Sample records for distributed flooding-based storage

  1. A new method, with application, for analysis of the impacts on flood risk of widely distributed enhanced hillslope storage

    NASA Astrophysics Data System (ADS)

    Metcalfe, Peter; Beven, Keith; Hankin, Barry; Lamb, Rob

    2018-04-01

    Enhanced hillslope storage is utilised in natural flood management in order to retain overland storm run-off and to reduce connectivity between fast surface flow pathways and the channel. Examples include excavated ponds, deepened or bunded accumulation areas, and gullies and ephemeral channels blocked with wooden barriers or debris dams. The performance of large, distributed networks of such measures is poorly understood. Extensive schemes can potentially retain large quantities of run-off, but there are indications that much of their effectiveness can be attributed to desynchronisation of sub-catchment flood waves. Inappropriately sited measures may therefore increase, rather than mitigate, flood risk. Fully distributed hydrodynamic models have been applied in limited studies but introduce significant computational complexity. The longer run times of such models also restrict their use for uncertainty estimation or evaluation of the many potential configurations and storm sequences that may influence the timings and magnitudes of flood waves. Here a simplified overland flow-routing module and semi-distributed representation of enhanced hillslope storage is developed. It is applied to the headwaters of a large rural catchment in Cumbria, UK, where the use of an extensive network of storage features is proposed as a flood mitigation strategy. The models were run within a Monte Carlo framework against data for a 2-month period of extreme flood events that caused significant damage in areas downstream. Acceptable realisations and likelihood weightings were identified using the GLUE uncertainty estimation framework. Behavioural realisations were rerun against the catchment model modified with the addition of the hillslope storage. Three different drainage rate parameters were applied across the network of hillslope storage. The study demonstrates that schemes comprising widely distributed hillslope storage can be modelled effectively within such a reduced complexity framework. It shows the importance of drainage rates from storage features while operating through a sequence of events. We discuss limitations in the simplified representation of overland flow-routing and representation and storage, and how this could be improved using experimental evidence. We suggest ways in which features could be grouped more strategically and thus improve the performance of such schemes.

  2. A hybrid deep neural network and physically based distributed model for river stage prediction

    NASA Astrophysics Data System (ADS)

    hitokoto, Masayuki; sakuraba, Masaaki

    2016-04-01

    We developed the real-time river stage prediction model, using the hybrid deep neural network and physically based distributed model. As the basic model, 4 layer feed-forward artificial neural network (ANN) was used. As a network training method, the deep learning technique was applied. To optimize the network weight, the stochastic gradient descent method based on the back propagation method was used. As a pre-training method, the denoising autoencoder was used. Input of the ANN model is hourly change of water level and hourly rainfall, output data is water level of downstream station. In general, the desirable input of the ANN has strong correlation with the output. In conceptual hydrological model such as tank model and storage-function model, river discharge is governed by the catchment storage. Therefore, the change of the catchment storage, downstream discharge subtracted from rainfall, can be the potent input candidate of the ANN model instead of rainfall. From this point of view, the hybrid deep neural network and physically based distributed model was developed. The prediction procedure of the hybrid model is as follows; first, downstream discharge was calculated by the distributed model, and then estimates the hourly change of catchment storage form rainfall and calculated discharge as the input of the ANN model, and finally the ANN model was calculated. In the training phase, hourly change of catchment storage can be calculated by the observed rainfall and discharge data. The developed model was applied to the one catchment of the OOYODO River, one of the first-grade river in Japan. The modeled catchment is 695 square km. For the training data, 5 water level gauging station and 14 rain-gauge station in the catchment was used. The training floods, superior 24 events, were selected during the period of 2005-2014. Prediction was made up to 6 hours, and 6 models were developed for each prediction time. To set the proper learning parameters and network architecture of the ANN model, sensitivity analysis was done by the case study approach. The prediction result was evaluated by the superior 4 flood events by the leave-one-out cross validation. The prediction result of the basic 4 layer ANN was better than the conventional 3 layer ANN model. However, the result did not reproduce well the biggest flood event, supposedly because the lack of the sufficient high-water level flood event in the training data. The result of the hybrid model outperforms the basic ANN model and distributed model, especially improved the performance of the basic ANN model in the biggest flood event.

  3. Real-time updating of the flood frequency distribution through data assimilation

    NASA Astrophysics Data System (ADS)

    Aguilar, Cristina; Montanari, Alberto; Polo, María-José

    2017-07-01

    We explore the memory properties of catchments for predicting the likelihood of floods based on observations of average flows in pre-flood seasons. Our approach assumes that flood formation is driven by the superimposition of short- and long-term perturbations. The former is given by the short-term meteorological forcing leading to infiltration and/or saturation excess, while the latter is originated by higher-than-usual storage in the catchment. To exploit the above sensitivity to long-term perturbations, a meta-Gaussian model and a data assimilation approach are implemented for updating the flood frequency distribution a season in advance. Accordingly, the peak flow in the flood season is predicted in probabilistic terms by exploiting its dependence on the average flow in the antecedent seasons. We focus on the Po River at Pontelagoscuro and the Danube River at Bratislava. We found that the shape of the flood frequency distribution is noticeably impacted by higher-than-usual flows occurring up to several months earlier. The proposed technique may allow one to reduce the uncertainty associated with the estimation of flood frequency.

  4. Effects of Hydrologic Restoration on Flood Resilience and Sediment Dynamics of Urban Creeks in the UK and USA

    NASA Astrophysics Data System (ADS)

    Wright, N.

    2015-12-01

    Hydrologic restoration in urban creeks is increasingly regarded as a more sustainable option than traditional grey infrastructures in many countries including the UK and USA. Hydrologic restoration aims to recreate naturally oriented hydro-morphodynamic processes while adding ecological and amenity value to a river corridor. Nevertheless, the long-term hydraulic performance of river restorations is incompletely understood. The aim of this research was to investigate the long-term effects of river restoration on the water storage, flood attenuation and sediment dynamics of two urban creeks through detailed hydro-morphodynamic modelling. The first case study is based on Johnson Creek located at Portland, Oregon, USA, and the second case based on Ouseburn River in Newcastle upon Tyne, N.E. England. This study focuses on the downstream of the Johnson Creek, where creek is reconnected to a restored East Lents floodplain of 0.28 km2. In order to offset the increased urban runoff in the Ouseburn catchment, a number of attenuation ponds were implemented along the river. In this study, an integrated 1D and 2D flood model (ISIS - TUFLOW) and the recently updated layer-based hydro-morphodynamic model have been used to understand the long-term impacts of these restorations on the flood and sediment dynamics. The event-based simulations (500 year, 100 year, 50 year, 10 year and 5 year), as well as the continuous simulations based on the historical flow datasets were systematically undertaken. Simulation results showed that the flood storage as a result of river restoration attenuate the flood peak by up to 25% at the downstream. Results also indicated that about 30% of the sediments generated from the upstream deposited in the resorted regions. The spatial distribution and amount of short and long-term sediment deposition on the floodplain and pond are demonstrated, and the resulting potential loss of the flood storage capacity are analysed and discussed.

  5. Optimal Hedging Rule for Reservoir Refill Operation

    NASA Astrophysics Data System (ADS)

    Wan, W.; Zhao, J.; Lund, J. R.; Zhao, T.; Lei, X.; Wang, H.

    2015-12-01

    This paper develops an optimal reservoir Refill Hedging Rule (RHR) for combined water supply and flood operation using mathematical analysis. A two-stage model is developed to formulate the trade-off between operations for conservation benefit and flood damage in the reservoir refill season. Based on the probability distribution of the maximum refill water availability at the end of the second stage, three zones are characterized according to the relationship among storage capacity, expected storage buffer (ESB), and maximum safety excess discharge (MSED). The Karush-Kuhn-Tucker conditions of the model show that the optimality of the refill operation involves making the expected marginal loss of conservation benefit from unfilling (i.e., ending storage of refill period less than storage capacity) as nearly equal to the expected marginal flood damage from levee overtopping downstream as possible while maintaining all constraints. This principle follows and combines the hedging rules for water supply and flood management. A RHR curve is drawn analogously to water supply hedging and flood hedging rules, showing the trade-off between the two objectives. The release decision result has a linear relationship with the current water availability, implying the linearity of RHR for a wide range of water conservation functions (linear, concave, or convex). A demonstration case shows the impacts of factors. Larger downstream flood conveyance capacity and empty reservoir capacity allow a smaller current release and more water can be conserved. Economic indicators of conservation benefit and flood damage compete with each other on release, the greater economic importance of flood damage is, the more water should be released in the current stage, and vice versa. Below a critical value, improving forecasts yields less water release, but an opposing effect occurs beyond this critical value. Finally, the Danjiangkou Reservoir case study shows that the RHR together with a rolling horizon decision approach can lead to a gradual dynamic refilling, indicating its potential for practical use.

  6. Scaling the flood regime with the soil hydraulic properties of the catchment

    NASA Astrophysics Data System (ADS)

    Peña Rojas, Luis Eduardo; Francés García, Félix; Barrios Peña, Miguel

    2015-04-01

    The spatial land cover distribution and soil type affect the hydraulic properties of soils, facilitating or retarding the infiltration rate and the response of a catchment during flooding events. This research analyzes: 1) the effect of land cover use in different time periods as a source of annual maximum flood records nonstationarity; 2) the scalability of the relationship between soil hydraulic properties of the catchment (initial abstractions, upper soil capillary storage and vertical and horizontal hydraulic conductivity) and the flood regime. The study was conducted in Combeima River basin in Colombia - South America and it was modelled the changes in the land uses registered in 1991, 2000, 2002 and 2007, using distributed hydrological modelling and nonparametric tests. The results showed that changes in land use affect hydraulic properties of soil and it has influence on the magnitude of flood peaks. What is a new finding is that this behavior is scalable with the soil hydraulic properties of the catchment flood moments have a simple scaling behavior and the peaks flow increases with higher values of capillary soil storage, whereas higher values, the peaks decreased. Finally it was applied Generalized Extreme Values and it was found scalable behavior in the parameters of the probability distribution function. The results allowed us to find a relationship between soil hydraulic properties and the behavior of flood regime in the basin studied.

  7. Detection of dominant runoff generation processes in flood frequency analysis

    NASA Astrophysics Data System (ADS)

    Iacobellis, Vito; Fiorentino, Mauro; Gioia, Andrea; Manfreda, Salvatore

    2010-05-01

    The investigation on hydrologic similarity represents one of the most exciting challenges faced by hydrologists in the last few years, in order to reduce uncertainty on flood prediction in ungauged basins (e.g., IAHS Decade on Predictions in Ungauged Basins (PUB) - Sivapalan et al., 2003). In perspective, the identification of dominant runoff generation mechanisms may provide a strategy for catchment classification and identification hydrologically omogeneous regions. In this context, we exploited the framework of theoretically derived flood probability distributions, in order to interpret the physical behavior of real basins. Recent developments on theoretically derived distributions have highlighted that in a given basin different runoff processes may coexistence and modify or affect the shape of flood distributions. The identification of dominant runoff generation mechanisms represents a key signatures of flood distributions providing an insight in hydrologic similarity. Iacobellis and Fiorentino (2000) introduced a novel distribution of flood peak annual maxima, the "IF" distribution, which exploited the variable source area concept, coupled with a runoff threshold having scaling properties. More recently, Gioia et al (2008) introduced the Two Component-IF (TCIF) distribution, generalizing the IF distribution, based on two different threshold mechanisms, associated respectively to ordinary and extraordinary events. Indeed, ordinary floods are mostly due to rainfall events exceeding a threshold infiltration rate in a small source area, while the so-called outlier events, often responsible of the high skewness of flood distributions, are triggered by severe rainfalls exceeding a threshold storage in a large portion of the basin. Within this scheme, we focused on the application of both models (IF and TCIF) over a considerable number of catchments belonging to different regions of Southern Italy. In particular, we stressed, as a case of strong general interest in the field of statistical hydrology, the role of procedures for parameters estimation and techniques for model selection in the case of nested distributions. References Gioia, A., V. Iacobellis, S. Manfreda, M. Fiorentino, Runoff thresholds in derived flood frequency distributions, Hydrol. Earth Syst. Sci., 12, 1295-1307, 2008. Iacobellis, V., and M. Fiorentino (2000), Derived distribution of floods based on the concept of partial area coverage with a climatic appeal, Water Resour. Res., 36(2), 469-482. Sivapalan, M., Takeuchi, K., Franks, S. W., Gupta, V. K., Karambiri, H., Lakshmi, V., Liang, X., McDonnell, J. J., Mendiondo, E. M., O'Connell, P. E., Oki, T., Pomeroy, J. W., Schertzer, D., Uhlenbrook, S. and Zehe, E.: IAHS Decade on Predictions in Ungauged Basins (PUB), 2003-2012: Shaping an exciting future for the hydrological sciences, Hydrol. Sci. J., 48(6), 857-880, 2003.

  8. Risk-trading in flood management: An economic model.

    PubMed

    Chang, Chiung Ting

    2017-09-15

    Although flood management is no longer exclusively a topic of engineering, flood mitigation continues to be associated with hard engineering options. Flood adaptation or the capacity to adapt to flood risk, as well as a demand for internalizing externalities caused by flood risk between regions, complicate flood management activities. Even though integrated river basin management has long been recommended to resolve the above issues, it has proven difficult to apply widely, and sometimes even to bring into existence. This article explores how internalization of externalities as well as the realization of integrated river basin management can be encouraged via the use of a market-based approach, namely a flood risk trading program. In addition to maintaining efficiency of optimal resource allocation, a flood risk trading program may also provide a more equitable distribution of benefits by facilitating decentralization. This article employs a graphical analysis to show how flood risk trading can be implemented to encourage mitigation measures that increase infiltration and storage capacity. A theoretical model is presented to demonstrate the economic conditions necessary for flood risk trading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Assimilation of GRACE Terrestrial Water Storage Observations into a Land Surface Model for the Assessment of Regional Flood Potential

    NASA Technical Reports Server (NTRS)

    Reager, John T.; Thomas, Alys C.; Sproles, Eric A.; Rodell, Matthew; Beaudoing, Hiroko K.; Li, Bailing; Famiglietti, James S.

    2015-01-01

    We evaluate performance of the Catchment Land Surface Model (CLSM) under flood conditions after the assimilation of observations of the terrestrial water storage anomaly (TWSA) from NASA's Gravity Recovery and Climate Experiment (GRACE). Assimilation offers three key benefits for the viability of GRACE observations to operational applications: (1) near-real time analysis; (2) a downscaling of GRACE's coarse spatial resolution; and (3) state disaggregation of the vertically-integrated TWSA. We select the 2011 flood event in the Missouri river basin as a case study, and find that assimilation generally made the model wetter in the months preceding flood. We compare model outputs with observations from 14 USGS groundwater wells to assess improvements after assimilation. Finally, we examine disaggregated water storage information to improve the mechanistic understanding of event generation. Validation establishes that assimilation improved the model skill substantially, increasing regional groundwater anomaly correlation from 0.58 to 0.86. For the 2011 flood event in the Missouri river basin, results show that groundwater and snow water equivalent were contributors to pre-event flood potential, providing spatially-distributed early warning information.

  10. Multi-temporal flood mapping and satellite altimetry used to evaluate the flood dynamics of the Bolivian Amazon wetlands

    NASA Astrophysics Data System (ADS)

    Ovando, A.; Martinez, J. M.; Tomasella, J.; Rodriguez, D. A.; von Randow, C.

    2018-07-01

    The Bolivian Amazon wetlands are extensive floodplains distributed over the Mamore, Beni, Madre de Dios and Guapore Rivers. Located within the upper Madeira River Basin, the wetlands play important roles in regulating the biogeochemical processes and hydrological cycle of the region. In addition, they have major ecological and hydrological relevance for the entire Amazon Basin. These wetlands are characterized by the occurrence of episodic floods that result from contrasting hydro-meteorological processes in the Andean Mountain region, the piedmont area and the Amazon lowlands. In this study, we characterized the flood dynamics of the region using multi-temporal flood mapping based on optical altimetry (MODIS - Moderate Resolution Imaging Spectroradiometer - M*D09A1) and satellite altimetry (ENVISAT RA-2 and SARAL AltiKa altimeters). This study provides new insights regarding the frequency, magnitude and spatial distribution of exogenous floods, which are created by flood waves from the Andes; and endogenous floods, which result from runoff originating in the lowlands. The maximum extent of flooding during 2001-2014 was 43144 km2 in the Mamore Basin and 34852 km2 in the Guapore Basin, and the total surface water storage in these floodplains reached 94 km3. The regionalization of flood regimes based on water stage time series signatures allowed those regions that are exposed to frequent floods, which are generally located along rivers without a direct connection with the Andes, to be distinguished from floodplains that are more dependent on flood waves originating in the Andes and its piedmonts. This information is of great importance for understanding the roles of these wetlands in the provision of ecosystem services.

  11. Optimization of wetland restoration siting and zoning in flood retention areas of river basins in China: A case study in Mengwa, Huaihe River Basin

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Song, Yuqin

    2014-11-01

    Wetland restoration in floodplains is an ecological solution that can address basin-wide flooding issues and minimize flooding and damages to riverine and downstream areas. High population densities, large economic outputs, and heavy reliance on water resources make flood retention and management pressing issues in China. To balance flood control and sustainable development economically, socially, and politically, flood retention areas have been established to increase watershed flood storage capacities and enhance the public welfare for the populace living in the areas. However, conflicts between flood storage functions and human habitation appear irreconcilable. We developed a site-specific methodology for identifying potential sites and functional zones for wetland restoration in a flood retention area in middle and eastern China, optimizing the spatial distribution and functional zones to maximize flood control and human and regional development. This methodology was applied to Mengwa, one of 21 flood retention areas in China's Huaihe River Basin, using nine scenarios that reflected different flood, climatic, and hydraulic conditions. The results demonstrated improved flood retention and ecological functions, as well as increased economic benefits.

  12. Optimization of storage tank locations in an urban stormwater drainage system using a two-stage approach.

    PubMed

    Wang, Mingming; Sun, Yuanxiang; Sweetapple, Chris

    2017-12-15

    Storage is important for flood mitigation and non-point source pollution control. However, to seek a cost-effective design scheme for storage tanks is very complex. This paper presents a two-stage optimization framework to find an optimal scheme for storage tanks using storm water management model (SWMM). The objectives are to minimize flooding, total suspended solids (TSS) load and storage cost. The framework includes two modules: (i) the analytical module, which evaluates and ranks the flooding nodes with the analytic hierarchy process (AHP) using two indicators (flood depth and flood duration), and then obtains the preliminary scheme by calculating two efficiency indicators (flood reduction efficiency and TSS reduction efficiency); (ii) the iteration module, which obtains an optimal scheme using a generalized pattern search (GPS) method based on the preliminary scheme generated by the analytical module. The proposed approach was applied to a catchment in CZ city, China, to test its capability in choosing design alternatives. Different rainfall scenarios are considered to test its robustness. The results demonstrate that the optimal framework is feasible, and the optimization is fast based on the preliminary scheme. The optimized scheme is better than the preliminary scheme for reducing runoff and pollutant loads under a given storage cost. The multi-objective optimization framework presented in this paper may be useful in finding the best scheme of storage tanks or low impact development (LID) controls. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Exploring storage and runoff generation processes for urban flooding through a physically based watershed model

    NASA Astrophysics Data System (ADS)

    Smith, B. K.; Smith, J. A.; Baeck, M. L.; Miller, A. J.

    2015-03-01

    A physically based model of the 14 km2 Dead Run watershed in Baltimore County, MD was created to test the impacts of detention basin storage and soil storage on the hydrologic response of a small urban watershed during flood events. The Dead Run model was created using the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) algorithms and validated using U.S. Geological Survey stream gaging observations for the Dead Run watershed and 5 subbasins over the largest 21 warm season flood events during 2008-2012. Removal of the model detention basins resulted in a median peak discharge increase of 11% and a detention efficiency of 0.5, which was defined as the percent decrease in peak discharge divided by percent detention controlled area. Detention efficiencies generally decreased with increasing basin size. We tested the efficiency of detention basin networks by focusing on the "drainage network order," akin to the stream order but including storm drains, streams, and culverts. The detention efficiency increased dramatically between first-order detention and second-order detention but was similar for second and third-order detention scenarios. Removal of the soil compacted layer, a common feature in urban soils, resulted in a 7% decrease in flood peak discharges. This decrease was statistically similar to the flood peak decrease caused by existing detention. Current soil storage within the Dead Run watershed decreased flood peak discharges by a median of 60%. Numerical experiment results suggested that detention basin storage and increased soil storage have the potential to substantially decrease flood peak discharges.

  14. Analysis of the Tonle Sap Flood Pulse Based on Remote Sensing: how much does Tonle Sap Lake Affect the Mekong River Flood?

    NASA Astrophysics Data System (ADS)

    Qu, W.; Hu, N.; Fu, J.; Lu, J.; Lu, H.; Lei, T.; Pang, Z.; Li, X.; Li, L.

    2018-04-01

    The economic value of the Tonle Sap Lake Floodplain to Cambodia is among the highest provided to a nation by a single ecosystem around the world. The flow of Mekong River is the primary factor affecting the Tonle Sap Lake Floodplain. The Tonle Sap Lake also plays a very important role in regulating the downstream flood of Mekong River. Hence, it is necessary to understand its temporal changes of lake surface and water storage and to analyse its relation with the flood processes of Mekong River. Monthly lake surface and water storage from July 2013 to May 2014 were first monitored based on remote sensing data. The relationship between water surface and accumulative water storage change was then established. In combination with hydrological modelling results of Mekong River Basin, the relation between the lake's water storage and the runoff of Mekong River was analysed. It is found that the water storage has a sharp increase from September to December and, after reaching its maximum in December, water storage quickly decreases with a 38.8 billion m3 of drop in only half month time from December to January, while it keeps rather stable at a lower level in other months. There is a two months' time lag between the maximum lake water storage and the Mekong River peak flood, which shows the lake's huge flood regulation role to downstream Mekong River. It shows that this remote sensing approach is feasible and reliable in quantitative monitoring of data scarce lakes.

  15. Natural Flood Management Plus: Scaling Up Nature Based Solutions to Larger Catchments

    NASA Astrophysics Data System (ADS)

    Quinn, Paul; Nicholson, Alex; Adams, Russ

    2017-04-01

    It has been established that networks NFM features, such as ponds and wetlands, can have a significant effect on flood flow and pollution at local scales (less than 10km2). However, it is much less certain that NFM and NBS can impact at larger scales and protect larger cities. This is especially true for recent storms in the UK such as storm Desmond that caused devastation across the north of England. It is possible using observed rainfall and runoff data to estimate the amounts of storage that would be required to impact on extreme flood events. Here we will how a toolkit that will estimate the amount of storage that can be accrued through a dense networks of NFM features. The analysis suggest that the use of many hundreds of small NFM features can have a significant impact on peak flow, however we still require more storage in order to address extreme events and to satisfy flood engineers who may propose more traditional flood defences. We will also show case studies of larger NFM feature positioned on flood plains that can store significantly more flood flow. Examples designs of NFM plus feature will be shown. The storage aggregation tool will then show the degree to which storing large amounts of flood flow in NFM plus features can contribute to flood management and estimate the likely costs. Together smaller and larger NFM features if used together can produce significant flood storage and at a much lower cost than traditional schemes.

  16. Using Automatic Control Approach In Detention Storages For Storm Water Management In An Urban Watershed

    NASA Astrophysics Data System (ADS)

    Goyal, A.; Yadav, H.; Tyagi, H.; Gosain, A. K.; Khosa, R.

    2017-12-01

    Increased imperviousness due to rapid urbanization have changed the urban hydrological cycle. As watersheds are urbanized, infiltration and groundwater recharge have decreased, surface runoff hydrograph shows higher peak indicating large volumes of surface runoff in lesser time durations. The ultimate panacea is to reduce the peak of hydrograph or increase the retention time of surface flow. SWMM is widely used hydrologic and hydraulic software which helps to simulate the urban storm water management with the provision to apply different techniques to prevent flooding. A model was setup to simulate the surface runoff and channel flow in a small urban catchment. It provides the temporal and spatial information of flooding in a catchment. Incorporating the detention storages in the drainage network helps achieve reduced flooding. Detention storages provided with predefined algorithms were for controlling the pluvial flooding in urban watersheds. The algorithm based on control theory, automated the functioning of detention storages ensuring that the storages become active on occurrence of flood in the storm water drains and shuts down when flooding is over. Detention storages can be implemented either at source or at several downstream control points. The proposed piece of work helps to mitigate the wastage of rainfall water, achieve desirable groundwater and attain a controlled urban storm water management system.

  17. Physical parameters of Fluvisols on flooded and non-flooded terraces

    NASA Astrophysics Data System (ADS)

    Kercheva, Milena; Sokołowska, Zofia; Hajnos, Mieczysław; Skic, Kamil; Shishkov, Toma

    2017-01-01

    The heterogeneity of soil physical properties of Fluvisols, lack of large pristine areas, and different moisture regimes on non-flooded and flooded terraces impede the possibility to find a soil profile which can serve as a baseline for estimating the impact of natural or anthropogenic factors on soil evolution. The aim of this study is to compare the pore size distribution of pristine Fluvisols on flooded and non-flooded terraces using the method of the soil water retention curve, mercury intrusion porosimetry, nitrogen adsorption isotherms, and water vapour sorption. The pore size distribution of humic horizons of pristine Fluvisols on the non-flooded terrace differs from pore size distribution of Fluvisols on the flooded terrace. The peaks of textural and structural pores are higher in the humic horizons under more humid conditions. The structural characteristics of subsoil horizons depend on soil texture and evolution stage. The peaks of textural pores at about 1 mm diminish with lowering of the soil organic content. Structureless horizons are characterized by uni-modal pore size distribution. Although the content of structural pores of the subsoil horizons of Fluvisols on the non-flooded terrace is low, these pores are represented by biopores, as the coefficient of filtration is moderately high. The difference between non-flooded and flooded profiles is well expressed by the available water storage, volume and mean radius of pores, obtained by mercury intrusion porosimetry and water desorption, which are higher in the surface horizons of frequently flooded Fluvisols.

  18. Designing and operating infrastructure for nonstationary flood risk management

    NASA Astrophysics Data System (ADS)

    Doss-Gollin, J.; Farnham, D. J.; Lall, U.

    2017-12-01

    Climate exhibits organized low-frequency and regime-like variability at multiple time scales, causing the risk associated with climate extremes such as floods and droughts to vary in time. Despite broad recognition of this nonstationarity, there has been little theoretical development of ideas for the design and operation of infrastructure considering the regime structure of such changes and their potential predictability. We use paleo streamflow reconstructions to illustrate an approach to the design and operation of infrastructure to address nonstationary flood and drought risk. Specifically, we consider the tradeoff between flood control and conservation storage, and develop design and operation principles for allocating these storage volumes considering both a m-year project planning period and a n-year historical sampling record. As n increases, the potential uncertainty in probabilistic estimates of the return periods associated with the T-year extreme event decreases. As the duration m of the future operation period decreases, the uncertainty associated with the occurrence of the T-year event also increases. Finally, given the quasi-periodic nature of the system it may be possible to offer probabilistic predictions of the conditions in the m-year future period, especially if m is small. In the context of such predictions, one can consider that a m-year prediction may have lower bias, but higher variance, than would be associated with using a stationary estimate from the preceding n years. This bias-variance trade-off, and the potential for considering risk management for multiple values of m, provides an interesting system design challenge. We use wavelet-based simulation models in a Bayesian framework to estimate these biases and uncertainty distributions and devise a risk-optimized decision rule for the allocation of flood and conservation storage. The associated theoretical development also provides a methodology for the sizing of storage for new infrastructure under nonstationarity, and an examination of risk adaptation measures which consider both short term and long term options simultaneously.

  19. Integration of Grid and Sensor Web for Flood Monitoring and Risk Assessment from Heterogeneous Data

    NASA Astrophysics Data System (ADS)

    Kussul, Nataliia; Skakun, Sergii; Shelestov, Andrii

    2013-04-01

    Over last decades we have witnessed the upward global trend in natural disaster occurrence. Hydrological and meteorological disasters such as floods are the main contributors to this pattern. In recent years flood management has shifted from protection against floods to managing the risks of floods (the European Flood risk directive). In order to enable operational flood monitoring and assessment of flood risk, it is required to provide an infrastructure with standardized interfaces and services. Grid and Sensor Web can meet these requirements. In this paper we present a general approach to flood monitoring and risk assessment based on heterogeneous geospatial data acquired from multiple sources. To enable operational flood risk assessment integration of Grid and Sensor Web approaches is proposed [1]. Grid represents a distributed environment that integrates heterogeneous computing and storage resources administrated by multiple organizations. SensorWeb is an emerging paradigm for integrating heterogeneous satellite and in situ sensors and data systems into a common informational infrastructure that produces products on demand. The basic Sensor Web functionality includes sensor discovery, triggering events by observed or predicted conditions, remote data access and processing capabilities to generate and deliver data products. Sensor Web is governed by the set of standards, called Sensor Web Enablement (SWE), developed by the Open Geospatial Consortium (OGC). Different practical issues regarding integration of Sensor Web with Grids are discussed in the study. We show how the Sensor Web can benefit from using Grids and vice versa. For example, Sensor Web services such as SOS, SPS and SAS can benefit from the integration with the Grid platform like Globus Toolkit. The proposed approach is implemented within the Sensor Web framework for flood monitoring and risk assessment, and a case-study of exploiting this framework, namely the Namibia SensorWeb Pilot Project, is described. The project was created as a testbed for evaluating and prototyping key technologies for rapid acquisition and distribution of data products for decision support systems to monitor floods and enable flood risk assessment. The system provides access to real-time products on rainfall estimates and flood potential forecast derived from the Tropical Rainfall Measuring Mission (TRMM) mission with lag time of 6 h, alerts from the Global Disaster Alert and Coordination System (GDACS) with lag time of 4 h, and the Coupled Routing and Excess STorage (CREST) model to generate alerts. These are alerts are used to trigger satellite observations. With deployed SPS service for NASA's EO-1 satellite it is possible to automatically task sensor with re-image capability of less 8 h. Therefore, with enabled computational and storage services provided by Grid and cloud infrastructure it was possible to generate flood maps within 24-48 h after trigger was alerted. To enable interoperability between system components and services OGC-compliant standards are utilized. [1] Hluchy L., Kussul N., Shelestov A., Skakun S., Kravchenko O., Gripich Y., Kopp P., Lupian E., "The Data Fusion Grid Infrastructure: Project Objectives and Achievements," Computing and Informatics, 2010, vol. 29, no. 2, pp. 319-334.

  20. Assessing the impact of climate and land use changes on extreme floods in a large tropical catchment

    NASA Astrophysics Data System (ADS)

    Jothityangkoon, Chatchai; Hirunteeyakul, Chow; Boonrawd, Kowit; Sivapalan, Murugesu

    2013-05-01

    In the wake of the recent catastrophic floods in Thailand, there is considerable concern about the safety of large dams designed and built some 50 years ago. In this paper a distributed rainfall-runoff model appropriate for extreme flood conditions is used to generate revised estimates of the Probable Maximum Flood (PMF) for the Upper Ping River catchment (area 26,386 km2) in northern Thailand, upstream of location of the large Bhumipol Dam. The model has two components: a continuous water balance model based on a configuration of parameters estimated from climate, soil and vegetation data and a distributed flood routing model based on non-linear storage-discharge relationships of the river network under extreme flood conditions. The model is implemented under several alternative scenarios regarding the Probable Maximum Precipitation (PMP) estimates and is also used to estimate the potential effects of both climate change and land use and land cover changes on the extreme floods. These new estimates are compared against estimates using other hydrological models, including the application of the original prediction methods under current conditions. Model simulations and sensitivity analyses indicate that a reasonable Probable Maximum Flood (PMF) at the dam site is 6311 m3/s, which is only slightly higher than the original design flood of 6000 m3/s. As part of an uncertainty assessment, the estimated PMF is sensitive to the design method, input PMP, land use changes and the floodplain inundation effect. The increase of PMP depth by 5% can cause a 7.5% increase in PMF. Deforestation by 10%, 20%, 30% can result in PMF increases of 3.1%, 6.2%, 9.2%, respectively. The modest increase of the estimated PMF (to just 6311 m3/s) in spite of these changes is due to the factoring of the hydraulic effects of trees and buildings on the floodplain as the flood situation changes from normal floods to extreme floods, when over-bank flows may be the dominant flooding process, leading to a substantial reduction in the PMF estimates.

  1. A non-stationary cost-benefit based bivariate extreme flood estimation approach

    NASA Astrophysics Data System (ADS)

    Qi, Wei; Liu, Junguo

    2018-02-01

    Cost-benefit analysis and flood frequency analysis have been integrated into a comprehensive framework to estimate cost effective design values. However, previous cost-benefit based extreme flood estimation is based on stationary assumptions and analyze dependent flood variables separately. A Non-Stationary Cost-Benefit based bivariate design flood estimation (NSCOBE) approach is developed in this study to investigate influence of non-stationarities in both the dependence of flood variables and the marginal distributions on extreme flood estimation. The dependence is modeled utilizing copula functions. Previous design flood selection criteria are not suitable for NSCOBE since they ignore time changing dependence of flood variables. Therefore, a risk calculation approach is proposed based on non-stationarities in both marginal probability distributions and copula functions. A case study with 54-year observed data is utilized to illustrate the application of NSCOBE. Results show NSCOBE can effectively integrate non-stationarities in both copula functions and marginal distributions into cost-benefit based design flood estimation. It is also found that there is a trade-off between maximum probability of exceedance calculated from copula functions and marginal distributions. This study for the first time provides a new approach towards a better understanding of influence of non-stationarities in both copula functions and marginal distributions on extreme flood estimation, and could be beneficial to cost-benefit based non-stationary bivariate design flood estimation across the world.

  2. 24 CFR 55.2 - Terminology.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... or inoperative during flood and storm events (e.g., data storage centers, generating plants...” (§ 55.2(b)(5)). When FEMA provides interim flood hazard data, such as Advisory Base Flood Elevations... data may be used as “best available information” in accordance with Executive Order 11988. However, a...

  3. Application of Decision Tree to Obtain Optimal Operation Rules for Reservoir Flood Control Considering Sediment Desilting-Case Study of Tseng Wen Reservoir

    NASA Astrophysics Data System (ADS)

    ShiouWei, L.

    2014-12-01

    Reservoirs are the most important water resources facilities in Taiwan.However,due to the steep slope and fragile geological conditions in the mountain area,storm events usually cause serious debris flow and flood,and the flood then will flush large amount of sediment into reservoirs.The sedimentation caused by flood has great impact on the reservoirs life.Hence,how to operate a reservoir during flood events to increase the efficiency of sediment desilting without risk the reservoir safety and impact the water supply afterward is a crucial issue in Taiwan.  Therefore,this study developed a novel optimization planning model for reservoir flood operation considering flood control and sediment desilting,and proposed easy to use operating rules represented by decision trees.The decision trees rules have considered flood mitigation,water supply and sediment desilting.The optimal planning model computes the optimal reservoir release for each flood event that minimum water supply impact and maximum sediment desilting without risk the reservoir safety.Beside the optimal flood operation planning model,this study also proposed decision tree based flood operating rules that were trained by the multiple optimal reservoir releases to synthesis flood scenarios.The synthesis flood scenarios consists of various synthesis storm events,reservoir's initial storage and target storages at the end of flood operating.  Comparing the results operated by the decision tree operation rules(DTOR) with that by historical operation for Krosa Typhoon in 2007,the DTOR removed sediment 15.4% more than that of historical operation with reservoir storage only8.38×106m3 less than that of historical operation.For Jangmi Typhoon in 2008,the DTOR removed sediment 24.4% more than that of historical operation with reservoir storage only 7.58×106m3 less than that of historical operation.The results show that the proposed DTOR model can increase the sediment desilting efficiency and extend the reservoir life.

  4. Investigating the potential to reduce flood risk through catchment-based land management techniques and interventions in the River Roe catchment, Cumbria,UK

    NASA Astrophysics Data System (ADS)

    Pearson, Callum; Reaney, Sim; Bracken, Louise; Butler, Lucy

    2015-04-01

    Throughout the United Kingdom flood risk is a growing problem and a significant proportion of the population are at risk from flooding throughout the country. Across England and Wales over 5 million people are believed to be at risk from fluvial, pluvial or coastal flooding (DEFRA, 2013). Increasingly communities that have not dealt with flooding before have recently experienced significant flood events. The communities of Stockdalewath and Highbridge in the Roe catchment, a tributary of the River Eden in Cumbria, UK, are an excellent example. The River Roe has a normal flow of less than 5m3 sec-1 occurring 97 percent of the time however there have been two flash floods of 98.8m3 sec-1 in January 2005 and 86.9m3 sec-1 in May 2013. These two flash flood events resulted in the inundation of numerous properties within the catchment with the 2013 event prompting the creation of the Roe Catchment Community Water Management Group which aims are to deliver a sustainable approach to managing the flood risk. Due to the distributed rural population the community fails the cost-benefit analysis for a centrally funded flood risk mitigation scheme. Therefore the at-risk community within the Roe catchment have to look for cost-effective, sustainable techniques and interventions to reduce the potential negative impacts of future events; this has resulted in a focus on natural flood risk management. This research investigates the potential to reduce flood risk through natural catchment-based land management techniques and interventions within the Roe catchment; providing a scientific base from with further action can be enacted. These interventions include changes to land management and land use, such as soil aeration and targeted afforestation, the creation of runoff attenuation features and the construction of in channel features, such as debris dams. Natural flood management (NFM) application has been proven to be effective when reducing flood risk in smaller catchments and the potential to transfer these benefits to the Roe catchment (~69km2) have been assessed. Furthermore these flood mitigation features have the potential to deliver wider environmental improvements throughout the catchment and hence the potential for multiple benefits such as diffuse pollution reduction and habitat creation are considered. The research explores the impact of NFM techniques, flood storage areas or afforestation for example, with a view to enhancing local scale habitats. The research combines innovative catchment modelling techniques, both risk-based approaches (SCIMAP Flood) and spatially distributed hydrological simulation modelling (CRUM3), with in-field monitoring and observation of flow pathways and tributary response to rainfall using time-lapse cameras. Additional work with the local community and stakeholders will identify the range and location of potential catchment-based land management techniques and interventions being assessed; natural flood management implementation requires the participation and cooperation of landowners and local community to be successful (Howgate and Kenyon, 2009).

  5. Natural Flood Management in context: evaluating and enhancing the impact.

    NASA Astrophysics Data System (ADS)

    Metcalfe, Peter; Beven, Keith; Hankin, Barry; Lamb, Rob

    2016-04-01

    The series of flood events in the UK throughout December 2015 have led to calls for a reappraisal of the country's approach to flood management. In parts of Cumbria so-called "1 in 100" year floods have occurred three times in the last ten years, leading to significant infrastructure damage. Hard-engineered defences upgraded to cope with an anticipated 20% increase in peak flows and these 1% AEP events have been overwhelmed. It has become more widely acknowledged that unsympathetic agricultural and upland management practices, mainly since the Second World War, have led to a significant loss of storage in mid and upper catchments and their consequent ability to retain and slow storm run-off. Natural Flood Management (NFM) is a nature-based solution to restoring this storage and flood peak attenuation through a network of small-scale features exploiting natural topography and materials. Combined with other "soft" interventions such as restoring flood plain roughness and tree-planting, NFM offers the attractive prospect of an intervention that can target both the ecological and chemical objectives of the Water Framework Directive and the resilience demanded by the Floods Directive. We developed a simple computerised physical routing model that can account for the presence of in-channel and offline features such as would be found in a NFM scheme. These will add storage to the channel and floodplain and throttle the downstream discharge at storm flows. The model was applied to the heavily-modified channel network of an agricultural catchment in North Yorkshire using the run-off simulated for two storm events that caused flooding downstream in the autumn of 2012. Using up to 60 online features we demonstrated some gains in channel storage and a small impact on the flood hydrograph which would, however, have been insufficient to prevent the downstream floods in either of the storms. Complementary research at JBA has applied their hydrodynamic model JFLOW+ to identify areas of the catchment that will naturally retain storm run-off and quantified the effects of removing this storage on the run-off. It is suggested that enhancing the storage capacity of these areas may be a low impact approach in keeping with the ethos of NFM that has a significant, and quantifiable impact, on storm flows.

  6. 76 FR 17019 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... Storage Casks: HI-STORM Flood/Wind Addition AGENCY: Nuclear Regulatory Commission. ACTION: Direct final... regulations to add the HI-STORM Flood/Wind cask system to the ``List of Approved Spent Fuel Storage Casks... cask designs. Discussion This rule will add the Holtec HI-STORM Flood/Wind (FW) cask system to the list...

  7. 33 CFR 208.82 - Hetch Hetchy, Cherry Valley, and Don Pedro Dams and Reservoirs.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... flood control all as follows: (a) Storage space in Don Pedro Reservoir shall be kept available for flood-control purposes in accordance with the Flood-Control Storage Reservation Diagram currently in force for... section. The Flood-Control Storage Reservation Diagram in force as of the promulgation of this section is...

  8. 33 CFR 208.82 - Hetch Hetchy, Cherry Valley, and Don Pedro Dams and Reservoirs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... flood control all as follows: (a) Storage space in Don Pedro Reservoir shall be kept available for flood-control purposes in accordance with the Flood-Control Storage Reservation Diagram currently in force for... section. The Flood-Control Storage Reservation Diagram in force as of the promulgation of this section is...

  9. Towards a better understanding of flood generation and surface water inundation mechanisms using NASA remote sensing data products

    NASA Astrophysics Data System (ADS)

    Lucey, J.; Reager, J. T., II; Lopez, S. R.

    2017-12-01

    Floods annually cause several weather-related fatalities and financial losses. According to NOAA and FEMA, there were 43 deaths and 18 billion dollars paid out in flood insurance policies during 2005. The goal of this work is to improve flood prediction and flood risk assessment by creating a general model of predictability of extreme runoff generation using various NASA products. Using satellite-based flood inundation observations, we can relate surface water formation processes to changes in other hydrological variables, such as precipitation, storage and soil moisture, and understand how runoff generation response to these forcings is modulated by local topography and land cover. Since it is known that a flood event would cause an abnormal increase in surface water, we examine these underlying physical relationships in comparison with the Dartmouth Flood Observatory archive of historic flood events globally. Using ground water storage observations (GRACE), precipitation (TRMM or GPCP), land use (MODIS), elevation (SRTM) and surface inundation levels (SWAMPS), an assessment of geological and climate conditions can be performed for any location around the world. This project utilizes multiple linear regression analysis evaluating the relationship between surface water inundation, total water storage anomalies and precipitation values, grouped by average slope or land use, to determine their statistical relationships and influences on inundation data. This research demonstrates the potential benefits of using global data products for early flood prediction and will improve our understanding of runoff generation processes.

  10. Comparing the index-flood and multiple-regression methods using L-moments

    NASA Astrophysics Data System (ADS)

    Malekinezhad, H.; Nachtnebel, H. P.; Klik, A.

    In arid and semi-arid regions, the length of records is usually too short to ensure reliable quantile estimates. Comparing index-flood and multiple-regression analyses based on L-moments was the main objective of this study. Factor analysis was applied to determine main influencing variables on flood magnitude. Ward’s cluster and L-moments approaches were applied to several sites in the Namak-Lake basin in central Iran to delineate homogeneous regions based on site characteristics. Homogeneity test was done using L-moments-based measures. Several distributions were fitted to the regional flood data and index-flood and multiple-regression methods as two regional flood frequency methods were compared. The results of factor analysis showed that length of main waterway, compactness coefficient, mean annual precipitation, and mean annual temperature were the main variables affecting flood magnitude. The study area was divided into three regions based on the Ward’s method of clustering approach. The homogeneity test based on L-moments showed that all three regions were acceptably homogeneous. Five distributions were fitted to the annual peak flood data of three homogeneous regions. Using the L-moment ratios and the Z-statistic criteria, GEV distribution was identified as the most robust distribution among five candidate distributions for all the proposed sub-regions of the study area, and in general, it was concluded that the generalised extreme value distribution was the best-fit distribution for every three regions. The relative root mean square error (RRMSE) measure was applied for evaluating the performance of the index-flood and multiple-regression methods in comparison with the curve fitting (plotting position) method. In general, index-flood method gives more reliable estimations for various flood magnitudes of different recurrence intervals. Therefore, this method should be adopted as regional flood frequency method for the study area and the Namak-Lake basin in central Iran. To estimate floods of various return periods for gauged catchments in the study area, the mean annual peak flood of the catchments may be multiplied by corresponding values of the growth factors, and computed using the GEV distribution.

  11. A dimension reduction method for flood compensation operation of multi-reservoir system

    NASA Astrophysics Data System (ADS)

    Jia, B.; Wu, S.; Fan, Z.

    2017-12-01

    Multiple reservoirs cooperation compensation operations coping with uncontrolled flood play vital role in real-time flood mitigation. This paper come up with a reservoir flood compensation operation index (ResFCOI), which formed by elements of flood control storage, flood inflow volume, flood transmission time and cooperation operations period, then establish a flood cooperation compensation operations model of multi-reservoir system, according to the ResFCOI to determine a computational order of each reservoir, and lastly the differential evolution algorithm is implemented for computing single reservoir flood compensation optimization in turn, so that a dimension reduction method is formed to reduce computational complexity. Shiguan River Basin with two large reservoirs and an extensive uncontrolled flood area, is used as a case study, results show that (a) reservoirs' flood discharges and the uncontrolled flood are superimposed at Jiangjiaji Station, while the formed flood peak flow is as small as possible; (b) cooperation compensation operations slightly increase in usage of flood storage capacity in reservoirs, when comparing to rule-based operations; (c) it takes 50 seconds in average when computing a cooperation compensation operations scheme. The dimension reduction method to guide flood compensation operations of multi-reservoir system, can make each reservoir adjust its flood discharge strategy dynamically according to the uncontrolled flood magnitude and pattern, so as to mitigate the downstream flood disaster.

  12. 76 FR 33121 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... Storage Casks: HI-STORM Flood/Wind Addition AGENCY: Nuclear Regulatory Commission. ACTION: Direct final... regulations to add the Holtec HI-STORM Flood/Wind cask system to the ``List of Approved Spent Fuel Storage... Title 10 of the Code of Federal Regulations Section 72.214 to add the Holtec HI- STORM Flood/Wind cask...

  13. STREET SURFACE STORAGE FOR CONTROL OF COMBINED SEWER SURCHARGE

    EPA Science Inventory

    One type of Best Management Practices (BMPs) available is the use of street storage systems to prevent combined sewer surcharging and to mitigate basement flooding. A case study approach, based primarily on two largely implemented street storage systems, will be used to explain ...

  14. The use of Natural Flood Management to mitigate local flooding in the rural landscape

    NASA Astrophysics Data System (ADS)

    Wilkinson, Mark; Quinn, Paul; Ghimire, Sohan; Nicholson, Alex; Addy, Steve

    2014-05-01

    The past decade has seen increases in the occurrence of flood events across Europe, putting a growing number of settlements of varying sizes at risk. The issue of flooding in smaller villages is usually not well publicised. In these small communities, the cost of constructing and maintaining traditional flood defences often outweigh the potential benefits, which has led to a growing quest for more cost effective and sustainable approaches. Here we aim to provide such an approach that alongside flood risk reduction, also has multipurpose benefits of sediment control, water quality amelioration, and habitat creation. Natural flood management (NFM) aims to reduce flooding by working with natural features and characteristics to slow down or temporarily store flood waters. NFM measures include dynamic water storage ponds and wetlands, interception bunds, channel restoration and instream wood placement, and increasing soil infiltration through soil management and tree planting. Based on integrated monitoring and modelling studies, we demonstrate the potential to manage runoff locally using NFM in rural systems by effectively managing flow pathways (hill slopes and small channels) and by exploiting floodplains and buffers strips. Case studies from across the UK show that temporary storage ponds (ranging from 300 to 3000m3) and other NFM measures can reduce peak flows in small catchments (5 to 10 km2) by up to 15 to 30 percent. In addition, increasing the overall effective storage capacity by a network of NFM measures was found to be most effective for total reduction of local flood peaks. Hydraulic modelling has shown that the positioning of such features within the catchment, and how they are connected to the main channel, may also affect their effectiveness. Field evidence has shown that these ponds can collect significant accumulations of fine sediment during flood events. On the other hand, measures such as wetlands could also play an important role during low flow conditions, by providing base flows during drought conditions. Ongoing research using hydrological datasets aims to assess how these features function during low flow conditions and how storage ponds could be used as irrigation ponds in arable areas. To allow for effective implementation and upkeep of NFM measures on the ground, demonstration sites have been developed through a process of iterative stakeholder engagement. Coupled with the use of novel visualisation techniques, results are currently being communicated to a wider community of local landowners and catchment managers. The approach of using networks of interception bunds and offline storage areas in the rural landscape could potentially provide a cost effective means to reduce flood risk in small responsive catchments across Europe. As such it could provide an alternative or addition to traditional engineering techniques, while also effectively managing catchments to achieve multiple environmental objectives.

  15. Estimation of flood-frequency characteristics of small urban streams in North Carolina

    USGS Publications Warehouse

    Robbins, J.C.; Pope, B.F.

    1996-01-01

    A statewide study was conducted to develop methods for estimating the magnitude and frequency of floods of small urban streams in North Carolina. This type of information is critical in the design of bridges, culverts and water-control structures, establishment of flood-insurance rates and flood-plain regulation, and for other uses by urban planners and engineers. Concurrent records of rainfall and runoff data collected in small urban basins were used to calibrate rainfall-runoff models. Historic rain- fall records were used with the calibrated models to synthesize a long- term record of annual peak discharges. The synthesized record of annual peak discharges were used in a statistical analysis to determine flood- frequency distributions. These frequency distributions were used with distributions from previous investigations to develop a database for 32 small urban basins in the Blue Ridge-Piedmont, Sand Hills, and Coastal Plain hydrologic areas. The study basins ranged in size from 0.04 to 41.0 square miles. Data describing the size and shape of the basin, level of urban development, and climate and rural flood charac- teristics also were included in the database. Estimation equations were developed by relating flood-frequency char- acteristics to basin characteristics in a generalized least-squares regression analysis. The most significant basin characteristics are drainage area, impervious area, and rural flood discharge. The model error and prediction errors for the estimating equations were less than those for the national flood-frequency equations previously reported. Resulting equations, which have prediction errors generally less than 40 percent, can be used to estimate flood-peak discharges for 2-, 5-, 10-, 25-, 50-, and 100-year recurrence intervals for small urban basins across the State assuming negligible, sustainable, in- channel detention or basin storage.

  16. Impact of the Three-Gorges Dam and water transfer project on Changjiang floods

    NASA Astrophysics Data System (ADS)

    Nakayama, Tadanobu; Shankman, David

    2013-01-01

    Increasing frequency of severe floods on the middle and lower Changjiang (Yangtze) River during the past few decades can be attributed to both abnormal monsoon rainfall and landscape changes that include extensive deforestation affecting river sedimentation, and shrinking lakes and levee construction that reduced the areas available for floodwater storage. The Three-Gorges Dam (TGD) and the South-to-North Water Transfer Project (SNWTP) will also affect frequency and intensity of severe floods in the Poyang Lake region of the middle Changjiang. Process-based National Integrated Catchment-based Eco-hydrology (NICE) model predicts that the TGD will increase flood risk during the early summer monsoon against the original justifications for building the dam, relating to complex river-lake-groundwater interactions. Several scenarios predict that morphological change will increase flood risk around the lake. This indicates the importance of managing both flood discharge and sediment deposition for the entire basin. Further, the authors assessed the impact of sand mining in the lake after its prohibition on the Changjiang, and clarified that alternative scenario of sand mining in lakes currently disconnected from the mainstream would reduce the flood risk to a greater extent than intensive dredging along junction channel. Because dry biomasses simulated by the model were linearly related to the Time-Integrated Normalized Difference Vegetation Index (TINDVI) estimated from satellite images, its decadal gradient during 1982-1999 showed a spatially heterogeneous distribution and generally decreasing trends beside the lakes, indicating that the increases in lake reclamation and the resultant decrease in rice productivity are closely related to the hydrologic changes. This integrated approach could help to minimize flood damage and promote better decisions addressing sustainable development.

  17. Hydrological Simulation of Flood Events At Large Basins Using Distributed Modelling

    NASA Astrophysics Data System (ADS)

    Vélez, J.; Vélez, I.; Puricelli, M.; Francés, F.

    Recent advances in technology allows to the scientist community advance in new pro- cedures in order to reduce the risk associated to flood events. A conceptual distributed model has been implemented to simulate the hydrological processes involved during floods. The model has been named TETIS. The basin is divided into rectangular cells, all of them connected according to the network drainage. The rainfall-runoff process is modelled using four linked tanks at each cell with different outflow relationships at each tank, which represent the ET, direct runoff, interflow and base flow, respectively. The routing along the channel network has been proposed using basin geomorpho- logic characteristics coupled to the cinematic wave procedure. The vertical movement along the cell is proposed using simple relationships based on soil properties as field capacity and the saturated hydraulic conductivities, which were previously obtained using land use, litology, edaphology and basin properties maps. The different vertical proccesses along the cell included are: capillar storage, infiltration, percolation and underground losses. Finally, snowmelting and reservoir routing has been included. TETIS has been implemented in the flood warning system of the Tagus River, with a basin of 59 200 km2. The time discretization of the input data is 15 minutes, and the cell size is 500x500 m. The basic parameter maps were estimated for the entire basin, and a calibration and validation processes were performed using some recorded events in the upper part of the basin. Calibration confirmed the initial parameter estimation. Additionally, the validation in time and space showed the robustness of these types of models

  18. Modelling Inland Flood Events for Hazard Maps in Taiwan

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Nzerem, K.; Sassi, M.; Hilberts, A.; Assteerawatt, A.; Tillmanns, S.; Mathur, P.; Mitas, C.; Rafique, F.

    2015-12-01

    Taiwan experiences significant inland flooding, driven by torrential rainfall from plum rain storms and typhoons during summer and fall. From last 13 to 16 years data, 3,000 buildings were damaged by such floods annually with a loss US$0.41 billion (Water Resources Agency). This long, narrow island nation with mostly hilly/mountainous topography is located at tropical-subtropical zone with annual average typhoon-hit-frequency of 3-4 (Central Weather Bureau) and annual average precipitation of 2502mm (WRA) - 2.5 times of the world's average. Spatial and temporal distributions of countrywide precipitation are uneven, with very high local extreme rainfall intensities. Annual average precipitation is 3000-5000mm in the mountainous regions, 78% of it falls in May-October, and the 1-hour to 3-day maximum rainfall are about 85 to 93% of the world records (WRA). Rivers in Taiwan are short with small upstream areas and high runoff coefficients of watersheds. These rivers have the steepest slopes, the shortest response time with rapid flows, and the largest peak flows as well as specific flood peak discharge (WRA) in the world. RMS has recently developed a countrywide inland flood model for Taiwan, producing hazard return period maps at 1arcsec grid resolution. These can be the basis for evaluating and managing flood risk, its economic impacts, and insured flood losses. The model is initiated with sub-daily historical meteorological forcings and calibrated to daily discharge observations at about 50 river gauges over the period 2003-2013. Simulations of hydrologic processes, via rainfall-runoff and routing models, are subsequently performed based on a 10000 year set of stochastic forcing. The rainfall-runoff model is physically based continuous, semi-distributed model for catchment hydrology. The 1-D wave propagation hydraulic model considers catchment runoff in routing and describes large-scale transport processes along the river. It also accounts for reservoir storage. Major historical flood events have been successfully simulated along with spatial patterns of flows. Comparison of stochastic discharge statistics w.r.t. observed ones from Hydrological Year Books of Taiwan over all recorded years are also in good agreement.

  19. Evaluation of design flood estimates with respect to sample size

    NASA Astrophysics Data System (ADS)

    Kobierska, Florian; Engeland, Kolbjorn

    2016-04-01

    Estimation of design floods forms the basis for hazard management related to flood risk and is a legal obligation when building infrastructure such as dams, bridges and roads close to water bodies. Flood inundation maps used for land use planning are also produced based on design flood estimates. In Norway, the current guidelines for design flood estimates give recommendations on which data, probability distribution, and method to use dependent on length of the local record. If less than 30 years of local data is available, an index flood approach is recommended where the local observations are used for estimating the index flood and regional data are used for estimating the growth curve. For 30-50 years of data, a 2 parameter distribution is recommended, and for more than 50 years of data, a 3 parameter distribution should be used. Many countries have national guidelines for flood frequency estimation, and recommended distributions include the log Pearson II, generalized logistic and generalized extreme value distributions. For estimating distribution parameters, ordinary and linear moments, maximum likelihood and Bayesian methods are used. The aim of this study is to r-evaluate the guidelines for local flood frequency estimation. In particular, we wanted to answer the following questions: (i) Which distribution gives the best fit to the data? (ii) Which estimation method provides the best fit to the data? (iii) Does the answer to (i) and (ii) depend on local data availability? To answer these questions we set up a test bench for local flood frequency analysis using data based cross-validation methods. The criteria were based on indices describing stability and reliability of design flood estimates. Stability is used as a criterion since design flood estimates should not excessively depend on the data sample. The reliability indices describe to which degree design flood predictions can be trusted.

  20. Improving flood forecasting capability of physically based distributed hydrological model by parameter optimization

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, J.; Xu, H.

    2015-10-01

    Physically based distributed hydrological models discrete the terrain of the whole catchment into a number of grid cells at fine resolution, and assimilate different terrain data and precipitation to different cells, and are regarded to have the potential to improve the catchment hydrological processes simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters, but unfortunately, the uncertanties associated with this model parameter deriving is very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study, the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using PSO algorithm and to test its competence and to improve its performances, the second is to explore the possibility of improving physically based distributed hydrological models capability in cathcment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improverd Particle Swarm Optimization (PSO) algorithm is developed for the parameter optimization of Liuxihe model in catchment flood forecasting, the improvements include to adopt the linear decreasing inertia weight strategy to change the inertia weight, and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for Liuxihe model parameter optimization effectively, and could improve the model capability largely in catchment flood forecasting, thus proven that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological model. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for Liuxihe model catchment flood forcasting is 20 and 30, respectively.

  1. An assessment of flood mitigation measures - "room for the river

    NASA Astrophysics Data System (ADS)

    Komma, J.; Blöschl, G.; Habereder, C.

    2009-04-01

    In this paper we analyse the relative effect of different flood mitigation measures for the example of the Kamp catchment in Austria. The main idea is to decrease flood peaks through (a) retaining water in the landscape and (b) providing additional inundation areas along the main stream (room for the river). To increase the retention of excess rainfall in the landscape we introduced two different measures. One measure is the increase of water storage capacity in the study catchment through the change of land use from agriculture to forest. The second measure is the installation of many small sized retention basins without an outlet (micro ponds). The micro ponds are situated at the hill slopes to intercept surface runoff. In case of the room for the river scenario the additional retention volume is gained due to the installation of retention basins along the Kamp river and its tributary Zwettl. Three flood retention basins with culverts at each river are envisaged. The geometry of the bottom outlets is defined for design discharges in a way to gain the greatest flood peak reduction for large flood events (above a 100 yr flood). The study catchment at the Kamp river with a size of 622 km² is located in north-eastern Austria. For the simulation of the different scenarios (retaining water in the landscape) a well calibrated continuous hydrologic model is available. The hydrological model consists of a spatially distributed soil moisture accounting scheme and a flood routing component. To analyse the effect of the room for the river scenario with retention basins along the river reaches a linked 1D/2D hydrodynamic model (TUFLOW) is used. In the river channels a one dimensional simulation is carried out. The flow conditions in the flood plains are represented by two dimensional model elements. The model domain incorporates 18 km of the Kamp and 12 km of the Zwettl river valley. For the assessment of the land use change scenario the hydrologic model parameters for wooded areas are transferred to areas that are currently not forested. Through higher storage capacities in the wooded areas the scenario of afforestation helps to reduce flood peaks. The micro ponds are represented in the hydrological model by a bucket storage component. It is filled by a fraction of the simulated direct runoff and drains into the groundwater with a constant percolation rate. For the scenarios of flood mitigation with retention basins along the river reaches three locations at the Kamp and three locations at the Zwettl river have been chosen for hypothetical retention basins or polders with bottom outlets. The main difference between the "room for the river" method and the "retaining water in the landscape" methods is the magnitude of the flood event for which the retention is maximised. For the case of retaining water in the landscape (either by land use change or microponds) the storage capacity obtained by these measures is filled at the beginning of the event. For small event magnitudes, the flood peak reduction is hence maximised. In the Kamp catchment, significant reductions in the flood peaks can be obtained when retention basins along the main stream are constructed and the flood plains are inundated. The main advantage of the room for the river methodology is that the polders/retention basins can be designed in a way that there is no retention for small flood discharges which leaves the full storage capacity for larger floods at the time of peak. In contrast, for the retaining water in the landscape measures, the storage is exhausted at an early stage of medium and large events, resulting in very small flood peak reductions.

  2. Flood frequency approach in a Mediterranean Flash Flood basin. A case study in the Besòs catchment

    NASA Astrophysics Data System (ADS)

    Velasco, D.; Zanon, F.; Corral, C.; Sempere-Torres, D.; Borga, M.

    2009-04-01

    Flash floods are one of the most devastating natural disasters in the Mediterranean areas. In particular, the region of Catalonia (North-East Spain) is one of the most affected by flash floods in the Iberian Peninsula. The high rainfall intensities generating these events, the specific terrain characteristics giving rise to very fast hydrological responses and the high variability in space and time of both rain and land surface, are the main features of FF and also the main cause of their extreme complexity. Distributed hydrological models have been developed to increase the flow forecast resolution in order to implement effective operational warning systems. Some studies have shown how the distributed-models accuracy is highly sensitive to reduced computational grid scale, so, hydrological model uncertainties must be studied. In these conditions, an estimation of the modeling uncertainty (whatever the accuracy is) becomes highly valuable information to enhance our ability to predict the occurrence of flash flooding. The statistical-distributed modeling approach (Reed, 2004) is proposed in the present study to simulate floods on a small basin and account for hydrologic modeling uncertainty. The Besòs catchment (1020 km2), near Barcelona, has been selected in this study to apply the proposed flood frequency methodology. Hydrometeorological data is available for 11 rain-gauges and 6 streamflow gauges in the last 12 years, and a total of 9 flood events have been identified and analyzed in this study. The DiCHiTop hydrological model (Corral, 2004) was developed to fit operational requirements in the Besòs catchment: distributed, robust and easy to implement. It is a grid-based model that works at a given resolution (here at 1 × 1 km2, the hydrological cell), defining a simplified drainage system at this scale. A loss function is applied at the hydrological cell resolution, provided by a coupled storage model between the SCS model (Mockus, 1957) in urban areas and Topmodel (Beven & Kirkby, 1979) in rural and forested areas. The distributed hydrological model is calibrated using observed streamflow information from the available events. Simulated peak discharges are then compared to observed discharges in these gauged cells, so the relative forecast errors are estimated for all the events. Flood frequency is introduced in the analysis in order to derive probability functions for relative flow error. The next step consists in the extension of the flood frequency error patterns to the corresponding subbasins so it is possible to characterize the accuracy of the simulation in the uncalibrated cells (typically ungaged basins). As a result, the operational flood simulation at every cell in the Besos catchment can be checked and validated (in a first approach) in terms of occurrence. Thus, the distributed warning system can take advantage of the modeling uncertainties for operational tasks.

  3. Priority and construction sites of water storage in a watershed in response to climate change

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Yu; Zhang, Wen-Yan; Lin, Chao-Yuan

    2014-05-01

    Taiwan is located at the Eastern Asia Monsoon climate zone. Typhoons and/or convectional rains occur frequently and result in high intensity storms in the summer season. Once the detention facilities are shortage or soil infiltration rate become worse in a watershed due to land use, surface runoff is easily to concentrate and threaten the protected areas. Therefore, it is very important to examine the functionality of water storage for a watershed. The purpose of this study is to solve the issue of flooding in the Puzi Creek. A case study of Yizen Bridge Watershed, in which the SCS curve number was used as an index to extract the spatial distribution of the strength of water storage, and the value of watershed mean CN along the main channel was calculated using area-weighting method. Therefore, the hotspot management sites were then derived and the priority method was applied to screen the depression sites for the reference of management authorities in detention ponds placement. The results show that the areas of subzone A with the characteristics of bad condition in topography and soil, which results in poor infiltration. However, the areas are mostly covered with forest and are difficult to create the artificial water storage facilities. Detention dams are strongly recommended at the site of depression in the river channel to decrease discharge velocity and reduce impact from flood disaster. The areas of subzone B are mainly located at the agriculture slope land. The topographic depressions in the farmland are the suitable places to construct the farm ponds for the use of flood detention and sediment deposition in the rainy seasons and irrigation in the dry seasons. Areas of subzone C are mainly occupied the gentle slope land with a better ability in water storage due to low CN value. Farm ponds constructed in the riparian to bypass the nearby river channel can create multifunctional wetland to effectively decrease the peak discharge in the downstream during storm events. Depression storages are based on additional runoff obtained from CN calculation. Strategies mentioned in this study can be provided as references of climate change adaptions for related authorities.

  4. Nature-based flood risk management -challenges in implementing catchment-wide management concepts

    NASA Astrophysics Data System (ADS)

    Thaler, Thomas; Fuchs, Sven

    2017-04-01

    Traditionally, flood risk management focused on coping with the flow at a given point by, for example, building dikes or straightening the watercourse. Increasingly the emphasis has shifted to measures within the flood plain to delay the flow through storage. As such the fluent boundaries imposed by the behaviour of the catchment at a certain point are relocated upstream by the human intervention. Therefore, the implementation of flood storages and the use of natural retention areas are promoted as mitigation measures to support sustainable flood risk management. They aimed at reducing the effluent boundaries on the floodplain by increasing the effluent boundaries upstream. However, beyond the simple change of practices it is indeed often a question of land use change which is at stake in water management. As such, it poses the questions on how to govern both water and land to satisfy the different stakeholders. Nature-based strategies often follow with voluntary agreements, which are promoted as an alternative instrument to the traditional top-down command and control regulation. Voluntary agreements aim at bringing more efficiency, participatory and transparency in solving problems between different social groups. In natural hazard risk management voluntary agreements are now receiving high interests to complement the existing policy instruments in order to achieve the objectives the EU WFD and of the Floods Directive. This paper investigates the use of voluntary agreements as an alternative instrument to the traditional top-down command and control regulation in the implementation of flood storages in Austria. The paper provides a framework of analysis to reveal barriers and opportunities associated with such approach. The paper concludes that institution and power are the central elements to tackle for allowing the success of voluntary agreement.

  5. Evaluating the efficacy of distributed detention structures to reduce downstream flooding under variable rainfall, antecedent soil, and structural storage conditions

    NASA Astrophysics Data System (ADS)

    Thomas, Nicholas W.; Arenas Amado, Antonio; Schilling, Keith E.; Weber, Larry J.

    2016-10-01

    This research systematically analyzed the influence of antecedent soil wetness, rainfall depth, and the subsequent impact on peak flows in a 45 km2 watershed. Peak flows increased with increasing antecedent wetness and rainfall depth, with the highest peak flows occurring under intense precipitation on wet soils. Flood mitigation structures were included and investigated under full and empty initial storage conditions. Peak flows were reduced at the outlet of the watershed by 3-17%. The highest peak flow reductions occurred in scenarios with dry soil, empty project storage, and low rainfall depths. These analyses showed that with increased rainfall depth, antecedent moisture conditions became increasingly less impactful. Scaling invariance of peak discharges were shown to hold true within this basin and were fit through ordinary least squares regression for each design scenario. Scale-invariance relationships were extrapolated beyond the outlet of the analyzed basin to the point of intersection of with and without structure scenarios. In each scenario extrapolated peak discharge benefits depreciated at a drainage area of approximately 100 km2. The associated drainage area translated to roughly 2 km downstream of the Beaver Creek watershed outlet. This work provides an example of internal watershed benefits of structural flood mitigation efforts, and the impact the may exert outside of the basin. Additionally, the influence of 1.8 million in flood reduction tools was not sufficient to routinely address downstream flood concerns, shedding light on the additional investment required to alter peak flows in large basins.

  6. Modeling multi-source flooding disaster and developing simulation framework in Delta

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Cui, X.; Zhang, W.

    2016-12-01

    Most Delta regions of the world are densely populated and with advanced economies. However, due to impact of the multi-source flooding (upstream flood, rainstorm waterlogging, storm surge flood), the Delta regions is very vulnerable. The academic circles attach great importance to the multi-source flooding disaster in these areas. The Pearl River Delta urban agglomeration in south China is selected as the research area. Based on analysis of natural and environmental characteristics data of the Delta urban agglomeration(remote sensing data, land use data, topographic map, etc.), hydrological monitoring data, research of the uneven distribution and process of regional rainfall, the relationship between the underlying surface and the parameters of runoff, effect of flood storage pattern, we use an automatic or semi-automatic method for dividing spatial units to reflect the runoff characteristics in urban agglomeration, and develop an Multi-model Ensemble System in changing environment, including urban hydrologic model, parallel computational 1D&2D hydrodynamic model, storm surge forecast model and other professional models, the system will have the abilities like real-time setting a variety of boundary conditions, fast and real-time calculation, dynamic presentation of results, powerful statistical analysis function. The model could be optimized and improved by a variety of verification methods. This work was supported by the National Natural Science Foundation of China (41471427); Special Basic Research Key Fund for Central Public Scientific Research Institutes.

  7. Flood quantiles scaling with upper soil hydraulic properties for different land uses at catchment scale

    NASA Astrophysics Data System (ADS)

    Peña, Luis E.; Barrios, Miguel; Francés, Félix

    2016-10-01

    Changes in land use within a catchment are among the causes of non-stationarity in the flood regime, as they modify the upper soil physical structure and its runoff production capacity. This paper analyzes the relation between the variation of the upper soil hydraulic properties due to changes in land use and its effect on the magnitude of peak flows: (1) incorporating fractal scaling properties to relate the effect of the static storage capacity (the sum of capillary water storage capacity in the root zone, canopy interception and surface puddles) and the upper soil vertical saturated hydraulic conductivity on the flood regime; (2) describing the effect of the spatial organization of the upper soil hydraulic properties at catchment scale; (3) examining the scale properties in the parameters of the Generalized Extreme Value (GEV) probability distribution function, in relation to the upper soil hydraulic properties. This study considered the historical changes of land use in the Combeima River catchment in South America, between 1991 and 2007, using distributed hydrological modeling of daily discharges to describe the hydrological response. Through simulation of land cover scenarios, it was demonstrated that it is possible to quantify the magnitude of peak flows in scenarios of land cover changes through its Wide-Sense Simple Scaling with the upper soil hydraulic properties.

  8. Best Statistical Distribution of flood variables for Johor River in Malaysia

    NASA Astrophysics Data System (ADS)

    Salarpour Goodarzi, M.; Yusop, Z.; Yusof, F.

    2012-12-01

    A complex flood event is always characterized by a few characteristics such as flood peak, flood volume, and flood duration, which might be mutually correlated. This study explored the statistical distribution of peakflow, flood duration and flood volume at Rantau Panjang gauging station on the Johor River in Malaysia. Hourly data were recorded for 45 years. The data were analysed based on water year (July - June). Five distributions namely, Log Normal, Generalize Pareto, Log Pearson, Normal and Generalize Extreme Value (GEV) were used to model the distribution of all the three variables. Anderson-Darling and Kolmogorov-Smirnov goodness-of-fit tests were used to evaluate the best fit. Goodness-of-fit tests at 5% level of significance indicate that all the models can be used to model the distribution of peakflow, flood duration and flood volume. However, Generalize Pareto distribution is found to be the most suitable model when tested with the Anderson-Darling test and the, Kolmogorov-Smirnov suggested that GEV is the best for peakflow. The result of this research can be used to improve flood frequency analysis. Comparison between Generalized Extreme Value, Generalized Pareto and Log Pearson distributions in the Cumulative Distribution Function of peakflow

  9. Development of regional skews for selected flood durations for the Central Valley Region, California, based on data through water year 2008

    USGS Publications Warehouse

    Lamontagne, Jonathan R.; Stedinger, Jery R.; Berenbrock, Charles; Veilleux, Andrea G.; Ferris, Justin C.; Knifong, Donna L.

    2012-01-01

    Flood-frequency information is important in the Central Valley region of California because of the high risk of catastrophic flooding. Most traditional flood-frequency studies focus on peak flows, but for the assessment of the adequacy of reservoirs, levees, other flood control structures, sustained flood flow (flood duration) frequency data are needed. This study focuses on rainfall or rain-on-snow floods, rather than the annual maximum, because rain events produce the largest floods in the region. A key to estimating flood-duration frequency is determining the regional skew for such data. Of the 50 sites used in this study to determine regional skew, 28 sites were considered to have little to no significant regulated flows, and for the 22 sites considered significantly regulated, unregulated daily flow data were synthesized by using reservoir storage changes and diversion records. The unregulated, annual maximum rainfall flood flows for selected durations (1-day, 3-day, 7-day, 15-day, and 30-day) for all 50 sites were furnished by the U.S. Army Corps of Engineers. Station skew was determined by using the expected moments algorithm program for fitting the Pearson Type 3 flood-frequency distribution to the logarithms of annual flood-duration data. Bayesian generalized least squares regression procedures used in earlier studies were modified to address problems caused by large cross correlations among concurrent rainfall floods in California and to address the extensive censoring of low outliers at some sites, by using the new expected moments algorithm for fitting the LP3 distribution to rainfall flood-duration data. To properly account for these problems and to develop suitable regional-skew regression models and regression diagnostics, a combination of ordinary least squares, weighted least squares, and Bayesian generalized least squares regressions were adopted. This new methodology determined that a nonlinear model relating regional skew to mean basin elevation was the best model for each flood duration. The regional-skew values ranged from -0.74 for a flood duration of 1-day and a mean basin elevation less than 2,500 feet to values near 0 for a flood duration of 7-days and a mean basin elevation greater than 4,500 feet. This relation between skew and elevation reflects the interaction of snow and rain, which increases with increased elevation. The regional skews are more accurate, and the mean squared errors are less than in the Interagency Advisory Committee on Water Data's National skew map of Bulletin 17B.

  10. Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, J.; Xu, H.

    2016-01-01

    Physically based distributed hydrological models (hereafter referred to as PBDHMs) divide the terrain of the whole catchment into a number of grid cells at fine resolution and assimilate different terrain data and precipitation to different cells. They are regarded to have the potential to improve the catchment hydrological process simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters. However, unfortunately the uncertainties associated with this model derivation are very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study: the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using particle swarm optimization (PSO) algorithm and to test its competence and to improve its performances; the second is to explore the possibility of improving physically based distributed hydrological model capability in catchment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with the Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improved PSO algorithm is developed for the parameter optimization of the Liuxihe model in catchment flood forecasting. The improvements include adoption of the linearly decreasing inertia weight strategy to change the inertia weight and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for the Liuxihe model parameter optimization effectively and could improve the model capability largely in catchment flood forecasting, thus proving that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological models. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for the Liuxihe model catchment flood forecasting are 20 and 30 respectively.

  11. Hydraulics of epiphreatic flow of a karst aquifer

    NASA Astrophysics Data System (ADS)

    Gabrovšek, Franci; Peric, Borut; Kaufmann, Georg

    2018-05-01

    The nature of epiphreatic flow remains an important research challenge in karst hydrology. This study focuses on the flood propagation along the epiphreatic system of Reka-Timavo system (Kras/Carso Plateau, Slovenia/Italy). It is based on long-term monitoring of basic physical parameters (pressure/level, temperature, specific electric conductivity) of ground water in six active caves belonging to the flow system. The system vigorously responds to flood events, with stage rising >100 m in some of the caves. Besides presenting the response of the system to flood events of different scales, the work focuses on the interpretation of recorded hydrographs in view of the known distribution and size of conduits and basic hydraulic relations. Furthermore, the hydrographs were used to infer the unknown geometry between the observation points. This way, the main flow restrictors, overflow passages and large epiphreatic storages were identified. The assumptions were tested with a hydraulic model, where the inversion procedure was used for an additional parameter optimisation. Time series of temperature and specific electric conductivity were used to assess the apparent velocities of flow between consecutive points.

  12. American River Watershed Investigation, California. Reconnaisance Report

    DTIC Science & Technology

    1988-01-01

    studies, and (4) identification of a non-federal sponsor for the feasibility study. The primary study area included the lower American River between Nimbus...FEMA), is r’esponsible for administering the National Flood Insurance Program (NFIP).. A basic goal of the NFIP is the identification of flood plain...RESERVO]R - RE:QUIRED FLOOD COVfIROL SPACI (1,000 ac--ft) Level of Protection Total Flood Folsom Flood New Upstream (Return Period - Storage Storage 2

  13. Understanding Flood Seasonality and Its Temporal Shifts within the Contiguous United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Sheng; Li, Hong-Yi; Leung, L. Ruby

    2017-07-01

    Understanding the causes of flood seasonality is critical for better flood management. This study examines the seasonality of annual maximum floods (AMF) and its changes before and after 1980 at over 250 natural catchments across the contiguous United States. Using circular statistics to define a seasonality index, our analysis focuses on the variability of the flood occurrence date. Generally, catchments with more synchronized seasonal water and energy cycles largely inherit their seasonality of AMF from that of annual maximum rainfall (AMR). In contrast, the seasonality of AMF in catchments with loosely synchronized water and energy cycles are more influenced bymore » high antecedent storage, which is responsible for the amplification of the seasonality of AMF over that of AMR. This understanding then effectively explains a statistically significant shift of flood seasonality detected in some catchments in the recent decades. Catchments where the antecedent soil water storage has increased since 1980 exhibit increasing flood seasonality while catchments that have experienced increases in storm rainfall before the floods have shifted towards floods occurring more variably across the seasons. In the eastern catchments, a concurrent widespread increase in event rainfall magnitude and reduced soil water storage have led to a more variable timing of floods. Our findings of the role of antecedent storage and event rainfall on the flood seasonality provide useful insights for understanding future changes in flood seasonality as climate models projected changes in extreme precipitation and aridity over land.« less

  14. Dynamic hyporheic exchange at intermediate timescales: testing the relative importance of evapotranspiration and flood pulses

    USGS Publications Warehouse

    Larsen, Laurel G.; Harvey, Judson W.; Maglio, Morgan M.

    2014-01-01

    Hyporheic fluxes influence ecological processes across a continuum of timescales. However, few studies have been able to characterize hyporheic fluxes and residence time distributions (RTDs) over timescales of days to years, during which evapotranspiration (ET) and seasonal flood pulses create unsteady forcing. Here we present a data-driven, particle-tracking piston model that characterizes hyporheic fluxes and RTDs based on measured vertical head differences. We used the model to test the relative influence of ET and seasonal flood pulses in the Everglades (FL, USA), in a manner applicable to other low-energy floodplains or broad, shallow streams. We found that over the multiyear timescale, flood pulses that drive relatively deep (∼1 m) flow paths had the dominant influence on hyporheic fluxes and residence times but that ET effects were discernible at shorter timescales (weeks to months) as a break in RTDs. Cumulative RTDs on either side of the break were generally well represented by lognormal functions, except for when ET was strong and none of the standard distributions applied to the shorter timescale. At the monthly timescale, ET increased hyporheic fluxes by 1–2 orders of magnitude; it also decreased 6 year mean residence times by 53–87%. Long, slow flow paths driven by flood pulses increased 6 year hyporheic fluxes by another 1–2 orders of magnitude, to a level comparable to that induced over the short term by shear flow in streams. Results suggest that models of intermediate-timescale processes should include at least two-storage zones with different RTDs, and that supporting field data collection occur over 3–4 years.

  15. Understanding high magnitude flood risk: evidence from the past

    NASA Astrophysics Data System (ADS)

    MacDonald, N.

    2009-04-01

    The average length of gauged river flow records in the UK is ~25 years, which presents a problem in determining flood risk for high-magnitude flood events. Severe floods have been recorded in many UK catchments during the past 10 years, increasing the uncertainty in conventional flood risk estimates based on river flow records. Current uncertainty in flood risk has implications for society (insurance costs), individuals (personal vulnerability) and water resource managers (flood/drought risk). An alternative approach is required which can improve current understanding of the flood frequency/magnitude relationship. Historical documentary accounts are now recognised as a valuable resource when considering the flood frequency/magnitude relationship, but little consideration has been given to the temporal and spatial distribution of these records. Building on previous research based on British rivers (urban centre): Ouse (York), Trent (Nottingham), Tay (Perth), Severn (Shrewsbury), Dee (Chester), Great Ouse (Cambridge), Sussex Ouse (Lewes), Thames (Oxford), Tweed (Kelso) and Tyne (Hexham), this work considers the spatial and temporal distribution of historical flooding. The selected sites provide a network covering many of the largest river catchments in Britain, based on urban centres with long detailed documentary flood histories. The chronologies offer an opportunity to assess long-term patterns of flooding, indirectly determining periods of climatic variability and potentially increased geomorphic activity. This research represents the first coherent large scale analysis undertaken of historical multi-catchment flood chronologies, providing an unparalleled network of sites, permitting analysis of the spatial and temporal distribution of historical flood patterns on a national scale.

  16. New version of 1 km global river flood hazard maps for the next generation of Aqueduct Global Flood Analyzer

    NASA Astrophysics Data System (ADS)

    Sutanudjaja, Edwin; van Beek, Rens; Winsemius, Hessel; Ward, Philip; Bierkens, Marc

    2017-04-01

    The Aqueduct Global Flood Analyzer, launched in 2015, is an open-access and free-of-charge web-based interactive platform which assesses and visualises current and future projections of river flood impacts across the globe. One of the key components in the Analyzer is a set of river flood inundation hazard maps derived from the global hydrological model simulation of PCR-GLOBWB. For the current version of the Analyzer, accessible on http://floods.wri.org/#/, the early generation of PCR-GLOBWB 1.0 was used and simulated at 30 arc-minute ( 50 km at the equator) resolution. In this presentation, we will show the new version of these hazard maps. This new version is based on the latest version of PCR-GLOBWB 2.0 (https://github.com/UU-Hydro/PCR-GLOBWB_model, Sutanudjaja et al., 2016, doi:10.5281/zenodo.60764) simulated at 5 arc-minute ( 10 km at the equator) resolution. The model simulates daily hydrological and water resource fluxes and storages, including the simulation of overbank volume that ends up on the floodplain (if flooding occurs). The simulation was performed for the present day situation (from 1960) and future climate projections (until 2099) using the climate forcing created in the ISI-MIP project. From the simulated flood inundation volume time series, we then extract annual maxima for each cell, and fit these maxima to a Gumbel extreme value distribution. This allows us to derive flood volume maps of any hazard magnitude (ranging from 2-year to 1000-year flood events) and for any time period (e.g. 1960-1999, 2010-2049, 2030-2069, and 2060-2099). The derived flood volumes (at 5 arc-minute resolution) are then spread over the high resolution terrain model using an updated GLOFRIS downscaling module (Winsemius et al., 2013, doi:10.5194/hess-17-1871-2013). The updated version performs a volume spreading sequentially from more upstream basins to downstream basins, hence enabling a better inclusion of smaller streams, and takes into account spreading of water over diverging deltaic regions. This results in a set of high resolution hazard maps of flood inundation depth at 30 arc-second ( 1 km at the equator) resolution. Together with many other updates and new features, the resulting flood hazard maps will be used in the next generation of the Aqueduct Global Flood Analyzer.

  17. Balancing-out floods and droughts: Opportunities to utilize floodwater harvesting and groundwater storage for agricultural development in Thailand

    NASA Astrophysics Data System (ADS)

    Pavelic, Paul; Srisuk, Kriengsak; Saraphirom, Phayom; Nadee, Suwanchai; Pholkern, Kewaree; Chusanathas, Sumrit; Munyou, Sitisak; Tangsutthinon, Theerasak; Intarasut, Teerawash; Smakhtin, Vladimir

    2012-11-01

    SummaryThailand's naturally high seasonal endowment of water resources brings with it the regularly experienced problems associated with floods during the wet season and droughts during the dry season. Downstream-focused engineering solutions that address flooding are vital, but do not necessarily capture the potential for basin-scale improvements to water security, food production and livelihood enhancement. Managed aquifer recharge, typically applied to annual harvesting of wet season flows in dry climates, can also be applied to capture, store and recover episodic extreme flood events in humid environments. In the Chao Phraya River Basin it is estimated that surplus flows recorded downstream above a critical threshold could be harvested and recharged within the shallow alluvial aquifers in a distributed manner upstream of flood prone areas without significantly impacting existing large-medium storages or the Gulf and deltaic ecosystems. Capturing peak flows approximately 1 year in four by dedicating around 200 km2 of land to groundwater recharge would reduce the magnitude of flooding and socio-economic impacts and generate around USD 250 M/year in export earnings for smallholder rainfed farmers through dry season cash cropping without unduly compromising the demands of existing water users. It is proposed that farmers in upstream riparian zones be co-opted as flood harvesters and thus contribute to improved floodwater management through simple water management technologies that enable agricultural lands to be put to higher productive use. Local-scale site suitability and technical performance assessments along with revised governance structures would be required. It is expected that such an approach would also be applicable to other coastal-discharging basins in Thailand and potentially throughout the Asia region.

  18. Hydrological controls on transient aquifer storage in a karst watershed

    NASA Astrophysics Data System (ADS)

    Spellman, P.; Martin, J.; Gulley, J. D.

    2017-12-01

    While surface storage of floodwaters is well-known to attenuate flood peaks, transient storage of floodwaters in aquifers is a less recognized mechanism of flood peak attenuation. The hydraulic gradient from aquifer to river controls the magnitude of transient aquifer storage and is ultimately a function of aquifer hydraulic conductivity, and effective porosity. Because bedrock and granular aquifers tend to have lower hydraulic conductivities and porosities, their ability to attenuate flood peaks is generally small. In karst aquifers, however, extensive cave systems create high hydraulic conductivities and porosities that create low antecedent hydraulic gradients between aquifers and rivers. Cave springs can reverse flow during high discharges in rivers, temporarily storing floodwaters in the aquifer thus reducing the magnitude of flood discharge downstream. To date however, very few studies have quantified the magnitude or controls of transient aquifer storage in karst watersheds. We therefore investigate controls on transient aquifer storage by using 10 years of river and groundwater data from the Suwannee River Basin, which flows over the karstic upper Floridan aquifer in north-central Florida. We use multiple linear regression to compare the effects of three hydrological controls on the magnitude of transient aquifer storage: antecedent stage, recharge and slope of hydrograph rise. We show the dominant control on transient aquifer storage is antecedent stage, whereby lower stages result in greater magnitudes of transient aquifer storage. Our results suggest that measures of groundwater levels prior to an event can be useful in determining whether transient aquifer storage will occur and may provide a useful metric for improving predictions of flood magnitudes.

  19. Flood inundation extent mapping based on block compressed tracing

    NASA Astrophysics Data System (ADS)

    Shen, Dingtao; Rui, Yikang; Wang, Jiechen; Zhang, Yu; Cheng, Liang

    2015-07-01

    Flood inundation extent, depth, and duration are important factors affecting flood hazard evaluation. At present, flood inundation analysis is based mainly on a seeded region-growing algorithm, which is an inefficient process because it requires excessive recursive computations and it is incapable of processing massive datasets. To address this problem, we propose a block compressed tracing algorithm for mapping the flood inundation extent, which reads the DEM data in blocks before transferring them to raster compression storage. This allows a smaller computer memory to process a larger amount of data, which solves the problem of the regular seeded region-growing algorithm. In addition, the use of a raster boundary tracing technique allows the algorithm to avoid the time-consuming computations required by the seeded region-growing. Finally, we conduct a comparative evaluation in the Chin-sha River basin, results show that the proposed method solves the problem of flood inundation extent mapping based on massive DEM datasets with higher computational efficiency than the original method, which makes it suitable for practical applications.

  20. Flood characteristics of urban watersheds in the United States

    USGS Publications Warehouse

    Sauer, Vernon B.; Thomas, W.O.; Stricker, V.A.; Wilson, K.V.

    1983-01-01

    A nationwide study of flood magnitude and frequency in urban areas was made for the purpose of reviewing available literature, compiling an urban flood data base, and developing methods of estimating urban floodflow characteristics in ungaged areas. The literature review contains synopses of 128 recent publications related to urban floodflow. A data base of 269 gaged basins in 56 cities and 31 States, including Hawaii, contains a wide variety of topographic and climatic characteristics, land-use variables, indices of urbanization, and flood-frequency estimates. Three sets of regression equations were developed to estimate flood discharges for ungaged sites for recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years. Two sets of regression equations are based on seven independent parameters and the third is based on three independent parameters. The only difference in the two sets of seven-parameter equations is the use of basin lag time in one and lake and reservoir storage in the other. Of primary importance in these equations is an independent estimate of the equivalent rural discharge for the ungaged basin. The equations adjust the equivalent rural discharge to an urban condition. The primary adjustment factor, or index of urbanization, is the basin development factor, a measure of the extent of development of the drainage system in the basin. This measure includes evaluations of storm drains (sewers), channel improvements, and curb-and-gutter streets. The basin development factor is statistically very significant and offers a simple and effective way of accounting for drainage development and runoff response in urban areas. Percentage of impervious area is also included in the seven-parameter equations as an additional measure of urbanization and apparently accounts for increased runoff volumes. This factor is not highly significant for large floods, which supports the generally held concept that imperviousness is not a dominant factor when soils become more saturated during large storms. Other parameters in the seven-parameter equations include drainage area size, channel slope, rainfall intensity, lake and reservoir storage, and basin lag time. These factors are all statistically significant and provide logical indices of basin conditions. The three-parameter equations include only the three most significant parameters: rural discharge, basin-development factor, and drainage area size. All three sets of regression equations provide unbiased estimates of urban flood frequency. The seven-parameter regression equations without basin lag time have average standard errors of regression varying from ? 37 percent for the 5-year flood to ? 44 percent for the 100-year flood and ? 49 percent for the 500-year flood. The other two sets of regression equations have similar accuracy. Several tests for bias, sensitivity, and hydrologic consistency are included which support the conclusion that the equations are useful throughout the United States. All estimating equations were developed from data collected on drainage basins where temporary in-channel storage, due to highway embankments, was not significant. Consequently, estimates made with these equations do not account for the reducing effect of this temporary detention storage.

  1. Global SWOT Data Assimilation of River Hydrodynamic Model; the Twin Simulation Test of CaMa-Flood

    NASA Astrophysics Data System (ADS)

    Ikeshima, D.; Yamazaki, D.; Kanae, S.

    2016-12-01

    CaMa-Flood is a global scale model for simulating hydrodynamics in large scale rivers. It can simulate river hydrodynamics such as river discharge, flooded area, water depth and so on by inputting water runoff derived from land surface model. Recently many improvements at parameters or terrestrial data are under process to enhance the reproducibility of true natural phenomena. However, there are still some errors between nature and simulated result due to uncertainties in each model. SWOT (Surface water and Ocean Topography) is a satellite, which is going to be launched in 2021, can measure open water surface elevation. SWOT observed data can be used to calibrate hydrodynamics model at river flow forecasting and is expected to improve model's accuracy. Combining observation data into model to calibrate is called data assimilation. In this research, we developed data-assimilated river flow simulation system in global scale, using CaMa-Flood as river hydrodynamics model and simulated SWOT as observation data. Generally at data assimilation, calibrating "model value" with "observation value" makes "assimilated value". However, the observed data of SWOT satellite will not be available until its launch in 2021. Instead, we simulated the SWOT observed data using CaMa-Flood. Putting "pure input" into CaMa-Flood produce "true water storage". Extracting actual daily swath of SWOT from "true water storage" made simulated observation. For "model value", we made "disturbed water storage" by putting "noise disturbed input" to CaMa-Flood. Since both "model value" and "observation value" are made by same model, we named this twin simulation. At twin simulation, simulated observation of "true water storage" is combined with "disturbed water storage" to make "assimilated value". As the data assimilation method, we used ensemble Kalman filter. If "assimilated value" is closer to "true water storage" than "disturbed water storage", the data assimilation can be marked effective. Also by changing the input disturbance of "disturbed water storage", acceptable rate of uncertainty at the input may be discussed.

  2. A Participatory Modeling Application of a Distributed Hydrologic Model in Nuevo Leon, Mexico for the 2010 Hurricane Alex Flood Event

    NASA Astrophysics Data System (ADS)

    Baish, A. S.; Vivoni, E. R.; Payan, J. G.; Robles-Morua, A.; Basile, G. M.

    2011-12-01

    A distributed hydrologic model can help bring consensus among diverse stakeholders in regional flood planning by producing quantifiable sets of alternative futures. This value is acute in areas with high uncertainties in hydrologic conditions and sparse observations. In this study, we conduct an application of the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS) in the Santa Catarina basin of Nuevo Leon, Mexico, where Hurricane Alex in July 2010 led to catastrophic flooding of the capital city of Monterrey. Distributed model simulations utilize best-available information on the regional topography, land cover, and soils obtained from Mexican government agencies or analysis of remotely-sensed imagery from MODIS and ASTER. Furthermore, we developed meteorological forcing for the flood event based on multiple data sources, including three local gauge networks, satellite-based estimates from TRMM and PERSIANN, and the North American Land Data Assimilation System (NLDAS). Remotely-sensed data allowed us to quantify rainfall distributions in the upland, rural portions of the Santa Catarina that are sparsely populated and ungauged. Rural areas had significant contributions to the flood event and as a result were considered by stakeholders for flood control measures, including new reservoirs and upland vegetation management. Participatory modeling workshops with the stakeholders revealed a disconnect between urban and rural populations in regard to understanding the hydrologic conditions of the flood event and the effectiveness of existing and potential flood control measures. Despite these challenges, the use of the distributed flood forecasts developed within this participatory framework facilitated building consensus among diverse stakeholders and exploring alternative futures in the basin.

  3. Effect of Sampling Period on Flood Frequency Distributions in the Susquehanna Basin

    NASA Astrophysics Data System (ADS)

    Kargar, M.; Beighley, R. E.

    2010-12-01

    Flooding is a devastating natural hazard that claims many human lives and significantly impact regional economies each year. Given the magnitude of flooding impacts, significant resources are dedicated to the development of forecasting models for early warning and evacuation planning, construction of flood defenses (levees/dams) to limit flooding, and the design of civil infrastructure (bridges, culverts, storm sewers) to convey flood flows without failing. In all these cases, it is particularly important to understand the potential flooding risk in terms of both recurrence interval (i.e., return period) and magnitude. Flood frequency analysis (FFA) is a form of risk analysis used to extrapolate the return periods of floods beyond the gauged record. The technique involves using observed annual peak flow discharge data to calculate statistical information such as mean values, standard deviations, skewness, and recurrence intervals. Since discharge data for most catchments have been collected for periods of time less than 100 years, the estimation of the design discharge requires a degree of extrapolation. This study focuses on the assessment and modifications of flood frequency based discharges for sites with limited sampling periods. Here, limited sampling period is intended to capture two issues: (1) limited number of observations to adequately capture the flood frequency signal (i.e., minimum number of annual peaks needed) and (2) climate variability (i.e., sampling period contains primarily “wet” or “dry” periods only). Total of 34 gauges (more than 70 years of data) spread throughout the Susquehanna River basin (71,000 sq km) were used to investigate the impact of sampling period on flood frequency distributions. Data subsets ranging from 10 years to the total number of years available were created from the data for each gauging station. To estimate the flood frequency, the Log Pearson Type III distribution was fit to the logarithms of instantaneous annual peak flows following Bulletin 17B guidelines of the U.S. Interagency Advisory Committee on Water Data. The resulting flood frequencies from these subsets were compared to the results from the entire record at each gauge. Based on the analysis, the minimum number of years required to obtain a reasonable flood frequency distribution was determined for each gauge. In addition, a method to adjust flood frequency distribution at a given gauging station with limited data based on other locations with longer periods of records was developed.

  4. Flood impacts on a water distribution network

    NASA Astrophysics Data System (ADS)

    Arrighi, Chiara; Tarani, Fabio; Vicario, Enrico; Castelli, Fabio

    2017-12-01

    Floods cause damage to people, buildings and infrastructures. Water distribution systems are particularly exposed, since water treatment plants are often located next to the rivers. Failure of the system leads to both direct losses, for instance damage to equipment and pipework contamination, and indirect impact, since it may lead to service disruption and thus affect populations far from the event through the functional dependencies of the network. In this work, we present an analysis of direct and indirect damages on a drinking water supply system, considering the hazard of riverine flooding as well as the exposure and vulnerability of active system components. The method is based on interweaving, through a semi-automated GIS procedure, a flood model and an EPANET-based pipe network model with a pressure-driven demand approach, which is needed when modelling water distribution networks in highly off-design conditions. Impact measures are defined and estimated so as to quantify service outage and potential pipe contamination. The method is applied to the water supply system of the city of Florence, Italy, serving approximately 380 000 inhabitants. The evaluation of flood impact on the water distribution network is carried out for different events with assigned recurrence intervals. Vulnerable elements exposed to the flood are identified and analysed in order to estimate their residual functionality and to simulate failure scenarios. Results show that in the worst failure scenario (no residual functionality of the lifting station and a 500-year flood), 420 km of pipework would require disinfection with an estimated cost of EUR 21 million, which is about 0.5 % of the direct flood losses evaluated for buildings and contents. Moreover, if flood impacts on the water distribution network are considered, the population affected by the flood is up to 3 times the population directly flooded.

  5. Flood Frequency Curves - Use of information on the likelihood of extreme floods

    NASA Astrophysics Data System (ADS)

    Faber, B.

    2011-12-01

    Investment in the infrastructure that reduces flood risk for flood-prone communities must incorporate information on the magnitude and frequency of flooding in that area. Traditionally, that information has been a probability distribution of annual maximum streamflows developed from the historical gaged record at a stream site. Practice in the United States fits a Log-Pearson type3 distribution to the annual maximum flows of an unimpaired streamflow record, using the method of moments to estimate distribution parameters. The procedure makes the assumptions that annual peak streamflow events are (1) independent, (2) identically distributed, and (3) form a representative sample of the overall probability distribution. Each of these assumptions can be challenged. We rarely have enough data to form a representative sample, and therefore must compute and display the uncertainty in the estimated flood distribution. But, is there a wet/dry cycle that makes precipitation less than independent between successive years? Are the peak flows caused by different types of events from different statistical populations? How does the watershed or climate changing over time (non-stationarity) affect the probability distribution floods? Potential approaches to avoid these assumptions vary from estimating trend and shift and removing them from early data (and so forming a homogeneous data set), to methods that estimate statistical parameters that vary with time. A further issue in estimating a probability distribution of flood magnitude (the flood frequency curve) is whether a purely statistical approach can accurately capture the range and frequency of floods that are of interest. A meteorologically-based analysis produces "probable maximum precipitation" (PMP) and subsequently a "probable maximum flood" (PMF) that attempts to describe an upper bound on flood magnitude in a particular watershed. This analysis can help constrain the upper tail of the probability distribution, well beyond the range of gaged data or even historical or paleo-flood data, which can be very important in risk analyses performed for flood risk management and dam and levee safety studies.

  6. 33 CFR 208.82 - Hetch Hetchy, Cherry Valley, and Don Pedro Dams and Reservoirs.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-control purposes in accordance with the Flood-Control Storage Reservation Diagram currently in force for... section. The Flood-Control Storage Reservation Diagram in force as of the promulgation of this section is...-Control Storage Reservation Diagram may be developed from time to time as necessary by the Corps of...

  7. Spatial and temporal variability of water salinity in an ephemeral, arid-zone river, central Australia

    NASA Astrophysics Data System (ADS)

    Costelloe, Justin F.; Grayson, Rodger B.; McMahon, Thomas A.; Argent, Robert M.

    2005-10-01

    This study describes the spatial and temporal variability of water salinity of the Neales-Peake, an ephemeral river system in the arid Lake Eyre basin of central Australia. Saline to hypersaline waterholes occur in the lower reaches of the Neales-Peake catchment and lie downstream of subcatchments containing artesian mound springs. Flood pulses are fresh in the upper reaches of the rivers (<200 mg l-1). In the salt-affected reaches, flood pulses become increasingly saline during their recession. It is hypothesized that leakage from the Great Artesian Basin deposits salt at the surface. This salt is then transported by infrequent runoff events into the main river system over long periods of time. The bank/floodplain store downstream of salt-affected catchments contains high salt concentrations, and this salt is mobilized during the flow recession when bank/floodplain storage discharges into the channel. The salinity of the recession increases as the percentage of flow derived from this storage increases. A simple conceptual model was developed for investigating the salt movement processes during flow events. The model structure for transport of water and salt in the Neales-Peake catchment generated similar spatial and temporal patterns of salt distribution in the floodplain/bank storage and water flow as observed during flow events in 2000-02. However, more field-data collection and modelling are required for improved calibration and description of salt transport and storage processes, particularly with regard to the number of stores required to represent the salt distribution in the upper zone of the soil profile.

  8. The use of old cartographic datasets along with remote sensing data for better understand and map the 2005-2008 floods in Romania

    NASA Astrophysics Data System (ADS)

    Craciunescu, V.; Flueraru, C.; Stancalie, G.

    2009-04-01

    Floods are the major disaster affecting many countries in the world year after year. From Romania perspective, floods are among the most hazardous natural disasters in terms of human suffering and economic losses. Major floods occurred in 2005, 2006 and 2008, the worst ones in more than 40 years, have affected large regions of Romania: in the Timis county (April 2005) over 1 300 homes have been damaged or destroyed, 3 800 people have been evacuated and about 30 000 hectares of agricultural land flooded; in five counties situated in eastern Romania (July 2005) 11 000 homes were inundated, 8 600 people have been evacuated, 20 people were killed, 53 000 ha farmland flooded, 379 bridges damaged or destroyed; in 12 counties along the Danube (April 2006) 3 077 homes were affected (1.049 completely destroyed), 16 000 people evacuated, five people killed, 144 000 hectares of land flooded; in six counties from the North-East part of Romania (July 2008) 3 985 houses were affected (over 300 totally destroyed), 15 834 people evacuated and 35 084 hectares of agricultural land inundated. Flood management evolves and changes as more knowledge and technology becomes available to the environmental community. Satellite imagery can be very effective for flood management in detailed mapping that is required for the production of hazard assessment maps and for input to various types of hydrological models, as well as in monitoring land use/cover changes over the years to quantify prominent changes in land use/cover in general and extent of impervious area in particular. In the same time, the wealth of old cartographic documents is an important cultural and scientific heritage. By careful studying this kind of documents, a modern manager can better understand the way territory was managed in the past and the implications of that management in today's floods reality. Good quality photo cameras, flat-bed and large size scanners were used to convert the analogue old cartographic materials into digital files. Specially, highly compressed, file formats were used to reduce the raster database size without affecting the documents quality. Digitisation and online distribution of this kind of documents, via an online system, provided new ways to access and to interact with our patrimony and new tangible arguments for the flood decision makers. The research included the development of key components and modules providing characterisation (based on metadata), virtual storage, discovery and access services, including intuitive query and browsing mechanisms and exploiting the potential of semantic web and advanced storage technologies. For all the mentioned flood events various processing techniques (classification, geo-referencing, filtering, and photo-interpretation) were used to combine the optical and radar images in order to delineate the flooded areas. The resulted flood masks were integrated in GIS environment with the old cartographic database and also with digital layers that represent the current geographic reality.

  9. On hydrologic similarity: A dimensionless flood frequency model using a generalized geomorphologic unit hydrograph and partial area runoff generation

    NASA Technical Reports Server (NTRS)

    Sivapalan, Murugesu; Wood, Eric F.; Beven, Keith J.

    1993-01-01

    One of the shortcomings of the original theory of the geomorphologic unit hydrograph (GUH) is that it assumes that runoff is generated uniformly from the entire catchment area. It is now recognized that in many catchments much of the runoff during storm events is produced on partial areas which usually form on narrow bands along the stream network. A storm response model that includes runoff generation on partial areas by both Hortonian and Dunne mechanisms was recently developed by the authors. In this paper a methodology for integrating this partial area runoff generation model with the GUH-based runoff routing model is presented; this leads to a generalized GUH. The generalized GUH and the storm response model are then used to estimate physically based flood frequency distributions. In most previous work the initial moisture state of the catchment had been assumed to be constant for all the storms. In this paper we relax this assumption and allow the initial moisture conditions to vary between storms. The resulting flood frequency distributions are cast in a scaled dimensionless framework where issues such as catchment scale and similarity can be conveniently addressed. A number of experiments are performed to study the sensitivity of the flood frequency response to some of the 'similarity' parameters identified in this formulation. The results indicate that one of the most important components of the derived flood frequency model relates to the specification of processes within the runoff generation model; specifically the inclusion of both saturation excess and Horton infiltration excess runoff production mechanisms. The dominance of these mechanisms over different return periods of the flood frequency distribution can significantly affect the distributional shape and confidence limits about the distribution. Comparisons with observed flood distributions seem to indicate that such mixed runoff production mechanisms influence flood distribution shape. The sensitivity analysis also indicated that the incorporation of basin and rainfall storm scale also greatly influences the distributional shape of the flood frequency curve.

  10. A framework for multivariate data-based at-site flood frequency analysis: Essentiality of the conjugal application of parametric and nonparametric approaches

    NASA Astrophysics Data System (ADS)

    Vittal, H.; Singh, Jitendra; Kumar, Pankaj; Karmakar, Subhankar

    2015-06-01

    In watershed management, flood frequency analysis (FFA) is performed to quantify the risk of flooding at different spatial locations and also to provide guidelines for determining the design periods of flood control structures. The traditional FFA was extensively performed by considering univariate scenario for both at-site and regional estimation of return periods. However, due to inherent mutual dependence of the flood variables or characteristics [i.e., peak flow (P), flood volume (V) and flood duration (D), which are random in nature], analysis has been further extended to multivariate scenario, with some restrictive assumptions. To overcome the assumption of same family of marginal density function for all flood variables, the concept of copula has been introduced. Although, the advancement from univariate to multivariate analyses drew formidable attention to the FFA research community, the basic limitation was that the analyses were performed with the implementation of only parametric family of distributions. The aim of the current study is to emphasize the importance of nonparametric approaches in the field of multivariate FFA; however, the nonparametric distribution may not always be a good-fit and capable of replacing well-implemented multivariate parametric and multivariate copula-based applications. Nevertheless, the potential of obtaining best-fit using nonparametric distributions might be improved because such distributions reproduce the sample's characteristics, resulting in more accurate estimations of the multivariate return period. Hence, the current study shows the importance of conjugating multivariate nonparametric approach with multivariate parametric and copula-based approaches, thereby results in a comprehensive framework for complete at-site FFA. Although the proposed framework is designed for at-site FFA, this approach can also be applied to regional FFA because regional estimations ideally include at-site estimations. The framework is based on the following steps: (i) comprehensive trend analysis to assess nonstationarity in the observed data; (ii) selection of the best-fit univariate marginal distribution with a comprehensive set of parametric and nonparametric distributions for the flood variables; (iii) multivariate frequency analyses with parametric, copula-based and nonparametric approaches; and (iv) estimation of joint and various conditional return periods. The proposed framework for frequency analysis is demonstrated using 110 years of observed data from Allegheny River at Salamanca, New York, USA. The results show that for both univariate and multivariate cases, the nonparametric Gaussian kernel provides the best estimate. Further, we perform FFA for twenty major rivers over continental USA, which shows for seven rivers, all the flood variables followed nonparametric Gaussian kernel; whereas for other rivers, parametric distributions provide the best-fit either for one or two flood variables. Thus the summary of results shows that the nonparametric method cannot substitute the parametric and copula-based approaches, but should be considered during any at-site FFA to provide the broadest choices for best estimation of the flood return periods.

  11. Design and Flood Control Assessment of 5MWp Fishing and Photovoltaic Power Project in Xinghua City

    NASA Astrophysics Data System (ADS)

    Guo, Liuchao; Hu, Xiaodong; Su, Yuyan; Wu, Peipei; Weng, Songgan

    2017-12-01

    In order to reduce coal consumption in Jiangsu Province and develop new energy sources, considering on the distribution of geology, solar energy resources, traffic and grid connection in Xinghua City, the aim is to determine the configuration of photovoltaic modules and photovoltaic array tracking mode, design photovoltaic array and layout scheme. But the project is a wading project, it is built in Dong Tan Lake polder I115, it needs scientific and reasonable evaluation to the effect of Dong Tan Lake’s flood storage and discharge. The results can provide guidance for similar engineering’s design.

  12. A Review of Flood-Related Storage and Remobilization of Heavy Metal Pollutants in River Systems.

    PubMed

    Ciszewski, Dariusz; Grygar, Tomáš Matys

    Recently observed rapid climate changes have focused the attention of researchers and river managers on the possible effects of increased flooding frequency on the mobilization and redistribution of historical pollutants within some river systems. This text summarizes regularities in the flood-related transport, channel-to-floodplain transfer, and storage and remobilization of heavy metals, which are the most persistent environmental pollutants in river systems. Metal-dispersal processes are essentially much more variable in alluvia than in soils of non-inundated areas due to the effects of flood-sediment sorting and the mixing of pollutants with grains of different origins in a catchment, resulting in changes of one to two orders of magnitude in metal content over distances of centimetres. Furthermore, metal remobilization can be more intensive in alluvia than in soils as a result of bank erosion, prolonged floodplain inundation associated with reducing conditions alternating with oxygen-driven processes of dry periods and frequent water-table fluctuations, which affect the distribution of metals at low-lying strata. Moreover, metal storage and remobilization are controlled by river channelization, but their influence depends on the period and extent of the engineering works. Generally, artificial structures such as groynes, dams or cut-off channels performed before pollution periods favour the entrapment of polluted sediments, whereas the floodplains of lined river channels that adjust to new, post-channelization hydraulic conditions become a permanent sink for fine polluted sediments, which accumulate solely during overbank flows. Metal mobilization in such floodplains takes place only by slow leaching, and their sediments, which accrete at a moderate rate, are the best archives of the catchment pollution with heavy metals.

  13. An object-based storage model for distributed remote sensing images

    NASA Astrophysics Data System (ADS)

    Yu, Zhanwu; Li, Zhongmin; Zheng, Sheng

    2006-10-01

    It is very difficult to design an integrated storage solution for distributed remote sensing images to offer high performance network storage services and secure data sharing across platforms using current network storage models such as direct attached storage, network attached storage and storage area network. Object-based storage, as new generation network storage technology emerged recently, separates the data path, the control path and the management path, which solves the bottleneck problem of metadata existed in traditional storage models, and has the characteristics of parallel data access, data sharing across platforms, intelligence of storage devices and security of data access. We use the object-based storage in the storage management of remote sensing images to construct an object-based storage model for distributed remote sensing images. In the storage model, remote sensing images are organized as remote sensing objects stored in the object-based storage devices. According to the storage model, we present the architecture of a distributed remote sensing images application system based on object-based storage, and give some test results about the write performance comparison of traditional network storage model and object-based storage model.

  14. Origin of the Colorado River experimental flood in Grand Canyon

    USGS Publications Warehouse

    Andrews, E.D.; Pizzi, L.A.

    2000-01-01

    The Colorado River is one of the most highly regulated and extensively utilized rivers in the world. Total reservoir storage is approximately four times the mean annual runoff of ~17 x 109 m3 year -1. Reservoir storage and regulation have decreased annual peak discharges and hydroelectric power generation has increased daily flow variability. In recent years, the incidental impacts of this development have become apparent especially along the Colorado River through Grand Canyon National Park downstream from Glen Canyon Dam and caused widespread concern. Since the completion of Glen Canyon Dam, the number and size of sand bars, which are used by recreational river runners and form the habitat for native fishes, have decreased substantially. Following an extensive hydrological and geomorphic investigation, an experimental flood release from the Glen Canyon Dam was proposed to determine whether sand bars would be rebuilt by a relatively brief period of flow substantially greater than the normal operating regime. This proposed release, however, was constrained by the Law of the River, the body of law developed over 70 years to control and distribute Colorado River water, the needs of hydropower users and those dependent upon hydropower revenues, and the physical constraints of the dam itself. A compromise was reached following often difficult negotiations and an experimental flood to rebuild sand bars was released in 1996. This flood, and the process by which it came about, gives hope to resolving the difficult and pervasive problem of allocation of water resources among competing interests.The Colorado River is one of the most highly regulated and extensively utilized rivers in the world. Total reservoir storage is approximately four times the mean annual runoff of approximately 17??109 m3 year-1. Reservoir storage and regulation have decreased annual peak discharges and hydroelectric power generation has increased daily flow variability. In recent years, the incidental impacts of this development have become apparent especially along the Colorado River through Grand Canyon National Park downstream from Glen Canyon Dam and caused widespread concern. Since the completion of Glen Canyon Dam, the number and size of sand bars, which are used by recreational river runners and form the habitat for native fishes, have decreased substantially. Following an extensive hydrological and geomorphic investigation, an experimental flood release from the Glen Canyon Dam was proposed to determine whether sand bars would be rebuilt by a relatively brief period of flow substantially greater than the normal operating regime. This proposed release, however, was constrained by the Law of the River, the body of law developed over 70 years to control and distribute Colorado River water, the needs of hydropower users and those dependent upon hydropower revenues, and the physical constraints of the dam itself. A compromise was reached following often difficult negotiations and an experimental flood to rebuild sand bars was released in 1996. This flood, and the process by which it came about, gives hope to resolving the difficult and pervasive problem of allocation of water resources among competing interests.

  15. Nonstationary frequency analysis for the trivariate flood series of the Weihe River

    NASA Astrophysics Data System (ADS)

    Jiang, Cong; Xiong, Lihua

    2016-04-01

    Some intensive human activities such as water-soil conservation can significantly alter the natural hydrological processes of rivers. In this study, the effect of the water-soil conservation on the trivariate flood series from the Weihe River located in the Northwest China is investigated. The annual maxima daily discharge, annual maxima 3-day flood volume and annual maxima 5-day flood volume are chosen as the study data and used to compose the trivariate flood series. The nonstationarities in both the individual univariate flood series and the corresponding antecedent precipitation series generating the flood events are examined by the Mann-Kendall trend test. It is found that all individual univariate flood series present significant decreasing trend, while the antecedent precipitation series can be treated as stationary. It indicates that the increase of the water-soil conservation land area has altered the rainfall-runoff relationship of the Weihe basin, and induced the nonstationarities in the three individual univariate flood series. The time-varying moments model based on the Pearson type III distribution is applied to capture the nonstationarities in the flood frequency distribution with the water-soil conservation land area introduced as the explanatory variable of the flood distribution parameters. Based on the analysis for each individual univariate flood series, the dependence structure among the three univariate flood series are investigated by the time-varying copula model also with the water-soil conservation land area as the explanatory variable of copula parameters. The results indicate that the dependence among the trivariate flood series is enhanced by the increase of water-soil conservation land area.

  16. Integrated Urban Flood Analysis considering Optimal Operation of Flood Control Facilities in Urban Drainage Networks

    NASA Astrophysics Data System (ADS)

    Moon, Y. I.; Kim, M. S.; Choi, J. H.; Yuk, G. M.

    2017-12-01

    eavy rainfall has become a recent major cause of urban area flooding due to the climate change and urbanization. To prevent property damage along with casualties, a system which can alert and forecast urban flooding must be developed. Optimal performance of reducing flood damage can be expected of urban drainage facilities when operated in smaller rainfall events over extreme ones. Thus, the purpose of this study is to execute: A) flood forecasting system using runoff analysis based on short term rainfall; and B) flood warning system which operates based on the data from pump stations and rainwater storage in urban basins. In result of the analysis, it is shown that urban drainage facilities using short term rainfall forecasting data by radar will be more effective to reduce urban flood damage than using only the inflow data of the facility. Keywords: Heavy Rainfall, Urban Flood, Short-term Rainfall Forecasting, Optimal operating of urban drainage facilities. AcknowledgmentsThis research was supported by a grant (17AWMP-B066744-05) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.

  17. 76 FR 17037 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ...-0007] RIN 3150-AI90 List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition AGENCY... or the Commission) is proposing to amend its spent fuel storage cask regulations to add the HI-STORM...: June 13, 2011. SAR Submitted by: Holtec International, Inc. SAR Title: Safety Analysis Report on the HI...

  18. Feasibility Report and Final Environmental Impact Statement, Wisconsin River at Portage, Wisconsin, Feasibility Study for Flood Control. Appendixes.

    DTIC Science & Technology

    1983-12-01

    therefore, any possible changes in floodplain regulation would be independent of project implementation. The existing regulation affects properties...to 0.4. Based on engineering experience there is a tendency toward independence as tributary drainage area size decreases. Frequency-discharge...stages on the Wisconsin River. Similarly the storage areas are analyzed as independent syste,, o thereby, reduction in flood elevations (routing) and

  19. Process-based model with flood control measures towards more realistic global flood modeling

    NASA Astrophysics Data System (ADS)

    Tang, Q.; Zhang, X.; Wang, Y.; Mu, M.; Lv, A.; Li, Z.

    2017-12-01

    In the profoundly human-influenced era, the Anthropocene, increased amount of land was developed in flood plains and many flood control measures were implemented to protect people and infrastructures placed in the flood-prone areas. These human influences (for example, dams and dykes) have altered peak streamflow and flood risk, and are already an integral part of flood. However, most of the process-based flood models have yet to taken into account the human influences. In this study, we used a hydrological model together with an advanced hydrodynamic model to assess flood risk at the Baiyangdian catchment. The Baiyangdian Lake is the largest shallow freshwater lake in North China, and it was used as a flood storage area in the past. A new development hub for the Beijing-Tianjin-Hebei economic triangle, namely the Xiongan new area, was recently established in the flood-prone area around the lake. The shuttle radar topography mission (SRTM) digital elevation model (DEMs) was used to parameterize the hydrodynamic model simulation, and the inundation estimates were compared with published flood maps and observed inundation area during the extreme historical flood events. A simple scheme was carried out to consider the impacts of flood control measures, including the reservoirs in the headwaters and the dykes to be built. By comparing model simulations with and without the influences of flood control measures, we demonstrated the importance of human influences in altering the inundated area and depth under design flood conditions. Based on the SRTM DEM and dam and reservoir data in the Global Reservoir and Dam (GRanD) database, we further discuss the potential to develop a global flood model with human influences.

  20. Water resources management in the Ganges Basin: a comparison of three strategies for conjunctive use of groundwater and surface water

    USGS Publications Warehouse

    Khan, Mahfuzur R.; Voss, Clifford I.; Yu, Winston; Michael, Holly A.

    2014-01-01

    The most difficult water resources management challenge in the Ganges Basin is the imbalance between water demand and seasonal availability. More than 80 % of the annual flow in the Ganges River occurs during the 4-month monsoon, resulting in widespread flooding. During the rest of the year, irrigation, navigation, and ecosystems suffer because of water scarcity. Storage of monsoonal flow for utilization during the dry season is one approach to mitigating these problems. Three conjunctive use management strategies involving subsurface water storage are evaluated in this study: Ganges Water Machine (GWM), Pumping Along Canals (PAC), and Distributed Pumping and Recharge (DPR). Numerical models are used to determine the efficacy of these strategies. Results for the Indian State of Uttar Pradesh (UP) indicate that these strategies create seasonal subsurface storage from 6 to 37 % of the yearly average monsoonal flow in the Ganges exiting UP over the considered range of conditions. This has clear implications for flood reduction, and each strategy has the potential to provide irrigation water and to reduce soil waterlogging. However, GWM and PAC require significant public investment in infrastructure and management, as well as major shifts in existing water use practices; these also involve spatially-concentrated pumping, which may induce land subsidence. DPR also requires investment and management, but the distributed pumping is less costly and can be more easily implemented via adaptation of existing water use practices in the basin.

  1. Validation of satellite-based operational flood monitoring in Southern Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Gouweleeuw, Ben; Ticehurst, Catherine; Lerat, Julien; Thew, Peter

    2010-05-01

    The integration of remote sensing observations with stage data and flood modeling has the potential to provide improved support to a number of disciplines, such as flood warning emergency response and operational water resources management. The ability of remote sensing technology to monitor the dynamics of hydrological events lies in its capacity to map surface water. For flood monitoring, remote sensing imagery needs to be available sufficiently frequently to capture subsequent inundation stages. MODIS optical data are available at a moderately high spatial and temporal resolution (250m-1km, twice daily), but are affected by cloud cover. AMSR-E passive microwave observations are available at comparable temporal resolution, but coarse spatial resolution (5-70km), where the smaller footprints corresponds with the higher frequency bands, which are affected by precipitating clouds. A novel operational technique to monitor flood extent combines MODIS reflectance and AMSR-E passive microwave imagery to optimize data continuity. Flood extent is subsequently combined with a DEM to obtain total flood water volume. The flood extent and volume product is operational for the lower-Balonne floodplain in Southern Queensland, Australia. For validation purposes, two moderate flood events coinciding with the MODIS and AMSR-E sensor lifetime are evaluated. The flood volume estimated from MODIS/AMSR-E images gives an accurate indication of both the timing and the magnitude of the flood peak compared to the net volume from recorded flow. In the flood recession, however, satellite-derived water volume declines rapidly, while the net flow volume remains level. This may be explained by a combination of ungauged outflows, soil infiltration, evaporation and diversion of flood water into many large open reservoirs for irrigation purposes. The open water storage extent unchanged, the water volume product is not sensitive enough to capture the change in storage water level. Additional information on the latter, e.g. via telemetered buoys, may circumvent this limitation.

  2. Evaluating influence of active tectonics on spatial distribution pattern of floods along eastern Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Selvakumar, R.; Ramasamy, SM.

    2014-12-01

    Flooding is a naturally recurrent phenomenon that causes severe damage to lives and property. Predictions on flood-prone zones are made based on intensity-duration of rainfall, carrying capacity of drainage, and natural or man-made obstructions. Particularly, the lower part of the drainage system and its adjacent geomorphic landforms like floodplains and deltaic plains are considered for analysis, but stagnation in parts of basins that are far away from major riverine systems is less unveiled. Similarly, uncharacteristic flooding in the upper and middle parts of drainage, especially in zones of an anomalous drainage pattern, is also least understood. Even though topographic differences are attributed for such anomalous spatial occurrence of floods, its genetic cause has to be identified for effective management practice. Added to structural and lithological variations, tectonic movements too impart micro-scale terrain undulations. Because active tectonic movements are slow-occurring, long-term geological processes, its resultant topographical variations and drainage anomalies are least correlated with floods. The recent floods of Tamil Nadu also exhibit a unique distribution pattern emphasizing the role of tectonics over it. Hence a detailed geoinformatics-based analysis was carried out to envisage the relationship between spatial distribution of flood and active tectonic elements such as regional arches and deeps, block faults, and graben and drainage anomalies such as deflected drainage, compressed meander, and eyed drainages. The analysis reveals that micro-scale topographic highs and lows imparted by active tectonic movements and its further induced drainage anomalies have substantially controlled the distribution pattern of flood.

  3. Estimated value of insurance premium due to Citarum River flood by using Bayesian method

    NASA Astrophysics Data System (ADS)

    Sukono; Aisah, I.; Tampubolon, Y. R. H.; Napitupulu, H.; Supian, S.; Subiyanto; Sidi, P.

    2018-03-01

    Citarum river flood in South Bandung, West Java Indonesia, often happens every year. It causes property damage, producing economic loss. The risk of loss can be mitigated by following the flood insurance program. In this paper, we discussed about the estimated value of insurance premiums due to Citarum river flood by Bayesian method. It is assumed that the risk data for flood losses follows the Pareto distribution with the right fat-tail. The estimation of distribution model parameters is done by using Bayesian method. First, parameter estimation is done with assumption that prior comes from Gamma distribution family, while observation data follow Pareto distribution. Second, flood loss data is simulated based on the probability of damage in each flood affected area. The result of the analysis shows that the estimated premium value of insurance based on pure premium principle is as follows: for the loss value of IDR 629.65 million of premium IDR 338.63 million; for a loss of IDR 584.30 million of its premium IDR 314.24 million; and the loss value of IDR 574.53 million of its premium IDR 308.95 million. The premium value estimator can be used as neither a reference in the decision of reasonable premium determination, so as not to incriminate the insured, nor it result in loss of the insurer.

  4. Well logging evaluation of water-flooded layers and distribution rule of remaining oil in marine sandstone reservoirs of the M oilfield in the Pearl River Mouth basin

    NASA Astrophysics Data System (ADS)

    Li, Xiongyan; Qin, Ruibao; Gao, Yunfeng; Fan, Hongjun

    2017-03-01

    In the marine sandstone reservoirs of the M oilfield the water cut is up to 98%, while the recovery factor is only 35%. Additionally, the distribution of the remaining oil is very scattered. In order to effectively assess the potential of the remaining oil, the logging evaluation of the water-flooded layers and the distribution rule of the remaining oil are studied. Based on the log response characteristics, the water-flooded layers can be qualitatively identified. On the basis of the mercury injection experimental data of the evaluation wells, the calculation model of the initial oil saturation is built. Based on conventional logging data, the evaluation model of oil saturation is established. The difference between the initial oil saturation and the residual oil saturation can be used to quantitatively evaluate the water-flooded layers. The evaluation result of the water-flooded layers is combined with the ratio of the water-flooded wells in the marine sandstone reservoirs. As a result, the degree of water flooding in the marine sandstone reservoirs can be assessed. On the basis of structural characteristics and sedimentary environments, the horizontal and vertical water-flooding rules of the different types of reservoirs are elaborated upon, and the distribution rule of the remaining oil is disclosed. The remaining oil is mainly distributed in the high parts of the structure. The remaining oil exists in the top of the reservoirs with good physical properties while the thickness of the remaining oil ranges from 2-5 m. However, the thickness of the remaining oil of the reservoirs with poor physical properties ranges from 5-8 m. The high production of some of the drilled horizontal wells shows that the above distribution rule of the remaining oil is accurate. In the marine sandstone reservoirs of the M oilfield, the research on the well logging evaluation of the water-flooded layers and the distribution rule of the remaining oil has great practical significance to the prediction of the distribution of the remaining oil and the optimization of well locations.

  5. Monitoring Reservoir Storage in South Asia from Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Gao, H.; Naz, B.

    2013-12-01

    Realtime reservoir storage information is essential for accurate flood monitoring and prediction in South Asia, where the fatality rate (by area) due to floods is among the highest in the world. However, South Asia is dominated by international river basins where communications among neighboring countries about reservoir storage and management are extremely limited. In this study, we use a suite of NASA satellite observations to achieve high quality estimation of reservoir storage and storage variations at near realtime in South Asia. The monitoring approach employs vegetation indices from the Moderate Resolution Imaging Spectroradiometer (MODIS) 16-day 250 m MOD13Q1 product and the surface elevation data from the Geoscience Laser Altimeter System (GLAS) on board the Ice, Cloud and land Elevation Satellite (ICESat). This approach contains four steps: 1) identifying the reservoirs with ICESat GLAS overpasses and extracting the elevation data for these locations; 2) using the K-means method for water classification from MODIS andapplying a novel post-classification algorithm to enhance water area estimation accuracy; 3) deriving the relationship between the MODIS water surface area and the ICESat elevation; and 4) estimating the storage of reservoirs over time based on the elevation-area relationship and the MODIS water area time series. For evaluation purposes, we compared the satellite-based reservoir storage with gauge observations for 16 reservoirs in South Asia. The storage estimates were highly correlated with observations (R = 0.92 to 0.98), with values for the normalized root mean square error (NRMSE) ranging from 8.7% to 25.2%. Using this approach, storage and storage variations were estimated for 16 South Asia reservoirs from 2000 to 2012.

  6. Extreme flood event analysis in Indonesia based on rainfall intensity and recharge capacity

    NASA Astrophysics Data System (ADS)

    Narulita, Ida; Ningrum, Widya

    2018-02-01

    Indonesia is very vulnerable to flood disaster because it has high rainfall events throughout the year. Flood is categorized as the most important hazard disaster because it is causing social, economic and human losses. The purpose of this study is to analyze extreme flood event based on satellite rainfall dataset to understand the rainfall characteristic (rainfall intensity, rainfall pattern, etc.) that happened before flood disaster in the area for monsoonal, equatorial and local rainfall types. Recharge capacity will be analyzed using land cover and soil distribution. The data used in this study are CHIRPS rainfall satellite data on 0.05 ° spatial resolution and daily temporal resolution, and GSMap satellite rainfall dataset operated by JAXA on 1-hour temporal resolution and 0.1 ° spatial resolution, land use and soil distribution map for recharge capacity analysis. The rainfall characteristic before flooding, and recharge capacity analysis are expected to become the important information for flood mitigation in Indonesia.

  7. Detection and attribution of flood change across the United States

    NASA Astrophysics Data System (ADS)

    Archfield, Stacey

    2017-04-01

    In the United States, there have a been an increasing number of studies quantifying trends in the annual maximum flood; yet, few studies examine trends in floods that may occur more than once in a given year and even fewer assess trends in floods on rivers that have undergone substantial changes due to urbanization, land-cover change, and agricultural drainage practices. Previous research has shown that, for streamgages having minimal direct human intervention, trends in the peak magnitude, frequency, duration and volume of frequent floods (floods occurring at an average of two events per year relative to a base period) across the United States show large changes; however, few trends are found to be statistically significant. This study extends previous research to provide a comprehensive assessment of flood change across the United States that includes streamgages having experienced confounding alterations to streamflow (urbanization, storage, and land-cover changes) that provides a comprehensive assessment of flood change. Attribution of these changes is also explored.

  8. Machine Learning for Flood Prediction in Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Kuhn, C.; Tellman, B.; Max, S. A.; Schwarz, B.

    2015-12-01

    With the increasing availability of high-resolution satellite imagery, dynamic flood mapping in near real time is becoming a reachable goal for decision-makers. This talk describes a newly developed framework for predicting biophysical flood vulnerability using public data, cloud computing and machine learning. Our objective is to define an approach to flood inundation modeling using statistical learning methods deployed in a cloud-based computing platform. Traditionally, static flood extent maps grounded in physically based hydrologic models can require hours of human expertise to construct at significant financial cost. In addition, desktop modeling software and limited local server storage can impose restraints on the size and resolution of input datasets. Data-driven, cloud-based processing holds promise for predictive watershed modeling at a wide range of spatio-temporal scales. However, these benefits come with constraints. In particular, parallel computing limits a modeler's ability to simulate the flow of water across a landscape, rendering traditional routing algorithms unusable in this platform. Our project pushes these limits by testing the performance of two machine learning algorithms, Support Vector Machine (SVM) and Random Forests, at predicting flood extent. Constructed in Google Earth Engine, the model mines a suite of publicly available satellite imagery layers to use as algorithm inputs. Results are cross-validated using MODIS-based flood maps created using the Dartmouth Flood Observatory detection algorithm. Model uncertainty highlights the difficulty of deploying unbalanced training data sets based on rare extreme events.

  9. Magnitude and frequency of floods in the United States, Part 3-A, Ohio River Basin except Cumberland and Tennessee River Basins

    USGS Publications Warehouse

    Speer, Paul R.; Gamble, Charles R.

    1965-01-01

    This report presents a means of determining the probable magnitude and frequency of floods of any recurrence interval from 1.1 to 50 years at most points on streams in the Ohio River basin except Cumberland and Tennessee River basins. Curves are defined that show the relation between the drainage area and the mean annual flood in eight hydrologic areas, and composite frequency curves define the relation of a flood of any recurrence interval from 1.1 to 50 years to the mean annual flood. These two relations are based upon gaging-station records having 10 or more years of record not materially affected by storage or diversion, and the results obtainable from them will represent the magnitude and frequency of natural floods within the range and recurrence intervals defined by the base data. The report also contains a compilation of flood records at all sites in the area at which records have been collected for 5 or more consecutive years. As far as was possible at each location for which discharge has been determined, the tabulations include all floods above a selected base. Where only gage heights have been obtained or where the data did not warrant computation of peach discharges above a selected base, only annual peaks are shown. The maximum known flood discharges for the streamflow stations and miscellaneous points except Ohio River main stem stations, together with areal floods of 10- and 50-year recurrence intervals, are plotted against the size of drainage area for each flood region and hydrologic area to provide a convenient means of judging the frequency of the maximum known floods that have been recorded for these points.

  10. Analysis on flood generation processes by means of a continuous simulation model

    NASA Astrophysics Data System (ADS)

    Fiorentino, M.; Gioia, A.; Iacobellis, V.; Manfreda, S.

    2006-03-01

    In the present research, we exploited a continuous hydrological simulation to investigate on key variables responsible of flood peak formation. With this purpose, a distributed hydrological model (DREAM) is used in cascade with a rainfall generator (IRP-Iterated Random Pulse) to simulate a large number of extreme events providing insight into the main controls of flood generation mechanisms. Investigated variables are those used in theoretically derived probability distribution of floods based on the concept of partial contributing area (e.g. Iacobellis and Fiorentino, 2000). The continuous simulation model is used to investigate on the hydrological losses occurring during extreme events, the variability of the source area contributing to the flood peak and its lag-time. Results suggest interesting simplification for the theoretical probability distribution of floods according to the different climatic and geomorfologic environments. The study is applied to two basins located in Southern Italy with different climatic characteristics.

  11. Technologies for Assessing the Geologic and Geomorphic History of Coasts

    DTIC Science & Technology

    1993-03-01

    memory have dramatically increased the storage capacity of underwater instruments. Some can remain onsite as long as 12 months. 2. If a gage floods, data...analyzing stratigraphic data, the age relations of the rock strata, rock form and distribution, lithologies, fossil record, biopaleogeography, and...coring tube barrel 10 ft; UD samples. gravity corer) contains a piston that additional 10-ft remains stationary on the sections can be seafloor during

  12. Distributed Earth observation data integration and on-demand services based on a collaborative framework of geospatial data service gateway

    NASA Astrophysics Data System (ADS)

    Xie, Jibo; Li, Guoqing

    2015-04-01

    Earth observation (EO) data obtained by air-borne or space-borne sensors has the characteristics of heterogeneity and geographical distribution of storage. These data sources belong to different organizations or agencies whose data management and storage methods are quite different and geographically distributed. Different data sources provide different data publish platforms or portals. With more Remote sensing sensors used for Earth Observation (EO) missions, different space agencies have distributed archived massive EO data. The distribution of EO data archives and system heterogeneity makes it difficult to efficiently use geospatial data for many EO applications, such as hazard mitigation. To solve the interoperable problems of different EO data systems, an advanced architecture of distributed geospatial data infrastructure is introduced to solve the complexity of distributed and heterogeneous EO data integration and on-demand processing in this paper. The concept and architecture of geospatial data service gateway (GDSG) is proposed to build connection with heterogeneous EO data sources by which EO data can be retrieved and accessed with unified interfaces. The GDSG consists of a set of tools and service to encapsulate heterogeneous geospatial data sources into homogenous service modules. The GDSG modules includes EO metadata harvesters and translators, adaptors to different type of data system, unified data query and access interfaces, EO data cache management, and gateway GUI, etc. The GDSG framework is used to implement interoperability and synchronization between distributed EO data sources with heterogeneous architecture. An on-demand distributed EO data platform is developed to validate the GDSG architecture and implementation techniques. Several distributed EO data achieves are used for test. Flood and earthquake serves as two scenarios for the use cases of distributed EO data integration and interoperability.

  13. Analysis of Groundwater Anomalies Estimated by GRACE and GLDAS Satellite-based Hydrological Model in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Lotfata, A.; Ambinakudige, S.

    2017-12-01

    Coastal regions face a higher risk of flooding. A rise in sea-level increases flooding chances in low-lying areas. A major concern is the effect of sea-level rise on the depth of the fresh water/salt water interface in the aquifers of the coastal regions. A sea-level change rise impacts the hydrological system of the aquifers. Salt water intrusion into fresh water aquifers increase water table levels. Flooding prone areas in the coast are at a higher risk of salt water intrusion. The Gulf coast is one of the most vulnerable flood areas due to its natural weather patterns. There is not yet a local assessment of the relation between groundwater level and sea-level rising. This study investigates the projected sea-level rise models and the anomalous groundwater level during January 2002 to December 2016. We used the NASA Gravity Recovery and Climate Experiment (GRACE) and Global Land Data Assimilation System (GLDAS) satellite data in the analysis. We accounted the leakage error and the measurement error in GRACE data. GLDAS data was used to calculate the groundwater storage from the total water storage estimated using GRACE data (ΔGW=ΔTWS (soil moisture, surface water, groundwater, and canopy water) - ΔGLDAS (soil moisture, surface water, and canopy water)). The preliminary results indicate that the total water storage is increasing in parts of the Gulf of Mexico. GRACE data show high soil wetness and groundwater levels in Mississippi, Alabama and Texas coasts. Because sea-level rise increases the probability of flooding in the Gulf coast and affects the groundwater, we will analyze probable interactions between sea-level rise and groundwater in the study area. To understand regional sea-level rise patterns, we will investigate GRACE Ocean data along the Gulf coasts. We will quantify ocean total water storage, its salinity, and its relationship with the groundwater level variations in the Gulf coast.

  14. Estimation of synthetic flood design hydrographs using a distributed rainfall-runoff model coupled with a copula-based single storm rainfall generator

    NASA Astrophysics Data System (ADS)

    Candela, A.; Brigandì, G.; Aronica, G. T.

    2014-07-01

    In this paper a procedure to derive synthetic flood design hydrographs (SFDH) using a bivariate representation of rainfall forcing (rainfall duration and intensity) via copulas, which describes and models the correlation between two variables independently of the marginal laws involved, coupled with a distributed rainfall-runoff model, is presented. Rainfall-runoff modelling (R-R modelling) for estimating the hydrological response at the outlet of a catchment was performed by using a conceptual fully distributed procedure based on the Soil Conservation Service - Curve Number method as an excess rainfall model and on a distributed unit hydrograph with climatic dependencies for the flow routing. Travel time computation, based on the distributed unit hydrograph definition, was performed by implementing a procedure based on flow paths, determined from a digital elevation model (DEM) and roughness parameters obtained from distributed geographical information. In order to estimate the primary return period of the SFDH, which provides the probability of occurrence of a hydrograph flood, peaks and flow volumes obtained through R-R modelling were treated statistically using copulas. Finally, the shapes of hydrographs have been generated on the basis of historically significant flood events, via cluster analysis. An application of the procedure described above has been carried out and results presented for the case study of the Imera catchment in Sicily, Italy.

  15. Flash Floods Simulation Using a Physical based hydrological Model at the Eastern Nile Basin: Case studies; Wadi Assiut, Egypt and Wadi Gumara, Lake Tana, Ethiopia.

    NASA Astrophysics Data System (ADS)

    Saber, M.; Sefelnasr, A.; Yilmaz, K. K.

    2015-12-01

    Flash flood is a natural hydrological phenomenon which affects many regions of the world. The behavior and effect of this phenomenon is different from one region to the other regions depending on several issues such as climatology and hydrological and topographical conditions at the target regions. Wadi assiut, Egypt as arid environment, and Gumara catchment, Lake Tana, Ethiopia, as humid conditions have been selected for application. The main target of this work is to simulate flash floods at both catchments considering the difference between them on the flash flood behaviors based on the variability of both of them. In order to simulate the flash floods, remote sensing data and a physical-based distributed hydrological model, Hydro-BEAM-WaS (Hydrological River Basin Environmental Assessment Model incorporating Wadi System) have been integrated used in this work. Based on the simulation results of flash floods in these regions, it was found that the time to reach the maximum peak is very short and consequently the warning time is very short as well. It was found that the flash floods starts from zero flow in arid environment, but on the contrary in humid arid, it starts from Base flow which is changeable based on the simulated events. Distribution maps of flash floods showing the vulnerable regions of these selected areas have been developed. Consequently, some mitigation strategies relying on this study have been introduced. The proposed methodology can be applied effectively for flash flood forecasting at different climate regions, however the paucity of observational data.

  16. Magnitude and frequency of flooding on the Myakka River, Southwest Florida

    USGS Publications Warehouse

    Hammett, K.M.; Turner, J.F.; Murphy, W.R.

    1978-01-01

    Increasing numbers of urban and agricultural developments are being located on waterfront property in the Myakka River flood plain in southwest Florida. Under natural conditions, a large depression, Tatum Sawgrass, was available as a flood storage area in the upper Myakka River basin. Construction of dikes across the lower part of Tatum Sawgrass has restricted use of the depression for temporary storage of Myakka River flood water overflow, and has resulted in increased flood-peak discharges and flood heights in downstream reaches of the Myakka River. The difference between natural and diked condition flood-peak discharges and flood heights is presented to illustrate the effects of the dikes. Flood-peak discharges, water-surface elevations and flood profiles also are provided for diked conditions. Analytical procedures used to evaluate diking effects are described in detail. The study reach includes Myakka River main stem upstream from U.S. Highway 41, near Myakka Shores in Sarasota County, to State Road 70 near Myakka City in Manatee County (including Tatum Sawgrass and Clay Gully), and Blackburn Canal from Venice By-Way to Myakka River. (Woodard-USGS)

  17. Pluvial, urban flood mechanisms and characteristics - Assessment based on insurance claims

    NASA Astrophysics Data System (ADS)

    Sörensen, Johanna; Mobini, Shifteh

    2017-12-01

    Pluvial flooding is a problem in many cities and for city planning purpose the mechanisms behind pluvial flooding are of interest. Previous studies seldom use insurance claim data to analyse city scale characteristics that lead to flooding. In the present study, two long time series (∼20 years) of flood claims from property owners have been collected and analysed in detail to investigate the mechanisms and characteristics leading to urban flooding. The flood claim data come from the municipal water utility company and property owners with insurance that covers property loss from overland flooding, groundwater intrusion through basement walls and flooding from the drainage system. These data are used as a proxy for flood severity for several events in the Swedish city of Malmö. It is discussed which rainfall characteristics give most flooding and why some rainfall events do not lead to severe flooding, how city scale topography and sewerage system type influence spatial distribution of flood claims, and which impact high sea level has on flooding in Malmö. Three severe flood events are described in detail and compared with a number of smaller flood events. It was found that the main mechanisms and characteristics of flood extent and its spatial distribution in Malmö are intensity and spatial distribution of rainfall, distance to the main sewer system as well as overland flow paths, and type of drainage system, while high sea level has little impact on the flood extent. Finally, measures that could be taken to lower the flood risk in Malmö, and other cities with similar characteristics, are discussed.

  18. Estimation of design floods in ungauged catchments using a regional index flood method. A case study of Lake Victoria Basin in Kenya

    NASA Astrophysics Data System (ADS)

    Nobert, Joel; Mugo, Margaret; Gadain, Hussein

    Reliable estimation of flood magnitudes corresponding to required return periods, vital for structural design purposes, is impacted by lack of hydrological data in the study area of Lake Victoria Basin in Kenya. Use of regional information, derived from data at gauged sites and regionalized for use at any location within a homogenous region, would improve the reliability of the design flood estimation. Therefore, the regional index flood method has been applied. Based on data from 14 gauged sites, a delineation of the basin into two homogenous regions was achieved using elevation variation (90-m DEM), spatial annual rainfall pattern and Principal Component Analysis of seasonal rainfall patterns (from 94 rainfall stations). At site annual maximum series were modelled using the Log normal (LN) (3P), Log Logistic Distribution (LLG), Generalized Extreme Value (GEV) and Log Pearson Type 3 (LP3) distributions. The parameters of the distributions were estimated using the method of probability weighted moments. Goodness of fit tests were applied and the GEV was identified as the most appropriate model for each site. Based on the GEV model, flood quantiles were estimated and regional frequency curves derived from the averaged at site growth curves. Using the least squares regression method, relationships were developed between the index flood, which is defined as the Mean Annual Flood (MAF) and catchment characteristics. The relationships indicated area, mean annual rainfall and altitude were the three significant variables that greatly influence the index flood. Thereafter, estimates of flood magnitudes in ungauged catchments within a homogenous region were estimated from the derived equations for index flood and quantiles from the regional curves. These estimates will improve flood risk estimation and to support water management and engineering decisions and actions.

  19. Estimating floodwater depths from flood inundation maps and topography

    USGS Publications Warehouse

    Cohen, Sagy; Brakenridge, G. Robert; Kettner, Albert; Bates, Bradford; Nelson, Jonathan M.; McDonald, Richard R.; Huang, Yu-Fen; Munasinghe, Dinuke; Zhang, Jiaqi

    2018-01-01

    Information on flood inundation extent is important for understanding societal exposure, water storage volumes, flood wave attenuation, future flood hazard, and other variables. A number of organizations now provide flood inundation maps based on satellite remote sensing. These data products can efficiently and accurately provide the areal extent of a flood event, but do not provide floodwater depth, an important attribute for first responders and damage assessment. Here we present a new methodology and a GIS-based tool, the Floodwater Depth Estimation Tool (FwDET), for estimating floodwater depth based solely on an inundation map and a digital elevation model (DEM). We compare the FwDET results against water depth maps derived from hydraulic simulation of two flood events, a large-scale event for which we use medium resolution input layer (10 m) and a small-scale event for which we use a high-resolution (LiDAR; 1 m) input. Further testing is performed for two inundation maps with a number of challenging features that include a narrow valley, a large reservoir, and an urban setting. The results show FwDET can accurately calculate floodwater depth for diverse flooding scenarios but also leads to considerable bias in locations where the inundation extent does not align well with the DEM. In these locations, manual adjustment or higher spatial resolution input is required.

  20. Interconnected ponds operation for flood hazard distribution

    NASA Astrophysics Data System (ADS)

    Putra, S. S.; Ridwan, B. W.

    2016-05-01

    The climatic anomaly, which comes with extreme rainfall, will increase the flood hazard in an area within a short period of time. The river capacity in discharging the flood is not continuous along the river stretch and sensitive to the flood peak. This paper contains the alternatives on how to locate the flood retention pond that are physically feasible to reduce the flood peak. The flood ponds were designed based on flood curve number criteria (TR-55, USDA) with the aim of rapid flood peak capturing and gradual flood retuning back to the river. As a case study, the hydrologic condition of upper Ciliwung river basin with several presumed flood pond locations was conceptually designed. A fundamental tank model that reproducing the operation of interconnected ponds was elaborated to achieve the designed flood discharge that will flows to the downstream area. The flood hazard distribution status, as the model performance criteria, will be computed within Ciliwung river reach in Manggarai Sluice Gate spot. The predicted hazard reduction with the operation of the interconnected retention area result had been bench marked with the normal flow condition.

  1. Regional L-Moment-Based Flood Frequency Analysis in the Upper Vistula River Basin, Poland

    NASA Astrophysics Data System (ADS)

    Rutkowska, A.; Żelazny, M.; Kohnová, S.; Łyp, M.; Banasik, K.

    2017-02-01

    The Upper Vistula River basin was divided into pooling groups with similar dimensionless frequency distributions of annual maximum river discharge. The cluster analysis and the Hosking and Wallis (HW) L-moment-based method were used to divide the set of 52 mid-sized catchments into disjoint clusters with similar morphometric, land use, and rainfall variables, and to test the homogeneity within clusters. Finally, three and four pooling groups were obtained alternatively. Two methods for identification of the regional distribution function were used, the HW method and the method of Kjeldsen and Prosdocimi based on a bivariate extension of the HW measure. Subsequently, the flood quantile estimates were calculated using the index flood method. The ordinary least squares (OLS) and the generalised least squares (GLS) regression techniques were used to relate the index flood to catchment characteristics. Predictive performance of the regression scheme for the southern part of the Upper Vistula River basin was improved by using GLS instead of OLS. The results of the study can be recommended for the estimation of flood quantiles at ungauged sites, in flood risk mapping applications, and in engineering hydrology to help design flood protection structures.

  2. Mapping Flood Protection Benefits from Restored Wetlands at the Urban-Suburban Interface

    EPA Science Inventory

    Urbanization exacerbates flooding by increasing runoff and decreasing surface water storage. Restoring wetlands can enhance flood protection while providing a suite of co-benefits such as temperature regulation and access to open space. Spatial modeling of the delivery of flood p...

  3. Lead/acid batteries in systems to improve power quality

    NASA Astrophysics Data System (ADS)

    Taylor, P.; Butler, P.; Nerbun, W.

    Increasing dependence on computer technology is driving needs for extremely high-quality power to prevent loss of information, material, and workers' time that represent billions of dollars annually. This cost has motivated commercial and Federal research and development of energy storage systems that detect and respond to power-quality failures in milliseconds. Electrochemical batteries are among the storage media under investigation for these systems. Battery energy storage systems that employ either flooded lead/acid or valve-regulated lead/acid battery technologies are becoming commercially available to capture a share of this emerging market. Cooperative research and development between the US Department of Energy and private industry have led to installations of lead/acid-based battery energy storage systems to improve power quality at utility and industrial sites and commercial development of fully integrated, modular battery energy storage system products for power quality. One such system by AC Battery Corporation, called the PQ2000, is installed at a test site at Pacific Gas and Electric Company (San Ramon, CA, USA) and at a customer site at Oglethorpe Power Corporation (Tucker, GA, USA). The PQ2000 employs off-the-shelf power electronics in an integrated methodology to control the factors that affect the performance and service life of production-model, low-maintenance, flooded lead/acid batteries. This system, and other members of this first generation of lead/acid-based energy storage systems, will need to compete vigorously for a share of an expanding, yet very aggressive, power quality market.

  4. Floods in south-central Oklahoma and north-central Texas, October 1981

    USGS Publications Warehouse

    Buckner, Harold D.; Kurklin, Joanne K.

    1984-01-01

    Substantial reductions in peak stages and discharges on the West Fork Trinity River downstream from Eagle Mountain Reservoir were attained as a result of reservoir storage. All floodwater on the Elm Fork Trinity River was contained by reservoir storage thus preventing a potentially devastating flood downstream on the Trinity River. Maximum stages and discharges and/or contents were recorded during and after this major flood at 83 gaging stations, crest-stage stations, reservoir stations, and a miscellaneous site.

  5. 18 CFR 1304.407 - Development within flood control storage zones of TVA reservoirs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... zones of TVA reservoirs. (a) Activities involving development within the flood control storage zone on TVA reservoirs will be reviewed to determine if the proposed activity qualifies as a repetitive action... (v) The nature and significance of any economic and/or natural resource benefits that would be...

  6. Balancing Flood Risk and Water Supply in California: Policy Search Combining Short-Term Forecast Ensembles and Groundwater Recharge

    NASA Astrophysics Data System (ADS)

    Herman, J. D.; Steinschneider, S.; Nayak, M. A.

    2017-12-01

    Short-term weather forecasts are not codified into the operating policies of federal, multi-purpose reservoirs, despite their potential to improve service provision. This is particularly true for facilities that provide flood protection and water supply, since the potential flood damages are often too severe to accept the risk of inaccurate forecasts. Instead, operators must maintain empty storage capacity to mitigate flood risk, even if the system is currently in drought, as occurred in California from 2012-2016. This study investigates the potential for forecast-informed operating rules to improve water supply efficiency while maintaining flood protection, combining state-of-the-art weather hindcasts with a novel tree-based policy optimization framework. We hypothesize that forecasts need only accurately predict the occurrence of a storm, rather than its intensity, to be effective in regions like California where wintertime, synoptic-scale storms dominate the flood regime. We also investigate the potential for downstream groundwater injection to improve the utility of forecasts. These hypotheses are tested in a case study of Folsom Reservoir on the American River. Because available weather hindcasts are relatively short (10-20 years), we propose a new statistical framework to develop synthetic forecasts to assess the risk associated with inaccurate forecasts. The efficiency of operating policies is tested across a range of scenarios that include varying forecast skill and additional groundwater pumping capacity. Results suggest that the combined use of groundwater storage and short-term weather forecasts can substantially improve the tradeoff between water supply and flood control objectives in large, multi-purpose reservoirs in California.

  7. The Study on Flood Reduction and Securing Instreamflow by applying Decentralized Rainwater Retention Facilities for Chunggyechun in Seoul of Korea

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Jun, S. M.; Park, C. G.

    2014-12-01

    Recently abnormal climate phenomena and urbanization recently causes the changes of the hydrological environment. To restore the hydrological cycle in urban area some fundamental solutions such as decentralized rainwater management system and Low Impact Development (LID) techniques may be choosed. In this study, SWMM 5 was used to analyze the effects of decentralized stormwater retention for preventing the urban flood and securing the instreamflow. The Chunggyechun stream watershed(21.29㎢) which is located in Seoul city(Korea) and fully developed as urban area was selected as the study watershed, and the runoff characteristics of urban stream with various methods of LID techniques (Permeable pavement, small rainwater storage tank, large rainwater storage tank) were analyzed. By the simulation results, the permeability of pavement materials and detention storage at the surface soil layer make high effect to the flood discharge, and the initial rainfall retention at the rainwater storage tank effected to reduce the flood peak. The peak discharge was decreased as 22% for the design precipitation. Moreover the instreamflow was increased as 55% by using adequate LID techniques These kind of data could be used as the basis data for designing urban flood prevention facilities, urban regeneration planning in the view of the integrated watershed management.

  8. Decadal oscillations and extreme value distribution of river peak flows in the Meuse catchment

    NASA Astrophysics Data System (ADS)

    De Niel, Jan; Willems, Patrick

    2017-04-01

    In flood risk management, flood probabilities are often quantified through Generalized Pareto distributions of river peak flows. One of the main underlying assumptions is that all data points need to originate from one single underlying distribution (i.i.d. assumption). However, this hypothesis, although generally assumed to be correct for variables such as river peak flows, remains somehow questionable: flooding might indeed be caused by different hydrological and/or meteorological conditions. This study confirms these findings from previous research by showing a clear indication of the link between atmospheric conditions and flooding for the Meuse river in The Netherlands: decadal oscillations of river peak flows can (at least partially) be attributed to the occurrence of westerly weather types. The study further proposes a method to take this correlation between atmospheric conditions and river peak flows into account when calibrating an extreme value distribution for river peak flows. Rather than calibrating one single distribution to the data and potentially violating the i.i.d. assumption, weather type depending extreme value distributions are derived and composed. The study shows that, for the Meuse river in The Netherlands, such approach results in a more accurate extreme value distribution, especially with regards to extrapolations. Comparison of the proposed method with a traditional extreme value analysis approach and an alternative model-based approach for the same case study shows strong differences in the peak flow extrapolation. The design-flood for a 1,250 year return period is estimated at 4,800 m3s-1 for the proposed method, compared with 3,450 m3s-1 and 3,900 m3s-1 for the traditional method and a previous study. The methods were validated based on instrumental and documentary flood information of the past 500 years.

  9. The experimental flow to the Colorado River delta: Effects on carbon mobilization in a dry watercourse

    NASA Astrophysics Data System (ADS)

    Bianchi, Thomas S.; Butman, David; Raymond, Peter A.; Ward, Nicholas D.; Kates, Rory J. S.; Flessa, Karl W.; Zamora, Hector; Arellano, Ana R.; Ramirez, Jorge; Rodriguez, Eliana

    2017-03-01

    Here we report on the effects of an experimental flood on the carbon cycling dynamics in the dry watercourse of the Colorado River in Mexico. We observed post-flood differences in the degree of decay, age, and concentration of dissolved organic carbon (DOC), as well as dissolved CH4 and CO2 concentrations throughout the study site. Our results indicate that this flooded waterway was a limited source of CH4 and CO2 to the atmosphere during the event and that DOC age increased with time of flooding. Based on our findings, we suggest that the interplay between storage and mobilization of carbon and greenhouse gases in arid and semiarid regions is potentially sensitive to changing climate conditions, particularly hydrologic variability. Changes in the radiocarbon age of DOC throughout the flooding event suggest that organic matter (OM) that had been stored for long periods (e.g., millennial) was mobilized by the flooding event along with CO2. The OM residing in the dry riverbed that was mobilized into floodwaters had a signature reflective of degraded vascular plant OM and microbial biomass. Whether this microbial OM was living or dead, our findings support previous work in soils and natural waters showing that microbial OM can remain stable and stored in ecosystems for long time periods. As human appropriation of water resources continues to increase, the episodic drying and rewetting of once natural riverbeds and deltas may fundamentally alter the processing and storage of carbon in such systems.

  10. The pattern of spatial flood disaster region in DKI Jakarta

    NASA Astrophysics Data System (ADS)

    Tambunan, M. P.

    2017-02-01

    The study of disaster flood area was conducted in DKI Jakarta Province, Indonesia. The aim of this research is: to study the spatial distribution of potential and actual of flood area The flood was studied from the geographic point of view using spatial approach, while the study of the location, the distribution, the depth and the duration of flooding was conducted using geomorphologic approach and emphasize on the detailed landform unit as analysis unit. In this study the landforms in DKI Jakarta have been a diversity, as well as spatial and temporal pattern of the actual and potential flood area. Landform at DKI Jakarta has been largely used as built up area for settlement and it facilities, thus affecting the distribution pattern of flooding area. The collection of the physical condition of landform in DKI Jakarta data prone were conducted through interpretation of the topographic map / RBI map and geological map. The flood data were obtained by survey and secondary data from Kimpraswil (Public Work) of DKI Jakarta Province for 3 years (1996, 2002, and 2007). Data of rainfall were obtained from BMKG and land use data were obtained from BPN DKI Jakarta. The analysis of the causal factors and distribution of flooding was made spatially and temporally using geographic information system. This study used survey method with a pragmatic approach. In this study landform as result from the analytical survey was settlement land use as result the synthetic survey. The primary data consist of landform, and the flood characteristic obtained by survey. The samples were using purposive sampling. Landform map was composed by relief, structure and material stone, and process data Landform map was overlay with flood map the flood prone area in DKI Jakarta Province in scale 1:50,000 to show. Descriptive analysis was used the spatial distribute of the flood prone area. The result of the study show that actual of flood prone area in the north, west and east of Jakarta lowland both in beach ridge, coastal alluvial plain, and alluvial plain; while the flood potential area on the slope is found flat and steep at alluvial fan, alluvial plain, beach ridge, and coastal alluvial plain in DKI Jakarta. Based on the result can be concluded that actual flood prone is not distributed on potential flood prone

  11. Reconstructing the 2015 Flash Flood event of Salgar Colombia, The Case of a Poor Gauged Basin

    NASA Astrophysics Data System (ADS)

    Velasquez, N.; Zapata, E.; Hoyos Ortiz, C. D.; Velez, J. I.

    2017-12-01

    Flash floods events associated with severe precipitation events are highly destructive, often resulting in significant human and economic losses. Due to their nature, flash floods trend to occur in medium to small basins located within complex high mountainous regions. In the Colombian Andean region these basins are very common, with the aggravating factor that the vulnerability is considerably high as some important human settlements are located within these basins, frequently occupating flood plains and other flash-flood prone areas. During the dawn of May 18 of 2015 two severe rainfall events generated a flash flood event in the municipality ofSalgar, La Liboriana basin, locatedin the northwestern Colombian Andes, resulting in more than 100 human casualties and significant economic losses. The present work is a reconstruction of the hydrological processes that took place before and during the Liboriana flash flood event, analyzed as a case of poorly gauged basin.The event conditions where recreated based on radar retrievals and a hydrological distributed model, linked with a proposed 1D hydraulic model and simple shallow landslide model. Results suggest that the flash flood event was caused by the occurrence of two successive severe convective events over the same basin, with an important modulation associated with soil characteristics and water storage.Despite of its simplicity, the proposed hydraulic model achieves a good representation of the flooded area during the event, with limitations due to the adopted spatial scale (12.7 meters, from ALOS PALSAR images). Observed landslides were obtained from satellite images; for this case the model simulates skillfully the landslide occurrence regions with small differences in the exact locations.To understand this case, radar data shows to be key due to specific convective cores location and rainfall intensity estimation.In mountainous regions, there exists a significant number of settlements with similar vulnerability and with the same gauging conditions, the use of low-cost modelling strategy could represent a good risk management tool in these regions with low planning capabilities.

  12. Evaluating the placement and performance of nature based measures for managing flood runoff in intensively farmed landscapes

    NASA Astrophysics Data System (ADS)

    Wilkinson, Mark; Quinn, Paul; Hewett, Caspar; Stutter, Marc

    2017-04-01

    Over the past decade economic losses from fluvial floods have greatly increased and it is becoming less viable to use traditional measures for managing flooding solely. This has given rise to increasing interest in alternative, nature based solutions (NBS) for reducing flood risk that aim to manage runoff at the catchment source and deliver multiple benefits. In many cases these measures need to work with current agricultural practices. Intensive agriculture often results in increases in local runoff rates, water quality issues, soil erosion/loss and local flooding problems. However, there is potential for agriculture to play a part in reducing flood risk. This requires knowledge on the effectiveness of NBS at varying scales and tools to communicate the risk of runoff associated with farming. This paper assesses the placement, management and effectiveness of a selection of nature-based measures in the rural landscape. Measures which disconnect overland flow pathways and improve soil infiltration are discussed. Case study examples are presented from the UK where a large number of nature-based measures have been constructed as part of flood protection schemes in catchment scales varying from 50 ha to 25 km2. Practical tools to help locate measures in agricultural landscapes are highlighted including the Floods and Agriculture Risk Matrix (FARM), an interactive communication/visualization tool and FARMPLOT, a GIS mapping tool. These have been used to promote such measures, by showing how and where temporary ponded areas can be located to reduce flood and erosion risk whilst minimising disruption to farming practices. In most cases land managers prefer small ( 100-1000m3) temporary ponding areas which fill during moderate to large storm events since they incur minimal loss of land. They also provide greater resillience to multi-day storm events, as they are designed to drain over 1-2 days and therefore allow for storage capacity for proceeding events. However, the performance of isolated temporary storage areas can be limited during extreme events. At larger scales taking a treatment train approach using a network of measures has been shown to achieve greater benefits, e.g. by reducing local flood peaks and capturing sediments. Current local scale evidence presented here has been used to inform environmental policy on the correct placement and design of flood reduction measures. Further long term data collection is required to assess the larger scale impact of these measures. These data can be used to inform scenario-based modelling approaches. By holding and attenuating runoff in rural landscapes, benefits for local flood peak reduction, water quality improvement and sediment management can be achieved. However, there is still a need to examine the sustainability of such measures through long term environmental payment schemes, considering how they could be funded across generational timescales rather than political cycles, and to monitor these measures over longer timescales and in multiple settings.

  13. Process-orientated simulation of tillage practices and land use change to optimize distributed flood control measures

    NASA Astrophysics Data System (ADS)

    Disse, M.; Rieger, W.

    2009-04-01

    Not only climate change affects hydrological systems but also land use change and agricultural tillage practises have an important impact on infiltration and runoff generation. In the last five to six decades monocropping, drainage and rectification of small rivers were carried out to optimize crop yields and economic benefits. However, in recent years more holistic and sustainable management concepts are required. The advantages of ecological management of land, soil and water resources are manifold: the biodiversity is higher, the buffer function of soils will be conserved and both low water and floods are positive affected. The target of the presented research project which is financed by the Bavarian environment agency, is to establish an optimal flood retention concept in a mesoscale catchment of 150 km² which emphasizes ecological flood measures like best tillage practices, small retention basins and renaturation of small rivers. To quantify the effects of these measures the water balance model WaSiM-ETH was used. The grid-based water flow and balance simulation model WaSiM-ETH is a well-established tool for investigating the spatial and temporal variability of hydrological processes in complex river basins. The model can be seen as a reasonable compromise between detailed physical basis and minimum data requirements (http://www.wasim.ch/en/index.html). WaSiM was coupled with a 2d-ground water model and an additional drainage tool. Different vegetation was parameterized with high spatial and temporal resolution. Additionally, future climate scenarios like the extension of vegetation periods were considered. The effectiveness of decentralized retention basins could be simulated by a new implemented see storage tool. The presentation will give quantitative results for different flood control measures. The pros and cons of physically based approaches in hydrological modelling will be discussed.

  14. The global distribution and dynamics of surface soil moisture

    NASA Astrophysics Data System (ADS)

    McColl, Kaighin A.; Alemohammad, Seyed Hamed; Akbar, Ruzbeh; Konings, Alexandra G.; Yueh, Simon; Entekhabi, Dara

    2017-01-01

    Surface soil moisture has a direct impact on food security, human health and ecosystem function. It also plays a key role in the climate system, and the development and persistence of extreme weather events such as droughts, floods and heatwaves. However, sparse and uneven observations have made it difficult to quantify the global distribution and dynamics of surface soil moisture. Here we introduce a metric of soil moisture memory and use a full year of global observations from NASA's Soil Moisture Active Passive mission to show that surface soil moisture--a storage believed to make up less than 0.001% of the global freshwater budget by volume, and equivalent to an, on average, 8-mm thin layer of water covering all land surfaces--plays a significant role in the water cycle. Specifically, we find that surface soil moisture retains a median 14% of precipitation falling on land after three days. Furthermore, the retained fraction of the surface soil moisture storage after three days is highest over arid regions, and in regions where drainage to groundwater storage is lowest. We conclude that lower groundwater storage in these regions is due not only to lower precipitation, but also to the complex partitioning of the water cycle by the surface soil moisture storage layer at the land surface.

  15. Large-watershed flood simulation and forecasting based on different-resolution distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Li, J.

    2017-12-01

    Large-watershed flood simulation and forecasting is very important for a distributed hydrological model in the application. There are some challenges including the model's spatial resolution effect, model performance and accuracy and so on. To cope with the challenge of the model's spatial resolution effect, different model resolution including 1000m*1000m, 600m*600m, 500m*500m, 400m*400m, 200m*200m were used to build the distributed hydrological model—Liuxihe model respectively. The purpose is to find which one is the best resolution for Liuxihe model in Large-watershed flood simulation and forecasting. This study sets up a physically based distributed hydrological model for flood forecasting of the Liujiang River basin in south China. Terrain data digital elevation model (DEM), soil type and land use type are downloaded from the website freely. The model parameters are optimized by using an improved Particle Swarm Optimization(PSO) algorithm; And parameter optimization could reduce the parameter uncertainty that exists for physically deriving model parameters. The different model resolution (200m*200m—1000m*1000m ) are proposed for modeling the Liujiang River basin flood with the Liuxihe model in this study. The best model's spatial resolution effect for flood simulation and forecasting is 200m*200m.And with the model's spatial resolution reduction, the model performance and accuracy also become worse and worse. When the model resolution is 1000m*1000m, the flood simulation and forecasting result is the worst, also the river channel divided based on this resolution is differs from the actual one. To keep the model with an acceptable performance, minimum model spatial resolution is needed. The suggested threshold model spatial resolution for modeling the Liujiang River basin flood is a 500m*500m grid cell, but the model spatial resolution with a 200m*200m grid cell is recommended in this study to keep the model at a best performance.

  16. The challenge of forecasting impacts of flash floods: test of a simplified hydraulic approach and validation based on insurance claim data

    NASA Astrophysics Data System (ADS)

    Le Bihan, Guillaume; Payrastre, Olivier; Gaume, Eric; Moncoulon, David; Pons, Frédéric

    2017-11-01

    Up to now, flash flood monitoring and forecasting systems, based on rainfall radar measurements and distributed rainfall-runoff models, generally aimed at estimating flood magnitudes - typically discharges or return periods - at selected river cross sections. The approach presented here goes one step further by proposing an integrated forecasting chain for the direct assessment of flash flood possible impacts on inhabited areas (number of buildings at risk in the presented case studies). The proposed approach includes, in addition to a distributed rainfall-runoff model, an automatic hydraulic method suited for the computation of flood extent maps on a dense river network and over large territories. The resulting catalogue of flood extent maps is then combined with land use data to build a flood impact curve for each considered river reach, i.e. the number of inundated buildings versus discharge. These curves are finally used to compute estimated impacts based on forecasted discharges. The approach has been extensively tested in the regions of Alès and Draguignan, located in the south of France, where well-documented major flash floods recently occurred. The article presents two types of validation results. First, the automatically computed flood extent maps and corresponding water levels are tested against rating curves at available river gauging stations as well as against local reference or observed flood extent maps. Second, a rich and comprehensive insurance claim database is used to evaluate the relevance of the estimated impacts for some recent major floods.

  17. Catchment scale afforestation for mitigating flooding

    NASA Astrophysics Data System (ADS)

    Barnes, Mhari; Quinn, Paul; Bathurst, James; Birkinshaw, Stephen

    2016-04-01

    After the 2013-14 floods in the UK there were calls to 'forest the uplands' as a solution to reducing flood risk across the nation. At present, 1 in 6 homes in Britain are at risk of flooding and current EU legislation demands a sustainable, 'nature-based solution'. However, the role of forests as a natural flood management technique remains highly controversial, due to a distinct lack of robust evidence into its effectiveness in reducing flood risk during extreme events. SHETRAN, physically-based spatially-distributed hydrological models of the Irthing catchment and Wark forest sub-catchments (northern England) have been developed in order to test the hypothesis of the effect trees have on flood magnitude. The advanced physically-based models have been designed to model scale-related responses from 1, through 10, to 100km2, a first study of the extent to which afforestation and woody debris runoff attenuation features (RAFs) may help to mitigate floods at the full catchment scale (100-1000 km2) and on a national basis. Furthermore, there is a need to analyse the extent to which land management practices, and the installation of nature-based RAFs, such as woody debris dams, in headwater catchments can attenuate flood-wave movement, and potentially reduce downstream flood risk. The impacts of riparian planting and the benefits of adding large woody debris of several designs and on differing sizes of channels has also been simulated using advanced hydrodynamic (HiPIMS) and hydrological modelling (SHETRAN). With the aim of determining the effect forestry may have on flood frequency, 1000 years of generated rainfall data representative of current conditions has been used to determine the difference between current land-cover, different distributions of forest cover and the defining scenarios - complete forest removal and complete afforestation of the catchment. The simulations show the percentage of forestry required to have a significant impact on mitigating downstream flood risk at sub-catchment and catchment scale. Key words: Flood peak, nature-based solutions, forest hydrology, hydrological modelling, SHETRAN, flood frequency, flood magnitude, land-cover change, upland afforestation.

  18. Hydrogeomorphology of the hyporheic zone: stream solute and fine particle interactions with a dynamic streambed

    USGS Publications Warehouse

    Harvey, J.W.; Drummond, J.D.; Martin, R.L.; McPhillips, L.E.; Packman, A.I.; Jerolmack, D.J.; Stonedahl, S.H.; Aubeneau, A.F.; Sawyer, A.H.; Larsen, L.G.; Tobias, C.R.

    2012-01-01

    Hyporheic flow in streams has typically been studied separately from geomorphic processes. We investigated interactions between bed mobility and dynamic hyporheic storage of solutes and fine particles in a sand-bed stream before, during, and after a flood. A conservatively transported solute tracer (bromide) and a fine particles tracer (5 μm latex particles), a surrogate for fine particulate organic matter, were co-injected during base flow. The tracers were differentially stored, with fine particles penetrating more shallowly in hyporheic flow and retained more efficiently due to the high rate of particle filtration in bed sediment compared to solute. Tracer injections lasted 3.5 h after which we released a small flood from an upstream dam one hour later. Due to shallower storage in the bed, fine particles were rapidly entrained during the rising limb of the flood hydrograph. Rather than being flushed by the flood, we observed that solutes were stored longer due to expansion of hyporheic flow paths beneath the temporarily enlarged bedforms. Three important timescales determined the fate of solutes and fine particles: (1) flood duration, (2) relaxation time of flood-enlarged bedforms back to base flow dimensions, and (3) resulting adjustments and lag times of hyporheic flow. Recurrent transitions between these timescales explain why we observed a peak accumulation of natural particulate organic matter between 2 and 4 cm deep in the bed, i.e., below the scour layer of mobile bedforms but above the maximum depth of particle filtration in hyporheic flow paths. Thus, physical interactions between bed mobility and hyporheic transport influence how organic matter is stored in the bed and how long it is retained, which affects decomposition rate and metabolism of this southeastern Coastal Plain stream. In summary we found that dynamic interactions between hyporheic flow, bed mobility, and flow variation had strong but differential influences on base flow retention and flood mobilization of solutes and fine particulates. These hydrogeomorphic relationships have implications for microbial respiration of organic matter, carbon and nutrient cycling, and fate of contaminants in streams.

  19. Copula-based assessment of the relationship between food peaks and flood volumes using information on historical floods by Bayesian Monte Carlo Markov Chain simulations

    NASA Astrophysics Data System (ADS)

    Gaál, Ladislav; Szolgay, Ján.; Bacigál, Tomáå.¡; Kohnová, Silvia

    2010-05-01

    Copula-based estimation methods of hydro-climatological extremes have increasingly been gaining attention of researchers and practitioners in the last couple of years. Unlike the traditional estimation methods which are based on bivariate cumulative distribution functions (CDFs), copulas are a relatively flexible tool of statistics that allow for modelling dependencies between two or more variables such as flood peaks and flood volumes without making strict assumptions on the marginal distributions. The dependence structure and the reliability of the joint estimates of hydro-climatological extremes, mainly in the right tail of the joint CDF not only depends on the particular copula adopted but also on the data available for the estimation of the marginal distributions of the individual variables. Generally, data samples for frequency modelling have limited temporal extent, which is a considerable drawback of frequency analyses in practice. Therefore, it is advised to deal with statistical methods that improve any part of the process of copula construction and result in more reliable design values of hydrological variables. The scarcity of the data sample mostly in the extreme tail of the joint CDF can be bypassed, e.g., by using a considerably larger amount of simulated data by rainfall-runoff analysis or by including historical information on the variables under study. The latter approach of data extension is used here to make the quantile estimates of the individual marginals of the copula more reliable. In the presented paper it is proposed to use historical information in the frequency analysis of the marginal distributions in the framework of Bayesian Monte Carlo Markov Chain (MCMC) simulations. Generally, a Bayesian approach allows for a straightforward combination of different sources of information on floods (e.g. flood data from systematic measurements and historical flood records, respectively) in terms of a product of the corresponding likelihood functions. On the other hand, the MCMC algorithm is a numerical approach for sampling from the likelihood distributions. The Bayesian MCMC methods therefore provide an attractive way to estimate the uncertainty in parameters and quantile metrics of frequency distributions. The applicability of the method is demonstrated in a case study of the hydroelectric power station Orlík on the Vltava River. This site has a key role in the flood prevention of Prague, the capital city of the Czech Republic. The record length of the available flood data is 126 years from the period 1877-2002, while the flood event observed in 2002 that caused extensive damages and numerous casualties is treated as a historic one. To estimate the joint probabilities of flood peaks and volumes, different copulas are fitted and their goodness-of-fit are evaluated by bootstrap simulations. Finally, selected quantiles of flood volumes conditioned on given flood peaks are derived and compared with those obtained by the traditional method used in the practice of water management specialists of the Vltava River.

  20. Urban RoGeR: Merging process-based high-resolution flash flood model for urban areas with long-term water balance predictions

    NASA Astrophysics Data System (ADS)

    Weiler, M.

    2016-12-01

    Heavy rain induced flash floods are still a serious hazard and generate high damages in urban areas. In particular in the spatially complex urban areas, the temporal and spatial pattern of runoff generation processes at a wide spatial range during extreme rainfall events need to be predicted including the specific effects of green infrastructure and urban forests. In addition, the initial conditions (soil moisture pattern, water storage of green infrastructure) and the effect of lateral redistribution of water (run-on effects and re-infiltration) have to be included in order realistically predict flash flood generation. We further developed the distributed, process-based model RoGeR (Runoff Generation Research) to include the relevant features and processes in urban areas in order to test the effects of different settings, initial conditions and the lateral redistribution of water on the predicted flood response. The uncalibrated model RoGeR runs at a spatial resolution of 1*1m² (LiDAR, degree of sealing, landuse), soil properties and geology (1:50.000). In addition, different green infrastructures are included into the model as well as the effect of trees on interception and transpiration. A hydraulic model was included into RoGeR to predict surface runoff, water redistribution, and re-infiltration. During rainfall events, RoGeR predicts at 5 min temporal resolution, but the model also simulates evapotranspiration and groundwater recharge during rain-free periods at a longer time step. The model framework was applied to several case studies in Germany where intense rainfall events produced flash floods causing high damage in urban areas and to a long-term research catchment in an urban setting (Vauban, Freiburg), where a variety of green infrastructures dominates the hydrology. Urban-RoGeR allowed us to study the effects of different green infrastructures on reducing the flood peak, but also its effect on the water balance (evapotranspiration and groundwater recharge). We could also show that infiltration of surface runoff from areas with a low infiltration (lateral redistribution) reduce the flood peaks by over 90% in certain areas and situations. Finally, we also evaluated the model to long-term runoff observations (surface runoff, ET, roof runoff) and to flood marks in the selected case studies.

  1. Longitudinal distribution and parameters of large wood in a Mediterranean ephemeral stream

    NASA Astrophysics Data System (ADS)

    Galia, T.; Škarpich, V.; Tichavský, R.; Vardakas, L.; Šilhán, K.

    2018-06-01

    Although large wood (LW) has been intensively studied in forested basins of humid temperate climates, data on LW patterns in different fluvial environments are rather scarce. Therefore, we investigated the dimensions, characteristics, longitudinal distribution, and dynamics of LW along a 4.05-km-long reach of an ephemeral channel typical of European Mediterranean mountainous landscape (Sfakiano Gorge, Crete, Greece). We analysed a total of 795 LW pieces, and the mean observed abundance of LW was generally lower (14.3 m3/ha of active valley floor or 19.6 LW pieces/100 m of stream length) than is usually documented for more humid environments. The number of LW pieces was primarily controlled by trees growing on the valley floor. These living trees acted as important LW supply agents (by tree throws or the supply of individual branches with sufficient LW dimensions) and flow obstructions during large flood events, causing storage of transported LW pieces in jams. However, the downstream transport of LW is probably episodic, and large jams are likely formed only during major floods; after >15 years, we still observed significant imprints of the last major flood event on the present distribution of LW. The geomorphic function of LW in the studied stream can only be perceived to be a spatially limited stabilising element for sediments, which was documented by a few accumulations of coarse clastic material by LW steps and jams.

  2. The influence of controlled floods on fine sediment storage in debris fan-affected canyons of the Colorado River basin

    USGS Publications Warehouse

    Mueller, Erich R.; Grams, Paul E.; Schmidt, John C.; Hazel, Joseph E.; Alexander, Jason S.; Kaplinski, Matt

    2014-01-01

    Prior to the construction of large dams on the Green and Colorado Rivers, annual floods aggraded sandbars in lateral flow-recirculation eddies with fine sediment scoured from the bed and delivered from upstream. Flows greater than normal dam operations may be used to mimic this process in an attempt to increase time-averaged sandbar size. These controlled floods may rebuild sandbars, but sediment deficit conditions downstream from the dams restrict the frequency that controlled floods produce beneficial results. Here, we integrate complimentary, long-term monitoring data sets from the Colorado River in Marble and Grand Canyons downstream from Glen Canyon dam and the Green River in the Canyon of Lodore downstream from Flaming Gorge dam. Since the mid-1990s, several controlled floods have occurred in these canyon rivers. These controlled floods scour fine sediment from the bed and build sandbars in eddies, thus increasing channel relief. These changes are short-lived, however, as interflood dam operations erode sandbars within several months to years. Controlled flood response and interflood changes in bed elevation are more variable in Marble Canyon and Grand Canyon, likely reflecting more variable fine sediment supply and stronger transience in channel bed sediment storage. Despite these differences, neither system shows a trend in fine-sediment storage during the period in which controlled floods were monitored. These results demonstrate that controlled floods build eddy sandbars and increase channel relief for short interflood periods, and this response may be typical in other dam-influenced canyon rivers. The degree to which these features persist depends on the frequency of controlled floods, but careful consideration of sediment supply is necessary to avoid increasing the long-term sediment deficit.

  3. Estimating floodplain sedimentation in the Laguna de Santa Rosa, Sonoma County, CA

    USGS Publications Warehouse

    Curtis, Jennifer A.; Flint, Lorraine E.; Hupp, Cliff R.

    2013-01-01

    We present a conceptual and analytical framework for predicting the spatial distribution of floodplain sedimentation for the Laguna de Santa Rosa, Sonoma County, CA. We assess the role of the floodplain as a sink for fine-grained sediment and investigate concerns regarding the potential loss of flood storage capacity due to historic sedimentation. We characterized the spatial distribution of sedimentation during a post-flood survey and developed a spatially distributed sediment deposition potential map that highlights zones of floodplain sedimentation. The sediment deposition potential map, built using raster files that describe the spatial distribution of relevant hydrologic and landscape variables, was calibrated using 2 years of measured overbank sedimentation data and verified using longer-term rates determined using dendrochronology. The calibrated floodplain deposition potential relation was used to estimate an average annual floodplain sedimentation rate (3.6 mm/year) for the ~11 km2 floodplain. This study documents the development of a conceptual model of overbank sedimentation, describes a methodology to estimate the potential for various parts of a floodplain complex to accumulate sediment over time, and provides estimates of short and long-term overbank sedimentation rates that can be used for ecosystem management and prioritization of restoration activities.

  4. Physically-based extreme flood frequency with stochastic storm transposition and paleoflood data on large watersheds

    NASA Astrophysics Data System (ADS)

    England, John F.; Julien, Pierre Y.; Velleux, Mark L.

    2014-03-01

    Traditionally, deterministic flood procedures such as the Probable Maximum Flood have been used for critical infrastructure design. Some Federal agencies now use hydrologic risk analysis to assess potential impacts of extreme events on existing structures such as large dams. Extreme flood hazard estimates and distributions are needed for these efforts, with very low annual exceedance probabilities (⩽10-4) (return periods >10,000 years). An integrated data-modeling hydrologic hazard framework for physically-based extreme flood hazard estimation is presented. Key elements include: (1) a physically-based runoff model (TREX) coupled with a stochastic storm transposition technique; (2) hydrometeorological information from radar and an extreme storm catalog; and (3) streamflow and paleoflood data for independently testing and refining runoff model predictions at internal locations. This new approach requires full integration of collaborative work in hydrometeorology, flood hydrology and paleoflood hydrology. An application on the 12,000 km2 Arkansas River watershed in Colorado demonstrates that the size and location of extreme storms are critical factors in the analysis of basin-average rainfall frequency and flood peak distributions. Runoff model results are substantially improved by the availability and use of paleoflood nonexceedance data spanning the past 1000 years at critical watershed locations.

  5. Monitoring groundwater storage change in Mekong Delta using Gravity Recovery and Climate Experiment (GRACE) data

    NASA Astrophysics Data System (ADS)

    Aierken, A.; Lee, H.; Hossain, F.; Bui, D. D.; Nguyen, L. D.

    2016-12-01

    The Mekong Delta, home to almost 20 million inhabitants, is considered one of the most important region for Vietnam as it is the agricultural and industrial production base of the nation. However, in recent decades, the region is seriously threatened by variety of environmental hazards, such as floods, saline water intrusion, arsenic contamination, and land subsidence, which raise its vulnerability to sea level rise due to global climate change. All these hazards are related to groundwater depletion, which is the result of dramatically increased over-exploitation. Therefore, monitoring groundwater is critical to sustainable development and most importantly, to people's life in the region. In most countries, groundwater is monitored using well observations. However, because of its spatial and temporal gaps and cost, it is typically difficult to obtain large scale, continuous observations. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry mission has delivered freely available Earth's gravity variation data, which can be used to obtain terrestrial water storage (TWS) changes. In this study, the TWS anomalies over the Mekong Delta, which are the integrated sum of anomalies of soil moisture storage (SMS), surface water storage (SWS), canopy water storage (CWS), groundwater storage (GWS), have been obtained using GRACE CSR RL05 data. The leakage error occurred due to GRACE signal processing has been corrected using several different approaches. The groundwater storage anomalies were then derived from TWS anomalies by removing SMS, and CWS anomalies simulated by the four land surface models (NOAH, CLM, VIC and MOSAIC) in the Global Land Data Assimilation System (GLDAS), as well as SWS anomalies estimated using ENVISAT satellite altimetry and MODIS imagery. Then, the optimal GRACE signal restoration method for the Mekong Delta is determined with available in-situ well data. The estimated GWS anomalies revealed continuously decreasing trend, and the flood and drought occurred in 2004 and 2012, respectively. Our study reveals the ability of GRACE to monitor groundwater depletion as well as flood and drought in regional scale.

  6. 33 CFR 208.32 - Sanford Dam and Lake Meredith, Canadian River, Tex.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Lake Meredith in the interest of flood control as follows: (a) Flood control storage in the reservoir... control pool) initially amounts to 462,100 acre-feet. Whenever the reservoir level is within this... as much as practicable the flood damage below the reservoir. All flood control releases shall be made...

  7. 33 CFR 208.32 - Sanford Dam and Lake Meredith, Canadian River, Tex.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Lake Meredith in the interest of flood control as follows: (a) Flood control storage in the reservoir... control pool) initially amounts to 462,100 acre-feet. Whenever the reservoir level is within this... as much as practicable the flood damage below the reservoir. All flood control releases shall be made...

  8. A hierarchical Bayesian GEV model for improving local and regional flood quantile estimates

    NASA Astrophysics Data System (ADS)

    Lima, Carlos H. R.; Lall, Upmanu; Troy, Tara; Devineni, Naresh

    2016-10-01

    We estimate local and regional Generalized Extreme Value (GEV) distribution parameters for flood frequency analysis in a multilevel, hierarchical Bayesian framework, to explicitly model and reduce uncertainties. As prior information for the model, we assume that the GEV location and scale parameters for each site come from independent log-normal distributions, whose mean parameter scales with the drainage area. From empirical and theoretical arguments, the shape parameter for each site is shrunk towards a common mean. Non-informative prior distributions are assumed for the hyperparameters and the MCMC method is used to sample from the joint posterior distribution. The model is tested using annual maximum series from 20 streamflow gauges located in an 83,000 km2 flood prone basin in Southeast Brazil. The results show a significant reduction of uncertainty estimates of flood quantile estimates over the traditional GEV model, particularly for sites with shorter records. For return periods within the range of the data (around 50 years), the Bayesian credible intervals for the flood quantiles tend to be narrower than the classical confidence limits based on the delta method. As the return period increases beyond the range of the data, the confidence limits from the delta method become unreliable and the Bayesian credible intervals provide a way to estimate satisfactory confidence bands for the flood quantiles considering parameter uncertainties and regional information. In order to evaluate the applicability of the proposed hierarchical Bayesian model for regional flood frequency analysis, we estimate flood quantiles for three randomly chosen out-of-sample sites and compare with classical estimates using the index flood method. The posterior distributions of the scaling law coefficients are used to define the predictive distributions of the GEV location and scale parameters for the out-of-sample sites given only their drainage areas and the posterior distribution of the average shape parameter is taken as the regional predictive distribution for this parameter. While the index flood method does not provide a straightforward way to consider the uncertainties in the index flood and in the regional parameters, the results obtained here show that the proposed Bayesian method is able to produce adequate credible intervals for flood quantiles that are in accordance with empirical estimates.

  9. Flood Extent Delineation by Thresholding Sentinel-1 SAR Imagery Based on Ancillary Land Cover Information

    NASA Astrophysics Data System (ADS)

    Liang, J.; Liu, D.

    2017-12-01

    Emergency responses to floods require timely information on water extents that can be produced by satellite-based remote sensing. As SAR image can be acquired in adverse illumination and weather conditions, it is particularly suitable for delineating water extent during a flood event. Thresholding SAR imagery is one of the most widely used approaches to delineate water extent. However, most studies apply only one threshold to separate water and dry land without considering the complexity and variability of different dry land surface types in an image. This paper proposes a new thresholding method for SAR image to delineate water from other different land cover types. A probability distribution of SAR backscatter intensity is fitted for each land cover type including water before a flood event and the intersection between two distributions is regarded as a threshold to classify the two. To extract water, a set of thresholds are applied to several pairs of land cover types—water and urban or water and forest. The subsets are merged to form the water distribution for the SAR image during or after the flooding. Experiments show that this land cover based thresholding approach outperformed the traditional single thresholding by about 5% to 15%. This method has great application potential with the broadly acceptance of the thresholding based methods and availability of land cover data, especially for heterogeneous regions.

  10. Pump Hydro Energy Storage systems (PHES) in groundwater flooded quarries

    NASA Astrophysics Data System (ADS)

    Poulain, Angélique; de Dreuzy, Jean-Raynald; Goderniaux, Pascal

    2018-04-01

    Pump storage hydroelectricity is an efficient way to temporarily store energy. This technique requires to store temporarily a large volume of water in an upper reservoir, and to release it through turbines to the lower reservoir, to produce electricity. Recently, the idea of using old flooded quarries as a lower reservoir has been evoked. However, these flooded quarries are generally connected to unconfined aquifers. Consequently, pumping or injecting large volumes of water, within short time intervals, will have an impact on the adjacent aquifers. Conversely, water exchanges between the quarry and the aquifer may also influence the water level fluctuations in the lower reservoir. Using numerical modelling, this study investigates the interactions between generic flooded open pit quarries and adjacent unconfined aquifers, during various pump-storage cyclic stresses. The propagation of sinusoidal stresses in the adjacent porous media and the amplitude of water level fluctuations in the quarry are studied. Homogeneous rock media and the presence of fractures in the vicinity of the quarry are considered. Results show that hydrological quarry - rock interactions must be considered with caution, when implementing pump - storage systems. For rock media characterized by high hydraulic conductivity and porosity values, water volumes exchanges during cycles may affect significantly the amplitude of the water level fluctuations in the quarry, and as a consequence, the instantaneous electricity production. Regarding the impact of the pump - storage cyclic stresses on the surrounding environment, the distance of influence is potentially high under specific conditions, and is enhanced with the occurrence of rock heterogeneities, such as fractures. The impact around the quarry used as a lower reservoir thus appears as an important constraining factor regarding the feasibility of pump - storage systems, to be assessed carefully if groundwater level fluctuations around the quarry are expected to bring up adverse effects. Results highlight opportunities and challenges to be faced, to implement pump - storage hydroelectricity systems in old flooded open pit quarries.

  11. Evaluation of the wind pumped hydropower storage integrated flood mitigation system

    NASA Astrophysics Data System (ADS)

    Safi, Aishah; Basrawi, Firdaus

    2018-04-01

    As Wind Pumped Hydropower Storage (WPHS) need high cost to construct, it is important to study their impacts on economic and environmental aspects. Thus, this research aims to evaluate their economic and environmental performances. First, Hybrid Optimization Model for Electric Renewable (HOMER) was used to simulate power generation system with and without the flood reservoir. Next, the total amount of emitted air pollutant was used to evaluate the environmental impacts. It was found the wind-diesel with reservoir storage system (A-III) will have much lower NPC than other systems that do not include reservoir for flood mitigation when the cost of flood losses are included in the total Net Present Cost (NPC). The NPC for system A-III was RM 1.52 million and for diesel standalone system (A-I) is RM 10.8 million when the cost of flood losses are included in the total NPC. Between both energy systems, the amount of pollutants emitted by the A-III system was only 408 kg-CO2/year which is much less than the A-I system which is 99, 754 kg of carbon dioxide per year. To conclude, the WPHS integrated with flood mitigation system seems promising in the aspects of economic and environment.

  12. Developing tools and procedures for the collection and storage of flood damage data in the aftermath of flood events: the Poli-RISPOSTA project

    NASA Astrophysics Data System (ADS)

    Molinari, Daniela; Ballio, Francesco; Mazuran, Mirjana; Arias, Carolina; Minucci, Guido; Atun, Funda; Ardagna, Danilo

    2015-04-01

    According to a recent JRC report (De Groeve et al., Recording disaster losses, 2013), no measure better than loss over time can provide objective understanding of the path towards resilience. Moreover, damage data collected in the aftermath of floods supply the knowledge base on which a blend of actions can be performed, both in the short and mid time after the occurrence of a flood; among them: the identification of priorities for intervention during emergencies, the definition of compensation schemes, the understanding of damage mechanisms and of the fragilities of the flooded areas so as to improve/reform current risk mitigation strategies (also by means of improved flood damage models). Objective "measurement" of flood losses remains inadequate to meet the above objectives. This is due to a number of reasons that include: the diversity of intent for data collection, the lack of standardization on how to collect and storage data (including the lack of agreed definitions) among responsible subjects, and last but not least a lack of legislation to support the collection process. In such a context, the aim of this contribution is to discuss the results from the Poli-RISPOSTA (stRumentI per la protezione civile a Supporto delle POpolazioni nel poST Alluvione) project, a research project founded by Politecnico di Milano which is intended to develop tools and procedures for the collection and storage of high quality, consistent and reliable flood damage data. Specific objectives of Poli-RISPOSTA are: - Develop an operational procedure for collecting, storing and analyzing all damage data, in the aftermath of flood events. Collected data are intended to support a variety of actions, namely: loss accounting, disaster forensic, damage compensation and flood risk modelling; - Develop educational material and modules for training practitioners in the use of the procedure; - Develop enhanced IT tools to support the procedure, easing as much as possible the collection of field data, the creation of databases and the connection between the latter and different regional and municipal databases that already exist for different purposes (from cadastral data, to satellite images, etc.), the processing of collected data. A key principle of Poli-RISPOSTA is developing tools with the direct involvement of all interested parties so as to reach a two-fold objective: producing feasible solutions that re-organise existing practices and integrate them with new ones (whereas they are lacking) and, directly linked to the previous point, supplying the legislative context in which developed tools can be implemented.

  13. Global and Regional Real-time Systems for Flood and Drought Monitoring and Prediction

    NASA Astrophysics Data System (ADS)

    Hong, Y.; Gourley, J. J.; Xue, X.; Flamig, Z.

    2015-12-01

    A Hydrometeorological Extreme Mapping and Prediction System (HyXtreme-MaP), initially built upon the Coupled Routing and Excess STorage (CREST) distributed hydrological model, is driven by real-time quasi-global TRMM/GPM satellites and by the US Multi-Radar Multi-Sensor (MRMS) radar network with dual-polarimetric upgrade to simulate streamflow, actual ET, soil moisture and other hydrologic variables at 1/8th degree resolution quasi-globally (http://eos.ou.edu) and at 250-meter 2.5-mintue resolution over the Continental United States (CONUS: http://flash.ou.edu).­ Multifaceted and collaborative by-design, this end-to-end research framework aims to not only integrate data, models, and applications but also brings people together (i.e., NOAA, NASA, University researchers, and end-users). This presentation will review the progresses, challenges and opportunities of such HyXTREME-MaP System used to monitor global floods and droughts, and also to predict flash floods over the CONUS.

  14. Assessing the efficiency of different CSO positions based on network graph characteristics.

    PubMed

    Sitzenfrei, R; Urich, C; Möderl, M; Rauch, W

    2013-01-01

    The technical design of urban drainage systems comprises two major aspects: first, the spatial layout of the sewer system and second, the pipe-sizing process. Usually, engineers determine the spatial layout of the sewer network manually, taking into account physical features and future planning scenarios. Before the pipe-sizing process starts, it is important to determine locations of possible weirs and combined sewer overflows (CSOs) based on, e.g. distance to receiving water bodies or to a wastewater treatment plant and available space for storage units. However, positions of CSOs are also determined by topological characteristics of the sewer networks. In order to better understand the impact of placement choices for CSOs and storage units in new systems, this work aims to determine case unspecific, general rules. Therefore, based on numerous, stochastically generated virtual alpine sewer systems of different sizes it is investigated how choices for placement of CSOs and storage units have an impact on the pipe-sizing process (hence, also on investment costs) and on technical performance (CSO efficiency and flooding). To describe the impact of the topological positions of these elements in the sewer networks, graph characteristics are used. With an evaluation of 2,000 different alpine combined sewer systems, it was found that, as expected, with CSOs at more downstream positions in the network, greater construction costs and better performance regarding CSO efficiency result. At a specific point (i.e. topological network position), no significant difference (further increase) in construction costs can be identified. Contrarily, the flooding efficiency increases with more upstream positions of the CSOs. Therefore, CSO and flooding efficiency are in a trade-off conflict and a compromise is required.

  15. Forecasting snowmelt flooding over Britain using the Grid-to-Grid model: a review and assessment of methods

    NASA Astrophysics Data System (ADS)

    Dey, Seonaid R. A.; Moore, Robert J.; Cole, Steven J.; Wells, Steven C.

    2017-04-01

    In many regions of high annual snowfall, snowmelt modelling can prove to be a vital component of operational flood forecasting and warning systems. Although Britain as a whole does not experience prolonged periods of lying snow, with the exception of the Scottish Highlands, the inclusion of snowmelt modelling can still have a significant impact on the skill of flood forecasts. Countrywide operational flood forecasts over Britain are produced using the national Grid-to-Grid (G2G) distributed hydrological model. For Scotland, snowmelt is included in these forecasts through a G2G snow hydrology module involving temperature-based snowfall/rainfall partitioning and functions for temperature-excess snowmelt, snowpack storage and drainage. Over England and Wales, the contribution of snowmelt is included by pre-processing the precipitation prior to input into G2G. This removes snowfall diagnosed from weather model outputs and adds snowmelt from an energy budget land surface scheme to form an effective liquid water gridded input to G2G. To review the operational options for including snowmelt modelling in G2G over Britain, a project was commissioned by the Environment Agency through the Flood Forecasting Centre (FFC) for England and Wales and in partnership with the Scottish Environment Protection Agency (SEPA) and Natural Resources Wales (NRW). Results obtained from this snowmelt review project will be reported on here. The operational methods used by the FFC and SEPA are compared on past snowmelt floods, alongside new alternative methods of treating snowmelt. Both case study and longer-term analyses are considered, covering periods selected from the winters 2009-2010, 2012-2013, 2013-2014 and 2014-2015. Over Scotland, both of the snowmelt methods used operationally by FFC and SEPA provided a clear improvement to the river flow simulations. Over England and Wales, fewer and less significant snowfall events occurred, leading to less distinction in the results between the methods. It is noted that, for all methods considered, large uncertainties remain in flood forecasts influenced by snowmelt. Understanding and quantifying these uncertainties should lead to more informed flood forecasts and associated guidance information.

  16. Floods, floodplains, delta plains — A satellite imaging approach

    NASA Astrophysics Data System (ADS)

    Syvitski, James P. M.; Overeem, Irina; Brakenridge, G. Robert; Hannon, Mark

    2012-08-01

    Thirty-three lowland floodplains and their associated delta plains are characterized with data from three remote sensing systems (AMSR-E, SRTM and MODIS). These data provide new quantitative information to characterize Late Quaternary floodplain landscapes and their penchant for flooding over the last decade. Daily proxy records for discharge since 2002 and for each of the 33 river systems can be derived with novel Advanced Microwave Scanning Radiometer (AMSR-E) methods. A descriptive framework based on analysis of Shuttle Radar Topography Mission (SRTM) data is used to capture the major landscape-scale floodplain elements or zones: 1) container valleys with their long and narrow pathways of largely sediment transit and bypass, 2) floodplain depressions that act as loci for frequent flooding and sediment storage, 3) zones of nodal avulsions common to many continental scale rivers, and often located seaward of container valleys, and 4) coastal floodplains and delta plains that offer both sediment bypass and storage but under the influence of marine processes. The SRTM data allow mapping of smaller-scale architectural elements in unprecedented systematic manner. Floodplain depressions were found to play a major role, which may largely be overlooked in conceptual floodplain models. Lastly, MODIS data (independently and combined with AMSR-E) allows the tracking of flood hydrographs and pathways and sedimentation patterns on a near-daily timescale worldwide. These remote-sensing data show that 85% of the studied major river systems experienced extensive flooding in the last decade. A new quantitative paradigm of floodplain processes, honoring the frequency and extent of floods, can be develop by careful analysis of these new remotely sensed data.

  17. Hydrologic risk analysis in the Yangtze River basin through coupling Gaussian mixtures into copulas

    NASA Astrophysics Data System (ADS)

    Fan, Y. R.; Huang, W. W.; Huang, G. H.; Li, Y. P.; Huang, K.; Li, Z.

    2016-02-01

    In this study, a bivariate hydrologic risk framework is proposed through coupling Gaussian mixtures into copulas, leading to a coupled GMM-copula method. In the coupled GMM-Copula method, the marginal distributions of flood peak, volume and duration are quantified through Gaussian mixture models and the joint probability distributions of flood peak-volume, peak-duration and volume-duration are established through copulas. The bivariate hydrologic risk is then derived based on the joint return period of flood variable pairs. The proposed method is applied to the risk analysis for the Yichang station on the main stream of the Yangtze River, China. The results indicate that (i) the bivariate risk for flood peak-volume would keep constant for the flood volume less than 1.0 × 105 m3/s day, but present a significant decreasing trend for the flood volume larger than 1.7 × 105 m3/s day; and (ii) the bivariate risk for flood peak-duration would not change significantly for the flood duration less than 8 days, and then decrease significantly as duration value become larger. The probability density functions (pdfs) of the flood volume and duration conditional on flood peak can also be generated through the fitted copulas. The results indicate that the conditional pdfs of flood volume and duration follow bimodal distributions, with the occurrence frequency of the first vertex decreasing and the latter one increasing as the increase of flood peak. The obtained conclusions from the bivariate hydrologic analysis can provide decision support for flood control and mitigation.

  18. Bank storage buffers rivers from saline regional groundwater: an example from the Avon River Australia

    NASA Astrophysics Data System (ADS)

    Gilfedder, Benjamin; Hofmann, Harald; Cartwrighta, Ian

    2014-05-01

    Groundwater-surface water interactions are often conceptually and numerically modeled as a two component system: a groundwater system connected to a stream, river or lake. However, transient storage zones such as hyporheic exchange, bank storage, parafluvial flow and flood plain storage complicate the two component model by delaying the release of flood water from the catchment. Bank storage occurs when high river levels associated with flood water reverses the hydraulic gradient between surface water and groundwater. River water flows into the riparian zone, where it is stored until the flood water recede. The water held in the banks then drains back into the river over time scales ranging from days to months as the hydraulic gradient returns to pre-flood levels. If the frequency and amplitude of flood events is high enough, water held in bank storage can potentially perpetually remain between the regional groundwater system and the river. In this work we focus on the role of bank storage in buffering river salinity levels against saline regional groundwater on lowland sections of the Avon River, Victoria, Australia. We hypothesize that the frequency and magnitude of floods will strongly influence the salinity of the stream water as banks fill and drain. A bore transect (5 bores) was installed perpendicular to the river and were instrumented with head and electrical conductivity loggers measuring for two years. We also installed a continuous 222Rn system in one bore. This data was augmented with long-term monthly EC from the river. During high rainfall events very fresh flood waters from the headwaters infiltrated into the gravel river banks leading to a dilution in EC and 222Rn in the bores. Following the events the fresh water drained back into the river as head gradients reversed. However the bank water salinities remained ~10x lower than regional groundwater levels during most of the time series, and only slightly above river water. During 2012 SE Australia experienced a prolonged summer drought. A significant increase in EC was observed in the bores towards the end of the summer, which suggest that the lack of bank recharge from the river resulted in draining of the banks and connection between the regional groundwater and the river. The long-term river salinity dataset showed that when flow events are infrequent and of low magnitude (i.e. drought conditions), salinities increase significantly. Similarly this is thought to be due to draining of the banks and connection with the regional groundwater system. Thus an increase in extended dry periods is expected to result in higher salinities in Australian waterways as the climate changes.

  19. Integrating a reservoir regulation scheme into a spatially distributed hydrological model

    DOE PAGES

    Zhao, Gang; Gao, Huili; Naz, Bibi S; ...

    2016-10-14

    During the past several decades, numerous reservoirs have been built across the world for a variety of purposes such as flood control, irrigation, municipal/industrial water supplies, and hydropower generation. Consequently, timing and magnitude of natural streamflows have been altered significantly by reservoir operations. In addition, the hydrological cycle can be modified by land-use/land-cover and climate changes. To understand the fine-scale feedback between hydrological processes and water management decisions, a distributed hydrological model embedded with a reservoir component is desired. In this study, a multi-purpose reservoir module with predefined complex operational rules was integrated into the Distributed Hydrology Soil Vegetation Modelmore » (DHSVM). Conditional operating rules, which are designed to reduce flood risk and enhance water supply reliability, were adopted in this module. The performance of the integrated model was tested over the upper Brazos River Basin in Texas, where two U.S. Army Corps of Engineers reservoirs, Lake Whitney and Aquilla Lake, are located. The integrated DHSVM was calibrated and validated using observed reservoir inflow, outflow, and storage data. The error statistics were summarized for both reservoirs on a daily, weekly, and monthly basis. Using the weekly reservoir storage for Lake Whitney as an example, the coefficient of determination (R 2) and the Nash-Sutcliff Efficiency (NSE) were 0.85 and 0.75, respectively. These results suggest that this reservoir module holds promise for use in sub-monthly hydrological simulations. Furthermore, with the new reservoir component, the DHSVM provides a platform to support adaptive water resources management under the impacts of evolving anthropogenic activities and substantial environmental changes.« less

  20. Integrating a reservoir regulation scheme into a spatially distributed hydrological model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Gang; Gao, Huili; Naz, Bibi S

    During the past several decades, numerous reservoirs have been built across the world for a variety of purposes such as flood control, irrigation, municipal/industrial water supplies, and hydropower generation. Consequently, timing and magnitude of natural streamflows have been altered significantly by reservoir operations. In addition, the hydrological cycle can be modified by land-use/land-cover and climate changes. To understand the fine-scale feedback between hydrological processes and water management decisions, a distributed hydrological model embedded with a reservoir component is desired. In this study, a multi-purpose reservoir module with predefined complex operational rules was integrated into the Distributed Hydrology Soil Vegetation Modelmore » (DHSVM). Conditional operating rules, which are designed to reduce flood risk and enhance water supply reliability, were adopted in this module. The performance of the integrated model was tested over the upper Brazos River Basin in Texas, where two U.S. Army Corps of Engineers reservoirs, Lake Whitney and Aquilla Lake, are located. The integrated DHSVM was calibrated and validated using observed reservoir inflow, outflow, and storage data. The error statistics were summarized for both reservoirs on a daily, weekly, and monthly basis. Using the weekly reservoir storage for Lake Whitney as an example, the coefficient of determination (R 2) and the Nash-Sutcliff Efficiency (NSE) were 0.85 and 0.75, respectively. These results suggest that this reservoir module holds promise for use in sub-monthly hydrological simulations. Furthermore, with the new reservoir component, the DHSVM provides a platform to support adaptive water resources management under the impacts of evolving anthropogenic activities and substantial environmental changes.« less

  1. Nonlinear Filtering Effects of Reservoirs on Flood Frequency Curves at the Regional Scale: RESERVOIRS FILTER FLOOD FREQUENCY CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Li, Hong-Yi; Leung, L. Ruby

    Anthropogenic activities, e.g., reservoir operation, may alter the characteristics of Flood Frequency Curve (FFC) and challenge the basic assumption of stationarity used in flood frequency analysis. This paper presents a combined data-modeling analysis of the nonlinear filtering effects of reservoirs on the FFCs over the contiguous United States. A dimensionless Reservoir Impact Index (RII), defined as the total upstream reservoir storage capacity normalized by the annual streamflow volume, is used to quantify reservoir regulation effects. Analyses are performed for 388 river stations with an average record length of 50 years. The first two moments of the FFC, mean annual maximummore » flood (MAF) and coefficient of variations (CV), are calculated for the pre- and post-dam periods and compared to elucidate the reservoir regulation effects as a function of RII. It is found that MAF generally decreases with increasing RII but stabilizes when RII exceeds a threshold value, and CV increases with RII until a threshold value beyond which CV decreases with RII. The processes underlying the nonlinear threshold behavior of MAF and CV are investigated using three reservoir models with different levels of complexity. All models capture the non-linear relationships of MAF and CV with RII, suggesting that the basic flood control function of reservoirs is key to the non-linear relationships. The relative roles of reservoir storage capacity, operation objectives, available storage prior to a flood event, and reservoir inflow pattern are systematically investigated. Our findings may help improve flood-risk assessment and mitigation in regulated river systems at the regional scale.« less

  2. Quantification of Uncertainty in the Flood Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Kasiapillai Sudalaimuthu, K.; He, J.; Swami, D.

    2017-12-01

    Flood frequency analysis (FFA) is usually carried out for planning and designing of water resources and hydraulic structures. Owing to the existence of variability in sample representation, selection of distribution and estimation of distribution parameters, the estimation of flood quantile has been always uncertain. Hence, suitable approaches must be developed to quantify the uncertainty in the form of prediction interval as an alternate to deterministic approach. The developed framework in the present study to include uncertainty in the FFA discusses a multi-objective optimization approach to construct the prediction interval using ensemble of flood quantile. Through this approach, an optimal variability of distribution parameters is identified to carry out FFA. To demonstrate the proposed approach, annual maximum flow data from two gauge stations (Bow river at Calgary and Banff, Canada) are used. The major focus of the present study was to evaluate the changes in magnitude of flood quantiles due to the recent extreme flood event occurred during the year 2013. In addition, the efficacy of the proposed method was further verified using standard bootstrap based sampling approaches and found that the proposed method is reliable in modeling extreme floods as compared to the bootstrap methods.

  3. Simulated CONUS Flash Flood Climatologies from Distributed Hydrologic Models

    NASA Astrophysics Data System (ADS)

    Flamig, Z.; Gourley, J. J.; Vergara, H. J.; Kirstetter, P. E.; Hong, Y.

    2016-12-01

    This study will describe a CONUS flash flood climatology created over the period from 2002 through 2011. The MRMS reanalysis precipitation dataset was used as forcing into the Ensemble Framework For Flash Flood Forecasting (EF5). This high resolution 1-sq km 5-minute dataset is ideal for simulating flash floods with a distributed hydrologic model. EF5 features multiple water balance components including SAC-SMA, CREST, and a hydrophobic model all coupled with kinematic wave routing. The EF5/SAC-SMA and EF5/CREST water balance schemes were used for the creation of dual flash flood climatologies based on the differing water balance principles. For the period from 2002 through 2011 the daily maximum streamflow, unit streamflow, and time of peak streamflow was stored along with the minimum soil moisture. These variables are used to describe the states of the soils right before a flash flood event and the peak streamflow that was simulated during the flash flood event. The results will be shown, compared and contrasted. The resulting model simulations will be verified on basins less than 1,000-sq km with USGS gauges to ensure the distributed hydrologic models are reliable. The results will also be compared spatially to Storm Data flash flood event observations to judge the degree of agreement between the simulated climatologies and observations.

  4. A framework for global river flood risk assessment

    NASA Astrophysics Data System (ADS)

    Winsemius, H. C.; Van Beek, L. P. H.; Bouwman, A.; Ward, P. J.; Jongman, B.

    2012-04-01

    There is an increasing need for strategic global assessments of flood risks. Such assessments may be required by: (a) International Financing Institutes and Disaster Management Agencies to evaluate where, when, and which investments in flood risk mitigation are most required; (b) (re-)insurers, who need to determine their required coverage capital; and (c) large companies to account for risks of regional investments. In this contribution, we propose a framework for global river flood risk assessment. The framework combines coarse scale resolution hazard probability distributions, derived from global hydrological model runs (typical scale about 0.5 degree resolution) with high resolution estimates of exposure indicators. The high resolution is required because floods typically occur at a much smaller scale than the typical resolution of global hydrological models, and exposure indicators such as population, land use and economic value generally are strongly variable in space and time. The framework therefore estimates hazard at a high resolution ( 1 km2) by using a) global forcing data sets of the current (or in scenario mode, future) climate; b) a global hydrological model; c) a global flood routing model, and d) importantly, a flood spatial downscaling routine. This results in probability distributions of annual flood extremes as an indicator of flood hazard, at the appropriate resolution. A second component of the framework combines the hazard probability distribution with classical flood impact models (e.g. damage, affected GDP, affected population) to establish indicators for flood risk. The framework can be applied with a large number of datasets and models and sensitivities of such choices can be evaluated by the user. The framework is applied using the global hydrological model PCR-GLOBWB, combined with a global flood routing model. Downscaling of the hazard probability distributions to 1 km2 resolution is performed with a new downscaling algorithm, applied on a number of target regions. We demonstrate the use of impact models in these regions based on global GDP, population, and land use maps. In this application, we show sensitivities of the estimated risks with regard to the use of different climate input datasets, decisions made in the downscaling algorithm, and different approaches to establish distributed estimates of GDP and asset exposure to flooding.

  5. Spatial and Temporal Influences on Carbon Storage in Hydric Soils of the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Sundquist, E. T.; Ackerman, K.; Bliss, N.; Griffin, R.; Waltman, S.; Windham-Myers, L.

    2016-12-01

    Defined features of hydric soils persist over extensive areas of the conterminous United States (CUS) long after their hydric formation conditions have been altered by historical changes in land and water management. These legacy hydric features may represent previous wetland environments in which soil carbon storage was significantly higher before the influence of human activities. We hypothesize that historical alterations of hydric soil carbon storage can be approximated using carefully selected estimates of carbon storage in currently identified hydric soils. Using the Soil Survey Geographic (SSURGO) database, we evaluate carbon storage in identified hydric soil components that are subject to discrete ranges of current or recent conditions of flooding, ponding, and other indicators of hydric and non-hydric soil associations. We check our evaluations and, where necessary, adjust them using independently published soil data. We compare estimates of soil carbon storage under various hydric and non-hydric conditions within proximal landscapes and similar biophysical settings and ecosystems. By combining these setting- and ecosystem-constrained comparisons with the spatial distribution and attributes of wetlands in the National Wetlands Inventory, we impute carbon storage estimates for soils that occur in current wetlands and for hydric soils that are not associated with current wetlands. Using historical data on land use and water control structures, we map the spatial and temporal distribution of past changes in land and water management that have affected hydric soils. We combine these maps with our imputed carbon storage estimates to calculate ranges of values for historical and present-day carbon storage in hydric soils throughout the CUS. These estimates may provide useful constraints for projections of potential carbon storage in hydric soils under future conditions.

  6. Flood risk trends in coastal watersheds in South Spain: direct and indirect impact of river regulation

    NASA Astrophysics Data System (ADS)

    Egüen, M.; Polo, M. J.; Gulliver, Z.; Contreras, E.; Aguilar, C.; Losada, M. A.

    2015-06-01

    Spain is one of the world's countries with a large number of reservoirs per inhabitant. This intense regulation of the fluvial network during the 20th century has resulted in a decrease in flood events, a higher availability of water resources, and a high development of the irrigated crop area, even in the drier regions. For decades, flood perception was reduced since the development of reservoirs protected the floodplains of river; this resulted in later occupation of soil by urban, agricultural and industrial uses. In recent years, an increasing perception of flood events is observed, associated to the higher damage associated to extreme events in the now occupied areas, especially in coastal watersheds. This work shows the change on flood risk in the coastal areas of three hydrographic basins in Andalusia (South Spain) during the reservoir expansion period: the Guadalete, Guadalquivir and Guadalhorce river basins. The results differentiate the impact of the regulation level on both the cumulative distribution functions of the fluvial discharge near the river mouth, for different time scales, and the associated damage related to the enhanced soil occupation during this period. The different impact on the final medium and long term flood risk is also assessed in terms of the storage capacity per unit area throughout the basins, the effective annual runoff/precipitation index, the frequency of sea storms, and the human factor (change in social perception of floods), for different intervals in the flood extreme regime. The implications for adaptation actions is also assessed.

  7. Combining empirical approaches and error modelling to enhance predictive uncertainty estimation in extrapolation for operational flood forecasting. Tests on flood events on the Loire basin, France.

    NASA Astrophysics Data System (ADS)

    Berthet, Lionel; Marty, Renaud; Bourgin, François; Viatgé, Julie; Piotte, Olivier; Perrin, Charles

    2017-04-01

    An increasing number of operational flood forecasting centres assess the predictive uncertainty associated with their forecasts and communicate it to the end users. This information can match the end-users needs (i.e. prove to be useful for an efficient crisis management) only if it is reliable: reliability is therefore a key quality for operational flood forecasts. In 2015, the French flood forecasting national and regional services (Vigicrues network; www.vigicrues.gouv.fr) implemented a framework to compute quantitative discharge and water level forecasts and to assess the predictive uncertainty. Among the possible technical options to achieve this goal, a statistical analysis of past forecasting errors of deterministic models has been selected (QUOIQUE method, Bourgin, 2014). It is a data-based and non-parametric approach based on as few assumptions as possible about the forecasting error mathematical structure. In particular, a very simple assumption is made regarding the predictive uncertainty distributions for large events outside the range of the calibration data: the multiplicative error distribution is assumed to be constant, whatever the magnitude of the flood. Indeed, the predictive distributions may not be reliable in extrapolation. However, estimating the predictive uncertainty for these rare events is crucial when major floods are of concern. In order to improve the forecasts reliability for major floods, an attempt at combining the operational strength of the empirical statistical analysis and a simple error modelling is done. Since the heteroscedasticity of forecast errors can considerably weaken the predictive reliability for large floods, this error modelling is based on the log-sinh transformation which proved to reduce significantly the heteroscedasticity of the transformed error in a simulation context, even for flood peaks (Wang et al., 2012). Exploratory tests on some operational forecasts issued during the recent floods experienced in France (major spring floods in June 2016 on the Loire river tributaries and flash floods in fall 2016) will be shown and discussed. References Bourgin, F. (2014). How to assess the predictive uncertainty in hydrological modelling? An exploratory work on a large sample of watersheds, AgroParisTech Wang, Q. J., Shrestha, D. L., Robertson, D. E. and Pokhrel, P (2012). A log-sinh transformation for data normalization and variance stabilization. Water Resources Research, , W05514, doi:10.1029/2011WR010973

  8. Flood management on the lower Yellow River: hydrological and geomorphological perspectives

    NASA Astrophysics Data System (ADS)

    Shu, Li; Finlayson, Brian

    1993-05-01

    The Yellow River, known also as "China's Sorrow", has a long history of channel changes and disastrous floods in its lower reaches. Past channel positions can be identified from historical documentary records and geomorphological and sedimentological evidence. Since 1947, government policy has been aimed at containing the floods within artificial levees and preventing the river from changing its course. Flood control is based on flood-retarding dams and off-stream retention basins as well as artificial levees lining the channel. The design flood for the system has a recurrence interval of only around 60 years and floods of this and larger magnitudes can be generated downstream of the main flood control dams at Sanmenxia and Xiaolangdi. Rapid sedimentation along the river causes problems for storage and has raised the bed of the river some 10 m above the surrounding floodplain. The present management strategy is probably not viable in the long term and to avoid a major disaster a new management approach is required. The most viable option would appear to be to breach the levees at predetermined points coupled with advanced warning and evacuation of the population thus put at risk.

  9. Implications of GRACE Satellite Gravity Measurements for Diverse Hydrological Applications

    NASA Astrophysics Data System (ADS)

    Yirdaw-Zeleke, Sitotaw

    Soil moisture plays a major role in the hydrologic water balance and is the basis for most hydrological models. It influences the partitioning of energy and moisture inputs at the land surface. Because of its importance, it has been used as a key variable for many hydrological studies such as flood forecasting, drought studies and the determination of groundwater recharge. Therefore, spatially distributed soil moisture with reasonable temporal resolution is considered a valuable source of information for hydrological model parameterization and validation. Unfortunately, soil moisture is difficult to measure and remains essentially unmeasured over spatial and temporal scales needed for a number of hydrological model applications. In 2002, the Gravity Recovery And Climate Experiment (GRACE) satellite platform was launched to measure, among other things, the gravitational field of the earth. Over its life span, these orbiting satellites have produced time series of mass changes of the earth-atmosphere system. The subsequent outcome of this, after integration over a number of years, is a time series of highly refined images of the earth's mass distribution. In addition to quantifying the static distribution of mass, the month-to-month variation in the earth's gravitational field are indicative of the integrated value of the subsurface total water storage for specific catchments. Utilization of these natural changes in the earth's gravitational field entails the transformation of the derived GRACE geopotential spherical harmonic coefficients into spatially varying time series estimates of total water storage. These remotely sensed basin total water storage estimates can be routinely validated against independent estimates of total water storage from an atmospheric-based water balance approach or from well calibrated macroscale hydrologic models. The hydrological relevance and implications of remotely estimated GRACE total water storage over poorly gauged, wetland-dominated watershed as well as over a deltaic region underlain by a thick sand aquifer in Western Canada are the focus of this thesis. The domain of the first case study was the Mackenzie River Basin wherein the GRACE total water storage estimates were successfully inter-compared and validated with the atmospheric based water balance. These were then used to assess the WAT-CLASS hydrological model estimates of total water storage. The outcome of this inter-comparison revealed the potential application of the GRACE-based approach for the closure of the hydrological water balance of the Mackenzie River Basin as well as a dependable source of data for the calibration of traditional hydrological models. The Mackenzie River Basin result led to a second case study where the GRACE-based total water storage was validated using storage estimated from the atmospheric-based water balance P--E computations in conjunction with the measured streamflow records for the Saskatchewan River Basin at its Grand Rapids outlet in Manitoba. The fallout from this comparison was then applied to the characterization of the Prairie-wide 2002/2003 drought enabling the development of a new drought index now known as the Total Storage Deficit Index (TSDI). This study demonstrated the potential application of the GRACE-based technique as a tool for drought characterization in the Canadian Prairies. Finally, the hydroinformatic approach based on the artificial neural network (ANN) enabled the downscaling of the groundwater component from the total water storage estimate from the remote sensing satellite, GRACE. This was subsequently explored as an alternate source of calibration and validation for a hydrological modeling application over the Assiniboine Delta Aquifer in Manitoba. Interestingly, a high correlation exists between the simulated groundwater storage from the coupled hydrological model, CLM-PF and the downscaled groundwater time series storage from the remote sensing satellite GRACE over this 4,000 km2 deltaic basin in Canada.

  10. A non-stationary cost-benefit analysis approach for extreme flood estimation to explore the nexus of 'Risk, Cost and Non-stationarity'

    NASA Astrophysics Data System (ADS)

    Qi, Wei

    2017-11-01

    Cost-benefit analysis is commonly used for engineering planning and design problems in practice. However, previous cost-benefit based design flood estimation is based on stationary assumption. This study develops a non-stationary cost-benefit based design flood estimation approach. This approach integrates a non-stationary probability distribution function into cost-benefit analysis, and influence of non-stationarity on expected total cost (including flood damage and construction costs) and design flood estimation can be quantified. To facilitate design flood selections, a 'Risk-Cost' analysis approach is developed, which reveals the nexus of extreme flood risk, expected total cost and design life periods. Two basins, with 54-year and 104-year flood data respectively, are utilized to illustrate the application. It is found that the developed approach can effectively reveal changes of expected total cost and extreme floods in different design life periods. In addition, trade-offs are found between extreme flood risk and expected total cost, which reflect increases in cost to mitigate risk. Comparing with stationary approaches which generate only one expected total cost curve and therefore only one design flood estimation, the proposed new approach generate design flood estimation intervals and the 'Risk-Cost' approach selects a design flood value from the intervals based on the trade-offs between extreme flood risk and expected total cost. This study provides a new approach towards a better understanding of the influence of non-stationarity on expected total cost and design floods, and could be beneficial to cost-benefit based non-stationary design flood estimation across the world.

  11. Use of distributed snow cover information to update snow storages of a lumped rainfall-runoff model operationally

    NASA Astrophysics Data System (ADS)

    Lisniak, D.; Meissner, D.; Klein, B.; Pinzinger, R.

    2013-12-01

    The German Federal Institute of Hydrology (BfG) offers navigational water-level forecasting services on the Federal Waterways, like the rivers Rhine and Danube. In cooperation with the Federal States this mandate also includes the forecasting of flood events. For the River Rhine, the most frequented inland waterway in Central Europe, the BfG employs a hydrological model (HBV) coupled to a hydraulic model (SOBEK) by the FEWS-framework to perform daily forecasts of water-levels operationally. Sensitivity studies have shown that the state of soil water storage in the hydrological model is a major factor of uncertainty when performing short- to medium-range forecasts some days ahead. Taking into account the various additional sources of uncertainty associated with hydrological modeling, including measurement uncertainties, it is essential to estimate an optimal initial state of the soil water storage before propagating it in time, forced by meteorological forecasts, and transforming it into discharge. We show, that using the Ensemble Kalman Filter these initial states can be updated straightforward under certain hydrologic conditions. However, this approach is not sufficient if the runoff is mainly generated by snow melt. Since the snow cover evolution is modeled rather poorly by the HBV-model in our operational setting, flood events caused by snow melt are consistently underestimated by the HBV-model, which has long term effects in basins characterized by a nival runoff regime. Thus, it appears beneficial to update the snow storage of the HBV-model with information derived from regionalized snow cover observations. We present a method to incorporate spatially distributed snow cover observations into the lumped HBV-model. We show the plausibility of this approach and asses the benefits of a coupled snow cover and soil water storage updating, which combine a direct insertion with an Ensemble Kalman Filter. The Ensemble Kalman Filter used here takes into account the internal routing mechanism of the HBV-model, which causes a delayed response of the simulated discharge at the catchment outlet to changes in internal states.

  12. Exploiting Synoptic-Scale Climate Processes to Develop Nonstationary, Probabilistic Flood Hazard Projections

    NASA Astrophysics Data System (ADS)

    Spence, C. M.; Brown, C.; Doss-Gollin, J.

    2016-12-01

    Climate model projections are commonly used for water resources management and planning under nonstationarity, but they do not reliably reproduce intense short-term precipitation and are instead more skilled at broader spatial scales. To provide a credible estimate of flood trend that reflects climate uncertainty, we present a framework that exploits the connections between synoptic-scale oceanic and atmospheric patterns and local-scale flood-producing meteorological events to develop long-term flood hazard projections. We demonstrate the method for the Iowa River, where high flow episodes have been found to correlate with tropical moisture exports that are associated with a pressure dipole across the eastern continental United States We characterize the relationship between flooding on the Iowa River and this pressure dipole through a nonstationary Pareto-Poisson peaks-over-threshold probability distribution estimated based on the historic record. We then combine the results of a trend analysis of dipole index in the historic record with the results of a trend analysis of the dipole index as simulated by General Circulation Models (GCMs) under climate change conditions through a Bayesian framework. The resulting nonstationary posterior distribution of dipole index, combined with the dipole-conditioned peaks-over-threshold flood frequency model, connects local flood hazard to changes in large-scale atmospheric pressure and circulation patterns that are related to flooding in a process-driven framework. The Iowa River example demonstrates that the resulting nonstationary, probabilistic flood hazard projection may be used to inform risk-based flood adaptation decisions.

  13. The effects of floodplain forest restoration and logjams on flood risk and flood hydrology

    NASA Astrophysics Data System (ADS)

    Dixon, Simon; Sear, David A.; Sykes, Tim; Odoni, Nicholas

    2015-04-01

    Flooding is the most common natural catastrophe, accounting for around half of all natural disaster related deaths and causing economic losses in Europe estimated at over € 2bn per year. In addition flooding is expected to increase in magnitude and frequency with climate change, effectively shortening the return period for a given magnitude flood. Increasing the height and extent of hard engineered defences in response to increased risk is both unsustainable and undesirable. Thus alternative approaches to flood mitigation are needed such as harnessing vegetation processes to slow the passage of flood waves and increase local flood storage. However, our understanding of these effects at the catchment scale is limited. In this presentation we demonstrate the effects of two river restoration approaches upon catchment scale flood hydrology. The addition of large wood to river channels during river restoration projects is a popular method of attempting to improve physical and biological conditions in degraded river systems. Projects utilising large wood can involve the installation of engineered logjams (ELJs), the planting and enhancement of riparian forests, or a combination of both. Altering the wood loading of a channel through installation of ELJs and increasing floodplain surface complexity through encouraging mature woodland could be expected to increase the local hydraulic resistance, increasing the timing and duration of overbank events locally and therefore increasing the travel time of a flood wave through a reach. This reach-scale effect has been documented in models and the field; however the impacts of these local changes at a catchment scale remains to be illustrated. Furthermore there is limited knowledge of how changing successional stages of a restored riparian forest through time may affect its influence on hydromorphic processes. We present results of a novel paired numerical modelling study. We model changes in flood hydrology based on a 98km² catchment using OVERFLOW; a simplified hydrological model using a spatially distributed unit hydrograph approach. Restoration scenarios for the hydrological modelling are informed by the development of a new conceptual model of riparian forest succession, including quantitative estimates of deadwood inputs to the system, using a numerical forest growth model. We explore scenarios using ELJs alone as well as managed and unmanaged riparian forest restoration at scales from reach to sub-catchment. We demonstrate that changes to catchment flood hydrology with restoration are highly location dependant and downstream flood peaks can in some cases increase through synchronisation of sub-catchment flood waves. We constrain magnitude estimates for increases and decreases in flood peaks for modelled restoration scenarios and scales. Finally we analyse the potential for using riparian forest restoration as part of an integrated flood risk management strategy, including specific examples of type and extent of restoration which may prove most beneficial.

  14. Modeling Compound Flood Hazards in Coastal Embayments

    NASA Astrophysics Data System (ADS)

    Moftakhari, H.; Schubert, J. E.; AghaKouchak, A.; Luke, A.; Matthew, R.; Sanders, B. F.

    2017-12-01

    Coastal cities around the world are built on lowland topography adjacent to coastal embayments and river estuaries, where multiple factors threaten increasing flood hazards (e.g. sea level rise and river flooding). Quantitative risk assessment is required for administration of flood insurance programs and the design of cost-effective flood risk reduction measures. This demands a characterization of extreme water levels such as 100 and 500 year return period events. Furthermore, hydrodynamic flood models are routinely used to characterize localized flood level intensities (i.e., local depth and velocity) based on boundary forcing sampled from extreme value distributions. For example, extreme flood discharges in the U.S. are estimated from measured flood peaks using the Log-Pearson Type III distribution. However, configuring hydrodynamic models for coastal embayments is challenging because of compound extreme flood events: events caused by a combination of extreme sea levels, extreme river discharges, and possibly other factors such as extreme waves and precipitation causing pluvial flooding in urban developments. Here, we present an approach for flood risk assessment that coordinates multivariate extreme analysis with hydrodynamic modeling of coastal embayments. First, we evaluate the significance of correlation structure between terrestrial freshwater inflow and oceanic variables; second, this correlation structure is described using copula functions in unit joint probability domain; and third, we choose a series of compound design scenarios for hydrodynamic modeling based on their occurrence likelihood. The design scenarios include the most likely compound event (with the highest joint probability density), preferred marginal scenario and reproduced time series of ensembles based on Monte Carlo sampling of bivariate hazard domain. The comparison between resulting extreme water dynamics under the compound hazard scenarios explained above provides an insight to the strengths/weaknesses of each approach and helps modelers choose the appropriate scenario that best fit to the needs of their project. The proposed risk assessment approach can help flood hazard modeling practitioners achieve a more reliable estimate of risk, by cautiously reducing the dimensionality of the hazard analysis.

  15. The role of the antecedent soil moisture condition on the distributed hydrologic modelling of the Toce alpine basin floods.

    NASA Astrophysics Data System (ADS)

    Ravazzani, G.; Montaldo, N.; Mancini, M.; Rosso, R.

    2003-04-01

    Event-based hydrologic models need the antecedent soil moisture condition, as critical boundary initial condition for flood simulation. Land-surface models (LSMs) have been developed to simulate mass and energy transfers, and to update the soil moisture condition through time from the solution of water and energy balance equations. They are recently used in distributed hydrologic modeling for flood prediction systems. Recent developments have made LSMs more complex by inclusion of more processes and controlling variables, increasing parameter number and uncertainty of their estimates. This also led to increasing of computational burden and parameterization of the distributed hydrologic models. In this study we investigate: 1) the role of soil moisture initial conditions in the modeling of Alpine basin floods; 2) the adequate complexity level of LSMs for the distributed hydrologic modeling of Alpine basin floods. The Toce basin is the case study; it is located in the North Piedmont (Italian Alps), and it has a total drainage area of 1534 km2 at Candoglia section. Three distributed hydrologic models of different level of complexity are developed and compared: two (TDLSM and SDLSM) are continuous models, one (FEST02) is an event model based on the simplified SCS-CN method for rainfall abstractions. In the TDLSM model a two-layer LSM computes both saturation and infiltration excess runoff, and simulates the evolution of the water table spatial distribution using the topographic index; in the SDLSM model a simplified one-layer distributed LSM only computes hortonian runoff, and doesn’t simulate the water table dynamic. All the three hydrologic models simulate the surface runoff propagation through the Muskingum-Cunge method. TDLSM and SDLSM models have been applied for the two-year (1996 and 1997) simulation period, during which two major floods occurred in the November 1996 and in the June 1997. The models have been calibrated and tested comparing simulated and observed hydrographs at Candoglia. Sensitivity analysis of the models to significant LSM parameters were also performed. The performances of the three models in the simulation of the two major floods are compared. Interestingly, the results indicate that the SDLSM model is able to sufficiently well predict the major floods of this Alpine basin; indeed, this model is a good compromise between the over-parameterized and too complex TDLSM model and the over-simplified FEST02 model.

  16. IFIS Model-Plus: A Web-Based GUI for Visualization, Comparison and Evaluation of Distributed Flood Forecasts and Hindcasts

    NASA Astrophysics Data System (ADS)

    Krajewski, W. F.; Della Libera Zanchetta, A.; Mantilla, R.; Demir, I.

    2017-12-01

    This work explores the use of hydroinformatics tools to provide an user friendly and accessible interface for executing and assessing the output of realtime flood forecasts using distributed hydrological models. The main result is the implementation of a web system that uses an Iowa Flood Information System (IFIS)-based environment for graphical displays of rainfall-runoff simulation results for both real-time and past storm events. It communicates with ASYNCH ODE solver to perform large-scale distributed hydrological modeling based on segmentation of the terrain into hillslope-link hydrologic units. The cyber-platform also allows hindcast of model performance by testing multiple model configurations and assumptions of vertical flows in the soils. The scope of the currently implemented system is the entire set of contributing watersheds for the territory of the state of Iowa. The interface provides resources for visualization of animated maps for different water-related modeled states of the environment, including flood-waves propagation with classification of flood magnitude, runoff generation, surface soil moisture and total water column in the soil. Additional tools for comparing different model configurations and performing model evaluation by comparing to observed variables at monitored sites are also available. The user friendly interface has been published to the web under the URL http://ifis.iowafloodcenter.org/ifis/sc/modelplus/.

  17. Ensemble Flow Forecasts for Risk Based Reservoir Operations of Lake Mendocino in Mendocino County, California

    NASA Astrophysics Data System (ADS)

    Delaney, C.; Hartman, R. K.; Mendoza, J.; Evans, K. M.; Evett, S.

    2016-12-01

    Forecast informed reservoir operations (FIRO) is a methodology that incorporates short to mid-range precipitation or flow forecasts to inform the flood operations of reservoirs. Previous research and modeling for flood control reservoirs has shown that FIRO can reduce flood risk and increase water supply for many reservoirs. The risk-based method of FIRO presents a unique approach that incorporates flow forecasts made by NOAA's California-Nevada River Forecast Center (CNRFC) to model and assess risk of meeting or exceeding identified management targets or thresholds. Forecasted risk is evaluated against set risk tolerances to set reservoir flood releases. A water management model was developed for Lake Mendocino, a 116,500 acre-foot reservoir located near Ukiah, California. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United State Army Corps of Engineers and is operated by the Sonoma County Water Agency for water supply. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has been plagued with water supply reliability issues since 2007. FIRO is applied to Lake Mendocino by simulating daily hydrologic conditions from 1985 to 2010 in the Upper Russian River from Lake Mendocino to the City of Healdsburg approximately 50 miles downstream. The risk-based method is simulated using a 15-day, 61 member streamflow hindcast by the CNRFC. Model simulation results of risk-based flood operations demonstrate a 23% increase in average end of water year (September 30) storage levels over current operations. Model results show no increase in occurrence of flood damages for points downstream of Lake Mendocino. This investigation demonstrates that FIRO may be a viable flood control operations approach for Lake Mendocino and warrants further investigation through additional modeling and analysis.

  18. Research on classified real-time flood forecasting framework based on K-means cluster and rough set.

    PubMed

    Xu, Wei; Peng, Yong

    2015-01-01

    This research presents a new classified real-time flood forecasting framework. In this framework, historical floods are classified by a K-means cluster according to the spatial and temporal distribution of precipitation, the time variance of precipitation intensity and other hydrological factors. Based on the classified results, a rough set is used to extract the identification rules for real-time flood forecasting. Then, the parameters of different categories within the conceptual hydrological model are calibrated using a genetic algorithm. In real-time forecasting, the corresponding category of parameters is selected for flood forecasting according to the obtained flood information. This research tests the new classified framework on Guanyinge Reservoir and compares the framework with the traditional flood forecasting method. It finds that the performance of the new classified framework is significantly better in terms of accuracy. Furthermore, the framework can be considered in a catchment with fewer historical floods.

  19. CREST v2.1 Refined by a Distributed Linear Reservoir Routing Scheme

    NASA Astrophysics Data System (ADS)

    Shen, X.; Hong, Y.; Zhang, K.; Hao, Z.; Wang, D.

    2014-12-01

    Hydrologic modeling is important in water resources management, and flooding disaster warning and management. Routing scheme is among the most important components of a hydrologic model. In this study, we replace the lumped LRR (linear reservoir routing) scheme used in previous versions of the distributed hydrological model, CREST (coupled routing and excess storage) by a newly proposed distributed LRR method, which is theoretically more suitable for distributed hydrological models. Consequently, we have effectively solved the problems of: 1) low values of channel flow in daily simulation, 2) discontinuous flow value along the river network during flood events and 3) irrational model parameters. The CREST model equipped with both the routing schemes have been tested in the Gan River basin. The distributed LRR scheme has been confirmed to outperform the lumped counterpart by two comparisons, hydrograph validation and visual speculation of the continuity of stream flow along the river: 1) The CREST v2.1 (version 2.1) with the implementation of the distributed LRR achieved excellent result of [NSCE(Nash coefficient), CC (correlation coefficient), bias] =[0.897, 0.947 -1.57%] while the original CREST v2.0 produced only negative NSCE, close to zero CC and large bias. 2) CREST v2.1 produced more naturally smooth river flow pattern along the river network while v2.0 simulated bumping and discontinuous discharge along the mainstream. Moreover, we further observe that by using the distributed LRR method, 1) all model parameters fell within their reasonable region after an automatic optimization; 2) CREST forced by satellite-based precipitation and PET products produces a reasonably well result, i.e., (NSCE, CC, bias) = (0.756, 0.871, -0.669%) in the case study, although there is still room to improve regarding their low spatial resolution and underestimation of the heavy rainfall events in the satellite products.

  20. Evaluation of TRMM satellite-based precipitation indexes for flood forecasting over Riyadh City, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Tekeli, Ahmet Emre; Fouli, Hesham

    2016-10-01

    Floods are among the most common disasters harming humanity. In particular, flash floods cause hazards to life, property and any type of structures. Arid and semi-arid regions are equally prone to flash floods like regions with abundant rainfall. Despite rareness of intensive and frequent rainfall events over Kingdom of Saudi Arabia (KSA); an arid/semi-arid region, occasional flash floods occur and result in large amounts of damaging surface runoff. The flooding of 16 November, 2013 in Riyadh; the capital city of KSA, resulted in killing some people and led to much property damage. The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) Real Time (RT) data (3B42RT) are used herein for flash flood forecasting. 3B42RT detected high-intensity rainfall events matching with the distribution of observed floods over KSA. A flood early warning system based on exceedance of threshold limits on 3B42RT data is proposed for Riyadh. Three different indexes: Constant Threshold (CT), Cumulative Distribution Functions (CDF) and Riyadh Flood Precipitation Index (RFPI) are developed using 14-year 3B42RT data from 2000 to 2013. RFPI and CDF with 90% captured the three major flooding events that occurred in February 2005, May 2010 and November 2013 in Riyadh. CT with 3 mm/h intensity indicated the 2013 flooding, but missed those of 2005 and 2010. The methodology implemented herein is a first-step simple and accurate way for flash flood forecasting over Riyadh. The simplicity of the methodology enables its applicability for the TRMM follow-on missions like Global Precipitation Measurement (GPM) mission.

  1. Contributions of GRACE to Understanding of Spatial Distribution of Spring Flooding in Snow-dominated Afghan Watersheds

    NASA Astrophysics Data System (ADS)

    Roningen, J. M.; Daly, S. F.; Vuyovich, C.

    2012-12-01

    In Afghanistan, where both historical and current in situ hydrologic records are extremely limited, the development and stability operations communities require guidance as to how to best utilize capabilities in remote sensing of the water cycle to understand and predict seasonal flooding. In this study, three versions of Level 3 GRACE datasets (CSR, CSR 4.1 and GRGS) are compared to TRMM 3B42 products, SSM/I-derived snow water equivalent products (SWE), and MODIS-derived flooding extents to assess their potential for contributing to an understanding of the spatial and temporal patterns of spring flooding in Afghanistan from the period 2002-2012. GRACE, which allows for assessment of correlations between small-scale temporal changes in the gravitational field of the earth with changes in the total water storage in the hydrosphere, opens the possibility for incorporation of subsurface components of the hydrologic cycle into remote monitoring and modeling of water resources. GRACE data exhibit clear seasonal fluctuations in many areas of Afghanistan, but an assessment is required of the extent to which this data can be disaggregated spatially and related to geographic patterns of precipitation, snowmelt and flooding. In this study, TRMM 3B42 and SSM/I-derived SWE datasets were used as proxies for measured precipitation. These datasets were convolved with a Gaussian filter with a 300 km half-radius at each reported GRACE data point in order to compensate for spatial correlation ('leakage' effects) in the GRACE data. In mountainous and snowmelt-dominated basins such as the majority of those in this study, GRACE analyses that make use of land surface model (LSM) derived estimates may not provide adequate characterization of snow water equivalent and soil moisture in this region. Therefore, soil and subsurface moisture were evaluated as a single storage component using the GRACE data, and flooding occurrence was evaluated as a qualitative surface expression of this storage component. Initial results show that cumulative Gaussian-smoothed TRMM data correlate positively with GRACE CSR during the periods between yearly GRACE minima and maxima at points throughout most watersheds. The timing of peaks in GRACE data in central Afghanistan following the onset of the seasonal SWE decline also corresponds to seasonal rises in the nearby Kajakai Reservoir as measured by Jason-2 satellite altimetry and validated by manual records. Differences between datasets also appear to confirm the irregularities introduced in this region by the CSR 4.1 product that used a land surface model in the signal restoration process.

  2. Flood risk assessment of land pollution hotspots

    NASA Astrophysics Data System (ADS)

    Masi, Matteo; Arrighi, Chiara; Iannelli, Renato

    2017-04-01

    Among the risks caused by extreme events, the potential spread of pollutants stored in land hotspots due to floods is an aspect that has been rarely examined with a risk-based approach. In this contribution, an attempt to estimate pollution risks related to flood events of land pollution hotspots was carried out. Flood risk has been defined as the combination of river flood hazard, hotspots exposure and vulnerability to contamination of the area, i.e. the expected severity of the environmental impacts. The assessment was performed on a geographical basis, using geo-referenced open data, available from databases of land management institutions, authorities and agencies. The list of land pollution hotspots included landfills and other waste handling facilities (e.g., temporary storage, treatment and recycling sites), municipal wastewater treatment plants, liquid waste treatment facilities and contaminated sites. The assessment was carried out by combining geo-referenced data of pollution hotspots with flood hazard maps. We derived maps of land pollution risk based on geographical and geological properties and source characteristics available from environmental authorities. These included information about soil particle size, soil hydraulic conductivity, terrain slope, type of stored pollutants, the type of facility, capacity, size of the area, land use, etc. The analysis was carried out at catchment scale. The case study of the Arno river basin in Tuscany (central Italy) is presented.

  3. Floods in mountain environments: A synthesis

    NASA Astrophysics Data System (ADS)

    Stoffel, Markus; Wyżga, Bartłomiej; Marston, Richard A.

    2016-11-01

    Floods are a crucial agent of geomorphic change in the channels and valley floors of mountains watercourses. At the same time, they can be highly damaging to property, infrastructure, and life. Because of their high energy, mountain watercourses are highly vulnerable to environmental changes affecting their catchments and channels. Many factors have modified and frequently still tend to modify the environmental conditions in mountain areas, with impacts on geomorphic processes and the frequency, magnitude, and timing of floods in mountain watercourses. The ongoing climate changes vary between regions but may affect floods in mountain areas in many ways. In many mountain regions of Europe, widespread afforestation took place over the twentieth century, considerably increasing the amounts of large wood delivered to the channels and the likelihood of jamming bridges. At the same time, deforestation continues in other mountain areas, accelerating runoff and amplifying the magnitude and frequency of floods in foreland areas. In many countries, in-channel gravel mining has been a common practice during recent decades; the resultant deficit of bed material in the affected channels may suddenly manifest during flood events, resulting in the failure of scoured bridges or catastrophic channel widening. During the past century many rivers in mountain and foreland areas incised deeply; the resultant loss of floodplain water storage has decreased attenuation of flood waves, hence increasing flood hazard to downstream river reaches. On the other hand, a large amount of recent river restoration activities worldwide may provide examples of beneficial changes to flood risk, attained as a result of increased channel storage or reestablished floodplain water storage. Relations between geomorphic processes and floods operate in both directions, which means that changes in flood probability or the character of floods (e.g., increased wood load) may significantly modify the morphology of mountain rivers, but morphological changes of rivers can also affect hydrological properties of floods and the associated risk for societies. This paper provides a review of research in the field of floods in mountain environments and puts the papers of this special issue dedicated to the same topic into context. It also provides insight into innovative studies, methods, or emerging aspects of the relations between environmental changes, geomorphic processes, and the occurrence of floods in mountain rivers.

  4. Risk factors of diarrhoea among flood victims: a controlled epidemiological study.

    PubMed

    Mondal, N C; Biswas, R; Manna, A

    2001-01-01

    The concept and practice of 'disaster preparedness and response', instead of traditional casualty relief, is relatively new. Vulnerability analysis and health risks assessment of disaster prone communities are important prerequisites of meaningful preparedness and effective response against any calamity. In this community based study, the risk of diarrhoeal disease and its related epidemiological factors were analysed by collecting data from two selected flood prone block of Midnapur district of West Bengal. The information was compared with that of another population living in two non-flood prone blocks of the same district. The study showed that diarrhoeal disease was the commonest morbidity in flood prone population. Some behaviours, like use of pond water for utensil wash and kitchen purpose, hand washing after defecation without soap, improper hand washing before eating, open field defecation, storage of drinking water in wide mouth vessels etc. were found to be associated with high attack rate of diarrhoea, in both study and control population during flood season compared to pre-flood season. Attack rates were also significantly higher in flood prone population than that of population in non-flood prone area during the same season. Necessity of both community education for proper water use behaviour and personal hygiene along with ensuring safe water and sanitation facilities of flood affected communities were emphasized.

  5. Snow mass and river flows modelled using GRACE total water storage observations

    NASA Astrophysics Data System (ADS)

    Wang, S.

    2017-12-01

    Snow mass and river flow measurements are difficult and less accurate in cold regions due to the hash environment. Floods in cold regions are commonly a result of snowmelt during the spring break-up. Flooding is projected to increase with climate change in many parts of the world. Forecasting floods from snowmelt remains a challenge due to scarce and quality issues in basin-scale snow observations and lack of knowledge for cold region hydrological processes. This study developed a model for estimating basin-level snow mass (snow water equivalent SWE) and river flows using the total water storage (TWS) observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. The SWE estimation is based on mass balance approach which is independent of in situ snow gauge observations, thus largely eliminates the limitations and uncertainties with traditional in situ or remote sensing snow estimates. The model forecasts river flows by simulating surface runoff from snowmelt and the corresponding baseflow from groundwater discharge. Snowmelt is predicted using a temperature index model. Baseflow is predicted using a modified linear reservoir model. The model also quantifies the hysteresis between the snowmelt and the streamflow rates, or the lump time for water travel in the basin. The model was applied to the Red River Basin, the Mackenzie River Basin, and the Hudson Bay Lowland Basins in Canada. The predicted river flows were compared with the observed values at downstream hydrometric stations. The results were also compared to that for the Lower Fraser River obtained in a separate study to help better understand the roles of environmental factors in determining flood and their variations with different hydroclimatic conditions. This study advances the applications of space-based time-variable gravity measurements in cold region snow mass estimation, river flow and flood forecasting. It demonstrates a relatively simple method that only needs GRACE TWS and temperature data for river flow or flood forecasting. The model can be particularly useful for regions with spare observation networks, and can be used in combination with other available methods to help improve the accuracy in river flow and flood forecasting over cold regions.

  6. The future role of dams in the United States of America

    NASA Astrophysics Data System (ADS)

    Ho, Michelle; Lall, Upmanu; Allaire, Maura; Devineni, Naresh; Kwon, Hyun Han; Pal, Indrani; Raff, David; Wegner, David

    2017-02-01

    xml:id="wrcr22481-sec-1001" numbered="no">Storage and controlled distribution of water have been key elements of a human strategy to overcome the space and time variability of water, which have been marked by catastrophic droughts and floods throughout the course of civilization. In the United States, the peak of dam building occurred in the mid-20th century with knowledge limited to the scientific understanding and hydrologic records of the time. Ecological impacts were considered differently than current legislative and regulatory controls would potentially dictate. Additionally, future costs such as maintenance or removal beyond the economic design life were not fully considered. The converging risks associated with aging water storage infrastructure and uncertainty in climate in addition to the continuing need for water storage, flood protection, and hydropower result in a pressing need to address the state of dam infrastructure across the nation. Decisions regarding the future of dams in the United States may, in turn, influence regional water futures through groundwater outcomes, economic productivity, migration, and urban growth. We advocate for a comprehensive national water assessment and a formal analysis of the role dams play in our water future. We emphasize the urgent need for environmentally and economically sound strategies to integrate surface and groundwater storage infrastructure in local, regional, and national water planning considerations. A research agenda is proposed to assess dam failure impacts and the design, operation, and need for dams considering both paleo and future climate, utilization of groundwater resources, and the changing societal values toward the environment.

  7. 18 CFR 11.16 - Filing requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... generating capacity separately designated. (3) A description of the total storage capacity of the reservoir..., irrigation storage, and flood control storage. Identification, by reservoir elevation, of the portion of the reservoir assigned to each of its respective storage functions. (4) An elevation-capacity curve, or a...

  8. 18 CFR 11.16 - Filing requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... generating capacity separately designated. (3) A description of the total storage capacity of the reservoir..., irrigation storage, and flood control storage. Identification, by reservoir elevation, of the portion of the reservoir assigned to each of its respective storage functions. (4) An elevation-capacity curve, or a...

  9. Volumes of recent floods and potential for storage in upland watershed areas of Iowa

    USGS Publications Warehouse

    Buchmiller, Robert C.; Eash, David A.; Harvey, Craig A.

    2000-01-01

    During the autumn of 1997, the U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency, began a study to determine the volume of water associated with recent flood events in parts of the Midwestern United States and a preliminary evaluation of the potential upland areas for storage of flood-waters in selected watersheds. This analysis, although preliminary, may be useful in determining the feasibility of conducting additional, more detailed studies into the role of upland areas in a watershed management strategy. The methods and results of this preliminary hydrologic study are presented in this report.

  10. Enhancing water supply through reservoir reoperation

    NASA Astrophysics Data System (ADS)

    Rajagopal, S.; Sterle, K. M.; Jose, L.; Coors, S.; Pohll, G.; Singletary, L.

    2017-12-01

    Snowmelt is a significant contributor to water supply in western U.S. which is stored in reservoirs for use during peak summer demand. The reservoirs were built to satisfy multiple objectives, but primarily to either enhance water supply and/or for flood mitigation. The operating rules for these water supply reservoirs are based on historical assumptions of stationarity of climate, assuming peak snowmelt occurs after April 1 and hence have to let water pass through if it arrived earlier. Using the Truckee River which originates in the eastern Sierra Nevada, has seven reservoirs and is shared between California and Nevada as an example, we show enhanced water storage by altering reservoir operating rules. These results are based on a coupled hydrology (Ground-Surface water Flow, GSFLOW) and water management model (RIverware) developed for the river system. All the reservoirs in the system benefit from altering the reservoir rules, but some benefit more than others. Prosser Creek reservoir for example, historically averaged 76% of capacity, which was lowered to 46% of capacity in the future as climate warms and shifts snowmelt to earlier days of the year. This reduction in storage can be mitigated by altering the reservoir operation rules and the reservoir storage increases to 64-76% of capacity. There are limitations to altering operating rules as reservoirs operated primarily for flood control are required to maintain lower storage to absorb a flood pulse, yet using modeling we show that there are water supply benefits to adopting a more flexible rules of operation. In the future, due to changing climate we anticipate the reservoirs in the western U.S. which were typically capturing spring- summer snowmelt will have to be managed more actively as the water stored in the snowpack becomes more variable. This study presents a framework for understanding, modeling and quantifying the consequences of such a shift in hydrology and water management.

  11. Implementation of remote sensing data for flood forecasting

    NASA Astrophysics Data System (ADS)

    Grimaldi, S.; Li, Y.; Pauwels, V. R. N.; Walker, J. P.; Wright, A. J.

    2016-12-01

    Flooding is one of the most frequent and destructive natural disasters. A timely, accurate and reliable flood forecast can provide vital information for flood preparedness, warning delivery, and emergency response. An operational flood forecasting system typically consists of a hydrologic model, which simulates runoff generation and concentration, and a hydraulic model, which models riverine flood wave routing and floodplain inundation. However, these two types of models suffer from various sources of uncertainties, e.g., forcing data initial conditions, model structure and parameters. To reduce those uncertainties, current forecasting systems are typically calibrated and/or updated using streamflow measurements, and such applications are limited in well-gauged areas. The recent increasing availability of spatially distributed Remote Sensing (RS) data offers new opportunities for flood events investigation and forecast. Based on an Australian case study, this presentation will discuss the use 1) of RS soil moisture data to constrain a hydrologic model, and 2) of RS-derived flood extent and level to constrain a hydraulic model. The hydrological model is based on a semi-distributed system coupled with a two-soil-layer rainfall-runoff model GRKAL and a linear Muskingum routing model. Model calibration was performed using either 1) streamflow data only or 2) both streamflow and RS soil moisture data. The model was then further constrained through the integration of real-time soil moisture data. The hydraulic model is based on LISFLOOD-FP which solves the 2D inertial approximation of the Shallow Water Equations. Streamflow data and RS-derived flood extent and levels were used to apply a multi-objective calibration protocol. The effectiveness with which each data source or combination of data sources constrained the parameter space was quantified and discussed.

  12. Buffalo Metropolitan Area, New York Water Resources Management. Interim Report on Feasibility of Flood Management. Appendices.

    DTIC Science & Technology

    1983-07-01

    storage areas were taken into account during the flood routings. AI.36 The computer program REVPULS, developed for this report, reverse Modified Puls...routed the hydrograph at Batavia through the storage upstream of the LVRR embankment. Subtracting this reverse -routed hydrograph from the combined...segments to form a more accurate reconstitution. The hydrographs upstream of Batavia were derived by reverse -routing and prorating by drainage area. Table

  13. Coupling impervious surface rate derived from satellite remote sensing with distributed hydrological model for highly urbanized watershed flood forecasting

    NASA Astrophysics Data System (ADS)

    Dong, L.

    2017-12-01

    Abstract: The original urban surface structure changed a lot because of the rapid development of urbanization. Impermeable area has increased a lot. It causes great pressure for city flood control and drainage. Songmushan reservoir basin with high degree of urbanization is taken for an example. Pixel from Landsat is decomposed by Linear spectral mixture model and the proportion of urban area in it is considered as impervious rate. Based on impervious rate data before and after urbanization, an physically based distributed hydrological model, Liuxihe Model, is used to simulate the process of hydrology. The research shows that the performance of the flood forecasting of high urbanization area carried out with Liuxihe Model is perfect and can meet the requirement of the accuracy of city flood control and drainage. The increase of impervious area causes conflux speed more quickly and peak flow to be increased. It also makes the time of peak flow advance and the runoff coefficient increase. Key words: Liuxihe Model; Impervious rate; City flood control and drainage; Urbanization; Songmushan reservoir basin

  14. Risk assessment of urban flood disaster in Jingdezhen City based on analytic hierarchy process and geographic information system

    NASA Astrophysics Data System (ADS)

    Sun, D. C.; Huang, J.; Wang, H. M.; Wang, Z. Q.; Wang, W. Q.

    2017-08-01

    The research of urban flood risk assessment and management are of great academic and practical importance, which has become a widespread concern throughout the world. It’s significant to understand the spatial-temporal distribution of the flood risk before making the risk response measures. In this study, the urban region of Jingdezhen City is selected as the study area. The assessment indicators are selected from four aspects: disaster-causing factors, disaster-pregnant environment, disaster-bearing body and the prevention and mitigation ability, by consideration of the formation process of urban flood risk. And then, a small-scale flood disaster risk assessment model is developed based on Analytic Hierarchy Process(AHP) and Geographic Information System(GIS), and the spatial-temporal distribution of flood risk in Jingdezhen City is analysed. The results show that the risk decreases gradually from the centre line of Changjiang River to the surrounding, and the areas of high flood disaster risk is decreasing from 2010 to 2013 while the risk areas are more concentred. The flood risk of the areas along the Changjiang River is the largest, followed by the low-lying areas in Changjiang District. And the risk is also large in Zhushan District where the population, the industries and commerce are concentrated. The flood risk in the western part of Changjiang District and the north-eastern part of the study area is relatively low. The results can provide scientific support for flood control construction and land development planning in Jingdezhen City.

  15. Dissolved Nutrient Retention Dynamics in River Networks: A Modeling Investigation of Transient Flow and Scale Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Sheng; Covino, Timothy P.; Sivapalan, Murugesu

    In this paper, we use a dynamic network flow model, coupled with a transient storage zone biogeochemical model, to simulate dissolved nutrient removal processes at the channel network scale. We have explored several scenarios in respect of the combination of rainfall variability, and the biological and geomorphic characteristics of the catchment, to understand the dominant controls on removal and delivery of dissolved nutrients (e.g., nitrate). These model-based theoretical analyses suggested that while nutrient removal efficiency is lower during flood events compared to during baseflow periods, flood events contribute significantly to bulk nutrient removal, whereas bulk removal during baseflow periods ismore » less. This is due to the fact that nutrient supply is larger during flood events; this trend is even stronger in large rivers. However, the efficiency of removal during both periods decreases in larger rivers, however, due to (i) increasing flow velocities and thus decreasing residence time, and (ii) increasing flow depth, and thus decreasing nutrient uptake rates. Besides nutrient removal processes can be divided into two parts: in the main channel and in the hyporheic transient storage zone. When assessing their relative contributions the size of the transient storage zone is a dominant control, followed by uptake rates in the main channel and in the transient storage zone. Increasing size of the transient storage zone with downstream distance affects the relative contributions to nutrient removal of the water column and the transient storage zone, which also impacts the way nutrient removal rates scale with increasing size of rivers. Intra-annual hydrologic variability has a significant impact on removal rates at all scales: the more variable the streamflow is, compared to mean discharge, the less nutrient is removed in the channel network. A scale-independent first order uptake coefficient, ke, estimated from model simulations, is highly dependent on the relative size of the transient storage zone and how it changes in the downstream direction, as well as the nature of hydrologic variability.« less

  16. Bayesian Non-Stationary Flood Frequency Estimation at Ungauged Basins Using Climate Information and a Scaling Model

    NASA Astrophysics Data System (ADS)

    Lima, C. H.; Lall, U.

    2010-12-01

    Flood frequency statistical analysis most often relies on stationary assumptions, where distribution moments (e.g. mean, standard deviation) and associated flood quantiles do not change over time. In this sense, one expects that flood magnitudes and their frequency of occurrence will remain constant as observed in the historical information. However, evidence of inter-annual and decadal climate variability and anthropogenic change as well as an apparent increase in the number and magnitude of flood events across the globe have made the stationary assumption questionable. Here, we show how to estimate flood quantiles (e.g. 100-year flood) at ungauged basins without needing to consider stationarity. A statistical model based on the well known flow-area scaling law is proposed to estimate flood flows at ungauged basins. The slope and intercept scaling law coefficients are assumed time varying and a hierarchical Bayesian model is used to include climate information and reduce parameter uncertainties. Cross-validated results from 34 streamflow gauges located in a nested Basin in Brazil show that the proposed model is able to estimate flood quantiles at ungauged basins with remarkable skills compared with data based estimates using the full record. The model as developed in this work is also able to simulate sequences of flood flows considering global climate changes provided an appropriate climate index developed from the General Circulation Model is used as a predictor. The time varying flood frequency estimates can be used for pricing insurance models, and in a forecast mode for preparations for flooding, and finally, for timing infrastructure investments and location. Non-stationary 95% interval estimation for the 100-year Flood (shaded gray region) and 95% interval for the 100-year flood estimated from data (horizontal dashed and solid lines). The average distribution of the 100-year flood is shown in green in the right side.

  17. On identifying relationships between the flood scaling exponent and basin attributes.

    PubMed

    Medhi, Hemanta; Tripathi, Shivam

    2015-07-01

    Floods are known to exhibit self-similarity and follow scaling laws that form the basis of regional flood frequency analysis. However, the relationship between basin attributes and the scaling behavior of floods is still not fully understood. Identifying these relationships is essential for drawing connections between hydrological processes in a basin and the flood response of the basin. The existing studies mostly rely on simulation models to draw these connections. This paper proposes a new methodology that draws connections between basin attributes and the flood scaling exponents by using observed data. In the proposed methodology, region-of-influence approach is used to delineate homogeneous regions for each gaging station. Ordinary least squares regression is then applied to estimate flood scaling exponents for each homogeneous region, and finally stepwise regression is used to identify basin attributes that affect flood scaling exponents. The effectiveness of the proposed methodology is tested by applying it to data from river basins in the United States. The results suggest that flood scaling exponent is small for regions having (i) large abstractions from precipitation in the form of large soil moisture storages and high evapotranspiration losses, and (ii) large fractions of overland flow compared to base flow, i.e., regions having fast-responding basins. Analysis of simple scaling and multiscaling of floods showed evidence of simple scaling for regions in which the snowfall dominates the total precipitation.

  18. Full-flow-regime storage-streamflow correlation patterns provide insights into hydrologic functioning over the continental US

    NASA Astrophysics Data System (ADS)

    Fang, Kuai; Shen, Chaopeng

    2017-09-01

    Interannual changes in low, median, and high regimes of streamflow have important implications for flood control, irrigation, and ecologic and human health. The Gravity Recovery and Climate Experiment (GRACE) satellites record global terrestrial water storage anomalies (TWSA), providing an opportunity to observe, interpret, and potentially utilize the complex relationships between storage and full-flow-regime streamflow. Here we show that utilizable storage-streamflow correlations exist throughout vastly different climates in the continental US (CONUS) across low- to high-flow regimes. A panoramic framework, the storage-streamflow correlation spectrum (SSCS), is proposed to examine macroscopic gradients in these relationships. SSCS helps form, corroborate or reject hypotheses about basin hydrologic behaviors. SSCS patterns vary greatly over CONUS with climate, land surface, and geologic conditions. Data mining analysis suggests that for catchments with hydrologic settings that favor storage over runoff, e.g., a large fraction of precipitation as snow, thick and highly-permeable permeable soil, SSCS values tend to be high. Based on our results, we form the hypotheses that groundwater flow dominates streamflows in Southeastern CONUS and Great Plains, while thin soils in a belt along the Appalachian Plateau impose alimit on water storage. SSCS also suggests shallow water table caused by high-bulk density soil and flat terrain induces rapid runoff in several regions. Our results highlight the importance of subsurface properties and groundwater flow in capturing flood and drought. We propose that SSCS can be used as a fundamental hydrologic signature to constrain models and to provide insights thatlead usto better understand hydrologic functioning.

  19. Mobilization and attenuation of metals downstream from a base-metal mining site in the Matra Mountains, northeastern Hungary

    USGS Publications Warehouse

    Odor, L.; Wanty, R.B.; Horvath, I.; Fugedi, U.; ,

    1999-01-01

    Regional geochemical baseline values have been established for Hungary by the use of low-density stream-sediment surveys of flood-plain deposits of large drainage basins and of the fine fraction of stream sediments. The baseline values and anomaly thresholds thus produced helped to evaluate the importance of high toxic element concentrations found in soils in a valley downstream of a polymetallic vein-type base-metal mine. Erosion of the mine dumps and flotation dump, losses of metals during filtering, storage and transportation, human neglects, and operational breakdowns, have all contributed to the contamination of a small catchment basin in a procession of releases of solid waste. The sulfide-rich waste material weathers to a yellow color; this layer of 'yellow sand' blankets a narrow strip of the floodplain of Toka Creek in the valley near the town of Gyongyosoroszi. Contamination was spread out in the valley by floods. Metals present in the yellow sand include Pb, As, Cd, Cu, Zn, and Sb. Exposure of the local population to these metals may occur through inhalation of airborne particulates or by ingestion of these metals that are taken up by crops grown in the valley. To evaluate the areal extent and depth of the contamination, active stream sediment, flood-plain deposits, lake or reservoir sediments, soils, and surface water were sampled along the erosion pathways downstream of the mine and dumps. The flood-plain profile was sampled in detail to see the vertical distribution of elements and to relate the metal concentrations to the sedimentation and contamination histories of the flood plain. Downward migration of mobile Zn and Cd from the contaminated upper layers under supergene conditions is observed, while vertical migration of Pb, As, Hg and Sb appears to be insignificant. Soil profiles of 137Cs which originated from above-ground atomic bomb tests and the Chernobyl accident, provide good evidence that the upper 30-40 cm of the flood-plain sections, which includes the yellow sand contamination, were deposited in the last 30-40 years.The regional geochemical baseline values are established for Hungary using low-density stream-sediment surveys of flood-plain deposits of large drainage basins and of the fine fraction of stream sediments. The baseline values and anomaly thresholds allowed the evaluation of the importance of high toxic element concentrations in soils in a valley, downstream of a polymetallic vein-type base-metal mine. The metals present in the yellow sand include Pb, As, Cd, Cu, Zn and Sb. To evaluate the areal extent and depth of the contamination, active stream sediment, flood-plain deposits, lake or reservoir sediments, the soils and surface water were sampled along the erosion pathways downstream of the mine and dumps.

  20. Integrating a reservoir regulation scheme into a spatially distributed hydrological model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Gang; Gao, Huilin; Naz, Bibi S.

    2016-12-01

    During the past several decades, numerous reservoirs have been built across the world for a variety of purposes such as flood control, irrigation, municipal/industrial water supplies, and hydropower generation. Consequently, natural streamflow timing and magnitude have been altered significantly by reservoir operations. In addition, the hydrological cycle can be modified by land use/land cover and climate changes. To understand the fine scale feedback between hydrological processes and water management decisions, a distributed hydrological model embedded with a reservoir component is of desire. In this study, a multi-purpose reservoir module with predefined complex operational rules was integrated into the Distributed Hydrologymore » Soil Vegetation Model (DHSVM). Conditional operating rules, which are designed to reduce flood risk and enhance water supply reliability, were adopted in this module. The performance of the integrated model was tested over the upper Brazos River Basin in Texas, where two U.S. Army Corps of Engineers reservoirs, Lake Whitney and Aquilla Lake, are located. The integrated DHSVM model was calibrated and validated using observed reservoir inflow, outflow, and storage data. The error statistics were summarized for both reservoirs on a daily, weekly, and monthly basis. Using the weekly reservoir storage for Lake Whitney as an example, the coefficients of determination (R2) and the Nash-Sutcliff Efficiency (NSE) are 0.85 and 0.75, respectively. These results suggest that this reservoir module has promise for use in sub-monthly hydrological simulations. Enabled with the new reservoir component, the DHSVM model provides a platform to support adaptive water resources management under the impacts of evolving anthropogenic activities and substantial environmental changes.« less

  1. Dissemination of satellite-based river discharge and flood data

    NASA Astrophysics Data System (ADS)

    Kettner, A. J.; Brakenridge, G. R.; van Praag, E.; de Groeve, T.; Slayback, D. A.; Cohen, S.

    2014-12-01

    In collaboration with NASA Goddard Spaceflight Center and the European Commission Joint Research Centre, the Dartmouth Flood Observatory (DFO) daily measures and distributes: 1) river discharges, and 2) near real-time flood extents with a global coverage. Satellite-based passive microwave sensors and hydrological modeling are utilized to establish 'remote-sensing based discharge stations', and observed time series cover 1998 to the present. The advantages over in-situ gauged discharges are: a) easy access to remote or due to political reasons isolated locations, b) relatively low maintenance costs to maintain a continuous observational record, and c) the capability to obtain measurements during floods, hazardous conditions that often impair or destroy in-situ stations. Two MODIS instruments aboard the NASA Terra and Aqua satellites provide global flood extent coverage at a spatial resolution of 250m. Cloud cover hampers flood extent detection; therefore we ingest 6 images (the Terra and Aqua images of each day, for three days), in combination with a cloud shadow filter, to provide daily global flood extent updates. The Flood Observatory has always made it a high priority to visualize and share its data and products through its website. Recent collaborative efforts with e.g. GeoSUR have enhanced accessibility of DFO data. A web map service has been implemented to automatically disseminate geo-referenced flood extent products into client-side GIS software. For example, for Latin America and the Caribbean region, the GeoSUR portal now displays current flood extent maps, which can be integrated and visualized with other relevant geographical data. Furthermore, the flood state of satellite-observed river discharge sites are displayed through the portal as well. Additional efforts include implementing Open Geospatial Consortium (OGC) standards to incorporate Water Markup Language (WaterML) data exchange mechanisms to further facilitate the distribution of the satellite gauged river discharge time series.

  2. Reservoir operations under climate change: Storage capacity options to mitigate risk

    NASA Astrophysics Data System (ADS)

    Ehsani, Nima; Vörösmarty, Charles J.; Fekete, Balázs M.; Stakhiv, Eugene Z.

    2017-12-01

    Observed changes in precipitation patterns, rising surface temperature, increases in frequency and intensity of floods and droughts, widespread melting of ice, and reduced snow cover are some of the documented hydrologic changes associated with global climate change. Climate change is therefore expected to affect the water supply-demand balance in the Northeast United States and challenge existing water management strategies. The hydrological implications of future climate will affect the design capacity and operating characteristics of dams. The vulnerability of water resources systems to floods and droughts will increase, and the trade-offs between reservoir releases to maintain flood control storage, drought resilience, ecological flow, human water demand, and energy production should be reconsidered. We used a Neural Networks based General Reservoir Operation Scheme to estimate the implications of climate change for dams on a regional scale. This dynamic daily reservoir module automatically adapts to changes in climate and re-adjusts the operation of dams based on water storage level, timing, and magnitude of incoming flows. Our findings suggest that the importance of dams in providing water security in the region will increase. We create an indicator of the Effective Degree of Regulation (EDR) by dams on water resources and show that it is expected to increase, particularly during drier months of year, simply as a consequence of projected climate change. The results also indicate that increasing the size and number of dams, in addition to modifying their operations, may become necessary to offset the vulnerabilities of water resources systems to future climate uncertainties. This is the case even without considering the likely increase in future water demand, especially in the most densely populated regions of the Northeast.

  3. Bias-adjusted satellite-based rainfall estimates for predicting floods: Narayani Basin

    USGS Publications Warehouse

    Shrestha, M.S.; Artan, G.A.; Bajracharya, S.R.; Gautam, D.K.; Tokar, S.A.

    2011-01-01

    In Nepal, as the spatial distribution of rain gauges is not sufficient to provide detailed perspective on the highly varied spatial nature of rainfall, satellite-based rainfall estimates provides the opportunity for timely estimation. This paper presents the flood prediction of Narayani Basin at the Devghat hydrometric station (32000km2) using bias-adjusted satellite rainfall estimates and the Geospatial Stream Flow Model (GeoSFM), a spatially distributed, physically based hydrologic model. The GeoSFM with gridded gauge observed rainfall inputs using kriging interpolation from 2003 was used for calibration and 2004 for validation to simulate stream flow with both having a Nash Sutcliff Efficiency of above 0.7. With the National Oceanic and Atmospheric Administration Climate Prediction Centre's rainfall estimates (CPC-RFE2.0), using the same calibrated parameters, for 2003 the model performance deteriorated but improved after recalibration with CPC-RFE2.0 indicating the need to recalibrate the model with satellite-based rainfall estimates. Adjusting the CPC-RFE2.0 by a seasonal, monthly and 7-day moving average ratio, improvement in model performance was achieved. Furthermore, a new gauge-satellite merged rainfall estimates obtained from ingestion of local rain gauge data resulted in significant improvement in flood predictability. The results indicate the applicability of satellite-based rainfall estimates in flood prediction with appropriate bias correction. ?? 2011 The Authors. Journal of Flood Risk Management ?? 2011 The Chartered Institution of Water and Environmental Management.

  4. Derived distribution of floods based on the concept of partial area coverage with a climatic appeal

    NASA Astrophysics Data System (ADS)

    Iacobellis, Vito; Fiorentino, Mauro

    2000-02-01

    A new rationale for deriving the probability distribution of floods and help in understanding the physical processes underlying the distribution itself is presented. On the basis of this a model that presents a number of new assumptions is developed. The basic ideas are as follows: (1) The peak direct streamflow Q can always be expressed as the product of two random variates, namely, the average runoff per unit area ua and the peak contributing area a; (2) the distribution of ua conditional on a can be related to that of the rainfall depth occurring in a duration equal to a characteristic response time тa of the contributing part of the basin; and (3) тa is assumed to vary with a according to a power law. Consequently, the probability density function of Q can be found as the integral, over the total basin area A of that of a times the density function of ua given a. It is suggested that ua can be expressed as a fraction of the excess rainfall and that the annual flood distribution can be related to that of Q by the hypothesis that the flood occurrence process is Poissonian. In the proposed model it is assumed, as an exploratory attempt, that a and ua are gamma and Weibull distributed, respectively. The model was applied to the annual flood series of eight gauged basins in Basilicata (southern Italy) with catchment areas ranging from 40 to 1600 km2. The results showed strong physical consistence as the parameters tended to assume values in good agreement with well-consolidated geomorphologic knowledge and suggested a new key to understanding the climatic control of the probability distribution of floods.

  5. Variability in eddy sandbar dynamics during two decades of controlled flooding of the Colorado River in the Grand Canyon

    USGS Publications Warehouse

    Mueller, Erich R.; Grams, Paul E.; Hazel, Joseph E.; Schmidt, John C.

    2018-01-01

    Sandbars are iconic features of the Colorado River in the Grand Canyon, Arizona, U.S.A. Following completion of Glen Canyon Dam in 1963, sediment deficit conditions caused erosion of eddy sandbars throughout much of the 360 km study reach downstream from the dam. Controlled floods in 1996, 2004, and 2008 demonstrated that sand on the channel bed could be redistributed to higher elevations, and that floods timed to follow tributary sediment inputs would increase suspended sand concentrations during floods. Since 2012, a new management protocol has resulted in four controlled floods timed to follow large inputs of sand from a major tributary. Monitoring of 44 downstream eddy sandbars, initiated in 1990, shows that each controlled flood deposited significant amounts of sand and increased the size of subaerial sandbars. However, the magnitude of sandbar deposition varied from eddy to eddy, even over relatively short distances where main-stem suspended sediment concentrations were similar. Here, we characterize spatial and temporal trends in sandbar volume and site-scale (i.e., individual eddy) sediment storage as a function of flow, channel, and vegetation characteristics that reflect the reach-scale (i.e., kilometer-scale) hydraulic environment. We grouped the long-term monitoring sites based on geomorphic setting and used a principal component analysis (PCA) to correlate differences in sandbar behavior to changes in reach-scale geomorphic metrics. Sites in narrow reaches are less-vegetated, stage changes markedly with discharge, sandbars tend to remain dynamic, and sand storage change dominantly occurs in the eddy compared to the main channel. In wider reaches, where stage-change during floods may be half that of narrow sites, sandbars are more likely to be stabilized by vegetation, and floods tend to aggrade the vegetated sandbar surfaces. In these locations, deposition during controlled floods is more akin to floodplain sedimentation, and the elevation of sandbar surfaces increases with successive floods. Because many sandbars are intermediate to the end members described above, high-elevation bar surfaces stabilized by vegetation often have a more dynamic unvegetated sandbar on the channel-ward margin that aggrades and erodes in response to controlled flood cycles. Ultimately, controlled floods have been effective at increasing averaged sandbar volumes, and, while bar deposition during floods decreases through time where vegetation has stabilized sandbars, future controlled floods are likely to continue to result in deposition in a majority of the river corridor.

  6. A 320-year long series of Danube floods in Central Hungary (Budapest and Pest County): a frequency-magnitude-seasonality overview

    NASA Astrophysics Data System (ADS)

    Kiss, Andrea; Salinas, Jose; Bloeschl, Guenter

    2015-04-01

    The present paper is based on a recently developed database including contemporary original, administrative, legal and private source materials (published and archival) as well as media reports related to the floods occurred in the town of Budapest (historical towns of Pest, Buda) and Central Hungary (historical Pest-Pilis-Solt County). As for the archival evidence, main bases of investigation are the administrative sources such as town council protocols and county meeting protocols of Budapest and historical Pest-Pilis-Solt County: in these (legal-)administrative documents damaging events (natural/environmental hazards) were systematically recorded. Moreover, other source types such as taxation-related damage accounts as well as private and official reports, letters and correspondence (published, unpublished) were also included. Concerning published evidence, a most important source is flood reports in contemporary newspapers; however, other published sources (e.g. narratives, fund raising circulars etc.; both published and unpublished) also contained useful flood-related information. Beyond providing information on the strength and weaknesses of different sources types and the temporal and spatial distribution of evidence, a general background on the contemporary environmental and hydrological/hydromorphological conditions of the study area (and its changes during and after river regulations) are also provided. However, in the presentation the main focus is on the analysis of flood rich flood poor periods of the last more than 300 years; furthermore, the seasonality distribution as well as the magnitude of Danube flood events - and their spatial differences are discussed. In case of Budapest and Central Hungary, with respect to the greatest flood events, ice jam floods played a rather significant role before river regulation works. Due to this fact the main types of flood events (including their main causes), with special emphasis on ice jam floods, are discussed separate.

  7. Monitoring on The Quality and Quantity of DIY Rainwater Harvesting System

    NASA Astrophysics Data System (ADS)

    Kasmin, H.; Bakar, N. H.; Zubir, M. M.

    2016-07-01

    Rainwater harvesting is an alternative sources of water supply and can be used for potable and non-potable uses. It could helps to store treated rainwater for more beneficial use and also for flood mitigation. Sustainable approach for flooding problem reduction in urban areas is by slowing down the rate of surface runoff flows at source by providing more storage area/tank. In order to understand the performance of a rainwater harvesting system (RWH), a preliminary monitoring on a ‘do it yourself’ (DIY) RWH model with additional first -flush strategy for water quality treatment was done. The main concept behind first flush diversion is to prevent initial polluted rainwater from entering the storage tank. Based on seven rainfall events observed in Parit Raja, both quality and quantity of the rainfalls were analysed. For rainwater quality, the samples from first flush diverter and storage tank were taken to understand their performance based on pH, dissolved oxygen (DO), turbidity, total dissolved solid (TDS), total suspended solid (TSS), chemical oxygen demand (COD) and biochemical oxygen demand (BOD) parameters. While for rainwater quantity, hydrograph analysis were done based on the performance of total rainfall and runoff, peak flow of rainfall and runoff; and delayed time parameters. Based on Interim National Water Quality Standard (INWQS) and National Drinking Water Quality Standard (NDWQS), first flush diverter apparently helps on water quality improvement in storage tanks when pH, DO, TDS, TSS and turbidity were classified as Class I (INWQS) and is allowable for drinking; but BOD and COD parameters were classified as Class III (INWQS). Hence, it has potential to be used as potable usage but will need extensive treatment to reduce its poor microbial quality. Based on the maximum observed rainfall event which had total volume of 3195.5 liter, had peakflow reduction from 0.00071 m3/s to 0.00034 m3/s and delayed runoff between 5 and 10 minutes after rainfall started. It concludes that the performance of water retention could be due to total rainfall and the tank capacity. Therefore, RWH has a potential to be used as potable use and at the same time it also has a potential to reduce local urban flooding.

  8. The Importance of the Nothofagus Forest on Snowmelt Process linked to floods in Mountain Basins of Tierra del Fuego, Argentina as Input for Land Use Policies.

    NASA Astrophysics Data System (ADS)

    Iturraspe, R. J.; Urciuolo, A. B.; Lofiego, R.

    2007-05-01

    The conception and application of policies and best practices for the appropriate land use from the view point of extreme floods attenuation, must be based on scientist acknowledge of the basin response, reaching each one of the hydrological cycle's components. That condition is necessary as a start point for an integrated intersectoral management of water and forest resources at the basin scale, especially when forest logging or forest urbanization appear as land use alternatives with socioeconomic importance, confronting the natural roll of the forest in the basin. Within this framework, this article analyzes the forest importance on the seasonal snow-pack and snow-melting process in the mountain basin environment of Tierra del Fuego Island, Argentina, where a mixed rain-snow hydrological regimen and a canopy of native Nothofagus forest are basic features considered. Extreme floods events are related to heavy rain and snow-melting combination. In theory, the worst scenario is the exceptional rain occurrence at the moment of the maximum snow storage, air temperature higher than 0ºC in the whole basin, and previous wet conditions. On this scenario we analyze aspects that indicate forest influences on the snow pack distribution and evolution which are favorable to the attenuation of the intensity of melting process which are induced by rain and temperate air mass. Results were obtained in the context of the EPIC FORCE (EU) Project.

  9. The Need for Modernized Operational Snow Models: A Tale of Two Years

    NASA Astrophysics Data System (ADS)

    Winstral, A. H.; Marks, D. G.

    2014-12-01

    The Boise River Basin in southwest Idaho, USA contains three major reservoirs totaling nearly 1,000,000 acre-feet of storage capacity. The primary goals for water managers are water supply and flood protection. In terms of observed SWE at monitoring sites throughout the basin, water years 2012 and 2014 were similar and near normal. In WY 2014 inflows into the BRB reservoir system followed historic patterns and reservoir releases were ideally controlled for management goals. WY2012 however was warmer than average and the winter snowpack had uncharacteristically high melt susceptibility. Subsequent energy fluxes produced late winter inflows much higher than normally encountered. The uncharacteristic flow patterns and inability of traditional operational modeling tools to handle this situation challenged water managers. Through late March and early April 2012 near flood stage flows were pushed through the city of Boise in order to increase storage and prevent more catastrophic flooding. While in this case a greater catastrophe was narrowly averted, the shortcomings of the traditional modeling approaches taken by operational agencies were exposed. "Uncharacteristic" events such as these are becoming more and more frequent as the effects of climate change are realized. The need for modernized methods - ones based on the physical controlling processes rather than historic patterns - is imperative. This presentation outlines the latest developments in the application of a physically-based, high-resolution spatial snow model to aid operational water management decisions.

  10. Grid infrastructure for automatic processing of SAR data for flood applications

    NASA Astrophysics Data System (ADS)

    Kussul, Natalia; Skakun, Serhiy; Shelestov, Andrii

    2010-05-01

    More and more geosciences applications are being put on to the Grids. Due to the complexity of geosciences applications that is caused by complex workflow, the use of computationally intensive environmental models, the need of management and integration of heterogeneous data sets, Grid offers solutions to tackle these problems. Many geosciences applications, especially those related to the disaster management and mitigations require the geospatial services to be delivered in proper time. For example, information on flooded areas should be provided to corresponding organizations (local authorities, civil protection agencies, UN agencies etc.) no more than in 24 h to be able to effectively allocate resources required to mitigate the disaster. Therefore, providing infrastructure and services that will enable automatic generation of products based on the integration of heterogeneous data represents the tasks of great importance. In this paper we present Grid infrastructure for automatic processing of synthetic-aperture radar (SAR) satellite images to derive flood products. In particular, we use SAR data acquired by ESA's ENVSAT satellite, and neural networks to derive flood extent. The data are provided in operational mode from ESA rolling archive (within ESA Category-1 grant). We developed a portal that is based on OpenLayers frameworks and provides access point to the developed services. Through the portal the user can define geographical region and search for the required data. Upon selection of data sets a workflow is automatically generated and executed on the resources of Grid infrastructure. For workflow execution and management we use Karajan language. The workflow of SAR data processing consists of the following steps: image calibration, image orthorectification, image processing with neural networks, topographic effects removal, geocoding and transformation to lat/long projection, and visualisation. These steps are executed by different software, and can be executed by different resources of the Grid system. The resulting geospatial services are available in various OGC standards such as KML and WMS. Currently, the Grid infrastructure integrates the resources of several geographically distributed organizations, in particular: Space Research Institute NASU-NSAU (Ukraine) with deployed computational and storage nodes based on Globus Toolkit 4 (htpp://www.globus.org) and gLite 3 (http://glite.web.cern.ch) middleware, access to geospatial data and a Grid portal; Institute of Cybernetics of NASU (Ukraine) with deployed computational and storage nodes (SCIT-1/2/3 clusters) based on Globus Toolkit 4 middleware and access to computational resources (approximately 500 processors); Center of Earth Observation and Digital Earth Chinese Academy of Sciences (CEODE-CAS, China) with deployed computational nodes based on Globus Toolkit 4 middleware and access to geospatial data (approximately 16 processors). We are currently adding new geospatial services based on optical satellite data, namely MODIS. This work is carried out jointly with the CEODE-CAS. Using workflow patterns that were developed for SAR data processing we are building new workflows for optical data processing.

  11. Application of satellite products and hydrological modelling for flood early warning

    NASA Astrophysics Data System (ADS)

    Koriche, Sifan A.; Rientjes, Tom H. M.

    2016-06-01

    Floods have caused devastating impacts to the environment and society in Awash River Basin, Ethiopia. Since flooding events are frequent, this marks the need to develop tools for flood early warning. In this study, we propose a satellite based flood index to identify the runoff source areas that largely contribute to extreme runoff production and floods in the basin. Satellite based products used for development of the flood index are CMORPH (Climate Prediction Center MORPHing technique: 0.25° by 0.25°, daily) product for calculation of the Standard Precipitation Index (SPI) and a Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) for calculation of the Topographic Wetness Index (TWI). Other satellite products used in this study are for rainfall-runoff modelling to represent rainfall, potential evapotranspiration, vegetation cover and topography. Results of the study show that assessment of spatial and temporal rainfall variability by satellite products may well serve in flood early warning. Preliminary findings on effectiveness of the flood index developed in this study indicate that the index is well suited for flood early warning. The index combines SPI and TWI, and preliminary results illustrate the spatial distribution of likely runoff source areas that cause floods in flood prone areas.

  12. Study on reservoir time-varying design flood of inflow based on Poisson process with time-dependent parameters

    NASA Astrophysics Data System (ADS)

    Li, Jiqing; Huang, Jing; Li, Jianchang

    2018-06-01

    The time-varying design flood can make full use of the measured data, which can provide the reservoir with the basis of both flood control and operation scheduling. This paper adopts peak over threshold method for flood sampling in unit periods and Poisson process with time-dependent parameters model for simulation of reservoirs time-varying design flood. Considering the relationship between the model parameters and hypothesis, this paper presents the over-threshold intensity, the fitting degree of Poisson distribution and the design flood parameters are the time-varying design flood unit period and threshold discriminant basis, deduced Longyangxia reservoir time-varying design flood process at 9 kinds of design frequencies. The time-varying design flood of inflow is closer to the reservoir actual inflow conditions, which can be used to adjust the operating water level in flood season and make plans for resource utilization of flood in the basin.

  13. A novel algorithm for monitoring reservoirs under all-weather conditions at a high temporal resolution through passive microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Gao, Huilin

    2016-08-01

    Flood mitigation in developing countries has been hindered by a lack of near real-time reservoir storage information at high temporal resolution. By leveraging satellite passive microwave observations over a reservoir and its vicinity, we present a globally applicable new algorithm to estimate reservoir storage under all-weather conditions at a 4 day time step. A weighted horizontal ratio (WHR) based on the brightness temperatures at 36.5 GHz is introduced, with its coefficients calibrated against an area training data set over each reservoir. Using a predetermined area-elevation (A-H) relationship, these coefficients are then applied to the microwave data to calculate the storage. Validation results over four reservoirs in South Asia indicate that the microwave-based storage estimations (after noise reduction) perform well (with coefficients of determination ranging from 0.41 to 0.74). This is the first time that passive microwave observations are fused with other satellite data for quantifying the storage of individual reservoirs.

  14. Impact of rainfall spatial variability on Flash Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Douinot, Audrey; Roux, Hélène; Garambois, Pierre-André; Larnier, Kevin

    2014-05-01

    According to the United States National Hazard Statistics database, flooding and flash flooding have caused the largest number of deaths of any weather-related phenomenon over the last 30 years (Flash Flood Guidance Improvement Team, 2003). Like the storms that cause them, flash floods are very variable and non-linear phenomena in time and space, with the result that understanding and anticipating flash flood genesis is far from straightforward. In the U.S., the Flash Flood Guidance (FFG) estimates the average number of inches of rainfall for given durations required to produce flash flooding in the indicated county. In Europe, flash flood often occurred on small catchments (approximately 100 km2) and it has been shown that the spatial variability of rainfall has a great impact on the catchment response (Le Lay and Saulnier, 2007). Therefore, in this study, based on the Flash flood Guidance method, rainfall spatial variability information is introduced in the threshold estimation. As for FFG, the threshold is the number of millimeters of rainfall required to produce a discharge higher than the discharge corresponding to the first level (yellow) warning of the French flood warning service (SCHAPI: Service Central d'Hydrométéorologie et d'Appui à la Prévision des Inondations). The indexes δ1 and δ2 of Zoccatelli et al. (2010), based on the spatial moments of catchment rainfall, are used to characterize the rainfall spatial distribution. Rainfall spatial variability impacts on warning threshold and on hydrological processes are then studied. The spatially distributed hydrological model MARINE (Roux et al., 2011), dedicated to flash flood prediction is forced with synthetic rainfall patterns of different spatial distributions. This allows the determination of a warning threshold diagram: knowing the spatial distribution of the rainfall forecast and therefore the 2 indexes δ1 and δ2, the threshold value is read on the diagram. A warning threshold diagram is built for each studied catchment. The proposed methodology is applied on three Mediterranean catchments often submitted to flash floods. The new forecasting method as well as the Flash Flood Guidance method (uniform rainfall threshold) are tested on 25 flash floods events that had occurred on those catchments. Results show a significant impact of rainfall spatial variability. Indeed, it appears that the uniform rainfall threshold (FFG threshold) always overestimates the observed rainfall threshold. The difference between the FFG threshold and the proposed threshold ranges from 8% to 30%. The proposed methodology allows the calculation of a threshold more representative of the observed one. However, results strongly depend on the related event duration and on the catchment properties. For instance, the impact of the rainfall spatial variability seems to be correlated with the catchment size. According to these results, it seems to be interesting to introduce information on the catchment properties in the threshold calculation. Flash Flood Guidance Improvement Team, 2003. River Forecast Center (RFC) Development Management Team. Final Report. Office of Hydrologic Development (OHD), Silver Spring, Mary-land. Le Lay, M. and Saulnier, G.-M., 2007. Exploring the signature of climate and landscape spatial variabilities in flash flood events: Case of the 8-9 September 2002 Cévennes-Vivarais catastrophic event. Geophysical Research Letters, 34(L13401), doi:10.1029/2007GL029746. Roux, H., Labat, D., Garambois, P.-A., Maubourguet, M.-M., Chorda, J. and Dartus, D., 2011. A physically-based parsimonious hydrological model for flash floods in Mediterranean catchments. Nat. Hazards Earth Syst. Sci. J1 - NHESS, 11(9), 2567-2582. Zoccatelli, D., Borga, M., Zanon, F., Antonescu, B. and Stancalie, G., 2010. Which rainfall spatial information for flash flood response modelling? A numerical investigation based on data from the Carpathian range, Romania. Journal of Hydrology, 394(1-2), 148-161.

  15. 33 CFR 208.33 - Cheney Dam and Reservoir, North Fork of Ninnescah River, Kans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Cheney Dam and Reservoir, North..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.33 Cheney Dam and Reservoir... the Cheney Dam and Reservoir in the interest of flood control as follows: (a) Flood control storage in...

  16. 33 CFR 208.33 - Cheney Dam and Reservoir, North Fork of Ninnescah River, Kans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Cheney Dam and Reservoir, North..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.33 Cheney Dam and Reservoir... the Cheney Dam and Reservoir in the interest of flood control as follows: (a) Flood control storage in...

  17. Satellite images of the September 2013 flood event in Lyons, Colorado

    USGS Publications Warehouse

    Cole, Christopher J.; Friesen, Beverly A.; Wilds, Stanley; Noble, Suzanne; Warner, Harumi; Wilson, Earl M.

    2013-01-01

    The U.S. Geological Survey (USGS) Special Applications Science Center (SASC) produced an image base map showing high-resolution remotely sensed data over Lyons, Colorado—a city that was severely affected by the flood event that occurred throughout much of the Colorado Front Range in September of 2013. The 0.5-meter WorldView-2 data products were created from imagery collected by DigitalGlobe on September 13 and September 24, 2013, during and following the flood event. The images shown on this map were created to support flood response efforts, specifically for use in determining damage assessment and mitigation decisions. The raw, unprocessed imagery were orthorectified and pan-sharpened to enhance mapping accuracy and spatial resolution, and reproduced onto a cartographic base map. These maps are intended to provide a snapshot representation of post-flood ground conditions, which may be useful to decisionmakers and the general public. The SASC also provided data processing and analysis support for other Colorado flood-affected areas by creating cartographic products, geo-corrected electro-optical and radar image mosaics, and GIS water cover files for use by the Colorado National Guard, the National Park Service, the U.S. Forest Service, and the flood response community. All products for this International Charter event were uploaded to the USGS Hazards Data Distribution System (HDDS) website (http://hdds.usgs.gov/hdds2/) for distribution.

  18. Coupling Analysis of Heat Island Effects, Vegetation Coverage and Urban Flood in Wuhan

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Liu, Q.; Fan, W.; Wang, G.

    2018-04-01

    In this paper, satellite image, remote sensing technique and geographic information system technique are main technical bases. Spectral and other factors comprehensive analysis and visual interpretation are main methods. We use GF-1 and Landsat8 remote sensing satellite image of Wuhan as data source, and from which we extract vegetation distribution, urban heat island relative intensity distribution map and urban flood submergence range. Based on the extracted information, through spatial analysis and regression analysis, we find correlations among heat island effect, vegetation coverage and urban flood. The results show that there is a high degree of overlap between of urban heat island and urban flood. The area of urban heat island has buildings with little vegetation cover, which may be one of the reasons for the local heavy rainstorms. Furthermore, the urban heat island has a negative correlation with vegetation coverage, and the heat island effect can be alleviated by the vegetation to a certain extent. So it is easy to understand that the new industrial zones and commercial areas which under constructions distribute in the city, these land surfaces becoming bare or have low vegetation coverage, can form new heat islands easily.

  19. Assessing lateral flows and solute transport during floods in a conduit-flow-dominated karst system using the inverse problem for the advection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Cholet, Cybèle; Charlier, Jean-Baptiste; Moussa, Roger; Steinmann, Marc; Denimal, Sophie

    2017-07-01

    The aim of this study is to present a framework that provides new ways to characterize the spatio-temporal variability of lateral exchanges for water flow and solute transport in a karst conduit network during flood events, treating both the diffusive wave equation and the advection-diffusion equation with the same mathematical approach, assuming uniform lateral flow and solute transport. A solution to the inverse problem for the advection-diffusion equations is then applied to data from two successive gauging stations to simulate flows and solute exchange dynamics after recharge. The study site is the karst conduit network of the Fourbanne aquifer in the French Jura Mountains, which includes two reaches characterizing the network from sinkhole to cave stream to the spring. The model is applied, after separation of the base from the flood components, on discharge and total dissolved solids (TDSs) in order to assess lateral flows and solute concentrations and compare them to help identify water origin. The results showed various lateral contributions in space - between the two reaches located in the unsaturated zone (R1), and in the zone that is both unsaturated and saturated (R2) - as well as in time, according to hydrological conditions. Globally, the two reaches show a distinct response to flood routing, with important lateral inflows on R1 and large outflows on R2. By combining these results with solute exchanges and the analysis of flood routing parameters distribution, we showed that lateral inflows on R1 are the addition of diffuse infiltration (observed whatever the hydrological conditions) and localized infiltration in the secondary conduit network (tributaries) in the unsaturated zone, except in extreme dry periods. On R2, despite inflows on the base component, lateral outflows are observed during floods. This pattern was attributed to the concept of reversal flows of conduit-matrix exchanges, inducing a complex water mixing effect in the saturated zone. From our results we build the functional scheme of the karst system. It demonstrates the impact of the saturated zone on matrix-conduit exchanges in this shallow phreatic aquifer and highlights the important role of the unsaturated zone on storage and transfer functions of the system.

  20. Radar-based Quantitative Precipitation Forecasting using Spatial-scale Decomposition Method for Urban Flood Management

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Lee, B.; Nakakita, E.; Lee, G.

    2016-12-01

    Recent climate changes and abnormal weather phenomena have resulted in increased occurrences of localized torrential rainfall. Urban areas in Korea have suffered from localized heavy rainfall, including the notable Seoul flood disaster in 2010 and 2011. The urban hydrological environment has changed in relation to precipitation, such as reduced concentration time, a decreased storage rate, and increased peak discharge. These changes have altered and accelerated the severity of damage to urban areas. In order to prevent such urban flash flood damages, we have to secure the lead time for evacuation through the improvement of radar-based quantitative precipitation forecasting (QPF). The purpose of this research is to improve the QPF products using spatial-scale decomposition method for considering the life time of storm and to assess the accuracy between traditional QPF method and proposed method in terms of urban flood management. The layout of this research is as below. First, this research applies the image filtering to separate the spatial-scale of rainfall field. Second, the separated small and large-scale rainfall fields are extrapolated by each different forecasting method. Third, forecasted rainfall fields are combined at each lead time. Finally, results of this method are evaluated and compared with the results of uniform advection model for urban flood modeling. It is expected that urban flood information using improved QPF will help to reduce casualties and property damage caused by urban flooding through this research.

  1. Soil moisture mapping in torrential headwater catchments using a local interpolation method (Draix-Bléone field observatory, South Alps, France)

    NASA Astrophysics Data System (ADS)

    Mallet, Florian; Marc, Vincent; Douvinet, Johnny; Rossello, Philippe; Le Bouteiller, Caroline; Malet, Jean-Philippe

    2016-04-01

    Soil moisture is a key parameter that controls runoff processes at the watershed scale. It is characterized by a high area and time variability, controlled by site properties such as soil texture, topography, vegetation cover and climate. Several recent studies showed that changes in water storage was a key variable to understand the distribution of water residence time and the shape of flood's hydrograph (McDonnell and Beven, 2014; Davies and Beven, 2015). Knowledge of high frequency soil moisture variation across scales is a prerequisite for better understanding the areal distribution of runoff generation. The present study has been carried out in the torrential Draix-Bléone's experimental catchments, where water storage processes are expected to occur mainly on the first meter of soil. The 0,86 km2 Laval marly torrential watershed has a peculiar hydrological behavior during flood events with specific discharge among the highest in the world. To better understand the Laval internal behavior and to identify explanatory parameters of runoff generation, additional field equipment has been setup in sub-basins with various land use and morphological characteristics. From fall 2015 onwards this new instrumentation helped to supplement the routine measurements (rainfall rate, streamflow) and to develop a network of high frequency soil water content sensors (moisture probes, mini lysimeter). Data collected since early May and complementary measurement campaigns (itinerant soil moisture measurements, geophysical measurements) make it now possible to propose a soil water content mapping procedure. We use the LISDQS spatial extrapolation model based on a local interpolation method (Joly et. al, 2008). The interpolation is carried out from different geographical variables which are derived from a high resolution DEM (1m LIDAR) and a land cover image. Unlike conventional interpolation procedure, this method takes into account local forcing parameters such as slope, aspect, soil type or land use. Eventually, the model gives insight into a catchment scale distributed high frequency soil moisture dynamics. This analysis is also used to identify the relative impacts of the morphological determinants on soil moisture content. References : McDonnell, J.J. and K. Beven, 2014. The future of hydrological science: A (common) path forward ? A call to action aimed at understanding velocities, celerities and residence time distributions of the headwater hydrograph. Water Resources Research, 50, 5342-5350. Davies A. C. Davies and K. Beven, 2015. Hysteresis and scale in catchment storage, flow and transport. Hydrological Processes, Volume 29, Issue 16 : 3604-3615. Joly D., Brossard T., Cardot H., Cavailhes J., Hilal M., Wavresky P., 2008. Interpolation par recherche d'information locale. Climatologie, Volume 5 : 27-47.

  2. Impact of urbanization on flood of Shigu creek in Dongguan city

    NASA Astrophysics Data System (ADS)

    Pan, Luying; Chen, Yangbo; Zhang, Tao

    2018-06-01

    Shigu creek is a highly urbanized small watershed in Dongguan City. Due to rapid urbanization, quick flood response has been observed, which posted great threat to the flood security of Dongguan City. To evaluate the impact of urbanization on the flood changes of Shigu creek is very important for the flood mitigation of Shigu creek, which will provide insight for flood planners and managers for if to build a larger flood mitigation system. In this paper, the Land cover/use changes of Shigu creek from 1987-2015 induced by urbanization was first extracted from a local database, then, the Liuxihe model, a physically based distributed hydrological model, is employed to simulate the flood processes impacted by urbanization. Precipitation of 3 storms was used for flood processes simulation. The results show that the runoff coefficient and peak flow have increased sharply.

  3. Microfluidic study for investigating migration and residual phenomena of supercritical CO2 in porous media

    NASA Astrophysics Data System (ADS)

    Park, Gyuryeong; Wang, Sookyun; Lee, Minhee; Um, Jeong-Gi; Kim, Seon-Ok

    2017-04-01

    The storage of CO2 in underground geological formation such as deep saline aquifers or depleted oil and gas reservoirs is one of the most promising technologies for reducing the atmospheric CO2 release. The processes in geological CO2 storage involves injection of supercritical CO2 (scCO2) into porous formations saturated with brine and initiates CO2 flooding with immiscible displacement. The CO2 migration and porewater displacement within geological formations, and , consequentially, the storage efficiency are governed by the interaction of fluid and rock properties and are affected by the interfacial tension, capillarity, and wettability in supercritical CO2-brine-mineral systems. This study aims to observe the displacement pattern and estimate storage efficiency by using micromodels. This study aims to conduct scCO2 injection experiments for visualization of distribution of injected scCO2 and residual porewater in transparent pore networks on microfluidic chips under high pressure and high temperature conditions. In order to quantitatively analyze the porewater displacement by scCO2 injection under geological CO2 storage conditions, the images of invasion patterns and distribution of CO2 in the pore network are acquired through a imaging system with a microscope. The results from image analysis were applied in quantitatively investigating the effects of major environmental factors and scCO2 injection methods on porewater displacement process by scCO2 and storage efficiency. The experimental observation results could provide important fundamental information on capillary characteristics of reservoirs and improve our understanding of CO2 sequestration progress.

  4. Why continuous simulation? The role of antecedent moisture in design flood estimation

    NASA Astrophysics Data System (ADS)

    Pathiraja, S.; Westra, S.; Sharma, A.

    2012-06-01

    Continuous simulation for design flood estimation is increasingly becoming a viable alternative to traditional event-based methods. The advantage of continuous simulation approaches is that the catchment moisture state prior to the flood-producing rainfall event is implicitly incorporated within the modeling framework, provided the model has been calibrated and validated to produce reasonable simulations. This contrasts with event-based models in which both information about the expected sequence of rainfall and evaporation preceding the flood-producing rainfall event, as well as catchment storage and infiltration properties, are commonly pooled together into a single set of "loss" parameters which require adjustment through the process of calibration. To identify the importance of accounting for antecedent moisture in flood modeling, this paper uses a continuous rainfall-runoff model calibrated to 45 catchments in the Murray-Darling Basin in Australia. Flood peaks derived using the historical daily rainfall record are compared with those derived using resampled daily rainfall, for which the sequencing of wet and dry days preceding the heavy rainfall event is removed. The analysis shows that there is a consistent underestimation of the design flood events when antecedent moisture is not properly simulated, which can be as much as 30% when only 1 or 2 days of antecedent rainfall are considered, compared to 5% when this is extended to 60 days of prior rainfall. These results show that, in general, it is necessary to consider both short-term memory in rainfall associated with synoptic scale dependence, as well as longer-term memory at seasonal or longer time scale variability in order to obtain accurate design flood estimates.

  5. Modeling pluvial flooding damage in urban environments: spatial relationships between citizens' complaints and overland catchment areas

    NASA Astrophysics Data System (ADS)

    Gaitan, Santiago; ten Veldhuis, Marie-Claire; van de Giesen, Nick

    2013-04-01

    Extreme weather events such as floods and storms are expected to cause severe economic losses in The Netherlands. Cumulative damage due to pluvial flooding can be considerable, especially in lowland areas where this type of floods occurs relatively frequently. Currently, in The Netherlands, water-related damages to property and contents are covered through private insurance. As pluvial flooding is becoming heavier and more likely to occur, sound modelling of damages is required to ensure that insurance systems are able to stand as an adaptation measure. Current damage models based on rainfall intensity, registries of insurance claims, and classifications of building types are unable to fully explain damage variability. Further developments assessing additional explanatory factors and reducing uncertainties, are required in order to significantly explain damage. In this study, urban topography is used as an explanatory factor for modelling of urban pluvial flooding. Flood damage is evaluated based on complaints data, a valuable resource for assessing vulnerability to urban pluvial flooding. Though previous research has shown coincidences between the localization of high complaint counts and large size catchments areas in Rotterdam, additional research is needed to establish the precise spatial relationship of those two variables. This additional task is the focus of the presented work. To that end a data base of complaints, that was made available by the Municipality Administration of the City, will be analysed. It comprises close to 36800 complaints from 2004 to 2011. The geographical position of the registries is aggregated into 4 to 6-digit Postal Code zones, which represents entire streets or relative positions along a street, respectively. The Municipality also provided the DEM, characterized by a spatial resolution of 0.5 m × 0.5 m, a vertical precision of 5 cm, and an accuracy better than two standard deviations of 15 cm. First the localization of complaints will be tested for spatial randomness: the distribution of Global Moran's I will be used as a measure of spatial aggregation of complaints. We expect high values of spatial aggregation, that would confirm the existence of a spatial structure in the distribution of complaints. Then we will probe how much does the extent of catchment areas influence such distribution of complaints. That will be done through both an ordinary least squares regression and a geographically weighted regression. By contrasting the results from these two regressions, the relationship between complaints and size of catchment area across the urban environment will be evaluated. The results will confirm whether complaints have a spatial distribution pattern. Furthermore, the results will provide insight into the importance of the size of catchment areas as a significant factor for complaints distribution, and for the assessment of urban vulnerability to pluvial flooding in the City of Rotterdam.

  6. Application of a fully integrated surface-subsurface physically based flow model for evaluating groundwater recharge from a flash flood event

    NASA Astrophysics Data System (ADS)

    Pino, Cristian; Herrera, Paulo; Therrien, René

    2017-04-01

    In many arid regions around the world groundwater recharge occurs during flash floods. This transient spatially and temporally concentrated flood-recharge process takes place through the variably saturated zone between surface and usually the deep groundwater table. These flood events are characterized by rapid and extreme changes in surface flow depth and velocity and soil moisture conditions. Infiltration rates change over time controlled by the hydraulic gradients and the unsaturated hydraulic conductivity at the surface-subsurface interface. Today is a challenge to assess the spatial and temporal distribution of groundwater recharge from flash flood events under real field conditions at different scales in arid areas. We apply an integrated surface-subsurface variably saturated physically-based flow model at the watershed scale to assess the recharge process during and after a flash flood event registered in an arid fluvial valley in Northern Chile. We are able to reproduce reasonably well observed groundwater levels and surface flow discharges during and after the flood with a calibrated model. We also investigate the magnitude and spatio-temporal distribution of recharge and the response of the system to variations of different surface and subsurface parameters, initial soil moisture content and groundwater table depths and surface flow conditions. We demonstrate how an integrated physically based model allows the exploration of different spatial and temporal system states, and that the analysis of the results of the simulations help us to improve our understanding of the recharge processes in similar type of systems that are common to many arid areas around the world.

  7. Impacts of climate change on current methodologies for flood risk analysis: Watershed-scale analyses using the Soil and Water Assessment Tool (SWAT)

    NASA Astrophysics Data System (ADS)

    Spellman, P.; Griffis, V. W.; LaFond, K.

    2013-12-01

    A changing climate brings about new challenges for flood risk analysis and water resources planning and management. Current methods for estimating flood risk in the US involve fitting the Pearson Type III (P3) probability distribution to the logarithms of the annual maximum flood (AMF) series using the method of moments. These methods are employed under the premise of stationarity, which assumes that the fitted distribution is time invariant and variables affecting stream flow such as climate do not fluctuate. However, climate change would bring about shifts in meteorological forcings which can alter the summary statistics (mean, variance, skew) of flood series used for P3 parameter estimation, resulting in erroneous flood risk projections. To ascertain the degree to which future risk may be misrepresented by current techniques, we use climate scenarios generated from global climate models (GCMs) as input to a hydrological model to explore how relative changes to current climate affect flood response for watersheds in the northeastern United States. The watersheds were calibrated and run on a daily time step using the continuous, semi-distributed, process based Soil and Water Assessment Tool (SWAT). Nash Sutcliffe Efficiency (NSE), RMSE to Standard Deviation ratio (RSR) and Percent Bias (PBIAS) were all used to assess model performance. Eight climate scenarios were chosen from GCM output based on relative precipitation and temperature changes from the current climate of the watershed and then further bias-corrected. Four of the scenarios were selected to represent warm-wet, warm-dry, cool-wet and cool-dry future climates, and the other four were chosen to represent more extreme, albeit possible, changes in precipitation and temperature. We quantify changes in response by comparing the differences in total mass balance and summary statistics of the logarithms of the AMF series from historical baseline values. We then compare forecasts of flood quantiles from fitting a P3 distribution to the logs of historical AMF data to that of generated AMF series.

  8. Flood risk assessment in France: comparison of extreme flood estimation methods (EXTRAFLO project, Task 7)

    NASA Astrophysics Data System (ADS)

    Garavaglia, F.; Paquet, E.; Lang, M.; Renard, B.; Arnaud, P.; Aubert, Y.; Carre, J.

    2013-12-01

    In flood risk assessment the methods can be divided in two families: deterministic methods and probabilistic methods. In the French hydrologic community the probabilistic methods are historically preferred to the deterministic ones. Presently a French research project named EXTRAFLO (RiskNat Program of the French National Research Agency, https://extraflo.cemagref.fr) deals with the design values for extreme rainfall and floods. The object of this project is to carry out a comparison of the main methods used in France for estimating extreme values of rainfall and floods, to obtain a better grasp of their respective fields of application. In this framework we present the results of Task 7 of EXTRAFLO project. Focusing on French watersheds, we compare the main extreme flood estimation methods used in French background: (i) standard flood frequency analysis (Gumbel and GEV distribution), (ii) regional flood frequency analysis (regional Gumbel and GEV distribution), (iii) local and regional flood frequency analysis improved by historical information (Naulet et al., 2005), (iv) simplify probabilistic method based on rainfall information (i.e. Gradex method (CFGB, 1994), Agregee method (Margoum, 1992) and Speed method (Cayla, 1995)), (v) flood frequency analysis by continuous simulation approach and based on rainfall information (i.e. Schadex method (Paquet et al., 2013, Garavaglia et al., 2010), Shyreg method (Lavabre et al., 2003)) and (vi) multifractal approach. The main result of this comparative study is that probabilistic methods based on additional information (i.e. regional, historical and rainfall information) provide better estimations than the standard flood frequency analysis. Another interesting result is that, the differences between the various extreme flood quantile estimations of compared methods increase with return period, staying relatively moderate up to 100-years return levels. Results and discussions are here illustrated throughout with the example of five watersheds located in the South of France. References : O. CAYLA : Probability calculation of design floods abd inflows - SPEED. Waterpower 1995, San Francisco, California 1995 CFGB : Design flood determination by the gradex method. Bulletin du Comité Français des Grands Barrages News 96, 18th congress CIGB-ICOLD n2, nov:108, 1994. F. GARAVAGLIA et al. : Introducing a rainfall compound distribution model based on weather patterns subsampling. Hydrology and Earth System Sciences, 14, 951-964, 2010. J. LAVABRE et al. : SHYREG : une méthode pour l'estimation régionale des débits de crue. application aux régions méditerranéennes françaises. Ingénierie EAT, 97-111, 2003. M. MARGOUM : Estimation des crues rares et extrêmes : le modèle AGREGEE. Conceptions et remières validations. PhD, Ecole des Mines de Paris, 1992. R. NAULET et al. : Flood frequency analysis on the Ardèche river using French documentary sources from the two last centuries. Journal of Hydrology, 313:58-78, 2005. E. PAQUET et al. : The SCHADEX method: A semi-continuous rainfall-runoff simulation for extreme flood estimation, Journal of Hydrology, 495, 23-37, 2013.

  9. Making up for lost snow: lessons from a warming Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Bales, R. C.

    2017-12-01

    Snowpack- and glacier-dependent river basins are home to over 1.2 billion people, one-sixth of the world's current population. These areas face severe challenges in a warmer climate, as declines in snow resources put more pressure on dams and groundwater. Closer to home, the seasonal snowpacks in California's Sierra Nevada provide water storage to both sustain productive forests and support the world's 6th largest economy. Rivers draining the Sierra supply the state's large cities, plus agricultural areas that provide nearly half of the nation's fruits and vegetables. Water storage is central to water security, especially given California's hot dry summers and high interannual variability in precipitation. On average seasonal snowpacks store about half as much water as do dams on Sierra rivers; and both the magnitude and duration of snowpack storage are decreasing. Precipitation amount and snow accumulation across the mountains in any given day, month or year remain uncertain. As historical index-statistical methods for hydrologic forecasts give way to tools based on mass and energy balances distributed across the landscape, opportunities are arising to broadly implement spatial measurements of snowpack storage and the equally important regolith-water storage. Advances in applying satellite and aircraft remote sensing, plus spatially distributed wireless-sensor networks, are filling this need. These same unprecedented data are driving process understanding to improve knowledge of snow-energy-forest interactions, snowmelt estimates, and hydrologic forecasts for hydropower, water supply, and flood control. Estimating the value of snowpacks and how they are changing provides a baseline for evaluating investments in restoration of headwater forests that will affect snowmelt runoff, and in providing replacement storage as snow declines. With California facing billions of dollars of green and grey infrastructure improvements, which must be compatible with the state's aggressive carbon-neutrality goals, it is critical to build support for expenditures. Science communication featuring Sierra Nevada snow through written, broadcast and film media can enhance public understanding and provide a basis for infrastructure and operational investments to address water security in a changing climate.

  10. Application of a distributed hydrological model to the design of a road inundation warning system for flash flood prone areas

    NASA Astrophysics Data System (ADS)

    Versini, P.-A.; Gaume, E.; Andrieu, H.

    2010-04-01

    This paper presents an initial prototype of a distributed hydrological model used to map possible road inundations in a region frequently exposed to severe flash floods: the Gard region (South of France). The prototype has been tested in a pseudo real-time mode on five recent flash flood events for which actual road inundations have been inventoried. The results are promising: close to 100% probability of detection of actual inundations, inundations detected before they were reported by the road management field teams with a false alarm ratios not exceeding 30%. This specific case study differs from the standard applications of rainfall-runoff models to produce flood forecasts, focussed on a single or a limited number of gauged river cross sections. It illustrates that, despite their lack of accuracy, hydro-meteorological forecasts based on rainfall-runoff models, especially distributed models, contain valuable information for flood event management. The possible consequences of landslides, debris flows and local erosion processes, sometimes associated with flash floods, were not considered at this stage of development of the prototype. They are limited in the Gard region but should be taken into account in future developments of the approach to implement it efficiently in other areas more exposed to these phenomena such as the Alpine area.

  11. Research on the Orientation and Application of Distributed Energy Storage in Energy Internet

    NASA Astrophysics Data System (ADS)

    Zeng, Ming; Zhou, Pengcheng; Li, Ran; Zhou, Jingjing; Chen, Tao; Li, Zhe

    2018-01-01

    Energy storage is indispensable resources to achieve a high proportion of new energy power consumption in electric power system. As an important support to energy Internet, energy storage system can achieve a variety of energy integration operation to ensure maximum energy efficiency. In this paper, firstly, the SWOT analysis method is used to express the internal and external advantages and disadvantages of distributed energy storage participating in the energy Internet. Secondly, the function orientation of distributed energy storage in energy Internet is studied, based on which the application modes of distributed energy storage in virtual power plant, community energy storage and auxiliary services are deeply studied. Finally, this paper puts forward the development strategy of distributed energy storage which is suitable for the development of China’s energy Internet, and summarizes and prospects the application of distributed energy storage system.

  12. Front gardens to car parks: changes in garden permeability and effects on flood regulation.

    PubMed

    Warhurst, Jennifer R; Parks, Katherine E; McCulloch, Lindsay; Hudson, Malcolm D

    2014-07-01

    This study addresses the consequences of widespread conversion of permeable front gardens to hard standing car parking surfaces, and the potential consequences in high-risk urban flooding hotspots, in the city of Southampton. The last two decades has seen a trend for domestic front gardens in urban areas to be converted for parking, driven by the lack of space and increased car ownership. Despite media and political attention, the effects of this change are unknown, but increased and more intense rainfall, potentially linked to climate change, could generate negative consequences as runoff from impermeable surfaces increases. Information is limited on garden permeability change, despite the consequences for ecosystem services, especially flood regulation. We focused on eight flooding hotspots identified by the local council as part of a wider urban flooding policy response. Aerial photographs from 1991, 2004 and 2011 were used to estimate changes in surface cover and to analyse permeability change within a digital surface model in a GIS environment. The 1, 30 and 100 year required attenuation storage volumes were estimated, which are the temporary storage required to reduce the peak flow rate given surface permeability. Within our study areas, impermeable cover in domestic front gardens increased by 22.47% over the 20-year study period (1991-2011) and required attenuation storage volumes increased by 26.23% on average. These increases suggest that a consequence of the conversion of gardens to parking areas will be a potential increase in flooding frequency and severity - a situation which is likely to occur in urban locations worldwide. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. How extreme was the October 2015 flood in the Carolinas? An assessment of flood frequency analysis and distribution tails

    NASA Astrophysics Data System (ADS)

    Phillips, R. C.; Samadi, S. Z.; Meadows, M. E.

    2018-07-01

    This paper examines the frequency, distribution tails, and peak-over-threshold (POT) of extreme floods through analysis that centers on the October 2015 flooding in North Carolina (NC) and South Carolina (SC), United States (US). The most striking features of the October 2015 flooding were a short time to peak (Tp) and a multi-hour continuous flood peak which caused intensive and widespread damages to human lives, properties, and infrastructure. The 2015 flooding was produced by a sequence of intense rainfall events which originated from category 4 hurricane Joaquin over a period of four days. Here, the probability distribution and distribution parameters (i.e., location, scale, and shape) of floods were investigated by comparing the upper part of empirical distributions of the annual maximum flood (AMF) and POT with light- to heavy- theoretical tails: Fréchet, Pareto, Gumbel, Weibull, Beta, and Exponential. Specifically, four sets of U.S. Geological Survey (USGS) gauging data from the central Carolinas with record lengths from approximately 65-125 years were used. Analysis suggests that heavier-tailed distributions are in better agreement with the POT and somewhat AMF data than more often used exponential (light) tailed probability distributions. Further, the threshold selection and record length affect the heaviness of the tail and fluctuations of the parent distributions. The shape parameter and its evolution in the period of record play a critical and poorly understood role in determining the scaling of flood response to intense rainfall.

  14. The complexities of urban flood response: Flood frequency analyses for the Charlotte metropolitan region

    NASA Astrophysics Data System (ADS)

    Zhou, Zhengzheng; Smith, James A.; Yang, Long; Baeck, Mary Lynn; Chaney, Molly; Ten Veldhuis, Marie-Claire; Deng, Huiping; Liu, Shuguang

    2017-08-01

    We examine urban flood response through data-driven analyses for a diverse sample of "small" watersheds (basin scale ranging from 7.0 to 111.1 km2) in the Charlotte Metropolitan region. These watersheds have experienced extensive urbanization and suburban development since the 1960s. The objective of this study is to develop a broad characterization of land surface and hydrometeorological controls of urban flood hydrology. Our analyses are based on peaks-over-threshold flood data developed from USGS streamflow observations and are motivated by problems of flood hazard characterization for urban regions. We examine flood-producing rainfall using high-resolution (1 km2 spatial resolution and 15 min time resolution), bias-corrected radar rainfall fields that are developed through the Hydro-NEXRAD system. The analyses focus on the 2001-2015 period. The results highlight the complexities of urban flood response. There are striking spatial heterogeneities in flood peak magnitudes, response times, and runoff ratios across the study region. These spatial heterogeneities are mainly linked to watershed scale, the distribution of impervious cover, and storm water management. Contrasting land surface properties also determine the mixture of flood-generating mechanisms for a particular watershed. Warm-season thunderstorm systems and tropical cyclones are main flood agents in Charlotte, with winter/spring storms playing a role in less-urbanized watersheds. The mixture of flood agents exerts a strong impact on the upper tail of flood frequency distributions. Antecedent watershed wetness plays a minor role in urban flood response, compared with less-urbanized watersheds. Implications for flood hazard characterization in urban watersheds and for advances in flood science are discussed.

  15. Determining which land management practices reduce catchment scale flood risk and where to implement them for optimum effect

    NASA Astrophysics Data System (ADS)

    Pattison, Ian; Lane, Stuart; Hardy, Richard; Reaney, Sim

    2010-05-01

    The theoretical basis for why changes in land management might increase flood risk are well known, but proving them through numerical modelling still remains a challenge. In large catchments, like the River Eden in Cumbria, NW England, one of the reasons for this is that it is unfeasible to test multiple scenarios in all their possible locations. We have developed two linked approaches to refine the number of scenarios and locations using 1) spatial downscaling and 2) participatory decision making, which potentially should increase the likelihood of finding a link between land use and downstream flooding. Firstly, land management practices can have both flood reducing and flood increasing effects, depending on their location. As a result some areas of the catchment are more important in determining downstream flood risk than others, depending on the land use and hydrological connectivity. We apply a downscaling approach to identify which sub-catchments are most important in explaining downstream flooding. This is important because it is in these areas that management options are most likely to have a positive and detectable effect. Secondly, once the dominant sub-catchment has been identified, the land management scenarios that are both feasible and likely to impact flood risk need to be determined. This was done through active stakeholder engagement. The stakeholder group undertook a brainstorming exercise, which suggested about 30 different rural land management scenarios, which were mapped on to a literature-based conceptual framework of hydrological processes. Then these options were evaluated based on five criteria: relevance to catchment, scientific effectiveness, testability, robustness/uncertainty and feasibility of implementation. The suitability of each scenario was discussed and prioritised by the stakeholder group based on scientific needs and expectations and local suitability and feasibility. The next stage of the participatory approach was a mapping workshop, whereby a map of the catchment was laid out and locations where each scenario could feasibly be implemented were drawn on. This was combined with an analysis of historical maps to identify past land covers and a catchment walkover survey to put modelling work in the real world context. The land management scenarios were tested using hydrological and hydraulic models. Landscape scale changes, such as the effects of compaction and afforestation were tested using a catchment scale hydrological mode, CRUM2D. Channel scale changes, such as re-meandering and floodplain storage were tested using the 1D hydraulic model, iSIS, by altering channel cross sections and creating spills between the channel and floodplain. It is expected that the channel modification and floodplain storage scenarios will have the greatest impact on flooding both at the local and catchment scales. The landscape scale changes are more diffuse and therefore their impact is expected to be less significant. Although, early analysis indicates that the spatial location of changes strongly influences their effect on flooding.

  16. Demonstration of a conceptual model for using LiDAR to improve the estimation of floodwater mitigation potential of Prairie Pothole Region wetlands

    USGS Publications Warehouse

    Huang, S.; Young, Caitlin; Feng, M.; Heidemann, Hans Karl; Cushing, Matthew; Mushet, D.M.; Liu, S.

    2011-01-01

    Recent flood events in the Prairie Pothole Region of North America have stimulated interest in modeling water storage capacities of wetlands and their surrounding catchments to facilitate flood mitigation efforts. Accurate estimates of basin storage capacities have been hampered by a lack of high-resolution elevation data. In this paper, we developed a 0.5 m bare-earth model from Light Detection And Ranging (LiDAR) data and, in combination with National Wetlands Inventory data, delineated wetland catchments and their spilling points within a 196 km2 study area. We then calculated the maximum water storage capacity of individual basins and modeled the connectivity among these basins. When compared to field survey results, catchment and spilling point delineations from the LiDAR bare-earth model captured subtle landscape features very well. Of the 11 modeled spilling points, 10 matched field survey spilling points. The comparison between observed and modeled maximum water storage had an R2 of 0.87 with mean absolute error of 5564 m3. Since maximum water storage capacity of basins does not translate into floodwater regulation capability, we further developed a Basin Floodwater Regulation Index. Based upon this index, the absolute and relative water that could be held by wetlands over a landscape could be modeled. This conceptual model of floodwater downstream contribution was demonstrated with water level data from 17 May 2008.

  17. Simulating on water storage and pump capacity of "Kencing" river polder system in Kudus regency, Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Wahyudi, Slamet Imam; Adi, Henny Pratiwi; Santoso, Esti; Heikoop, Rick

    2017-03-01

    Settlement in the Jati District, Kudus Regency, Central Java Province, Indonesia, is growing rapidly. Previous paddy fields area turns into new residential, industrial and office buildings. The rain water collected in small Kencing river that flows into big Wulan River. But the current condition, during high rain intensity Wulan river water elevation higher than the Kencing river, so that water can not flow gravity and the area inundated. To reduce the flooding, required polder drainage system by providing a long channel as water storage and pumping water into Wulan river. How to get optimal value of water storage volume, drainage system channels and the pump capacity? The result used to be efficient in the operation and maintenance of the polder system. The purpose of this study is to develop some scenarios water storage volume, water gate operation and to get the optimal value of operational pumps removing water from the Kencing River to Wulan River. Research Method is conducted by some steps. The first step, it is done field orientation in detail, then collecting secondary data including maps and rainfall data. The map is processed into Watershed or catchment area, while the rainfall data is processed into runoff discharge. Furthermore, the team collects primary data by measuring topography to determine the surface and volume of water storage. The analysis conducted to determine of flood discharge, water channel hydraulics, water storage volume and pump capacity corresponding. Based on the simulating of long water storage volume and pump capacity with some scenario trying, it can be determined optimum values. The results used to be guideline in to construction proses, operation and maintenance of the drainage polder system.

  18. The end of trend-estimation for extreme floods under climate change?

    NASA Astrophysics Data System (ADS)

    Schulz, Karsten; Bernhardt, Matthias

    2016-04-01

    An increased risk of flood events is one of the major threats under future climate change conditions. Therefore, many recent studies have investigated trends in flood extreme occurences using historic long-term river discharge data as well as simulations from combined global/regional climate and hydrological models. Severe floods are relatively rare events and the robust estimation of their probability of occurrence requires long time series of data (6). Following a method outlined by the IPCC research community, trends in extreme floods are calculated based on the difference of discharge values exceeding e.g. a 100-year level (Q100) between two 30-year windows, which represents prevailing conditions in a reference and a future time period, respectively. Following this approach, we analysed multiple, synthetically derived 2,000-year trend-free, yearly maximum runoff data generated using three different extreme value distributions (EDV). The parameters were estimated from long term runoff data of four large European watersheds (Danube, Elbe, Rhine, Thames). Both, Q100-values estimated from 30-year moving windows, as well as the subsequently derived trends showed enormous variations with time: for example, estimating the Extreme Value (Gumbel) - distribution for the Danube data, trends of Q100 in the synthetic time-series range from -4,480 to 4,028 m³/s per 100 years (Q100 =10,071m³/s, for reference). Similar results were found when applying other extreme value distributions (Weibull, and log-Normal) to all of the watersheds considered. This variability or "background noise" of estimating trends in flood extremes makes it almost impossible to significantly distinguish any real trend in observed as well as modelled data when such an approach is applied. These uncertainties, even though known in principle are hardly addressed and discussed by the climate change impact community. Any decision making and flood risk management, including the dimensioning of flood protection measures, that is based on such studies might therefore be fundamentally flawed.

  19. Land use change in the last century in the Veneto floodplain: effects on network drainage density, water storage, and related consequences on flood risk

    NASA Astrophysics Data System (ADS)

    Prosdocimi, Massimo; Sofia, Giulia; Dalla Fontana, Giancarlo; Tarolli, Paolo

    2013-04-01

    In a high-density populated country such as Italy, the anthropic pressure plays a fundamental role in the alteration and the modification of the landscape. Among the most evident anthropic alterations, the most important are the urbanization processes that have been occurring since the end of the second world war. Agricultural activities, housing and other land uses have shifted due to the progressive spreading of urban areas. These modifications affect the hydrologic regimes, but municipalities often are not aware of the real impact of land cover changes on such processes and, consequently, an increase of the elements at risk of flooding is generally registered. The main objective of this work is to evaluate the impact of land cover changes in the Veneto region (north-east Italy), from 1954 to 2006, on the minor drainage network system and on its capacity to attenuate the direct runoff. The major flood event occurred between October and November 2010. The study is a typical agrarian landscape and it has been chosen considering its involvement inthe major flood of 2010 and considering also the availability of high-resolution topographic data (LiDAR-derived DTMs) and historical aerial photographs. Aerial photographs dated back to 1954 and 1981, in particular, have been used either to classify the land cover in five categories according to the first level of the CORINE land cover classification and to identify the minor drainage network. A semi-automatic approach based on the high-resolution DTM (Cazorzi et al., 2012), was also considered to identify the minor drainage network and estimate its water storage capacity. The results underline how land cover variation over the last 50 years has strongly increased the propension of the soil to produce direct runoff (increase of the Curve Number value) and it has also reduced the extent of the minor network system. As a consequence, the capacity of the agrarian minor network to attenuate and laminate a flood event is decreased as well. These analysis can be considered useful tools for a suitable land use planning in flood prone areas. References Cazorzi, F., Dalla Fontana, G., De Luca, A., Sofia, G., Tarolli, P. (2012). Drainage network detection and assessment of network storage capacity in agrarian landscape, Hydrological Processes, ISSN: 0885-6087, doi:10.1002/hyp.9224

  20. Characterisation of seasonal flood types according to timescales in mixed probability distributions

    NASA Astrophysics Data System (ADS)

    Fischer, Svenja; Schumann, Andreas; Schulte, Markus

    2016-08-01

    When flood statistics are based on annual maximum series (AMS), the sample often contains flood peaks, which differ in their genesis. If the ratios among event types change over the range of observations, the extrapolation of a probability distribution function (pdf) can be dominated by a majority of events that belong to a certain flood type. If this type is not typical for extraordinarily large extremes, such an extrapolation of the pdf is misleading. To avoid this breach of the assumption of homogeneity, seasonal models were developed that differ between winter and summer floods. We show that a distinction between summer and winter floods is not always sufficient if seasonal series include events with different geneses. Here, we differentiate floods by their timescales into groups of long and short events. A statistical method for such a distinction of events is presented. To demonstrate their applicability, timescales for winter and summer floods in a German river basin were estimated. It is shown that summer floods can be separated into two main groups, but in our study region, the sample of winter floods consists of at least three different flood types. The pdfs of the two groups of summer floods are combined via a new mixing model. This model considers that information about parallel events that uses their maximum values only is incomplete because some of the realisations are overlaid. A statistical method resulting in an amendment of statistical parameters is proposed. The application in a German case study demonstrates the advantages of the new model, with specific emphasis on flood types.

  1. Diversity of endophytic fungi of Myricaria laxiflora grown under pre- and post-flooding conditions.

    PubMed

    Tian, W; Bi, Y H; Zeng, W; Jiang, W; Xue, Y H; Wang, G X; Liu, S P

    2015-09-09

    Myricaria laxiflora is distributed along the riverbanks of the Yangtze River valley. The Three Gorges Dam has dramatically changed the habitat of M. laxiflora, which has evolved to develop increased resistance to flooding stress. In order to elucidate the relationship between plant endophytic fungi and flooding stress, we isolated and taxonomically characterized the endophytic fungi of M. laxiflora. One hundred and sixty-three fungi were isolated from healthy stems, leaves and roots of M. laxiflora grown under pre- and post-flooding conditions. Culture and isolation were carried out under aerobic and anaerobic conditions. Based on internal transcribed spacer sequence analysis and morphological characteristics, the isolates exhibited abundant biodiversity; they were classified into 5 subphyla, 7 classes, 12 orders, 17 families, and 26 genera. Dominant endophytes varied between pre- and post-flooding plants, among different plant tissues, and between aerobic and anaerobic culture conditions. Aspergillus and Alternaria accounted for more than 55% of all isolates. Although the number of isolates from post-flooding plants was greater, endophytes from pre-flooding plants were more diverse and abundant. Endophytes were distributed preferentially in particular tissues; this affinity was constrained by both the host habitat and the oxygen availability of the host.

  2. A probabilistic approach to modeling postfire erosion after the 2009 Australian bushfires

    Treesearch

    P. R. Robichaud; W. J. Elliot; F. B. Pierson; D. E. Hall; C. A. Moffet

    2009-01-01

    Major concerns after bushfires and wildfires include increased flooding, erosion and debris flows due to loss of the protective forest floor layer, loss of water storage, and creation of water repellent soil conditions. To assist postfire assessment teams in their efforts to evaluate fire effects and make postfire treatment decisions, a web-based Erosion Risk...

  3. Comparing flood loss models of different complexity

    NASA Astrophysics Data System (ADS)

    Schröter, Kai; Kreibich, Heidi; Vogel, Kristin; Riggelsen, Carsten; Scherbaum, Frank; Merz, Bruno

    2013-04-01

    Any deliberation on flood risk requires the consideration of potential flood losses. In particular, reliable flood loss models are needed to evaluate cost-effectiveness of mitigation measures, to assess vulnerability, for comparative risk analysis and financial appraisal during and after floods. In recent years, considerable improvements have been made both concerning the data basis and the methodological approaches used for the development of flood loss models. Despite of that, flood loss models remain an important source of uncertainty. Likewise the temporal and spatial transferability of flood loss models is still limited. This contribution investigates the predictive capability of different flood loss models in a split sample cross regional validation approach. For this purpose, flood loss models of different complexity, i.e. based on different numbers of explaining variables, are learned from a set of damage records that was obtained from a survey after the Elbe flood in 2002. The validation of model predictions is carried out for different flood events in the Elbe and Danube river basins in 2002, 2005 and 2006 for which damage records are available from surveys after the flood events. The models investigated are a stage-damage model, the rule based model FLEMOps+r as well as novel model approaches which are derived using data mining techniques of regression trees and Bayesian networks. The Bayesian network approach to flood loss modelling provides attractive additional information concerning the probability distribution of both model predictions and explaining variables.

  4. Integrating Entropy-Based Naïve Bayes and GIS for Spatial Evaluation of Flood Hazard.

    PubMed

    Liu, Rui; Chen, Yun; Wu, Jianping; Gao, Lei; Barrett, Damian; Xu, Tingbao; Li, Xiaojuan; Li, Linyi; Huang, Chang; Yu, Jia

    2017-04-01

    Regional flood risk caused by intensive rainfall under extreme climate conditions has increasingly attracted global attention. Mapping and evaluation of flood hazard are vital parts in flood risk assessment. This study develops an integrated framework for estimating spatial likelihood of flood hazard by coupling weighted naïve Bayes (WNB), geographic information system, and remote sensing. The north part of Fitzroy River Basin in Queensland, Australia, was selected as a case study site. The environmental indices, including extreme rainfall, evapotranspiration, net-water index, soil water retention, elevation, slope, drainage proximity, and density, were generated from spatial data representing climate, soil, vegetation, hydrology, and topography. These indices were weighted using the statistics-based entropy method. The weighted indices were input into the WNB-based model to delineate a regional flood risk map that indicates the likelihood of flood occurrence. The resultant map was validated by the maximum inundation extent extracted from moderate resolution imaging spectroradiometer (MODIS) imagery. The evaluation results, including mapping and evaluation of the distribution of flood hazard, are helpful in guiding flood inundation disaster responses for the region. The novel approach presented consists of weighted grid data, image-based sampling and validation, cell-by-cell probability inferring and spatial mapping. It is superior to an existing spatial naive Bayes (NB) method for regional flood hazard assessment. It can also be extended to other likelihood-related environmental hazard studies. © 2016 Society for Risk Analysis.

  5. On the objective identification of flood seasons

    NASA Astrophysics Data System (ADS)

    Cunderlik, Juraj M.; Ouarda, Taha B. M. J.; BobéE, Bernard

    2004-01-01

    The determination of seasons of high and low probability of flood occurrence is a task with many practical applications in contemporary hydrology and water resources management. Flood seasons are generally identified subjectively by visually assessing the temporal distribution of flood occurrences and, then at a regional scale, verified by comparing the temporal distribution with distributions obtained at hydrologically similar neighboring sites. This approach is subjective, time consuming, and potentially unreliable. The main objective of this study is therefore to introduce a new, objective, and systematic method for the identification of flood seasons. The proposed method tests the significance of flood seasons by comparing the observed variability of flood occurrences with the theoretical flood variability in a nonseasonal model. The method also addresses the uncertainty resulting from sampling variability by quantifying the probability associated with the identified flood seasons. The performance of the method was tested on an extensive number of samples with different record lengths generated from several theoretical models of flood seasonality. The proposed approach was then applied on real data from a large set of sites with different flood regimes across Great Britain. The results show that the method can efficiently identify flood seasons from both theoretical and observed distributions of flood occurrence. The results were used for the determination of the main flood seasonality types in Great Britain.

  6. Research Note:An approach to integrated assessement of reservoir siltation: the Joaquín Costa reservoir as a case study

    NASA Astrophysics Data System (ADS)

    Navas, A.; Valero Garcés, B.; Machín, J.

    In 1932, the Esera river was dammed at the foothills of the Pyrenean External Ranges; since then, sedimentation has reduced its water storage capacity by a third. This study of the sediments in the Joaquín Costa reservoir has been based on detailed sedimentological examination and other analysis of mineralogy, grain size distribution and the chemical components of the materials accumulated at the bottom of the reservoir. Interpretations are based on results from four sediment cores collected at sites representative of the main environments in the reservoir. Records of known flood events and of reservoir management data have been combined with a 137Cs-derived chronology. Thus, it has been possible to ascribe the sedimentary record at the different reservoir environments to specific years, as well as some main changes in the facies types and sediment components. This methodology is a first approach to assessing siltation processes and dynamics in Mediterranean mountain reservoirs.

  7. Distributed Storage Algorithm for Geospatial Image Data Based on Data Access Patterns.

    PubMed

    Pan, Shaoming; Li, Yongkai; Xu, Zhengquan; Chong, Yanwen

    2015-01-01

    Declustering techniques are widely used in distributed environments to reduce query response time through parallel I/O by splitting large files into several small blocks and then distributing those blocks among multiple storage nodes. Unfortunately, however, many small geospatial image data files cannot be further split for distributed storage. In this paper, we propose a complete theoretical system for the distributed storage of small geospatial image data files based on mining the access patterns of geospatial image data using their historical access log information. First, an algorithm is developed to construct an access correlation matrix based on the analysis of the log information, which reveals the patterns of access to the geospatial image data. Then, a practical heuristic algorithm is developed to determine a reasonable solution based on the access correlation matrix. Finally, a number of comparative experiments are presented, demonstrating that our algorithm displays a higher total parallel access probability than those of other algorithms by approximately 10-15% and that the performance can be further improved by more than 20% by simultaneously applying a copy storage strategy. These experiments show that the algorithm can be applied in distributed environments to help realize parallel I/O and thereby improve system performance.

  8. Evaluation of social vulnerability to floods in Huaihe River basin: a methodology based on catastrophe theory

    NASA Astrophysics Data System (ADS)

    You, W. J.; Zhang, Y. L.

    2015-08-01

    Huaihe River is one of the seven largest rivers in China, in which floods occurred frequently. Disasters cause huge casualties and property losses to the basin, and also make it famous for high social vulnerability to floods. Based on the latest social-economic data, the index system of social vulnerability to floods was constructed, and Catastrophe theory method was used in the assessment process. The conclusion shows that social vulnerability as a basic attribute attached to urban environment, with significant changes from city to city across the Huaihe River basin. Different distribution characteristics are present in population, economy, flood prevention vulnerability. It is important to make further development of social vulnerability, which will play a positive role in disaster prevention, improvement of comprehensive ability to respond to disasters.

  9. Information Communication using Knowledge Engine on Flood Issues

    NASA Astrophysics Data System (ADS)

    Demir, I.; Krajewski, W. F.

    2012-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to and visualization of flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, and other flood-related data for communities in Iowa. The system is designed for use by general public, often people with no domain knowledge and poor general science background. To improve effective communication with such audience, we have introduced a new way in IFIS to get information on flood related issues - instead of by navigating within hundreds of features and interfaces of the information system and web-based sources-- by providing dynamic computations based on a collection of built-in data, analysis, and methods. The IFIS Knowledge Engine connects to distributed sources of real-time stream gauges, and in-house data sources, analysis and visualization tools to answer questions grouped into several categories. Users will be able to provide input based on the query within the categories of rainfall, flood conditions, forecast, inundation maps, flood risk and data sensors. Our goal is the systematization of knowledge on flood related issues, and to provide a single source for definitive answers to factual queries. Long-term goal of this knowledge engine is to make all flood related knowledge easily accessible to everyone, and provide educational geoinformatics tool. The future implementation of the system will be able to accept free-form input and voice recognition capabilities within browser and mobile applications. We intend to deliver increasing capabilities for the system over the coming releases of IFIS. This presentation provides an overview of our Knowledge Engine, its unique information interface and functionality as an educational tool, and discusses the future plans for providing knowledge on flood related issues and resources.

  10. The Effect of Model Grid Resolution on the Distributed Hydrologic Simulations for Forecasting Stream Flows and Reservoir Storage

    NASA Astrophysics Data System (ADS)

    Turnbull, S. J.

    2017-12-01

    Within the US Army Corps of Engineers (USACE), reservoirs are typically operated according to a rule curve that specifies target water levels based on the time of year. The rule curve is intended to maximize flood protection by specifying releases of water before the dominant rainfall period for a region. While some operating allowances are permissible, generally the rule curve elevations must be maintained. While this operational approach provides for the required flood control purpose, it may not result in optimal reservoir operations for multi-use impoundments. In the Russian River Valley of California a multi-agency research effort called Forecast-Informed Reservoir Operations (FIRO) is assessing the application of forecast weather and streamflow predictions to potentially enhance the operation of reservoirs in the watershed. The focus of the study has been on Lake Mendocino, a USACE project important for flood control, water supply, power generation and ecological flows. As part of this effort the Engineer Research and Development Center is assessing the ability of utilizing the physics based, distributed watershed model Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model to simulate stream flows, reservoir stages, and discharges while being driven by weather forecast products. A key question in this application is the effect of watershed model resolution on forecasted stream flows. To help resolve this question, GSSHA models of multiple grid resolutions, 30, 50, and 270m, were developed for the upper Russian River, which includes Lake Mendocino. The models were derived from common inputs: DEM, soils, land use, stream network, reservoir characteristics, and specified inflows and discharges. All the models were calibrated in both event and continuous simulation mode using measured precipitation gages and then driven with the West-WRF atmospheric model in prediction mode to assess the ability of the model to function in short term, less than one week, forecasting mode. In this presentation we will discuss the effect the grid resolution has model development, parameter assignment, streamflow prediction and forecasting capability utilizing the West-WRF forecast hydro-meteorology.

  11. Water Management Applications of Advanced Precipitation Products

    NASA Astrophysics Data System (ADS)

    Johnson, L. E.; Braswell, G.; Delaney, C.

    2012-12-01

    Advanced precipitation sensors and numerical models track storms as they occur and forecast the likelihood of heavy rain for time frames ranging from 1 to 8 hours, 1 day, and extended outlooks out to 3 to 7 days. Forecast skill decreases at the extended time frames but the outlooks have been shown to provide "situational awareness" which aids in preparation for flood mitigation and water supply operations. In California the California-Nevada River Forecast Centers and local Weather Forecast Offices provide precipitation products that are widely used to support water management and flood response activities of various kinds. The Hydrometeorology Testbed (HMT) program is being conducted to help advance the science of precipitation tracking and forecasting in support of the NWS. HMT high-resolution products have found applications for other non-federal water management activities as well. This presentation will describe water management applications of HMT advanced precipitation products, and characterization of benefits expected to accrue. Two case examples will be highlighted, 1) reservoir operations for flood control and water supply, and 2) urban stormwater management. Application of advanced precipitation products in support of reservoir operations is a focus of the Sonoma County Water Agency. Examples include: a) interfacing the high-resolution QPE products with a distributed hydrologic model for the Russian-Napa watersheds, b) providing early warning of in-coming storms for flood preparedness and water supply storage operations. For the stormwater case, San Francisco wastewater engineers are developing a plan to deploy high resolution gap-filling radars looking off shore to obtain longer lead times on approaching storms. A 4 to 8 hour lead time would provide opportunity to optimize stormwater capture and treatment operations, and minimize combined sewer overflows into the Bay.ussian River distributed hydrologic model.

  12. The impact of projected increases in urbanization on ecosystem services.

    PubMed

    Eigenbrod, F; Bell, V A; Davies, H N; Heinemeyer, A; Armsworth, P R; Gaston, K J

    2011-11-07

    Alteration in land use is likely to be a major driver of changes in the distribution of ecosystem services before 2050. In Europe, urbanization will probably be the main cause of land-use change. This increase in urbanization will result in spatial shifts in both supplies of ecosystem services and the beneficiaries of those services; the net outcome of such shifts remains to be determined. Here, we model changes in urban land cover in Britain based on large (16%) projected increases in the human population by 2031, and the consequences for three different services--flood mitigation, agricultural production and carbon storage. We show that under a scenario of densification of urban areas, the combined effect of increasing population and loss of permeable surfaces is likely to result in 1.7 million people living within 1 km of rivers with at least 10 per cent increases in projected peak flows, but that increasing suburban 'sprawl' will have little effect on flood mitigation services. Conversely, losses of stored carbon and agricultural production are over three times as high under the sprawl as under the 'densification' urban growth scenarios. Our results illustrate the challenges of meeting, but also of predicting, future demands and patterns of ecosystem services in the face of increasing urbanization.

  13. The impact of projected increases in urbanization on ecosystem services

    PubMed Central

    Eigenbrod, F.; Bell, V. A.; Davies, H. N.; Heinemeyer, A.; Armsworth, P. R.; Gaston, K. J.

    2011-01-01

    Alteration in land use is likely to be a major driver of changes in the distribution of ecosystem services before 2050. In Europe, urbanization will probably be the main cause of land-use change. This increase in urbanization will result in spatial shifts in both supplies of ecosystem services and the beneficiaries of those services; the net outcome of such shifts remains to be determined. Here, we model changes in urban land cover in Britain based on large (16%) projected increases in the human population by 2031, and the consequences for three different services—flood mitigation, agricultural production and carbon storage. We show that under a scenario of densification of urban areas, the combined effect of increasing population and loss of permeable surfaces is likely to result in 1.7 million people living within 1 km of rivers with at least 10 per cent increases in projected peak flows, but that increasing suburban ‘sprawl’ will have little effect on flood mitigation services. Conversely, losses of stored carbon and agricultural production are over three times as high under the sprawl as under the ‘densification’ urban growth scenarios. Our results illustrate the challenges of meeting, but also of predicting, future demands and patterns of ecosystem services in the face of increasing urbanization. PMID:21389035

  14. Use of flux and morphologic sediment budgets for sandbar monitoring on the Colorado River in Marble Canyon, Arizona

    USGS Publications Warehouse

    Grams, Paul E.; Buscombe, Daniel D.; Topping, David J.; Hazel, Joseph E.; Kaplinski, Matt

    2015-01-01

    The magnitude and pfattern of streamflow and sediment supply of the Colorado River in Grand Canyon (Figure 1) has been affected by the existence and operations of Glen Canyon Dam since filling of Lake Powell Reservoir began in March 1963. In the subsequent 30 years, fine sediment was scoured from the downstream channel (Topping et al., 2000; Grams et al., 2007), resulting in a decline in the number and size of sandbars in the eastern half of Grand Canyon National Park (Wright et al., 2005; Schmidt et al., 2004). The Glen Canyon Dam Adaptive Management Program (GCDAMP) administered by the U.S. Department of Interior oversees efforts to manage the Colorado River ecosystem downstream from Glen Canyon Dam. One of the goals of the GCDAMP is to maintain and increase the number and size of sandbars in this context of a limited sand supply. Management actions to benefit sandbars have included curtailment of daily streamflow fluctuations, which occur for hydropower generation, and implementation of controlled floods, also called high-flow experiments.Studies of controlled floods, defined as intentional releases that exceed the maximum discharge capacity of the Glen Canyon Dam powerplant, implemented between 1996 and 2008, have demonstrated that these events cause increases in sandbar size throughout Marble and Grand Canyons (Hazel et al., 2010; Schmidt and Grams, 2011; Mueller et al., 2014), although the magnitude of response is spatially variable (Hazel et al., 1999; 2010). Controlled floods may build some sandbars at the expense of erosion of sand from other, upstream, sandbars (Schmidt, 1999). To increase the frequency and effectiveness of sandbar building, the U.S. Department of Interior adopted a “high-flow experimental protocol” to implement controlled floods regularly under conditions of enriched sand supply (U.S. Department of Interior, 2012). Because the supply of sand available to build sandbars has been substantially reduced by Glen Canyon Dam (Topping et al., 2000) and depends entirely on infrequent tributary floods, monitoring of both sandbars and gross sand storage (the sand budget) is required to evaluate whether the high-flow protocol is having the intended effect of increasing sandbar size without progressively depleting sand from the system.There are many challenges associated with monitoring sand storage and active sand deposits in a river system as large and complex as the 450-km segment of the Colorado River between Glen Canyon Dam and Lake Mead. Previous studies have demonstrated the temporal variation in sand storage associated with sand-supply limitation (Topping et al., 2000) and the spatial variability in the amount of sand stored in eddies and the channel associated with channel hydraulics (Grams et al., 2013). In this study, we report on companion measurements of sand flux and morphologic change to quantify, for the first time, the relation between changes in sand mass balance, changes in within-channel sand storage, and changes in sandbars comprehensively for a 50-km river segment of the Colorado River in lower Marble Canyon within Grand Canyon National Park.We show that, when measured over the scale of a 50-km river segment, these complementary measurements of the sand budget agree within measurement uncertainty and provide a rare opportunity to integrate the temporally rich sand-flux record with the spatially rich morphologic measurements. Both methods show that sediment was evacuated from lower Marble Canyon over the 3-year study period. The flux-based budget shows the timing of changes in storage relative to dam-release patterns, while the morphologic measurements depict the spatial distribution of erosion and deposition among different depositional settings.

  15. Carbon storage potential of Columbia River flood basalt

    NASA Astrophysics Data System (ADS)

    Wells, R. K.; Xiong, W.; Giammar, D.; Skemer, P. A.

    2017-12-01

    Basalt reservoirs are an important option for sequestering carbon through dissolution of host rock and precipitation of stable carbonate minerals. This study seeks to understand the nature of dissolution and surface roughening processes and their influence on the timing and spatial distribution of carbonation, in static experiments at 150 °C and 100 bar CO2. Intact samples and cores with milled pathways from Ca-rich and Fe-rich Columbia River flood basalt formations were reacted for up to 40 weeks. Experimental specimens were analyzed using SEM-EDS, microprobe, and μCT scanning, Raman spectroscopy, and 2D profilometer to characterize changes in composition and surface roughness. ICP-MS was used to examine bulk fluid chemistry. Initial dissolution of olivine grains results in higher Mg2+ and Fe2+ concentrations within the bulk solution in the first week of reaction. However, once available olivine grains are gone, Ca-rich pyroxene becomes the primary contributor of Ca2+, Mg2+, and Fe2+ within the bulk solution. The complete dissolution of olivine grains resulted in pits up to 200 μm deep. Dissolution of other minerals resulted in the formation of microscale textures, primarily along grain boundaries and fractures. The surface roughness increased by factors of up to 42, while surface area increased 20%. Based on these results, pyroxene is the sustaining contributor of divalent metal cations during dissolution of basalt, and the limited connectivity of olivine and pyroxene grains limits the exposure of new reactive surface areas. Within 6 weeks, aragonite precipitated in Ca-rich basalt samples, while Fe-rich samples precipitated of siderite. The highest concentration of carbonates occurs 1/3 into milled pathways, which simulate dead-end fractures, in low porosity basalts, and near the fracture tip in high porosity basalts. Even at elevated temperatures, the fractures are not blocked nor filled within 40 weeks of reaction. When vesicles are present, carbonates can precipitate within these pores even when the pores do not appear to connect to the main fracture pathway. Based on our experimental results, we estimate the carbon storage potential of the Ca-rich formations within the Columbia River flood basalt to be 47 kg CO2/m3, which could be reached in 38 years at a constant carbonation rate of 1.24 ± 0.54 kg CO2/m3yr.

  16. Towards a better knowledge of flash flood forecasting at the Three Gorges Region: Progress over the past decade and challenges ahead

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Yang, Dawen; Yang, Hanbo; Wu, Tianjiao; Xu, Jijun; Gao, Bing; Xu, Tao

    2015-04-01

    The study area, the Three Gorges Region (TGR), plays a critical role in predicting the floods drained into the Three Gorges Reservoir, as reported local floods often exceed 10000m3/s during rainstorm events and trigger fast as well as significant impacts on the Three Gorges Reservoir's regulation. Meanwhile, it is one of typical mountainous areas in China, which is located in the transition zone between two monsoon systems: the East Asian monsoon and the South Asian (Indian) monsoon. This climatic feature, combined with local irregular terrains, has shaped complicated rainfall-runoff regimes in this focal region. However, due to the lack of high-resolution hydrometeorological data and physically-based hydrologic modeling framework, there was little knowledge about rainfall variability and flood pattern in this historically ungauged region, which posed great uncertainties to flash flood forecasting in the past. The present study summarize latest progresses of regional flash floods monitoring and prediction, including installation of a ground-based Hydrometeorological Observation Network (TGR-HMON), application of a regional geomorphology-based hydrological model (TGR-GBHM), development of an integrated forecasting and modeling system (TGR-INFORMS), and evaluation of quantitative precipitation estimations (QPE) and quantitative precipitation forecasting (QPF) products in TGR flash flood forecasting. With these continuing efforts to improve the forecasting performance of flash floods in TGR, we have addressed several critical issues: (1) Current observation network is still insufficient to capture localized rainstorms, and weather radar provides valuable information to forecast flash floods induced by localized rainstorms, although current radar QPE products can be improved substantially in future; (2) Long-term evaluation shows that the geomorphology-based distributed hydrologic model (GBHM) is able to simulate flash flooding processes reasonably, while model performance will decline at hourly scale with larger uncertainties. However, model comparison suggests that this physically-based distributed model (GBHM), compared with a traditional lumped model (Xin'anjiang model), shows more robust performance and larger transferability for prediction in those ungauged basins in TGR; (3) Operational test of our integrated forecasting system (TRG-INFORMS) shows that it works reasonably to simulate the flood routing in Three Gorges reservoir, indicating the accuracy of simulation of total floods generated at region scale; (4) Current operational QPF is too coarse to provide valuable information even for flood forecasting of whole TGR, thus, downscaling and high-resolution QPF are necessary to unravel the potentials of weather forecasting. Finally, according to these results, we also discuss about some possible solutions with high priority for future advanced forecasting scheme of local flash floods in TGR.

  17. Experimental Floods in a Time of Drought: The 2014 Pulse Flow in the Lower Colorado River, Arizona, USA, and Mexico

    NASA Astrophysics Data System (ADS)

    Kennedy, J.; Ramirez-Hernandez, J.; Ramirez, J.

    2015-12-01

    In March and April, 2014, an unprecedented experimental "pulse flow" with a total volume of over 100 million cubic meters (81,000 acre-feet) of water was released from Morelos Dam into the normally dry lower Colorado River below Yuma, Arizona, for the primary purpose of restoring native vegetation and habitat. Significant infiltration and attenuation of the flood peak occurred within the limitrophe reach that forms the US-Mexico border, with total volume reduced to 57 million cubic meters at the southerly international boundary at San Luis Rio Colorado, Sonora, Mexico (32 kilometers downstream). Groundwater levels in piezometers adjacent to the stream channel rose as much as 10 meters, and surface water/groundwater connection was established throughout the reach, despite depths-to-water greater than 15 meters prior to the pulse flow. Based on groundwater levels, a groundwater mound remained in the vicinity of the stream channel for several months but had largely dissipated into the regional groundwater system by fall 2014. Ultimately, a large amount of water was moved from storage in an upstream reservoir (Lake Mead), where it is potentially available to many users but where evaporation losses can be high, to the regional aquifer in the Yuma-Mexicali area, where the water could be available to local users but cannot be precisely quantified as it moves through the groundwater system. During a time of drought, tradeoffs between local vs. upstream storage, and reservoir vs. subsurface storage, will likely be increasingly important considerations in planning future experimental floods on the Colorado River.

  18. Quick Release of Internal Water Storage in a Glacier Leads to Underestimation of the Hazard Potential of Glacial Lake Outburst Floods From Lake Merzbacher in Central Tian Shan Mountains

    NASA Astrophysics Data System (ADS)

    Shangguan, Donghui; Ding, Yongjian; Liu, Shiyin; Xie, Zunyi; Pieczonka, Tino; Xu, Junli; Moldobekov, Bolot

    2017-10-01

    Glacial meltwater and ice calving contribute to the flood volume of glacial lakes such as Lake Merzbacher in the Tian Shan Mountains of central Asia. In this study, we simulated the lake's volume by constructing an empirical relationship between the area of Lake Merzbacher, determined from satellite images, and the lake's water storage, derived from digital elevation models. Results showed that the lake water supply rate before Glacial Lake Outburst Floods (GLOFs) generally agreed well with those during the GLOFs from 2009 to 2012 but not in 2008 and 2015. Furthermore, we found that the combination of glacial meltwater and ice calving is not enough to fully explain the supply rate during GLOFs in 1996 and 1999, suggesting other factors affect the supply rate during GLOFs as well. To examine this further, we compared the water supply rate before and during GLOF events in 1999 and 2008. We inferred that quickly released short-term and intermediate-term water storage by glaciers have likely contributed to both flood events in those years. This study highlights the need to improve our understanding of the supply component of outburst floods, such as irregularly released stored water may lead to GLOF events with generally three different types: case I (singular event-triggered englacial water release), case II (glacier melt due to temperature changes), and case III (englacial water release mixed with glacier melt).

  19. Analysis of flood inundation in ungauged basins based on multi-source remote sensing data.

    PubMed

    Gao, Wei; Shen, Qiu; Zhou, Yuehua; Li, Xin

    2018-02-09

    Floods are among the most expensive natural hazards experienced in many places of the world and can result in heavy losses of life and economic damages. The objective of this study is to analyze flood inundation in ungauged basins by performing near-real-time detection with flood extent and depth based on multi-source remote sensing data. Via spatial distribution analysis of flood extent and depth in a time series, the inundation condition and the characteristics of flood disaster can be reflected. The results show that the multi-source remote sensing data can make up the lack of hydrological data in ungauged basins, which is helpful to reconstruct hydrological sequence; the combination of MODIS (moderate-resolution imaging spectroradiometer) surface reflectance productions and the DFO (Dartmouth Flood Observatory) flood database can achieve the macro-dynamic monitoring of the flood inundation in ungauged basins, and then the differential technique of high-resolution optical and microwave images before and after floods can be used to calculate flood extent to reflect spatial changes of inundation; the monitoring algorithm for the flood depth combining RS and GIS is simple and easy and can quickly calculate the depth with a known flood extent that is obtained from remote sensing images in ungauged basins. Relevant results can provide effective help for the disaster relief work performed by government departments.

  20. Hot wet spots of Swiss buildings - detecting clusters of flood exposure

    NASA Astrophysics Data System (ADS)

    Röthlisberger, Veronika; Zischg, Andreas; Keiler, Margreth

    2016-04-01

    Where are the hotspots of flood exposure in Switzerland? There is no single answer but rather a wide range of findings depending on the databases and methods used. In principle, the analysis of flood exposure is the overlay of two spatial datasets, one on flood hazard and one on assets, e.g. buildings. The presented study aims to test a new developed approach which is based on public available Swiss data. On the hazard side, these are two different types of flood hazard maps each representing a similar return period beyond the dimensioning of structural protection systems. When it comes to assets we use nationwide harmonized data on building, namely a complete dataset of building polygons to which we assign features as volume, residents and monetary value. For the latter we apply findings of multivariate analyses of insurance data. By overlaying building polygons with the flood hazard map we identify the exposed buildings. We analyse the resulting spatial distribution of flood exposure at different levels of scales (local to regional) using administrative units (e.g. municipalities) but also artificial grids with a corresponding size (e.g. 5 000 m). The presentation focuses on the identification of hotspots highlighting the influence of the applied data and methods, e.g. local scan statistics testing intensities within and without potential clusters or log relative exposure surfaces based on kernel intensity estimates. We find a major difference of identified hotspots between absolute values and normalized values of exposure. Whereas the hotspots of flood exposure in absolute figures mirrors the underlying distribution of buildings, the hotspots of flood exposure ratios show very different pictures. We conclude that findings on flood exposure vary depending on the data and moreover the methods used and therefore need to be communicated carefully and appropriate to different stakeholders who may use the information for decision making on flood risk management.

  1. Derivation of flood frequency curves in poorly gauged Mediterranean catchments using a simple stochastic hydrological rainfall-runoff model

    NASA Astrophysics Data System (ADS)

    Aronica, G. T.; Candela, A.

    2007-12-01

    SummaryIn this paper a Monte Carlo procedure for deriving frequency distributions of peak flows using a semi-distributed stochastic rainfall-runoff model is presented. The rainfall-runoff model here used is very simple one, with a limited number of parameters and practically does not require any calibration, resulting in a robust tool for those catchments which are partially or poorly gauged. The procedure is based on three modules: a stochastic rainfall generator module, a hydrologic loss module and a flood routing module. In the rainfall generator module the rainfall storm, i.e. the maximum rainfall depth for a fixed duration, is assumed to follow the two components extreme value (TCEV) distribution whose parameters have been estimated at regional scale for Sicily. The catchment response has been modelled by using the Soil Conservation Service-Curve Number (SCS-CN) method, in a semi-distributed form, for the transformation of total rainfall to effective rainfall and simple form of IUH for the flood routing. Here, SCS-CN method is implemented in probabilistic form with respect to prior-to-storm conditions, allowing to relax the classical iso-frequency assumption between rainfall and peak flow. The procedure is tested on six practical case studies where synthetic FFC (flood frequency curve) were obtained starting from model variables distributions by simulating 5000 flood events combining 5000 values of total rainfall depth for the storm duration and AMC (antecedent moisture conditions) conditions. The application of this procedure showed how Monte Carlo simulation technique can reproduce the observed flood frequency curves with reasonable accuracy over a wide range of return periods using a simple and parsimonious approach, limited data input and without any calibration of the rainfall-runoff model.

  2. Improvement of high floods predictability in the Red River of the North basin using combined remote-sensed, gauge-based and assimilated precipitation data

    NASA Astrophysics Data System (ADS)

    Semenova, O.; Restrepo, P. J.

    2011-12-01

    The Red River of the North basin (USA) is considered to be under high risk of flood danger, having experienced serious flooding during the last few years. The region climate can be characterized as cold and, during winter, it exhibits continuous snowcover modified by wind redistribution. High-hazard runoff regularly occurs as a major spring snowmelt event resulting from the relatively rapid release of water from the snowpack on frozen soils. Although in summer/autumn most rainfall occurs from convective storms over small areas and does not generate dangerous floods, the pre-winter state of the soils may radically influence spring maximum flows. Large amount of artificial agricultural tiles and numerous small post-glacial depressions influencing the redistribution of runoff complicates the predictions of high floods. In such conditions any hydrological model would not be successful without proper precipitation input. In this study the simulation of runoff processes for two watersheds in the basin of the Red River of the North, USA, was undertaken using the Hydrograph model developed at the State Hydrological Institute (St. Petersburg, Russia). The Hydrograph is a robust process-based model, where the processes have a physical basis combined with some strategic conceptual simplifications that give it the ability to be applied in the conditions of low information availability. It accounts for the processes of frost and thaw of soils, snow redistribution and depression storage impacts. The assessment of the model parameters was conducted based on the characteristics of soil and vegetation cover. While performing the model runs, the parameters of depression storage and the parameters of different types of flow were manually calibrated to reproduce the observed flow. The model provided satisfactory simulation results in terms not only of river runoff but also variable sates of soil like moisture and temperature over a simulation period 2005 - 2010. For experimental runs precipitation from different sources was used as forcing data to the hydrological model: 1) data of ground meteorological stations; 2) the Snow Data Assimilation System (SNODAS) products containing several variables: snow water equivalent, snow depth, solid and liquid precipitation; 3) MAPX precipitation data which is mean areal precipitation for a watershed calculated using the radar- and gauge-based information. The results demonstrated that in the conditions of high uncertainty of model parameters combining precipitation information from different sources (the SNODAS precipitation in winter with the MAPX precipitation in summer) significantly improves the model performance and predictability of high floods.

  3. Hydrologic control of nitrogen removal, storage, and export in a mountain stream

    USGS Publications Warehouse

    Hall, R.O.; Baker, M.A.; Arp, C.D.; Kocha, B.J.

    2009-01-01

    Nutrient cycling and export in streams and rivers should vary with flow regime, yet most studies of stream nutrient transformation do not include hydrologic variability. We used a stable isotope tracer of nitrogen (15N) to measure nitrate (NO3) uptake, storage, and export in a mountain stream, Spring Creek, Idaho, U.S.A. We conducted two tracer tests of 2-week duration during snowmelt and baseflow. Dissolved and particulate forms of 15N were monitored over three seasons to test the hypothesis that stream N cycling would be dominated by export during floods, and storage during low flow. Floods exported more N than during baseflow conditions; however, snowmelt floods had higher than expected demand for NO{3 because of hyporheic exchange. Residence times of benthic N during both tracer tests were longer than 100 d for ephemeral pools such as benthic algae and wood biofilms. Residence times were much longer in fine detritus, insects, and the particulate N from the hyporheic zone, showing that assimilation and hydrologic storage can be important mechanisms for retaining particulate N. Of the tracer N stored in the stream, the primary form of export was via seston during periods of high flows, produced by summer rainstorms or spring snowmelt the following year. Spring Creek is not necessarily a conduit for nutrients during high flow; hydrologic exchange between the stream and its valley represents an important storage mechanism.

  4. Flood return level analysis of Peaks over Threshold series under changing climate

    NASA Astrophysics Data System (ADS)

    Li, L.; Xiong, L.; Hu, T.; Xu, C. Y.; Guo, S.

    2016-12-01

    Obtaining insights into future flood estimation is of great significance for water planning and management. Traditional flood return level analysis with the stationarity assumption has been challenged by changing environments. A method that takes into consideration the nonstationarity context has been extended to derive flood return levels for Peaks over Threshold (POT) series. With application to POT series, a Poisson distribution is normally assumed to describe the arrival rate of exceedance events, but this distribution assumption has at times been reported as invalid. The Negative Binomial (NB) distribution is therefore proposed as an alternative to the Poisson distribution assumption. Flood return levels were extrapolated in nonstationarity context for the POT series of the Weihe basin, China under future climate scenarios. The results show that the flood return levels estimated under nonstationarity can be different with an assumption of Poisson and NB distribution, respectively. The difference is found to be related to the threshold value of POT series. The study indicates the importance of distribution selection in flood return level analysis under nonstationarity and provides a reference on the impact of climate change on flood estimation in the Weihe basin for the future.

  5. Hydrometeorological Analysis of Flooding Events in San Antonio, TX

    NASA Astrophysics Data System (ADS)

    Chintalapudi, S.; Sharif, H.; Elhassan, A.

    2008-12-01

    South Central Texas is particularly vulnerable to floods due to: proximity to a moist air source (the Gulf of Mexico); the Balcones Escarpment, which concentrates rainfall runoff; a tendency for synoptic scale features to become cut-off and stall over the area; and decaying tropical cyclones stalling over the area. The San Antonio Metropolitan Area is the 7th largest city in the nation, one of the most flash-flood prone regions in North America, and has experienced a number of flooding events in the last decade (1998, 2002, 2004, and 2007). Research is being conducted to characterize the meteorological conditions that lead to these events and apply the rainfall and watershed characteristics data to recreate the runoff events using a two- dimensional, physically-based, distributed-parameter hydrologic model. The physically based, distributed-parameter Gridded Surface Subsurface Hydrologic Analysis (GSSHA) hydrological model was used for simulating the watershed response to these storm events. Finally observed discharges were compared to GSSHA model discharges for these storm events. Analysis of the some of these events will be presented.

  6. Future probabilities of coastal floods in Finland

    NASA Astrophysics Data System (ADS)

    Pellikka, Havu; Leijala, Ulpu; Johansson, Milla M.; Leinonen, Katri; Kahma, Kimmo K.

    2018-04-01

    Coastal planning requires detailed knowledge of future flooding risks, and effective planning must consider both short-term sea level variations and the long-term trend. We calculate distributions that combine short- and long-term effects to provide estimates of flood probabilities in 2050 and 2100 on the Finnish coast in the Baltic Sea. Our distributions of short-term sea level variations are based on 46 years (1971-2016) of observations from the 13 Finnish tide gauges. The long-term scenarios of mean sea level combine postglacial land uplift, regionally adjusted scenarios of global sea level rise, and the effect of changes in the wind climate. The results predict that flooding risks will clearly increase by 2100 in the Gulf of Finland and the Bothnian Sea, while only a small increase or no change compared to present-day conditions is expected in the Bothnian Bay, where the land uplift is stronger.

  7. Parsimonious nonstationary flood frequency analysis

    NASA Astrophysics Data System (ADS)

    Serago, Jake M.; Vogel, Richard M.

    2018-02-01

    There is now widespread awareness of the impact of anthropogenic influences on extreme floods (and droughts) and thus an increasing need for methods to account for such influences when estimating a frequency distribution. We introduce a parsimonious approach to nonstationary flood frequency analysis (NFFA) based on a bivariate regression equation which describes the relationship between annual maximum floods, x, and an exogenous variable which may explain the nonstationary behavior of x. The conditional mean, variance and skewness of both x and y = ln (x) are derived, and combined with numerous common probability distributions including the lognormal, generalized extreme value and log Pearson type III models, resulting in a very simple and general approach to NFFA. Our approach offers several advantages over existing approaches including: parsimony, ease of use, graphical display, prediction intervals, and opportunities for uncertainty analysis. We introduce nonstationary probability plots and document how such plots can be used to assess the improved goodness of fit associated with a NFFA.

  8. Pixel-based flood mapping from SAR imagery: a comparison of approaches

    NASA Astrophysics Data System (ADS)

    Landuyt, Lisa; Van Wesemael, Alexandra; Van Coillie, Frieke M. B.; Verhoest, Niko E. C.

    2017-04-01

    Due to their all-weather, day and night capabilities, SAR sensors have been shown to be particularly suitable for flood mapping applications. Thus, they can provide spatially-distributed flood extent data which are valuable for calibrating, validating and updating flood inundation models. These models are an invaluable tool for water managers, to take appropriate measures in times of high water levels. Image analysis approaches to delineate flood extent on SAR imagery are numerous. They can be classified into two categories, i.e. pixel-based and object-based approaches. Pixel-based approaches, e.g. thresholding, are abundant and in general computationally inexpensive. However, large discrepancies between these techniques exist and often subjective user intervention is needed. Object-based approaches require more processing but allow for the integration of additional object characteristics, like contextual information and object geometry, and thus have significant potential to provide an improved classification result. As means of benchmark, a selection of pixel-based techniques is applied on a ERS-2 SAR image of the 2006 flood event of River Dee, United Kingdom. This selection comprises Otsu thresholding, Kittler & Illingworth thresholding, the Fine To Coarse segmentation algorithm and active contour modelling. The different classification results are evaluated and compared by means of several accuracy measures, including binary performance measures.

  9. Catastrophe loss modelling of storm-surge flood risk in eastern England.

    PubMed

    Muir Wood, Robert; Drayton, Michael; Berger, Agnete; Burgess, Paul; Wright, Tom

    2005-06-15

    Probabilistic catastrophe loss modelling techniques, comprising a large stochastic set of potential storm-surge flood events, each assigned an annual rate of occurrence, have been employed for quantifying risk in the coastal flood plain of eastern England. Based on the tracks of the causative extratropical cyclones, historical storm-surge events are categorized into three classes, with distinct windfields and surge geographies. Extreme combinations of "tide with surge" are then generated for an extreme value distribution developed for each class. Fragility curves are used to determine the probability and magnitude of breaching relative to water levels and wave action for each section of sea defence. Based on the time-history of water levels in the surge, and the simulated configuration of breaching, flow is time-stepped through the defences and propagated into the flood plain using a 50 m horizontal-resolution digital elevation model. Based on the values and locations of the building stock in the flood plain, losses are calculated using vulnerability functions linking flood depth and flood velocity to measures of property loss. The outputs from this model for a UK insurance industry portfolio include "loss exceedence probabilities" as well as "average annualized losses", which can be employed for calculating coastal flood risk premiums in each postcode.

  10. Predicting location-specific extreme coastal floods in the future climate by introducing a probabilistic method to calculate maximum elevation of the continuous water mass caused by a combination of water level variations and wind waves

    NASA Astrophysics Data System (ADS)

    Leijala, Ulpu; Björkqvist, Jan-Victor; Johansson, Milla M.; Pellikka, Havu

    2017-04-01

    Future coastal management continuously strives for more location-exact and precise methods to investigate possible extreme sea level events and to face flooding hazards in the most appropriate way. Evaluating future flooding risks by understanding the behaviour of the joint effect of sea level variations and wind waves is one of the means to make more comprehensive flooding hazard analysis, and may at first seem like a straightforward task to solve. Nevertheless, challenges and limitations such as availability of time series of the sea level and wave height components, the quality of data, significant locational variability of coastal wave height, as well as assumptions to be made depending on the study location, make the task more complicated. In this study, we present a statistical method for combining location-specific probability distributions of water level variations (including local sea level observations and global mean sea level rise) and wave run-up (based on wave buoy measurements). The goal of our method is to obtain a more accurate way to account for the waves when making flooding hazard analysis on the coast compared to the approach of adding a separate fixed wave action height on top of sea level -based flood risk estimates. As a result of our new method, we gain maximum elevation heights with different return periods of the continuous water mass caused by a combination of both phenomena, "the green water". We also introduce a sensitivity analysis to evaluate the properties and functioning of our method. The sensitivity test is based on using theoretical wave distributions representing different alternatives of wave behaviour in relation to sea level variations. As these wave distributions are merged with the sea level distribution, we get information on how the different wave height conditions and shape of the wave height distribution influence the joint results. Our method presented here can be used as an advanced tool to minimize over- and underestimation of the combined effect of sea level variations and wind waves, and to help coastal infrastructure planning and support smooth and safe operation of coastal cities in a changing climate.

  11. Stochastic characteristics of different duration annual maximum rainfall and its spatial difference in China based on information entropy

    NASA Astrophysics Data System (ADS)

    Li, X.; Sang, Y. F.

    2017-12-01

    Mountain torrents, urban floods and other disasters caused by extreme precipitation bring great losses to the ecological environment, social and economic development, people's lives and property security. So there is of great significance to floods prevention and control by the study of its spatial distribution. Based on the annual maximum rainfall data of 60min, 6h and 24h, the paper generate long sequences following Pearson-III distribution, and then use the information entropy index to study the spatial distribution and difference of different duration. The results show that the information entropy value of annual maximum rainfall in the south region is greater than that in the north region, indicating more obvious stochastic characteristics of annual maximum rainfall in the latter. However, the spatial distribution of stochastic characteristics is different in different duration. For example, stochastic characteristics of 60min annual maximum rainfall in the Eastern Tibet is smaller than surrounding, but 6h and 24h annual maximum rainfall is larger than surrounding area. In the Haihe River Basin and the Huaihe River Basin, the stochastic characteristics of the 60min annual maximum rainfall was not significantly different from that in the surrounding area, and stochastic characteristics of 6h and 24h was smaller than that in the surrounding area. We conclude that the spatial distribution of information entropy values of annual maximum rainfall in different duration can reflect the spatial distribution of its stochastic characteristics, thus the results can be an importantly scientific basis for the flood prevention and control, agriculture, economic-social developments and urban flood control and waterlogging.

  12. A Study on Regional Rainfall Frequency Analysis for Flood Simulation Scenarios

    NASA Astrophysics Data System (ADS)

    Jung, Younghun; Ahn, Hyunjun; Joo, Kyungwon; Heo, Jun-Haeng

    2014-05-01

    Recently, climate change has been observed in Korea as well as in the entire world. The rainstorm has been gradually increased and then the damage has been grown. It is very important to manage the flood control facilities because of increasing the frequency and magnitude of severe rain storm. For managing flood control facilities in risky regions, data sets such as elevation, gradient, channel, land use and soil data should be filed up. Using this information, the disaster situations can be simulated to secure evacuation routes for various rainfall scenarios. The aim of this study is to investigate and determine extreme rainfall quantile estimates in Uijeongbu City using index flood method with L-moments parameter estimation. Regional frequency analysis trades space for time by using annual maximum rainfall data from nearby or similar sites to derive estimates for any given site in a homogeneous region. Regional frequency analysis based on pooled data is recommended for estimation of rainfall quantiles at sites with record lengths less than 5T, where T is return period of interest. Many variables relevant to precipitation can be used for grouping a region in regional frequency analysis. For regionalization of Han River basin, the k-means method is applied for grouping regions by variables of meteorology and geomorphology. The results from the k-means method are compared for each region using various probability distributions. In the final step of the regionalization analysis, goodness-of-fit measure is used to evaluate the accuracy of a set of candidate distributions. And rainfall quantiles by index flood method are obtained based on the appropriate distribution. And then, rainfall quantiles based on various scenarios are used as input data for disaster simulations. Keywords: Regional Frequency Analysis; Scenarios of Rainfall Quantile Acknowledgements This research was supported by a grant 'Establishing Active Disaster Management System of Flood Control Structures by using 3D BIM Technique' [NEMA-12-NH-57] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea.

  13. Techniques for estimating flood hydrographs for ungaged urban watersheds

    USGS Publications Warehouse

    Stricker, V.A.; Sauer, V.B.

    1984-01-01

    The Clark Method, modified slightly was used to develop a synthetic, dimensionless hydrograph which can be used to estimate flood hydrographs for ungaged urban watersheds. Application of the technique results in a typical (average) flood hydrograph for a given peak discharge. Input necessary to apply the technique is an estimate of basin lagtime and the recurrence interval peak discharge. Equations for this purpose were obtained from a recent nationwide study on flood frequency in urban watersheds. A regression equation was developed which relates flood volumes to drainage area size, basin lagtime, and peak discharge. This equation is useful where storage of floodwater may be a part of design of flood prevention. (USGS)

  14. Flood hydrology of Butte Basin, 1973-77 water years, Sacramento Valley, California

    USGS Publications Warehouse

    Simpson, R.G.

    1978-01-01

    Flooding in Butte Basin, CA., is caused primarily by overflow from the Sacramento River on the western boundary. Stage and discharge data were collected during 1973-77 at 6 recording and 45 crest-stage gages within the basin and combined with discharge records on the main channel of the Sacramento River to determine total flow and flow distribution at the latitudes of Ord Ferry, Butte City, and Gridley Road. Water-surface profiles throughout the basin, inflow/change-in-storage/outflow relations of the Butte Sink, and channel changes of the Sacramento River are shown. During 1973-77, total peak flows decreased an average of 7 percent between the latitudes of Ord Ferry and Butte City, with measured peaks from 100,000 to 200,000 cfs (cubic feet per second). The largest floodflow measured was 195,000 cfs on January 17, 1974, at the latitude of Ord Ferry. For a given flood, overland flow did not change significantly in peak magnitude between Afton Boulevard, Butte City, and Gridley road. Overland flows of about 45,000 and about 24,000 cfs were measured on January 18 and April 1, 1974, respectively. (Woodard-USGS)

  15. Analysis of Non-Tropical Cyclone Induced Flood Events over South East Asia: Investigating Flood Frequency and Extremes in the Philippines

    NASA Astrophysics Data System (ADS)

    Marcella, M. P.; CHEN, C.; Senarath, S. U.

    2013-12-01

    Much work has been completed in analyzing Southeast Asia's tropical cyclone climatology and the associated flooding throughout the region. Although, an active and strong monsoon season also brings major flooding across the Philippines resulting in the loss of lives and significant economic impacts, only a limited amount of research work has been conducted to investigate the frequency and flood loss estimates of these non-tropical cyclone (TC) storms. In this study, using the TRMM 3-hourly rainfall product, tropical cyclone rainfall is removed to construct a non-TC rainfall climatology across the region. Given this data, stochastically generated rainfall that is both spatially and temporally correlated across the country is created to generate a longer historically-based record of non-TC precipitation. After defining the rainfall criteria that constitutes a flood event based on observed floods and TRMM data, this event definition is applied to the stochastic catalog of rainfall to determine flood events. Subsequently, a thorough analysis of non-TC flood extremes, frequency, and distribution is completed for the country of the Philippines. As a result, the above methodology and datasets provide a unique opportunity to further study flood occurrences and their extremes across most of South East Asia.

  16. A Bayesian Surrogate for Regional Skew in Flood Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Kuczera, George

    1983-06-01

    The problem of how to best utilize site and regional flood data to infer the shape parameter of a flood distribution is considered. One approach to this problem is given in Bulletin 17B of the U.S. Water Resources Council (1981) for the log-Pearson distribution. Here a lesser known distribution is considered, namely, the power normal which fits flood data as well as the log-Pearson and has a shape parameter denoted by λ derived from a Box-Cox power transformation. The problem of regionalizing λ is considered from an empirical Bayes perspective where site and regional flood data are used to infer λ. The distortive effects of spatial correlation and heterogeneity of site sampling variance of λ are explicitly studied with spatial correlation being found to be of secondary importance. The end product of this analysis is the posterior distribution of the power normal parameters expressing, in probabilistic terms, what is known about the parameters given site flood data and regional information on λ. This distribution can be used to provide the designer with several types of information. The posterior distribution of the T-year flood is derived. The effect of nonlinearity in λ on inference is illustrated. Because uncertainty in λ is explicitly allowed for, the understatement in confidence limits due to fixing λ (analogous to fixing log skew) is avoided. Finally, it is shown how to obtain the marginal flood distribution which can be used to select a design flood with specified exceedance probability.

  17. Bias-adjusted satellite-based rainfall estimates for predicting floods: Narayani Basin

    USGS Publications Warehouse

    Artan, Guleid A.; Tokar, S.A.; Gautam, D.K.; Bajracharya, S.R.; Shrestha, M.S.

    2011-01-01

    In Nepal, as the spatial distribution of rain gauges is not sufficient to provide detailed perspective on the highly varied spatial nature of rainfall, satellite-based rainfall estimates provides the opportunity for timely estimation. This paper presents the flood prediction of Narayani Basin at the Devghat hydrometric station (32 000 km2) using bias-adjusted satellite rainfall estimates and the Geospatial Stream Flow Model (GeoSFM), a spatially distributed, physically based hydrologic model. The GeoSFM with gridded gauge observed rainfall inputs using kriging interpolation from 2003 was used for calibration and 2004 for validation to simulate stream flow with both having a Nash Sutcliff Efficiency of above 0.7. With the National Oceanic and Atmospheric Administration Climate Prediction Centre's rainfall estimates (CPC_RFE2.0), using the same calibrated parameters, for 2003 the model performance deteriorated but improved after recalibration with CPC_RFE2.0 indicating the need to recalibrate the model with satellite-based rainfall estimates. Adjusting the CPC_RFE2.0 by a seasonal, monthly and 7-day moving average ratio, improvement in model performance was achieved. Furthermore, a new gauge-satellite merged rainfall estimates obtained from ingestion of local rain gauge data resulted in significant improvement in flood predictability. The results indicate the applicability of satellite-based rainfall estimates in flood prediction with appropriate bias correction.

  18. Belford proactive flood solutions: scientific evidence to influence local and national policy by multi-purpose runoff management

    NASA Astrophysics Data System (ADS)

    Wilkinson, M.; Quinn, P. F.; Jonczyk, J.

    2010-12-01

    The increased risk from flooding continues to be of concern to governments all around the world and flood protection is becoming more of a challenge. In the UK, climate change projections indicate more extremes within the weather systems. In addition, there is an increased demand for using land in urban areas beside channels. These developments both put pressure on our flood defences and there is a need for new solutions to managing flood risk. There is currently support within the England and Wales Environment Agency for sustainable flood management solutions such as storage ponds, wetlands, beaver dams and willow riparian features (referred to here as Runoff Attenuation Features, or RAFs). However the effectiveness of RAFs are not known at the catchment scale since they have only really been trailed at the plot scale. These types of mitigation measure can offer benefits to water quality and create ecological habitats. The village of Belford, situated in the Belford Burn catchment (6km2), northern England, has suffered from numerous flood events. In addition, the catchment suffers from water quality issues within the channel and high sediment loads are having an impact on the ecology of the nearby estuary. There was a desire by the Local Environment Agency Flood Levy team to deliver an alternative catchment-based solution to the problem. With funding from the Northumbria Regional Flood Defence Committee, the Environment Agency North East Local Levy team and Newcastle University have created a partnership to address the flood problem trailing soft engineered RAF’s at the catchment scale. The partnership project, “Belford proactive flood solutions” is testing novel techniques in reducing flood risk in small sub-catchments for the Environment Agency. The project provides the information needed to understand whether the multi-functional mitigation measures are working at the sub-catchment scale. Data suggest that the mitigation measures present have delayed the overall travel time of the flood peak in the catchment by 33%. The current maximum flood storage capacity of all the features stands at around 15,000 m3. The evidence also suggests that a dam like in-stream mitigation measure can significantly reduce sediment load. Other benefits of some mitigation features include large increase in the population of water voles over the past two years. The scheme also acts as a demonstration site for interested stakeholders where they can learn about this approach to flood risk management and see the multipurpose benefits. As the project has progressed and lessons have been learnt, it has been possible to develop a runoff management toolkit for implementing these mitigation measures in other catchments of similar size. Already, the local Environment Agency has utilised the tools and recently applied similar mitigation measures to other catchments. On-going modelling exercises in the project are using the data to explore the up-scaling of the features to larger catchments.

  19. Variability in eddy sandbar dynamics during two decades of controlled flooding of the Colorado River in the Grand Canyon

    NASA Astrophysics Data System (ADS)

    Mueller, Erich R.; Grams, Paul E.; Hazel, Joseph E.; Schmidt, John C.

    2018-01-01

    Sandbars are iconic features of the Colorado River in the Grand Canyon, Arizona, U.S.A. Following completion of Glen Canyon Dam in 1963, sediment deficit conditions caused erosion of eddy sandbars throughout much of the 360 km study reach downstream from the dam. Controlled floods in 1996, 2004, and 2008 demonstrated that sand on the channel bed could be redistributed to higher elevations, and that floods timed to follow tributary sediment inputs would increase suspended sand concentrations during floods. Since 2012, a new management protocol has resulted in four controlled floods timed to follow large inputs of sand from a major tributary. Monitoring of 44 downstream eddy sandbars, initiated in 1990, shows that each controlled flood deposited significant amounts of sand and increased the size of subaerial sandbars. However, the magnitude of sandbar deposition varied from eddy to eddy, even over relatively short distances where main-stem suspended sediment concentrations were similar. Here, we characterize spatial and temporal trends in sandbar volume and site-scale (i.e., individual eddy) sediment storage as a function of flow, channel, and vegetation characteristics that reflect the reach-scale (i.e., kilometer-scale) hydraulic environment. We grouped the long-term monitoring sites based on geomorphic setting and used a principal component analysis (PCA) to correlate differences in sandbar behavior to changes in reach-scale geomorphic metrics. Sites in narrow reaches are less-vegetated, stage changes markedly with discharge, sandbars tend to remain dynamic, and sand storage change dominantly occurs in the eddy compared to the main channel. In wider reaches, where stage-change during floods may be half that of narrow sites, sandbars are more likely to be stabilized by vegetation, and floods tend to aggrade the vegetated sandbar surfaces. In these locations, deposition during controlled floods is more akin to floodplain sedimentation, and the elevation of sandbar surfaces increases with successive floods. Because many sandbars are intermediate to the end members described above, high-elevation bar surfaces stabilized by vegetation often have a more dynamic unvegetated sandbar on the channel-ward margin that aggrades and erodes in response to controlled flood cycles. Ultimately, controlled floods have been effective at increasing averaged sandbar volumes, and, while bar deposition during floods decreases through time where vegetation has stabilized sandbars, future controlled floods are likely to continue to result in deposition in a majority of the river corridor. Supplementary Fig. 2 Relation between the total site and high-elevation discharge-volume relation slope for all sites where both relations are available (n = 33). Supplementary Fig. 3 Change in sandbar volume since 1990 for Marble versus Grand Canyon sites. Solid vertical gray lines indicate controlled floods, and dashed vertical gray lines indicate other high test flows in 1997 and 2000 as discussed in the text. ​Photographs by U.S. Geological Survey, 2008-2015.

  20. Streamflow model of Wisconsin River for estimating flood frequency and volume

    USGS Publications Warehouse

    Krug, William R.; House, Leo B.

    1980-01-01

    The 100-year flood peak at Wisconsin Dells, computed from the simulated, regulated streamflow data for the period 1915-76, is 82,000 cubic feet per second, including the effects of all the reservoirs in the river system, as they are currently operated. It also includes the effects of Lakes Du Bay, Petenwell, and Castle Rock which are significant for spring floods but are insignificant for summer or fall floods because they are normally maintained nearly full in the summer and fall and have very little storage for floodwaters. (USGS)

  1. The effects of artificial sandbar breaching on the macrophyte communities of an intermittently open estuary

    NASA Astrophysics Data System (ADS)

    Ribeiro, Jose Pedro N.; Saggio, Ângelo; Lima, Maria Inês Salgueiro

    2013-04-01

    Artificial sandbar opening of intermittently open estuaries is a practice utilised worldwide to improve water quality, fishing, and recreational amenities and to prevent the flooding of adjacent properties. Breaching causes the water level to drop drastically, exposing plants to two water level extremes. With some exceptions, estuarine communities are adversely affected by this practice. Although breaching can happen naturally, artificial breaching is on the rise, and the impact of manipulating water levels on estuarine communities needs to be investigated. In this work, we described the breaching cycles of the Massaguaçu River Estuary and proposed flooding scenarios for the estuary's macrophyte banks based on our data. We calculated the relationship between plant distribution and flooding conditions and used our calculations to predict the estuary community's composition depending on the water level at breaching time. We discovered a strong relationship between plant distribution and flooding conditions, and we predicted that the estuarine community would be markedly different between flooding scenarios. Low frequency flooding scenarios would be related to submerged macrophytes and, as the flooding frequency increases, macrophytes would be replaced by amphibious plants, and eventually by the arboreal stratus. Therefore, we concluded that an increase in artificial breaching cycles would have a detrimental impact on the estuary community.

  2. Comparisons of two moments‐based estimators that utilize historical and paleoflood data for the log Pearson type III distribution

    USGS Publications Warehouse

    England, John F.; Salas, José D.; Jarrett, Robert D.

    2003-01-01

    The expected moments algorithm (EMA) [Cohn et al., 1997] and the Bulletin 17B [Interagency Committee on Water Data, 1982] historical weighting procedure (B17H) for the log Pearson type III distribution are compared by Monte Carlo computer simulation for cases in which historical and/or paleoflood data are available. The relative performance of the estimators was explored for three cases: fixed‐threshold exceedances, a fixed number of large floods, and floods generated from a different parent distribution. EMA can effectively incorporate four types of historical and paleoflood data: floods where the discharge is explicitly known, unknown discharges below a single threshold, floods with unknown discharge that exceed some level, and floods with discharges described in a range. The B17H estimator can utilize only the first two types of historical information. Including historical/paleoflood data in the simulation experiments significantly improved the quantile estimates in terms of mean square error and bias relative to using gage data alone. EMA performed significantly better than B17H in nearly all cases considered. B17H performed as well as EMA for estimating X100 in some limited fixed‐threshold exceedance cases. EMA performed comparatively much better in other fixed‐threshold situations, for the single large flood case, and in cases when estimating extreme floods equal to or greater than X500. B17H did not fully utilize historical information when the historical period exceeded 200 years. Robustness studies using GEV‐simulated data confirmed that EMA performed better than B17H. Overall, EMA is preferred to B17H when historical and paleoflood data are available for flood frequency analysis.

  3. Comparisons of two moments-based estimators that utilize historical and paleoflood data for the log Pearson type III distribution

    NASA Astrophysics Data System (ADS)

    England, John F.; Salas, José D.; Jarrett, Robert D.

    2003-09-01

    The expected moments algorithm (EMA) [, 1997] and the Bulletin 17B [, 1982] historical weighting procedure (B17H) for the log Pearson type III distribution are compared by Monte Carlo computer simulation for cases in which historical and/or paleoflood data are available. The relative performance of the estimators was explored for three cases: fixed-threshold exceedances, a fixed number of large floods, and floods generated from a different parent distribution. EMA can effectively incorporate four types of historical and paleoflood data: floods where the discharge is explicitly known, unknown discharges below a single threshold, floods with unknown discharge that exceed some level, and floods with discharges described in a range. The B17H estimator can utilize only the first two types of historical information. Including historical/paleoflood data in the simulation experiments significantly improved the quantile estimates in terms of mean square error and bias relative to using gage data alone. EMA performed significantly better than B17H in nearly all cases considered. B17H performed as well as EMA for estimating X100 in some limited fixed-threshold exceedance cases. EMA performed comparatively much better in other fixed-threshold situations, for the single large flood case, and in cases when estimating extreme floods equal to or greater than X500. B17H did not fully utilize historical information when the historical period exceeded 200 years. Robustness studies using GEV-simulated data confirmed that EMA performed better than B17H. Overall, EMA is preferred to B17H when historical and paleoflood data are available for flood frequency analysis.

  4. Urban nuisance flooding and topographic wetness index: does excess runoff collect where we think it should in urban landscapes?

    NASA Astrophysics Data System (ADS)

    Kelleher, C.; McPhillips, L. E.

    2017-12-01

    Urban landscapes translate water in a variety of ways that diverge from more natural systems. In particular, due to the presence of impervious surfaces and alteration of topography, they are prone to nuisance flooding when it rains. To track the locations of areas of minor flooding and other complaints, many cities are now facilitating nuisance reports from residents via information technology services like 311. These reports provide useful information for tracking where in the landscape water may collect during rain events; we sought to use this information to test potential geospatial indices for predictively identifying locations prone to nuisance flooding in urban areas. In this study, we utilized a tool commonly applied in natural systems, topographic indices, to create spatially contiguous estimates of topographic wetness index (TWI), a value that can be used to identify areas within a watershed expected to be preferentially wetter or drier based on topographic slope and surface flow pathways. For several watersheds across Baltimore and New York City (USA), we tested three different resolutions of LiDAR-derived topography and two different methods of flow routing to calculate continuous distributions of TWI. When comparing these values to nuisance flooding locations, we found that distributions of TWI values within a radius of reported nuisance floods were higher, on average, than the distribution of TWI values across each watershed. We also employed a spatial Monte Carlo sampling strategy, randomly selecting grid cells within each watershed to determine if these randomly selected grid cells have preferentially lower TWI values than those near nuisance flooding locations. Overall, we demonstrate that topographic indices may be useful predictors of localized flooding within urban environments.

  5. Techniques for estimating flood-peak discharges from urban basins in Missouri

    USGS Publications Warehouse

    Becker, L.D.

    1986-01-01

    Techniques are defined for estimating the magnitude and frequency of future flood peak discharges of rainfall-induced runoff from small urban basins in Missouri. These techniques were developed from an initial analysis of flood records of 96 gaged sites in Missouri and adjacent states. Final regression equations are based on a balanced, representative sampling of 37 gaged sites in Missouri. This sample included 9 statewide urban study sites, 18 urban sites in St. Louis County, and 10 predominantly rural sites statewide. Short-term records were extended on the basis of long-term climatic records and use of a rainfall-runoff model. Linear least-squares regression analyses were used with log-transformed variables to relate flood magnitudes of selected recurrence intervals (dependent variables) to selected drainage basin indexes (independent variables). For gaged urban study sites within the State, the flood peak estimates are from the frequency curves defined from the synthesized long-term discharge records. Flood frequency estimates are made for ungaged sites by using regression equations that require determination of the drainage basin size and either the percentage of impervious area or a basin development factor. Alternative sets of equations are given for the 2-, 5-, 10-, 25-, 50-, and 100-yr recurrence interval floods. The average standard errors of estimate range from about 33% for the 2-yr flood to 26% for the 100-yr flood. The techniques for estimation are applicable to flood flows that are not significantly affected by storage caused by manmade activities. Flood peak discharge estimating equations are considered applicable for sites on basins draining approximately 0.25 to 40 sq mi. (Author 's abstract)

  6. Dam Construction in Lancang-Mekong River Basin Could Mitigate Future Flood Risk From Warming-Induced Intensified Rainfall: Dam Mitigate Flood Risk in Mekong

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Lu, Hui; Ruby Leung, L.

    Water resources management, in particular flood control, in the Mekong River Basin (MRB) faces two key challenges in the 21st century: climate change and dam construction. A large scale distributed Geomorphology-Based Hydrological Model coupled with a simple reservoir regulation model (GBHM-MK-SOP) is used to investigate the relative effects of climate change and dam construction on the flood characteristics in the MRB. Results suggest an increase in both flood magnitude and frequency under climate change, which is more severe in the upstream basin and increases over time. However, dam construction and stream regulation reduce flood risk consistently throughout this century, withmore » more obvious effects in the upstream basin where larger reservoirs will be located. The flood mitigation effect of dam regulation dominates over the flood intensification effect of climate change before 2060, but the latter emerges more prominently after 2060 and dominates the flood risk especially in the lower basin.« less

  7. Impact of Reservoir Operation to the Inflow Flood - a Case Study of Xinfengjiang Reservoir

    NASA Astrophysics Data System (ADS)

    Chen, L.

    2017-12-01

    Building of reservoir shall impact the runoff production and routing characteristics, and changes the flood formation. This impact, called as reservoir flood effect, could be divided into three parts, including routing effect, volume effect and peak flow effect, and must be evaluated in a whole by using hydrological model. After analyzing the reservoir flood formation, the Liuxihe Model for reservoir flood forecasting is proposed. The Xinfengjiang Reservoir is studied as a case. Results show that the routing effect makes peak flow appear 4 to 6 hours in advance, volume effect is bigger for large flood than small one, and when rainfall focus on the reservoir area, this effect also increases peak flow largely, peak flow effect makes peak flow increase 6.63% to 8.95%. Reservoir flood effect is obvious, which have significant impact to reservoir flood. If this effect is not considered in the flood forecasting model, the flood could not be forecasted accurately, particularly the peak flow. Liuxihe Model proposed for Xinfengjiang Reservoir flood forecasting has a good performance, and could be used for real-time flood forecasting of Xinfengjiang Reservoir.Key words: Reservoir flood effect, reservoir flood forecasting, physically based distributed hydrological model, Liuxihe Model, parameter optimization

  8. Beaver Mediated Water Table Dynamics in Mountain Peatlands

    NASA Astrophysics Data System (ADS)

    Karran, D. J.; Westbrook, C.; Bedard-Haughn, A.

    2016-12-01

    Water table dynamics play an important role in the ecological and biogeochemical processes that regulate carbon and water storage in peatlands. Beaver are common in these habitats and the dams they build have been shown to raise water tables in other environments. However, the impact of beaver dams in peatlands, where water tables rest close to the surface, has yet to be determined. We monitored a network of 50 shallow wells in a Canadian Rocky Mountain peatland for 6 years. During this period, a beaver colony was maintaining a number of beaver ponds for four years until a flood event removed the colony from the area and breached some of the dams. Two more years of data were collected after the flood event to assess whether the dams enhanced groundwater storage. Beaver dams raised water tables just as they do in other environments. Furthermore, water tables within 100 meters of beaver dams were more stable than those further away and water table stability overall was greater before the flood event. Our results suggest the presence/absence of beaver in peatlands has implications for groundwater water storage and overall system function.

  9. Natural phenomena evaluations of the K-25 site UF{sub 6} cylinder storage yards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fricke, K.E.

    1996-09-15

    The K-25 Site UF{sub 6} cylinder storage yards are used for the temporary storage of UF{sub 6} normal assay cylinders and long-term storage of other UF{sub 6} cylinders. The K-25 Site UF{sub 6} cylinder storage yards consist of six on-site areas: K-1066-B, K-1066-E, K-1066-F, K-1066-J, K-1066-K and K-1066-L. There are no permanent structures erected on the cylinder yards, except for five portable buildings. The operating contractor for the K-25 Site is preparing a Safety Analysis Report (SAR) to examine the safety related aspects of the K-25 Site UF{sub 6} cylinder storage yards. The SAR preparation encompasses many tasks terminating inmore » consequence analysis for the release of gaseous and liquid UF{sub 6}, one of which is the evaluation of natural phenomena threats, such as earthquakes, floods, and winds. In support of the SAR, the six active cylinder storage yards were evaluated for vulnerabilities to natural phenomena, earthquakes, high winds and tornados, tornado-generated missiles, floods (local and regional), and lightning. This report summarizes those studies. 30 refs.« less

  10. An algorithm for computing moments-based flood quantile estimates when historical flood information is available

    USGS Publications Warehouse

    Cohn, T.A.; Lane, W.L.; Baier, W.G.

    1997-01-01

    This paper presents the expected moments algorithm (EMA), a simple and efficient method for incorporating historical and paleoflood information into flood frequency studies. EMA can utilize three types of at-site flood information: systematic stream gage record; information about the magnitude of historical floods; and knowledge of the number of years in the historical period when no large flood occurred. EMA employs an iterative procedure to compute method-of-moments parameter estimates. Initial parameter estimates are calculated from systematic stream gage data. These moments are then updated by including the measured historical peaks and the expected moments, given the previously estimated parameters, of the below-threshold floods from the historical period. The updated moments result in new parameter estimates, and the last two steps are repeated until the algorithm converges. Monte Carlo simulations compare EMA, Bulletin 17B's [United States Water Resources Council, 1982] historically weighted moments adjustment, and maximum likelihood estimators when fitting the three parameters of the log-Pearson type III distribution. These simulations demonstrate that EMA is more efficient than the Bulletin 17B method, and that it is nearly as efficient as maximum likelihood estimation (MLE). The experiments also suggest that EMA has two advantages over MLE when dealing with the log-Pearson type III distribution: It appears that EMA estimates always exist and that they are unique, although neither result has been proven. EMA can be used with binomial or interval-censored data and with any distributional family amenable to method-of-moments estimation.

  11. An algorithm for computing moments-based flood quantile estimates when historical flood information is available

    NASA Astrophysics Data System (ADS)

    Cohn, T. A.; Lane, W. L.; Baier, W. G.

    This paper presents the expected moments algorithm (EMA), a simple and efficient method for incorporating historical and paleoflood information into flood frequency studies. EMA can utilize three types of at-site flood information: systematic stream gage record; information about the magnitude of historical floods; and knowledge of the number of years in the historical period when no large flood occurred. EMA employs an iterative procedure to compute method-of-moments parameter estimates. Initial parameter estimates are calculated from systematic stream gage data. These moments are then updated by including the measured historical peaks and the expected moments, given the previously estimated parameters, of the below-threshold floods from the historical period. The updated moments result in new parameter estimates, and the last two steps are repeated until the algorithm converges. Monte Carlo simulations compare EMA, Bulletin 17B's [United States Water Resources Council, 1982] historically weighted moments adjustment, and maximum likelihood estimators when fitting the three parameters of the log-Pearson type III distribution. These simulations demonstrate that EMA is more efficient than the Bulletin 17B method, and that it is nearly as efficient as maximum likelihood estimation (MLE). The experiments also suggest that EMA has two advantages over MLE when dealing with the log-Pearson type III distribution: It appears that EMA estimates always exist and that they are unique, although neither result has been proven. EMA can be used with binomial or interval-censored data and with any distributional family amenable to method-of-moments estimation.

  12. Modeling urbanized watershed flood response changes with distributed hydrological model: key hydrological processes, parameterization and case studies

    NASA Astrophysics Data System (ADS)

    Chen, Y.

    2017-12-01

    Urbanization is the world development trend for the past century, and the developing countries have been experiencing much rapider urbanization in the past decades. Urbanization brings many benefits to human beings, but also causes negative impacts, such as increasing flood risk. Impact of urbanization on flood response has long been observed, but quantitatively studying this effect still faces great challenges. For example, setting up an appropriate hydrological model representing the changed flood responses and determining accurate model parameters are very difficult in the urbanized or urbanizing watershed. In the Pearl River Delta area, rapidest urbanization has been observed in China for the past decades, and dozens of highly urbanized watersheds have been appeared. In this study, a physically based distributed watershed hydrological model, the Liuxihe model is employed and revised to simulate the hydrological processes of the highly urbanized watershed flood in the Pearl River Delta area. A virtual soil type is then defined in the terrain properties dataset, and its runoff production and routing algorithms are added to the Liuxihe model. Based on a parameter sensitive analysis, the key hydrological processes of a highly urbanized watershed is proposed, that provides insight into the hydrological processes and for parameter optimization. Based on the above analysis, the model is set up in the Songmushan watershed where there is hydrological data observation. A model parameter optimization and updating strategy is proposed based on the remotely sensed LUC types, which optimizes model parameters with PSO algorithm and updates them based on the changed LUC types. The model parameters in Songmushan watershed are regionalized at the Pearl River Delta area watersheds based on the LUC types of the other watersheds. A dozen watersheds in the highly urbanized area of Dongguan City in the Pearl River Delta area were studied for the flood response changes due to urbanization, and the results show urbanization has big impact on the watershed flood responses. The peak flow increased a few times after urbanization which is much higher than previous reports.

  13. Sediment storage time in a simulated meandering river's floodplain, comparisons of point bar and overbank deposits

    NASA Astrophysics Data System (ADS)

    Ackerman, T. R.; Pizzuto, J. E.

    2016-12-01

    Sediment may be stored briefly or for long periods in alluvial deposits adjacent to rivers. The duration of sediment storage may affect diagenesis, and controls the timing of sediment delivery, affecting the propagation of upland sediment signals caused by tectonics, climate change, and land use, and the efficacy of watershed management strategies designed to reduce sediment loading to estuaries and reservoirs. Understanding the functional form of storage time distributions can help to extrapolate from limited field observations and improve forecasts of sediment loading. We simulate stratigraphy adjacent to a modeled river where meander migration is driven by channel curvature. The basal unit is built immediately as the channel migrates away, analogous to a point bar; rules for overbank (flood) deposition create thicker deposits at low elevations and near the channel, forming topographic features analogous to natural levees, scroll bars, and terraces. Deposit age is tracked everywhere throughout the simulation, and the storage time is recorded when the channel returns and erodes the sediment at each pixel. 210 ky of simulated run time is sufficient for the channel to migrate 10,500 channel widths, but only the final 90 ky are analyzed. Storage time survivor functions are well fit by exponential functions until 500 years (point bar) or 600 years (overbank) representing the youngest 50% of eroded sediment. Then (until an age of 12 ky, representing the next 48% (point bar) or 45% (overbank) of eroding sediment), the distributions are well fit by heavy tailed power functions with slopes of -1 (point bar) and -0.75 (overbank). After 12 ky (6% of model run time) the remainder of the storage time distributions become exponential (light tailed). Point bar sediment has the greatest chance (6%) of eroding at 120 years, as the river reworks recently deposited point bars. Overbank sediment has an 8% chance of eroding after 1 time step, a chance that declines by half after 3 time steps. The high probability of eroding young overbank deposits occurs as the river reworks recently formed natural levees. These results show that depositional environment affects river floodplain storage times shorter than a few centuries, and suggest that a power law distribution with a truncated tail may be the most reasonable functional fit.

  14. The interplay between human population dynamics and flooding in Bangladesh: a spatial analysis

    NASA Astrophysics Data System (ADS)

    di Baldassarre, G.; Yan, K.; Ferdous, MD. R.; Brandimarte, L.

    2014-09-01

    In Bangladesh, socio-economic and hydrological processes are both extremely dynamic and inter-related. Human population patterns are often explained as a response, or adaptation strategy, to physical events, e.g. flooding, salt-water intrusion, and erosion. Meanwhile, these physical processes are exacerbated, or mitigated, by diverse human interventions, e.g. river diversion, levees and polders. In this context, this paper describes an attempt to explore the complex interplay between floods and societies in Bangladeshi floodplains. In particular, we performed a spatially-distributed analysis of the interactions between the dynamics of human settlements and flood inundation patterns. To this end, we used flooding simulation results from inundation modelling, LISFLOOD-FP, as well as global datasets of population distribution data, such as the Gridded Population of the World (20 years, from 1990 to 2010) and HYDE datasets (310 years, from 1700 to 2010). The outcomes of this work highlight the behaviour of Bangladeshi floodplains as complex human-water systems and indicate the need to go beyond the traditional narratives based on one-way cause-effects, e.g. climate change leading to migrations.

  15. A global distributed basin morphometric dataset

    NASA Astrophysics Data System (ADS)

    Shen, Xinyi; Anagnostou, Emmanouil N.; Mei, Yiwen; Hong, Yang

    2017-01-01

    Basin morphometry is vital information for relating storms to hydrologic hazards, such as landslides and floods. In this paper we present the first comprehensive global dataset of distributed basin morphometry at 30 arc seconds resolution. The dataset includes nine prime morphometric variables; in addition we present formulas for generating twenty-one additional morphometric variables based on combination of the prime variables. The dataset can aid different applications including studies of land-atmosphere interaction, and modelling of floods and droughts for sustainable water management. The validity of the dataset has been consolidated by successfully repeating the Hack's law.

  16. A Spatially Distributed Hydrological Model For The Okavango Delta, Botswana

    NASA Astrophysics Data System (ADS)

    Bauer, P.; Kinzelbach, W.; Thabeng, G.

    2003-04-01

    The Okavango Delta is a large (˜30 000 km^2) inland delta situated in northern Botswana. It is subject to annual flooding due to the strong seasonality of the inflowing Okavango River and of local rainfall. The inflowing waters spread out over vast perennial and seasonal floodplains and partially infiltrate into the underlying sand aquifer. Ultimately, the water is consumed by evapotranspiration, there is no significant outflow from the Delta. The system's response to the annual flood in the Okavango River as well as local rainfall and evapotranspiration is modelled within a finite difference scheme based on MODFLOW. The wetland and the underlying sand aquifer are incorporated as two separate layers. In the superficial layer, either steady uniform channel flow (Darcy-Weisbach equation) or potential flow (Darcy flow) can be chosen on a cell-by-cell basis. The coarse spatial resolution does not capture the small-scale variation in the topographic elevation. Therefore, upscaling techniques are applied to incorporate the statistics of that variation into effective parameters for the hydraulic conductivity, the storage coefficient and the evapotranspiration. Modelled flooding patterns are compared with flooding patterns derived from NOAA-AVHRR and other remote sensing data (1 km resolution). Good correspondence between the two is achieved based on parameters chosen according to prior knowledge and field data. Global indicators like the average size of the Delta and the temporal variance of its size are closely reproduced. Ultimately, the remotely sensed flooding patterns will be used to calibrate the model. Apart from flooding patterns, model outputs include cell-by-cell flow terms. Water balances can be calculated for arbitrary sub-regions of the grid. Other monitoring data like water levels in rivers and boreholes as well as discharges at gauging points may be used for validation of the model. The Okavango Delta is one of the prime conservation areas in Africa and a top-destination for international tourism. It is the principal freshwater resource for the local people. Furthermore, three countries (Angola, Namibia and Botswana) share the river basin and most of the runoff in the river is actually generated in Angola. Some intricate management problems arise in this complex set-up of interests and stakeholders (dam building in Angola, water abstraction, morphological engineering in the Delta etc.). In some cases, scenario calculations may help to assess the impacts of the planned actions and to analyse their sustainability prior to implementation.

  17. Floods of November-December 1950 in the Central Valley basin, California

    USGS Publications Warehouse

    Paulsen, C.G.

    1953-01-01

    The flood of November-December 1950 in the Central Valley basin was the greatest in most parts of the basin since the turn of the century and probably was exceeded in the lower San Joaquin River basin only by the historic flood of 1862. In respect to monetary loss, the 1950 flood was the most disastrous in the history of the basin. Loss of life was remarkably small when one considers the extensive damage and destruction to homes and other property, which is estimated at 33 million dollars. Outstanding features of the flood were its unprecedented occurrence so early in the winter flood season, its magnitude in respect to both peak and volume in most major tributaries, and the occurrence of a succession of near-peak flows with a period of three weeks. The flood was caused by a series of storms during the period November 16 to December 8, which brought exceptionally warm, moisture-laden air inland against the Sierra Nevada range and caused intense rainfall, instead of snowfall, at unusually high altitudes. Basin-wide totals of rainfall during the period ranged from 30 inches over the Yuba and American River basins to 13 inches over the upper Sacramento and Feather River basins. Based on continuous records of discharge on major tributaries for periods ranging from 22 to 55 years and averaging about 43 years, the 1950 flood peaks were the greatest of record on the American, Cosumnes, Mokelumne, Stanislaus, Tuolumne, Merced, Chowchilla, Fresno, lower San Joaquin, Kings, Kaweah, Tule, and Kern Rivers. Second highest peak of record occurred during the flood of March 1928 on the Yuba, American and Mokelumne Rivers; the flood of Marcn 1940 on Cosumnes River; the flood of January 1911 on the Stanislaus and Tuolumne Rivers; the flood of December 1937 on the Merced, Kings, and Kaweah Rivers; the flood of March 1938 on the Chowchilla, Fresno, and lower San Joaquin Rivers; and the flood of March 1943 on the Tule and Kern Rivers. Peak discharges for 1950 did not exceed previous maxima on Bear, Yuba, Feather, and upper Sacramento Rivers, nor on west side tributaries of lower Sacramento River, Calaveras River, and upper San Joaquin River (above Friant Reservoir). Notable high rates of discharge were 354 cfs per square mile from 39.5 square miles in North Fork of Middle Fork Tule River, 225 cfs per square mile from 198 square miles in Rubicon River, 115 cfs per square mile from 999 square miles in North Fork of American River and 93.7 cfs per square mile from 1,921 square miles in American River at Fair Oaks. This report presents a general description of the 1950 flood, details and estimates of the damage incurred, records of stage and discharge for the period of the flood at 171 stream-gaging stations, records of storage in 14 reservoirs, a summary of peak discharges with comparative data for previous floods at 252 measurement points, and tables showing crest stages along the main stem and major tributary channels of the Sacramento and San Joaquin Rivers. The report also includes a discussion of meteorologic and hydrologic conditions associated with the flood, examples of the flood regulation afforded by storage reservoirs, a brief study of runoff characteristics, and a summary and comparison with previous floods in the Central Valley basin.

  18. A method of measuring increase in soil depth and water-storage capacity due to forest management

    Treesearch

    George R., Jr. Trimble

    1952-01-01

    Conservationists, engineers, and others who deal with water problems have become more and more concerned in recent years with increasing the storage of water in the ground. Their concern has centered around problems of flood control and storage of water for later use by plants or animals, including man.

  19. Comparison of Alaskan Flood Stages: Annual Exceedance Probability vs. Impact Based Stages and Recommendations for the Future

    NASA Astrophysics Data System (ADS)

    Anderson, B. J.

    2016-12-01

    The Alaska River Forecasting Center (APRFC) issues water level forecasts that are used in conjunction with established flood stages to provide flood warning and advisory information to the public. The APRFC typically establishes flood stages based on observed impacts but Alaska has sparse empirical data (e.g., few impact surveys). Thus service hydrologists in Alaska use flood frequency analysis (LP3 distribution) to estimate flood stages from annual exceedance probabilities (AEPs) (Curran et al, 2016). Previously, the APRFC has maintained that bankfull stage corresponds to the 50% AEP, minor to 10-20% AEP, moderate to 2.5-7% AEP, and major to 1-2% AEP, but we now need to statistically verify this relationship. Our objective is therefore to validate the relationship between flood stages and stage associated with the 50, 20, 10, 4, 2, 1, 0.2, and 0.5 AEPs to provide recommendations for improved flood forecasting. We studied the relationship between AEP and flood stage for all gages (56) used by the APRFC that had rating curves not older than 3 years, flood stages based on observed impacts, and at least 10 years of peak annual stage data. The analysis found relatively strong relationships for all flood stages, except for bankfull stage, but with some differences when compared to the traditionally referenced relationship. Major flood stage appears to be most similar to the 1-.2% AEP (100-500 year RI) while moderate flood stage best fits the 2-4% AEP (25-50 year interval). Gages showing a difference in stage of 2 ft or greater exhibited this difference across all flood stages, which we link to site specific qualities such as susceptibility to ice-jam flooding. We present this method as a possible application to Alaskan Rivers as a general flood stage guideline.

  20. Assessing the impact of climate change on flood types in the Austrian and French Alps using the stochastic weather generator TripleM and rainfall-runoff modeling

    NASA Astrophysics Data System (ADS)

    Breinl, Korbinian; Turkington, Thea

    2017-04-01

    We developed a new methodology for classifying flood types, which appears to be particularly suitable for climate change impact studies. Climate change is not only expected to change the magnitude and frequency of Alpine floods but also the types of floods. The distribution of existing flood types may change and new flood types may develop. A shift away from solely focusing on the magnitude and frequency of floods in flood hazard assessment and disaster risk management towards the causal types of floods is required as the types and therefore also timing and characteristics of floods will have implications on both the local social and ecological systems. The flood types are classified using k-means clustering of temperature and precipitation indicators, capturing differences in rainfall amounts, antecedent rainfall, snow-cover, and the day of the year. In a first step, we used the open-source multi-site weather generator TripleM coupled with the fast conceptual rainfall-runoff model HBV to extrapolate the observed discharge time series and generate a large inventory of different types of observed flood events and flood types. The weather generator was then parameterized based on projections of rainfall and temperature to simulate future flood types and events. We selected four climate projections (mild dry, mild wet, warm dry and warm wet conditions) from a set of 15, which originated from the EURO-CORDEX dataset. We worked in two catchments in the Austrian and French Alps that have been affected by floods in the past: the medium-sized Salzach catchment in Austria, which is dominated by rainfall driven flooding during the summer and autumn period, and the small Ubaye catchment in the Southern French Alps, which is dominated by rain-on-snow floods in the spring period. The analysis of the simulated future flood types shows clear changes in the distribution and characteristics of flood types in both study areas under the different climate projections examined.

  1. Evolvement rules of basin flood risk under low-carbon mode. Part I: response of soil organic carbon to land use change and its influence on land use planning in the Haihe basin.

    PubMed

    Li, Fawen; Wang, Liping; Zhao, Yong

    2017-08-01

    Soil organic carbon (SOC) plays an important role in the global carbon cycle. The aim of this study was to evaluate the response of SOC to land use change and its influence on land use planning in the Haihe basin, and provide planning land use pattern for basin flood risk assessment. Firstly, the areas of different land use types in 1980, 2008, and the planning year (2020) were counted by area statistics function of ArcGIS. Then, the transfer matrixes of land use were produced by spatial overlay analysis function. Lastly, based on the land use maps, soil type map and soil profile database, SOC storage of different land use types in three different periods were calculated. The results showed the patterns of land use have changed a lot from 1980 to 2008, among the 19,835 km 2 of grassland was transformed into forestland, which was the largest conversion landscape. And land use conversion brought the SOC storage changes. Total carbon source was 88.83 Tg, and total carbon sink was 85.49 Tg. So, the Haihe basin presented as a carbon source from 1980 to 2008. From 2008 to 2020, the changes of forestland and grassland are the biggest in Haihe basin, which cause the SOC pool change from a carbon source to a carbon sink. SOC storage will increase from 2420.5 Tg in 2008 to 2495.5 Tg in 2020. The changing trend is conducive to reducing atmospheric concentrations. Therefore, land use planning in Haihe basin is reasonable and can provide the underlying surface condition for flood risk assessment.

  2. A MODIS-based automated flood monitoring system for southeast asia

    NASA Astrophysics Data System (ADS)

    Ahamed, A.; Bolten, J. D.

    2017-09-01

    Flood disasters in Southeast Asia result in significant loss of life and economic damage. Remote sensing information systems designed to spatially and temporally monitor floods can help governments and international agencies formulate effective disaster response strategies during a flood and ultimately alleviate impacts to population, infrastructure, and agriculture. Recent destructive flood events in the Lower Mekong River Basin occurred in 2000, 2011, 2013, and 2016 (http://ffw.mrcmekong.org/historical_rec.htm, April 24, 2017). The large spatial distribution of flooded areas and lack of proper gauge data in the region makes accurate monitoring and assessment of impacts of floods difficult. Here, we discuss the utility of applying satellite-based Earth observations for improving flood inundation monitoring over the flood-prone Lower Mekong River Basin. We present a methodology for determining near real-time surface water extent associated with current and historic flood events by training surface water classifiers from 8-day, 250-m Moderate-resolution Imaging Spectroradiometer (MODIS) data spanning the length of the MODIS satellite record. The Normalized Difference Vegetation Index (NDVI) signature of permanent water bodies (MOD44W; Carroll et al., 2009) is used to train surface water classifiers which are applied to a time period of interest. From this, an operational nowcast flood detection component is produced using twice daily imagery acquired at 3-h latency which performs image compositing routines to minimize cloud cover. Case studies and accuracy assessments against radar-based observations for historic flood events are presented. The customizable system has been transferred to regional organizations and near real-time derived surface water products are made available through a web interface platform. Results highlight the potential of near real-time observation and impact assessment systems to serve as effective decision support tools for governments, international agencies, and disaster responders.

  3. Impact of intertidal area characteristics on estuarine tidal hydrodynamics: A modelling study for the Scheldt Estuary

    NASA Astrophysics Data System (ADS)

    Stark, J.; Smolders, S.; Meire, P.; Temmerman, S.

    2017-11-01

    Marsh restoration projects are nowadays being implemented as ecosystem-based strategies to reduce flood risks and to restore intertidal habitat along estuaries. Changes in estuarine tidal hydrodynamics are expected along with such intertidal area changes. A validated hydrodynamic model of the Scheldt Estuary is used to gain fundamental insights in the role of intertidal area characteristics on tidal hydrodynamics and tidal asymmetry in particular through several geomorphological scenarios in which intertidal area elevation and location along the estuary is varied. Model results indicate that the location of intertidal areas and their storage volume relative to the local tidal prism determine the intensity and reach along the estuary over which tidal hydrodynamics are affected. Our model results also suggest that intertidal storage areas that are located within the main estuarine channel system, and hence are part of the flow-carrying part of the estuary, may affect tidal hydrodynamics differently than intertidal areas that are side-basins of the main estuarine channel, and hence only contribute little to the flow-carrying cross-section of the estuary. If tidal flats contribute to the channel cross-section and exert frictional effects on the tidal propagation, the elevation of intertidal flats influences the magnitude and direction of tidal asymmetry along estuarine channels. Ebb-dominance is most strongly enhanced if tidal flats are around mean sea level or slightly above. Conversely, flood-dominance is enhanced if the tidal flats are situated low in the tidal frame. For intertidal storage areas at specific locations besides the main channel, flood-dominance in the estuary channel peaks in the vicinity of those areas and generally reduces upstream and downstream compared to a reference scenario. Finally, the model results indicate an along-estuary varying impact on the tidal prism as a result of adding intertidal storage at a specific location. In addition to known effects of tidal prism decrease upstream and tidal prism increase downstream of additional storage areas, our model results indicate a reduction in tidal prism far downstream of intertidal storage areas as a result of a decreasing tidal range. This study may assist estuarine managers in assessing the impact of marsh restoration and managed shoreline realignment projects, as well as with the morphological management of estuaries through dredging and disposal of sediment on intertidal areas.

  4. The Use of Radar-Based Products for Deriving Extreme Rainfall Frequencies Using Regional Frequency Analysis with Application in South Louisiana

    NASA Astrophysics Data System (ADS)

    Eldardiry, H. A.; Habib, E. H.

    2014-12-01

    Radar-based technologies have made spatially and temporally distributed quantitative precipitation estimates (QPE) available in an operational environmental compared to the raingauges. The floods identified through flash flood monitoring and prediction systems are subject to at least three sources of uncertainties: (a) those related to rainfall estimation errors, (b) those due to streamflow prediction errors due to model structural issues, and (c) those due to errors in defining a flood event. The current study focuses on the first source of uncertainty and its effect on deriving important climatological characteristics of extreme rainfall statistics. Examples of such characteristics are rainfall amounts with certain Average Recurrence Intervals (ARI) or Annual Exceedance Probability (AEP), which are highly valuable for hydrologic and civil engineering design purposes. Gauge-based precipitation frequencies estimates (PFE) have been maturely developed and widely used over the last several decades. More recently, there has been a growing interest by the research community to explore the use of radar-based rainfall products for developing PFE and understand the associated uncertainties. This study will use radar-based multi-sensor precipitation estimates (MPE) for 11 years to derive PFE's corresponding to various return periods over a spatial domain that covers the state of Louisiana in southern USA. The PFE estimation approach used in this study is based on fitting generalized extreme value distribution to hydrologic extreme rainfall data based on annual maximum series (AMS). Some of the estimation problems that may arise from fitting GEV distributions at each radar pixel is the large variance and seriously biased quantile estimators. Hence, a regional frequency analysis approach (RFA) is applied. The RFA involves the use of data from different pixels surrounding each pixel within a defined homogenous region. In this study, region of influence approach along with the index flood technique are used in the RFA. A bootstrap technique procedure is carried out to account for the uncertainty in the distribution parameters to construct 90% confidence intervals (i.e., 5% and 95% confidence limits) on AMS-based precipitation frequency curves.

  5. Regional hydrological models for distributed flash-floods forecasting: towards an estimation of potential impacts and damages

    NASA Astrophysics Data System (ADS)

    Le Bihan, Guillaume; Payrastre, Olivier; Gaume, Eric; Pons, Frederic; Moncoulon, David

    2016-04-01

    Hydrometeorological forecasting is an essential component of real-time flood management. The information it provides is of great help for crisis managers to anticipate the inundations and the associated risks. In the particular case of flash-floods, which may affect a large amount of small watersheds spread over the territory (up to 300 000 km of waterways considering a drained area of 5 km² minimum in France), appropriate flood forecasting systems are still under development. In France, highly distributed hydrological models have been implemented, enabling a real-time assessment of the potential intensity of flash-floods from the records of weather radars: AIGA-hydro system (Lavabre et al., 2005; Javelle et al., 2014), PreDiFlood project (Naulin et al., 2013). The approach presented here aims to go one step further by offering a direct assessment of the potential impacts of the simulated floods on inhabited areas. This approach is based on an a priori analysis of the study area in order (1) to evaluate with a simplified hydraulic approach (DTM treatment) the potentially flooded areas for different discharge levels, and (2) to identify the associated buildings and/or population at risk from geographic databases. This preliminary analysis enables to build an impact model (discharge-impact curve) on each river reach, which is then used to directly estimate the potentially affected assets based on a distributed rainfall runoff model. The overall principle of this approach was already presented at the 8th Hymex workshop. Therefore, the presentation will be here focused on the first validation results in terms of (1) accuracy of flooded areas simulated from DTM treatments, and (2) relevance of estimated impacts. The inundated areas simulated were compared to the European Directive cartography results (where available), showing an overall good correspondence in a large majority of cases, but also very significant errors for approximatively 10% of the river reaches incorporated in the model. The stage/discharge relations obtained at gauging stations were also compared to the real rating curves, showing a very different behavior of the method depending on the local configuration of the considered site. Some developments are now in progress in order to evaluate and validate, as far as possible, the results of the entire simulation chain at the event scale. This work relies on the comparison of simulation results (estimated flood impacts) with insurance losses data (provided by CCR) for several significant past flood events. The first results of this work will be presented.

  6. Tropical storms and the flood hydrology of the central Appalachians

    NASA Astrophysics Data System (ADS)

    Sturdevant-Rees, Paula; Smith, James A.; Morrison, Julia; Baeck, Mary Lynn

    2001-08-01

    Flooding from Hurricane Fran is examined as a prototype for central Appalachian flood events that dominate the upper tail of flood peak distributions at basin scales between 100 and 10,000 km2. Hurricane Fran, which resulted in 34 deaths and more than $3.2 billion in damages, made land fall on the North Carolina coast at 0000 UTC, September 6, 1996. By 1200 UTC on September 6, Fran had weakened to a tropical storm, and the center of circulation was located at the North Carolina-Virginia border. Rain bands surrounding the tropical depression produced extreme rainfall and flooding in Virginia and West Virginia, with the most intense rainfall concentrated near ridge tops in the Blue Ridge and Valley and Ridge physiographic provinces. The most severe flooding occurred in the Shenandoah River watershed of Virginia, where peak discharges exceeded the 100-year magnitude at 11 of 19 U.S. Geological Survey stream-gaging stations. The availability of high-resolution discharge and rainfall data sets provides the opportunity to study the hydrologic and hydrometeorological mechanisms associated with extreme floods produced by tropical storms. Analyses indicate that orographie enhancement of tropical storm precipitation plays a central role in the hydrology of extreme floods in the central Appalachian region. The relationships between drainage network structure and storm motion also play a major role in Appalachian flood hydrology. Runoff processes for Hurricane Fran reflected a mixture of saturation excess and infiltration excess mechanisms. Antecedent soil moisture played a significant role in the hydrology of extreme flooding from Hurricane Fran. Land use, in particular, the presence of forest cover, was of secondary importance to the terrain-based distribution of precipitation in determining extreme flood response.

  7. Analysis of the French insurance market exposure to floods: a stochastic model combining river overflow and surface runoff

    NASA Astrophysics Data System (ADS)

    Moncoulon, D.; Labat, D.; Ardon, J.; Onfroy, T.; Leblois, E.; Poulard, C.; Aji, S.; Rémy, A.; Quantin, A.

    2013-07-01

    The analysis of flood exposure at a national scale for the French insurance market must combine the generation of a probabilistic event set of all possible but not yet occurred flood situations with hazard and damage modeling. In this study, hazard and damage models are calibrated on a 1995-2012 historical event set, both for hazard results (river flow, flooded areas) and loss estimations. Thus, uncertainties in the deterministic estimation of a single event loss are known before simulating a probabilistic event set. To take into account at least 90% of the insured flood losses, the probabilistic event set must combine the river overflow (small and large catchments) with the surface runoff due to heavy rainfall, on the slopes of the watershed. Indeed, internal studies of CCR claim database has shown that approximately 45% of the insured flood losses are located inside the floodplains and 45% outside. 10% other percent are due to seasurge floods and groundwater rise. In this approach, two independent probabilistic methods are combined to create a single flood loss distribution: generation of fictive river flows based on the historical records of the river gauge network and generation of fictive rain fields on small catchments, calibrated on the 1958-2010 Météo-France rain database SAFRAN. All the events in the probabilistic event sets are simulated with the deterministic model. This hazard and damage distribution is used to simulate the flood losses at the national scale for an insurance company (MACIF) and to generate flood areas associated with hazard return periods. The flood maps concern river overflow and surface water runoff. Validation of these maps is conducted by comparison with the address located claim data on a small catchment (downstream Argens).

  8. Distributed lag effects and vulnerable groups of floods on bacillary dysentery in Huaihua, China

    PubMed Central

    Liu, Zhi-Dong; Li, Jing; Zhang, Ying; Ding, Guo-Yong; Xu, Xin; Gao, Lu; Liu, Xue-Na; Liu, Qi-Yong; Jiang, Bao-Fa

    2016-01-01

    Understanding the potential links between floods and bacillary dysentery in China is important to develop appropriate intervention programs after floods. This study aimed to explore the distributed lag effects of floods on bacillary dysentery and to identify the vulnerable groups in Huaihua, China. Weekly number of bacillary dysentery cases from 2005–2011 were obtained during flood season. Flood data and meteorological data over the same period were obtained from the China Meteorological Data Sharing Service System. To examine the distributed lag effects, a generalized linear mixed model combined with a distributed lag non-linear model were developed to assess the relationship between floods and bacillary dysentery. A total of 3,709 cases of bacillary dysentery were notified over the study period. The effects of floods on bacillary dysentery continued for approximately 3 weeks with a cumulative risk ratio equal to 1.52 (95% CI: 1.08–2.12). The risks of bacillary dysentery were higher in females, farmers and people aged 15–64 years old. This study suggests floods have increased the risk of bacillary dysentery with 3 weeks’ effects, especially for the vulnerable groups identified. Public health programs should be taken to prevent and control a potential risk of bacillary dysentery after floods. PMID:27427387

  9. Distributed lag effects and vulnerable groups of floods on bacillary dysentery in Huaihua, China.

    PubMed

    Liu, Zhi-Dong; Li, Jing; Zhang, Ying; Ding, Guo-Yong; Xu, Xin; Gao, Lu; Liu, Xue-Na; Liu, Qi-Yong; Jiang, Bao-Fa

    2016-07-18

    Understanding the potential links between floods and bacillary dysentery in China is important to develop appropriate intervention programs after floods. This study aimed to explore the distributed lag effects of floods on bacillary dysentery and to identify the vulnerable groups in Huaihua, China. Weekly number of bacillary dysentery cases from 2005-2011 were obtained during flood season. Flood data and meteorological data over the same period were obtained from the China Meteorological Data Sharing Service System. To examine the distributed lag effects, a generalized linear mixed model combined with a distributed lag non-linear model were developed to assess the relationship between floods and bacillary dysentery. A total of 3,709 cases of bacillary dysentery were notified over the study period. The effects of floods on bacillary dysentery continued for approximately 3 weeks with a cumulative risk ratio equal to 1.52 (95% CI: 1.08-2.12). The risks of bacillary dysentery were higher in females, farmers and people aged 15-64 years old. This study suggests floods have increased the risk of bacillary dysentery with 3 weeks' effects, especially for the vulnerable groups identified. Public health programs should be taken to prevent and control a potential risk of bacillary dysentery after floods.

  10. Distributed lag effects and vulnerable groups of floods on bacillary dysentery in Huaihua, China

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-Dong; Li, Jing; Zhang, Ying; Ding, Guo-Yong; Xu, Xin; Gao, Lu; Liu, Xue-Na; Liu, Qi-Yong; Jiang, Bao-Fa

    2016-07-01

    Understanding the potential links between floods and bacillary dysentery in China is important to develop appropriate intervention programs after floods. This study aimed to explore the distributed lag effects of floods on bacillary dysentery and to identify the vulnerable groups in Huaihua, China. Weekly number of bacillary dysentery cases from 2005-2011 were obtained during flood season. Flood data and meteorological data over the same period were obtained from the China Meteorological Data Sharing Service System. To examine the distributed lag effects, a generalized linear mixed model combined with a distributed lag non-linear model were developed to assess the relationship between floods and bacillary dysentery. A total of 3,709 cases of bacillary dysentery were notified over the study period. The effects of floods on bacillary dysentery continued for approximately 3 weeks with a cumulative risk ratio equal to 1.52 (95% CI: 1.08-2.12). The risks of bacillary dysentery were higher in females, farmers and people aged 15-64 years old. This study suggests floods have increased the risk of bacillary dysentery with 3 weeks’ effects, especially for the vulnerable groups identified. Public health programs should be taken to prevent and control a potential risk of bacillary dysentery after floods.

  11. Feedbacks between Reservoir Operation and Floodplain Development

    NASA Astrophysics Data System (ADS)

    Wallington, K.; Cai, X.

    2017-12-01

    The increased connectedness of socioeconomic and natural systems warrants the study of them jointly as Coupled Natural-Human Systems (CNHS) (Liu et al., 2007). One such CNHS given significant attention in recent years has been the coupled sociological-hydrological system of floodplains. Di Baldassarre et al. (2015) developed a model coupling floodplain development and levee heightening, a flood control measure, which demonstrated the "levee effect" and "adaptation effect" seen in observations. Here, we adapt the concepts discussed by Di Baldassarre et al. (2015) and apply them to floodplains in which the primary flood control measure is reservoir storage, rather than levee construction, to study the role of feedbacks between reservoir operation and floodplain development. Specifically, we investigate the feedback between floodplain development and optimal management of trade-offs between flood water conservation and flood control. By coupling a socio-economic model based on that of Di Baldassarre et al. (2015) with a reservoir optimization model based on that discussed in Ding et al. (2017), we show that reservoir operation rules can co-evolve with floodplain development. Furthermore, we intend to demonstrate that the model results are consistent with real-world data for reservoir operating curves and floodplain development. This model will help explain why some reservoirs are currently operated for purposes which they were not originally intended and thus inform reservoir design and construction.

  12. Likelihood-based confidence intervals for estimating floods with given return periods

    NASA Astrophysics Data System (ADS)

    Martins, Eduardo Sávio P. R.; Clarke, Robin T.

    1993-06-01

    This paper discusses aspects of the calculation of likelihood-based confidence intervals for T-year floods, with particular reference to (1) the two-parameter gamma distribution; (2) the Gumbel distribution; (3) the two-parameter log-normal distribution, and other distributions related to the normal by Box-Cox transformations. Calculation of the confidence limits is straightforward using the Nelder-Mead algorithm with a constraint incorporated, although care is necessary to ensure convergence either of the Nelder-Mead algorithm, or of the Newton-Raphson calculation of maximum-likelihood estimates. Methods are illustrated using records from 18 gauging stations in the basin of the River Itajai-Acu, State of Santa Catarina, southern Brazil. A small and restricted simulation compared likelihood-based confidence limits with those given by use of the central limit theorem; for the same confidence probability, the confidence limits of the simulation were wider than those of the central limit theorem, which failed more frequently to contain the true quantile being estimated. The paper discusses possible applications of likelihood-based confidence intervals in other areas of hydrological analysis.

  13. Feasibility study and preliminary design for fishing (TUNA) vessel fuel storage and distribution. Final report. Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-07-01

    The report is divided into the following sections: (1) Introduction; (2) Conclusions and Recommendations; (3) Existing Conditions and Facilities for a Fuel Distribution Center; (4) Pacific Ocean Regional Tuna Fisheries and Resources; (5) Fishing Effort in the FSMEEZ 1992-1994; (6) Current Transshipping Operations in the Western Pacific Ocean; (7) Current and Probale Bunkering Practices of United States, Japanese, Koren, and Taiwanese Offshore-Based Vessels Operating in FSM and Adjacent Waters; (8) Shore-Based Fish-Handling/Processing; (9) Fuels Forecast; (10) Fuel Supply, Storage and Distribution; (11) Cost Estimates; (12) Economic Evaluation of Fuel Supply, Storage and Distribution.

  14. Dam Construction in Lancang-Mekong River Basin Could Mitigate Future Flood Risk From Warming-Induced Intensified Rainfall

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Lu, Hui; Ruby Leung, L.; Li, Hong-Yi; Zhao, Jianshi; Tian, Fuqiang; Yang, Kun; Sothea, Khem

    2017-10-01

    Water resources management, in particular flood control, in the Lancang-Mekong River Basin (LMRB) faces two key challenges in the 21st century: climate change and dam construction. A large-scale distributed Geomorphology-Based Hydrological Model coupled with a simple reservoir regulation model (GBHM-LMK-SOP) is used to investigate the relative effects of climate change and dam construction on the flood characteristics in the LMRB. Results suggest an increase in both flood magnitude and frequency under climate change, which is more severe in the upstream basin and increases over time. However, stream regulation by dam reduces flood risk consistently throughout this century, with more obvious effects in the upstream basin where larger reservoirs will be located. The flood mitigation effect of dam regulation dominates over the flood intensification effect of climate change before 2060, but the latter emerges more prominently after 2060 and dominates the flood risk especially in the lower basin.

  15. Alternating flood and drought hazards in the Drava Plain, Hungary

    NASA Astrophysics Data System (ADS)

    Lóczy, Dénes; Dezsö, József; Gyenizse, Péter; Ortmann-Ajkai, Adrienne

    2016-04-01

    Our research project covers the assessment of archive data and monitoring present-day water availability in the floodplain of the Hungarian Drava River. Historically flood hazard has been prevalent in the area. Recently, however, flood and drought hazards occur with equal frequency. Potential floodwater storage is defined from the analyses of soil conditions (grain size, porosity, water conductivity etc.) and GIS-based volumetric estimations of storage capacities in oxbows (including communication with groundwater). With the remarkable rate of river channel incision (2.4 m per century) and predictable climate change trends (increased annual mean temperature and decreased summer precipitation), the growing frequency and intensification of drought hazard is expected. For the assessment of drought hazard the impacts of hydrometeorological events, groundwater table dynamics and capillary rise are modelled, the water demands of natural vegetation and agricultural crops are studied. The project is closely linked to the ongoing Old Drava Programme, a comprehensive government project, which envisions floodplain rehabilitation through major transformations in water governance and land use of the region, and has numerous implications for regional development. Authors are grateful for financial support from the Hungarian National Scientific Research Fund (OTKA, contacts nos K 104552 and K 108755) as well as from the Visegrad Fund (31210058). The contribution is dedicated to the 650th anniversary of the foundation of the University of Pécs, Hungary.

  16. A new approach for computing a flood vulnerability index using cluster analysis

    NASA Astrophysics Data System (ADS)

    Fernandez, Paulo; Mourato, Sandra; Moreira, Madalena; Pereira, Luísa

    2016-08-01

    A Flood Vulnerability Index (FloodVI) was developed using Principal Component Analysis (PCA) and a new aggregation method based on Cluster Analysis (CA). PCA simplifies a large number of variables into a few uncorrelated factors representing the social, economic, physical and environmental dimensions of vulnerability. CA groups areas that have the same characteristics in terms of vulnerability into vulnerability classes. The grouping of the areas determines their classification contrary to other aggregation methods in which the areas' classification determines their grouping. While other aggregation methods distribute the areas into classes, in an artificial manner, by imposing a certain probability for an area to belong to a certain class, as determined by the assumption that the aggregation measure used is normally distributed, CA does not constrain the distribution of the areas by the classes. FloodVI was designed at the neighbourhood level and was applied to the Portuguese municipality of Vila Nova de Gaia where several flood events have taken place in the recent past. The FloodVI sensitivity was assessed using three different aggregation methods: the sum of component scores, the first component score and the weighted sum of component scores. The results highlight the sensitivity of the FloodVI to different aggregation methods. Both sum of component scores and weighted sum of component scores have shown similar results. The first component score aggregation method classifies almost all areas as having medium vulnerability and finally the results obtained using the CA show a distinct differentiation of the vulnerability where hot spots can be clearly identified. The information provided by records of previous flood events corroborate the results obtained with CA, because the inundated areas with greater damages are those that are identified as high and very high vulnerability areas by CA. This supports the fact that CA provides a reliable FloodVI.

  17. Using ensemble rainfall predictions in a countrywide flood forecasting model in Scotland

    NASA Astrophysics Data System (ADS)

    Cranston, M. D.; Maxey, R.; Tavendale, A. C. W.; Buchanan, P.

    2012-04-01

    Improving flood predictions for all sources of flooding is at the centre of flood risk management policy in Scotland. With the introduction of the Flood Risk Management (Scotland) Act providing a new statutory basis for SEPA's flood warning responsibilities, the pressures on delivering hydrological science developments in support of this legislation has increased. Specifically, flood forecasting capabilities need to develop in support of the need to reduce the impact of flooding through the provision of actively disseminated, reliable and timely flood warnings. Flood forecasting in Scotland has developed significantly in recent years (Cranston and Tavendale, 2012). The development of hydrological models to predict flooding at a catchment scale has relied upon the application of rainfall runoff models utilising raingauge, radar and quantitative precipitation forecasts in the short lead time (less than 6 hours). Single or deterministic forecasts based on highly uncertain rainfall predictions have led to the greatest operational difficulties when communicating flood risk with emergency responders, therefore the emergence of probability-based estimates offers the greatest opportunity for managing uncertain predictions. This paper presents operational application of a physical-conceptual distributed hydrological model on a countrywide basis across Scotland. Developed by CEH Wallingford for SEPA in 2011, Grid-to-Grid (G2G) principally runs in deterministic mode and employs radar and raingauge estimates of rainfall together with weather model predictions to produce forecast river flows, as gridded time-series at a resolution of 1km and for up to 5 days ahead (Cranston, et al., 2012). However the G2G model is now being run operationally using ensemble predictions of rainfall from the MOGREPS-R system to provide probabilistic flood forecasts. By presenting a range of flood predictions on a national scale through this approach, hydrologists are now able to consider an objective measure of the likelihood of flooding impacts to help with risk based emergency communication.

  18. Surface water floods in Switzerland: what insurance claim records tell us about the damage in space and time

    NASA Astrophysics Data System (ADS)

    Bernet, Daniel B.; Prasuhn, Volker; Weingartner, Rolf

    2017-09-01

    Surface water floods (SWFs) have received increasing attention in the recent years. Nevertheless, we still know relatively little about where, when and why such floods occur and cause damage, largely due to a lack of data but to some degree also because of terminological ambiguities. Therefore, in a preparatory step, we summarize related terms and identify the need for unequivocal terminology across disciplines and international boundaries in order to bring the science together. Thereafter, we introduce a large (n = 63 117), long (10-33 years) and representative (48 % of all Swiss buildings covered) data set of spatially explicit Swiss insurance flood claims. Based on registered flood damage to buildings, the main aims of this study are twofold: First, we introduce a method to differentiate damage caused by SWFs and fluvial floods based on the geographical location of each damaged object in relation to flood hazard maps and the hydrological network. Second, we analyze the data with respect to their spatial and temporal distributions aimed at quantitatively answering the fundamental questions of how relevant SWF damage really is, as well as where and when it occurs in space and time. This study reveals that SWFs are responsible for at least 45 % of the flood damage to buildings and 23 % of the associated direct tangible losses, whereas lower losses per claim are responsible for the lower loss share. The Swiss lowlands are affected more heavily by SWFs than the alpine regions. At the same time, the results show that the damage claims and associated losses are not evenly distributed within each region either. Damage caused by SWFs occurs by far most frequently in summer in almost all regions. The normalized SWF damage of all regions shows no significant upward trend between 1993 and 2013. We conclude that SWFs are in fact a highly relevant process in Switzerland that should receive similar attention like fluvial flood hazards. Moreover, as SWF damage almost always coincides with fluvial flood damage, we suggest considering SWFs, like fluvial floods, as integrated processes of our catchments.

  19. Modelling maximum river flow by using Bayesian Markov Chain Monte Carlo

    NASA Astrophysics Data System (ADS)

    Cheong, R. Y.; Gabda, D.

    2017-09-01

    Analysis of flood trends is vital since flooding threatens human living in terms of financial, environment and security. The data of annual maximum river flows in Sabah were fitted into generalized extreme value (GEV) distribution. Maximum likelihood estimator (MLE) raised naturally when working with GEV distribution. However, previous researches showed that MLE provide unstable results especially in small sample size. In this study, we used different Bayesian Markov Chain Monte Carlo (MCMC) based on Metropolis-Hastings algorithm to estimate GEV parameters. Bayesian MCMC method is a statistical inference which studies the parameter estimation by using posterior distribution based on Bayes’ theorem. Metropolis-Hastings algorithm is used to overcome the high dimensional state space faced in Monte Carlo method. This approach also considers more uncertainty in parameter estimation which then presents a better prediction on maximum river flow in Sabah.

  20. Forest and flooding with special reference to the White River and Ouachita River basins, Arkansas

    USGS Publications Warehouse

    Bedinger, M.S.

    1979-01-01

    The observed response of trees to hydrologic stress and distribution of trees in relation to habitat indicate that flooding, ground-water level, soil moisture, soil factors, and drainage characteristics exert a strong influence on bottomland forest species distribution. The dominant hydrologic factor influencing the distribution of bottomland tree species is flooding. Individual tree species are distributed as a function of frequency and duration of flooding. In the lower White and Ouachita River basins, the flood plains consist of a series of terraces, progressively higher terraces having less frequent flooding and less duration of flooding, and a significantly different composition of forest tree species. The sites studied can be divided into four basic groups and several subgroups on the basis of flood characteristics. On Group I (water hickory-overcup oak) sites, flooded near annually 32 to 40 percent of the time, the dominant species are water hickory and overcup oak. On Group II (nuttall oak) sites, flooded near annually 10 to 21 percent of the time, a more varied flora exists including nuttall oak, willow oak, sweetgum, southern hackberry, and American elm. The third group (Group III or shagbark hickory-southern red oak) of sites is flooded at intervals from 2 to 12 years. This group includes southern red oak, shagbark hickory, and black gum. The presence of blackjack oak in addition to Group III species marks Group IV (not flooded in historic time). (Kosco-USGS)

  1. Analyzing Future Flooding under Climate Change Scenario using CMIP5 Streamflow Data

    NASA Astrophysics Data System (ADS)

    Nyaupane, Narayan; Parajuli, Ranjan; Kalra, Ajay

    2017-12-01

    Flooding is the most severe and costlier natural hazard in US. The effect of climate change has intensified the scenario in recent years. Flood prevention practice along with proper understanding of flooding event can mitigate the risk of such hazard. The flood plain mapping is one of the technique to quantify the severity of the flooding. Carson City, which is one of the agricultural area in the desert of Nevada has experienced peak flood in recent year. The underlying probability distribution for the area, latest Coupled Model Intercomparison Project (CMIP5) streamflow data of Carson River were analyzed for 27 different statistical distributions. The best fitted distribution underlying was used to forecast the 100yr flood (design flood). The data from 1950-2099 derived from 31 model and total 97 projections were used to predict the future streamflow. Delta change method is adopted to quantify the amount of future (2050-2099) flood. To determine the extent of flooding 3 scenarios (i) historic design flood, (ii) 500yr flood and (iii) future 100yr flood were routed on a HEC-RAS model, prepared using available terrain data. Some of the climate projection shows extreme increase in future design flood. The future design flood could be more than the historic 500yr flood. At the same time, the extent of flooding could go beyond the historic flood of 0.2% annual probability. This study suggests an approach to quantify the future flood and floodplain using climate model projections. The study would provide helpful information to the facility manager, design engineer and stake holders.

  2. A comparison of moment-based methods of estimation for the log Pearson type 3 distribution

    NASA Astrophysics Data System (ADS)

    Koutrouvelis, I. A.; Canavos, G. C.

    2000-06-01

    The log Pearson type 3 distribution is a very important model in statistical hydrology, especially for modeling annual flood series. In this paper we compare the various methods based on moments for estimating quantiles of this distribution. Besides the methods of direct and mixed moments which were found most successful in previous studies and the well-known indirect method of moments, we develop generalized direct moments and generalized mixed moments methods and a new method of adaptive mixed moments. The last method chooses the orders of two moments for the original observations by utilizing information contained in the sample itself. The results of Monte Carlo experiments demonstrated the superiority of this method in estimating flood events of high return periods when a large sample is available and in estimating flood events of low return periods regardless of the sample size. In addition, a comparison of simulation and asymptotic results shows that the adaptive method may be used for the construction of meaningful confidence intervals for design events based on the asymptotic theory even with small samples. The simulation results also point to the specific members of the class of generalized moments estimates which maintain small values for bias and/or mean square error.

  3. And Then the Rains Came.

    ERIC Educational Resources Information Center

    Johnson, Betty D.

    1996-01-01

    Describes how the library staff at Stetson University in central Florida coped with flooding. Offers recommendations on storage; carpeting; fans and humidifiers; emergency phone contacts; labeled keys; protective coverings for books; safe storage for "disaster" materials and equipment; removal of less valuable materials; sandbags;…

  4. ON THE HYDRAULICS OF STREAM FLOW ROUTING WITH BANK STORAGE

    EPA Science Inventory

    Bank storage is a process in which volumes of water are temporally retained by alluvial stream banks during flood events, and gradually released to partially sustain baseflow. This process has important hydrologic and ecological implications. In this paper, analytical solutions a...

  5. Analyzing Future Flooding under Climate Change Scenario using CMIP5 Streamflow Data

    NASA Astrophysics Data System (ADS)

    Parajuli, Ranjan; Nyaupane, Narayan; Kalra, Ajay

    2017-12-01

    Flooding is a severe and costlier natural hazard. The effect of climate change has intensified the scenario in recent years. Flood prevention practice along with a proper understanding of flooding event can mitigate the risk of such hazard. The floodplain mapping is one of the technique to quantify the severity of the flooding. Carson City, which is one of the agricultural areas in the desert of Nevada has experienced peak flood in the recent year. The underlying probability distribution for the area, latest Coupled Model Intercomparison Project (CMIP5) streamflow data of Carson River were analyzed for 27 different statistical distributions. The best-fitted distribution underlying was used to forecast the 100yr flood (design flood). The data from 1950-2099 derived from 31 model and total 97 projections were used to predict the future streamflow. Delta change method is adopted to quantify the amount of future (2050-2099) flood. To determine the extent of flooding 3 scenarios (i) historic design flood, (ii) 500yr flood and (iii) future 100yr flood were routed on an HEC-RAS model, prepared using available terrain data. Some of the climate projection shows an extreme increase in future design flood. This study suggests an approach to quantify the future flood and floodplain using climate model projections. The study would provide helpful information to the facility manager, design engineer, and stakeholders.

  6. The weight of a storm: what observations of Earth surface deformation can tell us about Hurricane Harvey

    NASA Astrophysics Data System (ADS)

    Borsa, A. A.; Mencin, D.; van Dam, T. M.

    2017-12-01

    Hurricane Harvey was the first major hurricane to impact the USA in over a decade, making landfall southwest of Houston, TX on August 26, 2017. Although Harvey was downgraded to a tropical storm shortly after landfall, it dropped a record amount of rain and was responsible for epic flooding across much of southeast Texas. While precipitation from a large storm like Harvey can be estimated from in-situ rain gages and Doppler radar, the accompanying surface water changes that lead to flooding are imperfectly observed due to the limited coverage of existing stream and lake level gages and because floodwaters inundate areas that are typically unmonitored. Earth's response to changes in surface loading provides an opportunity to observe the local hydrological response to Hurricane Harvey, specifically the dramatic changes in water storage coincident with and following the storm. Continuous GPS stations in southeastern Texas observed an average drop in land surface elevations of 1.8 cm following Harvey's landfall, followed by a gradual recovery to pre-storm levels over the following month. We interpret this surface motion as Earth's elastic response to the weight of cumulative rainfall during the storm, followed by rebound as that weight was removed by runoff and evapotranspiration (ET). Using observations of surface displacements from GPS stations in the HoustonNET and Plate Boundary Observatory networks, we model the daily water storage changes across Texas and Louisiana associated with Harvey. Because Harvey's barometric pressure low caused surface uplift at the cm level which temporarily obscured the subsidence signal due to precipitation, we model and remove the effect of atmospheric loading from the GPS data prior to our analysis. We also consider the effect on GPS position time series of non-tidal ocean loading due to the hurricane storm surge, which at the coast was an order of magnitude larger than loads due to precipitation alone. Finally, we use our results to estimate 1) the total precipitation load from the storm, 2) the spatial distribution of flooding, and 3) the runoff/ET component of water storage changes (incorporating independent estimates of precipitation).

  7. Modeling of n-hexadecane and water sorption in wood

    Treesearch

    Ganna Baglayeva; Gautham Krishnamoorthy; Charles R. Frihart; Wayne S. Seamus; Jane O’Dell; Evguenii Kozliak

    2016-01-01

    Contamination of wooden framing structures with semivolatile organic chemicals is a common occurrence from the spillage of chemicals, such as impregnation with fuel oil hydrocarbons during floods. Little information is available to understand the penetration of fuel oil hydrocarbons into wood under ambient conditions. To imitate flood and storage scenarios, the...

  8. Reservoir sedimentation rates in the Little Washita River experimental watershed, Oklahoma: measurement and controlling factors

    USDA-ARS?s Scientific Manuscript database

    Forty-five flood control reservoirs, authorized in the United States Flood Control Act of 1936, were installed between 1969 and 1982 in the Little Washita River Experimental Watershed (LWREW), located in central Oklahoma. Over time, these reservoirs have lost water storage capacity due to sedimentat...

  9. Tropical stormwater floods: a sustainable solution

    NASA Astrophysics Data System (ADS)

    Molinie, Jack; Bade, Francois; Nagau, Jimmy; Nuiro, Paul

    2017-04-01

    Stormwater management is one of the most difficult problem of urban and suburban area. The urban runoff volume related to rain intensity and surfaces properties can lead to flood. Thereby, urban flooding creates considerable infrastructure problem, economics and human damages. In tropical countries, burgeoning human population coupled with unplanned urbanization altered the natural drainage. Consequently, classical intense rain around 100 cm/h produces frequent street flooding. In our case, we study the management of intense tropical rain, by using a network of individual rain storage tanks. The study area is economical and industrial zone installed in a coastal plain , with seventy per cent of impermeable surface (roads, parking lots, building roof, …) and thirty per cent of wetland (mangrove, …). Our solution is to delay the routes and parking lots runoff to the roof one. We propose sustainable individual water storage and a real time dynamical management, which permit to control the roof water arrival in the stormwater culvert. During the remaining time, the stored rainwater can be used for domestic activities instead of the use of drinking water.

  10. Implementing the national AIGA flash flood warning system in France

    NASA Astrophysics Data System (ADS)

    Organde, Didier; Javelle, Pierre; Demargne, Julie; Arnaud, Patrick; Caseri, Angelica; Fine, Jean-Alain; de Saint Aubin, Céline

    2015-04-01

    The French national hydro-meteorological and flood forecasting centre (SCHAPI) aims to implement a national flash flood warning system to improve flood alerts for small-to-medium (up to 1000 km2) ungauged basins. This system is based on the AIGA method, co-developed by IRSTEA these last 10 years. The method, initially set up for the Mediterranean area, is based on a simple event-based hourly hydrologic distributed model run every 15 minutes (Javelle et al. 2014). The hydrologic model ingests operational radar-gauge rainfall grids from Météo-France at a 1-km² resolution to produce discharges for successive outlets along the river network. Discharges are then compared to regionalized flood quantiles of given return periods and warnings (expressed as the range of the return period estimated in real-time) are provided on a river network map. The main interest of the method is to provide forecasters and emergency services with a synthetic view in real time of the ongoing flood situation, information that is especially critical in ungauged flood prone areas. In its enhanced national version, the hourly event-based distributed model is coupled to a continuous daily rainfall-runoff model which provides baseflow and a soil moisture index (for each 1-km² pixel) at the beginning of the hourly simulation. The rainfall-runoff models were calibrated on a selection of 700 French hydrometric stations with Météo-France radar-gauge reanalysis dataset for the 2002-2006 period. To estimate model parameters for ungauged basins, the 2 hydrologic models were regionalised by testing both regressions (using different catchment attributes, such as catchment area, soil type, and climate characteristic) and spatial proximity techniques (transposing parameters from neighbouring donor catchments), as well as different homogeneous hydrological areas. The most valuable regionalisation method was determined for each model through jack-knife cross-validation. The system performance was then evaluated with contingency criteria (e.g., Critical Success Index, Probability Of Detection, Success Ratio) using operational rainfall radar-gauge products from Météo-France for the 2009-2012 period. The regionalised parameters of the distributed model were finally adjusted for each homogeneous hydrological area to optimize the Heidke skill score (HSS) calculated with three levels of warnings (2-, 10- and 50-year flood quantiles). This work is currently being implemented by the SCHAPI to set up an automated national flash flood warning system by 2016. Planned improvements include developing a unique continuous model to be run at a sub-hourly timestep, discharge assimilation, as well as integrating precipitation forecasts while accounting for the main sources of forecast uncertainty. Javelle, P., Demargne, J., Defrance, D., and Arnaud, P. 2014. Evaluating flash flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system. Hydrological Sciences Journal, DOI: 10.1080/02626667.2014.923970

  11. A global assessment of the societal impacts of glacier outburst floods

    NASA Astrophysics Data System (ADS)

    Carrivick, Jonathan L.; Tweed, Fiona S.

    2016-09-01

    Glacier outburst floods are sudden releases of large amounts of water from a glacier. They are a pervasive natural hazard worldwide. They have an association with climate primarily via glacier mass balance and their impacts on society partly depend on population pressure and land use. Given the ongoing changes in climate and land use and population distributions there is therefore an urgent need to discriminate the spatio-temporal patterning of glacier outburst floods and their impacts. This study presents data compiled from 20 countries and comprising 1348 glacier floods spanning 10 centuries. Societal impacts were assessed using a relative damage index based on recorded deaths, evacuations, and property and infrastructure destruction and disruption. These floods originated from 332 sites; 70% were from ice-dammed lakes and 36% had recorded societal impact. The number of floods recorded has apparently reduced since the mid-1990s in all major world regions. Two thirds of sites that have produced > 5 floods (n = 32) have floods occurring progressively earlier in the year. Glacier floods have directly caused at least: 7 deaths in Iceland, 393 deaths in the European Alps, 5745 deaths in South America and 6300 deaths in central Asia. Peru, Nepal and India have experienced fewer floods yet higher levels of damage. One in five sites in the European Alps has produced floods that have damaged farmland, destroyed homes and damaged bridges; 10% of sites in South America have produced glacier floods that have killed people and damaged infrastructure; 15% of sites in central Asia have produced floods that have inundated farmland, destroyed homes, damaged roads and damaged infrastructure. Overall, Bhutan and Nepal have the greatest national-level economic consequences of glacier flood impacts. We recommend that accurate, full and standardised monitoring, recording and reporting of glacier floods is essential if spatio-temporal patterns in glacier flood occurrence, magnitude and societal impact are to be better understood. We note that future modelling of the global impact of glacier floods cannot assume that the same trends will continue and will need to consider combining land-use change with probability distributions of geomorphological responses to climate change and to human activity.

  12. The Design of Distributed Micro Grid Energy Storage System

    NASA Astrophysics Data System (ADS)

    Liang, Ya-feng; Wang, Yan-ping

    2018-03-01

    Distributed micro-grid runs in island mode, the energy storage system is the core to maintain the micro-grid stable operation. For the problems that it is poor to adjust at work and easy to cause the volatility of micro-grid caused by the existing energy storage structure of fixed connection. In this paper, an array type energy storage structure is proposed, and the array type energy storage system structure and working principle are analyzed. Finally, the array type energy storage structure model is established based on MATLAB, the simulation results show that the array type energy storage system has great flexibility, which can maximize the utilization of energy storage system, guarantee the reliable operation of distributed micro-grid and achieve the function of peak clipping and valley filling.

  13. Hydrological change: Towards a consistent approach to assess changes on both floods and droughts

    NASA Astrophysics Data System (ADS)

    Quesada-Montano, Beatriz; Di Baldassarre, Giuliano; Rangecroft, Sally; Van Loon, Anne F.

    2018-01-01

    Several studies have found that the frequency, magnitude and spatio-temporal distribution of droughts and floods have significantly increased in many regions of the world. Yet, most of the methods used in detecting trends in hydrological extremes 1) focus on either floods or droughts, and/or 2) base their assessment on characteristics that, even though useful for trend identification, cannot be directly used in decision making, e.g. integrated water resources management and disaster risk reduction. In this paper, we first discuss the need for a consistent approach to assess changes on both floods and droughts, and then propose a method based on the theory of runs and threshold levels. Flood and drought changes were assessed in terms of frequency, length and surplus/deficit volumes. This paper also presents an example application using streamflow data from two hydrometric stations along the Po River basin (Italy), Piacenza and Pontelagoscuro, and then discuss opportunities and challenges of the proposed method.

  14. Quantifying uranium transport rates and storage of fluvially eroded mine tailings from a historic mine site in the Grand Canyon Region

    NASA Astrophysics Data System (ADS)

    Skalak, K.; Benthem, A. J.; Walton-Day, K. E.; Jolly, G.

    2015-12-01

    The Grand Canyon region contains a large number of breccia pipes with economically viable uranium, copper, and silver concentrations. Mining in this region has occurred since the late 19th century and has produced ore and waste rock having elevated levels of uranium and other contaminants. Fluvial transport of these contaminants from mine sites is a possibility, as this arid region is susceptible to violent storms and flash flooding which might erode and mobilize ore or waste rock. In order to assess and manage the risks associated with uranium mining, it is important to understand the transport and storage rates of sediment and uranium within the ephemeral streams of this region. We are developing a 1-dimensional sediment transportation model to examine uranium transport and storage through a typical canyon system in this region. Our study site is Hack Canyon Mine, a uranium and copper mine site, which operated in the 1980's and is currently experiencing fluvial erosion of its waste rock repository. The mine is located approximately 40km upstream from the Colorado River and is in a deep, narrow canyon with a small watershed. The stream is ephemeral for the upper half of its length and sediment is primarily mobilized during flash flood events. We collected sediment samples at 110 locations longitudinally through the river system to examine the distribution of uranium in the stream. Samples were sieved to the sand size and below fraction (<2mm) and uranium was measured by gamma-ray spectroscopy. Sediment storage zones were also examined in the upper 8km of the system to determine where uranium is preferentially stored in canyon systems. This information will quantify the downstream transport of constituents associated with the Hack Canyon waste rock and contribute to understanding the risks associated with fluvial mobilization of uranium mine waste.

  15. Shortage and surplus of water in the socio-hydrological context

    NASA Astrophysics Data System (ADS)

    Schumann, A.; Nijssen, d.

    2014-09-01

    Balancing the temporal variability of hydrological conditions in the long- and short-term is often essential for steady socio-economic conditions. However, this equilibrium is very fragile in many cases. Hydrological changes or socio-economic changes may destroy it in a short time. If we extend the bearing capacity of socio-hydrological systems we increase, in many cases, the harmful consequences of failures. Here, two case studies are discussed to illustrate these problems. The limited success at adapting water resources to increasing human requirements without consideration of the natural capacities will be discussed with the example of water use for irrigation in northeastern China. The demand for a new planning approach, which is based on a combination of monitoring, model-based impact assessments and spatial distributed planning, is demonstrated. The problems of water surplus, which becomes evident during floods, are discussed in a second case study. It is shown that flood protection depends strongly on expectations of flood characteristics. The gap between the social requirement for complete flood prevention and the remaining risk of flood damage becomes obvious. An increase of risk-awareness would be more sustainable than promises of flood protection, which are the basis for technical measures to affect floods and (or) to prevent flood damages.

  16. City-scale accessibility of emergency responders operating during flood events

    NASA Astrophysics Data System (ADS)

    Green, Daniel; Yu, Dapeng; Pattison, Ian; Wilby, Robert; Bosher, Lee; Patel, Ramila; Thompson, Philip; Trowell, Keith; Draycon, Julia; Halse, Martin; Yang, Lili; Ryley, Tim

    2017-01-01

    Emergency responders often have to operate and respond to emergency situations during dynamic weather conditions, including floods. This paper demonstrates a novel method using existing tools and datasets to evaluate emergency responder accessibility during flood events within the city of Leicester, UK. Accessibility was quantified using the 8 and 10 min legislative targets for emergency provision for the ambulance and fire and rescue services respectively under "normal" no-flood conditions, as well as flood scenarios of various magnitudes (1 in 20-year, 1 in 100-year and 1 in 1000-year recurrence intervals), with both surface water and fluvial flood conditions considered. Flood restrictions were processed based on previous hydrodynamic inundation modelling undertaken and inputted into a Network Analysis framework as restrictions for surface water and fluvial flood events. Surface water flooding was shown to cause more disruption to emergency responders operating within the city due to its widespread and spatially distributed footprint when compared to fluvial flood events of comparable magnitude. Fire and rescue 10 min accessibility was shown to decrease from 100, 66.5, 39.8 and 26.2 % under the no-flood, 1 in 20-year, 1 in 100-year and 1 in 1000-year surface water flood scenarios respectively. Furthermore, total inaccessibility was shown to increase with flood magnitude from 6.0 % under the 1 in 20-year scenario to 31.0 % under the 1 in 100-year flood scenario. Additionally, the evolution of emergency service accessibility throughout a surface water flood event is outlined, demonstrating the rapid impact on emergency service accessibility within the first 15 min of the surface water flood event, with a reduction in service coverage and overlap being observed for the ambulance service during a 1 in 100-year flood event. The study provides evidence to guide strategic planning for decision makers prior to and during emergency response to flood events at the city scale. It also provides a readily transferable method for exploring the impacts of natural hazards or disruptions in other cities or regions based on historic, scenario-based events or real-time forecasting, if such data are available.

  17. A long-term comparison of carbon sequestration rates in impounded and naturally tidal freshwater marshes along the lower Waccamaw River, South Carolina

    USGS Publications Warehouse

    Drexler, Judith Z.; Krauss, Ken W.; Sasser, M. Craig; Fuller, Christopher C.; Swarzenski, Christopher M.; Powell, Amber; Swanson, Kathleen M.; Orlando, James L.

    2013-01-01

    Carbon storage was compared between impounded and naturally tidal freshwater marshes along the Lower Waccamaw River in South Carolina, USA. Soil cores were collected in (1) naturally tidal, (2) moist soil (impounded, seasonally drained since ~1970), and (3) deeply flooded “treatments” (impounded, flooded to ~90 cm since ~2002). Cores were analyzed for % organic carbon, % total carbon, bulk density, and 210Pb and 137Cs for dating purposes. Carbon sequestration rates ranged from 25 to 200 g C m−2 yr−1 (moist soil), 80–435 g C m−2 yr−1 (naturally tidal), and 100–250 g C m−2 yr−1 (deeply flooded). The moist soil and naturally tidal treatments were compared over a period of 40 years. The naturally tidal treatment had significantly higher carbon storage (mean = 219 g C m−2 yr−1 vs. mean = 91 g C m−2 yr−1) and four times the vertical accretion rate (mean = 0.84 cm yr−1 vs. mean = 0.21 cm yr−1) of the moist soil treatment. The results strongly suggest that the long drainage period in moist soil management limits carbon storage over time. Managers across the National Wildlife Refuge system have an opportunity to increase carbon storage by minimizing drainage in impoundments as much as practicable.

  18. Real Time Flood Alert System (RTFAS) for Puerto Rico

    USGS Publications Warehouse

    Lopez-Trujillo, Dianne

    2010-01-01

    The Real Time Flood Alert System is a web-based computer program, developed as a data integration tool, and designed to increase the ability of emergency managers to rapidly and accurately predict flooding conditions of streams in Puerto Rico. The system includes software and a relational database to determine the spatial and temporal distribution of rainfall, water levels in streams and reservoirs, and associated storms to determine hazardous and potential flood conditions. The computer program was developed as part of a cooperative agreement between the U.S. Geological Survey Caribbean Water Science Center and the Puerto Rico Emergency Management Agency, and integrates information collected and processed by these two agencies and the National Weather Service.

  19. Estimating flood hydrographs and volumes for Alabama streams

    USGS Publications Warehouse

    Olin, D.A.; Atkins, J.B.

    1988-01-01

    The hydraulic design of highway drainage structures involves an evaluation of the effect of the proposed highway structures on lives, property, and stream stability. Flood hydrographs and associated flood volumes are useful tools in evaluating these effects. For design purposes, the Alabama Highway Department needs information on flood hydrographs and volumes associated with flood peaks of specific recurrence intervals (design floods) at proposed or existing bridge crossings. This report will provide the engineer with a method to estimate flood hydrographs, volumes, and lagtimes for rural and urban streams in Alabama with drainage areas less than 500 sq mi. Existing computer programs and methods to estimate flood hydrographs and volumes for ungaged streams have been developed in Georgia. These computer programs and methods were applied to streams in Alabama. The report gives detailed instructions on how to estimate flood hydrographs for ungaged rural or urban streams in Alabama with drainage areas less than 500 sq mi, without significant in-channel storage or regulations. (USGS)

  20. Long-lasting floods buffer the thermal regime of the Pampas

    NASA Astrophysics Data System (ADS)

    Houspanossian, Javier; Kuppel, Sylvain; Nosetto, Marcelo; Di Bella, Carlos; Oricchio, Patricio; Barrucand, Mariana; Rusticucci, Matilde; Jobbágy, Esteban

    2018-01-01

    The presence of large water masses influences the thermal regime of nearby land shaping the local climate of coastal areas by the ocean or large continental lakes. Large surface water bodies have an ephemeral nature in the vast sedimentary plains of the Pampas (Argentina) where non-flooded periods alternate with flooding cycles covering up to one third of the landscape for several months. Based on temperature records from 17 sites located 1 to 700 km away from the Atlantic coast and MODIS land surface temperature data, we explore the effects of floods on diurnal and seasonal thermal ranges as well as temperature extremes. In non-flooded periods, there is a linear increase of mean diurnal thermal range (DTR) from the coast towards the interior of the region (DTR increasing from 10 to 16 K, 0.79 K/100 km, r 2 = 0.81). This relationship weakens during flood episodes when the DTR of flood-prone inland locations shows a decline of 2 to 4 K, depending on surface water coverage in the surrounding area. DTR even approaches typical coastal values 500 km away from the ocean in the most flooded location that we studied during the three flooding cycles recorded in the study period. Frosts-free periods, a key driver of the phenology of both natural and cultivated ecosystems, are extended by up to 55 days during floods, most likely as a result of enhanced ground heat storage across the landscape ( 2.7 fold change in day-night heat transfer) combined with other effects on the surface energy balance such as greater night evaporation rates. The reduced thermal range and longer frost-free periods affect plant growth development and may offer an opportunity for longer crop growing periods, which may not only contribute to partially compensating for regional production losses caused by floods, but also open avenues for flood mitigation through higher plant evapotranspirative water losses.

  1. Evaluation of flash-flood discharge forecasts in complex terrain using precipitation

    USGS Publications Warehouse

    Yates, D.; Warner, T.T.; Brandes, E.A.; Leavesley, G.H.; Sun, Jielun; Mueller, C.K.

    2001-01-01

    Operational prediction of flash floods produced by thunderstorm (convective) precipitation in mountainous areas requires accurate estimates or predictions of the precipitation distribution in space and time. The details of the spatial distribution are especially critical in complex terrain because the watersheds are generally small in size, and small position errors in the forecast or observed placement of the precipitation can distribute the rain over the wrong watershed. In addition to the need for good precipitation estimates and predictions, accurate flood prediction requires a surface-hydrologic model that is capable of predicting stream or river discharge based on the precipitation-rate input data. Different techniques for the estimation and prediction of convective precipitation will be applied to the Buffalo Creek, Colorado flash flood of July 1996, where over 75 mm of rain from a thunderstorm fell on the watershed in less than 1 h. The hydrologic impact of the precipitation was exacerbated by the fact that a significant fraction of the watershed experienced a wildfire approximately two months prior to the rain event. Precipitation estimates from the National Weather Service's operational Weather Surveillance Radar-Doppler 1988 and the National Center for Atmospheric Research S-band, research, dual-polarization radar, colocated to the east of Denver, are compared. In addition, very short range forecasts from a convection-resolving dynamic model, which is initialized variationally using the radar reflectivity and Doppler winds, are compared with forecasts from an automated-algorithmic forecast system that also employs the radar data. The radar estimates of rain rate, and the two forecasting systems that employ the radar data, have degraded accuracy by virtue of the fact that they are applied in complex terrain. Nevertheless, the radar data and forecasts from the dynamic model and the automated algorithm could be operationally useful for input to surface-hydrologic models employed for flood warning. Precipitation data provided by these various techniques at short time scales and at fine spatial resolutions are employed as detailed input to a distributed-parameter hydrologic model for flash-flood prediction and analysis. With the radar-based precipitation estimates employed as input, the simulated flood discharge was similar to that observed. The dynamic-model precipitation forecast showed the most promise in providing a significant discharge-forecast lead time. The algorithmic system's precipitation forecast did not demonstrate as much skill, but the associated discharge forecast would still have been sufficient to have provided an alert of impending flood danger.

  2. An Integrated Ensemble-Based Operational Framework to Predict Urban Flooding: A Case Study of Hurricane Sandy in the Passaic and Hackensack River Basins

    NASA Astrophysics Data System (ADS)

    Saleh, F.; Ramaswamy, V.; Georgas, N.; Blumberg, A. F.; Wang, Y.

    2016-12-01

    Advances in computational resources and modeling techniques are opening the path to effectively integrate existing complex models. In the context of flood prediction, recent extreme events have demonstrated the importance of integrating components of the hydrosystem to better represent the interactions amongst different physical processes and phenomena. As such, there is a pressing need to develop holistic and cross-disciplinary modeling frameworks that effectively integrate existing models and better represent the operative dynamics. This work presents a novel Hydrologic-Hydraulic-Hydrodynamic Ensemble (H3E) flood prediction framework that operationally integrates existing predictive models representing coastal (New York Harbor Observing and Prediction System, NYHOPS), hydrologic (US Army Corps of Engineers Hydrologic Modeling System, HEC-HMS) and hydraulic (2-dimensional River Analysis System, HEC-RAS) components. The state-of-the-art framework is forced with 125 ensemble meteorological inputs from numerical weather prediction models including the Global Ensemble Forecast System, the European Centre for Medium-Range Weather Forecasts (ECMWF), the Canadian Meteorological Centre (CMC), the Short Range Ensemble Forecast (SREF) and the North American Mesoscale Forecast System (NAM). The framework produces, within a 96-hour forecast horizon, on-the-fly Google Earth flood maps that provide critical information for decision makers and emergency preparedness managers. The utility of the framework was demonstrated by retrospectively forecasting an extreme flood event, hurricane Sandy in the Passaic and Hackensack watersheds (New Jersey, USA). Hurricane Sandy caused significant damage to a number of critical facilities in this area including the New Jersey Transit's main storage and maintenance facility. The results of this work demonstrate that ensemble based frameworks provide improved flood predictions and useful information about associated uncertainties, thus improving the assessment of risks as when compared to a deterministic forecast. The work offers perspectives for short-term flood forecasts, flood mitigation strategies and best management practices for climate change scenarios.

  3. Effect of citizen engagement levels in flood forecasting by assimilating crowdsourced observations in hydrological models

    NASA Astrophysics Data System (ADS)

    Mazzoleni, Maurizio; Cortes Arevalo, Juliette; Alfonso, Leonardo; Wehn, Uta; Norbiato, Daniele; Monego, Martina; Ferri, Michele; Solomatine, Dimitri

    2017-04-01

    In the past years, a number of methods have been proposed to reduce uncertainty in flood prediction by means of model updating techniques. Traditional physical observations are usually integrated into hydrological and hydraulic models to improve model performances and consequent flood predictions. Nowadays, low-cost sensors can be used for crowdsourced observations. Different type of social sensors can measure, in a more distributed way, physical variables such as precipitation and water level. However, these crowdsourced observations are not integrated into a real-time fashion into water-system models due to their varying accuracy and random spatial-temporal coverage. We assess the effect in model performance due to the assimilation of crowdsourced observations of water level. Our method consists in (1) implementing a Kalman filter into a cascade of hydrological and hydraulic models. (2) defining observation errors depending on the type of sensor either physical or social. Randomly distributed errors are based on accuracy ranges that slightly improve according to the citizens' expertise level. (3) Using a simplified social model to realistically represent citizen engagement levels based on population density and citizens' motivation scenarios. To test our method, we synthetically derive crowdsourced observations for different citizen engagement levels from a distributed network of physical and social sensors. The observations are assimilated during a particular flood event occurred in the Bacchiglione catchment, Italy. The results of this study demonstrate that sharing crowdsourced water level observations (often motivated by a feeling of belonging to a community of friends) can help in improving flood prediction. On the other hand, a growing participation of individual citizens or weather enthusiasts sharing hydrological observations in cities can help to improve model performance. This study is a first step to assess the effects of crowdsourced observations in flood model predictions. Effective communication and feedback about the quality of observations from water authorities to engaged citizens are further required to minimize their intrinsic low-variable accuracy.

  4. Application of a distributed process-based hydrologic model to estimate the effects of forest road density on stormflows in the Southern Appalachians

    Treesearch

    Salli F. Dymond; W. Michael Aust; Stephen P. Prisley; Mark H. Eisenbies; James M. Vose

    2014-01-01

    Managed forests have historically been linked to watershed protection and flood mitigation. Research indicates that forests can potentially minimize peak flows during storm events, yet the relationship between forests and flooding is complex. Forest roads, usually found in managed systems, can potentially magnify the effects of forest harvesting on water yields. The...

  5. Glacial vs. Interglacial Period Contrasts in Midlatitude Fluvial Systems, with Examples from Western Europe and the Texas Coastal Plain

    NASA Astrophysics Data System (ADS)

    Blum, M.

    2001-12-01

    Mixed bedrock-alluvial valleys are the conveyor belts for sediment delivery to passive continental margins. Mapping, stratigraphic and sedimentologic investigations, and development of geochronological frameworks for large midlatitude rivers of this type, in Western Europe and the Texas Coastal Plain, provide for evaluation of fluvial responses to climate change over the last glacial-interglacial period, and the foundations for future quantitative evaluation of long profile evolution, changes through time in flood magnitude, and changes in storage and flux of sediments. This paper focuses on two issues. First, glacial vs. interglacial period fluvial systems are fundamentally different in terms of channel geometry, depositional style, and patterns of sediment storage. Glacial-period systems were dominated by coarse-grained channel belts (braided channels in Europe, large-wavelength meandering in Texas), and lacked fine-grained flood-plain deposits, whereas Holocene units, especially those of late Holocene age, contain appreciable thicknesses of flood-plain facies. Hence, extreme overbank flooding was not significant during the long glacial period, most flood events were contained within bankfull channel perimeters, and fine sediments were bypassed through the system to marine basins. By contrast, extreme overbank floods have been increasingly important during the relatively short Holocene, and a significant volume of fine sediment is sequestered in flood-plain settings. Second, glacial vs. interglacial systems exhibit different amplitudes and frequencies of fluvial adjustment to climate change. High-amplitude but low-frequency adjustments characterized the long glacial period, with 2-3 extended periods of lateral migration and sediment storage puncuated by episodes of valley incision. Low-amplitude but high-frequency adjustments have been more typical of the short Holocene, when there has been little net valley incision or net changes in sediment storage, but frequent changes in the magnitude and frequency of floods and periods of overbank flooding. This high-frequency signal is absent in landforms and deposits from the glacial period. Glacial vs. interglacial contrasts in process and stratigraphic results are the rule in most large unglaciated fluvial systems. 70-80 percent or more of any 100 kyr glacial-interglacial cycle is characterized by significant ice volume, cooler temperatures, mid-shelf or lower sea-level positions, and cooler-smaller ocean basins. A glacial-period process regime is therefore the norm, and an interglacial regime like that of the late Holocene is relatively unique and non-representative. Large unglaciated midlatitude fluvial systems may be in long-term equilibrium with a glacial-period environment, with long profiles graded to glacial-period sea-level positions, so fluvial systems respond to major changes in climate, discharge regimes, and sediment loads, but they appear to have been relatively insensitive to higher-frequency changes. Short interglacials like the Holocene are, by comparison, periods of abnormally high sea levels and relatively low-amplitude climate changes, but fluvial systems appear to exhibit a greatly increased sensitivity to subtle changes in discharge regimes that produce frequent periods of disequilibrium.

  6. Rapid Global River Flood Risk Assessment under Climate and Socioeconomic Scenarios: An Extreme Case of Eurasian region

    NASA Astrophysics Data System (ADS)

    Kwak, Young-joo; Magome, Jun; Hasegawa, Akira; Iwami, Yoichi

    2017-04-01

    Causing widespread devastation with massive economic damage and loss of human lives, flood disasters hamper economic growth and accelerate poverty particularly in developing countries. Globally, this trend will likely continue due to increase in flood magnitude and lack of preparedness for extreme events. In line with risk reduction efforts since the early 21st century, the monitors and governors of global river floods should pay attention to international scientific and policy communities for support to facilitate evidence-based policy making with a special interest in long-term changes due to climate change and socio-economic effects. Although advanced hydrological inundation models and risk models have been developed to reveal flood risk, hazard, exposure, and vulnerability at a river basin, it is obviously hard to identify the distribution and locations of continent-level flood risk based on national-level data. Therefore, we propose a methodological possibility for rapid global flood risk assessment with the results from its application to the two periods, i.e., Present (from 1980 to 2004) and Future (from 2075 to 2099). The method is particularly designed to effectively simplify complexities of a hazard area by calculating the differential inundation depth using GFID2M (global flood inundation depth 2-dimension model), despite low data availability. In this research, we addressed the question of which parts in the Eurasian region (8E to 180E, 0N to 60N) can be found as high-risk areas in terms of exposed population and economy in case of a 50-year return period flood. Economic losses were estimated according to the Shared Socioeconomic Pathways (SSP) scenario, and the flood scale was defined using the annual maximum daily river discharge under the extreme conditions of climate change simulated with MRI-AGCM3.2S based on the Representative Concentration Pathways (RCP8.5) emissions scenario. As a preliminary result, the total potential economic loss in the Eurasian region was identified as an upward trend proportional to projected vulnerable population based on distributed data of global population (Landscan 2009 by the Oak Ridge National Laboratory) coupled with SSP Gross Domestic Product (GDP) per capita in the future. The differences between Present and Future in physical exposure and potential economic losses are projected to increase approximately 305 million affected people and approximately 3 % of the total GDP (US 2400 billion) potential damage, respectively, in terms of climate change and socioeconomic impacts.

  7. Rainfall Threshold for Flash Flood Early Warning Based on Rational Equation: A Case Study of Zuojiao Watershed in Yunnan Province

    NASA Astrophysics Data System (ADS)

    Li, Q.; Wang, Y. L.; Li, H. C.; Zhang, M.; Li, C. Z.; Chen, X.

    2017-12-01

    Rainfall threshold plays an important role in flash flood warning. A simple and easy method, using Rational Equation to calculate rainfall threshold, was proposed in this study. The critical rainfall equation was deduced from the Rational Equation. On the basis of the Manning equation and the results of Chinese Flash Flood Survey and Evaluation (CFFSE) Project, the critical flow was obtained, and the net rainfall was calculated. Three aspects of the rainfall losses, i.e. depression storage, vegetation interception, and soil infiltration were considered. The critical rainfall was the sum of the net rainfall and the rainfall losses. Rainfall threshold was estimated after considering the watershed soil moisture using the critical rainfall. In order to demonstrate this method, Zuojiao watershed in Yunnan Province was chosen as study area. The results showed the rainfall thresholds calculated by the Rational Equation method were approximated to the rainfall thresholds obtained from CFFSE, and were in accordance with the observed rainfall during flash flood events. Thus the calculated results are reasonable and the method is effective. This study provided a quick and convenient way to calculated rainfall threshold of flash flood warning for the grass root staffs and offered technical support for estimating rainfall threshold.

  8. The influence of pore structure parameters on the digital core recovery degree

    NASA Astrophysics Data System (ADS)

    Xia, Huifen; Zhao, Ling; Sun, Yanyu; Yuan, Shi

    2017-05-01

    Constructing digital core in the research of water flooding or polymer flooding oil displacement efficiency has its unique advantage. Using mercury injection experiment measured pore throat size distribution frequency, coordination number measured by CT scanning method and imbibition displacement method is used to measure the wettability of the data, on the basis of considering pore throat ratio, wettability, using the principle of adaptive porosity, on the basis of fitting the permeability to complete the construction of digital core. The results show that the model of throat distribution is concentrated water flooding recovery degree is higher, and distribution is more decentralized model polymer flooding recovery degree is higher. Around the same number of PV in poly, coordination number model of water flooding and polymer flooding recovery degree is higher.

  9. Analysis of flood hazard under consideration of dike breaches

    NASA Astrophysics Data System (ADS)

    Vorogushyn, S.; Apel, H.; Lindenschmidt, K.-E.; Merz, B.

    2009-04-01

    The study focuses on the development and application of a new modelling system which allows a comprehensive flood hazard assessment along diked river reaches under consideration of dike failures. The proposed Inundation Hazard Assessment Model (IHAM) represents a hybrid probabilistic-deterministic model. It comprises three models interactively coupled at runtime. These are: (1) 1D unsteady hydrodynamic model of river channel and floodplain flow between dikes, (2) probabilistic dike breach model which determines possible dike breach locations, breach widths and breach outflow discharges, and (3) 2D raster-based diffusion wave storage cell model of the hinterland areas behind the dikes. Due to the unsteady nature of the 1D and 2D coupled models, the dependence between hydraulic load at various locations along the reach is explicitly considered. The probabilistic dike breach model describes dike failures due to three failure mechanisms: overtopping, piping and slope instability caused by the seepage flow through the dike core (micro-instability). Dike failures for each mechanism are simulated based on fragility functions. The probability of breach is conditioned by the uncertainty in geometrical and geotechnical dike parameters. The 2D storage cell model driven by the breach outflow boundary conditions computes an extended spectrum of flood intensity indicators such as water depth, flow velocity, impulse, inundation duration and rate of water rise. IHAM is embedded in a Monte Carlo simulation in order to account for the natural variability of the flood generation processes reflected in the form of input hydrographs and for the randomness of dike failures given by breach locations, times and widths. The scenario calculations for the developed synthetic input hydrographs for the main river and tributary were carried out for floods with return periods of T = 100; 200; 500; 1000 a. Based on the modelling results, probabilistic dike hazard maps could be generated that indicate the failure probability of each discretised dike section for every scenario magnitude. Besides the binary inundation patterns that indicate the probability of raster cells being inundated, IHAM generates probabilistic flood hazard maps. These maps display spatial patterns of the considered flood intensity indicators and their associated return periods. The probabilistic nature of IHAM allows for the generation of percentile flood hazard maps that indicate the median and uncertainty bounds of the flood intensity indicators. The uncertainty results from the natural variability of the flow hydrographs and randomness of dike breach processes. The same uncertainty sources determine the uncertainty in the flow hydrographs along the study reach. The simulations showed that the dike breach stochasticity has an increasing impact on hydrograph uncertainty in downstream direction. Whereas in the upstream part of the reach the hydrograph uncertainty is mainly stipulated by the variability of the flood wave form, the dike failures strongly shape the uncertainty boundaries in the downstream part of the reach. Finally, scenarios of polder deployment for the extreme floods with T = 200; 500; 1000 a were simulated with IHAM. The results indicate a rather weak reduction of the mean and median flow hydrographs in the river channel. However, the capping of the flow peaks resulted in a considerable reduction of the overtopping failures downstream of the polder with a simultaneous slight increase of the piping and slope micro-instability frequencies explained by a more durable average impoundment. The developed IHAM simulation system represents a new scientific tool for studying fluvial inundation dynamics under extreme conditions incorporating effects of technical flood protection measures. With its major outputs in form of novel probabilistic inundation and dike hazard maps, the IHAM system has a high practical value for decision support in flood management.

  10. Flood predictions using the parallel version of distributed numerical physical rainfall-runoff model TOPKAPI

    NASA Astrophysics Data System (ADS)

    Boyko, Oleksiy; Zheleznyak, Mark

    2015-04-01

    The original numerical code TOPKAPI-IMMS of the distributed rainfall-runoff model TOPKAPI ( Todini et al, 1996-2014) is developed and implemented in Ukraine. The parallel version of the code has been developed recently to be used on multiprocessors systems - multicore/processors PC and clusters. Algorithm is based on binary-tree decomposition of the watershed for the balancing of the amount of computation for all processors/cores. Message passing interface (MPI) protocol is used as a parallel computing framework. The numerical efficiency of the parallelization algorithms is demonstrated for the case studies for the flood predictions of the mountain watersheds of the Ukrainian Carpathian regions. The modeling results is compared with the predictions based on the lumped parameters models.

  11. Evaluation of Seasonality in Shallow Groundwater Dynamics and Storage in an Urban Prairie Nature Preserve Using a High-Frequency Sensing Network

    NASA Astrophysics Data System (ADS)

    Rivera, V. A.; Hernandez-Gonzalez, L. M.; Phillips, C. B.; Nair, A.; Negri, M. C.; Gnaedinger, K. J.; Miller, W. M.; Packman, A. I.

    2017-12-01

    Changing regional climate applies stresses to urban areas in the form of altered weather patterns, requiring new strategies for stormwater runoff management and flood mitigation. At the same time, the proportion of people residing in urban areas is increasing and cities are turning to greenspace as a tool for managing runoff. Gensburg Markham Prairie (GMP), located in Markham, Illinois south of Chicago, is an urban prairie nature preserve and a U.S. National Natural Landmark. Owned by Northeastern Illinois University and managed by the Nature Conservancy, GMP receives runoff from surrounding urban areas and provides valuable stormwater storage, while also hosting high biodiversity and providing critical habitat for sensitive and endemic. A successful management strategy for GMP should preserve both of these valuable ecosystem services. To understand GMP's role within the urban environment, we installed a suite of instruments in 2016 and 2017 to measure surface and groundwater levels, rainfall, soil moisture, and electrical conductivity throughout the prairie. This monitoring network includes 40 sensors collecting high frequency data (every 30 minutes). We are also collecting monthly distributed surface and groundwater samples to quantify a range of anions and cations that signal potentially detrimental anthropogenic impacts on the prairie. In addition, we are using historical and ongoing plant distribution surveys to explore the interactions between spatial patterns in vegetation and water dynamics in the prairie. The high measurement frequency and large diversity of sensor types supports holistic investigation of the response of the prairie to diverse events, including summer thunderstorms, winter road salt runoff, and spring snowmelt. The 18 months of data collected to date reveals clear patterns in response to weather events with influence from soil type and spatial variables. We are using time-series analysis with MODFLOW modelling to explore surface-groundwater interactions within the site and the effects of seasonality on the prairie's capacity for storage of stormwater runoff. This analysis supports development of management strategies to preserve the prairie's ecological diversity and provide a basis for regional-scale design of green infrastructure for flood control.

  12. Lake Storage Measurements For Water Resources Management: Combining Remotely Sensed Water Levels and Surface Areas

    NASA Astrophysics Data System (ADS)

    Brakenridge, G. R.; Birkett, C. M.

    2013-12-01

    Presently operating satellite-based radar altimeters have the ability to monitor variations in surface water height for large lakes and reservoirs, and future sensors will expand observational capabilities to many smaller water bodies. Such remote sensing provides objective, independent information where in situ data are lacking or access is restricted. A USDA/NASA (http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/) program is performing operational altimetric monitoring of the largest lakes and reservoirs around the world using data from the NASA/CNES, NRL, and ESA missions. Public lake-level products from the Global Reservoir and Lake Monitor (GRLM) are a combination of archived and near real time information. The USDA/FAS utilizes the products for assessing international irrigation potential and for crop production estimates; other end-users study climate trends, observe anthropogenic effects, and/or are are involved in other water resources management and regional water security issues. At the same time, the Dartmouth Flood Observatory (http://floodobservatory.colorado.edu/), its NASA GSFC partners (http://oas.gsfc.nasa.gov/floodmap/home.html), and associated MODIS data and automated processing algorithms are providing public access to a growing GIS record of the Earth's changing surface water extent, including changes related to floods and droughts. The Observatory's web site also provide both archival and near real time information, and is based mainly on the highest spatial resolution (250 m) MODIS bands. Therefore, it is now possible to provide on an international basis reservoir and lake storage change measurements entirely from remote sensing, on a frequently updating basis. The volume change values are based on standard numerical procedures used for many decades for analysis of coeval lake area and height data. We provide first results of this combination, including prototype displays for public access and data retrieval of water storage volume changes. Ground-based data can, in some cases, test the remote sensing accuracy and precision. Data accuracy requirements vary for different applications: reservoir management for flood control, agriculture, or power generation may need more accurate and timely information than (for example) regional assessments of water and food security issues. Thus, the long-term goal for the hydrological sciences community should be to efficiently mesh both types of information and with as extensive geographic coverage as possible.

  13. A Fresh Start for Flood Estimation in Ungauged Basins

    NASA Astrophysics Data System (ADS)

    Woods, R. A.

    2017-12-01

    The two standard methods for flood estimation in ungauged basins, regression-based statistical models and rainfall-runoff models using a design rainfall event, have survived relatively unchanged as the methods of choice for more than 40 years. Their technical implementation has developed greatly, but the models' representation of hydrological processes has not, despite a large volume of hydrological research. I suggest it is time to introduce more hydrology into flood estimation. The reliability of the current methods can be unsatisfactory. For example, despite the UK's relatively straightforward hydrology, regression estimates of the index flood are uncertain by +/- a factor of two (for a 95% confidence interval), an impractically large uncertainty for design. The standard error of rainfall-runoff model estimates is not usually known, but available assessments indicate poorer reliability than statistical methods. There is a practical need for improved reliability in flood estimation. Two promising candidates to supersede the existing methods are (i) continuous simulation by rainfall-runoff modelling and (ii) event-based derived distribution methods. The main challenge with continuous simulation methods in ungauged basins is to specify the model structure and parameter values, when calibration data are not available. This has been an active area of research for more than a decade, and this activity is likely to continue. The major challenges for the derived distribution method in ungauged catchments include not only the correct specification of model structure and parameter values, but also antecedent conditions (e.g. seasonal soil water balance). However, a much smaller community of researchers are active in developing or applying the derived distribution approach, and as a result slower progress is being made. A change in needed: surely we have learned enough about hydrology in the last 40 years that we can make a practical hydrological advance on our methods for flood estimation! A shift to new methods for flood estimation will not be taken lightly by practitioners. However, the standard for change is clear - can we develop new methods which give significant improvements in reliability over those existing methods which are demonstrably unsatisfactory?

  14. Adequacy of satellite derived rainfall data for stream flow modeling

    USGS Publications Warehouse

    Artan, G.; Gadain, Hussein; Smith, Jodie; Asante, Kwasi; Bandaragoda, C.J.; Verdin, J.P.

    2007-01-01

    Floods are the most common and widespread climate-related hazard on Earth. Flood forecasting can reduce the death toll associated with floods. Satellites offer effective and economical means for calculating areal rainfall estimates in sparsely gauged regions. However, satellite-based rainfall estimates have had limited use in flood forecasting and hydrologic stream flow modeling because the rainfall estimates were considered to be unreliable. In this study we present the calibration and validation results from a spatially distributed hydrologic model driven by daily satellite-based estimates of rainfall for sub-basins of the Nile and Mekong Rivers. The results demonstrate the usefulness of remotely sensed precipitation data for hydrologic modeling when the hydrologic model is calibrated with such data. However, the remotely sensed rainfall estimates cannot be used confidently with hydrologic models that are calibrated with rain gauge measured rainfall, unless the model is recalibrated. ?? Springer Science+Business Media, Inc. 2007.

  15. Wetland storage to reduce flood damages in the Red River

    Treesearch

    Steven Shultz

    2000-01-01

    The restoration of previously drained wetlands to store water was not found to be an economically feasible strategy to reduce flood related damages in two sub-watersheds of the Red River Valley (the Maple River Watershed in North Dakota, and the Wild Rice Watershed of Minnesota). Restoring wetlands, while providing full ecological services, was less feasible, even...

  16. Nonstationary decision model for flood risk decision scaling

    NASA Astrophysics Data System (ADS)

    Spence, Caitlin M.; Brown, Casey M.

    2016-11-01

    Hydroclimatic stationarity is increasingly questioned as a default assumption in flood risk management (FRM), but successor methods are not yet established. Some potential successors depend on estimates of future flood quantiles, but methods for estimating future design storms are subject to high levels of uncertainty. Here we apply a Nonstationary Decision Model (NDM) to flood risk planning within the decision scaling framework. The NDM combines a nonstationary probability distribution of annual peak flow with optimal selection of flood management alternatives using robustness measures. The NDM incorporates structural and nonstructural FRM interventions and valuation of flows supporting ecosystem services to calculate expected cost of a given FRM strategy. A search for the minimum-cost strategy under incrementally varied representative scenarios extending across the plausible range of flood trend and value of the natural flow regime discovers candidate FRM strategies that are evaluated and compared through a decision scaling analysis (DSA). The DSA selects a management strategy that is optimal or close to optimal across the broadest range of scenarios or across the set of scenarios deemed most likely to occur according to estimates of future flood hazard. We illustrate the decision framework using a stylized example flood management decision based on the Iowa City flood management system, which has experienced recent unprecedented high flow episodes. The DSA indicates a preference for combining infrastructural and nonstructural adaptation measures to manage flood risk and makes clear that options-based approaches cannot be assumed to be "no" or "low regret."

  17. RainyDay: An Online, Open-Source Tool for Physically-based Rainfall and Flood Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Wright, D.; Yu, G.; Holman, K. D.

    2017-12-01

    Flood frequency analysis in ungaged or changing watersheds typically requires rainfall intensity-duration-frequency (IDF) curves combined with hydrologic models. IDF curves only depict point-scale rainfall depth, while true rainstorms exhibit complex spatial and temporal structures. Floods result from these rainfall structures interacting with watershed features such as land cover, soils, and variable antecedent conditions as well as river channel processes. Thus, IDF curves are traditionally combined with a variety of "design storm" assumptions such as area reduction factors and idealized rainfall space-time distributions to translate rainfall depths into inputs that are suitable for flood hydrologic modeling. The impacts of such assumptions are relatively poorly understood. Meanwhile, modern precipitation estimates from gridded weather radar, grid-interpolated rain gages, satellites, and numerical weather models provide more realistic depictions of rainfall space-time structure. Usage of such datasets for rainfall and flood frequency analysis, however, are hindered by relatively short record lengths. We present RainyDay, an open-source stochastic storm transposition (SST) framework for generating large numbers of realistic rainfall "scenarios." SST "lengthens" the rainfall record by temporal resampling and geospatial transposition of observed storms to extract space-time information from regional gridded rainfall data. Relatively short (10-15 year) records of bias-corrected radar rainfall data are sufficient to estimate rainfall and flood events with much longer recurrence intervals including 100-year and 500-year events. We describe the SST methodology as implemented in RainyDay and compare rainfall IDF results from RainyDay to conventional estimates from NOAA Atlas 14. Then, we demonstrate some of the flood frequency analysis properties that are possible when RainyDay is integrated with a distributed hydrologic model, including robust estimation of flood hazards in a changing watershed. The U.S. Bureau of Reclamation is supporting the development of a web-based variant of RainyDay, a "beta" version of which is available at http://her.cee.wisc.edu/projects/rainyday/.

  18. Hydrograph simulation models of the Hillsborough and Alafia Rivers, Florida: a preliminary report

    USGS Publications Warehouse

    Turner, James F.

    1972-01-01

    Mathematical (digital) models that simulate flood hydrographs from rainfall records have been developed for the following gaging stations in the Hillsborough and Alafia River basins of west-central Florida: Hillsborough River near Tampa, Alafia River at Lithia, and north Prong Alafia River near Keysville. These models, which were developed from historical streamflow and and rainfall records, are based on rainfall-runoff and unit-hydrograph procedures involving an arbitrary separation of the flood hydrograph. These models assume the flood hydrograph to be composed of only two flow components, direct (storm) runoff, and base flow. Expressions describing these two flow components are derived from streamflow and rainfall records and are combined analytically to form algorithms (models), which are programmed for processing on a digital computing system. Most Hillsborough and Alafia River flood discharges can be simulated with expected relative errors less than or equal to 30 percent and flood peaks can be simulated with average relative errors less than 15 percent. Because of the inadequate rainfall network that is used in obtaining input data for the North Prong Alafia River model, simulated peaks are frequently in error by more than 40 percent, particularly for storms having highly variable areal rainfall distribution. Simulation errors are the result of rainfall sample errors and, to a lesser extent, model inadequacy. Data errors associated with the determination of mean basin precipitation are the result of the small number and poor areal distribution of rainfall stations available for use in the study. Model inadequacy, however, is attributed to the basic underlying theory, particularly the rainfall-runoff relation. These models broaden and enhance existing water-management capabilities within these basins by allowing the establishment and implementation of programs providing for continued development in these areas. Specifically, the models serve not only as a basis for forecasting floods, but also for simulating hydrologic information needed in flood-plain mapping and delineating and evaluating alternative flood control and abatement plans.

  19. Integrating a Typhoon Event Database with an Optimal Flood Operation Model on the Real-Time Flood Control of the Tseng-Wen Reservoir

    NASA Astrophysics Data System (ADS)

    Chen, Y. W.; Chang, L. C.

    2012-04-01

    Typhoons which normally bring a great amount of precipitation are the primary natural hazard in Taiwan during flooding season. Because the plentiful rainfall quantities brought by typhoons are normally stored for the usage of the next draught period, the determination of release strategies for flood operation of reservoirs which is required to simultaneously consider not only the impact of reservoir safety and the flooding damage in plain area but also for the water resource stored in the reservoir after typhoon becomes important. This study proposes a two-steps study process. First, this study develop an optimal flood operation model (OFOM) for the planning of flood control and also applies the OFOM on Tseng-wun reservoir and the downstream plain related to the reservoir. Second, integrating a typhoon event database with the OFOM mentioned above makes the proposed planning model have ability to deal with a real-time flood control problem and names as real-time flood operation model (RTFOM). Three conditions are considered in the proposed models, OFOM and RTFOM, include the safety of the reservoir itself, the reservoir storage after typhoons and the impact of flooding in the plain area. Besides, the flood operation guideline announced by government is also considered in the proposed models. The these conditions and the guideline can be formed as an optimization problem which is solved by the genetic algorithm (GA) in this study. Furthermore, a distributed runoff model, kinematic-wave geomorphic instantaneous unit hydrograph (KW-GIUH), and a river flow simulation model, HEC-RAS, are used to simulate the river water level of Tseng-wun basin in the plain area and the simulated level is shown as an index of the impact of flooding. Because the simulated levels are required to re-calculate iteratively in the optimization model, applying a recursive artificial neural network (recursive ANN) instead of the HEC-RAS model can significantly reduce the computational burden of the entire optimization problem. This study applies the developed methodology to Tseng-wun Reservoir. Forty typhoon events are collected as the historical database and six typhoon events are used to verify the proposed model. These typhoons include Typhoon Sepat and Typhoon Korsa in 2007 and Typhoon Kalmaegi, Typhoon Fung-Wong, Typhoon Sinlaku and Typhoon Jangmi in 2008. The results show that the proposed model can reduce the flood duration at the downstream area. For example, the real-time flood control model can reduce the flood duration by four and three hours for Typhoon Korsa and Typhoon Sinlaku respectively. This results indicate that the developed model can be a very useful tool for real-time flood control operation of reservoirs.

  20. Hydrologic and hydraulic flood forecasting constrained by remote sensing data

    NASA Astrophysics Data System (ADS)

    Li, Y.; Grimaldi, S.; Pauwels, V. R. N.; Walker, J. P.; Wright, A. J.

    2017-12-01

    Flooding is one of the most destructive natural disasters, resulting in many deaths and billions of dollars of damages each year. An indispensable tool to mitigate the effect of floods is to provide accurate and timely forecasts. An operational flood forecasting system typically consists of a hydrologic model, converting rainfall data into flood volumes entering the river system, and a hydraulic model, converting these flood volumes into water levels and flood extents. Such a system is prone to various sources of uncertainties from the initial conditions, meteorological forcing, topographic data, model parameters and model structure. To reduce those uncertainties, current forecasting systems are typically calibrated and/or updated using ground-based streamflow measurements, and such applications are limited to well-gauged areas. The recent increasing availability of spatially distributed remote sensing (RS) data offers new opportunities to improve flood forecasting skill. Based on an Australian case study, this presentation will discuss the use of 1) RS soil moisture to constrain a hydrologic model, and 2) RS flood extent and level to constrain a hydraulic model.The GRKAL hydrological model is calibrated through a joint calibration scheme using both ground-based streamflow and RS soil moisture observations. A lag-aware data assimilation approach is tested through a set of synthetic experiments to integrate RS soil moisture to constrain the streamflow forecasting in real-time.The hydraulic model is LISFLOOD-FP which solves the 2-dimensional inertial approximation of the Shallow Water Equations. Gauged water level time series and RS-derived flood extent and levels are used to apply a multi-objective calibration protocol. The effectiveness with which each data source or combination of data sources constrained the parameter space will be discussed.

  1. Analysis of flood vulnerability in urban area; a case study in deli watershed

    NASA Astrophysics Data System (ADS)

    Indrawan, I.; Siregar, R. I.

    2018-03-01

    Based on the National Disaster Management Agency of Indonesia, the distribution of disasters and victims died until the year 2016 is the largest flood disaster. Deli River is a river that has the greatest flood potential through Medan City. In Deli Watershed, flow discharge affected by the discharge from its tributaries, the high rainfall intensity and human activity. We should anticipate reducing and preventing the occurrence of losses due to flood damage. One of the ways to anticipate flood disaster is to predict which part of urban area is would flood. The objective of this study is to analyze the flood inundation areas due to overflow of Deli River through Medan city. Two-dimensional modeling by HEC-RAS 5.0.3 is a widely used hydraulic software tool developed by the U.S Army Corps of Engineers, which combined with the HEC-HMS for hydrological modeling. The result shows flood vulnerability in Medan by a map to present the spot that vulnerable about flood. The flooded area due to the overflowing of Deli River consists of seven sub districts, namely Medan Johor, Medan Selayang, Medan Kota, Medan Petisah, Medan Maimun, Medan Perjuangan and Medan Barat.

  2. Imaging spectroscopy calibration and applications for coastal wetland species composition and biomass mapping in the Mississippi Delta

    NASA Astrophysics Data System (ADS)

    Jensen, D.; Cavanaugh, K. C.; Simard, M.

    2016-12-01

    Coastal wetlands provide a wealth of ecosystem services, including improved water quality, protection from storm surges, and wildlife habitat. Louisiana's wetlands, however, are threatened by development, pollution, and relative sea level rise (RSLR)—the combination of sea level rise and subsidence rates. Beyond causing land loss, RSLR impacts Louisiana's wetland ecosystems by altering salinity, nutrient availability, flood duration, and flood frequency in the region. Despite widespread wetland loss, areas such as the Wax Lake and Atchafalaya river deltas are in fact growing due to their sediment loads, resulting in a complex of both degradation and aggradation along the Louisiana coast. In order to understand and model how coastal wetlands are responding to RSLR, there is a need for improved vegetation distribution mapping, biomass estimation, and ecosystem change modeling. To this end, high-resolution imaging spectroscopy offers the ability to accurately develop species-level distribution maps and predictive aboveground biomass (AGB) models. AVIRIS-NG data collected over the Atchafalaya River Delta were calibrated to reduce Bidirectional Reflectance Distribution Function (BRDF) effects and mosaicked, along with other scenes that coincided with field observations. Multiple Endmember Spectral Mixture Analysis (MESMA) was used to map salt marsh at the species level across our study area. Field observations were used to parameterize and validate our MESMA based approach. AGB was then mapped for this region using a partial least squares regression (PLSR) model developed from the same imagery and field measurements. Last, the Sea Level Affecting Marshes Model was applied to predict wetland loss and changes in marsh composition due to sea level rise, which was then paired with the AGB map to estimate carbon storage change. In doing so, this study addresses key concerns for coastal regions and demonstrates the ability of imaging spectroscopy to predict those impacts.

  3. On the need for long-term, on the order of a decade, hydro-climatic forecasts over large domains

    NASA Astrophysics Data System (ADS)

    Burges, S. J.

    2012-12-01

    All problems of hydrology have been influenced to some extent by the need to describe delivery of water to, and its movement through, the critical zone. The nature of the questions and the level of required quantitative description have changed with time, but all involve accurate accounting of all components of the hydrologic cycle. The broadest issues involve the temporal and spatial distributions of excess (floods) or too little (droughts) water. The spatial domains can range from small catchments to major fractions of continents. The temporal domains range from relatively short-term, on the order of hours to days to a few months, to multiple decades. Hydrologic engineers have long recognized the need to offer designs for human occupied catchments that accommodate hydrologic extremes (principally floods and droughts) that affect human and animal safety, for example, through disruptions to infrastructure and supply chains, food supplies, and water supplies. As more has been learned about the criticality of ecosystems to the well-being of the planet, water allocation issues have become those of "water for people" and "water for ecology". These latter requirements have emphasized the need for increased accuracy of estimating water budgets, and how water (and pollutants) moves through the associated critical domain. Given the now large physical demand for societal water use (it exceeds 50% of the mean annual river flow in most conterminous US river basins) hydrologic balances that include the operation of water resource infrastructure (flood damage mitigation dams and levees, storage reservoirs for municipal and industrial water, irrigation and ecological preservation) have become the norm. In most basins the storage reservoirs are relatively small (few store more than the mean annual flow of rivers) and long-term hydrological forecasting has become a major issue. Whether the issue is floods or droughts, there is now a pressing need for societally useful forecasts from seasonal to up to a decade or so ahead. I address issues that need to be considered by the ocean and hydro-climatology communities to find a way forward for this societally important issue.

  4. Dendrogeomorphic analysis of flash floods in a small ungauged mountain catchment (Central Spain)

    NASA Astrophysics Data System (ADS)

    Ruiz-Villanueva, Virginia; Díez-Herrero, Andrés; Stoffel, Markus; Bollschweiler, Michelle; Bodoque, José M.; Ballesteros, Juan A.

    2010-06-01

    Flash floods represent one of the most significant natural hazards with serious death tolls and economic damage at a worldwide level in general and in Mediterranean mountain catchments in particular. In these environments, systematic data is often lacking and analyses have to be based on alternative approaches such as dendrogeomorphology. In this study, we focus on the identification of flash floods based on growth disturbances (GD) observed in 98 heavily affected Mediterranean pine trees ( Pinus pinaster Ait.) located in or next to the torrential channel of the Pelayo River in the Spanish Central System. Flash floods are quite common in this catchment and are triggered by heavy storms, with high discharge and debris transport rates favoured by high stream gradients. Comparison of the anomalies in tree morphology and the position of the trees in the channel showed that the intensity of the disturbance clearly depends on geomorphology. The dating of past flash flood events was based on the number and intensity of GD observed in the tree-ring series and on the spatial distribution of affected trees along the torrent, thus allowing seven flash flood events during the last 50 years to be dated, namely in 1963, 1966, 1973, 1976, 1996, 2000, and 2005.

  5. Dendrogeomorphic analysis of Flash Floods in a small ungauged mountain catchment (Central Spain)

    NASA Astrophysics Data System (ADS)

    Ruiz-Villanueva, Virginia; Díez-Herrero, Andrés.; Stoffel, Markus; Bollschweiler, Michelle; María Bodoque, José; Ballesteros, Juan Antonio

    2010-05-01

    Flash floods represent one of the most significant natural hazards with serious death tolls and economic damage at a worldwide level in general and in Mediterranean mountain catchments in particular. In these environments, systematic data is often lacking and analyses have to be based on alternative approaches such as dendrogeomorphology. In this study, we focus on the identification of flash floods based on growth disturbances (GD) observed in 98 heavily affected Mediterranean pine trees (Pinus pinaster Ait.) located in or next to the torrential channel of the Pelayo River in the Spanish Central System. Flash floods are quite common in this catchment and are triggered by heavy storms, with high discharge and debris transport rates favoured by high stream gradients. Comparison of the anomalies in tree morphology and the position of the trees in the channel showed that the intensity of the disturbance clearly depends on geomorphology. The dating of past flash-flood events was based on the number and intensity of GD observed in the tree-ring series, and on the spatial distribution of affected trees along the torrent, thus allowing seven flash-flood events during the last ~50 years to be dated, namely in 1963, 1966, 1973, 1976, 1996, 2000, and 2005.

  6. Establishing a rainfall threshold for flash flood warnings based on the DFFG method in Yunnan province, China

    NASA Astrophysics Data System (ADS)

    Ma, M.; Wang, H.; Chen, Y.; Tang, G.; Hong, Z.; Zhang, K.; Hong, Y.

    2017-12-01

    Flash floods, one of the deadliest natural hazards worldwide due to their multidisciplinary nature, rank highly in terms of heavy damage and casualties. Such as in the United States, flash flood is the No.1 cause of death and the No. 2 most deadly weather-related hazard among all storm-related hazards, with approximately 100 lives lost each year. According to China Floods and Droughts Disasters Bullet in 2015 (http://www.mwr.gov.cn/zwzc/hygb/zgshzhgb), about 935 deaths per year on average were caused by flash floods from 2000 to 2015, accounting for 73 % of the fatalities due to floods. Therefore, significant efforts have been made toward understanding flash flood processes as well as modeling and forecasting them, it still remains challenging because of their short response time and limited monitoring capacity. This study advances the use of high-resolution Global Precipitation Measurement forecasts (GPMs), disaster data obtained from the government officials in 2011 and 2016, and the improved Distributed Flash Flood Guidance (DFFG) method combining the Distributed Hydrologic Model and Soil Conservation Service Curve Numbers. The objectives of this paper are (1) to examines changes in flash flood occurrence, (2) to estimate the effect of the rainfall spatial variability ,(2) to improve the lead time in flash floods warning and get the rainfall threshold, (3) to assess the DFFG method applicability in Dongchuan catchments, and (4) to yield the probabilistic information about the forecast hydrologic response that accounts for the locational uncertainties of the GPMs. Results indicate: (1) flash flood occurrence increased in the study region, (2) the occurrence of predicted flash floods show high sensitivity to total infiltration and soil water content, (3) the DFFG method is generally capable of making accurate predictions of flash flood events in terms of their locations and time of occurrence, and (4) the accumulative rainfall over a certain time span is an appropriate threshold for flash flood warnings. Finally, the article highlights the importance of accurately simulating the hydrological processes and high-resolution satellite rainfall data on the accurate forecasting of rainfall triggered flash flood events.

  7. Dam pre-release as an important operation strategy in reducing flood impact in Malaysia

    NASA Astrophysics Data System (ADS)

    Hidayah Ishak, Nurul; Mustafa Hashim, Ahmad

    2018-03-01

    The 2014 flood was reported to be one of the worst natural disaster has ever affected several states in the northern part of Peninsular Malaysia. Overwhelming rainfall was noted as one of the main factors causing such impact, which was claimed to be unprecedented to some extent. The state of Perak, which is blessed with four cascading dams had also experienced flood damage at a scale that was considered the worst in history. The rainfall received had caused the dam to reach danger level that necessitated additional discharge to be released. Safety of the dams was of great importance and such unavoidable additional discharge was allowed to avoid catastrophic failure of the dam structures. This paper discusses the dam pre-release as a significant dam management strategy in reducing flood impact. An important balance between required dam storage to be maintained and the risk element that can be afforded is the crucial factor in such enhanced operation strategy. While further possibility in developing a carefully engineered dam pre-release strategy can be explored for dam operation in Malaysia, this has already been introduced in some developed countries. Australia and South Africa are examples where pre-release has been practiced and proven to reduce flood risk. The concept involves controlling the dam lake level throughout the year, in reference to the rainfall data and the hydrological properties for the catchment area of the dams. Plentiful data analysis need to be done in contemplation of producing the optimal pre-release model. The amount of heavy rainfalls received is beyond human control but the distribution of the discharge from the dams can be further managed with the appropriate pre-release strategy.

  8. Comparing the Performance of Commonly Available Digital Elevation Models in GIS-based Flood Simulation

    NASA Astrophysics Data System (ADS)

    Ybanez, R. L.; Lagmay, A. M. A.; David, C. P.

    2016-12-01

    With climatological hazards increasing globally, the Philippines is listed as one of the most vulnerable countries in the world due to its location in the Western Pacific. Flood hazards mapping and modelling is one of the responses by local government and research institutions to help prepare for and mitigate the effects of flood hazards that constantly threaten towns and cities in floodplains during the 6-month rainy season. Available digital elevation maps, which serve as the most important dataset used in 2D flood modelling, are limited in the Philippines and testing is needed to determine which of the few would work best for flood hazards mapping and modelling. Two-dimensional GIS-based flood modelling with the flood-routing software FLO-2D was conducted using three different available DEMs from the ASTER GDEM, the SRTM GDEM, and the locally available IfSAR DTM. All other parameters kept uniform, such as resolution, soil parameters, rainfall amount, and surface roughness, the three models were run over a 129-sq. kilometer watershed with only the basemap varying. The output flood hazard maps were compared on the basis of their flood distribution, extent, and depth. The ASTER and SRTM GDEMs contained too much error and noise which manifested as dissipated and dissolved hazard areas in the lower watershed where clearly delineated flood hazards should be present. Noise on the two datasets are clearly visible as erratic mounds in the floodplain. The dataset which produced the only feasible flood hazard map is the IfSAR DTM which delineates flood hazard areas clearly and properly. Despite the use of ASTER and SRTM with their published resolution and accuracy, their use in GIS-based flood modelling would be unreliable. Although not as accessible, only IfSAR or better datasets should be used for creating secondary products from these base DEM datasets. For developing countries which are most prone to hazards, but with limited choices for basemaps used in hazards studies, the caution must be taken in the use of globally available GDEMs and higher-resolution DEMs must always be sought.

  9. Flash floods in Europe: state of the art and research perspectives

    NASA Astrophysics Data System (ADS)

    Gaume, Eric

    2014-05-01

    Flash floods, i.e. floods induced by severe rainfall events generally affecting watersheds of limited area, are the most frequent, destructive and deadly kind of natural hazard known in Europe and throughout the world. Flash floods are especially intense across the Mediterranean zone, where rainfall accumulations exceeding 500 mm within a few hours may be observed. Despite this state of facts, the study of extremes in hydrology has essentially gone unexplored until the recent past, with the exception of some rare factual reports on individual flood events, with the sporadic inclusion of isolated estimated peak discharges. Floods of extraordinary magnitude are in fact hardly ever captured by existing standard measurement networks, either because they are too heavily concentrated in space and time or because their discharges greatly exceed the design and calibration ranges of the measurement devices employed (stream gauges). This situation has gradually evolved over the last decade for two main reasons. First, the expansion and densification of weather radar networks, combined with improved radar quantitative precipitation estimates, now provide ready access to rainfall measurements at spatial and temporal scales that, while not perfectly accurate, are compatible with the study of extreme events. Heavy rainfall events no longer fail to be recorded by existing rain gauge and radar networks. Second, pioneering research efforts on extreme floods, based on precise post-flood surveys, have helped overcome the limitations imposed by a small base of available direct measured data. This activity has already yielded significant progress in expanding the knowledge and understanding of extreme flash floods. This presentation will provide a review of the recent research progresses in the area of flash flood studies, mainly based on the outcomes of the European research projects FLOODsite, HYDRATE and Hymex. It will show how intensive collation of field data helped better define the possible magnitudes of flood volumes and discharges during flash floods, their spatial distribution and rates of occurrence, as well as the factors that control the hydrological response of watersheds to heavy rainfalls explaining the large spatial variability in flood hazard. Developments in the fields of flood frequency analyses and flood forecasting based on the recently acquired data or adapted for the valuation of this specific data will also be presented. The presentation will end suggesting some perspectives for future research activities on flash floods.

  10. Evaluating the anthropogenic impacts on fluvial flood risks in a coastal mega-city during its transitional economy (1979-2009): the interaction between land subsidence, urbanization and structural measures

    NASA Astrophysics Data System (ADS)

    Yu, Dapeng; Yin, Jie

    2014-05-01

    Flood risk in a specific geographical location is a function of the interaction between various natural (e.g. rainfall, sea-level rise) and anthropogenic processes (e.g. land subsidence and urbanization). These processes, whether a driver or an alleviating factor, often encompass a large degree of spatial and temporal variability. Looking at a specific process in isolation is likely to provide an incomplete picture of the risks. This paper describes a novel approach to the evaluation of anthropogenic impacts on flood risks in coastal mega-cities by incorporating three anthropogenic variables (land subsidence, urbanization and flood defence) within a scenario-based framework where numerical modelling was undertaken to quantify the risks. The evolving risks at four time points (1979, 1990, 2000 and 2009) were assessed for the Huangpu River floodplain where the City of Shanghai is located. Distributed data of land subsidence rate, urbanization rate and flood defence heights were obtained. Scenarios were designed by representing the rate of land subsidence and flood defence height through the modification of DEM. Effect of urbanization is represented by a roughness parameter in the model simulations. A 2D hydrodynamic model (FloodMap-Inertial) was used to estimate the flood risks associated with each scenario. Flood events with various return periods (10-, 100- and 1000-year) were designed based on a one in 50 year flood event occurred in Shanghai in August 1997. Results demonstrate the individual as well as the combined impacts of the three anthropogenic factors on the changing fluvial flood risks in the Huangpu River basin over the last three decades during the city's transitional economy (1979-2009). Land subsidence and urbanization were found to lead to proportionate but non-linear impact on flood risks due to their complex spatial and temporal interaction. The impacts and their sensitivity are the function of the rate & spatial distribution of each evolving factor. They also manifest differently in floods of different magnitude. While the pattern of response to individual anthropogenic variables is largely expected, the combined impacts demonstrate greater spatial and temporal variation. Flood defences offer considerable benefits in reducing the total inundated areas in the Huangpu River basin over the periods considered, for all magnitude floods. This, to a large extent, alleviates the adverse impacts arising from land subsidence and urbanization. However, even with an enclosed and completed defence system in 2009, extensive flood inundation is still expected for a 10-year event, albeit largely restricted to the upstream of the river where urban settlements are limited. The scenario-based approach described herein could be adopted for applications in other urbanized and subsided coastal floodplains, especially in places where the rate of land subsidence is still accelerating, urbanization is still undergoing and the local sea level keeps rising. Risk scenarios that encompass probable future anthropogenic projections may assist decision makers and other concerned stakeholders in better understanding the underlying drivers of changing flood risks, and thus help to design proper adaptation options for sustainable flood risk management and urban planning.

  11. Leveraging North Carolina's QL2 Lidar to Quantify Sensitivity of National Water Model Derived Flood Inundation Extent to DEM Resolution

    NASA Astrophysics Data System (ADS)

    Lovette, J. P.; Lenhardt, W. C.; Blanton, B.; Duncan, J. M.; Stillwell, L.

    2017-12-01

    The National Water Model (NWM) has provided a novel framework for near real time flood inundation mapping across CONUS at a 10m resolution. In many regions, this spatial scale is quickly being surpassed through the collection of high resolution lidar (1 - 3m). As one of the leading states in data collection for flood inundation mapping, North Carolina is currently improving their previously available 20 ft statewide elevation product to a Quality Level 2 (QL2) product with a nominal point spacing of 0.7 meters. This QL2 elevation product increases the ground points by roughly ten times over the previous statewide lidar product, and by over 250 times when compared to the 10m NED elevation grid. When combining these new lidar data with the discharge estimates from the NWM, we can further improve statewide flood inundation maps and predictions of at-risk areas. In the context of flood risk management, these improved predictions with higher resolution elevation models consistently represent an improvement on coarser products. Additionally, the QL2 lidar also includes coarse land cover classification data for each point return, opening the possibility for expanding analysis beyond the use of only digital elevation models (e.g. improving estimates of surface roughness, identifying anthropogenic features in floodplains, characterizing riparian zones, etc.). Using the NWM Height Above Nearest Drainage approach, we compare flood inundation extents derived from multiple lidar-derived grid resolutions to assess the tradeoff between precision and computational load in North Carolina's coastal river basins. The elevation data distributed through the state's new lidar collection program provide spatial resolutions ranging from 5-50 feet, with most inland areas also including a 3 ft product. Data storage increases by almost two orders of magnitude across this range, as does processing load. In order to further assess the validity of the higher resolution elevation products on flood inundation, we examine the NWM outputs from Hurricane Matthew, which devastated southeastern North Carolina in October 2016. When compared with numerous surveyed high water marks across the coastal plain, this assessment provides insight on the impacts of grid resolution on flood inundation extent.

  12. Projected Flood Risks in China based on CMIP5

    NASA Astrophysics Data System (ADS)

    Xu, Ying

    2016-04-01

    Based on the simulations from 22 CMIP5 models and in combination with data on population, GDP, arable land, and terrain elevation, the spatial distributions of the flood risk levels are calculated and analyzed under RCP8.5 for the baseline period (1986-2005), the near term future period (2016-2035), the middle term future period (2046-2065), and the long term future period (2080-2099). (1) Areas with higher flood hazard risk levels in the future are concentrated in southeastern China, and the areas with the risk level III continue to expand. The major changes in flood hazard risks will occur in the middle and long term future. (2) In future, the areas of high vulnerability to flood hazards will be located in China's eastern region. In the middle and late 21st century, the extent of the high vulnerability area will expand eastward and its intensity will gradually increase. The highest vulnerability values are found in the provinces of Beijing, Tianjin, Hebei, Henan, Anhui, Shandong, Shanghai, Jiangsu, and in parts of the Pearl River Delta. Furthermore, the major cities in northeast China, as well as Wuhan, Changsha and Nanchang are highly vulnerable. (3) The regions with high flood risk levels will be located in eastern China, in the middle and lower reaches of Yangtze River and stretching northward to Beijing and Tianjin. High-risk flood areas are also occurring in major cities in Northeast China, in some parts of Shaanxi and Shanxi, and in some coastal areas in Southeast China. (4) Compared to the baseline period, the high flood risks will increase on a regional level towards the end of the 21st century, although the areas of flood hazards show little variation. In this paper, the projected future flood risks for different periods were analyzed under the RCP8.5 emission scenarios. By comparing the results with the simulations under the RCP 2.6 and RCP 4.5 scenarios, both scenarios show no differences in the spatial distribution, but in the intensity of flood hazard risks, which are weaker than for the RCP8.5 scenarios. By using the simulations from climate model ensembles to project future flood risks, uncertainty exists for various factors, such as the coarse resolution of global climate models, different approaches to flood assessments, the selection of the weighting coefficients, as well as the used greenhouse gas emission scheme, and the estimations of future population, GDP, and arable land. Therefore, further analysis is needed to reduce the uncertainties of future flood risks.

  13. Optimal Sizing and Placement of Battery Energy Storage in Distribution System Based on Solar Size for Voltage Regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazaripouya, Hamidreza; Wang, Yubo; Chu, Peter

    2016-07-26

    This paper proposes a new strategy to achieve voltage regulation in distributed power systems in the presence of solar energy sources and battery storage systems. The goal is to find the minimum size of battery storage and its corresponding location in the network based on the size and place of the integrated solar generation. The proposed method formulates the problem by employing the network impedance matrix to obtain an analytical solution instead of using a recursive algorithm such as power flow. The required modifications for modeling the slack and PV buses (generator buses) are utilized to increase the accuracy ofmore » the approach. The use of reactive power control to regulate the voltage regulation is not always an optimal solution as in distribution systems R/X is large. In this paper the minimum size and the best place of battery storage is achieved by optimizing the amount of both active and reactive power exchanged by battery storage and its gridtie inverter (GTI) based on the network topology and R/X ratios in the distribution system. Simulation results for the IEEE 14-bus system verify the effectiveness of the proposed approach.« less

  14. Dynamic Water Storage during Flash Flood Events in the Mountainous Area of Rio de Janeiro/Brazil - Case study: Piabanha River Basin

    NASA Astrophysics Data System (ADS)

    Araujo, L.; Silva, F. P. D.; Moreira, D. M.; Vásquez P, I. L.; Justi da Silva, M. G. A.; Fernandes, N.; Rotunno Filho, O. C.

    2017-12-01

    Flash floods are characterized by a rapid rise in water levels, high flow rates and large amounts of debris. Several factors have relevance to the occurrence of these phenomena, including high precipitation rates, terrain slope, soil saturation degree, vegetation cover, soil type, among others. In general, the greater the precipitation intensity, the more likely is the occurrence of a significant increase in flow rate. Particularly on steep and rocky plains or heavily urbanized areas, relatively small rain rates can trigger a flash flood event. In addition, high rain rates in short time intervals can temporarily saturate the surface soil layer acting as waterproofing and favoring the occurrence of greater runoff rates due to non-infiltration of rainwater into the soil. Thus, although precipitation is considered the most important factor for flooding, the interaction between rainfall and the soil can sometimes be of greater importance. In this context, this work investigates the dynamic storage of water associated with flash flood events for Quitandinha river watershed, a tributary of Piabanha river, occurred between 2013 and 2014, by means of water balance analyses applied to three watersheds of varying magnitudes (9.25 km², 260 km² and 429 km²) along the rainy season under different time steps (hourly and daily) using remotely sensed and observational precipitation data. The research work is driven by the hypothesis of a hydrologically active bedrock layer, as the watershed is located in a humid region, having intemperate (fractured) rock layer, just below a shallow soil layer, in the higher part of the basin where steep slopes prevail. The results showed a delay of the variation of the dynamic storage in relation to rainfall peaks and water levels. Such behavior indicates that the surface soil layer, which is not very thick in the region, becomes rapidly saturated along rainfall events. Subsequently, the water infiltrates into the rocky layer and the water storage in the fractured bedrock assumes significant role due to its corresponding release to streams as storm flows.

  15. 49 CFR 1220.2 - Protection and storage of records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... § 1220.2 Protection and storage of records. (a) The company shall protect records subject to this part from fires, floods, and other hazards, and safeguard the records from unnecessary exposure to deterioration from excessive humidity, dryness, or lack of ventilation. (b) The company shall notify the Board...

  16. Fraction of the global water cycle observed by SMAP

    NASA Astrophysics Data System (ADS)

    Mccoll, K. A.; Entekhabi, D.; Alemohammad, S. H.; Akbar, R.; Konings, A. G.; Yueh, S. H.

    2016-12-01

    Sparse and uneven observations have made it difficult to quantify the global distribution and dynamics of surface soil moisture (SSM). Using a full year of global observations from NASA's Soil Moisture Active Passive (SMAP) mission, we show here that SSM - a storage believed to make up less than 0.001% of the global freshwater budget by volume, and equivalent to an, on average, 8-mm thin layer of water covering all land surfaces - plays a very significant role in the water cycle, retaining a median 16% of precipitation falling on land after 3 days. Furthermore, the retained fraction of the SSM storage after 3 days is highest (lowest) over arid (wet) regions, and in regions where drainage to groundwater storage is lowest (highest). The retained fraction decreases monotonically with increasing mean SSM. Regions of low retained fraction broadly correspond spatially with regions where groundwater recharge and groundwater storage are both largest. These analyses are the first global estimates - derived from measurements rather than models - of both the mean magnitude and memory time scales of the SSM storage. Beyond the fundamental importance of characterizing the magnitude and response time scales of Earth's water storages, a key application of these results is in identifying regions with strong land-atmosphere coupling. Significant soil moisture memory is a necessary condition for land-atmosphere feedbacks. These results may therefore have particularly important implications for short-term weather forecasting of extreme precipitation events and floods.

  17. Frequency assessment of spatially distributed generations of flood scenarios: an application on Italian territory

    NASA Astrophysics Data System (ADS)

    Lomazzi, M.; Roth, G.; Rudari, R.; Taramasso, A. C.; Ghizzoni, T.; Benedetti, R.; Espa, G.; Terpessi, C.

    2009-12-01

    The flooding risk impact on society cannot be understated: it influences land use and territorial planning and development at both physical and regulatory levels. To cope with it, a variety of actions can be put in place, involving multidisciplinary competences. Mitigation measures goes from the improvement of monitoring systems to the development of hydraulic structures, throughout land use restrictions, civil protection and insurance plans. All of those options present social and economic impacts, either positive or negative, whose proper estimate should rely on the assumption of appropriate - present and future - scenarios, i.e. quantitative event descriptions in terms of i) the flood hazard, with its probability of occurrence, extension, intensity, and duration, ii) the exposed values and iii) their vulnerability. At present, initial attention has been devoted to the design of flood scenarios, or ensembles of them, and to the evaluation of their frequency of occurrence. In the present work, a model for spatially distributed flood scenarios generation and frequency assessment is proposed and applied to the Italian territory. The study area has been divided into homogeneous regions according to their hydrologic, orographic and meteoclimatic characteristics. A statistical model for flood scenarios simulation has been implemented throughout a conditional approach based on MCMC simulations by using i) a historical flood events catalogue; ii) a homogeneous regions correlation matrix; and iii) an auxiliary variables data set. In this framework, the role of the information stored in the historical flood events catalogue "Aree Vulnerate Italiane" (AVI, http://avi.gndci.cnr.it/), produced by the Italian National Research Council, is of crucial importance.

  18. Evaluation of a physically based quasi-linear and a conceptually based nonlinear Muskingum methods

    NASA Astrophysics Data System (ADS)

    Perumal, Muthiah; Tayfur, Gokmen; Rao, C. Madhusudana; Gurarslan, Gurhan

    2017-03-01

    Two variants of the Muskingum flood routing method formulated for accounting nonlinearity of the channel routing process are investigated in this study. These variant methods are: (1) The three-parameter conceptual Nonlinear Muskingum (NLM) method advocated by Gillin 1978, and (2) The Variable Parameter McCarthy-Muskingum (VPMM) method recently proposed by Perumal and Price in 2013. The VPMM method does not require rigorous calibration and validation procedures as required in the case of NLM method due to established relationships of its parameters with flow and channel characteristics based on hydrodynamic principles. The parameters of the conceptual nonlinear storage equation used in the NLM method were calibrated using the Artificial Intelligence Application (AIA) techniques, such as the Genetic Algorithm (GA), the Differential Evolution (DE), the Particle Swarm Optimization (PSO) and the Harmony Search (HS). The calibration was carried out on a given set of hypothetical flood events obtained by routing a given inflow hydrograph in a set of 40 km length prismatic channel reaches using the Saint-Venant (SV) equations. The validation of the calibrated NLM method was investigated using a different set of hypothetical flood hydrographs obtained in the same set of channel reaches used for calibration studies. Both the sets of solutions obtained in the calibration and validation cases using the NLM method were compared with the corresponding solutions of the VPMM method based on some pertinent evaluation measures. The results of the study reveal that the physically based VPMM method is capable of accounting for nonlinear characteristics of flood wave movement better than the conceptually based NLM method which requires the use of tedious calibration and validation procedures.

  19. Hydrological impacts on methane and carbon dioxide fluxes of hyperseasonal Cerrado forests of the Northern Pantanal, Mato Grosso, Brazil.

    NASA Astrophysics Data System (ADS)

    Vourlitis, G. L.; Dalmagro, H. J.; Arruda, P. H. Z. D.; Lathuilliere, M. J.; Borges Pinto, O.; Couto, E. G.; Nogueira, J. D. S.; Johnson, M. S.

    2016-12-01

    Wetlands have a great potential for carbon (C) storage because frequent waterlogging can inhibit microbial respiration. However, waterlogging can also promote methane (CH4) production, which reduces ecosystem C sequestration. Unfortunately, the C storage dynamics of seasonally flooded (hyperseasonal) tropical forests are poorly understood even though the large C stocks, warm temperature, and prolonged flooding have the potential to cause high rates of CO2 storage and CH4 emission. Thus, the aim of this study was to provide a continuous ecosystem-level quantification of CO2 and CH4 fluxes and carbon balance for a hyperseasonal forest in the Brazilian Pantanal using eddy covariance. Trace gas fluxes were measured using an eddy covariance system installed on a 28 m tall tower. The study area was chosen because it represents approximately 12% of the total area of the Pantanal, which consists of seasonal floodplains with an annual flood pulse that results from an intense rainy season (October to April) that is followed by an intense dry season (May to September). The measurements were performed over two flood cycles and an intervening drought period between the years 2014 and 2015. In 2015 the study area was flooded for 190 days, which was 22 days longer than in 2014. Mean (± SD) rates of CH4 flux during the 2014 and 2015 flooded period were 0.091 ± 0.04 µmol m-2 s-1 and 0.118 ± 0.04 µmol m-2 s-1, respectively, and almost zero (0.001 ± 0.0001 µmol m-2 s-1) during 2015 dry season. In contrast, mean CO2 flux rates during the flooded period were -1.58 and -1.50 µmol m-2 s-1 for 2014 and 2015, respectively, showing the net ecosystem CO2 uptake, while during the dry season, the forest was a net source of CO2 to the atmosphere of on average 0.73 µmol m-2 s-1. Total wet season carbon balance (CO2 + CH4) was virtually identical in 2014 and 2015 (ca. -255 gC m-2) even though the 2015 flood period was longer; however, the ecosystem lost 139 gC m-2 during the dry period of 2015. These data indicate that hyperseasonal forests of the Pantanal, and presumably other seasonally flooded tropical forests, are potentially large sources of CH4, but overall large C sinks.

  20. Flood pulsing in the Sudd wetland: analysis of seasonal variations in 2 inundation and evapotranspiration in Southern Sudan

    USGS Publications Warehouse

    Senay, Gabriel B.; Rebelo, L-M.; McCartney, M.P.

    2012-01-01

    Located on the Bahr el Jebel in South Sudan, the Sudd is one of the largest floodplain wetlands in the world. Seasonal inundation drives the hydrologic, geomorphological, and ecological processes, and the annual flood pulse is essential to the functioning of the Sudd. Despite the importance of the flood pulse, various hydrological interventions are planned upstream of the Sudd to increase economic benefits and food security. These will not be without consequences, in particular for wetlands where the biological productivity, biodiversity, and human livelihoods are dependent on the flood pulse and both the costs and benefits need to be carefully evaluated. Many African countries still lack regional baseline information on the temporal extent, distribution, and characteristics of wetlands, making it hard to assess the consequences of development interventions. Because of political instability in Sudan and the inaccessible nature of the Sudd, recent measurements of flooding and seasonal dynamics are inadequate. Analyses of multitemporal and multisensor remote sensing datasets are presented in this paper, in order to investigate and characterize flood pulsing within the Sudd wetland over a 12-month period. Wetland area has been mapped along with dominant components of open water and flooded vegetation at five time periods over a single year. The total area of flooding (both rain and river fed) over the 12 months was 41 334 km2, with 9176 km2 of this constituting the permanent wetland. Mean annual total evaporation is shown to be higher and with narrower distribution of values from areas of open water (1718 mm) than from flooded vegetation (1641 mm). Although the exact figures require validation against ground-based measurements, the results highlight the relative differences in inundation patterns and evaporation across the Sudd.

  1. A distributed parallel storage architecture and its potential application within EOSDIS

    NASA Technical Reports Server (NTRS)

    Johnston, William E.; Tierney, Brian; Feuquay, Jay; Butzer, Tony

    1994-01-01

    We describe the architecture, implementation, use of a scalable, high performance, distributed-parallel data storage system developed in the ARPA funded MAGIC gigabit testbed. A collection of wide area distributed disk servers operate in parallel to provide logical block level access to large data sets. Operated primarily as a network-based cache, the architecture supports cooperation among independently owned resources to provide fast, large-scale, on-demand storage to support data handling, simulation, and computation.

  2. Controls on Characteristics of Event-based Catchment Flood Response over Continental United States

    NASA Astrophysics Data System (ADS)

    Shen, X.; Mei, Y.; Nikolopoulos, E. I.; Anagnostou, E. N.

    2017-12-01

    Understanding the primary drivers of regional flood characteristics is of utmost importance for the development of flood early warning system. Many studies have dedicated their efforts on this topic, but the majority of these works is limited in terms of either the size of event population or the extent of their study domain. This prevents us from drawing a comprehensive understanding of the primary factors controlling the variability of catchment flood response across different hydroclimatic regimes and basin geomorphologies. In this study, we render an exhaustive analysis that includes the effect of climate, hydrometeorology, geomorphology, land cover and initial wetness conditions on the catchment's flood response for 318,000 flood events distributed across 5,900 catchments (basin scales ranging from 1 to 106 km2) of the Continental United States (CONUS) over a 10-year (2002 to 2013) period. Event runoff coefficients, response time lag and hydrograph shape are used as diagnostic variables to represent catchment flood response. Our results indicate different distributions of runoff coefficient over different climate regions and seasons. The magnitude of runoff coefficient increases as function of initial basin wetness condition and rainfall depth. Opposite patterns are found for the actual evapotranspiration rate and baseflow index. On the other hand, response time lag is controlled by the relief ratio of the basins and the mean flow length of the events; hydrograph shape reveals increasing trend with soil moisture condition and relief ratio.

  3. Simulation of space-based (GRACE) gravity variations caused by storage changes in large confined and unconfined aquifers

    NASA Astrophysics Data System (ADS)

    Pool, D. R.; Scanlon, B. R.

    2017-12-01

    There is uncertainty of how storage change in confined and unconfined aquifers would register from space-based platforms, such as the GRACE (Gravity Recovery and Climate Experiment) satellites. To address this concern, superposition groundwater models (MODFLOW) of equivalent storage change in simplified confined and unconfined aquifers of extent, 500 km2 or approximately 5X5 degrees at mid-latitudes, and uniform transmissivity were constructed. Gravity change resulting from the spatial distribution of aquifer storage change for each aquifer type was calculated at the initial GRACE satellite altitude ( 500 km). To approximate real-world conditions, the confined aquifer includes a small region of unconfined conditions at one margin. A uniform storage coefficient (specific yield) was distributed across the unconfined aquifer. For both cases, storage change was produced by 1 year of groundwater withdrawal from identical aquifer-centered well distributions followed by decades of no withdrawal and redistribution of the initial storage loss toward a new steady-state condition. The transient simulated storage loss includes equivalent volumes for both conceptualizations, but spatial distributions differ because of the contrasting aquifer diffusivity (Transmissivity/Storativity). Much higher diffusivity in the confined aquifer results in more rapid storage redistribution across a much larger area than for the unconfined aquifer. After the 1 year of withdrawals, the two simulated storage loss distributions are primarily limited to small regions within the model extent. Gravity change after 1 year observed at the satellite altitude is similar for both aquifers including maximum gravity reductions that are coincident with the aquifer center. With time, the maximum gravity reduction for the confined aquifer case shifts toward the aquifer margin as much as 200 km because of increased storage loss in the unconfined region. Results of the exercise indicate that GRACE observations are largely insensitive to confined or unconfined conditions for most aquifers. Lateral shifts in storage change with time in confined aquifers could be resolved by space-based gravity missions with durations of decades and improved spatial resolution, 1 degree or less ( 100 km), over the GRACE resolution of 3 degrees ( 300 km).

  4. Global Assessment of Exploitable Surface Reservoir Storage under Climate Change

    NASA Astrophysics Data System (ADS)

    Liu, L.; Parkinson, S.; Gidden, M.; Byers, E.; Satoh, Y.; Riahi, K.

    2016-12-01

    Surface water reservoirs provide us with reliable water supply systems, hydropower generation, flood control, and recreation services. Reliable reservoirs can be robust measures for water security and can help smooth out challenging seasonal variability of river flows. Yet, reservoirs also cause flow fragmentation in rivers and can lead to flooding of upstream areas, thereby displacing existing land-uses and ecosystems. The anticipated population growth, land use and climate change in many regions globally suggest a critical need to assess the potential for appropriate reservoir capacity that can balance rising demands with long-term water security. In this research, we assessed exploitable reservoir potential under climate change and human development constraints by deriving storage-yield relationships for 235 river basins globally. The storage-yield relationships map the amount of storage capacity required to meet a given water demand based on a 30-year inflow sequence. Runoff data is simulated with an ensemble of Global Hydrological Models (GHMs) for each of five bias-corrected general circulation models (GCMs) under four climate change pathways. These data are used to define future 30-year inflows in each river basin for time period between 2010 and 2080. The calculated capacity is then combined with geographical information of environmental and human development exclusion zones to further limit the storage capacity expansion potential in each basin. We investigated the reliability of reservoir potentials across different climate change scenarios and Shared Socioeconomic Pathways (SSPs) to identify river basins where reservoir expansion will be particularly challenging. Preliminary results suggest large disparities in reservoir potential across basins: some basins have already approached exploitable reserves, while some others display abundant potential. Exclusions zones pose significant impact on the amount of actual exploitable storage and firm yields worldwide: 30% of reservoir potential would be unavailable because of land occupation by environmental and human development. Results from this study will help decision makers to understand the reliability of infrastructure systems particularly sensitive to future water availability.

  5. Characterization of floods in the United States

    NASA Astrophysics Data System (ADS)

    Saharia, Manabendra; Kirstetter, Pierre-Emmanuel; Vergara, Humberto; Gourley, Jonathan J.; Hong, Yang

    2017-05-01

    Floods have gained increasing global significance in the recent past due to their devastating nature and potential for causing significant economic and human losses. Until now, flood characterization studies in the United States have been limited due to the lack of a comprehensive database matching flood characteristics such as peak discharges and flood duration with geospatial and geomorphologic information. The availability of a representative and long archive of flooding events spanning 78 years over a variety of hydroclimatic regions results in a spatially and temporally comprehensive flood characterization over the continental U.S. This study, for the first time, employs a large-event database that is based on actual National Weather Service (NWS) definitions of floods instead of the frequently-adopted case study or frequentist approach, allowing us to base our findings on real definitions of floods. It examines flooding characteristics to identify how space and time scales of floods vary with climatic regimes and geomorphology. Flood events were characterized by linking flood response variables in gauged basins to spatially distributed variables describing climatology, geomorphology, and topography. The primary findings of this study are that the magnitude of flooding is highest is regions such as West Coast and southeastern U.S. which experience the most extraordinary precipitation. The seasonality of flooding varies greatly from maxima during the cool season on the West Coast, warm season in the desert Southwest, and early spring in the Southeast. The fastest responding events tend to be in steep basins of the arid Southwest caused by intense monsoon thunderstorms and steep terrain. The envelope curves of unit peak discharge are consistent with those reported for Europe and worldwide. But significant seasonal variability was observed in floods of the U.S. compared to Europe that is attributed to the diversity of causative rainfall ranging from synoptic scales with orographic enhancements in the West Coast, monsoon thunderstorms in the desert Southwest, to land-falling tropical storms and localized, intense thunderstorms in the Southeast.

  6. A fast method for optical simulation of flood maps of light-sharing detector modules.

    PubMed

    Shi, Han; Du, Dong; Xu, JianFeng; Moses, William W; Peng, Qiyu

    2015-12-01

    Optical simulation of the detector module level is highly desired for Position Emission Tomography (PET) system design. Commonly used simulation toolkits such as GATE are not efficient in the optical simulation of detector modules with complicated light-sharing configurations, where a vast amount of photons need to be tracked. We present a fast approach based on a simplified specular reflectance model and a structured light-tracking algorithm to speed up the photon tracking in detector modules constructed with polished finish and specular reflector materials. We simulated conventional block detector designs with different slotted light guide patterns using the new approach and compared the outcomes with those from GATE simulations. While the two approaches generated comparable flood maps, the new approach was more than 200-600 times faster. The new approach has also been validated by constructing a prototype detector and comparing the simulated flood map with the experimental flood map. The experimental flood map has nearly uniformly distributed spots similar to those in the simulated flood map. In conclusion, the new approach provides a fast and reliable simulation tool for assisting in the development of light-sharing-based detector modules with a polished surface finish and using specular reflector materials.

  7. Probabilistic flood inundation mapping at ungauged streams due to roughness coefficient uncertainty in hydraulic modelling

    NASA Astrophysics Data System (ADS)

    Papaioannou, George; Vasiliades, Lampros; Loukas, Athanasios; Aronica, Giuseppe T.

    2017-04-01

    Probabilistic flood inundation mapping is performed and analysed at the ungauged Xerias stream reach, Volos, Greece. The study evaluates the uncertainty introduced by the roughness coefficient values on hydraulic models in flood inundation modelling and mapping. The well-established one-dimensional (1-D) hydraulic model, HEC-RAS is selected and linked to Monte-Carlo simulations of hydraulic roughness. Terrestrial Laser Scanner data have been used to produce a high quality DEM for input data uncertainty minimisation and to improve determination accuracy on stream channel topography required by the hydraulic model. Initial Manning's n roughness coefficient values are based on pebble count field surveys and empirical formulas. Various theoretical probability distributions are fitted and evaluated on their accuracy to represent the estimated roughness values. Finally, Latin Hypercube Sampling has been used for generation of different sets of Manning roughness values and flood inundation probability maps have been created with the use of Monte Carlo simulations. Historical flood extent data, from an extreme historical flash flood event, are used for validation of the method. The calibration process is based on a binary wet-dry reasoning with the use of Median Absolute Percentage Error evaluation metric. The results show that the proposed procedure supports probabilistic flood hazard mapping at ungauged rivers and provides water resources managers with valuable information for planning and implementing flood risk mitigation strategies.

  8. Tacking Flood Risk from Watersheds using a Natural Flood Risk Management Toolkit

    NASA Astrophysics Data System (ADS)

    Reaney, S. M.; Pearson, C.; Barber, N.; Fraser, A.

    2017-12-01

    In the UK, flood risk management is moving beyond solely mitigating at the point of impact in towns and key infrastructure to tackle problem at source through a range of landscape based intervention measures. This natural flood risk management (NFM) approach has been trailed within a range of catchments in the UK and is moving towards being adopted as a key part of flood risk management. The approach offers advantages including lower cost and co-benefits for water quality and habitat creation. However, for an agency or group wishing to implement NFM within a catchment, there are two key questions that need to be addressed: Where in the catchment to place the measures? And how many measures are needed to be effective? With this toolkit, these questions are assessed with a two-stage workflow. First, SCIMAP-Flood gives a risk based mapping of likely locations that contribute to the flood peak. This tool uses information on land cover, hydrological connectivity, flood generating rainfall patterns and hydrological travel time distributions to impacted communities. The presented example applies the tool to the River Eden catchment, UK, with 5m grid resolution and hence provide sub-field scale information at the landscape extent. SCIMAP-Flood identifies sub-catchments where physically based catchment hydrological simulation models can be applied to test different NFM based mitigation measures. In this example, the CRUM3 catchment hydrological model has been applied within an uncertainty framework to consider the effectiveness of soil compaction reduction and large woody debris dams within a sub-catchment. It was found that large scale soil aeration to reduce soil compaction levels throughout the catchment is probably the most useful natural flood management measure for this catchment. NFM has potential for wide-spread application and these tools help to ensure that the measures are correctly designed and the scheme performance can be quantitatively assessed and predicted.

  9. A search for model parsimony in a real time flood forecasting system

    NASA Astrophysics Data System (ADS)

    Grossi, G.; Balistrocchi, M.

    2009-04-01

    As regards the hydrological simulation of flood events, a physically based distributed approach is the most appealing one, especially in those areas where the spatial variability of the soil hydraulic properties as well as of the meteorological forcing cannot be left apart, such as in mountainous regions. On the other hand, dealing with real time flood forecasting systems, less detailed models requiring a minor number of parameters may be more convenient, reducing both the computational costs and the calibration uncertainty. In fact in this case a precise quantification of the entire hydrograph pattern is not necessary, while the expected output of a real time flood forecasting system is just an estimate of the peak discharge, the time to peak and in some cases the flood volume. In this perspective a parsimonious model has to be found in order to increase the efficiency of the system. A suitable case study was identified in the northern Apennines: the Taro river is a right tributary to the Po river and drains about 2000 km2 of mountains, hills and floodplain, equally distributed . The hydrometeorological monitoring of this medium sized watershed is managed by ARPA Emilia Romagna through a dense network of uptodate gauges (about 30 rain gauges and 10 hydrometers). Detailed maps of the surface elevation, land use and soil texture characteristics are also available. Five flood events were recorded by the new monitoring network in the years 2003-2007: during these events the peak discharge was higher than 1000 m3/s, which is actually quite a high value when compared to the mean discharge rate of about 30 m3/s. The rainfall spatial patterns of such storms were analyzed in previous works by means of geostatistical tools and a typical semivariogram was defined, with the aim of establishing a typical storm structure leading to flood events in the Taro river. The available information was implemented into a distributed flood event model with a spatial resolution of 90m; then the hydrologic detail was reduced by progressively assuming a uniform rainfall field and constant soil properties. A semi-distributed model, obtained by subdividing the catchment into three sub-catchment, and a lumped model were also applied to simulate the selected flood events. Errors were quantified in terms of the peak discharge ratio, the flood volume and the time to peak by comparing the simulated hydrographs to the observed ones.

  10. Examining the effects of urban agglomeration polders on flood events in Qinhuai River basin, China with HEC-HMS model.

    PubMed

    Gao, Yuqin; Yuan, Yu; Wang, Huaizhi; Schmidt, Arthur R; Wang, Kexuan; Ye, Liu

    2017-05-01

    The urban agglomeration polders type of flood control pattern is a general flood control pattern in the eastern plain area and some of the secondary river basins in China. A HEC-HMS model of Qinhuai River basin based on the flood control pattern was established for simulating basin runoff, examining the impact of urban agglomeration polders on flood events, and estimating the effects of urbanization on hydrological processes of the urban agglomeration polders in Qinhuai River basin. The results indicate that the urban agglomeration polders could increase the peak flow and flood volume. The smaller the scale of the flood, the more significant the influence of the polder was to the flood volume. The distribution of the city circle polder has no obvious impact on the flood volume, but has effect on the peak flow. The closer the polder is to basin output, the smaller the influence it has on peak flows. As the level of urbanization gradually improving of city circle polder, flood volumes and peak flows gradually increase compared to those with the current level of urbanization (the impervious rate was 20%). The potential change in flood volume and peak flow with increasing impervious rate shows a linear relationship.

  11. The weighted function method: A handy tool for flood frequency analysis or just a curiosity?

    NASA Astrophysics Data System (ADS)

    Bogdanowicz, Ewa; Kochanek, Krzysztof; Strupczewski, Witold G.

    2018-04-01

    The idea of the Weighted Function (WF) method for estimation of Pearson type 3 (Pe3) distribution introduced by Ma in 1984 has been revised and successfully applied for shifted inverse Gaussian (IGa3) distribution. Also the conditions of WF applicability to a shifted distribution have been formulated. The accuracy of WF flood quantiles for both Pe3 and IGa3 distributions was assessed by Monte Caro simulations under the true and false distribution assumption versus the maximum likelihood (MLM), moment (MOM) and L-moments (LMM) methods. Three datasets of annual peak flows of Polish catchments serve the case studies to compare the results of the WF, MOM, MLM and LMM performance for the real flood data. For the hundred-year flood the WF method revealed the explicit superiority only over the MLM surpassing the MOM and especially LMM both for the true and false distributional assumption with respect to relative bias and relative mean root square error values. Generally, the WF method performs well and for hydrological sample size and constitutes good alternative for the estimation of the flood upper quantiles.

  12. Stationarity analysis of historical flood series in France and Spain (14th-20th centuries)

    NASA Astrophysics Data System (ADS)

    Barriendos, M.; Coeur, D.; Lang, M.; Llasat, M. C.; Naulet, R.; Lemaitre, F.; Barrera, A.

    Interdisciplinary frameworks for studying natural hazards and their temporal trends have an important potential in data generation for risk assessment, land use planning, and therefore the sustainable management of resources. This paper focuses on the adjustments required because of the wide variety of scientific fields involved in the reconstruction and characterisation of flood events for the past 1000 years. The aim of this paper is to describe various methodological aspects of the study of flood events in their historical dimension, including the critical evaluation of old documentary and instrumental sources, flood-event classification and hydraulic modelling, and homogeneity and quality control tests. Standardized criteria for flood classification have been defined and applied to the Isère and Drac floods in France, from 1600 to 1950, and to the Ter, the Llobregat and the Segre floods, in Spain, from 1300 to 1980. The analysis on the Drac and Isère data series from 1600 to the present day showed that extraordinary and catastrophic floods were not distributed uniformly in time. However, the largest floods (general catastrophic floods) were homogeneously distributed in time within the period 1600-1900. No major flood occurred during the 20th century in these rivers. From 1300 to the present day, no homogeneous behaviour was observed for extraordinary floods in the Spanish rivers. The largest floods were uniformly distributed in time within the period 1300-1900, for the Segre and Ter rivers.

  13. Analysis of the French insurance market exposure to floods: a stochastic model combining river overflow and surface runoff

    NASA Astrophysics Data System (ADS)

    Moncoulon, D.; Labat, D.; Ardon, J.; Leblois, E.; Onfroy, T.; Poulard, C.; Aji, S.; Rémy, A.; Quantin, A.

    2014-09-01

    The analysis of flood exposure at a national scale for the French insurance market must combine the generation of a probabilistic event set of all possible (but which have not yet occurred) flood situations with hazard and damage modeling. In this study, hazard and damage models are calibrated on a 1995-2010 historical event set, both for hazard results (river flow, flooded areas) and loss estimations. Thus, uncertainties in the deterministic estimation of a single event loss are known before simulating a probabilistic event set. To take into account at least 90 % of the insured flood losses, the probabilistic event set must combine the river overflow (small and large catchments) with the surface runoff, due to heavy rainfall, on the slopes of the watershed. Indeed, internal studies of the CCR (Caisse Centrale de Reassurance) claim database have shown that approximately 45 % of the insured flood losses are located inside the floodplains and 45 % outside. Another 10 % is due to sea surge floods and groundwater rise. In this approach, two independent probabilistic methods are combined to create a single flood loss distribution: a generation of fictive river flows based on the historical records of the river gauge network and a generation of fictive rain fields on small catchments, calibrated on the 1958-2010 Météo-France rain database SAFRAN. All the events in the probabilistic event sets are simulated with the deterministic model. This hazard and damage distribution is used to simulate the flood losses at the national scale for an insurance company (Macif) and to generate flood areas associated with hazard return periods. The flood maps concern river overflow and surface water runoff. Validation of these maps is conducted by comparison with the address located claim data on a small catchment (downstream Argens).

  14. Simulation of 1998-Big Flood in Changjiang River Catchment, China

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Watanabe, M.

    2006-05-01

    Almost every year, China is affected by severe flooding, which causes considerable economic loss and serious damage to towns and farms. Big floods are mainly concentrated in the middle and lower reaches of the "seven big rivers", which include the Changjiang (Yangtze) River, the Yellow (Huanghe) River, and the Huaihe River. The Changjiang River is the fourth largest water resource to the oceans after the Amazon, Zaire, and Orinoco Rivers. In addition to abnormal weather, artificial effects were considered as main causes of the big flood disaster in the Changjiang River catchment by the previous researches; (i) extreme deforestation and soil erosion in the upper reaches, (ii) shrinking of lake water volumes and their reduced connection with the Changjiang River due to reclamation of lakes that retarded water in the middle reaches, and (iii) restriction of channel capacity following levee construction. Because there is an urgent need to quantify these relations on the spatial scale of the whole catchment in order to prevent flood damage as small as possible, it is very important to evaluate the complicated phenomena of water/heat dynamics in the Changjiang River catchment by using process-based models. The present research focuses on simulating the water/heat dynamics for 1998 big-flood with 60-year recurrent period in the Changjiang River catchment. We compared the flood period of 1998 with the normal period of 1987-1988. We expanded the NIES Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama and Watanabe, 2004; Nakayama et al., 2006) for the application to broader catchments in order to evaluate large- scale flooding in the Changjiang River (NICE-FLD). We simulated the water/heat dynamics in the entire catchment (3,000 km wide by 1,000 km long) with a resolution of 10 km mesh by using the NICE-FLD. The model reproduced excellently the river discharge, soil moisture, evapotranspiration, groundwater level, et al. Furthermore, we evaluated the role of flood storage capacity in the lakes and farms in relation to the water/heat budgets, and simulated the change of water/heat dynamics by human activity in order to help decision-making on sustainable development in the catchment.

  15. Necessary storage as a signature of discharge variability: towards global maps

    NASA Astrophysics Data System (ADS)

    Takeuchi, Kuniyoshi; Masood, Muhammad

    2017-09-01

    This paper proposes the use of necessary storage to smooth out discharge variability to meet a discharge target as a signature of discharge variability in time. Such a signature has a distinct advantage over other statistical indicators such as standard deviation (SD) or coefficient of variation (CV) as it expresses hydrological variability in human terms, which directly indicates the difficulty and ease of managing discharge variation for water resource management. The signature is presented in the form of geographical distribution, in terms of both necessary storage (km3) and normalized necessary storage (months), and is related to the basin characteristics of hydrological heterogeneity. The signature is analyzed in different basins considering the Hurst equation of range as a reference. The slope of such a relation and the scatter of departures from the average relation are analyzed in terms of their relationship with basin characteristics. As a method of calculating necessary storage, the flood duration curve (FDC) and drought duration curve (DDC) methods are employed in view of their relative advantage over other methods to repeat the analysis over many grid points. The Ganges-Brahmaputra-Meghna (GBM) basin is selected as the case study and the BTOPMC hydrological model with Water and Global Change (WATCH) Forcing Data (WFD) is used for estimating FDC and DDC. It is concluded that the necessary storage serves as a useful signature of discharge variability, and its analysis could be extended to the entire globe and in this way seek new insights into hydrological variability in the storage domain at a larger range of scales.

  16. Sediment supply versus local hydraulic controls on sediment transport and storage in a river with large sediment loads

    USGS Publications Warehouse

    Dean, David; Topping, David; Schmidt, John C.; Griffiths, Ronald; Sabol, Thomas

    2016-01-01

    The Rio Grande in the Big Bend region of Texas, USA, and Chihuahua and Coahuila, Mexico, undergoes rapid geomorphic changes as a result of its large sediment supply and variable hydrology; thus, it is a useful natural laboratory to investigate the relative importance of flow strength and sediment supply in controlling alluvial channel change. We analyzed a suite of sediment transport and geomorphic data to determine the cumulative influence of different flood types on changing channel form. In this study, physically based analyses suggest that channel change in the Rio Grande is controlled by both changes in flow strength and sediment supply over different spatial and temporal scales. Channel narrowing is primarily caused by substantial deposition of sediment supplied to the Rio Grande during tributary-sourced flash floods. Tributary floods have large suspended-sediment concentrations, occur for short durations, and attenuate rapidly downstream in the Rio Grande, depositing much of their sediment in downstream reaches. Long-duration floods on the mainstem have the capacity to enlarge the Rio Grande, and these floods, released from upstream dams, can either erode or deposit sediment in the Rio Grande depending upon the antecedent in-channel sediment supply and the magnitude and duration of the flood. Geomorphic and sediment transport analyses show that the locations and rates of sand erosion and deposition during long-duration floods are most strongly controlled by spatial changes in flow strength, largely through changes in channel slope. However, spatial differences in the in-channel sediment supply regulate sediment evacuation or accumulation over time in long reaches (greater than a kilometer).

  17. Bivariate at-site frequency analysis of simulated flood peak-volume data using copulas

    NASA Astrophysics Data System (ADS)

    Gaál, Ladislav; Viglione, Alberto; Szolgay, Ján.; Blöschl, Günter; Bacigál, Tomáå.¡

    2010-05-01

    In frequency analysis of joint hydro-climatological extremes (flood peaks and volumes, low flows and durations, etc.), usually, bivariate distribution functions are fitted to the observed data in order to estimate the probability of their occurrence. Bivariate models, however, have a number of limitations; therefore, in the recent past, dependence models based on copulas have gained increased attention to represent the joint probabilities of hydrological characteristics. Regardless of whether standard or copula based bivariate frequency analysis is carried out, one is generally interested in the extremes corresponding to low probabilities of the fitted joint cumulative distribution functions (CDFs). However, usually there is not enough flood data in the right tail of the empirical CDFs to derive reliable statistical inferences on the behaviour of the extremes. Therefore, different techniques are used to extend the amount of information for the statistical inference, i.e., temporal extension methods that allow for making use of historical data or spatial extension methods such as regional approaches. In this study, a different approach was adopted which uses simulated flood data by rainfall-runoff modelling, to increase the amount of data in the right tail of the CDFs. In order to generate artificial runoff data (i.e. to simulate flood records of lengths of approximately 106 years), a two-step procedure was used. (i) First, the stochastic rainfall generator proposed by Sivapalan et al. (2005) was modified for our purpose. This model is based on the assumption of discrete rainfall events whose arrival times, durations, mean rainfall intensity and the within-storm intensity patterns are all random, and can be described by specified distributions. The mean storm rainfall intensity is disaggregated further to hourly intensity patterns. (ii) Secondly, the simulated rainfall data entered a semi-distributed conceptual rainfall-runoff model that consisted of a snow routine, a soil moisture routine and a flow routing routine (Parajka et al., 2007). The applicability of the proposed method was demonstrated on selected sites in Slovakia and Austria. The pairs of simulated flood volumes and flood peaks were analysed in terms of their dependence structure and different families of copulas (Archimedean, extreme value, Gumbel-Hougaard, etc.) were fitted to the observed and simulated data. The question to what extent measured data can be used to find the right copula was discussed. The study is supported by the Austrian Academy of Sciences and the Austrian-Slovak Co-operation in Science and Education "Aktion". Parajka, J., Merz, R., Blöschl, G., 2007: Uncertainty and multiple objective calibration in regional water balance modeling - Case study in 320 Austrian catchments. Hydrological Processes, 21, 435-446. Sivapalan, M., Blöschl, G., Merz, R., Gutknecht, D., 2005: Linking flood frequency to long-term water balance: incorporating effects of seasonality. Water Resources Research, 41, W06012, doi:10.1029/2004WR003439.

  18. Research of Water Level Prediction for a Continuous Flood due to Typhoons Based on a Machine Learning Method

    NASA Astrophysics Data System (ADS)

    Nakatsugawa, M.; Kobayashi, Y.; Okazaki, R.; Taniguchi, Y.

    2017-12-01

    This research aims to improve accuracy of water level prediction calculations for more effective river management. In August 2016, Hokkaido was visited by four typhoons, whose heavy rainfall caused severe flooding. In the Tokoro river basin of Eastern Hokkaido, the water level (WL) at the Kamikawazoe gauging station, which is at the lower reaches exceeded the design high-water level and the water rose to the highest level on record. To predict such flood conditions and mitigate disaster damage, it is necessary to improve the accuracy of prediction as well as to prolong the lead time (LT) required for disaster mitigation measures such as flood-fighting activities and evacuation actions by residents. There is the need to predict the river water level around the peak stage earlier and more accurately. Previous research dealing with WL prediction had proposed a method in which the WL at the lower reaches is estimated by the correlation with the WL at the upper reaches (hereinafter: "the water level correlation method"). Additionally, a runoff model-based method has been generally used in which the discharge is estimated by giving rainfall prediction data to a runoff model such as a storage function model and then the WL is estimated from that discharge by using a WL discharge rating curve (H-Q curve). In this research, an attempt was made to predict WL by applying the Random Forest (RF) method, which is a machine learning method that can estimate the contribution of explanatory variables. Furthermore, from the practical point of view, we investigated the prediction of WL based on a multiple correlation (MC) method involving factors using explanatory variables with high contribution in the RF method, and we examined the proper selection of explanatory variables and the extension of LT. The following results were found: 1) Based on the RF method tuned up by learning from previous floods, the WL for the abnormal flood case of August 2016 was properly predicted with a lead time of 6 h. 2) Based on the contribution of explanatory variables, factors were selected for the MC method. In this way, plausible prediction results were obtained.

  19. Unbreakable distributed storage with quantum key distribution network and password-authenticated secret sharing

    PubMed Central

    Fujiwara, M.; Waseda, A.; Nojima, R.; Moriai, S.; Ogata, W.; Sasaki, M.

    2016-01-01

    Distributed storage plays an essential role in realizing robust and secure data storage in a network over long periods of time. A distributed storage system consists of a data owner machine, multiple storage servers and channels to link them. In such a system, secret sharing scheme is widely adopted, in which secret data are split into multiple pieces and stored in each server. To reconstruct them, the data owner should gather plural pieces. Shamir’s (k, n)-threshold scheme, in which the data are split into n pieces (shares) for storage and at least k pieces of them must be gathered for reconstruction, furnishes information theoretic security, that is, even if attackers could collect shares of less than the threshold k, they cannot get any information about the data, even with unlimited computing power. Behind this scenario, however, assumed is that data transmission and authentication must be perfectly secure, which is not trivial in practice. Here we propose a totally information theoretically secure distributed storage system based on a user-friendly single-password-authenticated secret sharing scheme and secure transmission using quantum key distribution, and demonstrate it in the Tokyo metropolitan area (≤90 km). PMID:27363566

  20. Unbreakable distributed storage with quantum key distribution network and password-authenticated secret sharing.

    PubMed

    Fujiwara, M; Waseda, A; Nojima, R; Moriai, S; Ogata, W; Sasaki, M

    2016-07-01

    Distributed storage plays an essential role in realizing robust and secure data storage in a network over long periods of time. A distributed storage system consists of a data owner machine, multiple storage servers and channels to link them. In such a system, secret sharing scheme is widely adopted, in which secret data are split into multiple pieces and stored in each server. To reconstruct them, the data owner should gather plural pieces. Shamir's (k, n)-threshold scheme, in which the data are split into n pieces (shares) for storage and at least k pieces of them must be gathered for reconstruction, furnishes information theoretic security, that is, even if attackers could collect shares of less than the threshold k, they cannot get any information about the data, even with unlimited computing power. Behind this scenario, however, assumed is that data transmission and authentication must be perfectly secure, which is not trivial in practice. Here we propose a totally information theoretically secure distributed storage system based on a user-friendly single-password-authenticated secret sharing scheme and secure transmission using quantum key distribution, and demonstrate it in the Tokyo metropolitan area (≤90 km).

  1. Open Data, Open Specifications and Free and Open Source Software: A powerful mix to create distributed Web-based water information systems

    NASA Astrophysics Data System (ADS)

    Arias, Carolina; Brovelli, Maria Antonia; Moreno, Rafael

    2015-04-01

    We are in an age when water resources are increasingly scarce and the impacts of human activities on them are ubiquitous. These problems don't respect administrative or political boundaries and they must be addressed integrating information from multiple sources at multiple spatial and temporal scales. Communication, coordination and data sharing are critical for addressing the water conservation and management issues of the 21st century. However, different countries, provinces, local authorities and agencies dealing with water resources have diverse organizational, socio-cultural, economic, environmental and information technology (IT) contexts that raise challenges to the creation of information systems capable of integrating and distributing information across their areas of responsibility in an efficient and timely manner. Tight and disparate financial resources, and dissimilar IT infrastructures (data, hardware, software and personnel expertise) further complicate the creation of these systems. There is a pressing need for distributed interoperable water information systems that are user friendly, easily accessible and capable of managing and sharing large volumes of spatial and non-spatial data. In a distributed system, data and processes are created and maintained in different locations each with competitive advantages to carry out specific activities. Open Data (data that can be freely distributed) is available in the water domain, and it should be further promoted across countries and organizations. Compliance with Open Specifications for data collection, storage and distribution is the first step toward the creation of systems that are capable of interacting and exchanging data in a seamlessly (interoperable) way. The features of Free and Open Source Software (FOSS) offer low access cost that facilitate scalability and long-term viability of information systems. The World Wide Web (the Web) will be the platform of choice to deploy and access these systems. Geospatial capabilities for mapping, visualization, and spatial analysis will be important components of these new generation of Web-based interoperable information systems in the water domain. The purpose of this presentation is to increase the awareness of scientists, IT personnel and agency managers about the advantages offered by the combined use of Open Data, Open Specifications for geospatial and water-related data collection, storage and sharing, as well as mature FOSS projects for the creation of interoperable Web-based information systems in the water domain. A case study is used to illustrate how these principles and technologies can be integrated to create a system with the previously mentioned characteristics for managing and responding to flood events.

  2. The influence of antecedent conditions on flood risk in sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Bischiniotis, Konstantinos; van den Hurk, Bart; Coughlan de Perez, Erin; Jongman, Brenden; Veldkamp, Ted; Aerts, Jeroen

    2017-04-01

    Traditionally, flood risk management has focused on long-term flood protection measures. However, many countries are often not able to afford hard infrastructure that provides sufficient safety levels due to the high investment costs. As a consequence, they rely more on post disaster response and timely warning systems. Most early warning systems have predominantly focused on precipitation as the main predictive factor, having usually lead times of hours or days. However, other variables could also play a role. For instance, anomalous positive water storage, soil saturation and evapotranspiration are physical factors that may influence the length of the flood build-up period. This period can vary from some days to several months before the event and it is particularly important in flood risk management since longer flood warning lead times during this period could result in better flood preparation actions. This study addresses how the antecedent conditions of historical reported flood events over the period 1980 to 2010 in sub-Saharan Africa relate to flood generation. The seasonal-scale conditions are reflected in the Standardized Precipitation Evapotranspiration Index (SPEI), which is calculated using monthly precipitation and temperature data and accounts for the wetness/dryness of an area. Antecedent conditions are separated into a) a short term 'weather-scale' period (0-7 days) and b) a 'seasonal-scale' period (up to 6 months) before the flood event in such a way that they do not overlap. Total 7-day precipitation, which is based on daily meteorological data, was used to evaluate the short-term weather-scale conditions. Using a pair of coordinates, derived from the NatCatSERVICE database on global flood losses, each flood event is positioned on a 0.5°x 0.5° grid cell. The antecedent SPEI conditions of the two periods and their joint influence in flood generation are compared to the same period conditions of the other years of the dataset. First results revealed that many floods were preceded by high SPEI for several months before the flooding event, showing that the area was saturated with a long lead-time. Those that were not preceded by high SPEI had very extreme short-term precipitation that caused the flood event. Furthermore, the importance of seasonal-scale conditions is quantified, which in turn might help humanitarian organizations and decision-makers extend the period of the preventive flood risk management planning.

  3. Integrating Fluvial and Oceanic Drivers in Operational Flooding Forecasts for San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Herdman, Liv; Erikson, Li; Barnard, Patrick; Kim, Jungho; Cifelli, Rob; Johnson, Lynn

    2016-04-01

    The nine counties that make up the San Francisco Bay area are home to 7.5 million people and these communties are susceptible to flooding along the bay shoreline and inland creeks that drain to the bay. A forecast model that integrates fluvial and oceanic drivers is necessary for predicting flooding in this complex urban environment. The U.S. Geological Survey ( USGS) and National Weather Service (NWS) are developing a state-of-the-art flooding forecast model for the San Francisco Bay area that will predict watershed and ocean-based flooding up to 72 hours in advance of an approaching storm. The model framework for flood forecasts is based on the USGS-developed Coastal Storm Modeling System (CoSMoS) that was applied to San Francisco Bay under the Our Coast Our Future project. For this application, we utilize Delft3D-FM, a hydrodynamic model based on a flexible mesh grid, to calculate water levels that account for tidal forcing, seasonal water level anomalies, surge and in-Bay generated wind waves from the wind and pressure fields of a NWS forecast model, and tributary discharges from the Research Distributed Hydrologic Model (RDHM), developed by the NWS Office of Hydrologic Development. The flooding extent is determined by overlaying the resulting water levels onto a recently completed 2-m digital elevation model of the study area which best resolves the extensive levee and tidal marsh systems in the region. Here we present initial pilot results of hindcast winter storms in January 2010 and December 2012, where the flooding is driven by oceanic and fluvial factors respectively. We also demonstrate the feasibility of predicting flooding on an operational time scale that incorporates both atmospheric and hydrologic forcings.

  4. Characterisation of flooding in Alexandria in October 2015 and suggested mitigating measures

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Biswa; Zevenbergen, Chris; Wahaab, R. A. Wahaab R. A.; Elbarki, W. A. I. Elbarki W. A. I.; Busker, T. Busker T.; Salinas Rodriguez, C. N. A. Salinas Rodriguez C. N. A.

    2017-04-01

    In October 2015 Alexandria (Egypt) experienced exceptional flooding. The flooding was caused by heavy rainfall in a short period of time in a city which normally does not receive a large amount of rainfall. The heavy rainfall caused a tremendous volume of runoff, which the city's drainage system was unable to drain off to the Mediterranean Sea. Seven people have died due to the flood, and there were huge direct and indirect damages. The city does not have a flood forecasting system. An analysis with rainfall forecast from the European Centre for Medium Range Weather Forecast (ECMWF) showed that the extreme rainfall could have been forecasted about a week back. Naturally, if a flood forecasting model was in place the flooding could have been predicted well in advance. Alexandria, along with several other Arab cities, are not prepared at all for natural hazards. Preparedness actions leading to improved adaptation and resilience are not in place. The situation is being further exacerbated with rapid urbanisation and climate change. The local authorities estimate that about 30000 new buildings have been (illegally) constructed during the last five years at a location near the main pumping station (Max Point). This issue may have a very serious adverse effect on hydrology and requires further study to estimate the additional runoff from the newly urbanised areas. The World Bank has listed Alexandria as one of the five coastal cities, which may have very significant risk of coastal flooding due to the climate change. Setting up of a flood forecasting model along with an evidence-based research on the drainage system's capacity is seen as immediate actions that can significantly improve the preparedness of the city towards flooding. Furthermore, the region has got a number of large lakes, which potentially can be used to store extra water as a flood mitigation measure. Two water bodies, namely the Maryot Lake and the Airport Lake, are identified from which water can be pumped out in advance to keep storage available in case of flooding. Keywords: Alexandria, flood, Egypt, rainfall, forecasting.

  5. A 2D simulation model for urban flood management

    NASA Astrophysics Data System (ADS)

    Price, Roland; van der Wielen, Jonathan; Velickov, Slavco; Galvao, Diogo

    2014-05-01

    The European Floods Directive, which came into force on 26 November 2007, requires member states to assess all their water courses and coast lines for risk of flooding, to map flood extents and assets and humans at risk, and to take adequate and coordinated measures to reduce the flood risk in consultation with the public. Flood Risk Management Plans are to be in place by 2015. There are a number of reasons for the promotion of this Directive, not least because there has been much urban and other infrastructural development in flood plains, which puts many at risk of flooding along with vital societal assets. In addition there is growing awareness that the changing climate appears to be inducing more frequent extremes of rainfall with a consequent increases in the frequency of flooding. Thirdly, the growing urban populations in Europe, and especially in the developing countries, means that more people are being put at risk from a greater frequency of urban flooding in particular. There are urgent needs therefore to assess flood risk accurately and consistently, to reduce this risk where it is important to do so or where the benefit is greater than the damage cost, to improve flood forecasting and warning, to provide where necessary (and possible) flood insurance cover, and to involve all stakeholders in decision making affecting flood protection and flood risk management plans. Key data for assessing risk are water levels achieved or forecasted during a flood. Such levels should of course be monitored, but they also need to be predicted, whether for design or simulation. A 2D simulation model (PriceXD) solving the shallow water wave equations is presented specifically for determining flood risk, assessing flood defense schemes and generating flood forecasts and warnings. The simulation model is required to have a number of important properties: -Solve the full shallow water wave equations using a range of possible solutions; -Automatically adjust the time step and keep it as large as possible while maintaining the stability of the flow calculations; -Operate on a square grid at any resolution while retaining at least some details of the ground topography of the basic grid, the storage, and the form roughness and conveyance of the ground surface; -Account for the overall average ground slope for particular coarse cells; -Have the facility to refine the grid locally; -Have the facility to treat ponds or lakes as single, irregular cells; -Permit prescribed inflows and arbitrary outflows across the boundaries of the model domain or internally, and sources and sinks at any interior cell; -Simulate runoff for spatial rainfall while permitting infiltration; -Use ground surface cover and soil type indices to determine surface roughness, interception and infiltration parameters; -Present results at the basic cell level; -Have the facility to begin a model run with monitored soil moisture data; -Have the facility to hot-start a simulation using dumped data from a previous simulation; -Operate with a graphics cards for parallel processing; -Have the facility to link directly to the urban drainage simulation software such as SWMM through an Open Modelling Interface; -Be linked to the Netherlands national rainfall database for continuous simulation of rainfall-runoff for particular polders and urban areas; -Make the engine available as Open Source together with benchmark datasets; PriceXD forms a key modelling component of an integrated urban water management system consisting of an on-line database and a number of complementary modelling systems for urban hydrology, groundwater, potable water distribution, wastewater and stormwater drainage (separate and combined sewerage), wastewater treatment, and surface channel networks. This will be a 'plug and play' system. By linking the models together, confidence in the accuracy of the above-ground damage and construction costs is comparable to the below-ground costs. What is more, PriceXD can be used to examine additional physical phenomenon such as the interaction between flood flows and flows to and from inlets distributed along the pipes of the underground network, and to optimize the removal of blockages and improve asset management. Finally, PriceXD is already an integral component on a number of operational projects and platforms, including the MyWater distributed platform and the HydroNET web portal, where it is already applied to realistic case studies on the Netherlands (namely the Rijnland area), facilitating the access to both the model execution and results, by abstracting most of the complexity out of the model setup and configuration.

  6. Sources of fine-grained sediment in the Linganore Creek watershed, Frederick and Carroll Counties, Maryland, 2008-10

    USGS Publications Warehouse

    Gellis, Allen C.; Noe, Gregory B.; Clune, John W.; Myers, Michael K.; Hupp, Cliff R.; Schenk, Edward R.; Schwarz, Gregory E.

    2015-01-01

    Management implications of this study indicate that both agriculture and streambanks are important sources of sediment in Linganore Creek where the delivery of agriculture sediment was 4 percent and the delivery of streambank sediment was 44 percent. Fourth order streambanks, on average, had the highest rates of bank erosion. Combining the sediment fingerprinting and sediment budget results indicates that 96 percent of the eroded fine-grained sediment from agriculture went into storage. Flood plains and ponds are effective storage sites of sediment in the Linganore Creek watershed. Flood plains stored 8 percent of all eroded sediment with 4th and 5th order flood plains, on average, storing the most sediment. Small ponds in the Linganore Creek watershed, which drained 16 percent of the total watershed area, stored 15 percent of all eroded sediment. Channel beds were relatively stable with the greatest erosion generally occurring in 4th and 5th order streams.

  7. Storage in California’s reservoirs and snowpack in this time of drought

    USGS Publications Warehouse

    Dettinger, Michael; Anderson, Michael L.

    2015-01-01

    The San Francisco Bay and Sacramento–San Joaquin Delta (Delta) are the recipients of inflows from a watershed that spans much of California and that has ties to nearly the entire state. Historically, California has buffered its water supplies and flood risks both within—and beyond—the Delta’s catchment by developing many reservoirs, large and small, high and low. Most of these reservoirs carry water from wet winter seasons—when water demands are low and flood risks are high—to dry, warm seasons (and years) when demands are high and little precipitation falls. Many reservoirs are also used to catch and delay (or spread in time) flood flows that otherwise might cause damage to communities and floodplains. This essay describes the status of surface-water and snowpack storage conditions in California in spring 2015, providing context for better understanding where the state’s water stores stand as we enter summer 2015.

  8. Geologic CO2 Sequestration: Predicting and Confirming Performance in Oil Reservoirs and Saline Aquifers

    NASA Astrophysics Data System (ADS)

    Johnson, J. W.; Nitao, J. J.; Newmark, R. L.; Kirkendall, B. A.; Nimz, G. J.; Knauss, K. G.; Ziagos, J. P.

    2002-05-01

    Reducing anthropogenic CO2 emissions ranks high among the grand scientific challenges of this century. In the near-term, significant reductions can only be achieved through innovative sequestration strategies that prevent atmospheric release of large-scale CO2 waste streams. Among such strategies, injection into confined geologic formations represents arguably the most promising alternative; and among potential geologic storage sites, oil reservoirs and saline aquifers represent the most attractive targets. Oil reservoirs offer a unique "win-win" approach because CO2 flooding is an effective technique of enhanced oil recovery (EOR), while saline aquifers offer immense storage capacity and widespread distribution. Although CO2-flood EOR has been widely used in the Permian Basin and elsewhere since the 1980s, the oil industry has just recently become concerned with the significant fraction of injected CO2 that eludes recycling and is therefore sequestered. This "lost" CO2 now has potential economic value in the growing emissions credit market; hence, the industry's emerging interest in recasting CO2 floods as co-optimized EOR/sequestration projects. The world's first saline aquifer storage project was also catalyzed in part by economics: Norway's newly imposed atmospheric emissions tax, which spurred development of Statoil's unique North Sea Sleipner facility in 1996. Successful implementation of geologic sequestration projects hinges on development of advanced predictive models and a diverse set of remote sensing, in situ sampling, and experimental techniques. The models are needed to design and forecast long-term sequestration performance; the monitoring techniques are required to confirm and refine model predictions and to ensure compliance with environmental regulations. We have developed a unique reactive transport modeling capability for predicting sequestration performance in saline aquifers, and used it to simulate CO2 injection at Sleipner; we are now extending this capability to address CO2-flood EOR/sequestration in oil reservoirs. We have also developed a suite of innovative geophysical and geochemical techniques for monitoring sequestration performance in both settings. These include electromagnetic induction imaging and electrical resistance tomography for tracking migration of immiscible CO2, noble gas isotopes for assessing trace CO2 leakage through the cap rock, and integrated geochemical sampling, analytical, and experimental methods for determining sequestration partitioning among solubility and mineral trapping mechanisms. We have proposed to demonstrate feasibility of the co-optimized EOR/sequestration concept and utility of our modeling and monitoring technologies to design and evaluate its implementation by conducting a demonstration project in the Livermore Oil Field. This small, mature, shallow field, located less than a mile east of Lawrence Livermore National Laboratory, is representative of many potential EOR/sequestration sites in California. In approach, this proposed demonstration is analogous to the Weyburn EOR/CO2 monitoring project, to which it will provide an important complement by virtue of its contrasting depth (immiscible versus Weyburn's miscible CO2 flood) and geologic setting (clay-capped sand versus Weyburn's anhydrite-capped carbonate reservoir).

  9. Extension of classical hydrological risk analysis to non-stationary conditions due to climate change - application to the Fulda catchment, Germany

    NASA Astrophysics Data System (ADS)

    Fink, G.; Koch, M.

    2010-12-01

    An important aspect in water resources and hydrological engineering is the assessment of hydrological risk, due to the occurrence of extreme events, e.g. droughts or floods. When dealing with the latter - as is the focus here - the classical methods of flood frequency analysis (FFA) are usually being used for the proper dimensioning of a hydraulic structure, for the purpose of bringing down the flood risk to an acceptable level. FFA is based on extreme value statistics theory. Despite the progress of methods in this scientific branch, the development, decision, and fitting of an appropriate distribution function stills remains a challenge, particularly, when certain underlying assumptions of the theory are not met in real applications. This is, for example, the case when the stationarity-condition for a random flood time series is not satisfied anymore, as could be the situation when long-term hydrological impacts of future climate change are to be considered. The objective here is to verify the applicability of classical (stationary) FFA to predicted flood time series in the Fulda catchment in central Germany, as they may occur in the wake of climate change during the 21st century. These discharge time series at the outlet of the Fulda basin have been simulated with a distributed hydrological model (SWAT) that is forced by predicted climate variables of a regional climate model for Germany (REMO). From the simulated future daily time series, annual maximum (extremes) values are computed and analyzed for the purpose of risk evaluation. Although the 21st century estimated extreme flood series of the Fulda river turn out to be only mildly non-stationary, alleviating the need for further action and concern at the first sight, the more detailed analysis of the risk, as quantified, for example, by the return period, shows non-negligent differences in the calculated risk levels. This could be verified by employing a new method, the so-called flood series maximum analysis (FSMA) method, which consists in the stochastic simulation of numerous trajectories of a stochastic process with a given GEV-distribution over a certain length of time (> larger than a desired return period). Then the maximum value for each trajectory is computed, all of which are then used to determine the empirical distribution of this maximum series. Through graphical inversion of this distribution function the size of the design flood for a given risk (quantile) and given life duration can be inferred. The results of numerous simulations show that for stationary flood series, the new FSMA method results, expectedly, in nearly identical risk values as the classical FFA approach. However, once the flood time series becomes slightly non-stationary - for reasons as discussed - and regardless of whether the trend is increasing or decreasing, large differences in the computed risk values for a given design flood occur. Or in other word, for the same risk, the new FSMA method would lead to different values in the design flood for a hydraulic structure than the classical FFA method. This, in turn, could lead to some cost savings in the realization of a hydraulic project.

  10. Residence times and mixing of water in river banks: implications for recharge and groundwater - surface water exchange

    NASA Astrophysics Data System (ADS)

    Unland, N. P.; Cartwright, I.; Cendón, D. I.; Chisari, R.

    2014-02-01

    The residence time of groundwater within 50 m of the Tambo River, South East Australia, has been estimated through the combined use of 3H and 14C. Groundwater residence times increase towards the Tambo River which implies a gaining river system and not increasing bank storage with proximity to the Tambo River. Major ion concentrations and δ2H and δ18O values of bank water also indicate that bank infiltration does not significantly impact groundwater chemistry under baseflow and post-flood conditions, suggesting that the gaining nature of the river may be driving the return of bank storage water back into the Tambo River within days of peak flood conditions. The covariance between 3H and 14C indicates the leakage and mixing between old (~17 200 yr) groundwater from a semi-confined aquifer and younger groundwater (<100 yr) near the river where confining layers are less prevalent. The presence of this semi-confined aquifer has also been used to help explain the absence of bank storage, as rapid pressure propagation into the semi-confined aquifer during flooding will minimise bank infiltration. This study illustrates the complex nature of river groundwater interactions and the potential downfall in assuming simple or idealised conditions when conducting hydrogeological studies.

  11. Fuzzy comprehensive evaluation for grid-connected performance of integrated distributed PV-ES systems

    NASA Astrophysics Data System (ADS)

    Lv, Z. H.; Li, Q.; Huang, R. W.; Liu, H. M.; Liu, D.

    2016-08-01

    Based on the discussion about topology structure of integrated distributed photovoltaic (PV) power generation system and energy storage (ES) in single or mixed type, this paper focuses on analyzing grid-connected performance of integrated distributed photovoltaic and energy storage (PV-ES) systems, and proposes a comprehensive evaluation index system. Then a multi-level fuzzy comprehensive evaluation method based on grey correlation degree is proposed, and the calculations for weight matrix and fuzzy matrix are presented step by step. Finally, a distributed integrated PV-ES power generation system connected to a 380 V low voltage distribution network is taken as the example, and some suggestions are made based on the evaluation results.

  12. A new automatic SAR-based flood mapping application hosted on the European Space Agency's grid processing on demand fast access to imagery environment

    NASA Astrophysics Data System (ADS)

    Hostache, Renaud; Chini, Marco; Matgen, Patrick; Giustarini, Laura

    2013-04-01

    There is a clear need for developing innovative processing chains based on earth observation (EO) data to generate products supporting emergency response and flood management at a global scale. Here an automatic flood mapping application is introduced. The latter is currently hosted on the Grid Processing on Demand (G-POD) Fast Access to Imagery (Faire) environment of the European Space Agency. The main objective of the online application is to deliver flooded areas using both recent and historical acquisitions of SAR data in an operational framework. It is worth mentioning that the method can be applied to both medium and high resolution SAR images. The flood mapping application consists of two main blocks: 1) A set of query tools for selecting the "crisis image" and the optimal corresponding pre-flood "reference image" from the G-POD archive. 2) An algorithm for extracting flooded areas using the previously selected "crisis image" and "reference image". The proposed method is a hybrid methodology, which combines histogram thresholding, region growing and change detection as an approach enabling the automatic, objective and reliable flood extent extraction from SAR images. The method is based on the calibration of a statistical distribution of "open water" backscatter values inferred from SAR images of floods. Change detection with respect to a pre-flood reference image helps reducing over-detection of inundated areas. The algorithms are computationally efficient and operate with minimum data requirements, considering as input data a flood image and a reference image. Stakeholders in flood management and service providers are able to log onto the flood mapping application to get support for the retrieval, from the rolling archive, of the most appropriate pre-flood reference image. Potential users will also be able to apply the implemented flood delineation algorithm. Case studies of several recent high magnitude flooding events (e.g. July 2007 Severn River flood, UK and March 2010 Red River flood, US) observed by high-resolution SAR sensors as well as airborne photography highlight advantages and limitations of the online application. A mid-term target is the exploitation of ESA SENTINEL 1 SAR data streams. In the long term it is foreseen to develop a potential extension of the application for systematically extracting flooded areas from all SAR images acquired on a daily, weekly or monthly basis. On-going research activities investigate the usefulness of the method for mapping flood hazard at global scale using databases of historic SAR remote sensing-derived flood inundation maps.

  13. Graphene materials having randomly distributed two-dimensional structural defects

    DOEpatents

    Kung, Harold H; Zhao, Xin; Hayner, Cary M; Kung, Mayfair C

    2013-10-08

    Graphene-based storage materials for high-power battery applications are provided. The storage materials are composed of vertical stacks of graphene sheets and have reduced resistance for Li ion transport. This reduced resistance is achieved by incorporating a random distribution of structural defects into the stacked graphene sheets, whereby the structural defects facilitate the diffusion of Li ions into the interior of the storage materials.

  14. Graphene materials having randomly distributed two-dimensional structural defects

    DOEpatents

    Kung, Harold H.; Zhao, Xin; Hayner, Cary M.; Kung, Mayfair C.

    2016-05-31

    Graphene-based storage materials for high-power battery applications are provided. The storage materials are composed of vertical stacks of graphene sheets and have reduced resistance for Li ion transport. This reduced resistance is achieved by incorporating a random distribution of structural defects into the stacked graphene sheets, whereby the structural defects facilitate the diffusion of Li ions into the interior of the storage materials.

  15. What are the hydro-meteorological controls on flood characteristics?

    NASA Astrophysics Data System (ADS)

    Nied, Manuela; Schröter, Kai; Lüdtke, Stefan; Nguyen, Viet Dung; Merz, Bruno

    2017-02-01

    Flood events can be expressed by a variety of characteristics such as flood magnitude and extent, event duration or incurred loss. Flood estimation and management may benefit from understanding how the different flood characteristics relate to the hydrological catchment conditions preceding the event and to the meteorological conditions throughout the event. In this study, we therefore propose a methodology to investigate the hydro-meteorological controls on different flood characteristics, based on the simulation of the complete flood risk chain from the flood triggering precipitation event, through runoff generation in the catchment, flood routing and possible inundation in the river system and floodplains to flood loss. Conditional cumulative distribution functions and regression tree analysis delineate the seasonal varying flood processes and indicate that the effect of the hydrological pre-conditions, i.e. soil moisture patterns, and of the meteorological conditions, i.e. weather patterns, depends on the considered flood characteristic. The methodology is exemplified for the Elbe catchment. In this catchment, the length of the build-up period, the event duration and the number of gauges undergoing at least a 10-year flood are governed by weather patterns. The affected length and the number of gauges undergoing at least a 2-year flood are however governed by soil moisture patterns. In case of flood severity and loss, the controlling factor is less pronounced. Severity is slightly governed by soil moisture patterns whereas loss is slightly governed by weather patterns. The study highlights that flood magnitude and extent arise from different flood generation processes and concludes that soil moisture patterns as well as weather patterns are not only beneficial to inform on possible flood occurrence but also on the involved flood processes and resulting flood characteristics.

  16. High performance network and channel-based storage

    NASA Technical Reports Server (NTRS)

    Katz, Randy H.

    1991-01-01

    In the traditional mainframe-centered view of a computer system, storage devices are coupled to the system through complex hardware subsystems called input/output (I/O) channels. With the dramatic shift towards workstation-based computing, and its associated client/server model of computation, storage facilities are now found attached to file servers and distributed throughout the network. We discuss the underlying technology trends that are leading to high performance network-based storage, namely advances in networks, storage devices, and I/O controller and server architectures. We review several commercial systems and research prototypes that are leading to a new approach to high performance computing based on network-attached storage.

  17. Grainsize Patterns and Bed Evolution of the Rhone River (France): A Present-day Snapshot Following a Century and a Half of Human Modifications

    NASA Astrophysics Data System (ADS)

    Michal, T.; Parrot, E.; Piegay, H.

    2014-12-01

    Over the past 150 years the Rhône River has been heavily altered by human infrastructures. The first wave (1860 - 1930) of modifications consisted of dikes and groynes designed to narrow the channel and promote incision in order to facilitate navigation. A second period (1948 - 1986) involved the construction of a series of canals and dams for hydroelectricity production. These works bypass multiple reaches of the original channel and drastically reduce the discharge and sediment load reaching them. A comprehensive study underway is aimed at describing the present-day morphology of the Rhone along its 512 km length from its source at Lake Geneva to its sink at the Mediterranean Sea and quantifying the role of management works in the evolution to its current state. Grainsize distributions and armour ratios were determined using a combination of Wolman counts on bars and in shallow channels and dredge samples collected from a boat in navigable reaches. Long profiles were constructed from historical bathymetric maps and bathymetric data collected between 1950 - 2010. Differential long profiles highlighting changes in bed elevation due to sediment storage and erosion were analyzed for three different periods: post-channelization, post-dam construction, and a recent period of major floods. Results show a complex discontinuous pattern in grainsize associated with hydraulic discontinuities imposed by dams. The D50 for bypass reaches is 45 mm compared to a D50 of 34 mm in the non-bypass reaches. The lower D50 as well as a finer tailed distribution in non-bypass reaches reflects fining associated with storage upstream of dams. Armour ratios are on average around 2 but are notably higher for reaches in the middle section of the Rhone. The average incision rate was 1.8 cm/yr for the period of post-channelization and 1.2 cm/yr following dam construction, suggesting the post-dam Rhone was already partially armoured due to incision associated with channelization preceding dam construction. A period marked by large floods between 2001 - 2003 had an average incision rate of approximately 3 cm/yr. Changes in bed elevation for this period highlight destocking and restocking of fine sediments in reservoirs upstream of dams. Only a few downstream reaches where floods were most intense and grainsize is finer were truly active.

  18. Sensitivity analysis of urban flood flows to hydraulic controls

    NASA Astrophysics Data System (ADS)

    Chen, Shangzhi; Garambois, Pierre-André; Finaud-Guyot, Pascal; Dellinger, Guilhem; Terfous, Abdelali; Ghenaim, Abdallah

    2017-04-01

    Flooding represents one of the most significant natural hazards on each continent and particularly in highly populated areas. Improving the accuracy and robustness of prediction systems has become a priority. However, in situ measurements of floods remain difficult while a better understanding of flood flow spatiotemporal dynamics along with dataset for model validations appear essential. The present contribution is based on a unique experimental device at the scale 1/200, able to produce urban flooding with flood flows corresponding to frequent to rare return periods. The influence of 1D Saint Venant and 2D Shallow water model input parameters on simulated flows is assessed using global sensitivity analysis (GSA). The tested parameters are: global and local boundary conditions (water heights and discharge), spatially uniform or distributed friction coefficient and or porosity respectively tested in various ranges centered around their nominal values - calibrated thanks to accurate experimental data and related uncertainties. For various experimental configurations a variance decomposition method (ANOVA) is used to calculate spatially distributed Sobol' sensitivity indices (Si's). The sensitivity of water depth to input parameters on two main streets of the experimental device is presented here. Results show that the closer from the downstream boundary condition on water height, the higher the Sobol' index as predicted by hydraulic theory for subcritical flow, while interestingly the sensitivity to friction decreases. The sensitivity indices of all lateral inflows, representing crossroads in 1D, are also quantified in this study along with their asymptotic trends along flow distance. The relationship between lateral discharge magnitude and resulting sensitivity index of water depth is investigated. Concerning simulations with distributed friction coefficients, crossroad friction is shown to have much higher influence on upstream water depth profile than street friction coefficients. This methodology could be applied to any urban flood configuration in order to better understand flow dynamics and repartition but also guide model calibration in the light of flow controls.

  19. Visualization and measurement of CO2 flooding in an artificial porous structure using micromodels

    NASA Astrophysics Data System (ADS)

    Park, Bogyeong; Wang, Sookyun; Um, Jeong-Gi; Lee, Minhee; Kim, Seon-Ok

    2015-04-01

    Geological CO2 sequestration is one of the most important technologies to mitigate greenhouse gas emission into the atmosphere by isolating great volumes of CO2 in deep geological formations. This novel storage option for CO2 involves injecting supercritical CO2 into porous formations saturated with pore fluid such as brine and initiate CO2 flooding with immiscible displacement. Despite of significant effects on macroscopic migration and distribution of injected CO2, however, only a limited information is available on wettability in microscopic scCO2-brine-mineral systems. In this study, a micromodel had been developed to improve our understanding of how CO2 flooding and residual characteristics of pore water are affected by the wettability in scCO2-water-glass bead systems. The micromodel (a transparent pore structure made of 1 mm diameter glass beads between two glass plates) in a high-pressure cell provided the opportunity to visualize spread of supercritical CO2 and displacement of pore water in high pressure and high temperature conditions. CO2 flooding followed by fingering migration and dewatering followed by formation of residual water were observed through a imaging system with a microscope. Measurement of contact angles of droplets of residual water on and between glass beads in a micromodel were conducted to estimate differential pressure between wetting and nonwetting fluids in a scCO2-water-glass bead system. The experimental observation results could provide important fundamental informations on capillary characteristics of reservoirs and caprocks for geological CO2 sequestration.

  20. Visualization of CO2 flooding in an artificial porous structure using micromodels

    NASA Astrophysics Data System (ADS)

    Park, B.; Wang, S.; Lee, M.; Um, J. G.

    2014-12-01

    Geological CO2 sequestration is one of the most important technologies to mitigate greenhouse gas emission into the atmosphere by isolating great volumes of CO2 in deep geological formations. This novel storage option for CO2 involves injecting supercritical CO2 into porous formations saturated with pore fluid such as brine and initiate CO2 flooding with immiscible displacement. Despite of significant effects on macroscopic migration and distribution of injected CO2, however, only a limited information is available on wettability in microscopic scCO2-brine-mineral systems. In this study, a micromodel had been developed to improve our understanding of how CO2 flooding and residual characteristics of pore water are affected by the wettability in scCO2-water-glass bead systems. The micromodel (a transparent pore structure made of 0.5 mm diameter glass beads between two glass plates) in a high-pressure cell provided the opportunity to visualize spread of supercritical CO2 and displacement of pore water in high pressure and high temperature conditions. CO2 flooding followed by fingering migration and dewatering followed by formation of residual water were observed through a imaging system with a microscope. Measurement of contact angles of droplets of residual water on and between glass beads in a micromodel were conducted to estimate differential pressure between wetting and nonwetting fluids in a scCO2-water-glass bead system. The experimental observation results could provide important fundamental informations on capillary characteristics of reservoirs and caprocks for geological CO2 sequestration.

  1. Water Cycle Implications of Agriculture and Flood Control Infrastructure in the San Francisco Bay-Delta System

    NASA Astrophysics Data System (ADS)

    MacVean, L. J.; Thompson, S. E.; Sivapalan, M.; Hutton, P.

    2016-12-01

    California's Sacramento-San Joaquin Delta sits at the intersection of vast agricultural and population centers, and supplies fresh water for the diverse and often competing needs of ecosystems, farmers, and millions of Californians. In this study, we address the question of how flows into and out of the Delta have evolved in response to human intervention since 1850 in order to augment the scientific foundation of management decisions. In particular, we have developed a numerical model to quantify Delta outflows over the last 165 years, through which we explore the implications of the conversion of native vegetation to agricultural crops and the construction of flood control infrastructure. Our model domain encompasses the watersheds tributary to the San Francisco Bay-Delta system, and simulates the dynamic components of water usage through vegetative uptake and evapotranspiration, groundwater recharge, flood conveyance, and water exports at incremental levels of development from 1850 to the present. The model is run using historical climatological forcing; the climate and the effects of development on the Delta's watersheds are allowed to co-evolve. After verification that the dominant processes are captured in the numerics, the results illustrate the interactions between soil water storage, flood water stored behind levees, and consumption of water through ET and groundwater recharge, and their effects on the inflows to the San Francisco Bay estuary. Our study provides a picture of the changes in magnitude and temporal distribution of freshwater flows brought about by both intentional and unintentional consequences of the development of California's Central Valley.

  2. A step towards considering the spatial heterogeneity of urban key features in urban hydrology flood modelling

    NASA Astrophysics Data System (ADS)

    Leandro, J.; Schumann, A.; Pfister, A.

    2016-04-01

    Some of the major challenges in modelling rainfall-runoff in urbanised areas are the complex interaction between the sewer system and the overland surface, and the spatial heterogeneity of the urban key features. The former requires the sewer network and the system of surface flow paths to be solved simultaneously. The latter is still an unresolved issue because the heterogeneity of runoff formation requires high detailed information and includes a large variety of feature specific rainfall-runoff dynamics. This paper discloses a methodology for considering the variability of building types and the spatial heterogeneity of land surfaces. The former is achieved by developing a specific conceptual rainfall-runoff model and the latter by defining a fully distributed approach for infiltration processes in urban areas with limited storage capacity dependent on OpenStreetMaps (OSM). The model complexity is increased stepwise by adding components to an existing 2D overland flow model. The different steps are defined as modelling levels. The methodology is applied in a German case study. Results highlight that: (a) spatial heterogeneity of urban features has a medium to high impact on the estimated overland flood-depths, (b) the addition of multiple urban features have a higher cumulative effect due to the dynamic effects simulated by the model, (c) connecting the runoff from buildings to the sewer contributes to the non-linear effects observed on the overland flood-depths, and (d) OSM data is useful in identifying pounding areas (for which infiltration plays a decisive role) and permeable natural surface flow paths (which delay the flood propagation).

  3. Effect of soil and cover conditions on soil-water relationships

    Treesearch

    George R., Jr. Trimble; Charles E. Hale; H. Spencer Potter

    1951-01-01

    People who make flood-control surveys for the U.S. Department of Agriculture are concerned with the physical condition of the soils in the watersheds. The condition of the soil determines how fast water moves into and through the soil, and how much water is held in storage. The condition of the soil has a great influence on stream flow, erosion, floods and water supply...

  4. Flash Flood Type Identification within Catchments in Beijing Mountainous Area

    NASA Astrophysics Data System (ADS)

    Nan, W.

    2017-12-01

    Flash flood is a common type of disaster in mountainous area, Flash flood with the feature of large flow rate, strong flushing force, destructive power, has periodically caused loss to life and destruction to infrastructure in mountainous area. Beijing as China's political, economic and cultural center, the disaster prevention and control work in Beijing mountainous area has always been concerned widely. According to the transport mechanism, sediment concentration and density, the flash flood type identification within catchment can provide basis for making the hazards prevention and mitigation policy. Taking Beijing as the study area, this paper extracted parameters related to catchment morphological and topography features respectively. By using Bayes discriminant, Logistic regression and Random forest, the catchments in Beijing mountainous area were divided into water floods process, fluvial sediment transport process and debris flows process. The results found that Logistic regression analysis showed the highest accuracy, with the overall accuracy of 88.2%. Bayes discriminant and Random forest had poor prediction effects. This study confirmed the ability of morphological and topography features to identify flash flood process. The circularity ratio, elongation ratio and roughness index can be used to explain the flash flood types effectively, and the Melton ratio and elevation relief ratio also did a good job during the identification, whereas the drainage density seemed not to be an issue at this level of detail. Based on the analysis of spatial patterns of flash flood types, fluvial sediment transport process and debris flow process were the dominant hazards, while the pure water flood process was much less. The catchments dominated by fluvial sediment transport process were mainly distributed in the Yan Mountain region, where the fault belts were relatively dense. The debris flow process prone to occur in the Taihang Mountain region thanks to the abundant coal gangues. The pure water flood process catchments were mainly distributed in the transitional mountain front.

  5. Research in Functionally Distributed Computer Systems Development. Volume XII. Design Considerations in Distributed Data Base Management Systems.

    DTIC Science & Technology

    1977-04-01

    task of data organization, management, and storage has been given to a select group of specialists . These specialists (the Data Base Administrators...report writers, etc.) the task of data organi?9tion, management, and storage has been given to a select group of specialists . These specialists (the...distributed DBMS Involves first identifying a set of two or more tasks blocking each other from a collection of shared 12 records. Once the set of

  6. Exponential Arithmetic Based Self-Healing Group Key Distribution Scheme with Backward Secrecy under the Resource-Constrained Wireless Networks

    PubMed Central

    Guo, Hua; Zheng, Yandong; Zhang, Xiyong; Li, Zhoujun

    2016-01-01

    In resource-constrained wireless networks, resources such as storage space and communication bandwidth are limited. To guarantee secure communication in resource-constrained wireless networks, group keys should be distributed to users. The self-healing group key distribution (SGKD) scheme is a promising cryptographic tool, which can be used to distribute and update the group key for the secure group communication over unreliable wireless networks. Among all known SGKD schemes, exponential arithmetic based SGKD (E-SGKD) schemes reduce the storage overhead to constant, thus is suitable for the the resource-constrained wireless networks. In this paper, we provide a new mechanism to achieve E-SGKD schemes with backward secrecy. We first propose a basic E-SGKD scheme based on a known polynomial-based SGKD, where it has optimal storage overhead while having no backward secrecy. To obtain the backward secrecy and reduce the communication overhead, we introduce a novel approach for message broadcasting and self-healing. Compared with other E-SGKD schemes, our new E-SGKD scheme has the optimal storage overhead, high communication efficiency and satisfactory security. The simulation results in Zigbee-based networks show that the proposed scheme is suitable for the resource-restrained wireless networks. Finally, we show the application of our proposed scheme. PMID:27136550

  7. The active control strategy on the output power for photovoltaic-storage systems based on extended PQ-QV-PV Node

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Zhou, Bao-Rong; Zhai, Jian-Wei; Zhang, Yong-Jun; Yi, Ying-Qi

    2017-05-01

    In order to solve the problem of voltage exceeding specified limits and improve the penetration of photovoltaic in distribution network, we can make full use of the active power regulation ability of energy storage(ES) and the reactive power regulation ability of grid-connected photovoltaic inverter to provide support of active power and reactive power for distribution network. A strategy of actively controlling the output power for photovoltaic-storage system based on extended PQ-QV-PV node by analyzing the voltage regulating mechanism of point of commom coupling(PCC) of photovoltaic with energy storage(PVES) by controlling photovoltaic inverter and energy storage. The strategy set a small wave range of voltage to every photovoltaic by making the type of PCC convert among PQ, PV and QV. The simulation results indicate that the active control method can provide a better solution to the problem of voltage exceeding specified limits when photovoltaic is connectted to electric distribution network.

  8. A relative vulnerability estimation of flood disaster using data envelopment analysis in the Dongting Lake region of Hunan

    NASA Astrophysics Data System (ADS)

    Li, C.-H.; Li, N.; Wu, L.-C.; Hu, A.-J.

    2013-07-01

    The vulnerability to flood disaster is addressed by a number of studies. It is of great importance to analyze the vulnerability of different regions and various periods to enable the government to make policies for distributing relief funds and help the regions to improve their capabilities against disasters, yet a recognized paradigm for such studies seems missing. Vulnerability is defined and evaluated through either physical or economic-ecological perspectives depending on the field of the researcher concerned. The vulnerability, however, is the core of both systems as it entails systematic descriptions of flood severities or disaster management units. The research mentioned often has a development perspective, and in this article we decompose the overall flood system into several factors: disaster driver, disaster environment, disaster bearer, and disaster intensity, and take the interaction mechanism among all factors as an indispensable function. The conditions of flood disaster components are demonstrated with disaster driver risk level, disaster environment stability level and disaster bearer sensitivity, respectively. The flood system vulnerability is expressed as vulnerability = f(risk, stability, sensitivity). Based on the theory, data envelopment analysis method (DEA) is used to detail the relative vulnerability's spatiotemporal variation of a flood disaster system and its components in the Dongting Lake region. The study finds that although a flood disaster system's relative vulnerability is closely associated with its components' conditions, the flood system and its components have a different vulnerability level. The overall vulnerability is not the aggregation of its components' vulnerability. On a spatial scale, zones central and adjacent to Dongting Lake and/or river zones are characterized with very high vulnerability. Zones with low and very low vulnerability are mainly distributed in the periphery of the Dongting Lake region. On a temporal scale, the occurrence of a vibrating flood vulnerability trend is observed. A different picture is displayed with the disaster driver risk level, disaster environment stability level and disaster bearer sensitivity level. The flood relative vulnerability estimation method based on DEA is characteristic of good comparability, which takes the relative efficiency of disaster system input-output into account, and portrays a very diverse but consistent picture with varying time steps. Therefore, among different spatial and time domains, we could compare the disaster situations with what was reflected by the same disaster. Additionally, the method overcomes the subjectivity of a comprehensive flood index caused by using an a priori weighting system, which exists in disaster vulnerability estimation of current disasters.

  9. The Impact of Corps Flood Control Reservoirs in the June 2008 Upper Mississippi Flood

    NASA Astrophysics Data System (ADS)

    Charley, W. J.; Stiman, J. A.

    2008-12-01

    The US Army Corps of Engineers is responsible for a multitude of flood control project on the Mississippi River and its tributaries, including levees that protect land from flooding, and dams to help regulate river flows. The first six months of 2008 were the wettest on record in the upper Mississippi Basin. During the first 2 weeks of June, rainfall over the Midwest ranged from 6 to as much as 16 inches, overwhelming the flood protection system, causing massive flooding and damage. Most severely impacted were the States of Iowa, Illinois, Indiana, Missouri, and Wisconsin. In Iowa, flooding occurred on almost every river in the state. On the Iowa River, record flooding occurred from Marshalltown, Iowa, downstream to its confluence with the Mississippi River. At several locations, flooding exceeded the 500-year event. The flooding affected agriculture, transportation, and infrastructure, including homes, businesses, levees, and other water-control structures. It has been estimated that there was at least 7 billion dollars in damages. While the flooding in Iowa was extraordinary, Corps of Engineers flood control reservoirs helped limit damage and prevent loss of life, even though some reservoirs were filled beyond their design capacity. Coralville Reservoir on the Iowa River, for example, filled to 135% of its design flood storage capacity, with stage a record five feet over the crest of the spillway. In spite of this, the maximum reservoir release was limited to 39,500 cfs, while a peak inflow of 57,000 cfs was observed. CWMS, the Corps Water Management System, is used to help regulate Corps reservoirs, as well as track and evaluate flooding and flooding potential. CWMS is a comprehensive data acquisition and hydrologic modeling system for short-term decision support of water control operations in real time. It encompasses data collection, validation and transformation, data storage, visualization, real time model simulation for decision-making support, and data dissemination. The system uses precipitation and flow data, collected in real-time, along with forecasted flow from the National Weather Service to model and optimize reservoir operations and forecast downstream flows and stages, providing communities accurate and timely information to aid their flood-fighting. This involves integrating several simulation modeling programs, including HEC-HMS to forecast flows, HEC-ResSim to model reservoir operations and HEC-RAS to compute forecasted stage hydrographs. An inundation boundary and depth map of water in the flood plain can be calculated from the HEC-RAS results using ArcInfo. By varying future precipitation and releases, engineers can evaluate different "What if?" scenarios. The effectiveness of this tool and Corps reservoirs are examined.

  10. Operational water management of Rijnland water system and pilot of ensemble forecasting system for flood control

    NASA Astrophysics Data System (ADS)

    van der Zwan, Rene

    2013-04-01

    The Rijnland water system is situated in the western part of the Netherlands, and is a low-lying area of which 90% is below sea-level. The area covers 1,100 square kilometres, where 1.3 million people live, work, travel and enjoy leisure. The District Water Control Board of Rijnland is responsible for flood defence, water quantity and quality management. This includes design and maintenance of flood defence structures, control of regulating structures for an adequate water level management, and waste water treatment. For water quantity management Rijnland uses, besides an online monitoring network for collecting water level and precipitation data, a real time control decision support system. This decision support system consists of deterministic hydro-meteorological forecasts with a 24-hr forecast horizon, coupled with a control module that provides optimal operation schedules for the storage basin pumping stations. The uncertainty of the rainfall forecast is not forwarded in the hydrological prediction. At this moment 65% of the pumping capacity of the storage basin pumping stations can be automatically controlled by the decision control system. Within 5 years, after renovation of two other pumping stations, the total capacity of 200 m3/s will be automatically controlled. In critical conditions there is a need of both a longer forecast horizon and a probabilistic forecast. Therefore ensemble precipitation forecasts of the ECMWF are already consulted off-line during dry-spells, and Rijnland is running a pilot operational system providing 10-day water level ensemble forecasts. The use of EPS during dry-spells and the findings of the pilot will be presented. Challenges and next steps towards on-line implementation of ensemble forecasts for risk-based operational management of the Rijnland water system will be discussed. An important element in that discussion is the question: will policy and decision makers, operator and citizens adapt this Anticipatory Water management, including temporary lower storage basin levels and a reduction in extra investments for infrastructural measures.

  11. Growing magma chambers control the distribution of small-scale flood basalts.

    PubMed

    Yu, Xun; Chen, Li-Hui; Zeng, Gang

    2015-11-19

    Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar-Ar and K-Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 > 47.5 wt.%) from Xinchang-Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4-3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40-0.66; TiO2/MgO = 0.23-0.35) during about 6 Myr (9.4-3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3-3.0 Ma) through a broad range of compositions ((Na2O + K2O)/MgO = 0.60-1.28; TiO2/MgO = 0.30-0.57). The distribution and two-stage compositional evolution of the migrating flood basalts record continuous magma replenishment that buffered against magmatic evolution and induced magma chamber growth. Our results demonstrate that the magma replenishment-magma chamber growth model explains the spatio-temporal distribution of small-scale flood basalts.

  12. Changes in bottom-surface elevations in three reservoirs on the lower Susquehanna River, Pennsylvania and Maryland, following the January 1996 flood; implications for nutrient and sediment loads to Chesapeake Bay

    USGS Publications Warehouse

    Langland, Michael J.; Hainly, Robert A.

    1997-01-01

    The Susquehanna River drains about 27,510 square miles in New York, Pennsylvania, and Maryland, contributes nearly 50 percent of the freshwater discharge to the Chesapeake Bay, and contributes nearly 66 percent of the annual nitrogen load, 40 percent of the phosphorus load, and 25 percent of the suspended-sediment load from non-tidal parts of the Bay during a year of average streamflow. A reservoir system formed by three hydroelectric dams on the lower Susquehanna River is currently trapping a major part of the phosphorus and suspended-sediment loads from the basin and, to a lesser extent, the nitrogen loads.In the summer of 1996, the U. S. Geological Survey collected bathymetric data along 64 cross sections and 40 bottom-sediment samples along 14 selected cross sections in the lower Susquehanna River reservoir system to determine the remaining sediment-storage capacity, refine the current estimate of when the system may reach sediment-storage capacity, document changes in the reservoir system after the January 1996 flood, and determine the remaining nutrient mass in Conowingo Reservoir. Results from the 1996 survey indicate an estimated total of 14,800,000 tons of sediment were scoured from the reservoir system from 1993 (date of previous bathymetric survey) through 1996. This includes the net sediment change of 4,700,000 tons based on volume change in the reservoir system computed from the 1993 and 1996 surveys, the 6,900,000 tons of sediment deposited from 1993 through 1996, and the 3,200,000 tons of sediment transported into the reservoir system during the January 1996 flood. The January 1996 flood, which exceeded a 100-year recurrence interval, scoured about the same amount of sediment that normally would be deposited in the reservoir system during a 4- to 6-year period.Concentrations of total nitrogen in bottom sediments in the Conowingo Reservoir ranged from 1,500 to 6,900 mg/kg (milligrams per kilogram); 75 percent of the concentrations were between 3,000 and 5,000 mg/kg. About 96 percent of the concentrations of total nitrogen consisted of organic nitrogen. Concentrations of total phosphorus in bottom sediments ranged from 286 to 1,390 mg/kg. About 84 percent of the concentrations of total phosphorus were comprised of inorganic phosphorus. The ratio of concentrations of plant-available phosphorus to concentrations of total phosphorus ranged from 0.6 to 3.5 percent; ratios generally decreased in a downstream direction.About 29,000 acre-feet, or 42,000,000 tons, of sediment can be deposited before Conowingo Reservoir reaches sediment-storage capacity. Assuming the average annual sediment-deposition rate remains unchanged and no scour occurs due to floods, the reservoir system could reach sediment-storage capacity in about 17 years. The reservoir system currently is trapping about 2 percent of the nitrogen, 45 percent of the phosphorus, and 70 percent of the suspended sediment transported by the river to the upper Chesapeake Bay. Once the reservoir reaches sediment-storage capacity, an estimated 250-percent increase in the current annual loads of suspended sediment, a 2-percent increase in the current annual loads of total nitrogen, and a 70-percent increase in the current annual loads of total phosphorus from the Susquehanna River to Chesapeake Bay can be expected. If the goal of a 40-percent reduction in controllable phosphorus load from the Susquehanna River Basin is met before the reservoirs reach sediment-storage capacity, the 40-percent reduction goal will probably be exceeded when the reservoir system reaches sediment-storage capacity.

  13. Recession-based hydrological models for estimating low flows in ungauged catchments in the Himalayas

    NASA Astrophysics Data System (ADS)

    Rees, H. G.; Holmes, M. G. R.; Young, A. R.; Kansakar, S. R.

    The Himalayan region of Nepal and northern India experiences hydrological extremes from monsoonal floods during July to September, when most of the annual precipitation falls, to periods of very low flows during the dry season (December to February). While the monsoon floods cause acute disasters such as loss of human life and property, mudslides and infrastructure damage, the lack of water during the dry season has a chronic impact on the lives of local people. The management of water resources in the region is hampered by relatively sparse hydrometerological networks and consequently, many resource assessments are required in catchments where no measurements exist. A hydrological model for estimating dry season flows in ungauged catchments, based on recession curve behaviour, has been developed to address this problem. Observed flows were fitted to a second order storage model to enable average annual recession behaviour to be examined. Regionalised models were developed, using a calibration set of 26 catchments, to predict three recession curve parameters: the storage constant; the initial recession flow and the start date of the recession. Relationships were identified between: the storage constant and catchment area; the initial recession flow and elevation (acting as a surrogate for rainfall); and the start date of the recession and geographic location. An independent set of 13 catchments was used to evaluate the robustness of the models. The regional models predicted the average volume of water in an annual recession period (1st of October to the 1st of February) with an average error of 8%, while mid-January flows were predicted to within ±50% for 79% of the catchments in the data set.

  14. Uncertainties of flood frequency estimation approaches based on continuous simulation using data resampling

    NASA Astrophysics Data System (ADS)

    Arnaud, Patrick; Cantet, Philippe; Odry, Jean

    2017-11-01

    Flood frequency analyses (FFAs) are needed for flood risk management. Many methods exist ranging from classical purely statistical approaches to more complex approaches based on process simulation. The results of these methods are associated with uncertainties that are sometimes difficult to estimate due to the complexity of the approaches or the number of parameters, especially for process simulation. This is the case of the simulation-based FFA approach called SHYREG presented in this paper, in which a rainfall generator is coupled with a simple rainfall-runoff model in an attempt to estimate the uncertainties due to the estimation of the seven parameters needed to estimate flood frequencies. The six parameters of the rainfall generator are mean values, so their theoretical distribution is known and can be used to estimate the generator uncertainties. In contrast, the theoretical distribution of the single hydrological model parameter is unknown; consequently, a bootstrap method is applied to estimate the calibration uncertainties. The propagation of uncertainty from the rainfall generator to the hydrological model is also taken into account. This method is applied to 1112 basins throughout France. Uncertainties coming from the SHYREG method and from purely statistical approaches are compared, and the results are discussed according to the length of the recorded observations, basin size and basin location. Uncertainties of the SHYREG method decrease as the basin size increases or as the length of the recorded flow increases. Moreover, the results show that the confidence intervals of the SHYREG method are relatively small despite the complexity of the method and the number of parameters (seven). This is due to the stability of the parameters and takes into account the dependence of uncertainties due to the rainfall model and the hydrological calibration. Indeed, the uncertainties on the flow quantiles are on the same order of magnitude as those associated with the use of a statistical law with two parameters (here generalised extreme value Type I distribution) and clearly lower than those associated with the use of a three-parameter law (here generalised extreme value Type II distribution). For extreme flood quantiles, the uncertainties are mostly due to the rainfall generator because of the progressive saturation of the hydrological model.

  15. A radar-based hydrological model for flash flood prediction in the dry regions of Israel

    NASA Astrophysics Data System (ADS)

    Ronen, Alon; Peleg, Nadav; Morin, Efrat

    2014-05-01

    Flash floods are floods which follow shortly after rainfall events, and are among the most destructive natural disasters that strike people and infrastructures in humid and arid regions alike. Using a hydrological model for the prediction of flash floods in gauged and ungauged basins can help mitigate the risk and damage they cause. The sparsity of rain gauges in arid regions requires the use of radar measurements in order to get reliable quantitative precipitation estimations (QPE). While many hydrological models use radar data, only a handful do so in dry climate. This research presents a robust radar-based hydro-meteorological model built specifically for dry climate. Using this model we examine the governing factors of flash floods in the arid and semi-arid regions of Israel in particular and in dry regions in general. The hydrological model built is a semi-distributed, physically-based model, which represents the main hydrological processes in the area, namely infiltration, flow routing and transmission losses. Three infiltration functions were examined - Initial & Constant, SCS-CN and Green&Ampt. The parameters for each function were found by calibration based on 53 flood events in three catchments, and validation was performed using 55 flood events in six catchments. QPE were obtained from a C-band weather radar and adjusted using a weighted multiple regression method based on a rain gauge network. Antecedent moisture conditions were calculated using a daily recharge assessment model (DREAM). We found that the SCS-CN infiltration function performed better than the other two, with reasonable agreement between calculated and measured peak discharge. Effects of storm characteristics were studied using synthetic storms from a high resolution weather generator (HiReS-WG), and showed a strong correlation between storm speed, storm direction and rain depth over desert soils to flood volume and peak discharge.

  16. Flood Damages- savings potential for Austrian municipalities and evidence of adaptation

    NASA Astrophysics Data System (ADS)

    Unterberger, C.

    2016-12-01

    Recent studies show that the number of extreme precipitation events has increased globally and will continue to do so in the future. These observations are particularly true for central, northern and north-eastern Europe. These changes in the patterns of extreme events have direct repercussions for policy makers. Rojas et al. (2013) find that until 2080, annual damages could increase by a factor of 17 (from €5,5 bn/year today to € 98 bn/year in 2080) in the event that no adaptation measures are taken. Steininger et al. (2015) find that climate and weather induced extreme events account for an annual current welfare loss of about € 1 billion in Austria. As a result, policy makers will need to understand the interaction between hazard, exposure and vulnerability, with the goal of achieving flood risk reduction. Needed is a better understanding of where exposure, vulnerability and eventually flood risk are highest, i.e. where to reduce risk first and which factors drive existing flood risk. This article analyzes direct flood losses as reported by 1153 Austrian municipalities between 2005 and 2013. To achieve comparability between flood damages and municipalities' ordinary spending, a "vulnerability threshold" is introduced suggesting that flood damages should be lower than 5% of municipalities' average annual ordinary spending. It is found that the probability that flood damages exceed this vulnerability threshold is 12%. To provide a reliable estimate for that exceedance probability the joint distribution of damages and spending is modelled by means of a copula approach. Based on the joint distribution, a Monte Carlo simulation is conducted to derive uncertainty ranges for the exceedance probability. To analyze the drivers of flood damages and the effect they have on municipalities' spending, two linear regression models are estimated. Hereby obtained results suggest that damages increase significantly for those municipalities located along the shores of the river Danube and decrease significantly for municipalities that experienced floods in the past- indicating successful adaptation. As for the relationship between flood damages and municipalities' spending, the regression results indicate that flood damages have a significant positive impact.

  17. Hydraulic Reconstructions of Outburst Floods on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Lapotre, M. G. A.; Lamb, M. P.

    2014-12-01

    Large outburst floods on Earth and Mars have carved bedrock canyons in basalt that often have steep sidewalls and amphitheater heads, suggesting erosion by waterfall retreat and block toppling. Two paleohydraulic methods are typically used to reconstruct flood discharges. The first is based on the discharge required to move sediment, which requires rare grain-size data and is necessarily a lower bound. The second assumes bedrock canyons are entirely inundated, which likely greatly overestimates the discharge of canyon carving floods. Here we explore a third hypothesis that canyon width is an indicator of flood discharge. For example, we expect that for large floods relative to the canyon width, the canyon will tend to widen as water spills over and erodes the canyon sidewalls. In contrast, small floods, relative to the canyon size will tend to focus flow into the canyon head, resulting in a narrowing canyon. To test this hypothesis, we need data on how outburst floods focus water into canyons across a wide range of canyon and flood sizes. To fill this data gap, we performed a series of numerical simulations solving the 2D depth-averaged shallow water equations for turbulent flow. We analyzed the effect of five non-dimensional parameters on the shear stress and discharge distributions around head and sidewalls of canyons of different sizes. The Froude number of the flood has the greatest effect on the distribution of shear stresses and discharges around the canyon rim; higher Froude numbers lead to less convergence of the flow towards the canyon, and thus to lower shear stresses (and discharges) on the sides of the canyon. Simulation results show that canyons of constant width were likely carved by floods within a relatively narrow range of discharges. The range of discharges is sensitive to the Froude number and size of blocks that are toppled at the canyon head, both of which can be estimated from field and remotely sensed data. Example applications on Earth and Mars show that our flood reconstructions yield canyon-carving discharges larger than inferred from incipient motion thresholds, and often dramatically smaller than inferred from assuming complete canyon inundation.

  18. Changes in Benefits of Flood Protection Standard under Climate Change

    NASA Astrophysics Data System (ADS)

    Lim, W. H.; Koirala, S.; Yamazaki, D.; Hirabayashi, Y.; Kanae, S.

    2014-12-01

    Understanding potential risk of river flooding under future climate scenarios might be helpful for developing risk management strategies (including mitigation, adaptation). Such analyses are typically performed at the macro scales (e.g., regional, global) where the climate model output could support (e.g., Hirabayashi et al., 2013, Arnell and Gosling, 2014). To understand the potential benefits of infrastructure upgrading as part of climate adaptation strategies, it is also informative to understand the potential impact of different flood protection standards (in terms of return periods) on global river flooding under climate change. In this study, we use a baseline period (forced by observed hydroclimate conditions) and CMIP5 model output (historic and future periods) to drive a global river routing model called CaMa-Flood (Yamazaki et al., 2011) and simulate the river water depth at a spatial resolution of 15 min x 15 min. From the simulated results of baseline period, we use the annual maxima river water depth to fit the Gumbel distribution and prepare the return period-flood risk relationship (involving population and GDP). From the simulated results of CMIP5 model, we also used the annual maxima river water depth to obtain the Gumbel distribution and then estimate the exceedance probability (historic and future periods). We apply the return period-flood risk relationship (above) to the exceedance probability and evaluate the potential risk of river flooding and changes in the benefits of flood protection standard (e.g., 100-year flood of the baseline period) from the past into the future (represented by the representative concentration pathways). In this presentation, we show our preliminary results. References: Arnell, N.W, Gosling, S., N., 2014. The impact of climate change on river flood risk at the global scale. Climatic Change 122: 127-140, doi: 10.1007/s10584-014-1084-5. Hirabayashi et al., 2013. Global flood risk under climate change. Nature Climate Change 3: 816-821, doi: 10.1038/nclimate1911. Yamazaki et al., 2011. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resources Research 47, W04501, doi: 10.1029/2010wr009726.

  19. Use of Remote Sensing Products for the SERVIR Project

    NASA Technical Reports Server (NTRS)

    Policelli, Frederick S.

    2010-01-01

    The United Nations University (UNU) estimates that floods presently impacts greater than 520 million people per year worldwide, resulting in up to 25,000 annual deaths, extensive homelessness, disaster-induced disease, crop and livestock damage, famine, and other serious harm. Meanwhile, aid agencies such as the International Federation of Red Cross and Red Crescent Societies (IFRC) are increasingly seeking better information concerning flood hazards in order to plan for and help mitigate the effects of damaging floods. There is fertile ground to continue development of better remote sensing and modeling techniques to help manage flood related disasters. Disaster management and humanitarian aid organizations need accurate and timely information for making decisions regarding deployment of relief teams and emergency supplies during major floods. Flood maps based on the use of satellite data have proven extremely valuable to such organizations for identifying the location, extent, and severity of these events. However, despite extraordinary efforts on the part of remote sensing data providers to rapidly deliver such maps, there is typically a delay of several days or even weeks from the on-set of flooding until such maps are available to the disaster management community. This paper summarizes efforts at NASA to address this problem through development of an integrated and automated process of a) flood forecasting b) flood detection, c) satellite data acquisition, d) rapid flood mapping and distribution, and e) validation of flood forecasting and detection products.

  20. Relationships between precipitation and floods in the fluvial basins of Central Spain based on documentary sources from the end of the 16th century

    NASA Astrophysics Data System (ADS)

    Bullón, T.

    2011-08-01

    This study presents the results of a historic reconstruction based upon documentary sources of precipitation and floods during the last fifty years of the 16th century in Central Spain. We used data from primary sources contemporary to the events rather than compilations or secondary references. These documents belong to the institutions that administered the study area during the time period of interest and consist of municipal or monastic minute books and administrative texts from properties belonging to the nobility and royal family. Direct data that explicitly describe meteorological or flood-related events are haphazardly distributed throughout personal correspondence and various reports, and the sizes of floods or precipitation events can also be deduced from indirect data. We analysed the qualitative data by transforming them into numerical indices of intensity/duration for precipitation and intensity/area for floods. We differentiated three sets of years that presented different hydrological patterns. The first period, from 1554 to 1575, exhibited regular precipitation patterns associated with low-intensity floods. The second, from 1576 to 1584, was characterised by low precipitation levels and few floods. The third, from 1585 to 1599, showed intense precipitation with large floods interspersed with long-lasting droughts. We interpret these results in the context of the environmental and land-use patterns of the time period studied, which coincided with a period of low temperatures.

  1. Attribution of regional flood changes based on scaling fingerprints

    PubMed Central

    Merz, Bruno; Viet Dung, Nguyen; Parajka, Juraj; Nester, Thomas; Blöschl, Günter

    2016-01-01

    Abstract Changes in the river flood regime may be due to atmospheric processes (e.g., increasing precipitation), catchment processes (e.g., soil compaction associated with land use change), and river system processes (e.g., loss of retention volume in the floodplains). This paper proposes a new framework for attributing flood changes to these drivers based on a regional analysis. We exploit the scaling characteristics (i.e., fingerprints) with catchment area of the effects of the drivers on flood changes. The estimation of their relative contributions is framed in Bayesian terms. Analysis of a synthetic, controlled case suggests that the accuracy of the regional attribution increases with increasing number of sites and record lengths, decreases with increasing regional heterogeneity, increases with increasing difference of the scaling fingerprints, and decreases with an increase of their prior uncertainty. The applicability of the framework is illustrated for a case study set in Austria, where positive flood trends have been observed at many sites in the past decades. The individual scaling fingerprints related to the atmospheric, catchment, and river system processes are estimated from rainfall data and simple hydrological modeling. Although the distributions of the contributions are rather wide, the attribution identifies precipitation change as the main driver of flood change in the study region. Overall, it is suggested that the extension from local attribution to a regional framework, including multiple drivers and explicit estimation of uncertainty, could constitute a similar shift in flood change attribution as the extension from local to regional flood frequency analysis. PMID:27609996

  2. 30 CFR 762.5 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... dunes, severe wind or soil erosion, frequent flooding, avalanches and areas of unstable geology...-handling, preparation, extraction or storage facilities, and other capital-intensive activities. Costs of...

  3. 30 CFR 762.5 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dunes, severe wind or soil erosion, frequent flooding, avalanches and areas of unstable geology...-handling, preparation, extraction or storage facilities, and other capital-intensive activities. Costs of...

  4. 30 CFR 762.5 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... dunes, severe wind or soil erosion, frequent flooding, avalanches and areas of unstable geology...-handling, preparation, extraction or storage facilities, and other capital-intensive activities. Costs of...

  5. Simulation of ground-water flow and rainfall runoff with emphasis on the effects of land cover, Whittlesey Creek, Bayfield County, Wisconsin, 1999-2001

    USGS Publications Warehouse

    Lenz, Bernard N.; Saad, David A.; Fitzpatrick, Faith A.

    2003-01-01

    The effects of land cover on flooding and base-flow characteristics of Whittlesey Creek, Bayfield County, Wis., were examined in a study that involved ground-water-flow and rainfall-runoff modeling. Field data were collected during 1999-2001 for synoptic base flow, streambed head and temperature, precipitation, continuous streamflow and stream stage, and other physical characteristics. Well logs provided data for potentiometric-surface altitudes and stratigraphic descriptions. Geologic, soil, hydrography, altitude, and historical land-cover data were compiled into a geographic information system and used in two ground-water-flow models (GFLOW and MODFLOW) and a rainfall-runoff model (SWAT). A deep ground-water system intersects Whittlesey Creek near the confluence with the North Fork, producing a steady base flow of 17?18 cubic feet per second. Upstream from the confluence, the creek has little or no base flow; flow is from surface runoff and a small amount of perched ground water. Most of the base flow to Whittlesey Creek originates as recharge through the permeable sands in the center of the Bayfield Peninsula to the northwest of the surface-water-contributing basin. Based on simulations, model-wide changes in recharge caused a proportional change in simulated base flow for Whittlesey Creek. Changing the simulated amount of recharge by 25 to 50 percent in only the ground-water-contributing area results in relatively small changes in base flow to Whittlesey Creek (about 2?11 percent). Simulated changes in land cover within the Whittlesey Creek surface-water-contributing basin would have minimal effects on base flow and average annual runoff, but flood peaks (based on daily mean flows on peak-flow days) could be affected. Based on the simulations, changing the basin land cover to a reforested condition results in a reduction in flood peaks of about 12 to 14 percent for up to a 100-yr flood. Changing the basin land cover to 25 percent urban land or returning basin land cover to the intensive row-crop agriculture of the 1920s results in flood peaks increasing by as much as 18 percent. The SWAT model is limited to a daily time step, which is adequate for describing the surface-water/ground-water interaction and percentage changes. It may not, however, be adequate in describing peak flow because the instantaneous peak flow in Whittlesey Creek during a flood can be more than twice the magnitude of the daily mean flow during that same flood. In addition, the storage and infiltration capacities of wetlands in the basin are not fully understood and need further study.

  6. A dynamic programming approach to estimate the capacity value of energy storage

    DOE PAGES

    Sioshansi, Ramteen; Madaeni, Seyed Hossein; Denholm, Paul

    2013-09-17

    Here, we present a method to estimate the capacity value of storage. Our method uses a dynamic program to model the effect of power system outages on the operation and state of charge of storage in subsequent periods. We combine the optimized dispatch from the dynamic program with estimated system loss of load probabilities to compute a probability distribution for the state of charge of storage in each period. This probability distribution can be used as a forced outage rate for storage in standard reliability-based capacity value estimation methods. Our proposed method has the advantage over existing approximations that itmore » explicitly captures the effect of system shortage events on the state of charge of storage in subsequent periods. We also use a numerical case study, based on five utility systems in the U.S., to demonstrate our technique and compare it to existing approximation methods.« less

  7. Impact of Prairie Cover on Hydraulic Conductivity and Storm Water Runoff

    NASA Astrophysics Data System (ADS)

    Herkes, D. M. G.; Gori, A.; Juan, A.

    2017-12-01

    Houston has long struggled to find effective solutions to its historic flooding problems. Conventional strategies have revolved around constructing hard infrastructure such as levees or regional detention ponds to reduce flood impacts. However, there has been a recent shift to explore the implementation of nature-based solutions in reducing flood impacts. This is due to the price of structural mechanisms, as well as their failure to adequately protect areas from flooding during the latest flood events. One alternative could be utilizing the natural water retention abilities of native Texas prairies. This study examines the effect of Texas prairie areas in increasing soil infiltration capacities, thereby increasing floodwater storage and reducing surface runoff. For this purpose, an infiltration study of 15 sites was conducted on lands owned by the Katy Prairie Conservancy within Cypress Creek watershed. Located in Northwest Houston, it is an area which had been heavily impacted by recent flood events. Each sampling site was selected to represent a particular land cover or vegetation type, ranging from developed open space to native prairies. Field test results are then compared to literature values of soil infiltration capacity in order to determine the infiltration benefit of each vegetation type. Test results show that certain vegetation, especially prairies, significantly increase the infiltration capacity of the underlying soil. For example, the hydraulic conductivity of prairie on sandy loam soil is approximately an order of magnitude higher than that of the soil itself. Finally, a physics-based hydrologic model is utilized to evaluate the flood reduction potential of native Texas prairie. This model represents Cypress Creek watershed in gridded cell format, and allows varying hydraulic and infiltration parameters at each cell. Design storms are run to obtain flow hydrographs for selected watch points in the study area. Two scenarios are simulated and compared: 1) infiltration capacity from soil only and 2) the augmented infiltration capacity of soil due to vegetation. Modeled results show a notable decrease in both total runoff volume and peak flows under the augmented infiltration scenario. This decrease demonstrates the benefit of native Texas prairie land in reducing flood risks.

  8. Uncertainty in flood forecasting: A distributed modeling approach in a sparse data catchment

    NASA Astrophysics Data System (ADS)

    Mendoza, Pablo A.; McPhee, James; Vargas, Ximena

    2012-09-01

    Data scarcity has traditionally precluded the application of advanced hydrologic techniques in developing countries. In this paper, we evaluate the performance of a flood forecasting scheme in a sparsely monitored catchment based on distributed hydrologic modeling, discharge assimilation, and numerical weather predictions with explicit validation uncertainty analysis. For the hydrologic component of our framework, we apply TopNet to the Cautin River basin, located in southern Chile, using a fully distributed a priori parameterization based on both literature-suggested values and data gathered during field campaigns. Results obtained from this step indicate that the incremental effort spent in measuring directly a set of model parameters was insufficient to represent adequately the most relevant hydrologic processes related to spatiotemporal runoff patterns. Subsequent uncertainty validation performed over a six month ensemble simulation shows that streamflow uncertainty is better represented during flood events, due to both the increase of state perturbation introduced by rainfall and the flood-oriented calibration strategy adopted here. Results from different assimilation configurations suggest that the upper part of the basin is the major source of uncertainty in hydrologic process representation and hint at the usefulness of interpreting assimilation results in terms of model input and parameterization inadequacy. Furthermore, in this case study the violation of Markovian state properties by the Ensemble Kalman filter did affect the numerical results, showing that an explicit treatment of the time delay between the generation of surface runoff and the arrival at the basin outlet is required in the assimilation scheme. Peak flow forecasting results demonstrate that there is a major problem with the Weather Research and Forecasting model outputs, which systematically overestimate precipitation over the catchment. A final analysis performed for a large flooding event that occurred in July 2006 shows that, in the absence of bias introduced by an incorrect model calibration, the updating of both model states and meteorological forecasts contributes to a better representation of streamflow uncertainty and to better hydrologic forecasts.

  9. Agricultural chemicals in alluvial aquifers in Missouri after the 1993 flood

    USGS Publications Warehouse

    Heimann, D.C.; Richards, J.M.; Wilkison, D.H.

    1997-01-01

    Intense rains produced flooding during the spring and summer of 1993 over much of the midwestern USA including many agricultural areas of Missouri. Because of potential contamination from floodwater, an investigation was conducted to determine the changes in concentrations of agricultural chemicals in water samples from alluvial wells in Missouri after the flood. Water samples from 80 alluvial wells with historical data were collected in March, July, and November 1994, and analyzed for dissolved herbicides, herbicide metabolites, and nitrate (NO3). There were no statistically significant differences in the distribution of alachlor ((2,chloro-2'-6'-diethyl-N-[methoxymethyl]acetanilide), atrazine (2-chloro- 4-ethylamino-6-isopropylamino-1, 3, 5 triazine), and nitrate concentrations between pre- and postflood samples (?? = 0.05). The detection frequency of alachlor and atrazine in postflood samples was generally lower than the frequency in preflood samples. Analyses of agricultural chemicals in water samples from an intensely sampled well field indicate significant differences between the distribution of dissolved P concentrations in pre- and postflood samples (?? = 0.05). However, no significant differences were detected between the pre- and postflood distributions of NO3 or ammonia concentrations. Because of the numerous sources of temporal variability and the relatively short record of water-quality data for the study wells, a cause-and-effect relation between changes in agricultural chemical concentrations and a single factor of the 1993 flood is difficult to determine. Based on the results of this study, the 1993 flood did not cause widespread or long-term significant changes in concentrations of agricultural chemicals in water from alluvial aquifers in Missouri.

  10. 75 FR 44982 - Arkansas Valley Conduit (AVC) and Long-Term Excess Capacity Master Contract, Fryingpan-Arkansas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-30

    ... Reservoir due to AVC and Excess Capacity Master Contract operations and potential contributions to flooding... Southeastern for storage of non-Fry-Ark Project water in Pueblo Reservoir, a feature of the Fry-Ark Project... storage in Pueblo Reservoir for entities within its boundaries in the Upper Arkansas basin, Lower Arkansas...

  11. Data assimilation of citizen collected information for real-time flood hazard mapping

    NASA Astrophysics Data System (ADS)

    Sayama, T.; Takara, K. T.

    2017-12-01

    Many studies in data assimilation in hydrology have focused on the integration of satellite remote sensing and in-situ monitoring data into hydrologic or land surface models. For flood predictions also, recent studies have demonstrated to assimilate remotely sensed inundation information with flood inundation models. In actual flood disaster situations, citizen collected information including local reports by residents and rescue teams and more recently tweets via social media also contain valuable information. The main interest of this study is how to effectively use such citizen collected information for real-time flood hazard mapping. Here we propose a new data assimilation technique based on pre-conducted ensemble inundation simulations and update inundation depth distributions sequentially when local data becomes available. The propose method is composed by the following two-steps. The first step is based on weighting average of preliminary ensemble simulations, whose weights are updated by Bayesian approach. The second step is based on an optimal interpolation, where the covariance matrix is calculated from the ensemble simulations. The proposed method was applied to case studies including an actual flood event occurred. It considers two situations with more idealized one by assuming continuous flood inundation depth information is available at multiple locations. The other one, which is more realistic case during such a severe flood disaster, assumes uncertain and non-continuous information is available to be assimilated. The results show that, in the first idealized situation, the large scale inundation during the flooding was estimated reasonably with RMSE < 0.4 m in average. For the second more realistic situation, the error becomes larger (RMSE 0.5 m) and the impact of the optimal interpolation becomes comparatively less effective. Nevertheless, the applications of the proposed data assimilation method demonstrated a high potential of this method for assimilating citizen collected information for real-time flood hazard mapping in the future.

  12. Do regional methods really help reduce uncertainties in flood frequency analyses?

    NASA Astrophysics Data System (ADS)

    Cong Nguyen, Chi; Payrastre, Olivier; Gaume, Eric

    2013-04-01

    Flood frequency analyses are often based on continuous measured series at gauge sites. However, the length of the available data sets is usually too short to provide reliable estimates of extreme design floods. To reduce the estimation uncertainties, the analyzed data sets have to be extended either in time, making use of historical and paleoflood data, or in space, merging data sets considered as statistically homogeneous to build large regional data samples. Nevertheless, the advantage of the regional analyses, the important increase of the size of the studied data sets, may be counterbalanced by the possible heterogeneities of the merged sets. The application and comparison of four different flood frequency analysis methods to two regions affected by flash floods in the south of France (Ardèche and Var) illustrates how this balance between the number of records and possible heterogeneities plays in real-world applications. The four tested methods are: (1) a local statistical analysis based on the existing series of measured discharges, (2) a local analysis valuating the existing information on historical floods, (3) a standard regional flood frequency analysis based on existing measured series at gauged sites and (4) a modified regional analysis including estimated extreme peak discharges at ungauged sites. Monte Carlo simulations are conducted to simulate a large number of discharge series with characteristics similar to the observed ones (type of statistical distributions, number of sites and records) to evaluate to which extent the results obtained on these case studies can be generalized. These two case studies indicate that even small statistical heterogeneities, which are not detected by the standard homogeneity tests implemented in regional flood frequency studies, may drastically limit the usefulness of such approaches. On the other hand, these result show that the valuation of information on extreme events, either historical flood events at gauged sites or estimated extremes at ungauged sites in the considered region, is an efficient way to reduce uncertainties in flood frequency studies.

  13. Microtomographic quantification of hydraulic clay mineral displacement effects during a CO2 sequestration experiment with saline aquifer sandstone.

    PubMed

    Sell, Kathleen; Enzmann, Frieder; Kersten, Michael; Spangenberg, Erik

    2013-01-02

    We combined a noninvasive tomographic imaging technique with an invasive open-system core-flooding experiment and compared the results of the pre- and postflooded states of an experimental sandstone core sample from an ongoing field trial for carbon dioxide geosequestration. For the experiment, a rock core sample of 80 mL volume was taken from the 629 m Stuttgart Formation storage domain of a saline sandstone aquifer at the CCS research pilot plant Ketzin, Germany. Supercritical carbon dioxide and synthetical brine were injected under in situ reservoir p/T-conditions at an average flow rate of 0.1 mL/min for 256 h. X-ray computed microtomographic imaging was carried out before and after the core-flooding experiment at a spatial voxel resolution of 27 μm. No significant changes in microstructure were found at the tomographic imaging resolution including porosity and pore size distribution, except of an increase of depositional heterogeneous distribution of clay minerals in the pores. The digitized rock data were used as direct real microstructure input to the GeoDict software package, to simulate Navier-Stokes flow by a lattice Boltzmann equation solver. This procedure yielded 3D pressure and flow velocity fields, and revealed that the migration of clay particles decreased the permeability tensor probably due to clogging of pore openings.

  14. Combined geophysical methods for mapping infiltration pathways at the Aurora Water Aquifer recharge and recovery site

    NASA Astrophysics Data System (ADS)

    Jasper, Cameron A.

    Although aquifer recharge and recovery systems are a sustainable, decentralized, low cost, and low energy approach for the reclamation, treatment, and storage of post- treatment wastewater, they can suffer from poor infiltration rates and the development of a near-surface clogging layer within infiltration ponds. One such aquifer recharge and recovery system, the Aurora Water site in Colorado, U.S.A, functions at about 25% of its predicted capacity to recharge floodplain deposits by flooding infiltration ponds with post-treatment wastewater extracted from river bank aquifers along the South Platte River. The underwater self-potential method was developed to survey self-potential signals at the ground surface in a flooded infiltration pond for mapping infiltration pathways. A method for using heat as a groundwater tracer within the infiltration pond used an array of in situ high-resolution temperature sensing probes. Both relatively positive and negative underwater self-potential anomalies are consistent with observed recovery well pumping rates and specific discharge estimates from temperature data. Results from electrical resistivity tomography and electromagnetics surveys provide consistent electrical conductivity distributions associated with sediment textures. A lab method was developed for resistivity tests of near-surface sediment samples. Forward numerical modeling synthesizes the geophysical information to best match observed self- potential anomalies and provide permeability distributions, which is important for effective aquifer recharge and recovery system design, and optimization strategy development.

  15. A fast method for optical simulation of flood maps of light-sharing detector modules

    PubMed Central

    Shi, Han; Du, Dong; Xu, JianFeng; Moses, William W.; Peng, Qiyu

    2016-01-01

    Optical simulation of the detector module level is highly desired for Position Emission Tomography (PET) system design. Commonly used simulation toolkits such as GATE are not efficient in the optical simulation of detector modules with complicated light-sharing configurations, where a vast amount of photons need to be tracked. We present a fast approach based on a simplified specular reflectance model and a structured light-tracking algorithm to speed up the photon tracking in detector modules constructed with polished finish and specular reflector materials. We simulated conventional block detector designs with different slotted light guide patterns using the new approach and compared the outcomes with those from GATE simulations. While the two approaches generated comparable flood maps, the new approach was more than 200–600 times faster. The new approach has also been validated by constructing a prototype detector and comparing the simulated flood map with the experimental flood map. The experimental flood map has nearly uniformly distributed spots similar to those in the simulated flood map. In conclusion, the new approach provides a fast and reliable simulation tool for assisting in the development of light-sharing-based detector modules with a polished surface finish and using specular reflector materials. PMID:27660376

  16. Attribution of regional flood changes based on scaling fingerprints

    NASA Astrophysics Data System (ADS)

    Viglione, A.; Merz, B.; Dung, N.; Parajka, J.; Nester, T.; Bloeschl, G.

    2017-12-01

    Changes in the river flood regime may be due to atmospheric processes (e.g., increasing precipitation), catchment processes (e.g., soil compaction associated with land use change), and river system processes (e.g., loss of retention volume in the floodplains). We propose a framework for attributing flood changes to these drivers based on a regional analysis. We exploit the scaling characteristics (i.e., fingerprints) with catchment area of the effects of the drivers on flood changes. The estimation of their relative contributions is framed in Bayesian terms. Analysis of a synthetic, controlled case suggests that the accuracy of the regional attribution increases with increasing number of sites and record lengths, decreases with increasing regional heterogeneity, increases with increasing difference of the scaling fingerprints, and decreases with an increase of their prior uncertainty. The applicability of the framework is illustrated for a case study set in Austria, where positive flood trends have been observed at many sites in the past decades. The individual scaling fingerprints related to the atmospheric, catchment, and river system processes are estimated from rainfall data and simple hydrological modeling. Although the distributions of the contributions are rather wide, the attribution identifies precipitation change as the main driver of flood change in the study region.

  17. A fast method for optical simulation of flood maps of light-sharing detector modules

    DOE PAGES

    Shi, Han; Du, Dong; Xu, JianFeng; ...

    2015-09-03

    Optical simulation of the detector module level is highly desired for Position Emission Tomography (PET) system design. Commonly used simulation toolkits such as GATE are not efficient in the optical simulation of detector modules with complicated light-sharing configurations, where a vast amount of photons need to be tracked. Here, we present a fast approach based on a simplified specular reflectance model and a structured light-tracking algorithm to speed up the photon tracking in detector modules constructed with polished finish and specular reflector materials. We also simulated conventional block detector designs with different slotted light guide patterns using the new approachmore » and compared the outcomes with those from GATE simulations. And while the two approaches generated comparable flood maps, the new approach was more than 200–600 times faster. The new approach has also been validated by constructing a prototype detector and comparing the simulated flood map with the experimental flood map. The experimental flood map has nearly uniformly distributed spots similar to those in the simulated flood map. In conclusion, the new approach provides a fast and reliable simulation tool for assisting in the development of light-sharing-based detector modules with a polished surface finish and using specular reflector materials.« less

  18. Probabilistic flood damage modelling at the meso-scale

    NASA Astrophysics Data System (ADS)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2014-05-01

    Decisions on flood risk management and adaptation are usually based on risk analyses. Such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments. Most damage models have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood damage models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we show how the model BT-FLEMO (Bagging decision Tree based Flood Loss Estimation MOdel) can be applied on the meso-scale, namely on the basis of ATKIS land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany. The application of BT-FLEMO provides a probability distribution of estimated damage to residential buildings per municipality. Validation is undertaken on the one hand via a comparison with eight other damage models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official damage data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of damage estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation model BT-FLEMO is that it inherently provides quantitative information about the uncertainty of the prediction. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64.

  19. Extreme flood estimation by the SCHADEX method in a snow-driven catchment: application to Atnasjø (Norway)

    NASA Astrophysics Data System (ADS)

    Paquet, Emmanuel; Lawrence, Deborah

    2013-04-01

    The SCHADEX method for extreme flood estimation was developed by Paquet et al. (2006, 2013), and since 2008, it is the reference method used by Electricité de France (EDF) for dam spillway design. SCHADEX is a so-called "semi-continuous" stochastic simulation method in that flood events are simulated on an event basis and are superimposed on a continuous simulation of the catchment saturation hazard usingrainfall-runoff modelling. The MORDOR hydrological model (Garçon, 1999) has thus far been used for the rainfall-runoff modelling. MORDOR is a conceptual, lumped, reservoir model with daily areal rainfall and air temperature as the driving input data. The principal hydrological processes represented are evapotranspiration, direct and indirect runoff, ground water, snow accumulation and melt, and routing. The model has been intensively used at EDF for more than 15 years, in particular for inflow forecasts for French mountainous catchments. SCHADEX has now also been applied to the Atnasjø catchment (463 km²), a well-documented inland catchment in south-central Norway, dominated by snowmelt flooding during spring/early summer. To support this application, a weather pattern classification based on extreme rainfall was first established for Norway (Fleig, 2012). This classification scheme was then used to build a Multi-Exponential Weather Pattern distribution (MEWP), as introduced by Garavaglia et al. (2010) for extreme rainfall estimation. The MORDOR model was then calibrated relative to daily discharge data for Atnasjø. Finally, a SCHADEX simulation was run to build a daily discharge distribution with a sufficient number of simulations for assessing the extreme quantiles. Detailed results are used to illustrate how SCHADEX handles the complex and interacting hydrological processes driving flood generation in this snow driven catchment. Seasonal and monthly distributions, as well as statistics for several thousand simulated events reaching a 1000 years return level value and assessment of snowmelt role in extreme floods are presented. This study illustrates the complexity of the extreme flood estimation in snow driven catchments, and the need for a good representation of snow accumulation and melting processes in simulations for design flood estimations. In particular, the SCHADEX method is able to represent a range of possible catchment conditions (representing both soil moisture and snowmelt) in which extreme flood events can occur. This study is part of a collaboration between NVE and EDF, initiated within the FloodFreq COST Action (http://www.cost-floodfreq.eu/). References: Fleig, A., Scientific Report of the Short Term Scientific Mission Anne Fleig visiting Électricité de France, FloodFreq COST action - STSM report, 2012 Garavaglia, F., Gailhard, J., Paquet, E., Lang, M., Garçon, R., and Bernardara, P., Introducing a rainfall compound distribution model based on weather patterns sub-sampling, Hydrol. Earth Syst. Sci., 14, 951-964, doi:10.5194/hess-14-951-2010, 2010 Garçon, R. Modèle global pluie-débit pour la prévision et la prédétermination des crues, La Houille Blanche, 7-8, 88-95. doi: 10.1051/lhb/1999088 Paquet, E., Gailhard, J. and Garçon, R. (2006), Evolution of the GRADEX method: improvement by atmospheric circulation classification and hydrological modeling, La Houille Blanche, 5, 80-90. doi: 10.1051/lhb/2006091 Paquet, E., Garavaglia, F., Garçon, R. and Gailhard, J. (2012), The SCHADEX method: a semi-continuous rainfall-runoff simulation for extreme food estimation, Journal of Hydrology, under revision

  20. The large-scale distribution and internal geometry of the fall 2000 Po River flood deposit: Evidence from digital X-radiography

    USGS Publications Warehouse

    Wheatcroft, R.A.; Stevens, A.W.; Hunt, L.M.; Milligan, T.G.

    2006-01-01

    Event-response coring on the Po River prodelta (northern Adriatic Sea) coupled with shipboard digital X-radiography, resistivity profiling, and grain-size analyses permitted documentation of the initial distribution and physical properties of the October 2000 flood deposit. The digital X-radiography system comprises a constant-potential X-ray source and an amorphous silicon imager with an active area of 29??42 cm and 12-bit depth resolution. Objective image segmentation algorithms based on bulk density (brightness), layer contacts (edge detection) and small-scale texture (fabric) were used to identify the flood deposit. Results indicate that the deposit formed in water depths of 6-29 m immediately adjacent to the three main distributary mouths of the Po (Pila, Tolle and Gnocca/Goro). Maximal thickness was 36 cm at a 20-m site off the main mouth (Pila), but many other sites hadthicknesses >20 cm. The Po flood deposit has a complex internal stratigraphy, with multiple layers, a diverse suite of physical sedimentary structures (e.g., laminations, ripple cross bedding, lenticular bedding, soft-sediment deformation structures), and dramatic changes in grain size that imply rapid deposition and fluctuations in energy during emplacement. Based on the flood deposit volume and well-constrained measurements of deposit bulk density the mass of the flood deposit was estimated to be 16??109 kg, which is about two-thirds of the estimated suspended sediment load delivered by the river during the event. The locus of deposition, overall thickness, and stratigraphic complexity of the flood deposit can best be explained by the relatively long sediment throughput times of the Po River, whereby sediment is delivered to the ocean during a range of conditions (i.e., the storm responsible for the precipitation is long gone), the majority of which are reflective of the fair-weather condition. Sediment is therefore deposited proximal to the river mouths, where it can form thick, but stratigraphically complex deposits. In contrast, floods of small rivers such as the Eel (northern California) are coupled to storm conditions, which lead to high levels of sediment dispersion. ?? 2006 Elsevier Ltd. All rights reserved.

  1. Assessment of flood risk in Tokyo metropolitan area

    NASA Astrophysics Data System (ADS)

    Hirano, J.; Dairaku, K.

    2013-12-01

    Flood is one of the most significant natural hazards in Japan. The Tokyo metropolitan area has been affected by several large flood disasters. Therefore, investigating potential flood risk in Tokyo metropolitan area is important for development of adaptation strategy for future climate change. We aim to develop a method for evaluating flood risk in Tokyo Metropolitan area by considering effect of historical land use and land cover change, socio-economic change, and climatic change. Ministry of land, infrastructure, transport and tourism in Japan published 'Statistics of flood', which contains data for flood causes, number of damaged houses, area of wetted surface, and total amount of damage for each flood at small municipal level. By using these flood data, we estimated damage by inundation inside a levee for each prefecture based on a statistical method. On the basis of estimated damage, we developed flood risk curves in the Tokyo metropolitan area, representing relationship between damage and exceedance probability of flood for the period 1976-2008 for each prefecture. Based on the flood risk curve, we attempted evaluate potential flood risk in the Tokyo metropolitan area and clarify the cause for regional difference of flood risk. By analyzing flood risk curves, we found out regional differences of flood risk. We identified high flood risk in Tokyo and Saitama prefecture. On the other hand, flood risk was relatively low in Ibaraki and Chiba prefecture. We found that these regional differences of flood risk can be attributed to spatial distribution of entire property value and ratio of damaged housing units in each prefecture.We also attempted to evaluate influence of climate change on potential flood risk by considering variation of precipitation amount and precipitation intensity in the Tokyo metropolitan area. Results shows that we can evaluate potential impact of precipitation change on flood risk with high accuracy by using our methodology. Acknowledgments This study is conducted as part of the research subject "Vulnerability and Adaptation to Climate Change in Water Hazard Assessed Using Regional Climate Scenarios in the Tokyo Region' (National Research Institute for Earth Science and Disaster Prevention; PI: Koji Dairaku) of Research Program on Climate Change Adaptation (RECCA) and was supported by the SOUSEI Program, funded by Ministry of Education, Culture, Sports, Science and Technology, Government of Japan

  2. Green-blue water in the city: quantification of impact of source control versus end-of-pipe solutions on sewer and river floods.

    PubMed

    De Vleeschauwer, K; Weustenraad, J; Nolf, C; Wolfs, V; De Meulder, B; Shannon, K; Willems, P

    2014-01-01

    Urbanization and climate change trends put strong pressures on urban water systems. Temporal variations in rainfall, runoff and water availability increase, and need to be compensated for by innovative adaptation strategies. One of these is stormwater retention and infiltration in open and/or green spaces in the city (blue-green water integration). This study evaluated the efficiency of three adaptation strategies for the city of Turnhout in Belgium, namely source control as a result of blue-green water integration, retention basins located downstream of the stormwater sewers, and end-of-pipe solutions based on river flood control reservoirs. The efficiency of these options is quantified by the reduction in sewer and river flood frequencies and volumes, and sewer overflow volumes. This is done by means of long-term simulations (100-year rainfall simulations) using an integrated conceptual sewer-river model calibrated to full hydrodynamic sewer and river models. Results show that combining open, green zones in the city with stormwater retention and infiltration for only 1% of the total city runoff area would lead to a 30 to 50% reduction in sewer flood volumes for return periods in the range 10-100 years. This is due to the additional surface storage and infiltration and consequent reduction in urban runoff. However, the impact of this source control option on downstream river floods is limited. Stormwater retention downstream of the sewer system gives a strong reduction in peak discharges to the receiving river. However due to the difference in response time between the sewer and river systems, this does not lead to a strong reduction in river flood frequency. The paper shows the importance of improving the interface between urban design and water management, and between sewer and river flood management.

  3. Is the population of Crotalus durissus (Serpentes, Viperidae) expanding in Brazil?

    PubMed Central

    2013-01-01

    Crotalus durissus are found from Mexico to northern Argentina in a highly disjunct distribution. According to some studies, this species is prone to occupy areas disturbed by human activities and floods comprise a plausible method of dispersal as inferred for some North American rattlesnakes. Based on the literature, it seems plausible that Crotalus durissus expanded their natural distribution in Brazil due to floods, but only in a few municipalities in Rio de Janeiro State. Data entries of Butantan Institute, in São Paulo, Brazil, from 1998 to 2012 show a declining tendency of snakes brought by donors. In addition, research shows no evidence of Crotalus durissus being an expanding species in the Brazilian territory. PMID:24314146

  4. Is the population of Crotalus durissus (Serpentes, Viperidae) expanding in Brazil?

    PubMed

    Duarte, Marcelo Ribeiro; Menezes, Frederico Alcântara

    2013-12-05

    Crotalus durissus are found from Mexico to northern Argentina in a highly disjunct distribution. According to some studies, this species is prone to occupy areas disturbed by human activities and floods comprise a plausible method of dispersal as inferred for some North American rattlesnakes. Based on the literature, it seems plausible that Crotalus durissus expanded their natural distribution in Brazil due to floods, but only in a few municipalities in Rio de Janeiro State. Data entries of Butantan Institute, in São Paulo, Brazil, from 1998 to 2012 show a declining tendency of snakes brought by donors. In addition, research shows no evidence of Crotalus durissus being an expanding species in the Brazilian territory.

  5. A Hydrological Modeling Framework for Flood Risk Assessment for Japan

    NASA Astrophysics Data System (ADS)

    Ashouri, H.; Chinnayakanahalli, K.; Chowdhary, H.; Sen Gupta, A.

    2016-12-01

    Flooding has been the most frequent natural disaster that claims lives and imposes significant economic losses to human societies worldwide. Japan, with an annual rainfall of up to approximately 4000 mm is extremely vulnerable to flooding. The focus of this research is to develop a macroscale hydrologic model for simulating flooding toward an improved understanding and assessment of flood risk across Japan. The framework employs a conceptual hydrological model, known as the Probability Distributed Model (PDM), as well as the Muskingum-Cunge flood routing procedure for simulating streamflow. In addition, a Temperature-Index model is incorporated to account for snowmelt and its contribution to streamflow. For an efficient calibration of the model, in terms of computational timing and convergence of the parameters, a set of A Priori parameters is obtained based on the relationships between the model parameters and the physical properties of watersheds. In this regard, we have implemented a particle tracking algorithm and a statistical model which use high resolution Digital Terrain Models to estimate different time related parameters of the model such as time to peak of the unit hydrograph. In addition, global soil moisture and depth data are used to generate A Priori estimation of maximum soil moisture capacity, an important parameter of the PDM model. Once the model is calibrated, its performance is examined during the Typhoon Nabi which struck Japan in September 2005 and caused severe flooding throughout the country. The model is also validated for the extreme precipitation event in 2012 which affected Kyushu. In both cases, quantitative measures show that simulated streamflow depicts good agreement with gauge-based observations. The model is employed to simulate thousands of possible flood events for the entire Japan which makes a basis for a comprehensive flood risk assessment and loss estimation for the flood insurance industry.

  6. Global-scale river flood vulnerability in the last 50 years.

    PubMed

    Tanoue, Masahiro; Hirabayashi, Yukiko; Ikeuchi, Hiroaki

    2016-10-26

    The impacts of flooding are expected to rise due to population increases, economic growth and climate change. Hence, understanding the physical and spatiotemporal characteristics of risk drivers (hazard, exposure and vulnerability) is required to develop effective flood mitigation measures. Here, the long-term trend in flood vulnerability was analysed globally, calculated from the ratio of the reported flood loss or damage to the modelled flood exposure using a global river and inundation model. A previous study showed decreasing global flood vulnerability over a shorter period using different disaster data. The long-term analysis demonstrated for the first time that flood vulnerability to economic losses in upper-middle, lower-middle and low-income countries shows an inverted U-shape, as a result of the balance between economic growth and various historical socioeconomic efforts to reduce damage, leading to non-significant upward or downward trends. We also show that the flood-exposed population is affected by historical changes in population distribution, with changes in flood vulnerability of up to 48.9%. Both increasing and decreasing trends in flood vulnerability were observed in different countries, implying that population growth scenarios considering spatial distribution changes could affect flood risk projections.

  7. Global-scale river flood vulnerability in the last 50 years

    PubMed Central

    Tanoue, Masahiro; Hirabayashi, Yukiko; Ikeuchi, Hiroaki

    2016-01-01

    The impacts of flooding are expected to rise due to population increases, economic growth and climate change. Hence, understanding the physical and spatiotemporal characteristics of risk drivers (hazard, exposure and vulnerability) is required to develop effective flood mitigation measures. Here, the long-term trend in flood vulnerability was analysed globally, calculated from the ratio of the reported flood loss or damage to the modelled flood exposure using a global river and inundation model. A previous study showed decreasing global flood vulnerability over a shorter period using different disaster data. The long-term analysis demonstrated for the first time that flood vulnerability to economic losses in upper-middle, lower-middle and low-income countries shows an inverted U-shape, as a result of the balance between economic growth and various historical socioeconomic efforts to reduce damage, leading to non-significant upward or downward trends. We also show that the flood-exposed population is affected by historical changes in population distribution, with changes in flood vulnerability of up to 48.9%. Both increasing and decreasing trends in flood vulnerability were observed in different countries, implying that population growth scenarios considering spatial distribution changes could affect flood risk projections. PMID:27782160

  8. From hydro-geomorphological mapping to sediment transfer evaluation in the Upper Guil Catchment (Queyras, French Alps)

    NASA Astrophysics Data System (ADS)

    Lissak, Candide; Fort, Monique; Arnaud-Fassetta, Gilles; Mathieu, Alexandre; Malet, Jean-Philippe; Carlier, Benoit; Betard, François; Cossart, Etienne; Madelin, Malika; Viel, Vincent; Charney, Bérengère; Bletterie, Xavier

    2014-05-01

    The Guil River catchment (Queyras, Southern French Alps) is prone to hydro-geomorphic hazards related to catastrophic floods, with an amplification of their impacts due to strong hillslope-channel connectivity such as in 1957 (> R.I. 100 yr), and more recently in 2000 (R.I. 30 yr). In both cases, the rainfall intensity, aggravated by pre-existing saturated soils, explained the immediate response of the fluvial system and the subsequent destabilisation of slopes. This resulted in serious damages to infrastructure and buildings in the valley bottom, mostly along some specific reaches and confluences with debris flow prone tributaries. After each event, new protective structures are built. One of the purposes of this study, undertaken in the frame of the SAMCO (ANR) project, was to understand the hydro-geomorphological functioning of this upper Alpine catchment in a context of hazards mitigation and sustainable management of sediment yield, transfer and deposition. To determine the main sediment storages that could be mobilised during the next major hydro-meteorological events, the first step of our study consists in the identification and characterisation of areas that play a role into the sediment transfer processing. From environmental characteristics (channel geometric, vegetation cover…) and anthropogenic factors (hydraulic infrastructures, urban development…), a semi-automatic method provides a typology of contribution areas with sediment storages sensitive to erosion, or areas that will be prone to deposition of sediments during the next flooding event. The second step of the study is focused on the sediment storages with their characterisation and connectivity to the trunk channel. Taking into account the entire catchment and including the torrential system, this phase analyses the sedimentary transfers from the identification and classification of sediment storages to the evaluation of the degree of connectivity with the main or secondary channels. The proposed methodology is based on data directly derived from GIS analysis using interpretation of aerial photographs, regional scale Digital Elevation Model (DEM), high-resolution DEM derived from airborne-based LiDAR, and field survey. The data thus obtained can be used in the final geomorphological map. Future investigations will quantify the contribution of each sub-catchment in the global sediment budget of the Guil catchment. For a better assessment of sediment fluxes and sediment delivery into the main channel network, tracers (pit-tags) and diachronic Terrestrial Laser Scanning will be performed in selected sub-catchments in order to measure erosion rates and contribution to the sediment yield in the valley bottoms during the floods, avalanches and rainfall seasonal events.

  9. Deciphering flood frequency curves from a coupled human-nature system perspective

    NASA Astrophysics Data System (ADS)

    Li, H. Y.; Abeshu, G. W.; Wang, W.; Ye, S.; Guo, J.; Bloeschl, G.; Leung, L. R.

    2017-12-01

    Most previous studies and applications in deriving or applying FFC are underpinned by the stationarity assumption. To examine the theoretical robustness of this basic assumption, we analyzed the observed FFCs at hundreds of catchments in the contiguous United States along the gradients of climate conditions and human influences. The shape of FFCs is described using three similarity indices: mean annual floods (MAF), coefficient of variance (CV), and a seasonality index defined using circular statistics. The characteristics of catchments are quantified with a small number of dimensionless indices, including particularly: 1) the climatic aridity index, AI, which is a measure of the competition between energy and water availability; 2) reservoir impact index, defined as the total upstream reservoir storage capacity normalized by the annual streamflow volume. The linkages between these two sets of indices are then explored based on a combination of mathematical derivations of the Budyko formula, simple but physically based reservoir operation models, and other auxiliary data. It is found that the shape of FFCs shifts from arid to humid climate, and from periods with weak human influences to periods with strong influences. The seasonality of floods is found to be largely controlled by the synchronization between the seasonal cycles of precipitation and solar radiation in pristine catchments, but also by the reservoir regulation capacity in managed catchments. Our findings may help improve flood-risk assessment and mitigation in both natural and regulated river systems across various climate gradients.

  10. Potential of high resolution satellite imagery, remote weather data and 1D hydraulic modeling to evaluate flood areas in Gonaives, Haiti

    NASA Astrophysics Data System (ADS)

    Bozza, Andrea; Durand, Arnaud; Allenbach, Bernard; Confortola, Gabriele; Bocchiola, Daniele

    2013-04-01

    We present a feasibility study to explore potential of high-resolution imagery, coupled with hydraulic flood modeling to predict flooding risks, applied to the case study of Gonaives basins (585 km²), Haiti. We propose a methodology working at different scales, providing accurate results and a faster intervention during extreme flood events. The 'Hispaniola' island, in the Caribbean tropical zone, is often affected by extreme floods events. Floods are caused by tropical springs and hurricanes, and may lead to several damages, including cholera epidemics, as recently occurred, in the wake of the earthquake upon January 12th 2010 (magnitude 7.0). Floods studies based upon hydrological and hydraulic modeling are hampered by almost complete lack of ground data. Thenceforth, and given the noticeable cost involved in the organization of field measurement campaigns, the need for exploitation of remote sensing images data. HEC-RAS 1D modeling is carried out under different scenarios of available Digital Elevation Models. The DEMs are generated using optical remote sensing satellite (WorldView-1) and SRTM, combined with information from an open source database (Open Street Map). We study two recent flood episodes, where flood maps from remote sensing were available. Flood extent and land use have been assessed by way of data from SPOT-5 satellite, after hurricane Jeanne in 2004 and hurricane Hanna in 2008. A semi-distributed, DEM based hydrological model is used to simulate flood flows during the hurricanes. Precipitation input is taken from daily rainfall data derived from TRMM satellite, plus proper downscaling. The hydraulic model is calibrated using floodplain friction as tuning parameters against the observed flooded area. We compare different scenarios of flood simulation, and the predictive power of model calibration. The method provide acceptable results in depicting flooded areas, especially considering the tremendous lack of ground data, and show the potential of remote sensing information in prediction of flood events in this area, for the purpose of risk assessment and land use planning, and possibly for flood forecast during extreme events.

  11. Bassett Creek Watershed, Hennepin County, Minnesota. Feasibility Report for Control. Appendixes.

    DTIC Science & Technology

    1976-03-01

    maintenance of the creek corridor . The local interests objected to any plan that would impair the aesthetics of the creek. The needs of the watershed with...OPEN CHANNEL CORRIDOR TO THE MISSISSIPPI RIVR (Alternate 5-E) ...... .............. D-26 COMBINATIONS OF NONSTRUCTURAL AND STRUCTURAL ALTERNATIVES...AND DRE TURNEL (Alternate 6-D) . . ... . . . . . . . . . . D-30 FLOOD STORAGE AND FLOOD PROOFIM. WIT7 AN O(IUI SPACE-- OPEN CHANNEL CORRIDOR TO THE

  12. Sacramento Metropolitan Area, California

    DTIC Science & Technology

    1992-02-01

    restriction would apply to virtually all of West Sacramento. Future conditions in the bypass areas are expected to remain essentially the same. During...frequency, the stage-frequency curve in the study area essentially becomes flat because of the large storage volume behind upstream levee breaches. This curve...and 400-year flood plains are also essentially the same (15 to 16 feet) because of the following: 1) the flood volume for each event is sufficient to

  13. Water in urban planning, Salt Creek Basin, Illinois water management as related to alternative land-use practices

    USGS Publications Warehouse

    Spieker, Andrew Maute

    1970-01-01

    Water management can be an integral part of urban comprehensive planning in a large metropolitan area. Water both imposes constraints on land use and offers opportunities for coordinated land and water management. Salt Creek basin in Cook and Du Page Counties of the Chicago metropolitan area is typical of rapidly developing suburban areas and has been selected to illustrate some of these constraints and opportunities and to suggest the effects of alternative solutions. The present study concentrates on the related problems of ground-water recharge, water quality, management of flood plains, and flood-control measures. Salt Creek basin has a drainage area of 150 square miles. It is in flat to. gently rolling terrain, underlain by glacial drift as much as 200 feet thick which covers a dolomite aquifer. In 1964, the population of the basin was about 400,000, and 40 percent of the land was in urban development. The population is expected to number 550,000 to 650,000 by 1990, and most of the land will be taken by urban development. Salt Creek is a sluggish stream, typical of small drainage channels in the headwaters area of northeastern Illinois. Low flows of 15 to 25 cubic feet per second in the lower part of the basin consist largely of sewage effluent. Nearly all the public water supplies in the basin depend on ground water. Of the total pumpage of 27.5 million gallons per day, 17.5 million gallons per day is pumped from the deep (Cambrian-Ordovician) aquifers and 10 million gallons per day is pumped from the shallow (Silurian dolomite and glacial drift) aquifers. The potential yield of the shallow aquifers, particularly glacial drift in the northern part of the basin, far exceeds present use. The largest concentration of pumpage from the shallow ,aquifers is in the Hinsdale-La Grange area. Salt Creek serves as an important source of recharge to these supplies, particularly just east of Hinsdale. The entire reach of Salt Creek south and east of Elmhurst can be regarded as an area of potential recharge to the shallow aquifers. Preservation of the effectiveness of these potential recharge areas should be considered in land-use planning. Salt Creek is polluted in times of both low and high flow. Most communities in the basin in Du Page County discharge their treated sewage into the creek, whereas those in Cook County transfer their sewage to plants of the Metropolitan Sanitary District outside the basin. During periods of high runoff, combined storm runoff and overflow from sanitary sewers enter the creek. Such polluted water detracts from the stream's esthetic and recreational potential and poses a threat to ground-water supplies owing to induced recharge of polluted water to shallow aquifers. Alternative approaches .to the pollution problem include improvement of the degree of sewage treatment, detention and treatment of storm runoff, dilution of sewage through flow augmentation, or transfer of sewage from the basin to a central treatment plant. To result in an enhanced environment, the streambed would have to be cleansed of accumulated sludge deposits. The overbank flooding in Salt Creek basin every 2 to 3 years presents problems because of encroachments and developments on the flood plains. Flood plains in an urban area can be managed by identifying them, by recognizing that either their natural storage capacity or equivalent artificial capacity is needed to accommodate floods, and by planning land use accordingly. Examples of effective floodplain management include (1) preservation of greenbelts or regional parks along stream courses, (2) use of flood plains for recreation, parking lots. or other low-intensity uses, (3) use of flood-proofed commercial buildings, and (4) provision for compensatory storage to replace natural storage capacity. Results of poor flood-plain management include uncontrolled residential development and encroachment by fill into natural storage areas where no compensatory storage has been

  14. Large-scale runoff generation - parsimonious parameterisation using high-resolution topography

    NASA Astrophysics Data System (ADS)

    Gong, L.; Halldin, S.; Xu, C.-Y.

    2011-08-01

    World water resources have primarily been analysed by global-scale hydrological models in the last decades. Runoff generation in many of these models are based on process formulations developed at catchments scales. The division between slow runoff (baseflow) and fast runoff is primarily governed by slope and spatial distribution of effective water storage capacity, both acting at very small scales. Many hydrological models, e.g. VIC, account for the spatial storage variability in terms of statistical distributions; such models are generally proven to perform well. The statistical approaches, however, use the same runoff-generation parameters everywhere in a basin. The TOPMODEL concept, on the other hand, links the effective maximum storage capacity with real-world topography. Recent availability of global high-quality, high-resolution topographic data makes TOPMODEL attractive as a basis for a physically-based runoff-generation algorithm at large scales, even if its assumptions are not valid in flat terrain or for deep groundwater systems. We present a new runoff-generation algorithm for large-scale hydrology based on TOPMODEL concepts intended to overcome these problems. The TRG (topography-derived runoff generation) algorithm relaxes the TOPMODEL equilibrium assumption so baseflow generation is not tied to topography. TRG only uses the topographic index to distribute average storage to each topographic index class. The maximum storage capacity is proportional to the range of topographic index and is scaled by one parameter. The distribution of storage capacity within large-scale grid cells is obtained numerically through topographic analysis. The new topography-derived distribution function is then inserted into a runoff-generation framework similar VIC's. Different basin parts are parameterised by different storage capacities, and different shapes of the storage-distribution curves depend on their topographic characteristics. The TRG algorithm is driven by the HydroSHEDS dataset with a resolution of 3" (around 90 m at the equator). The TRG algorithm was validated against the VIC algorithm in a common model framework in 3 river basins in different climates. The TRG algorithm performed equally well or marginally better than the VIC algorithm with one less parameter to be calibrated. The TRG algorithm also lacked equifinality problems and offered a realistic spatial pattern for runoff generation and evaporation.

  15. Large-scale runoff generation - parsimonious parameterisation using high-resolution topography

    NASA Astrophysics Data System (ADS)

    Gong, L.; Halldin, S.; Xu, C.-Y.

    2010-09-01

    World water resources have primarily been analysed by global-scale hydrological models in the last decades. Runoff generation in many of these models are based on process formulations developed at catchments scales. The division between slow runoff (baseflow) and fast runoff is primarily governed by slope and spatial distribution of effective water storage capacity, both acting a very small scales. Many hydrological models, e.g. VIC, account for the spatial storage variability in terms of statistical distributions; such models are generally proven to perform well. The statistical approaches, however, use the same runoff-generation parameters everywhere in a basin. The TOPMODEL concept, on the other hand, links the effective maximum storage capacity with real-world topography. Recent availability of global high-quality, high-resolution topographic data makes TOPMODEL attractive as a basis for a physically-based runoff-generation algorithm at large scales, even if its assumptions are not valid in flat terrain or for deep groundwater systems. We present a new runoff-generation algorithm for large-scale hydrology based on TOPMODEL concepts intended to overcome these problems. The TRG (topography-derived runoff generation) algorithm relaxes the TOPMODEL equilibrium assumption so baseflow generation is not tied to topography. TGR only uses the topographic index to distribute average storage to each topographic index class. The maximum storage capacity is proportional to the range of topographic index and is scaled by one parameter. The distribution of storage capacity within large-scale grid cells is obtained numerically through topographic analysis. The new topography-derived distribution function is then inserted into a runoff-generation framework similar VIC's. Different basin parts are parameterised by different storage capacities, and different shapes of the storage-distribution curves depend on their topographic characteristics. The TRG algorithm is driven by the HydroSHEDS dataset with a resolution of 3'' (around 90 m at the equator). The TRG algorithm was validated against the VIC algorithm in a common model framework in 3 river basins in different climates. The TRG algorithm performed equally well or marginally better than the VIC algorithm with one less parameter to be calibrated. The TRG algorithm also lacked equifinality problems and offered a realistic spatial pattern for runoff generation and evaporation.

  16. Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber.

    PubMed

    Li, Xiaoying; Voss, Paul L; Chen, Jun; Sharping, Jay E; Kumar, Prem

    2005-05-15

    We demonstrate storage of polarization-entangled photons for 125 micros, a record storage time to date, in a 25-km-long fiber spool, using a telecommunications-band fiber-based source of entanglement. With this source we also demonstrate distribution of polarization entanglement over 50 km by separating the two photons of an entangled pair and transmitting them individually over separate 25-km fibers. The measured two-photon fringe visibilities were 82% in the storage experiment and 86% in the distribution experiment. Preservation of polarization entanglement over such long-distance transmission demonstrates the viability of all-fiber sources for use in quantum memories and quantum logic gates.

  17. Effects of variability in probable maximum precipitation patterns on flood losses

    NASA Astrophysics Data System (ADS)

    Zischg, Andreas Paul; Felder, Guido; Weingartner, Rolf; Quinn, Niall; Coxon, Gemma; Neal, Jeffrey; Freer, Jim; Bates, Paul

    2018-05-01

    The assessment of the impacts of extreme floods is important for dealing with residual risk, particularly for critical infrastructure management and for insurance purposes. Thus, modelling of the probable maximum flood (PMF) from probable maximum precipitation (PMP) by coupling hydrological and hydraulic models has gained interest in recent years. Herein, we examine whether variability in precipitation patterns exceeds or is below selected uncertainty factors in flood loss estimation and if the flood losses within a river basin are related to the probable maximum discharge at the basin outlet. We developed a model experiment with an ensemble of probable maximum precipitation scenarios created by Monte Carlo simulations. For each rainfall pattern, we computed the flood losses with a model chain and benchmarked the effects of variability in rainfall distribution with other model uncertainties. The results show that flood losses vary considerably within the river basin and depend on the timing and superimposition of the flood peaks from the basin's sub-catchments. In addition to the flood hazard component, the other components of flood risk, exposure, and vulnerability contribute remarkably to the overall variability. This leads to the conclusion that the estimation of the probable maximum expectable flood losses in a river basin should not be based exclusively on the PMF. Consequently, the basin-specific sensitivities to different precipitation patterns and the spatial organization of the settlements within the river basin need to be considered in the analyses of probable maximum flood losses.

  18. Quantifying riverine and storm-surge flood risk by single-family residence: application to Texas.

    PubMed

    Czajkowski, Jeffrey; Kunreuther, Howard; Michel-Kerjan, Erwann

    2013-12-01

    The development of catastrophe models in recent years allows for assessment of the flood hazard much more effectively than when the federally run National Flood Insurance Program (NFIP) was created in 1968. We propose and then demonstrate a methodological approach to determine pure premiums based on the entire distribution of possible flood events. We apply hazard, exposure, and vulnerability analyses to a sample of 300,000 single-family residences in two counties in Texas (Travis and Galveston) using state-of-the-art flood catastrophe models. Even in zones of similar flood risk classification by FEMA there is substantial variation in exposure between coastal and inland flood risk. For instance, homes in the designated moderate-risk X500/B zones in Galveston are exposed to a flood risk on average 2.5 times greater than residences in X500/B zones in Travis. The results also show very similar average annual loss (corrected for exposure) for a number of residences despite their being in different FEMA flood zones. We also find significant storm-surge exposure outside of the FEMA designated storm-surge risk zones. Taken together these findings highlight the importance of a microanalysis of flood exposure. The process of aggregating risk at a flood zone level-as currently undertaken by FEMA-provides a false sense of uniformity. As our analysis indicates, the technology to delineate the flood risks exists today. © 2013 Society for Risk Analysis.

  19. Risk Based Reservoir Operations Using Ensemble Streamflow Predictions for Lake Mendocino in Mendocino County, California

    NASA Astrophysics Data System (ADS)

    Delaney, C.; Mendoza, J.; Whitin, B.; Hartman, R. K.

    2017-12-01

    Ensemble Forecast Operations (EFO) is a risk based approach of reservoir flood operations that incorporates ensemble streamflow predictions (ESPs) made by NOAA's California-Nevada River Forecast Center (CNRFC). With the EFO approach, each member of an ESP is individually modeled to forecast system conditions and calculate risk of reaching critical operational thresholds. Reservoir release decisions are computed which seek to manage forecasted risk to established risk tolerance levels. A water management model was developed for Lake Mendocino, a 111,000 acre-foot reservoir located near Ukiah, California, to evaluate the viability of the EFO alternative to improve water supply reliability but not increase downstream flood risk. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United States Army Corps of Engineers and is operated for water supply by the Sonoma County Water Agency. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has suffered from water supply reliability issues since 2007. The EFO alternative was simulated using a 26-year (1985-2010) ESP hindcast generated by the CNRFC, which approximates flow forecasts for 61 ensemble members for a 15-day horizon. Model simulation results of the EFO alternative demonstrate a 36% increase in median end of water year (September 30) storage levels over existing operations. Additionally, model results show no increase in occurrence of flows above flood stage for points downstream of Lake Mendocino. This investigation demonstrates that the EFO alternative may be a viable approach for managing Lake Mendocino for multiple purposes (water supply, flood mitigation, ecosystems) and warrants further investigation through additional modeling and analysis.

  20. The role of carbohydrates in seed germination and seedling establishment of Himatanthus sucuuba, an Amazonian tree with populations adapted to flooded and non-flooded conditions

    PubMed Central

    da Silva Ferreira, Cristiane; Piedade, Maria Teresa Fernandez; Tiné, Marco Aurélio Silva; Rossatto, Davi Rodrigo; Parolin, Pia; Buckeridge, Marcos Silveira

    2009-01-01

    Background and Aims In the Amazonian floodplains plants withstand annual periods of flooding which can last 7 months. Under these conditions seedlings remain submerged in the dark for long periods since light penetration in the water is limited. Himatanthus sucuuba is a tree species found in the ‘várzea’ (VZ) floodplains and adjacent non-flooded ‘terra-firme’ (TF) forests. Biochemical traits which enhance flood tolerance and colonization success of H. sucuuba in periodically flooded environments were investigated. Methods Storage carbohydrates of seeds of VZ and TF populations were extracted and analysed by HPAEC/PAD. Starch was analysed by enzyme (glucoamylase) degradation followed by quantification of glucose oxidase. Carbohydrate composition of roots of VZ and TF seedlings was studied after experimental exposure to a 15-d period of submersion in light versus darkness. Key Results The endosperm contains a large proportion of the seed reserves, raffinose being the main non-structural carbohydrate. Around 93 % of the cell wall storage polysaccharides (percentage dry weight basis) in the endosperm of VZ seeds was composed of mannose, while soluble sugars accounted for 2·5%. In contrast, 74 % of the endosperm in TF seeds was composed of galactomannans, while 22 % of the endosperm was soluble sugars. This suggested a larger carbohydrate allocation to germination in TF populations whereas VZ populations allocate comparatively more to carbohydrates mobilized during seedling development. The concentration of root non-structural carbohydrates in non-flooded seedlings strongly decreased after a 15-d period of darkness, whereas flooded seedlings were less affected. These effects were more pronounced in TF seedlings, which showed significantly lower root non-structural carbohydrate concentrations. Conclusions There seem to be metabolic adjustments in VZ but not TF seedlings that lead to adaptation to the combined stresses of darkness and flooding. This seems to be important for the survival of the species in these contrasting environments, leading these populations to different directions during evolution. PMID:19770164

  1. Growing magma chambers control the distribution of small-scale flood basalts

    PubMed Central

    Yu, Xun; Chen, Li-Hui; Zeng, Gang

    2015-01-01

    Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar–Ar and K–Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 > 47.5 wt.%) from Xinchang–Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4–3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40–0.66; TiO2/MgO = 0.23–0.35) during about 6 Myr (9.4–3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3–3.0 Ma) through a broad range of compositions ((Na2O + K2O)/MgO = 0.60–1.28; TiO2/MgO = 0.30–0.57). The distribution and two-stage compositional evolution of the migrating flood basalts record continuous magma replenishment that buffered against magmatic evolution and induced magma chamber growth. Our results demonstrate that the magma replenishment–magma chamber growth model explains the spatio-temporal distribution of small-scale flood basalts. PMID:26581905

  2. Historical floods in flood frequency analysis: Is this game worth the candle?

    NASA Astrophysics Data System (ADS)

    Strupczewski, Witold G.; Kochanek, Krzysztof; Bogdanowicz, Ewa

    2017-11-01

    In flood frequency analysis (FFA) the profit from inclusion of historical information on the largest historical pre-instrumental floods depends primarily on reliability of the information, i.e. the accuracy of magnitude and return period of floods. This study is focused on possible theoretical maximum gain in accuracy of estimates of upper quantiles, that can be obtained by incorporating the largest historical floods of known return periods into the FFA. We assumed a simple case: N years of systematic records of annual maximum flows and either one largest (XM1) or two largest (XM1 and XM2) flood peak flows in a historical M-year long period. The problem is explored by Monte Carlo simulations with the maximum likelihood (ML) method. Both correct and false distributional assumptions are considered. In the first case the two-parameter extreme value models (Gumbel, log-Gumbel, Weibull) with various coefficients of variation serve as parent distributions. In the case of unknown parent distribution, the Weibull distribution was assumed as estimating model and the truncated Gumbel as parent distribution. The return periods of XM1 and XM2 are determined from the parent distribution. The results are then compared with the case, when return periods of XM1 and XM2 are defined by their plotting positions. The results are presented in terms of bias, root mean square error and the probability of overestimation of the quantile with 100-year return period. The results of the research indicate that the maximal profit of inclusion of pre-instrumental foods in the FFA may prove smaller than the cost of reconstruction of historical hydrological information.

  3. Incorporating the Impacts of Small Scale Rock Heterogeneity into Models of Flow and Trapping in Target UK CO2 Storage Systems

    NASA Astrophysics Data System (ADS)

    Jackson, S. J.; Reynolds, C.; Krevor, S. C.

    2017-12-01

    Predictions of the flow behaviour and storage capacity of CO2 in subsurface reservoirs are dependent on accurate modelling of multiphase flow and trapping. A number of studies have shown that small scale rock heterogeneities have a significant impact on CO2flow propagating to larger scales. The need to simulate flow in heterogeneous reservoir systems has led to the development of numerical upscaling techniques which are widely used in industry. Less well understood, however, is the best approach for incorporating laboratory characterisations of small scale heterogeneities into models. At small scales, heterogeneity in the capillary pressure characteristic function becomes significant. We present a digital rock workflow that combines core flood experiments with numerical simulations to characterise sub-core scale capillary pressure heterogeneities within rock cores from several target UK storage reservoirs - the Bunter, Captain and Ormskirk sandstone formations. Measured intrinsic properties (permeability, capillary pressure, relative permeability) and 3D saturations maps from steady-state core flood experiments were the primary inputs to construct a 3D digital rock model in CMG IMEX. We used vertical end-point scaling to iteratively update the voxel by voxel capillary pressure curves from the average MICP curve; with each iteration more closely predicting the experimental saturations and pressure drops. Once characterised, the digital rock cores were used to predict equivalent flow functions, such as relative permeability and residual trapping, across the range of flow conditions estimated to prevail in the CO2 storage reservoirs. In the case of the Captain sandstone, rock cores were characterised across an entire 100m vertical transect of the reservoir. This allowed analysis of the upscaled impact of small scale heterogeneity on flow and trapping. Figure 1 shows the varying degree to which heterogeneity impacted flow depending on the capillary number in the Captain sandstone. At low capillary numbers, typical of regions where flow is dominated by buoyancy, fluid flow is impeded and trapping enhanced. At high capillary numbers, typical of the near wellbore environment, the fluid distributed homogeneously and the equivalent relative permeability was higher leading to improved injectivity.

  4. Quantifying the Influence of Urbanization on a Coastal Floodplain

    NASA Astrophysics Data System (ADS)

    Sebastian, A.; Juan, A.; Bedient, P. B.

    2016-12-01

    The U.S. Gulf Coast is the fastest growing region in the United States; between 1960 and 2010, the number of housing units along the Gulf of Mexico increased by 246%, vastly outpacing growth in other parts of the country (NOAA 2013). Numerous studies have shown that increases in impervious surface associated with urbanization reduce infiltration and increase surface runoff. While empirical evidence suggests that changes in land use are leading to increased flood damage in overland areas, earlier studies have largely focused on the impacts of urbanization on surface runoff and watershed hydrology, rather than quantifying its influence on the spatial extent of flooding. In this study, we conduct a longitudinal assessment of the evolution of flood risk since 1970 in an urbanizing coastal watershed. Utilizing the distributed hydrologic model, Vflo®, in combination with the hydraulic model, HEC-RAS, we quantify the impact of localized land use/land cover (LULC) change on the spatial extent of flooding in the watershed and the underlying flood hazard structure. The results demonstrate that increases in impervious cover between 1970 and 2010 (34%) and 2010 and 2040 (18%) increase the size of the floodplain by 26 and 17%, respectively. Furthermore, the results indicate that the depth and frequency of flooding in neighborhoods within the 1% floodplain have increased substantially (see attached figure). Finally, this analysis provides evidence that outdated FEMA floodplain maps could be underestimating the extent of the floodplain by upwards of 25%, depending on the rate of urbanization in the watershed; and, that by incorporating physics-based distributed hydrologic models into floodplain studies, floodplain maps can be easily updated to reflect the most recent LULC information available. The methods presented in this study have important implications for the development of mitigation strategies in coastal areas, such as deterring future development in flood prone areas and directing flood mitigation efforts in already flood prone communities. ReferencesNational Oceanic and Atmospheric Administration (NOAA). (2013). National Coastal Population Report: Population Trends from 1970 to 2020.

  5. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2013-07-02

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  6. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M.; Hammerstrom, Donald J.; Kintner-Meyer, Michael C. W.; Tuffner, Francis K.

    2017-09-05

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  7. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2014-04-15

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  8. Coupled prediction of flash flood response and debris flow occurrence: Application on an alpine extreme flood event

    NASA Astrophysics Data System (ADS)

    Destro, Elisa; Amponsah, William; Nikolopoulos, Efthymios I.; Marchi, Lorenzo; Marra, Francesco; Zoccatelli, Davide; Borga, Marco

    2018-03-01

    The concurrence of flash floods and debris flows is of particular concern, because it may amplify the hazard corresponding to the individual generative processes. This paper presents a coupled modelling framework for the predictions of flash flood response and of the occurrence of debris flows initiated by channel bed mobilization. The framework combines a spatially distributed flash flood response model and a debris flow initiation model to define a threshold value for the peak flow which permits identification of channelized debris flow initiation. The threshold is defined over the channel network as a function of the upslope area and of the local channel bed slope, and it is based on assumptions concerning the properties of the channel bed material and of the morphology of the channel network. The model is validated using data from an extreme rainstorm that impacted the 140 km2 Vizze basin in the Eastern Italian Alps on August 4-5, 2012. The results show that the proposed methodology has improved skill in identifying the catchments where debris-flows are triggered, compared to the use of simpler thresholds based on rainfall properties.

  9. Direct trust-based security scheme for RREQ flooding attack in mobile ad hoc networks

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Dutta, Kamlesh

    2017-06-01

    The routing algorithms in MANETs exhibit distributed and cooperative behaviour which makes them easy target for denial of service (DoS) attacks. RREQ flooding attack is a flooding-type DoS attack in context to Ad hoc On Demand Distance Vector (AODV) routing protocol, where the attacker broadcasts massive amount of bogus Route Request (RREQ) packets to set up the route with the non-existent or existent destination in the network. This paper presents direct trust-based security scheme to detect and mitigate the impact of RREQ flooding attack on the network, in which, every node evaluates the trust degree value of its neighbours through analysing the frequency of RREQ packets originated by them over a short period of time. Taking the node's trust degree value as the input, the proposed scheme is smoothly extended for suppressing the surplus RREQ and bogus RREQ flooding packets at one-hop neighbours during the route discovery process. This scheme distinguishes itself from existing techniques by not directly blocking the service of a normal node due to increased amount of RREQ packets in some unusual conditions. The results obtained throughout the simulation experiments clearly show the feasibility and effectiveness of the proposed defensive scheme.

  10. Wetland hydrology and tree distribution of the Apalachicola River flood plain, Florida

    USGS Publications Warehouse

    Leitman, H.M.; Sohm, J.E.; Franklin, M.A.

    1982-01-01

    The Apalachicola River is part of a 50,800-square-kilometer drainage basin in northwest Florida, Alabama, and Georgia. The river is formed by the confluence of the Chattahoochee and Flint Rivers at Jim Woodruff Dam and flows 171 kilometers to Apalachicola Bay in the Gulf of Mexico. Its flood plain supports 450 square kilometers of bottom-land hardwood and tupelco-cypress forests. The most common trees, constituting 62 percent of the total basal area, were five wet-site species; water tupelo, Ogeeche tupelo, baldcypress, Carolina ash, and swamp tupelo. Other common species were sweetgum, overcup oak, planertree, green ash, water hickory, sugarberry, and diamond-leaf oak. Five forest types were defined based on species predominance by basal area. Biomass increased downstream and was greatest in forests growing on permanently saturated soils. Water and tree relations varied with river location because range in water-level fluctuation and topographic relief in the flood plain diminished downstream. Heights of natural riverbank levees and size and distribution of breaks in levees had a major controlling effect on flood-plain hydrology. Depth of water, duration of inundation and saturation, and river location, but not water velocity, were very highly correlated with forest types. (USGS)

  11. The Upper Mississippi River floodscape: spatial patterns of flood inundation and associated plant community distributions

    USGS Publications Warehouse

    DeJager, Nathan R.; Rohweder, Jason J.; Yin, Yao; Hoy, Erin E.

    2016-01-01

    Questions How is the distribution of different plant communities associated with patterns of flood inundation across a large floodplain landscape? Location Thirty-eight thousand nine hundred and seventy hectare of floodplain, spanning 320 km of the Upper Mississippi River (UMR). Methods High-resolution elevation data (Lidar) and 30 yr of daily river stage data were integrated to produce a ‘floodscape’ map of growing season flood inundation duration. The distributions of 16 different remotely sensed plant communities were quantified along the gradient of flood duration. Results Models fitted to the cumulative frequency of occurrence of different vegetation types as a function of flood duration showed that most types exist along a continuum of flood-related occurrence. The diversity of community types was greatest at high elevations (0–10 d of flooding), where both upland and lowland community types were found, as well as at very low elevations (70–180 d of flooding), where a variety of lowland herbaceous communities were found. Intermediate elevations (20–60 d of flooding) tended to be dominated by floodplain forest and had the lowest diversity of community types. Conclusions Although variation in flood inundation is often considered to be the main driver of spatial patterns in floodplain plant communities, few studies have quantified flood–vegetation relationships at broad scales. Our results can be used to identify targets for restoration of historical hydrological regimes or better anticipate hydro-ecological effects of climate change at broad scales.

  12. Modelling urban rainfall-runoff responses using an experimental, two-tiered physical modelling environment

    NASA Astrophysics Data System (ADS)

    Green, Daniel; Pattison, Ian; Yu, Dapeng

    2016-04-01

    Surface water (pluvial) flooding occurs when rainwater from intense precipitation events is unable to infiltrate into the subsurface or drain via natural or artificial drainage channels. Surface water flooding poses a serious hazard to urban areas across the world, with the UK's perceived risk appearing to have increased in recent years due to surface water flood events seeming more severe and frequent. Surface water flood risk currently accounts for 1/3 of all UK flood risk, with approximately two million people living in urban areas at risk of a 1 in 200-year flood event. Research often focuses upon using numerical modelling techniques to understand the extent, depth and severity of actual or hypothetical flood scenarios. Although much research has been conducted using numerical modelling, field data available for model calibration and validation is limited due to the complexities associated with data collection in surface water flood conditions. Ultimately, the data which numerical models are based upon is often erroneous and inconclusive. Physical models offer a novel, alternative and innovative environment to collect data within, creating a controlled, closed system where independent variables can be altered independently to investigate cause and effect relationships. A physical modelling environment provides a suitable platform to investigate rainfall-runoff processes occurring within an urban catchment. Despite this, physical modelling approaches are seldom used in surface water flooding research. Scaled laboratory experiments using a 9m2, two-tiered 1:100 physical model consisting of: (i) a low-cost rainfall simulator component able to simulate consistent, uniformly distributed (>75% CUC) rainfall events of varying intensity, and; (ii) a fully interchangeable, modular plot surface have been conducted to investigate and quantify the influence of a number of terrestrial and meteorological factors on overland flow and rainfall-runoff patterns within a modelled urban setting. Terrestrial factors investigated include altering the physical model's catchment slope (0°- 20°), as well as simulating a number of spatially-varied impermeability and building density/configuration scenarios. Additionally, the influence of different storm dynamics and intensities were investigated. Preliminary results demonstrate that rainfall-runoff responses in the physical modelling environment are highly sensitive to slight increases in catchment gradient and rainfall intensity and that more densely distributed building layouts significantly increase peak flows recorded at the physical model outflow when compared to sparsely distributed building layouts under comparable simulated rainfall conditions.

  13. Leaf gas films, underwater photosynthesis and plant species distributions in a flood gradient.

    PubMed

    Winkel, Anders; Visser, Eric J W; Colmer, Timothy D; Brodersen, Klaus P; Voesenek, Laurentius A C J; Sand-Jensen, Kaj; Pedersen, Ole

    2016-07-01

    Traits for survival during flooding of terrestrial plants include stimulation or inhibition of shoot elongation, aerenchyma formation and efficient gas exchange. Leaf gas films form on superhydrophobic cuticles during submergence and enhance underwater gas exchange. The main hypothesis tested was that the presence of leaf gas films influences the distribution of plant species along a natural flood gradient. We conducted laboratory experiments and field observations on species distributed along a natural flood gradient. We measured presence or absence of leaf gas films and specific leaf area of 95 species. We also measured, gas film retention time during submergence and underwater net photosynthesis and dark respiration of 25 target species. The presence of a leaf gas film was inversely correlated to flood frequency and duration and reached a maximum value of 80% of the species in the rarely flooded locations. This relationship was primarily driven by grasses that all, independently of their field location along the flood gradient, possess gas films when submerged. Although the present study and earlier experiments have shown that leaf gas films enhance gas exchange of submerged plants, the ability of species to form leaf gas films did not show the hypothesized relationship with species composition along the flood gradient. © 2016 John Wiley & Sons Ltd.

  14. Flooding of the root system in soybean: biochemical and molecular aspects of N metabolism in the nodule during stress and recovery.

    PubMed

    Souza, Sarah C R; Mazzafera, Paulo; Sodek, Ladaslav

    2016-05-01

    Nitrogen fixation of the nodule of soybean is highly sensitive to oxygen deficiency such as provoked by waterlogging of the root system. This study aimed to evaluate the effects of flooding on N metabolism in nodules of soybean. Flooding resulted in a marked decrease of asparagine (the most abundant amino acid) and a concomitant accumulation of γ-aminobutyric acid (GABA). Flooding also resulted in a strong reduction of the incorporation of (15)N2 in amino acids. Nodule amino acids labelled before flooding rapidly lost (15)N during flooding, except for GABA, which initially increased and declined slowly thereafter. Both nitrogenase activity and the expression of nifH and nifD genes were strongly decreased on flooding. Expression of the asparagine synthetase genes SAS1 and SAS2 was reduced, especially the former. Expression of genes encoding the enzyme glutamic acid decarboxylase (GAD1, GAD4, GAD5) was also strongly suppressed except for GAD2 which increased. Almost all changes observed during flooding were reversible after draining. Possible changes in asparagine and GABA metabolism that may explain the marked fluctuations of these amino acids during flooding are discussed. It is suggested that the accumulation of GABA has a storage role during flooding stress.

  15. Flood frequency analysis - the challenge of using historical data

    NASA Astrophysics Data System (ADS)

    Engeland, Kolbjorn

    2015-04-01

    Estimates of high flood quantiles are needed for many applications, .e.g. dam safety assessments are based on the 1000 years flood, whereas the dimensioning of important infrastructure requires estimates of the 200 year flood. The flood quantiles are estimated by fitting a parametric distribution to a dataset of high flows comprising either annual maximum values or peaks over a selected threshold. Since the record length of data is limited compared to the desired flood quantile, the estimated flood magnitudes are based on a high degree of extrapolation. E.g. the longest time series available in Norway are around 120 years, and as a result any estimation of a 1000 years flood will require extrapolation. One solution is to extend the temporal dimension of a data series by including information about historical floods before the stream flow was systematically gaugeded. Such information could be flood marks or written documentation about flood events. The aim of this study was to evaluate the added value of using historical flood data for at-site flood frequency estimation. The historical floods were included in two ways by assuming: (1) the size of (all) floods above a high threshold within a time interval is known; and (2) the number of floods above a high threshold for a time interval is known. We used a Bayesian model formulation, with MCMC used for model estimation. This estimation procedure allowed us to estimate the predictive uncertainty of flood quantiles (i.e. both sampling and parameter uncertainty is accounted for). We tested the methods using 123 years of systematic data from Bulken in western Norway. In 2014 the largest flood in the systematic record was observed. From written documentation and flood marks we had information from three severe floods in the 18th century and they were likely to exceed the 2014 flood. We evaluated the added value in two ways. First we used the 123 year long streamflow time series and investigated the effect of having several shorter series' which could be supplemented with a limited number of known large flood events. Then we used the three historical floods from the 18th century combined with the whole and subsets of the 123 years of systematic observations. In the latter case several challenges were identified: i) The possibility to transfer water levels to river streamflows due to man made changes in the river profile, (ii) The stationarity of the data might be questioned since the three largest historical floods occurred during the "little ice age" with different climatic conditions compared to today.

  16. Flood susceptibility analysis through remote sensing, GIS and frequency ratio model

    NASA Astrophysics Data System (ADS)

    Samanta, Sailesh; Pal, Dilip Kumar; Palsamanta, Babita

    2018-05-01

    Papua New Guinea (PNG) is saddled with frequent natural disasters like earthquake, volcanic eruption, landslide, drought, flood etc. Flood, as a hydrological disaster to humankind's niche brings about a powerful and often sudden, pernicious change in the surface distribution of water on land, while the benevolence of flood manifests in restoring the health of the thalweg from excessive siltation by redistributing the fertile sediments on the riverine floodplains. In respect to social, economic and environmental perspective, flood is one of the most devastating disasters in PNG. This research was conducted to investigate the usefulness of remote sensing, geographic information system and the frequency ratio (FR) for flood susceptibility mapping. FR model was used to handle different independent variables via weighted-based bivariate probability values to generate a plausible flood susceptibility map. This study was conducted in the Markham riverine precinct under Morobe province in PNG. A historical flood inventory database of PNG resource information system (PNGRIS) was used to generate 143 flood locations based on "create fishnet" analysis. 100 (70%) flood sample locations were selected randomly for model building. Ten independent variables, namely land use/land cover, elevation, slope, topographic wetness index, surface runoff, landform, lithology, distance from the main river, soil texture and soil drainage were used into the FR model for flood vulnerability analysis. Finally, the database was developed for areas vulnerable to flood. The result demonstrated a span of FR values ranging from 2.66 (least flood prone) to 19.02 (most flood prone) for the study area. The developed database was reclassified into five (5) flood vulnerability zones segmenting on the FR values, namely very low (less that 5.0), low (5.0-7.5), moderate (7.5-10.0), high (10.0-12.5) and very high susceptibility (more than 12.5). The result indicated that about 19.4% land area as `very high' and 35.8% as `high' flood vulnerable class. The FR model output was validated with remaining 43 (30%) flood points, where 42 points were marked as correct predictions which evinced an accuracy of 97.7% in prediction. A total of 137292 people are living in those vulnerable zones. The flood susceptibility analysis using this model will be very useful and also an efficient tool to the local government administrators, researchers and planners for devising flood mitigation plans.

  17. Performance of a system of reservoirs on futuristic front

    NASA Astrophysics Data System (ADS)

    Saha, Satabdi; Roy, Debasri; Mazumdar, Asis

    2017-10-01

    Application of simulation model HEC-5 to analyze the performance of the DVC Reservoir System (a multipurpose system with a network of five reservoirs and one barrage) on the river Damodar in Eastern India in meeting projected future demand as well as controlling flood for synthetically generated future scenario is addressed here with a view to develop an appropriate strategy for its operation. Thomas-Fiering model (based on Markov autoregressive model) has been adopted for generation of synthetic scenario (monthly streamflow series) and subsequently downscaling of modeled monthly streamflow to daily values was carried out. The performance of the system (analysed on seasonal basis) in terms of `Performance Indices' (viz., both quantity based reliability and time based reliability, mean daily deficit, average failure period, resilience and maximum vulnerability indices) for the projected scenario with enhanced demand turned out to be poor compared to that for historical scenario. However, judicious adoption of resource enhancement (marginal reallocation of reservoir storage capacity) and demand management strategy (curtailment of projected high water requirements and trading off between demands) was found to be a viable option for improvement of the performance of the reservoir system appreciably [improvement being (1-51 %), (2-35 %), (16-96 %), (25-50 %), (8-36 %) and (12-30 %) for the indices viz., quantity based reliability, time based reliability, mean daily deficit, average failure period, resilience and maximum vulnerability, respectively] compared to that with normal storage and projected demand. Again, 100 % reliability for flood control for current as well as future synthetically generated scenarios was noted. The results from the study would assist concerned authority in successful operation of reservoirs in the context of growing demand and dwindling resource.

  18. A climate-based multivariate extreme emulator of met-ocean-hydrological events for coastal flooding

    NASA Astrophysics Data System (ADS)

    Camus, Paula; Rueda, Ana; Mendez, Fernando J.; Tomas, Antonio; Del Jesus, Manuel; Losada, Iñigo J.

    2015-04-01

    Atmosphere-ocean general circulation models (AOGCMs) are useful to analyze large-scale climate variability (long-term historical periods, future climate projections). However, applications such as coastal flood modeling require climate information at finer scale. Besides, flooding events depend on multiple climate conditions: waves, surge levels from the open-ocean and river discharge caused by precipitation. Therefore, a multivariate statistical downscaling approach is adopted to reproduce relationships between variables and due to its low computational cost. The proposed method can be considered as a hybrid approach which combines a probabilistic weather type downscaling model with a stochastic weather generator component. Predictand distributions are reproduced modeling the relationship with AOGCM predictors based on a physical division in weather types (Camus et al., 2012). The multivariate dependence structure of the predictand (extreme events) is introduced linking the independent marginal distributions of the variables by a probabilistic copula regression (Ben Ayala et al., 2014). This hybrid approach is applied for the downscaling of AOGCM data to daily precipitation and maximum significant wave height and storm-surge in different locations along the Spanish coast. Reanalysis data is used to assess the proposed method. A commonly predictor for the three variables involved is classified using a regression-guided clustering algorithm. The most appropriate statistical model (general extreme value distribution, pareto distribution) for daily conditions is fitted. Stochastic simulation of the present climate is performed obtaining the set of hydraulic boundary conditions needed for high resolution coastal flood modeling. References: Camus, P., Menéndez, M., Méndez, F.J., Izaguirre, C., Espejo, A., Cánovas, V., Pérez, J., Rueda, A., Losada, I.J., Medina, R. (2014b). A weather-type statistical downscaling framework for ocean wave climate. Journal of Geophysical Research, doi: 10.1002/2014JC010141. Ben Ayala, M.A., Chebana, F., Ouarda, T.B.M.J. (2014). Probabilistic Gaussian Copula Regression Model for Multisite and Multivariable Downscaling, Journal of Climate, 27, 3331-3347.

  19. Development of realtime, handheld and portable flood distribution and water quality sensor based android smartphone

    NASA Astrophysics Data System (ADS)

    Rachmatika, Ratih; Adriyanto, Feri

    2017-09-01

    Current sensors to monitor water quality are made of manual sensors, which reported to have good performance. However, the major problems, which manual process to get the data. In addition, the data interpretation takes a long time. Due to these problems, a new approach needs to be introduced into the process to prevent a long data acquisition. Therefore, the SIAGA application was proposed. The application of SIAGA is divided into two main applications which are SIBA (Siaga Banjir) and SIAB (Siaga Air Bersih). We using WiFi system which is located at points along the flow of river.. The result can be monitored in the online application based on smartphone which is divided into the river water quality, potential sources of pollution and flood area. Each WiFi point is completed with the instruments which are divided into the sensors that can do the identification of parameters to determine the water quality such as temperature, pH, water level and turbidity. This instrument completed using GPS (Global Positioning System), Full Map menu. The instrument was succesfully monitoredthe flood distribution and water quality in Bengawan Solo river.

  20. Evaluation of non-stationarity of floods in the Northeastern and Upper Midwest United States

    NASA Astrophysics Data System (ADS)

    Dhakal, N.; Palmer, R. N.

    2017-12-01

    Climate change is likely to impact precipitation as well as snow accumulation and melt in the Northeastern and Upper Midwest Unites States, ultimately affecting the quantity and seasonal distribution of streamflow. Such information is crucial for flood protection polices for example for regional flood frequency analysis. The objective of this study is to analyze seasonality and magnitude of long-term daily annual maximum streamflow (AMF) records and its changes for 158 sites in Northeastern and Upper Midwest Unites States. Temporal trends were analyzed based on two 30-year blocks (1951-1980 and 1981-2010) of AMF. Seasonality is assessed based on nonparametric directional/circular statistical method that allows for an adaptive estimation of seasonal density. The results for temporal change in seasonality showed mixed pattern/trend across the stations. While for majority of the stations, the distribution of AMF timing is strongly unimodal (concentrated around Spring season) for the earlier time period, the strength in the modes have gotten weaker during the recent time period for a number of stations along the coastal states indicating the emergence of multiple modes and change in seasonality therein. Assessment of the temporal change in magnitude of AMF based on the Mann-Kendall nonparametric test shows that majority of the stations do not show significant increasing or decreasing trend for either time period. It is also observed that comparatively more stations show increasing trends in magnitude based on AMF from earlier time period and most of these stations are coastal sites concentrated in the southeastern part of the region. Our study focused on both seasonality and magnitude of AMF has important implications for flood management and mitigation.

  1. Flood and Landslide Applications of High Time Resolution Satellite Rain Products

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Hong, Yang; Huffman, George J.

    2006-01-01

    Experimental, potentially real-time systems to detect floods and landslides related to heavy rain events are described. A key basis for these applications is high time resolution satellite rainfall analyses. Rainfall is the primary cause for devastating floods across the world. However, in many countries, satellite-based precipitation estimation may be the best source of rainfall data due to insufficient ground networks and absence of data sharing along many trans-boundary river basins. Remotely sensed precipitation from the NASA's TRMM Multi-satellite Precipitation Analysis (TMPA) operational system (near real-time precipitation at a spatial-temporal resolution of 3 hours and 0.25deg x 0.25deg) is used to monitor extreme precipitation events. Then these data are ingested into a macro-scale hydrological model which is parameterized using spatially distributed elevation, soil and land cover datasets available globally from satellite remote sensing. Preliminary flood results appear reasonable in terms of location and frequency of events, with implementation on a quasi-global basis underway. With the availability of satellite rainfall analyses at fine time resolution, it has also become possible to assess landslide risk on a near-global basis. Early results show that landslide occurrence is closely associated with the spatial patterns and temporal distribution of TRMM rainfall characteristics. Particularly, the number of landslides triggered by rainfall is related to rainfall climatology, antecedent rainfall accumulation, and intensity-duration of rainstorms. For the purpose of prediction, an empirical TMPA-based rainfall intensity-duration threshold is developed and shown to have skill in determining potential areas of landslides. These experimental findings, in combination with landslide surface susceptibility information based on satellite-based land surface information, form a starting point towards a potential operational landslide monitoring/warning system around the globe.

  2. Hydro-meteorological risk reduction and climate change adaptation in the Sava River Basin

    NASA Astrophysics Data System (ADS)

    Brilly, Mitja; Šraj, Mojca; Kryžanowski, Andrej

    2017-04-01

    The Sava River Basin covered the teritory of several countries. There were, in past thirty years, several flood hazard events with almost hundred years return period. Parts of the basin suffer by severe droughts also. In the presentation we covered questions of: • Flood hazard in complex hydrology structure • Landslide and flush flood in mountainous regions • Floods on karst polje • Flood risk management in the complex international and hydrological condition. • Impact of man made structures: hydropower storages, inundation ponds, river regulation, alternate streams, levees system, pumping stations, Natura 2000 areas etc. • How to manage droughts in the international river basin The basin is well covered by information and managed by international the SRB Commission (http://savacommission.org/) that could help. We develop study for climate change impact on floods on entire river basin financing by UNECE. There is also study provide climate change impact on the water management provide by World Bank and on which we take part. Recently is out call by world bank for study »Flood risk management plan for the SRB«.

  3. Study on parallel and distributed management of RS data based on spatial data base

    NASA Astrophysics Data System (ADS)

    Chen, Yingbiao; Qian, Qinglan; Liu, Shijin

    2006-12-01

    With the rapid development of current earth-observing technology, RS image data storage, management and information publication become a bottle-neck for its appliance and popularization. There are two prominent problems in RS image data storage and management system. First, background server hardly handle the heavy process of great capacity of RS data which stored at different nodes in a distributing environment. A tough burden has put on the background server. Second, there is no unique, standard and rational organization of Multi-sensor RS data for its storage and management. And lots of information is lost or not included at storage. Faced at the above two problems, the paper has put forward a framework for RS image data parallel and distributed management and storage system. This system aims at RS data information system based on parallel background server and a distributed data management system. Aiming at the above two goals, this paper has studied the following key techniques and elicited some revelatory conclusions. The paper has put forward a solid index of "Pyramid, Block, Layer, Epoch" according to the properties of RS image data. With the solid index mechanism, a rational organization for different resolution, different area, different band and different period of Multi-sensor RS image data is completed. In data storage, RS data is not divided into binary large objects to be stored at current relational database system, while it is reconstructed through the above solid index mechanism. A logical image database for the RS image data file is constructed. In system architecture, this paper has set up a framework based on a parallel server of several common computers. Under the framework, the background process is divided into two parts, the common WEB process and parallel process.

  4. Hydrometeorological network for flood monitoring and modeling

    NASA Astrophysics Data System (ADS)

    Efstratiadis, Andreas; Koussis, Antonis D.; Lykoudis, Spyros; Koukouvinos, Antonis; Christofides, Antonis; Karavokiros, George; Kappos, Nikos; Mamassis, Nikos; Koutsoyiannis, Demetris

    2013-08-01

    Due to its highly fragmented geomorphology, Greece comprises hundreds of small- to medium-size hydrological basins, in which often the terrain is fairly steep and the streamflow regime ephemeral. These are typically affected by flash floods, occasionally causing severe damages. Yet, the vast majority of them lack flow-gauging infrastructure providing systematic hydrometric data at fine time scales. This has obvious impacts on the quality and reliability of flood studies, which typically use simplistic approaches for ungauged basins that do not consider local peculiarities in sufficient detail. In order to provide a consistent framework for flood design and to ensure realistic predictions of the flood risk -a key issue of the 2007/60/EC Directive- it is essential to improve the monitoring infrastructures by taking advantage of modern technologies for remote control and data management. In this context and in the research project DEUCALION, we have recently installed and are operating, in four pilot river basins, a telemetry-based hydro-meteorological network that comprises automatic stations and is linked to and supported by relevant software. The hydrometric stations measure stage, using 50-kHz ultrasonic pulses or piezometric sensors, or both stage (piezometric) and velocity via acoustic Doppler radar; all measurements are being temperature-corrected. The meteorological stations record air temperature, pressure, relative humidity, wind speed and direction, and precipitation. Data transfer is made via GPRS or mobile telephony modems. The monitoring network is supported by a web-based application for storage, visualization and management of geographical and hydro-meteorological data (ENHYDRIS), a software tool for data analysis and processing (HYDROGNOMON), as well as an advanced model for flood simulation (HYDROGEIOS). The recorded hydro-meteorological observations are accessible over the Internet through the www-application. The system is operational and its functionality has been implemented as open-source software for use in a wide range of applications in the field of water resources monitoring and management, such as the demonstration case study outlined in this work.

  5. Core Flooding Experiments Combined with X-rays and Micro-PET Imaging as a Tool to Calculate Fluid Saturations in a Fracture

    NASA Astrophysics Data System (ADS)

    Gran, M.; Zahasky, C.; Garing, C.; Pollyea, R. M.; Benson, S. M.

    2017-12-01

    One way to reduce CO2 emissions is to capture CO2 generated in power plants and other industrial sources to inject it into a geological formation. Sedimentary basins are the ones traditionally used to store CO2 but the emission sources are not always close to these type of basins. In this case, basalt rocks present a good storage alternative due their extent and also their potential for mineral trapping. Flow through basaltic rocks is governed by the permeable paths provided by rock fractures. Hence, knowing the behavior of the multiphase flow in these fractures becomes crucial. With the aim to describe how aperture and liquid-gas interface changes in the fracture affect relative permeability and what are the implications of permeability stress dependency, a series of core experiments were conducted. To calculate fracture apertures and fluid saturations, core flooding experiments combined with medical X-Ray CT scanner and micro-PET imaging (Micro Positron Emission Tomography) were performed. Capillary pressure and relative permeability drainage curves were simultaneously measured in a fractured basalt core under typical storage reservoir pressures and temperatures. The X-Ray scanner allows fracture apertures to be measured quite accurately even for fractures as small as 30 µ, but obtaining fluid saturations is not straightforward. The micro-PET imaging provides dynamic measurements of tracer distributions which can be used to calculate saturation. Here new experimental data is presented and the challenges associated with measuring fluid saturations using both X-Rays and micro-PET are discussed.

  6. Deglacial climate modulated by the storage and release of Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Condron, A.; Coletti, A. J.; Bradley, R. S.

    2017-12-01

    Periods of abrupt climate cooling during the last deglaciation (20 - 8 kyr ago) are often attributed to glacial outburst floods slowing the Atlantic meridional overturning circulation (AMOC). Here, we present results from a series of climate model simulations showing that the episodic break-up and mobilization of thick, perennial, Arctic sea ice during this time would have released considerable volumes of freshwater directly to the Nordic Seas, where processes regulating large-scale climate occur. Massive sea ice export events to the North Atlantic are generated whenever the transport of sea ice is enhanced, either by changes in atmospheric circulation, rising sea level submerging the Bering land bridge, or glacial outburst floods draining into the Arctic Ocean from the Mackenzie River. We find that the volumes of freshwater released to the Nordic Seas are similar to, or larger than, those estimated to have come from terrestrial outburst floods, including the discharge at the onset of the Younger Dryas. Our results provide the first evidence that the storage and release of Arctic sea ice helped drive deglacial climate change by modulating the strength of the AMOC.

  7. A high-resolution physically-based global flood hazard map

    NASA Astrophysics Data System (ADS)

    Kaheil, Y.; Begnudelli, L.; McCollum, J.

    2016-12-01

    We present the results from a physically-based global flood hazard model. The model uses a physically-based hydrologic model to simulate river discharges, and 2D hydrodynamic model to simulate inundation. The model is set up such that it allows the application of large-scale flood hazard through efficient use of parallel computing. For hydrology, we use the Hillslope River Routing (HRR) model. HRR accounts for surface hydrology using Green-Ampt parameterization. The model is calibrated against observed discharge data from the Global Runoff Data Centre (GRDC) network, among other publicly-available datasets. The parallel-computing framework takes advantage of the river network structure to minimize cross-processor messages, and thus significantly increases computational efficiency. For inundation, we implemented a computationally-efficient 2D finite-volume model with wetting/drying. The approach consists of simulating flood along the river network by forcing the hydraulic model with the streamflow hydrographs simulated by HRR, and scaled up to certain return levels, e.g. 100 years. The model is distributed such that each available processor takes the next simulation. Given an approximate criterion, the simulations are ordered from most-demanding to least-demanding to ensure that all processors finalize almost simultaneously. Upon completing all simulations, the maximum envelope of flood depth is taken to generate the final map. The model is applied globally, with selected results shown from different continents and regions. The maps shown depict flood depth and extent at different return periods. These maps, which are currently available at 3 arc-sec resolution ( 90m) can be made available at higher resolutions where high resolution DEMs are available. The maps can be utilized by flood risk managers at the national, regional, and even local levels to further understand their flood risk exposure, exercise certain measures of mitigation, and/or transfer the residual risk financially through flood insurance programs.

  8. Modeling nurses' attitude toward using automated unit-based medication storage and distribution systems: an extension of the technology acceptance model.

    PubMed

    Escobar-Rodríguez, Tomás; Romero-Alonso, María Mercedes

    2013-05-01

    This article analyzes the attitude of nurses toward the use of automated unit-based medication storage and distribution systems and identifies influencing factors. Understanding these factors provides an opportunity to explore actions that might be taken to boost adoption by potential users. The theoretical grounding for this research is the Technology Acceptance Model. The Technology Acceptance Model specifies the causal relationships between perceived usefulness, perceived ease of use, attitude toward using, and actual usage behavior. The research model has six constructs, and nine hypotheses were generated from connections between these six constructs. These constructs include perceived risks, experience level, and training. The findings indicate that these three external variables are related to the perceived ease of use and perceived usefulness of automated unit-based medication storage and distribution systems, and therefore, they have a significant influence on attitude toward the use of these systems.

  9. A Cascading Storm-Flood-Landslide Guidance System: Development and Application in China

    NASA Astrophysics Data System (ADS)

    Zeng, Ziyue; Tang, Guoqiang; Long, Di; Ma, Meihong; Hong, Yang

    2016-04-01

    Flash floods and landslides, triggered by storms, often interact and cause cascading effects on human lives and property. Satellite remote sensing data has significant potential use in analysis of these natural hazards. As one of the regions continuously affected by severe flash floods and landslides, Yunnan Province, located in Southwest China, has a complex mountainous hydrometeorology and suffers from frequent heavy rainfalls from May through to late September. Taking Yunnan as a test-bed, this study proposed a Cascading Storm-Flood-Landslide Guidance System to progressively analysis and evaluate the risk of the multi-hazards based on multisource satellite remote sensing data. First, three standardized rainfall amounts (average daily amount in flood seasons, maximum 1h and maximum 6h amount) from the products of Topical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) were used as rainfall indicators to derive the StorM Hazard Index (SMHI). In this process, an integrated approach of the Analytic Hierarchy Process (AHP) and the Information-Entropy theory was adopted to determine the weight of each indicator. Then, land cover and vegetation cover data from the Moderate Resolution Imaging Spectroradiometer (MODIS) products, soil type from the Harmonized World Soil Database (HWSD) soil map, and slope from the Shuttle Radar Topography Mission (SRTM) data were add as semi-static geo-topographical indicators to derive the Flash Flood Hazard Index (FFHI). Furthermore, three more relevant landslide-controlling indicators, including elevation, slope angle and soil text were involved to derive the LandSlide Hazard Index (LSHI). Further inclusion of GDP, population and prevention measures as vulnerability indicators enabled to consecutively predict the risk of storm to flash flood and landslide, respectively. Consequently, the spatial patterns of the hazard indices show that the southeast of Yunnan has more possibility to encounter with storms than other parts, while the northeast of Yunnan are most susceptible to floods and landslides, which agrees with the distribution of observed flood and landslide events. Moreover, risks for the multi-hazards were classified into four categories. Results show a strong correlation between the distributions of flash flood prone and landslide-prone regions and also highlight the counties with high risk of storms (e.g., Funing and Malipo), flash floods (e.g., Gongshan and Yanjing) and landslides (e.g., Zhaotong and Luxi). Compared to other approaches, the Cascading Storm-Flood-Landslide Guidance System uses a straightforward yet useful indicator-based weighted linear combination method and could be a useful prototype in mapping characteristics of storm-triggered hazards for users at different administrative levels (e.g., catchment, town, county, province and even nation) in China.

  10. Use of satellite images to determine surface-water cover during the flood event of September 13, 2013, in Lyons and western Longmont, Colorado

    USGS Publications Warehouse

    Cole, Christopher J.; Friesen, Beverly A.; Wilson, Earl M.; Wilds, Stanley R.; Noble, Suzanne M.

    2015-01-01

    This surface-water cover dataset was created as a timely representation of post-flood ground conditions to support response efforts. This dataset and all processed imagery and derived products were uploaded to the USGS Hazards Data Distribution System (HDDS) website (http://hddsexplorer.usgs.gov/uplift/hdds/) for distribution to those responding to the flood event.

  11. Simulation of extreme reservoir level distribution with the SCHADEX method (EXTRAFLO project)

    NASA Astrophysics Data System (ADS)

    Paquet, Emmanuel; Penot, David; Garavaglia, Federico

    2013-04-01

    The standard practice for the design of dam spillways structures and gates is to consider the maximum reservoir level reached for a given hydrologic scenario. This scenario has several components: peak discharge, flood volumes on different durations, discharge gradients etc. Within a probabilistic analysis framework, several scenarios can be associated with different return times, although a reference return level (e.g. 1000 years) is often prescribed by the local regulation rules or usual practice. Using continuous simulation method for extreme flood estimation is a convenient solution to provide a great variety of hydrological scenarios to feed a hydraulic model of dam operation: flood hydrographs are explicitly simulated by a rainfall-runoff model fed by a stochastic rainfall generator. The maximum reservoir level reached will be conditioned by the scale and the dynamics of the generated hydrograph, by the filling of the reservoir prior to the flood, and by the dam gates and spillway operation during the event. The simulation of a great number of floods will allow building a probabilistic distribution of maximum reservoir levels. A design value can be chosen at a definite return level. An alternative approach is proposed here, based on the SCHADEX method for extreme flood estimation, proposed by Paquet et al. (2006, 2013). SCHADEX is a so-called "semi-continuous" stochastic simulation method in that flood events are simulated on an event basis and are superimposed on a continuous simulation of the catchment saturation hazard using rainfall-runoff modelling. The SCHADEX process works at the study time-step (e.g. daily), and the peak flow distribution is deduced from the simulated daily flow distribution by a peak-to-volume ratio. A reference hydrograph relevant for extreme floods is proposed. In the standard version of the method, both the peak-to-volume and the reference hydrograph are constant. An enhancement of this method is presented, with variable peak-to-volume ratios and hydrographs applied to each simulated event. This allows accounting for different flood dynamics, depending on the season, the generating precipitation event, the soil saturation state, etc. In both cases, a hydraulic simulation of dam operation is performed, in order to compute the distribution of maximum reservoir levels. Results are detailed for an extreme return level, showing that a 1000 years return level reservoir level can be reached during flood events whose components (peaks, volumes) are not necessarily associated with such return level. The presentation will be illustrated by the example of a fictive dam on the Tech River at Reynes (South of France, 477 km²). This study has been carried out within the EXTRAFLO project, Task 8 (https://extraflo.cemagref.fr/). References: Paquet, E., Gailhard, J. and Garçon, R. (2006), Evolution of the GRADEX method: improvement by atmospheric circulation classification and hydrological modeling, La Houille Blanche, 5, 80-90. doi:10.1051/lhb:2006091. Paquet, E., Garavaglia, F., Garçon, R. and Gailhard, J. (2012), The SCHADEX method: a semi-continuous rainfall-runoff simulation for extreme food estimation, Journal of Hydrology, under revision

  12. A new hydrological model for estimating extreme floods in the Alps

    NASA Astrophysics Data System (ADS)

    Receanu, R. G.; Hertig, J.-A.; Fallot, J.-M.

    2012-04-01

    Protection against flooding is very important for a country like Switzerland with a varied topography and many rivers and lakes. Because of the potential danger caused by extreme precipitation, structural and functional safety of large dams must be guaranteed to withstand the passage of an extreme flood. We introduce a new distributed hydrological model to calculate the PMF from a PMP which is spatially and temporally distributed using clouds. This model has permitted the estimation of extreme floods based on the distributed PMP and the taking into account of the specifics of alpine catchments, in particular the small size of the basins, the complex topography, the large lakes, snowmelt and glaciers. This is an important evolution compared to other models described in the literature, as they mainly use a uniform distribution of extreme precipitation all over the watershed. This paper presents the results of calculation with the developed rainfall-runoff model, taking into account measured rainfall and comparing results to observed flood events. This model includes three parts: surface runoff, underground flow and melting snow. Two Swiss watersheds are studied, for which rainfall data and flow rates are available for a considerably long period, including several episodes of heavy rainfall with high flow events. From these events, several simulations are performed to estimate the input model parameters such as soil roughness and average width of rivers in case of surface runoff. Following the same procedure, the parameters used in the underground flow simulation are also estimated indirectly, since direct underground flow and exfiltration measurements are difficult to obtain. A sensitivity analysis of the parameters is performed at the first step to define more precisely the boundary and initial conditions. The results for the two alpine basins, validated with the Nash equation, show a good correlation between the simulated and observed flows. This good correlation shows that the model is valid and gives us the confidence that the results can be extrapolated to phenomena of extreme rainfall of PMP type.

  13. Effective precipitation duration for runoff peaks based on catchment modelling

    NASA Astrophysics Data System (ADS)

    Sikorska, A. E.; Viviroli, D.; Seibert, J.

    2018-01-01

    Despite precipitation intensities may greatly vary during one flood event, detailed information about these intensities may not be required to accurately simulate floods with a hydrological model which rather reacts to cumulative precipitation sums. This raises two questions: to which extent is it important to preserve sub-daily precipitation intensities and how long does it effectively rain from the hydrological point of view? Both questions might seem straightforward to answer with a direct analysis of past precipitation events but require some arbitrary choices regarding the length of a precipitation event. To avoid these arbitrary decisions, here we present an alternative approach to characterize the effective length of precipitation event which is based on runoff simulations with respect to large floods. More precisely, we quantify the fraction of a day over which the daily precipitation has to be distributed to faithfully reproduce the large annual and seasonal floods which were generated by the hourly precipitation rate time series. New precipitation time series were generated by first aggregating the hourly observed data into daily totals and then evenly distributing them over sub-daily periods (n hours). These simulated time series were used as input to a hydrological bucket-type model and the resulting runoff flood peaks were compared to those obtained when using the original precipitation time series. We define then the effective daily precipitation duration as the number of hours n, for which the largest peaks are simulated best. For nine mesoscale Swiss catchments this effective daily precipitation duration was about half a day, which indicates that detailed information on precipitation intensities is not necessarily required to accurately estimate peaks of the largest annual and seasonal floods. These findings support the use of simple disaggregation approaches to make usage of past daily precipitation observations or daily precipitation simulations (e.g. from climate models) for hydrological modeling at an hourly time step.

  14. Semantics-based distributed I/O with the ParaMEDIC framework.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaji, P.; Feng, W.; Lin, H.

    2008-01-01

    Many large-scale applications simultaneously rely on multiple resources for efficient execution. For example, such applications may require both large compute and storage resources; however, very few supercomputing centers can provide large quantities of both. Thus, data generated at the compute site oftentimes has to be moved to a remote storage site for either storage or visualization and analysis. Clearly, this is not an efficient model, especially when the two sites are distributed over a wide-area network. Thus, we present a framework called 'ParaMEDIC: Parallel Metadata Environment for Distributed I/O and Computing' which uses application-specific semantic information to convert the generatedmore » data to orders-of-magnitude smaller metadata at the compute site, transfer the metadata to the storage site, and re-process the metadata at the storage site to regenerate the output. Specifically, ParaMEDIC trades a small amount of additional computation (in the form of data post-processing) for a potentially significant reduction in data that needs to be transferred in distributed environments.« less

  15. The Impacts of Episodic Storm and Flood Events on Carbon and Sediment Delivery to Gulf of Mexico Sediments

    NASA Astrophysics Data System (ADS)

    Schreiner, K. M.; Carlin, J. A.; Sayers, L.; Swenson, J.

    2017-12-01

    Marine sediments are an important long-term reservoir for both recently fixed organic carbon (OC) and ancient rock derived OC, much of which is delivered by rivers. The ratio between these two sources of OC in turn regulates atmospheric levels of oxygen and carbon dioxide over geologic time, making this riverine delivery of OC, primarily carried by sediments, an important flux in the global carbon cycle. However, while the overall magnitude of these fluxes are relatively well known, it remains to be determined the importance of episodic events, like storms and floods, in the flux of OC from terrestrial to marine environments. Here, we present data from a 34 cm core collected from the Gulf of Mexico at a mid-shelf distal depocenter for the Brazos River in 2015, during a strong El Nino when that area of the country was experiencing 100-year flood events and anomalously high river flow. Based on analysis of the radioactive isotope 7Be, approximately the top 7-8 cm of the sediment in this core was deposited during this flood event. Both bulk elemental (C, N, and stable carbon isotopes) and chemical biomarker (lignin-phenol) data has been combined to provide information of the origin and chemistry of the OC in this core both before and during flooding. C:N and d13C indicate a mixture of marine-sourced and terrestrially-sourced OC throughout the length of the core with very little variation between the flood layer and deeper sediments. However, lignin-phenol concentrations are higher in flood-deposited sediment, indicating that this sediment is likely terrestrially-sourced. Lignin-phenol indicators of OC degradation state (Acid:Aldehyde ratios) indicate that flood sediment is fresher and less degraded than deeper sediments. Taken together, these results indicate that 1. Bulk analyses are not enough to determine OC source and the importance of flood events in OC cycling and 2. Episodic events like floods could have an oversized impact on OC storage in marine sediments.

  16. Study of the impact of cyclogenesis at the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Ribo, M.; Llasat, C.

    2009-09-01

    The Mediterranean Basin is usually affected by high impact weather events, generating high impacts in all Mediterranean countries and causing important damages. This basin is surrounded by mountains and arid regions, and the interaction of the air flow with the orography barriers produces many effects, the most important is the formation of low pressure centers. This is one of the reasons why the Mediterranean Sea is considered to be the most cyclogenetic area in the world (Jansà, 1997). Floods are also one of the most important natural hazards in the Mediterranean Basin. Flood events occur when soil absorption, runoff or drainage cannot adequately disperse intense rainfall from quasi-stationary or stationary weather systems in short time periods. In some occasions these floods produce high social impact in the affected areas. Our work presents the study of the relationship between the flood episodes and the presence of cyclones in the Mediterranean Basin during those episodes, between 1990 and 2004. Information about social impact of each event has also been considered. To do these analyses the MEDEX database (MEDiterranean EXperiment on cyclones that produce high impact weather in the Mediterranean) has been improved in the frame work of the European FLASH project, and information about cyclones and rainfall has been extracted from the MEDEX cyclones database. A total of 217 flood events had been identified. Once the presence of one or more cyclones during each flood episode has been identified, temporal and regional analyses were made to determine the distribution of the cyclonic centers and to study the evolution of the events. Mediterranean cyclogenesis is leaded by influence of external systems (along the African coast, from the Atlantic Ocean, and from the west of Europe), although the majority of the cyclones (87% of the studied cases) are generated in the Mediterranean Basin, under influence of preexistent systems. There are different Mediterranean cyclones, from weak mesoscale depressions to strong, intense and more extensive depressions, and are classified using different criteria. In our study each cyclone identified was characterized using two dynamic criteria: vertical structure and geostrophic circulation. The first characterization is based on the vertical profiles of the laplacian of temperature, depending on which atmospheric level is reached by the cyclone. The second characterization is based on the geostrophic circulation, defined with the geostrophic vorticity in the cyclone domain. From these two characterizations, we have classified the cyclonic centers into six different types: deep, medium and shallow; strong, moderate and weak cyclones. Results show that between 1990 and 2004, 25% of the days in this time period have recorded a flood event in the Mediterranean Basin, and 90.7% of these flood events were related to a cyclonic center. 57% of these events had been located at the western Mediterranean part, although some flood prone areas can be identified in all the Mediterranean Basin; Eastern Spain and Balearic Islands, northern of Italy (gulf of Genève), north of Africa (Sahara) and Cyprus and Turkey. Cyclones related with floods in the western part are mainly superficial cyclones. An important nucleus of deep cyclones related with floods can be found near Cyprus. The spatial distribution of cyclones related with floods, for the period from 1990 to 2004, is coherent with the general distribution of cyclones showed by Gil et al. 2002. There is a general tendency of increase of detected flood events with cyclonic center in the vicinity in the time period analyzed. A total of 4724 victims where counted during flood episodes. Results of the relationship between flood episodes and cyclonic centers show that 40% of the flood episodes with higher damages were related to weak cyclones.

  17. Probabilistic, meso-scale flood loss modelling

    NASA Astrophysics Data System (ADS)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2016-04-01

    Flood risk analyses are an important basis for decisions on flood risk management and adaptation. However, such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments and even more for flood loss modelling. State of the art in flood loss modelling is still the use of simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood loss models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we demonstrate and evaluate the upscaling of the approach to the meso-scale, namely on the basis of land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany (Botto et al. submitted). The application of bagging decision tree based loss models provide a probability distribution of estimated loss per municipality. Validation is undertaken on the one hand via a comparison with eight deterministic loss models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official loss data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of loss estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation approach is that it inherently provides quantitative information about the uncertainty of the prediction. References: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64. Botto A, Kreibich H, Merz B, Schröter K (submitted) Probabilistic, multi-variable flood loss modelling on the meso-scale with BT-FLEMO. Risk Analysis.

  18. Floods of the Lower Tisza from the late 17th century onwards: frequency, magnitude, seasonality and great flood events

    NASA Astrophysics Data System (ADS)

    Kiss, Andrea

    2016-04-01

    The present paper is based on a recently developed database including contemporary original, administrative, legal and private source materials (published and archival) as well as media reports related to the floods occurred on the lower sections of the Tisza river in Hungary, with special emphasis on the area of Szeged town. The study area is well-represented by contemporary source evidence from the late 17th century onwards, when the town and its broader area was reoccupied from the Ottoman Turkish Empire. Concerning the applied source materials, the main bases of investigation are the administrative (archival) sources such as town council protocols of Szeged and county meeting protocols of Csanád and Csongrád Counties. In these (legal-)administrative documents damaging events (natural/environmental hazards) were systematically recorded. Moreover, other source types such as taxation-related damage accounts as well as private and official reports, letters and correspondence (published, unpublished) were also included. Concerning published evidence, a most important source is flood reports in contemporary newspapers as well as town chronicles and other contemporary narratives. In the presentation the main focus is on the analysis of flood-rich flood-poor periods of the last ca. 330 years; moreover, the seasonality distribution as well as the magnitude of Tisza flood events are also discussed. Another important aim of the poster is to provide a short overview, in the form of case studies, on the greatest flood events (e.g. duration, magnitude, damages, multi-annual consequences), and their further impacts on the urban and countryside development as well as on (changes in) flood defence strategies. In this respect, especially two flood events, the great (1815-)1816 and the catastrophic 1879 flood (shortly with causes and consequences) - that practically erased Szeged town from the ground - are presented in more detail.

  19. The Generation of a Stochastic Flood Event Catalogue for Continental USA

    NASA Astrophysics Data System (ADS)

    Quinn, N.; Wing, O.; Smith, A.; Sampson, C. C.; Neal, J. C.; Bates, P. D.

    2017-12-01

    Recent advances in the acquisition of spatiotemporal environmental data and improvements in computational capabilities has enabled the generation of large scale, even global, flood hazard layers which serve as a critical decision-making tool for a range of end users. However, these datasets are designed to indicate only the probability and depth of inundation at a given location and are unable to describe the likelihood of concurrent flooding across multiple sites.Recent research has highlighted that although the estimation of large, widespread flood events is of great value to flood mitigation and insurance industries, to date it has been difficult to deal with this spatial dependence structure in flood risk over relatively large scales. Many existing approaches have been restricted to empirical estimates of risk based on historic events, limiting their capability of assessing risk over the full range of plausible scenarios. Therefore, this research utilises a recently developed model-based approach to describe the multisite joint distribution of extreme river flows across continental USA river gauges. Given an extreme event at a site, the model characterises the likelihood neighbouring sites are also impacted. This information is used to simulate an ensemble of plausible synthetic extreme event footprints from which flood depths are extracted from an existing global flood hazard catalogue. Expected economic losses are then estimated by overlaying flood depths with national datasets defining asset locations, characteristics and depth damage functions. The ability of this approach to quantify probabilistic economic risk and rare threshold exceeding events is expected to be of value to those interested in the flood mitigation and insurance sectors.This work describes the methodological steps taken to create the flood loss catalogue over a national scale; highlights the uncertainty in the expected annual economic vulnerability within the USA from extreme river flows; and presents future developments to the modelling approach.

  20. Storing files in a parallel computing system based on user or application specification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faibish, Sorin; Bent, John M.; Nick, Jeffrey M.

    2016-03-29

    Techniques are provided for storing files in a parallel computing system based on a user-specification. A plurality of files generated by a distributed application in a parallel computing system are stored by obtaining a specification from the distributed application indicating how the plurality of files should be stored; and storing one or more of the plurality of files in one or more storage nodes of a multi-tier storage system based on the specification. The plurality of files comprise a plurality of complete files and/or a plurality of sub-files. The specification can optionally be processed by a daemon executing on onemore » or more nodes in a multi-tier storage system. The specification indicates how the plurality of files should be stored, for example, identifying one or more storage nodes where the plurality of files should be stored.« less

Top