distributed feedback (DFB) diode laser) for measuringmore » gas temperature, pressure, and H 2O concentration, and a CO 2 absorption system (utilizing a 2.7 m DFB laser) for measuring CO 2 concentration. The various lasers, optical components and detectors were housed in an instrument box, and the 1.39- m and 2.7- m lasers were guided to and from the engine-mounted probes via optical fibers and hollow waveguides, respectively. The 5kHz measurement bandwidth allows for near-crank angle resolved measurements, with a resolution of 1.2 crank angle degrees at 1000 RPM. Our use of compact stainless steel measurement probes enables simultaneous multi-point measurements at various locations on the engine with minimal changes to the base engine hardware; in addition to resolving large-scale spatial variations via simultaneous multi-probe measurements, local spatial gradients can be resolved by translating individual probes. Along with details of various sensor design features and performance, we also demonstrate validation of the spectral parameters of the associated CO 2 absorption transitions using both a multi-pass heated cell and the sensor probes.« less

  9. Extraction film for optical waveguide and method of producing same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarsa, Eric J.; Durkee, John W.

    2017-05-16

    An optical waveguide includes a waveguide body and a film disposed on a surface of the waveguide body. The film includes a base and a plurality of undercut light extraction elements disposed between the base and the surface.

  10. Cutoff-mesa isolated rib optical waveguide for III-V heterostructure photonic integrated circuits

    DOEpatents

    Vawter, Gregory A.; Smith, Robert E.

    1998-01-01

    A cutoff mesa rib waveguide provides single-mode performance regardless of any deep etches that might be used for electrical isolation between integrated electrooptic devices. Utilizing a principle of a cutoff slab waveguide with an asymmetrical refractive index profile, single mode operation is achievable with a wide range of rib widths and does not require demanding etch depth tolerances. This new waveguide design eliminates reflection effects, or self-interference, commonly seen when conventional rib waveguides are combined with deep isolation etches and thereby reduces high order mode propagation and crosstalk compared to the conventional rib waveguides.

  11. Femtosecond laser micromachining of waveguides in silicone-based hydrogel polymers.

    PubMed

    Ding, Li; Blackwell, Richard I; Künzler, Jay F; Knox, Wayne H

    2008-06-10

    By tightly focusing 27 fs laser pulses from a Ti:sapphire oscillator with 1.3 nJ pulse energy at 93 MHz repetition rate, we are able to fabricate optical waveguides inside hydrogel polymers containing approximately 36% water by weight. A tapered lensed fiber is used to couple laser light at a wavelength of 632.8 nm into these waveguides within a water environment. Strong waveguiding is observed due to large refractive index changes. A large waveguide propagation loss is found, and we show that this is caused by surface roughness which can be reduced by optimizing the waveguides.

  12. Cutoff-mesa isolated rib optical waveguide for III-V heterostructure photonic integrated circuits

    DOEpatents

    Vawter, G.A.; Smith, R.E.

    1998-04-28

    A cutoff mesa rib waveguide provides single-mode performance regardless of any deep etches that might be used for electrical isolation between integrated electrooptic devices. Utilizing a principle of a cutoff slab waveguide with an asymmetrical refractive index profile, single mode operation is achievable with a wide range of rib widths and does not require demanding etch depth tolerances. This new waveguide design eliminates reflection effects, or self-interference, commonly seen when conventional rib waveguides are combined with deep isolation etches and thereby reduces high order mode propagation and crosstalk compared to the conventional rib waveguides. 7 figs.

  13. Operation of Ho:YAG ultrafast laser inscribed waveguide lasers.

    PubMed

    McDaniel, Sean; Thorburn, Fiona; Lancaster, Adam; Stites, Ronald; Cook, Gary; Kar, Ajoy

    2017-04-20

    We report fabrication and operation of multi-watt level waveguide lasers utilizing holmium-doped yttrium aluminum garnet (Ho:YAG). The waveguides were fabricated using ultrafast laser inscription, which relies on a chirped pulse ytterbium fiber laser to create depressed cladding structures inside the material. A variety of waveguides were created inside the Ho:YAG samples. We demonstrate output powers of ∼2  W from both a single-mode 50 μm waveguide laser and a multimode 80 μm waveguide laser. In addition, laser action from a co-doped Yb:Ho:YAG sample under in-band pumping conditions was demonstrated.

  14. High power, high frequency, vacuum flange

    DOEpatents

    Felker, B.; McDaniel, M.R.

    1993-03-23

    An improved waveguide flange is disclosed for high power operation that helps prevent arcs from being initiated at the junctions between waveguide sections. The flanges at the end of the waveguide sections have counter bores surrounding the waveguide tubes. When the sections are bolted together the counter bores form a groove that holds a fully annealed copper gasket. Each counterbore has a beveled step that is specially configured to insure the gasket forms a metal-to-metal vacuum seal without gaps or sharp edges. The resultant inner surface of the waveguide is smooth across the junctions between waveguide sections, and arcing is prevented.

  15. Long-range propagation of plasmon and phonon polaritons in hyperbolic-metamaterial waveguides

    NASA Astrophysics Data System (ADS)

    Babicheva, Viktoriia E.

    2017-12-01

    We study photonic multilayer waveguides that include layers of materials and metamaterials with a hyperbolic dispersion (HMM). We consider the long-range propagation of plasmon and phonon polaritons at the dielectric-HMM interface in different waveguide geometries (single boundary or different layers of symmetric cladding). In contrast to the traditional analysis of geometrical parameters, we make an emphasis on the optical properties of constituent materials: solving dispersion equations, we analyze how dielectric and HMM permittivities affect propagation length and mode size of waveguide eigenmodes. We derive figures of merit that should be used for each waveguide in a broad range of permittivity values as well as compare them with plasmonic waveguides. We show that the conventional plasmonic quality factor, which is the ratio of real to imaginary parts of permittivity, is not applicable to the case of waveguides with complex structure. Both telecommunication wavelengths and mid-infrared spectral ranges are of interest considering recent advances in van der Waals materials, such as hexagonal boron nitride. We evaluate the performance of the waveguides with hexagonal boron nitride in the range where it possesses hyperbolic dispersion (wavelength 6.3-7.3 μm), and we show that these waveguides with natural hyperbolic properties have higher propagation lengths than metal-based HMM waveguides.

  16. Laterally Coupled Distributed-Feedback GaSb-Based Diode Lasers for Atmospheric Gas Detection at 2 Microns

    NASA Technical Reports Server (NTRS)

    Briggs, Ryan M.; Frez, Clifford; Ksendzov, Alexander; Franz, Kale J.; Bagheri, Mahmood; Forouhar, Siamak

    2012-01-01

    We demonstrate single-mode laterally coupled distributed-feedback diode lasers at 2.05 microns employing low-loss etched gratings. Single-facet CW output exceeds 50 mW near room temperature with linewidth below 1 MHz over 10-ms observation times

  17. Synthetic Engineering of Spider Silk Fiber as Implantable Optical Waveguides for Low-Loss Light Guiding.

    PubMed

    Qiao, Xin; Qian, Zhigang; Li, Junjie; Sun, Hongji; Han, Yao; Xia, Xiaoxia; Zhou, Jin; Wang, Chunlan; Wang, Yan; Wang, Changyong

    2017-05-03

    A variety of devices used for biomedical engineering have been fabricated using protein polymer because of their excellent properties, such as strength, toughness, biocompatibility, and biodegradability. In this study, we fabricated an optical waveguide using genetically engineered spider silk protein. This method has two significant advantages: (1) recombinant spider silk optical waveguide exhibits excellent optical and biological properties and (2) biosynthesis of spider silk protein can overcome the limitation to the research on spider silk optical waveguide due to the low yield of natural spider silk. In detail, two kinds of protein-based optical waveguides made from recombinant spider silk protein and regenerative silkworm silk protein were successfully prepared. Results suggested that the recombinant spider silk optical waveguide showed a smoother surface and a higher refractive index when compared with regenerative silkworm silk protein. The optical loss of recombinant spider silk optical waveguide was 0.8 ± 0.1 dB/cm in air and 1.9 ± 0.3 dB/cm in mouse muscles, which were significantly lower than those of regenerative silkworm silk optical waveguide. Moreover, recombinant spider silk optical waveguide can meet the demand to guide and efficiently deliver light through biological tissue. In addition, recombinant spider silk optical waveguide showed low toxicity to cells in vitro and low-level inflammatory reaction with surrounding tissue in vivo. Therefore, recombinant spider silk optical waveguide is a promising implantable device to guide and deliver light with low loss.

  18. Chemical-assisted femtosecond laser writing of lab-in-fibers.

    PubMed

    Haque, Moez; Lee, Kenneth K C; Ho, Stephen; Fernandes, Luís A; Herman, Peter R

    2014-10-07

    The lab-on-chip (LOC) platform has presented a powerful opportunity to improve functionalization, parallelization, and miniaturization on planar or multilevel geometries that has not been possible with fiber optic technology. A migration of such LOC devices into the optical fiber platform would therefore open the revolutionary prospect of creating novel lab-in-fiber (LIF) systems on the basis of an efficient optical transport highway for multifunctional sensing. For the LIF, the core optical waveguide inherently offers a facile means to interconnect numerous types of sensing elements along the optical fiber, presenting a radical opportunity for optimizing the packaging and densification of diverse components in convenient geometries beyond that available with conventional LOCs. In this paper, three-dimensional patterning inside the optical fiber by femtosecond laser writing, together with selective chemical etching, is presented as a powerful tool to form refractive index structures such as optical waveguides and gratings as well as to open buried microfluidic channels and optical resonators inside the flexible and robust glass fiber. In this approach, optically smooth surfaces (~12 nm rms) are introduced for the first time inside the fiber cladding that precisely conform to planar nanograting structures when formed by aberration-free focusing with an oil-immersion lens across the cylindrical fiber wall. This process has enabled optofluidic components to be precisely embedded within the fiber to be probed by either the single-mode fiber core waveguide or the laser-formed optical circuits. We establish cladding waveguides, X-couplers, fiber Bragg gratings, microholes, mirrors, optofluidic resonators, and microfluidic reservoirs that define the building blocks for facile interconnection of inline core-waveguide devices with cladding optofluidics. With these components, more advanced, integrated, and multiplexed fiber microsystems are presented demonstrating fluorescence detection, Fabry-Perot interferometric refractometry, and simultaneous sensing of refractive index, temperature, and bending strain. The flexible writing technique and multiplexed sensors described here open powerful prospects to migrate the benefits of LOCs into a more flexible and miniature LIF platform for highly functional and distributed sensing capabilities. The waveguide backbone of the LIF inherently provides an efficient exchange of information, combining sensing data that are attractive in telecom networks, smart catheters for medical procedures, compact sensors for security and defense, shape sensors, and low-cost health care products.

  19. Frequency-dependent radiation patterns emitted by THz plasmons on finite length cylindrical metal wires.

    PubMed

    Deibel, Jason A; Berndsen, Nicholas; Wang, Kanglin; Mittleman, Daniel M; van der Valk, Nick C; Planken, Paul C M

    2006-09-18

    We report on the emission patterns from THz plasmons propagating towards the end of cylindrical metal waveguides. Such waveguides exhibit low loss and dispersion, but little is known about the dynamics of the terahertz radiation at the end of the waveguide, specifically in the near- and intermediate-field. Our experimental results and numerical simulations show that the near- and intermediate-field terahertz spectra, measured at the end of the waveguide, vary with the position relative to the waveguide. This is explained by the frequency-dependent diffraction occurring at the end of the cylindrical waveguide. Our results show that near-field changes in the frequency content of THz pulses for increasing wire-detector distances must be taken into account when studying surface waves on cylindrical waveguides.

  20. Numerical model of the polymer electro-optic waveguide

    NASA Astrophysics Data System (ADS)

    Fan, Guofang; Li, Yuan; Han, Bing; Wang, Qi; Liu, Xinhou; Zhen, Zhen

    2012-09-01

    A numerical design model is presented for the polymer waveguide in an electro-optic modulator. The effective index method is used to analyze the height of the core waveguide and rib waveguide, an improved Marcatili method is presented to design the rib waveguide width in order to keep the strong single mode operation and have a good match with the standard fiber. Also, the thickness of the upper cladding layer is discussed through calculating the effective index of the multilayer planar waveguide structure has been obtained by setting the optical loss due to the metallic absorption to an acceptable value (<0.1 dB/cm). As a consequence, we take the EO polymer waveguide structure of UV15:CLD/APC:UFC170 as an example, an optimized design is reported.

  1. Integrated optical gyroscope using active Long-range surface plasmon-polariton waveguide resonator

    PubMed Central

    Zhang, Tong; Qian, Guang; Wang, Yang-Yang; Xue, Xiao-Jun; Shan, Feng; Li, Ruo-Zhou; Wu, Jing-Yuan; Zhang, Xiao-Yang

    2014-01-01

    Optical gyroscopes with high sensitivity are important rotation sensors for inertial navigation systems. Here, we present the concept of integrated resonant optical gyroscope constructed by active long-range surface plasmon-polariton (LRSPP) waveguide resonator. In this gyroscope, LRSPP waveguide doped gain medium is pumped to compensate the propagation loss, which has lower pump noise than that of conventional optical waveguide. Peculiar properties of single-polarization of LRSPP waveguide have been found to significantly reduce the polarization error. The metal layer of LRSPP waveguide is electro-optical multiplexed for suppression of reciprocal noises. It shows a limited sensitivity of ~10−4 deg/h, and a maximum zero drift which is 4 orders of magnitude lower than that constructed by conventional single-mode waveguide. PMID:24458281

  2. Wideband unbalanced waveguide power dividers and combiners

    DOEpatents

    Halligan, Matthew; McDonald, Jacob Jeremiah; Strassner, II, Bernd H.

    2016-05-17

    The various technologies presented herein relate to waveguide dividers and waveguide combiners for application in radar systems, wireless communications, etc. Waveguide dividers-combiners can be manufactured in accordance with custom dimensions, as well as in accordance with waveguide standards such that the input and output ports are of a defined dimension and have a common impedance. Various embodiments are presented which can incorporate one or more septum(s), one or more pairs of septums, an iris, an input matching region, a notch located on the input waveguide arm, waveguide arms having stepped transformer regions, etc. The various divider configurations presented herein can be utilized in high fractional bandwidth applications, e.g., a fractional bandwidth of about 30%, and RF applications in the Ka frequency band (e.g., 26.5-40 GHz).

  3. Analysis of hybrid dielectric-plasmonic slot waveguide structures with 3D Fourier Modal Methods

    NASA Astrophysics Data System (ADS)

    Ctyroky, J.; Kwiecien, P.; Richter, I.

    2013-03-01

    Recently, plasmonic waveguides have been intensively studied as promising basic building blocks for the construction of extremely compact photonic devices with subwavelength characteristic dimensions. A number of different types of plasmonic waveguide structures have been recently proposed, theoretically analyzed, and their properties experimentally verified. The fundamental trade-off in the design of plasmonic waveguides for potential application in information technologies lies in the contradiction between their mode field confinement and propagation loss: the higher confinement, the higher loss, and vice versa. Various definitions of figures of merit of plasmonic waveguides have been also introduced for the characterization of their properties with a single quantity. In this contribution, we theoretically analyze one specific type of a plasmonic waveguide - the hybrid dielectric-loaded plasmonic waveguide, or - as we call it in this paper - the hybrid dielectric-plasmonic slot waveguide, which exhibits very strong field confinement combined with acceptable losses allowing their application in some integrated plasmonic devices. In contrast to the structures analyzed previously, our structure makes use of a single low-index dielectric only. We first define the effective area of this waveguide type, and using waveguide parameters close to the optimum we analyze several waveguide devices as directional couplers, multimode interference couplers (MMI), and the Mach-Zehnder interferometer based on the MMI couplers. For the full-vector 3D analysis of these structures, we use modelling tools developed in-house on the basis of the Fourier Modal Method (FMM). Our results thus serve to a dual purpose: they confirm that (i) these structures represent promising building blocks of plasmonic devices, and (ii) our FMM codes are capable of efficient 3D vector modelling of plasmonic waveguide devices.

  4. Optical integrator for optical dark-soliton detection and pulse shaping.

    PubMed

    Ngo, Nam Quoc

    2006-09-10

    The design and analysis of an Nth-order optical integrator using the digital filter technique is presented. The optical integrator is synthesized using planar-waveguide technology. It is shown that a first-order optical integrator can be used as an optical dark-soliton detector by converting an optical dark-soliton pulse into an optical bell-shaped pulse for ease of detection. The optical integrators can generate an optical step function, staircase function, and paraboliclike functions from input optical Gaussian pulses. The optical integrators may be potentially used as basic building blocks of all-optical signal processing systems because the time integrals of signals may sometimes be required for further use or analysis. Furthermore, an optical integrator may be used for the shaping of optical pulses or in an optical feedback control system.

  5. THz transceiver characterization : LDRD project 139363 final report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordquist, Christopher Daniel; Wanke, Michael Clement; Cich, Michael Joseph

    2009-09-01

    LDRD Project 139363 supported experiments to quantify the performance characteristics of monolithically integrated Schottky diode + quantum cascade laser (QCL) heterodyne mixers at terahertz (THz) frequencies. These integrated mixers are the first all-semiconductor THz devices to successfully incorporate a rectifying diode directly into the optical waveguide of a QCL, obviating the conventional optical coupling between a THz local oscillator and rectifier in a heterodyne mixer system. This integrated mixer was shown to function as a true heterodyne receiver of an externally received THz signal, a breakthrough which may lead to more widespread acceptance of this new THz technology paradigm. Inmore » addition, questions about QCL mode shifting in response to temperature, bias, and external feedback, and to what extent internal frequency locking can improve stability have been answered under this project.« less

  6. EEsoF MICAD and ACADEMY macro files for coplanar waveguide and finite ground plan coplanar waveguide

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.

    1995-01-01

    A collection of macro files is presented which when appended to either the EEsoF MICAD.ELE or EEsoF ACADEMY.ELE file permits the layout of coplanar waveguide and finite ground plane coplanar waveguide circuits.

  7. Waveguide module comprising a first plate with a waveguide channel and a second plate with a raised portion in which a sealing layer is forced into the waveguide channel by the raised portion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strassner, II, Bernd H.; Liedtke, Richard; McDonald, Jacob Jeremiah

    The various technologies presented herein relate to utilizing a sealing layer of malleable material to seal gaps, etc., at a joint between edges of a waveguide channel formed in a first plate and a surface of a clamping plate. A compression pad is included in the surface of the clamping plate and is dimensioned such that the upper surface of the pad is less than the area of the waveguide channel opening on the first plate. The sealing layer is placed between the waveguide plate and the clamping plate, and during assembly of the waveguide module, the compression pad deformsmore » a portion of the sealing layer such that it ingresses into the waveguide channel opening. Deformation of the sealing layer results in the gaps, etc., to be filled, improving the operational integrity of the joint.« less

  8. Planar polymer and glass graded index waveguides for data center applications

    NASA Astrophysics Data System (ADS)

    Pitwon, Richard; Yamauchi, Akira; Brusberg, Lars; Wang, Kai; Ishigure, Takaaki; Schröder, Henning; Neitz, Marcel; Worrall, Alex

    2016-03-01

    Embedded optical waveguide technology for optical printed circuit boards (OPCBs) has advanced considerably over the past decade both in terms of materials and achievable waveguide structures. Two distinct classes of planar graded index multimode waveguide have recently emerged based on polymer and glass materials. We report on the suitability of graded index polymer waveguides, fabricated using the Mosquito method, and graded index glass waveguides, fabricated using ion diffusion on thin glass foils, for deployment within future data center environments as part of an optically disaggregated architecture. To this end, we first characterize the wavelength dependent performance of different waveguide types to assess their suitability with respect to two dominant emerging multimode transceiver classes based on directly modulated 850 nm VCSELs and 1310 silicon photonics devices. Furthermore we connect the different waveguide types into an optically disaggregated data storage system and characterize their performance with respect to different common high speed data protocols used at the intra and inter rack level including 10 Gb Ethernet and Serial Attached SCSI.

  9. Non-fragile observer-based output feedback control for polytopic uncertain system under distributed model predictive control approach

    NASA Astrophysics Data System (ADS)

    Zhu, Kaiqun; Song, Yan; Zhang, Sunjie; Zhong, Zhaozhun

    2017-07-01

    In this paper, a non-fragile observer-based output feedback control problem for the polytopic uncertain system under distributed model predictive control (MPC) approach is discussed. By decomposing the global system into some subsystems, the computation complexity is reduced, so it follows that the online designing time can be saved.Moreover, an observer-based output feedback control algorithm is proposed in the framework of distributed MPC to deal with the difficulties in obtaining the states measurements. In this way, the presented observer-based output-feedback MPC strategy is more flexible and applicable in practice than the traditional state-feedback one. What is more, the non-fragility of the controller has been taken into consideration in favour of increasing the robustness of the polytopic uncertain system. After that, a sufficient stability criterion is presented by using Lyapunov-like functional approach, meanwhile, the corresponding control law and the upper bound of the quadratic cost function are derived by solving an optimisation subject to convex constraints. Finally, some simulation examples are employed to show the effectiveness of the method.

  10. Split-Block Waveguide Polarization Twist for 220 to 325 GHz

    NASA Technical Reports Server (NTRS)

    Ward, John; Chattopadhyay, Goutam

    2008-01-01

    A split-block waveguide circuit that rotates polarization by 90 has been designed with WR-3 input and output waveguides, which are rectangular waveguides used for a nominal frequency range of 220 to 325 GHz. Heretofore, twisted rectangular waveguides equipped with flanges at the input and output have been the standard means of rotating the polarizations of guided microwave signals. However, the fabrication and assembly of such components become difficult at high frequency due to decreasing wavelength, such that twisted rectangular waveguides become impractical at frequencies above a few hundred gigahertz. Conventional twisted rectangular waveguides are also not amenable to integration into highly miniaturized subassemblies of advanced millimeter- and submillimeter-wave detector arrays now undergoing development. In contrast, the present polarization- rotating waveguide can readily be incorporated into complex integrated waveguide circuits such as miniaturized detector arrays fabricated by either conventional end milling of metal blocks or by deep reactive ion etching of silicon blocks. Moreover, the present split-block design can be scaled up in frequency to at least 5 THz. The main step in fabricating a splitblock polarization-rotating waveguide of the present design is to cut channels having special asymmetrically shaped steps into mating upper and lower blocks (see Figure 1). The dimensions of the steps are chosen to be consistent with the WR-3 waveguide cross section, which is 0.864 by 0.432 mm. The channels are characterized by varying widths with constant depths of 0.432, 0.324, and 0.216 mm and by relatively large corner radii to facilitate fabrication. The steps effect both a geometric transition and the corresponding impedance-matched electromagnetic-polarization transition between (1) a WR-3 rectangular waveguide oriented with the electric field vector normal to the block mating surfaces and (2) a corresponding WR-3 waveguide oriented with its electric field vector parallel to the mating surfaces of the blocks. A prototype has been built and tested. Figure 2 presents test results indicative of good performance over nearly the entire WR-3 waveguide frequency band.

  11. Studies of Beam Expansion and Distributed Bragg Reflector Lasers for Fiber Optics and Optical Signal Processing.

    DTIC Science & Technology

    1981-03-03

    described theory and experiments on the DBR laser and on the use of the Distributed Bragg Deflector ( DBD ) to act as a grating bean expander. The DBD is a...and telescope. 9 .\\pplications requiring more power can use the DBD as a power combiner for several laser stripes, as shown in Fig. 3. In design...Bragg deflector ( DBD ). This device consists of a corrugated waveguide, whose grating is slanted at an angle 6 with respect to the incident beam. The

  12. Array of Laminated Waveguides for Implementation in LTCC Technology

    DTIC Science & Technology

    2006-11-01

    Novembre 2004, pp 581-589. [ 13 ] Clénet, M., “Study of a Ka-Band Yagi-like antenna array buried in LTCC material”, JINA, 12-14 November 2002, Nice...public release, distribution unlimited 13 . SUPPLEMENTARY NOTES The original document contains color images. 14. ABSTRACT 15. SUBJECT TERMS 16...2.3.1 Excitation coefficients ....................................................................... 13 2.3.2 Boresight radiation patterns

  13. Thin Film Magnetless Faraday Rotators for Compact Heterogeneous Integrated Optical Isolators (Postprint)

    DTIC Science & Technology

    2017-06-15

    film garnet materials with zero birefringence for magneto-optic waveguide devices,” J. Appl. Phys. 63, 3099–3103 ( 1988 ). 5R. Wolfe, R. A. Lieberman, V...Approved for public release (PA): distribution unlimited. 11L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross , “On-chip

  14. Scattering from Marine Sediments in a Very Shallow Water Environment

    DTIC Science & Technology

    2015-12-28

    taking into account only large-scale changes of the environment. Keywords: Reciprocity , integral equations, volume and roughness scattering...for Public Release, Distribution Unlimited A. Ivakin: Scattering in range-dependent waveguides 5 II. VOLUME PERTURBATIONS: RECIPROCITY THEOREM...6], i.e. with the same υ , and therefore same Q , which, along with following discussion of reciprocity , explains the choice of this parameter

  15. Generation of spectrally stable continuous-wave emission and ns pulses with a peak power of 4 W using a distributed Bragg reflector laser and a ridge-waveguide power amplifier.

    PubMed

    Klehr, A; Wenzel, H; Fricke, J; Bugge, F; Erbert, G

    2014-10-06

    We have developed a diode-laser based master oscillator power amplifier (MOPA) light source which emits high-power spectrally stabilized and nearly-diffraction limited optical pulses in the nanoseconds range as required by many applications. The MOPA consists of a distributed Bragg reflector (DBR) laser as master oscillator driven by a constant current and a ridge waveguide power amplifier (PA) which can be driven by a constant current (DC) or by rectangular current pulses with a width of 5 ns at a repetition frequency of 200 kHz. Under pulsed operation the amplifier acts as an optical gate, converting the CW input beam emitted by the DBR laser into a train of short amplified optical pulses. With this experimental MOPA arrangement no relaxation oscillations occur. A continuous wave power of 1 W under DC injection and a pulse power of 4 W under pulsed operation are reached. For both operational modes the optical spectrum of the emission of the amplifier exhibits a peak at a constant wavelength of 973.5 nm with a spectral width < 10 pm.

  16. Design of an Ultra-wide Band Waveguide Transition for the Ex-vessel Transmission Line of ITER Plasma Position Reflectometry

    NASA Astrophysics Data System (ADS)

    Simonetto, A.; Platania, P.; Garavaglia, S.; Gittini, G.; Granucci, G.; Pallotta, F.

    2018-02-01

    Plasma position reflectometry for ITER requires interfaces between in-vessel and ex-vessel waveguides. An ultra broadband interface (15-75 GHz) was designed between moderately oversized rectangular waveguide (20 × 12 mm), operated in TE01 (i.e., tall waveguide mode), and circular corrugated waveguide, with 88.9-mm internal diameter, propagating HE11. The interface was designed both as a sequence of waveguide components and as a quasi-optical confocal telescope. The design and the simulated performance are described for both concepts. The latter one requires more space but has better performance, and shall be prototyped.

  17. Ultrafocused Electromagnetic Field Pulses with a Hollow Cylindrical Waveguide

    NASA Astrophysics Data System (ADS)

    Maurer, P.; Prat-Camps, J.; Cirac, J. I.; Hänsch, T. W.; Romero-Isart, O.

    2017-07-01

    We theoretically show that a dipole externally driven by a pulse with a lower-bounded temporal width, and placed inside a cylindrical hollow waveguide, can generate a train of arbitrarily short and focused electromagnetic pulses. The waveguide encloses vacuum with perfect electric conducting walls. A dipole driven by a single short pulse, which is properly engineered to exploit the linear spectral filtering of the cylindrical hollow waveguide, excites longitudinal waveguide modes that are coherently refocused at some particular instances of time, thereby producing arbitrarily short and focused electromagnetic pulses. We numerically show that such ultrafocused pulses persist outside the cylindrical waveguide at distances comparable to its radius.

  18. Field of view of limitations in see-through HMD using geometric waveguides.

    PubMed

    DeHoog, Edward; Holmstedt, Jason; Aye, Tin

    2016-08-01

    Geometric waveguides are being integrated into head-mounted display (HMD) systems, where having see-through capability in a compact, lightweight form factor is required. We developed methods for determining the field of view (FOV) of such waveguide HMD systems and have analytically derived the FOV for waveguides using planar and curved geometries. By using real ray-tracing methods, we are able to show how the geometry and index of refraction of the waveguide, as well as the properties of the coupling optics, impact the FOV. Use of this analysis allows one to determine the maximum theoretical FOV of a planar or curved waveguide-based system.

  19. Ti:Sapphire micro-structures by femtosecond laser inscription: Guiding and luminescence properties

    NASA Astrophysics Data System (ADS)

    Ren, Yingying; Jiao, Yang; Vázquez de Aldana, Javier R.; Chen, Feng

    2016-08-01

    We report on the fabrication of buried cladding waveguides with different diameters in a Ti:Sapphire crystal by femtosecond laser inscription. The propagation properties are studied, showing that the cladding waveguides could support near- to mid-infrared waveguiding at both TE and TM polarizations. Confocal micro-photoluminescence experiments reveal that the original fluorescence properties in the waveguide region are very well preserved, while it suffers from a strong quenching at the centers of laser induced filaments. Broadband waveguide fluorescence emissions with high efficiency are realized, indicating the application of the cladding waveguides in Ti:Sapphire as compact broadband luminescence sources in biomedical fields.

  20. Demonstration of submicron square-like silicon waveguide using optimized LOCOS process.

    PubMed

    Desiatov, Boris; Goykhman, Ilya; Levy, Uriel

    2010-08-30

    We demonstrate the design, fabrication and experimental characterization of a submicron-scale silicon waveguide that is fabricated by local oxidation of silicon. The use of local oxidation process allows defining the waveguide geometry and obtaining smooth sidewalls. The process can be tuned to precisely control the shape and the dimensions of the waveguide. The fabricated waveguides are measured using near field scanning optical microscope at 1550 nm wavelength. These measurements show mode width of 0.4 µm and effective refractive index of 2.54. Finally, we demonstrate the low loss characteristics of our waveguide by imaging the light scattering using an infrared camera.

  1. Plasmonic slow light waveguide with hyperbolic metamaterials claddings

    NASA Astrophysics Data System (ADS)

    Liang, Shuhai; Jiang, Chuhao; Yang, Zhiqiang; Li, Dacheng; Zhang, Wending; Mei, Ting; Zhang, Dawei

    2018-06-01

    Plasmonic waveguides with an insulator core sandwiched between hyperbolic metamaterials (HMMs) claddings, i.e. HIH waveguide, are investigated for achieving wide slow-light band with adjustable working wavelength. The transfer matrix method and the finite-difference-time-domain simulation are employed to study waveguide dispersion characteristics and pulse propagation. By selecting proper silver filling ratios for HMMs, the hetero-HIH waveguide presents a slow-light band with a zero group velocity dispersion wavelength of 1.55 μm and is capable of buffering pulses with pulse width as short as ∼20 fs. This type of waveguides might be applicable for ultrafast slow-light application.

  2. Low-loss optical waveguides in β-BBO crystal fabricated by femtosecond-laser writing

    NASA Astrophysics Data System (ADS)

    Li, Ziqi; Cheng, Chen; Romero, Carolina; Lu, Qingming; Vázquez de Aldana, Javier Rodríguez; Chen, Feng

    2017-11-01

    We report on the fabrication and characterization of β-BBO depressed cladding waveguides fabricated by femtosecond-laser writing with no significant changes in the waveguide lattice microstructure. The waveguiding properties and the propagation losses of the cladding structures are investigated, showing good transmission properties at wavelengths of 400 and 800 nm along TM polarization. The minimum propagation losses are measured to be as low as 0.19 dB/cm at wavelength of 800 nm. The well-preserved waveguide lattice microstructure and good guiding performances with low propagation losses suggest the potential applications of the cladding waveguides in β-BBO crystal as novel integrated photonic devices.

  3. Compact waveguide power divider with multiple isolated outputs

    DOEpatents

    Moeller, Charles P.

    1987-01-01

    A waveguide power divider (10) for splitting electromagnetic microwave power and directionally coupling the divided power includes an input waveguide (21) and reduced height output waveguides (23) interconnected by axial slots (22) and matched loads (25) and (26) positioned at the unused ends of input and output guides (21) and (23) respectively. The axial slots are of a length such that the wave in the input waveguide (21) is directionally coupled to the output waveguides (23). The widths of input guide (21) and output guides (23) are equal and the width of axial slots (22) is one half of the width of the input guide (21).

  4. WAVE DELAYING STRUCTURE FOR RECTANGULAR WAVE-GUIDES

    DOEpatents

    Robertson-Shersby-Harvie, R.B.; Dain, J.

    1956-11-13

    This patent relates to wave-guides and in particular describes wave delaying structure located within a wave-guide. The disclosed wave-guide has an elongated fiat metal sheet arranged in a central plane of the guide and formed with a series of transverse inductive slots such that each face presents an inductive impedance to the guide. The sheet is thickened in the area between slots to increase the self capacity of the slots. Experimental results indicate that in a wave-guide loaded in accordance with the invention the guided wavelength changes more slowly as the air wavelength is changed than the guided wavelength does in wave-guides loaded by means of corrugations.

  5. 3D-Printed Broadband Dielectric Tube Terahertz Waveguide with Anti-Reflection Structure

    NASA Astrophysics Data System (ADS)

    Vogt, Dominik Walter; Leonhardt, Rainer

    2016-11-01

    We demonstrate broadband, low loss, and close-to-zero dispersion guidance of terahertz (THz) radiation in a dielectric tube with an anti-reflection structure (AR-tube waveguide) in the frequency range from 0.2 to 1.0 THz. The anti-reflection structure (ARS) consists of close-packed cones in a hexagonal lattice arranged on the outer surface of the tube cladding. The feature size of the ARS is in the order of the wavelength between 0.2 and 1.0 THz. The waveguides are fabricated with the versatile and cost efficient 3D-printing method. Terahertz time-domain spectroscopy (THz-TDS) measurements as well as 3D finite-difference time-domain simulations (FDTD) are performed to extensively characterize the AR-tube waveguides. Spectrograms, attenuation spectra, effective phase refractive indices, and the group-velocity dispersion parameters β 2 of the AR-tube waveguides are presented. Both the experimental and numerical results confirm the extended bandwidth and smaller group-velocity dispersion of the AR-tube waveguide compared to a low loss plain dielectric tube THz waveguide. The AR-tube waveguide prototypes show an attenuation spectrum close to the theoretical limit given by the infinite cladding tube waveguide.

  6. Dispersion characteristics of plasmonic waveguides for THz waves

    NASA Astrophysics Data System (ADS)

    Markides, Christos; Viphavakit, Charusluk; Themistos, Christos; Komodromos, Michael; Kalli, Kyriacos; Quadir, Anita; Rahman, Azizur

    2013-05-01

    Today there is an increasing surge in Surface Plasmon based research and recent studies have shown that a wide range of plasmon-based optical elements and techniques have led to the development of a variety of active switches, passive waveguides, biosensors, lithography masks, to name just a few. The Terahertz (THz) frequency region of the electromagnetic spectrum is located between the traditional microwave spectrum and the optical frequencies, and offers a significant scientific and technological potential in many fields, such as in sensing, in imaging and in spectroscopy. Waveguiding in this intermediate spectral region is a major challenge. Amongst the various THz waveguides suggested, the metal-clad waveguides supporting surface plasmon modes waves and specifically hollow core structures, coated with insulating material are showing the greatest promise as low-loss waveguides for their use in active components and as well as passive waveguides. The H-field finite element method (FEM) based full-vector formulation is used to study the vectorial modal field properties and the complex propagation characteristics of Surface Plasmon modes of a hollow-core dielectric coated rectangular waveguide structure. Additionally, the finite difference time domain (FDTD) method is used to estimate the dispersion parameters and the propagation loss of the rectangular waveguide.

  7. Silicon micromachined waveguides for millimeter and submillimeter wavelengths

    NASA Technical Reports Server (NTRS)

    Yap, Markus; Tai, Yu-Chong; Mcgrath, William R.; Walker, Christopher

    1992-01-01

    The majority of radio receivers, transmitters, and components operating at millimeter and submillimeter wavelengths utilize rectangular waveguides in some form. However, conventional machining techniques for waveguides operating above a few hundred GHz are complicated and costly. This paper reports on the development of silicon micromachining techniques to create silicon-based waveguide circuits which can operate at millimeter and submillimeter wavelengths. As a first step, rectangular WR-10 waveguide structures have been fabricated from (110) silicon wafers using micromachining techniques. The waveguide is split along the broad wall. Each half is formed by first etching a channel completely through a wafer. Potassium hydroxide is used to etch smooth mirror-like vertical walls and LPCVD silicon nitride is used as a masking layer. This wafer is then bonded to another flat wafer using a polyimide bonding technique and diced into the U-shaped half wavelengths. Finally, a gold layer is applied to the waveguide walls. Insertion loss measurements show losses comparable to those of standard metal waveguides. It is suggested that active devices and planar circuits can be integrated with the waveguides, solving the traditional mounting problems. Potential applications in terahertz instrumentation technology are further discussed.

  8. Waveguide Transition for Submillimeter-Wave MMICs

    NASA Technical Reports Server (NTRS)

    Leong, Kevin M.; Deal, William R.; Radisic, Vesna; Mei, Xiaobing; Uyeda, Jansen; Lai, Richard; Fung, King Man; Gaier, Todd C.

    2009-01-01

    An integrated waveguide-to-MMIC (monolithic microwave integrated circuit) chip operating in the 300-GHz range is designed to operate well on high-permittivity semiconductor substrates typical for an MMIC amplifier, and allows a wider MMIC substrate to be used, enabling integration with larger MMICs (power amplifiers). The waveguide-to- CBCPW (conductor-backed coplanar waveguide) transition topology is based on an integrated dipole placed in the E-plane of the waveguide module. It demonstrates low loss and good impedance matching. Measurement and simulation demonstrate that the loss of the transition and waveguide loss is less than 1-dB over a 340-to-380-GHz bandwidth. A transition is inserted along the propagation direction of the waveguide. This transition uses a planar dipole aligned with the maximum E-field of the TE10 waveguide mode as an inter face between the waveguide and the MMIC. Mode conversion between the coplanar striplines (CPS) that feed the dipole and the CBCPW transmission line is accomplished using a simple air-bridge structure. The bottom side ground plane is truncated at the same reference as the top-side ground plane, leaving the end of the MMIC suspended in air.

  9. A Substrate Integrated Waveguide Sensor for Measurement of Dielectric Properties of Biomass Materials

    USDA-ARS?s Scientific Manuscript database

    Substrate integrated waveguide- based sensors balance the performance and well known design techniques of classical waveguides with the cheaper and more adaptable aspects of planar circuits. Propagation characteristics are similar to waveguides with the design retaining many positive aspects of wave...

  10. Slotted Polyimide-Aerogel-Filled-Waveguide Arrays

    NASA Technical Reports Server (NTRS)

    Rodriguez-Solis, Rafael A.; Pacheco, Hector L.; Miranda, Felix A.; Meador, Mary Ann B.

    2013-01-01

    This presentation discussed the potential advantages of developing Slotted Waveguide Arrays using polyimide aerogels. Polyimide (PI) aerogels offer great promise as an enabling technology for lightweight aerospace antenna systems. PI aerogels are highly porous solids possessing low density and low dielectric permittivity combined with good mechanical properties. For slotted waveguide array applications, there are significant advantages in mass that more than compensate for the slightly higher loss of the aerogel filled waveguide when compared to state of practice commercial waveguide.

  11. Metal/Dielectric Multilayers for High Resolution Imaging

    DTIC Science & Technology

    2012-08-07

    of a silicon waveguide coated by thin metal film. The proposed PWG structure consists of narrow silicon waveguide clad by gold film without top...where the waveguide thickness is 220nm and the lower oxide cladding is 2μm. The device consists of main waveguide (of waveguide width WSOI=450nm...evaporation, where 3nm thick titanium was used as adhesion layer before 40nm gold deposition took place. Finally, the samples were spun coated with

  12. A Waveguide Antenna with an Extended Angular Range for Remote Steering of Wave-Beam Direction

    NASA Astrophysics Data System (ADS)

    Sobolev, D. I.; Denisov, G. G.

    2018-03-01

    A new method for increasing the angular range of a waveguide antenna for remote steering of the wave-beam direction in thermonuclear-fusion experimental setups with plasma magnetic confinement is proposed. Characteristics for large beam inclination angles can be improved using the synthesized nonuniform waveguide profile. For small angles, the characteristics remain invariable, the waveguide profile differs only slightly from the regular shape, and can be fit to limited waveguide-channel sizes.

  13. Investigation of semiconductor clad optical waveguides

    NASA Technical Reports Server (NTRS)

    Batchman, T. E.; Carson, R. F.

    1985-01-01

    A variety of techniques have been proposed for fabricating integrated optical devices using semiconductors, lithium niobate, and glasses as waveguides and substrates. The use of glass waveguides and their interaction with thin semiconductor cladding layers was studied. Though the interactions of these multilayer waveguide structures have been analyzed here using glass, they may be applicable to other types of materials as well. The primary reason for using glass is that it provides a simple, inexpensive way to construct waveguides and devices.

  14. Near-infrared lasers and self-frequency-doubling in Nd:YCOB cladding waveguides.

    PubMed

    Ren, Yingying; Chen, Feng; Vázquez de Aldana, Javier R

    2013-05-06

    A design of cladding waveguides in Nd:YCOB nonlinear crystals is demonstrated in this work. Compact Fabry-Perot oscillation cavities are employed for waveguide laser generation at 1062 nm and self-frequency-doubling at 531 nm, under optical pump at 810 nm. The waveguide laser shows slope efficiency as high as 55% at 1062 nm. The SFD green waveguide laser emits at 531 nm with a maximum power of 100 μW.

  15. Waveguide structures in anisotropic nonlinear crystals

    NASA Astrophysics Data System (ADS)

    Li, Da; Hong, Pengda; Meissner, Helmuth E.

    2017-02-01

    We report on the design and manufacturing parameters of waveguiding structures of anisotropic nonlinear crystals that are employed for harmonic conversions, using Adhesive-Free Bonding (AFB®). This technology enables a full range of predetermined refractive index differences that are essential for the design of single mode or low-mode propagation with high efficiency in anisotropic nonlinear crystals which in turn results in compact frequency conversion systems. Examples of nonlinear optical waveguides include periodically bonded walk-off corrected nonlinear optical waveguides and periodically poled waveguide components, such as lithium triborate (LBO), beta barium borate (β-BBO), lithium niobate (LN), potassium titanyl phosphate (KTP), zinc germanium phosphide (ZGP) and silver selenogallate (AGSE). Simulation of planar LN waveguide shows that when the electric field vector E lies in the k-c plane, the power flow is directed precisely along the propagation direction, demonstrating waveguiding effect in the planar waveguide. Employment of anisotropic nonlinear optical waveguides, for example in combination with AFB® crystalline fiber waveguides (CFW), provides access to the design of a number of novel high power and high efficiency light sources spanning the range of wavelengths from deep ultraviolet (as short as 200 nm) to mid-infrared (as long as about 18 μm). To our knowledge, the technique is the only generally applicable one because most often there are no compatible cladding crystals available to nonlinear optical cores, especially not with an engineer-able refractive index difference and large mode area.

  16. Resonant photonic States in coupled heterostructure photonic crystal waveguides.

    PubMed

    Cox, Jd; Sabarinathan, J; Singh, Mr

    2010-02-09

    In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors.

  17. Investigation of the use of microwave image line integrated circuits for use in radiometers and other microwave devices in X-band and above

    NASA Technical Reports Server (NTRS)

    Knox, R. M.; Toulios, P. P.; Onoda, G. Y.

    1972-01-01

    Program results are described in which the use of a/high permittivity rectangular dielectric image waveguide has been investigated for use in microwave and millimeter wavelength circuits. Launchers from rectangular metal waveguide to image waveguide are described. Theoretical and experimental evaluations of the radiation from curved image waveguides are given. Measurements of attenuation due to conductor and dielectric losses, adhesives, and gaps between the dielectric waveguide and the image plane are included. Various passive components are described and evaluations given. Investigations of various techniques for fabrication of image waveguide circuits using ceramic waveguides are also presented. Program results support the evaluation of the image line approach as an advantageous method for realizing low loss integrated electronic circuits for X-band and above.

  18. Vertically-tapered optical waveguide and optical spot transformer formed therefrom

    DOEpatents

    Bakke, Thor; Sullivan, Charles T.

    2004-07-27

    An optical waveguide is disclosed in which a section of the waveguide core is vertically tapered during formation by spin coating by controlling the width of an underlying mesa structure. The optical waveguide can be formed from spin-coatable materials such as polymers, sol-gels and spin-on glasses. The vertically-tapered waveguide section can be used to provide a vertical expansion of an optical mode of light within the optical waveguide. A laterally-tapered section can be added adjacent to the vertically-tapered section to provide for a lateral expansion of the optical mode, thereby forming an optical spot-size transformer for efficient coupling of light between the optical waveguide and a single-mode optical fiber. Such a spot-size transformer can also be added to a III-V semiconductor device by post processing.

  19. Practical method of waveguide-to-fiber connection: direct preparation of waveguide endface by cutting machine and reinforcement using ruby beads.

    PubMed

    Mekada, N; Seino, M; Kubota, Y; Nakajima, H

    1990-12-01

    We propose and demonstrate new practical methods of waveguide end fabrication and fiber attachment for Ti:LiNbO(3) waveguides. We fabricated waveguide endfaces with a cutting machine, which simplifies the manufacture of waveguide devices and provides a low excess loss of 0.3 dB or less. Our proposed fiber attachment method features fibers that protrude slightly from the reinforcement. It provides easy alignment, low excess loss (<0.1 dB), high strength (>600 gf), and high thermal stability (-10 to 60 degrees C). We also developed an easy way to reduce the backreflection from the joint without using anti-reflection coating. Instead, a tapered hemispherical end fiber and an angled waveguide endface are used. Backreflection is easily reduced to less than -30.

  20. Ridge waveguide laser in Nd:LiNbO3 by Zn-diffusion and femtosecond-laser structuring

    NASA Astrophysics Data System (ADS)

    Martínez de Mendívil, Jon; del Hoyo, Jesús; Solís, Javier; Lifante, Ginés

    2016-12-01

    Ridge waveguide lasers have been fabricated on Nd3+ doped LiNbO3 crystals. The fs-laser writing technique was used to define ridge structures on a gradient-index planar waveguide fabricated by Zn-diffusion. This planar waveguide was formed in a z-cut LiNbO3 substrate homogeneously doped with a 0.23% of Nd3+ ions. To obtain lateral light confinement, the surface was then micromachined using a multiplexed femtosecond laser writing beam, forming the ridge structures. By butting two mirrors at the channel waveguide end-facets, forming a waveguide laser cavity, TM-polarized laser action at 1085 nm was achieved by end-fire TM-pumping at 815 nm. The waveguide laser shows a threshold of 31 mW, with a 7% of slope efficiency.

  1. Framing Feedback for School Improvement around Distributed Leadership

    ERIC Educational Resources Information Center

    Kelley, Carolyn; Dikkers, Seann

    2016-01-01

    Purpose: The purpose of this article is to examine the utility of framing formative feedback to improve school leadership with a focus on task-based evaluation of distributed leadership rather than on role-based evaluation of an individual leader. Research Methods/Approach: Using data from research on the development of the Comprehensive…

  2. Multi-peak structure of generation spectrum of random distributed feedback fiber Raman lasers.

    PubMed

    Vatnik, I D; Zlobina, E A; Kablukov, S I; Babin, S A

    2017-02-06

    We study spectral features of the generation of random distributed feedback fiber Raman laser arising from two-peak shape of the Raman gain spectral profile realized in the germanosilicate fibers. We demonstrate that number of peaks can be calculated using power balance model considering different subcomponents within each Stokes component.

  3. New coplanar waveguide to rectangular waveguide end launcher

    NASA Technical Reports Server (NTRS)

    Simons, R. N.; Taub, S. R.

    1992-01-01

    A new coplanar waveguide to rectangular waveguide end launcher is experimentally demonstrated. The end launcher operates over the Ka-band frequencies that are designated for the NASA Advanced Communication Technology Satellite uplink. The measured insertion loss and return loss are better than 0.5 and -10 dB, respectively.

  4. Multiwavelength generation in a random distributed feedback fiber laser using an all fiber Lyot filter.

    PubMed

    Sugavanam, S; Yan, Z; Kamynin, V; Kurkov, A S; Zhang, L; Churkin, D V

    2014-02-10

    Multiwavelength lasing in the random distributed feedback fiber laser is demonstrated by employing an all fiber Lyot filter. Stable multiwavelength generation is obtained, with each line exhibiting sub-nanometer line-widths. A flat power distribution over multiple lines is obtained, which indicates that the power between lines is redistributed in nonlinear mixing processes. The multiwavelength generation is observed both in first and second Stokes waves.

  5. Far infrared pump injection using an alumina waveguide

    NASA Astrophysics Data System (ADS)

    Nedvidek, F. J.; Kucerovsky, Z.; Brannen, Eric

    1987-01-01

    An alumina waveguide extension is employed to channel infrared radiation from a CO2 waveguide laser into an optically pumped far IR waveguide laser resonator in order to obtain far IR lasing with methyl alcohol and other media. Low pump transmission losses and efficient free space coupling are possible with proper choice of waveguide bore. The technique compares favorably with other injection schemes using refractive optics, and it offers greater flexibility, easier alignment, and less expense than optical arrangements using lenses.

  6. FIBER AND INTEGRAL OPTICS: Properties of active bent waveguides

    NASA Astrophysics Data System (ADS)

    Kobyl'chak, V. V.; Parygin, V. N.; Shapaev, A. G.

    1989-06-01

    A bent dielectric waveguide with a continuous profile of the complex refractive nc is investigated. It is shown that a negative perturbation of the real part of nc can reduce the losses in a bent waveguide. For a given radius of curvature and given parameters of the medium there is an optimal width of a planar waveguide layer for which the losses are minimal. It is shown that the properties of straight and bent waveguides of this type are different.

  7. Hermetic Packages For Millimeter-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Herman, Martin I.; Lee, Karen A.; Lowry, Lynn E.; Carpenter, Alain; Wamhof, Paul

    1994-01-01

    Advanced hermetic packages developed to house electronic circuits operating at frequencies from 1 to 100 gigahertz and beyond. Signals coupled into and out of packages electromagnetically. Provides circuit packages small, lightweight, rugged, and inexpensive in mass production. Packages embedded in planar microstrip and coplanar waveguide circuits, in waveguide-to-planar and planar-to-waveguide circuitry, in waveguide-to-waveguide circuitry, between radiating (antenna) elements, and between planar transmission lines and radiating elements. Other applications in automotive, communication, radar, remote sensing, and biomedical electronic systems foreseen.

  8. Study of silicon strip waveguides with diffraction gratings and photonic crystals tuned to a wavelength of 1.5 µm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barabanenkov, M. Yu., E-mail: barab@iptm.ru; Vyatkin, A. F.; Volkov, V. T.

    2015-12-15

    Single-mode submicrometer-thick strip waveguides on silicon-on-insulator substrates, fabricated by silicon-planar-technology methods are considered. To solve the problem of 1.5-µm wavelength radiation input-output and its frequency filtering, strip diffraction gratings and two-dimensional photonic crystals are integrated into waveguides. The reflection and transmission spectra of gratings and photonic crystals are calculated. The waveguide-mode-attenuation coefficient for a polycrystalline silicon waveguide is experimentally estimated.

  9. Electromagnetic Wave Excitation by a Longitudinal Slot in a Broad Wall of Rectangular Waveguide in the Presence of Passive Impedance Vibrators Outside the Waveguide

    NASA Astrophysics Data System (ADS)

    Berdnik, S. L.; Katrich, V. A.; Nesterenko, M. V.; Penkin, Yu. M.

    2016-09-01

    Purpose: A problem of electromagnetic wave diffraction by a longitudinal slot cut in a waveguide wide wall is solved. The slot is cut in a wide wall of a rectangular waveguide and radiates in a half-space above a perfectly conducting plane where two vertical impedance monopoles with arbitrary lengths placed with their bases placed on the plane. The paper is aimed at studying the electrodynamic characteristics of vibratorwaveguide-slot structures which allow to form the emission fields as that in a Clavin element with two identical passive ideally conducting monopoles of a fixed length located on a set distance from a slot center on both sides of a narrow halfwave slot. Design/methodology/approach: The problem is solved by a generalized method of induced electromotive and magnetomotive forces in approximation of electric currents in the vibrators and equivalent magnetic current in the slot by the functions obtained by the asymptotic averaging method. Findings: The influence of geometric parameters of the structure on the directional characteristics of Clavin type element is analyzed on the assumption of simultaneous account for relative level of sidelobes in the E-plane and beamwidth differences at -3 dB level in the main planes. It is shown that the directional characteristics and energy characteristics of the radiators: radiation and reflection coefficients, antenna directivity and gain can be varied within wide limits by changing the electrical length and/or distributed surface impedances of the vibrators, providing at that a low level of radiation within a slot plane. Conclusions: The results obtained can be useful when designing both small-size and multi-element antenna arrays with Clavin elements.

  10. Competition and transformation of modes of unidirectional air waveguide

    NASA Astrophysics Data System (ADS)

    Sun, Yu-xin; Kong, Xiang-kun; Fang, Yun-tuan

    2016-10-01

    In order to study the mode excitation of the unidirectional air waveguide, we place a line source at different positions in the waveguide. The source position plays an important role in determining the result of the competition of the even mode and the odd mode. For the source at the edge of the waveguide, the odd mode gets advantage over the even mode. As a result, the odd mode is excited, but the even mode is suppressed. For the source at the center of the waveguide, the even mode is excited, but the odd mode is suppressed. With two sources at two edges of the waveguide, the even mode is released because the two odd modes are canceled.

  11. Single-mode fibers to single-mode waveguides coupling with minimum Fresnel back-reflection

    NASA Astrophysics Data System (ADS)

    Sneh, Anat; Ruschin, Shlomo; Marom, Emanuel

    1991-04-01

    Slantly polished fibers and waveguides coupling as a means for achieving both low optical power reflection and efficient power transmission is proposed. Return losses exceeding -70 dB can be obtained in fiber-to-Lithium Niobate waveguides operating at ) = 0.633 jm and ) = 1.3 pm by polishing the fiber at an angle of 6°. A phase matching condition between the propagation constants ,8 and the polishing angles in the fiber and the waveguide: fl(fiber)sincx(fiber) = fl(waveguide)sina(waveguide) must be fulifiled in order to enable efficient power coupling. Polishing angle tolerances of approximately lO are allowed for a maximum of 1 dB decrease in the coupling efficiency.

  12. Method and apparatus for low-loss signal transmission

    NASA Technical Reports Server (NTRS)

    Shimabukuro, Fred (Inventor); Yeh, Cavour (Inventor); Fraser, Scott (Inventor); Siegel, Peter (Inventor)

    2008-01-01

    The present invention relates to the field of radio-frequency (RF) waveguides. More specifically, the present invention pertains to a method and apparatus that provides ultra-low-loss RF waveguide structures targeted between approximately 300 GHz and approximately 30 THz. The RF waveguide includes a hollow core and a flexible honeycomb, periodic-bandgap structure surrounding the hollow core. The flexible honeycomb, periodic-bandgap structure is formed of a plurality of tubes formed of a dielectric material such as of low-loss quartz, polyethylene, or high-resistivity silicon. Using the RF waveguide, a user may attach a terahertz signal source to the waveguide and pass signals through the waveguide, while a terahertz signal receiver receives the signals.

  13. Large-core single-mode rib SU8 waveguide using solvent-assisted microcontact molding.

    PubMed

    Huang, Cheng-Sheng; Wang, Wei-Chih

    2008-09-01

    This paper describes a novel fabrication technique for constructing a polymer-based large-core single-mode rib waveguide. A negative tone SU8 photoresist with a high optical transmission over a large wavelength range and stable mechanical properties was used as a waveguide material. A waveguide was constructed by using a polydimethylsiloxane stamp combined with a solvent-assisted microcontact molding technique. The effects on the final pattern's geometry of four different process conditions were investigated. Optical simulations were performed using beam propagation method software. Single-mode beam propagation was observed at the output of the simulated waveguide as well as the actual waveguide through the microscope image.

  14. Chalcogenide based rib waveguide for compact on-chip supercontinuum sources in mid-infrared domain

    NASA Astrophysics Data System (ADS)

    Saini, Than Singh; Tiwari, Umesh Kumar; Sinha, Ravindra Kumar

    2017-08-01

    We have designed and analysed a rib waveguide structure in recently reported Ga-Sb-S based highly nonlinear chalcogenide glass for nonlinear applications. The proposed waveguide structure possesses a very high nonlinear coefficient and can be used to generate broadband supercontinuum in mid-infrared domain. The reported design of the chalcogenide waveguide offers two zero dispersion values at 1800 nm and 2900 nm. Such rib waveguide structure is suitable to generate efficient supercontinuum generation ranging from 500 - 7400 μm. The reported waveguide can be used for the realization of the compact on-chip supercontinuum sources which are highly applicable in optical imaging, optical coherence tomography, food quality control, security and sensing.

  15. Coupler for coupling gyrotron whispering gallery mode RF into HE11 waveguide

    DOEpatents

    Neilson, Jeffrey M

    2015-02-24

    A cylindrical waveguide with a mode converter transforms a whispering gallery mode from a gyrotron cylindrical waveguide with a helical cut launch edge to a quasi-Gaussian beam suitable for conveyance through a corrugated waveguide. This quasi-Gaussian beam is radiated away from the waveguide using a spiral cut launch edge, which is in close proximity to a first mode converting reflector. The first mode converting reflector is coupled to a second mode converting reflector which provides an output free-space HE11 mode wave suitable for direct coupling into a corrugated waveguide. The radiated beam produced at the output of the second mode converting reflector is substantially circular.

  16. WAVE DELAYING STRUCTURE FOR RECTANGULAR WAVE-GUIDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson-Shersby-Harvie, R.B.; Dain, J.

    1956-11-13

    This patent relates to wave-guides and in particular describes wave delaying structure located within a wave-guide. The disclosed wave-guide has an elongated fiat metal sheet arranged in a central plane of the guide and formed with a series of transverse inductive slots such that each face presents an inductive impedance to the guide. The sheet is thickened in the area between slots to increase the self capacity of the slots. Experimental results indicate that in a wave-guide loaded in accordance with the invention the guided wavelength changes more slowly as the air wavelength is changed than the guided wavelength doesmore » in wave-guides loaded by means of corrugations.« less

  17. Electromagnetic Design of a Magnetically Coupled Spatial Power Combiner

    NASA Astrophysics Data System (ADS)

    Bulcha, B. T.; Cataldo, G.; Stevenson, T. R.; U-Yen, K.; Moseley, S. H.; Wollack, E. J.

    2018-04-01

    The design of a two-dimensional spatial beam-combining network employing a parallel-plate superconducting waveguide filled with a monocrystalline silicon dielectric substrate is presented. This component uses arrays of magnetically coupled antenna elements to achieve high coupling efficiency and full sampling of the intensity distribution while avoiding diffractive losses in the multimode waveguide region. These attributes enable the structure's use in realizing compact far-infrared spectrometers for astrophysical and instrumentation applications. If unterminated, reflections within a finite-sized spatial beam combiner can potentially lead to spurious couplings between elements. A planar meta-material electromagnetic absorber is implemented to control this response within the device. This broadband termination absorbs greater than 0.99 of the power over the 1.7:1 operational band at angles ranging from normal to near-parallel incidence. The design approach, simulations and applications of the spatial power combiner and meta-material termination structure are presented.

  18. Optical Anisotropy and Waveguiding in Thin Films of a Conjugated Polymer Which Exhibits Stimulated Emission.

    NASA Astrophysics Data System (ADS)

    Miller, E. Kirk; McGehee, Michael; Diaz-Garcia, Maria; Srikant, V.; Heeger, Alan J.

    1998-03-01

    We report variable angle spectroscopic ellipsometry (VASE) measurements on thin films of poly(2-butyl-5(2-ethyl-hexyl)-1,4- phenylenevinylene) (BuEH-PPV) in the spectral region below the electronic absorption edge. We find that the films are best described as uniaxially anisotropic, with the optical axis perpendicular to the plane of the film, consistent with the notion that the polymer chains lie preferentially in the plane of the film. Due to the anisotropic distribution of chromophores, the in-plane index of refraction is found to be significantly higher and more dispersive than the out-of- plane index, implying a higher effective index for transverse-electric (TE) waveguide modes than for the corresponding transverse- magnetic (TM) modes. The implications of these data for amplified spontaneous emission (ASE) experiments and in-plane laser structures are discussed.

  19. Flip-chip light emitting diode with resonant optical microcavity

    DOEpatents

    Gee, James M.; Bogart, Katherine H.A.; Fischer, Arthur J.

    2005-11-29

    A flip-chip light emitting diode with enhanced efficiency. The device structure employs a microcavity structure in a flip-chip configuration. The microcavity enhances the light emission in vertical modes, which are readily extracted from the device. Most of the rest of the light is emitted into waveguided lateral modes. Flip-chip configuration is advantageous for light emitting diodes (LEDs) grown on dielectric substrates (e.g., gallium nitride LEDs grown on sapphire substrates) in general due to better thermal dissipation and lower series resistance. Flip-chip configuration is advantageous for microcavity LEDs in particular because (a) one of the reflectors is a high-reflectivity metal ohmic contact that is already part of the flip-chip configuration, and (b) current conduction is only required through a single distributed Bragg reflector. Some of the waveguided lateral modes can also be extracted with angled sidewalls used for the interdigitated contacts in the flip-chip configuration.

  20. Systems, methods, and software for determining spatially variable distributions of the dielectric properties of a heterogeneous material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrington, Stephen P.

    Systems, methods, and software for measuring the spatially variable relative dielectric permittivity of materials along a linear or otherwise configured sensor element, and more specifically the spatial variability of soil moisture in one dimension as inferred from the dielectric profile of the soil matrix surrounding a linear sensor element. Various methods provided herein combine advances in the processing of time domain reflectometry data with innovations in physical sensing apparatuses. These advancements enable high temporal (and thus spatial) resolution of electrical reflectance continuously along an insulated waveguide that is permanently emplaced in contact with adjacent soils. The spatially resolved reflectance ismore » directly related to impedance changes along the waveguide that are dominated by electrical permittivity contrast due to variations in soil moisture. Various methods described herein are thus able to monitor soil moisture in profile with high spatial resolution.« less

  1. Electro-optical modulator in a polymerinfiltrated silicon slotted photonic crystal waveguide heterostructure resonator.

    PubMed

    Wülbern, Jan Hendrik; Petrov, Alexander; Eich, Manfred

    2009-01-05

    We present a novel concept of a compact, ultra fast electro-optic modulator, based on photonic crystal resonator structures that can be realized in two dimensional photonic crystal slabs of silicon as core material employing a nonlinear optical polymer as infiltration and cladding material. The novel concept is to combine a photonic crystal heterostructure cavity with a slotted defect waveguide. The photonic crystal lattice can be used as a distributed electrode for the application of a modulation signal. An electrical contact is hence provided while the optical wave is kept isolated from the lossy metal electrodes. Thereby, well known disadvantages of segmented electrode designs such as excessive scattering are avoided. The optical field enhancement in the slotted region increases the nonlinear interaction with an external electric field resulting in an envisaged switching voltage of approximately 1 V at modulation speeds up to 100 GHz.

  2. Objectively discriminating the optical analogy of electromagnetically induced transparency from Autler-Townes splitting in a side coupled graphene-based waveguide system

    NASA Astrophysics Data System (ADS)

    Wei, Buzheng; Jian, Shuisheng

    2017-11-01

    A mid-infrared side coupled graphene nanotube waveguide system is proposed to investigate the origin discerning from electromagnetically induced transparency (EIT) to Autler-Townes splitting (ATS). The analytic transmission analysis seeks an evolution tendency of transmission spectrum from ATS to EIT, which is numerically verified by the simulation results. The origin of transparency is mainly attributed to ATS effect in the strong coupling regime while EIT is favored in the weak coupling condition. We plot the field distribution to help understand the underlying physics of the interference process. The high group index of 5000 indicates that a slow light effect is successfully observed and Fano resonance is presented by varying the Fermi energy of the dark mode. These ideas may provide potential views in filters, optical buffers, light storage and on chip metamaterials.

  3. FIBRE AND INTEGRATED OPTICS. OPTICAL PROCESSING OF INFORMATION: Feasibility of using waveguide holograms in systems for the transfer of amplitude—phase information along fibre communication lines

    NASA Astrophysics Data System (ADS)

    Dianov, Evgenii M.; Zubov, Vladimir A.; Putilin, A. N.

    1995-02-01

    An analysis is made of a variant of a system for spatial—temporal transformation of spatially one-dimensional information for its transfer along a single-mode fibre waveguide. Information is coupled into a fibre by a waveguide hologram. This hologram forms a light-beam structure which matches the fibre-guided mode. A report is given of the use of ion-exchange planar glass waveguides as waveguide holograms. An amorphous chalcogenide semiconductor film or a photoresist was deposited by evaporation on such a planar waveguide. Reconstruction of the waveguide hologram made it possible to achieve a high read rate, up to 1011 pixels per second, when a short radiation pulse was used. Multisectioned injection semiconductor lasers, operating under Q-switching conditions, were used as the radiation sources.

  4. A Broadband Terahertz Waveguide T-Junction Variable Power Splitter.

    PubMed

    Reichel, Kimberly S; Mendis, Rajind; Mittleman, Daniel M

    2016-06-29

    In order for the promise of terahertz (THz) wireless communications to become a reality, many new devices need to be developed, such as those for routing THz waves. We demonstrate a power splitting router based on a parallel-plate waveguide (PPWG) T-junction excited by the TE1 waveguide mode. By integrating a small triangular septum into the waveguide plate, we are able to direct the THz light down either one of the two output channels with precise control over the ratio between waveguide outputs. We find good agreement between experiment and simulation in both amplitude and phase. We show that the ratio between waveguide outputs varies exponentially with septum translation offset and that nearly 100% transmission can be achieved. The splitter operates over almost the entire range in which the waveguide is single mode, providing a sensitive and broadband method for THz power splitting.

  5. A Broadband Terahertz Waveguide T-Junction Variable Power Splitter

    PubMed Central

    Reichel, Kimberly S.; Mendis, Rajind; Mittleman, Daniel M.

    2016-01-01

    In order for the promise of terahertz (THz) wireless communications to become a reality, many new devices need to be developed, such as those for routing THz waves. We demonstrate a power splitting router based on a parallel-plate waveguide (PPWG) T-junction excited by the TE1 waveguide mode. By integrating a small triangular septum into the waveguide plate, we are able to direct the THz light down either one of the two output channels with precise control over the ratio between waveguide outputs. We find good agreement between experiment and simulation in both amplitude and phase. We show that the ratio between waveguide outputs varies exponentially with septum translation offset and that nearly 100% transmission can be achieved. The splitter operates over almost the entire range in which the waveguide is single mode, providing a sensitive and broadband method for THz power splitting. PMID:27352772

  6. Broadband and scalable optical coupling for silicon photonics using polymer waveguides

    NASA Astrophysics Data System (ADS)

    La Porta, Antonio; Weiss, Jonas; Dangel, Roger; Jubin, Daniel; Meier, Norbert; Horst, Folkert; Offrein, Bert Jan

    2018-04-01

    We present optical coupling schemes for silicon integrated photonics circuits that account for the challenges in large-scale data processing systems such as those used for emerging big data workloads. Our waveguide based approach allows to optimally exploit the on-chip optical feature size, and chip- and package real-estate. It further scales well to high numbers of channels and is compatible with state-of-the-art flip-chip die packaging. We demonstrate silicon waveguide to polymer waveguide coupling losses below 1.5 dB for both the O- and C-bands with a polarisation dependent loss of <1 dB. Over 100 optical silicon waveguide to polymer waveguide interfaces were assembled within a single alignment step, resulting in a physical I/O channel density of up to 13 waveguides per millimetre along the chip-edge, with an average coupling loss of below 3.4 dB measured at 1310 nm.

  7. FIBER AND INTEGRATED OPTICS: Photodetector waveguide structures made of epitaxial InGaAs films and intended for integrated circuits manufactured from III-V semiconductor compounds

    NASA Astrophysics Data System (ADS)

    Shmal'ko, A. V.; Lamekin, V. F.; Smirnov, V. L.; Polyantsev, A. S.; Kogan, Yu I.; Babushkina, T. S.; Kuntsevich, T. S.; Peshkovskaya, O. G.

    1990-08-01

    Photodetector waveguide structures made of epitaxial InxGa1 - xAs solid-solution films were developed and investigated. These structures were intended for optical integrated circuits manufactured from III-V semiconductor compounds for operation in the wavelength range 1.0-1.5 μm. Two types of photodetector waveguide p-i-n structures were developed. They consisted of a composite waveguide and tunnel-coupled waveguides, respectively. A study was made of structural parameters, responsivity, spectral and time characteristics, and dark currents in photodetectors made of the waveguide structures. This investigation was carried out in the wavelength range 1.0-1.3 μm. The maximum spectral responsivity of one of the types of the waveguide photodetector was ~ 0.5 ± 0.1 A/W and the dark current did not exceed 10 - 7-10 - 8 A.

  8. Dielectric waveguide gas-filled stark shift modulator

    DOEpatents

    Hutchinson, Donald P.; Richards, Roger K.

    2003-07-22

    An optical modulator includes a dielectric waveguide for receiving an optical beam and coupling energy of the optical beam into the waveguide. At least one Stark material is provided in the waveguide. A bias circuit generates a bias signal to produce an electrical field across the Stark material to shift at least one of the Stark absorption frequencies towards the frequency of the optical beam. A circuit for producing a time varying electric field across the Stark material modulates the optical beam. At least a portion of the bias field can be generated by an alternating bias signal, such as a square wave. A method of modulating optical signals includes the steps of providing a dielectric waveguide for receiving an optical beam and coupling energy of the optical beam into the waveguide, the waveguide having at least one Stark material disposed therein, and varying an electric field imposed across the Stark material.

  9. Micromechanical Waveguide Mounts for Hot Electron Bolometer Terahertz Mixers

    NASA Astrophysics Data System (ADS)

    Brandt, Michael; Jacobs, Karl; Honingh, C. E.; Stodolka, Jörg

    The superior beam matching of waveguide horn antennas to a telescope suggests using waveguide mounts even at THz-frequencies. In contrast to the more common quasi-optical (substrate lens) designs, the exceedingly small dimensions of the waveguide require novel micro-mechanical fabrication technologies. We will present a novel fabrication scheme for 1.9 THz waveguide mixers for SOFIA. Hot Electron Bolometer devices (HEB) are fabricated on 2 μm thick Si3N4 membrane strips. The strips are robust enough to be mounted on a separately fabricated Si support frame using an adapted flip-chip technology. Mounted onto the frame, the devices can be easily positioned and glued into a copper waveguide mount. Further developments regarding micro-mechanical processes to fabricate this copper waveguide mount and the receiving horn antenna will be presented, as well as the KOSMA Micro Assembly Station and its capabilities to handle mixer substrates.

  10. Silicon on silicon dioxide slot waveguide evanescent field gas absorption sensor

    NASA Astrophysics Data System (ADS)

    Butt, M. A.; Khonina, S. N.; Kazanskiy, N. L.

    2018-01-01

    Several trace gases such as H2O, CO, CO2, NO, N2O, NO2 and CH4 strongly absorb in the mid-IR spectral region due to their fundamental rotational and vibrational transitions. In this work, we propose an evanescent field absorption gas sensor based on silicon/silicon dioxide slot waveguide at 3.39 μm for sensing of methane gas. These waveguides can provide the highest evanescent field ratio (EFR) > 47% with adequate dimensions. Higher EFR values often come at an expense of higher propagation losses. These waveguides have relatively higher losses as compared to conventional waveguides, such as rib and slab waveguides, as these fundamental losses are static and the proposed sensing mechanism is established on the incremental loss due to the absorption of the gas. Therefore, incident power can always be incremented to compensate the waveguide losses.

  11. Fluorescent optical position sensor

    DOEpatents

    Weiss, Jonathan D.

    2005-11-15

    A fluorescent optical position sensor and method of operation. A small excitation source side-pumps a localized region of fluorescence at an unknown position along a fluorescent waveguide. As the fluorescent light travels down the waveguide, the intensity of fluorescent light decreases due to absorption. By measuring with one (or two) photodetectors the attenuated intensity of fluorescent light emitted from one (or both) ends of the waveguide, the position of the excitation source relative to the waveguide can be determined by comparing the measured light intensity to a calibrated response curve or mathematical model. Alternatively, excitation light can be pumped into an end of the waveguide, which generates an exponentially-decaying continuous source of fluorescent light along the length of the waveguide. The position of a photodetector oriented to view the side of the waveguide can be uniquely determined by measuring the intensity of the fluorescent light emitted radially at that location.

  12. Trapped modes in a non-axisymmetric cylindrical waveguide

    NASA Astrophysics Data System (ADS)

    Lyapina, A. A.; Pilipchuk, A. S.; Sadreev, A. F.

    2018-05-01

    We consider acoustic wave transmission in a non-axisymmetric waveguide which consists of a cylindrical resonator and two cylindrical waveguides whose axes are shifted relatively to each other by an azimuthal angle Δϕ. Under variation of the resonator's length L and fixed Δϕ we find bound states in the continuum (trapped modes) due to full destructive interference of resonant modes leaking into the waveguides. Rotation of the waveguide adds complex phases to the coupling strengths of the resonator eigenmodes with the propagating modes of the waveguides tuning Fano resonances to give rise to a wave faucet. Under variation of Δϕ with fixed resonator's length we find symmetry protected trapped modes. For Δϕ ≠ 0 these trapped modes contribute to the scattering function supporting high vortical acoustic intensity spinning inside the resonator. The waveguide rotation brings an important feature to the scattering and provides an instrument for control of acoustic transmittance and wave trapping.

  13. Er 3+-Yb 3+ co-doped glass waveguide amplifiers using ion exchange and field-assisted annealing

    NASA Astrophysics Data System (ADS)

    Zhang, X. Z.; Liu, K.; Mu, S. K.; Tan, C. Z.; Zhang, D.; Pun, E. Y. B.; Zhang, D. M.

    2006-12-01

    Er 3+-Yb 3+ co-doped waveguide amplifiers fabricated using thermal two-step ion-exchange are demonstrated. K +-Na + ion-exchange process was first carried out in pure KNO 3 molten bath, and then field-assisted annealing (FAA) was used to make the buried waveguides. The effective buried depth is estimated to be ˜3.4 μm for the buried FAA waveguides. With the use of cut-back method, the fiber-to-guide coupling loss of ˜4.38 dB, the waveguide loss of ˜2.27 dB/cm, and Er 3+ absorption loss ˜5.7 dB were measured for a ˜1.24-cm-long waveguide. Peak relative gain of ˜7.0 dB is obtained for a ˜1.24-cm-long waveguide. The potential for the fabrication of compact optical amplifiers operating in the range of 1520-1580 nm is also demonstrated.

  14. Synthesis and Characterization of Germanium Dioxide - Dioxide Waveguides

    NASA Astrophysics Data System (ADS)

    Chen, Din-Guo

    The increasing use of single mode fibers in local -area networks (LAN) and customer premises networks (CPN) will increase the need for passive optical components, such as branching devices, mixers, etc. Integrated optical devices are potentially ideal for these applications, provided that they can be made compatible with single mode fibers. The use of GeO_2 as the core dopant and SiO_2 as the substrate ensures that these waveguides will have virtually identical characteristics to single mode fibers. Additionally, glasses in the form of waveguides have recently been used to study various nonlinear optical phenomena, which provide great potential applications such as data storage and information processing. The present study has for the first time demonstrated the feasibility of employing both sol-gel multiple dip -coating and low pressure chemical vapor deposition (LPCVD) in the production of GeO_2-SiO _2 waveguiding films with various germania contents. The thin film characteristics were studied by various analytical techniques (e.g. ellipsometry, waveguiding Raman spectroscopy, FTIR, XPS, SEM/TEM, etc.). The composition dependence of the linear refractive index of GeO _2-SiO_2 films follows that predicted by the Lorenz-Lorenz model. Vibrational spectroscopy revealed the existence of Si-O-Ge linkages in GeO_2-SiO_2 glass network. The addition of GeO_2 in SiO_2 caused a decrease in the size of both the D1 and D2 defect bands in the SiO _2 Raman spectra. The structure of the LPCVD film appears to be dominated by D1 and D2 defect bands. Using a three-prism loss measurement technique, the propagation losses were found to be 3.31 dB/cm and 2.59dB/cm for sol-gel and LPCVD films, respectively. These losses are attributed to various scattering processes in the films. The mode indices of the waveguide were measured using a prism coupling technique. The measured mode indices were found to agree with the calculated value based upon a step-index profile assumption. The theoretical electromagnetic field distribution profiles for a step-index planar waveguide has been calculated and compared to the experimentally measured mode profiles using a near field technique. The nonlinear refractive indices of the sol-gel films (GeO_2-SiO_2 and GeO_2-TiO_2 ) were measured using a THG interferometry fringe technique. The relation between n_{ rm 2THG} and n_1 was found to follow that predicted by the empirical BGO model. An additive model was used to calculate the linear refractive indices, Abbe numbers, and n_1 dispersion curves of the films.

  15. Modeling of acoustic emission signal propagation in waveguides.

    PubMed

    Zelenyak, Andreea-Manuela; Hamstad, Marvin A; Sause, Markus G R

    2015-05-21

    Acoustic emission (AE) testing is a widely used nondestructive testing (NDT) method to investigate material failure. When environmental conditions are harmful for the operation of the sensors, waveguides are typically mounted in between the inspected structure and the sensor. Such waveguides can be built from different materials or have different designs in accordance with the experimental needs. All these variations can cause changes in the acoustic emission signals in terms of modal conversion, additional attenuation or shift in frequency content. A finite element method (FEM) was used to model acoustic emission signal propagation in an aluminum plate with an attached waveguide and was validated against experimental data. The geometry of the waveguide is systematically changed by varying the radius and height to investigate the influence on the detected signals. Different waveguide materials were implemented and change of material properties as function of temperature were taken into account. Development of the option of modeling different waveguide options replaces the time consuming and expensive trial and error alternative of experiments. Thus, the aim of this research has important implications for those who use waveguides for AE testing.

  16. Strong field localization in subwavelength metal-dielectric optical waveguides

    NASA Astrophysics Data System (ADS)

    Kozina, O. N.; Mel'Nikov, L. A.; Nefedov, I. S.

    2011-08-01

    Detailed calculations of eigenmodes of waveguiding structures made of silver and glass and containing coaxial cables with a nanoscale cross section of different configurations are conducted. In particular, the study focuses on optical coaxial waveguides with the core made in the form of a thin metallic cylinder filled with a dielectric. We show that these waveguides support relatively low-loss propagation of radiation that is strongly localized in the central region, has phase velocity approaching the speed of light and predominant electric-field orientation (dipole type). Optical characteristics of such waveguides are compared with those of coaxial-type waveguides containing a continuous central filament made of metal and with a multilayer structure. Using numeric modeling, we established that the proposed type of the waveguide enables the transmission of an optical image with relatively low losses with a submicron resolution over a distance considerably longer than its cross section. A typical propagation length in the waveguides based on silver and glass with the refractive index of about 1.5 at a wavelength of 500 nm is about 1700 nm.

  17. Optofluidic waveguides: I. Concepts and implementations

    PubMed Central

    Schmidt, Holger; Hawkins, Aaron R.

    2011-01-01

    We review recent developments and current status of liquid-core optical waveguides in optofluidics with emphasis on suitability for creating fully planar optofluidic labs-on-a-chip. In this first of two contributions, we give an overview of the different waveguide types that are being considered for effectively combining micro and nanofluidics with integrated optics. The large number of approaches is separated into conventional index-guided waveguides and more recent implementations using wave interference. The underlying principle for waveguiding and the current status are described for each type. We then focus on reviewing recent work on microfabricated liquid-core antiresonant reflecting optical (ARROW) waveguides, including the development of intersecting 2D waveguide networks and optical fluorescence and Raman detection with planar beam geometry. Single molecule detection capability and addition of electrical control for electrokinetic manipulation and analysis of single bioparticles are demonstrated. The demonstrated performance of liquid-core ARROWs is representative of the potential of integrated waveguides for on-chip detection with ultrahigh sensitivity, and points the way towards the next generation of high-performance, low-cost and portable biomedical instruments. PMID:21442048

  18. Ultra-fast pulse propagation in nonlinear graphene/silicon ridge waveguide

    NASA Astrophysics Data System (ADS)

    Liu, Ken; Zhang, Jian Fa; Xu, Wei; Zhu, Zhi Hong; Guo, Chu Cai; Li, Xiu Jian; Qin, Shi Qiao

    2015-11-01

    We report the femtosecond laser propagation in a hybrid graphene/silicon ridge waveguide with demonstration of the ultra-large Kerr coefficient of graphene. We also fabricated a slot-like graphene/silicon ridge waveguide which can enhance its effective Kerr coefficient 1.5 times compared with the graphene/silicon ridge waveguide. Both transverse-electric-like (TE-like) mode and transverse-magnetic-like (TM-like) mode are experimentally measured and numerically analyzed. The results show nonlinearity dependence on mode polarization not in graphene/silicon ridge waveguide but in slot-like graphene/silicon ridge waveguide. Great spectral broadening was observed due to self-phase modulation (SPM) after propagation in the hybrid waveguide with length of 2 mm. Power dependence property of the slot-like hybrid waveguide is also measured and numerically analyzed. The results also confirm the effective Kerr coefficient estimation of the hybrid structures. Spectral blue shift of the output pulse was observed in the slot-like graphene/silicon ridge waveguide. One possible explanation is that the blue shift was caused by the ultra-fast free carrier effect with the optical absorption of the doped graphene. This interesting effect can be used for soliton compression in femtosecond region. We also discussed the broadband anomalous dispersion of the Kerr coefficient of graphene.

  19. Optical Forces on Non-Spherical Nanoparticles Trapped by Optical Waveguides

    NASA Astrophysics Data System (ADS)

    Hasan Ahmed, Dewan; Sung, Hyung Jin

    2011-07-01

    Numerical simulations of a solid-core polymer waveguide structure were performed to calculate the trapping efficiencies of particles with nanoscale dimensions smaller than the wavelength of the trapping beam. A three-dimensional (3-D) finite element method was employed to calculate the electromagnetic field. The inlet and outlet boundary conditions were obtained using an eigenvalue solver to determine the guided and evanescent mode profiles. The Maxwell stress tensor was considered for the calculation of the transverse and downward trapping efficiencies. A particle at the center of the waveguide showed minimal transverse trapping efficiency and maximal downward trapping efficiency. This trend gradually reversed as the particle moved away from the center of the waveguide. Particles with larger surface areas exhibited higher trapping efficiencies and tended to be trapped near the waveguide. Particles displaced from the wave input tended to be trapped at the waveguide surface. Simulation of an ellipsoidal particle showed that the orientation of the major axis along the waveguide's lateral z-coordinate significantly influenced the trapping efficiency. The particle dimensions along the z-coordinate were more critical than the gap distance (vertical displacement from the floor of the waveguide) between the ellipsoid particle and the waveguide. The present model was validated using the available results reported in the literature for different trapping efficiencies.

  20. Surface transport and stable trapping of particles and cells by an optical waveguide loop.

    PubMed

    Hellesø, Olav Gaute; Løvhaugen, Pål; Subramanian, Ananth Z; Wilkinson, James S; Ahluwalia, Balpreet Singh

    2012-09-21

    Waveguide trapping has emerged as a useful technique for parallel and planar transport of particles and biological cells and can be integrated with lab-on-a-chip applications. However, particles trapped on waveguides are continuously propelled forward along the surface of the waveguide. This limits the practical usability of the waveguide trapping technique with other functions (e.g. analysis, imaging) that require particles to be stationary during diagnosis. In this paper, an optical waveguide loop with an intentional gap at the centre is proposed to hold propelled particles and cells. The waveguide acts as a conveyor belt to transport and deliver the particles/cells towards the gap. At the gap, the diverging light fields hold the particles at a fixed position. The proposed waveguide design is numerically studied and experimentally implemented. The optical forces on the particle at the gap are calculated using the finite element method. Experimentally, the method is used to transport and trap micro-particles and red blood cells at the gap with varying separations. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip, e.g. microfluidics or optical detection, to make an on-chip system for single cell analysis and to study the interaction between cells.

Top