Sample records for distributed generation units

  1. Future impacts of distributed power generation on ambient ozone and particulate matter concentrations in the San Joaquin Valley of California.

    PubMed

    Vutukuru, Satish; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald

    2011-12-01

    Distributed power generation-electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin-has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions. This work used a systematic approach based on land-use geographical information system data to determine the spatial and temporal distribution of distributed generation emissions in the San Joaquin Valley Air Basin of California and simulated the potential air quality impacts using state-of-the-art three-dimensional computer models. The evaluation of the potential market penetration of distributed generation focuses on the year 2023. In general, the air quality impacts of distributed generation were found to be small due to the restrictive 2007 California Air Resources Board air emission standards applied to all distributed generation units and due to the use of combined heating and power. Results suggest that if distributed generation units were allowed to emit at the current Best Available Control Technology standards (which are less restrictive than the 2007 California Air Resources Board standards), air quality impacts of distributed generation could compromise compliance with the federal 8-hr average ozone standard in the region.

  2. Future Impacts of Distributed Power Generation on Ambient Ozone and Particulate Matter Concentrations in the San Joaquin Valley of California.

    PubMed

    Vutukuru, Satish; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald

    2011-12-01

    Distributed power generation-electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin-has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions. This work used a systematic approach based on land-use geographical information system data to determine the spatial and temporal distribution of distributed generation emissions in the San Joaquin Valley Air Basin of California and simulated the potential air quality impacts using state-of-the-art three-dimensional computer models. The evaluation of the potential market penetration of distributed generation focuses on the year 2023. In general, the air quality impacts of distributed generation were found to be small due to the restrictive 2007 California Air Resources Board air emission standards applied to all distributed generation units and due to the use of combined heating and power. Results suggest that if distributed generation units were allowed to emit at the current Best Available Control Technology standards (which are less restrictive than the 2007 California Air Resources Board standards), air quality impacts of distributed generation could compromise compliance with the federal 8-hr average ozone standard in the region. [Box: see text].

  3. 77 FR 15142 - Sunshine Federal Register Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-14

    .... Luminant Generation Company LLC (Comanche Peak Nuclear Power Plant, Units 3 and 4); Energy Northwest (Columbia Generating Station); Southern Nuclear Operating Co. (Vogtle Electric Generating Plant, Units 3 and... subscribers. If you no longer wish to receive it, or would like to be added to the distribution, please...

  4. Evolving Distributed Generation Support Mechanisms: Case Studies from United States, Germany, United Kingdom, and Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowder, Travis; Zhou, Ella; Tian, Tian

    This report expands on a previous National Renewable Energy Laboratory (NREL) technical report (Lowder et al. 2015) that focused on the United States' unique approach to distributed generation photovoltaics (DGPV) support policies and business models. While the focus of that report was largely historical (i.e., detailing the policies and market developments that led to the growth of DGPV in the United States), this report looks forward, narrating recent changes to laws and regulations as well as the ongoing dialogues over how to incorporate distributed generation (DG) resources onto the electric grid. This report also broadens the scope of Lowder etmore » al. (2015) to include additional countries and technologies. DGPV and storage are the principal technologies under consideration (owing to market readiness and deployment volumes), but the report also contemplates any generation resource that is (1) on the customer side of the meter, (2) used to, at least partly, offset a host's energy consumption, and/or (3) potentially available to provide grid support (e.g., through peak shaving and load shifting, ancillary services, and other means).« less

  5. Air quality impacts of projections of natural gas-fired distributed generation

    NASA Astrophysics Data System (ADS)

    Horne, Jeremy R.; Carreras-Sospedra, Marc; Dabdub, Donald; Lemar, Paul; Nopmongcol, Uarporn; Shah, Tejas; Yarwood, Greg; Young, David; Shaw, Stephanie L.; Knipping, Eladio M.

    2017-11-01

    This study assesses the potential impacts on emissions and air quality from the increased adoption of natural gas-fired distributed generation of electricity (DG), including displacement of power from central power generation, in the contiguous United States. The study includes four major tasks: (1) modeling of distributed generation market penetration; (2) modeling of central power generation systems; (3) modeling of spatially and temporally resolved emissions; and (4) photochemical grid modeling to evaluate the potential air quality impacts of increased DG penetration, which includes both power-only DG and combined heat and power (CHP) units, for 2030. Low and high DG penetration scenarios estimate the largest penetration of future DG units in three regions - New England, New York, and California. Projections of DG penetration in the contiguous United States estimate 6.3 GW and 24 GW of market adoption in 2030 for the low DG penetration and high DG penetration scenarios, respectively. High DG penetration (all of which is natural gas-fired) serves to offset 8 GW of new natural gas combined cycle (NGCC) units, and 19 GW of solar photovoltaic (PV) installations by 2030. In all scenarios, air quality in the central United States and the northwest remains unaffected as there is little to no DG penetration in those states. California and several states in the northeast are the most impacted by emissions from DG units. Peak increases in maximum daily 8-h average ozone concentrations exceed 5 ppb, which may impede attainment of ambient air quality standards. Overall, air quality impacts from DG vary greatly based on meteorological conditions, proximity to emissions sources, the number and type of DG installations, and the emissions factors used for DG units.

  6. Evolving Distributed Generation Support Mechanisms: Case Studies from United States, Germany, United Kingdom, and Australia (Chinese translation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Shengru; Lowder, Travis R; Tian, Tian

    This is the Chinese translation of NREL/TP-6A20-67613. This report expands on a previous National Renewable Energy Laboratory (NREL) technical report (Lowder et al. 2015) that focused on the United States' unique approach to distributed generation photovoltaics (DGPV) support policies and business models. While the focus of that report was largely historical (i.e., detailing the policies and market developments that led to the growth of DGPV in the United States), this report looks forward, narrating recent changes to laws and regulations as well as the ongoing dialogues over how to incorporate distributed generation (DG) resources onto the electric grid. This reportmore » also broadens the scope of Lowder et al. (2015) to include additional countries and technologies. DGPV and storage are the principal technologies under consideration (owing to market readiness and deployment volumes), but the report also contemplates any generation resource that is (1) on the customer side of the meter, (2) used to, at least partly, offset a host's energy consumption, and/or (3) potentially available to provide grid support (e.g., through peak shaving and load shifting, ancillary services, and other means).« less

  7. Network integration of distributed power generation

    NASA Astrophysics Data System (ADS)

    Dondi, Peter; Bayoumi, Deia; Haederli, Christoph; Julian, Danny; Suter, Marco

    The world-wide move to deregulation of the electricity and other energy markets, concerns about the environment, and advances in renewable and high efficiency technologies has led to major emphasis being placed on the use of small power generation units in a variety of forms. The paper reviews the position of distributed generation (DG, as these small units are called in comparison with central power plants) with respect to the installation and interconnection of such units with the classical grid infrastructure. In particular, the status of technical standards both in Europe and USA, possible ways to improve the interconnection situation, and also the need for decisions that provide a satisfactory position for the network operator (who remains responsible for the grid, its operation, maintenance and investment plans) are addressed.

  8. Convergence of pattern generator outputs on a common mechanism of diaphragm motor unit recruitment

    PubMed Central

    Mantilla, Carlos B.; Seven, Yasin B.; Sieck, Gary C.

    2014-01-01

    Motor units are the final element of neuromotor control. In manner analogous to the organization of neuromotor control in other skeletal muscles, diaphragm motor units comprise phrenic motoneurons located in the cervical spinal cord that innervate the diaphragm muscle, the main inspiratory muscle in mammals. Diaphragm motor units play a primary role in sustaining ventilation, but are also active in other non-ventilatory behaviors, including coughing, sneezing, vomiting, defecation and parturition. Diaphragm muscle fibers comprise all fiber types. Thus, diaphragm motor units display substantial differences in contractile and fatigue properties, but importantly properties of the motoneuron and muscle fibers within a motor unit are matched. As in other skeletal muscles, diaphragm motor units are recruited in order such that motor units that display greater fatigue resistance are recruited earlier and more often than more fatigable motor units. The properties of the motor unit population are critical determinants of the function of a skeletal muscle across the range of possible motor tasks. Accordingly, fatigue-resistant motor units are sufficient to generate the forces necessary for ventilatory behaviors whereas more fatigable units are only activated during expulsive behaviors important for airway clearance. Neuromotor control of diaphragm motor units may reflect selective inputs from distinct pattern generators distributed according to the motor unit properties necessary to accomplish these different motor tasks. In contrast, widely-distributed inputs to phrenic motoneurons from various pattern generators (e.g., for breathing, coughing or vocalization) would dictate recruitment order based on intrinsic electrophysiological properties. PMID:24746055

  9. South Carolina | Midmarket Solar Policies in the United States | Solar

    Science.gov Websites

    voluntary renewable energy goal of 2% distributed energy in 2021. Carve-out: 0.25% of total generation from energy portfolio standard, but a goal for distributed generation by 2021. The Distributed Energy Resource Fast Track Process Study Process System size limit: Not specified; South Carolina Public Service

  10. Historical and Current U.S. Strategies for Boosting Distributed Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowder, Travis; Schwabe, Paul; Zhou, Ella

    2015-10-29

    This report seeks to introduce a variety of top-down and bottom-up practices that, in concert with the macro-environment of cost-reduction globally and early adoption in Europe, helped boost the distributed generation photovoltaic market in the United States. These experiences may serve as a reference in China's quest to promote distributed renewable energy.

  11. 60-Hz electric and magnetic fields generated by a distribution network.

    PubMed

    Héroux, P

    1987-01-01

    From a mobile unit, 60-Hz electric and magnetic fields generated by Hydro-Québec's distribution network were measured. Nine runs, representative of various human environments, were investigated. Typical values were 32 V/m and 0.16 microT. The electrical distribution networks investigated were major contributors to the electric and magnetic environments.

  12. Optimization of a stand-alone Solar PV-Wind-DG Hybrid System for Distributed Power Generation at Sagar Island

    NASA Astrophysics Data System (ADS)

    Roy, P. C.; Majumder, A.; Chakraborty, N.

    2010-10-01

    An estimation of a stand-alone solar PV and wind hybrid system for distributed power generation has been made based on the resources available at Sagar island, a remote area distant to grid operation. Optimization and sensitivity analysis has been made to evaluate the feasibility and size of the power generation unit. A comparison of the different modes of hybrid system has been studied. It has been estimated that Solar PV-Wind-DG hybrid system provides lesser per unit electricity cost. Capital investment is observed to be lesser when the system run with Wind-DG compared to Solar PV-DG.

  13. Convergence of pattern generator outputs on a common mechanism of diaphragm motor unit recruitment.

    PubMed

    Mantilla, Carlos B; Seven, Yasin B; Sieck, Gary C

    2014-01-01

    Motor units are the final element of neuromotor control. In manner analogous to the organization of neuromotor control in other skeletal muscles, diaphragm motor units comprise phrenic motoneurons located in the cervical spinal cord that innervate the diaphragm muscle, the main inspiratory muscle in mammals. Diaphragm motor units play a primary role in sustaining ventilation but are also active in other nonventilatory behaviors, including coughing, sneezing, vomiting, defecation, and parturition. Diaphragm muscle fibers comprise all fiber types. Thus, diaphragm motor units display substantial differences in contractile and fatigue properties, but importantly, properties of the motoneuron and muscle fibers within a motor unit are matched. As in other skeletal muscles, diaphragm motor units are recruited in order such that motor units that display greater fatigue resistance are recruited earlier and more often than more fatigable motor units. The properties of the motor unit population are critical determinants of the function of a skeletal muscle across the range of possible motor tasks. Accordingly, fatigue-resistant motor units are sufficient to generate the forces necessary for ventilatory behaviors, whereas more fatigable units are only activated during expulsive behaviors important for airway clearance. Neuromotor control of diaphragm motor units may reflect selective inputs from distinct pattern generators distributed according to the motor unit properties necessary to accomplish these different motor tasks. In contrast, widely distributed inputs to phrenic motoneurons from various pattern generators (e.g., for breathing, coughing, or vocalization) would dictate recruitment order based on intrinsic electrophysiological properties. © 2014 Elsevier B.V. All rights reserved.

  14. Measurement of eddy-current distribution in the vacuum vessel of the Sino-UNIted Spherical Tokamak.

    PubMed

    Li, G; Tan, Y; Liu, Y Q

    2015-08-01

    Eddy currents have an important effect on tokamak plasma equilibrium and control of magneto hydrodynamic activity. The vacuum vessel of the Sino-UNIted Spherical Tokamak is separated into two hemispherical sections by a toroidal insulating barrier. Consequently, the characteristics of eddy currents are more complex than those found in a standard tokamak. Thus, it is necessary to measure and analyze the eddy-current distribution. In this study, we propose an experimental method for measuring the eddy-current distribution in a vacuum vessel. By placing a flexible printed circuit board with magnetic probes onto the external surface of the vacuum vessel to measure the magnetic field parallel to the surface and then subtracting the magnetic field generated by the vertical-field coils, the magnetic field due to the eddy current can be obtained, and its distribution can be determined. We successfully applied this method to the Sino-UNIted Spherical Tokamak, and thus, we obtained the eddy-current distribution despite the presence of the magnetic field generated by the external coils.

  15. A study using a Monte Carlo method of the optimal configuration of a distribution network in terms of power loss sensing.

    PubMed

    Moon, Hyun Ho; Lee, Jong Joo; Choi, Sang Yule; Cha, Jae Sang; Kang, Jang Mook; Kim, Jong Tae; Shin, Myong Chul

    2011-01-01

    Recently there have been many studies of power systems with a focus on "New and Renewable Energy" as part of "New Growth Engine Industry" promoted by the Korean government. "New And Renewable Energy"-especially focused on wind energy, solar energy and fuel cells that will replace conventional fossil fuels-is a part of the Power-IT Sector which is the basis of the SmartGrid. A SmartGrid is a form of highly-efficient intelligent electricity network that allows interactivity (two-way communications) between suppliers and consumers by utilizing information technology in electricity production, transmission, distribution and consumption. The New and Renewable Energy Program has been driven with a goal to develop and spread through intensive studies, by public or private institutions, new and renewable energy which, unlike conventional systems, have been operated through connections with various kinds of distributed power generation systems. Considerable research on smart grids has been pursued in the United States and Europe. In the United States, a variety of research activities on the smart power grid have been conducted within EPRI's IntelliGrid research program. The European Union (EU), which represents Europe's Smart Grid policy, has focused on an expansion of distributed generation (decentralized generation) and power trade between countries with improved environmental protection. Thus, there is current emphasis on a need for studies that assesses the economic efficiency of such distributed generation systems. In this paper, based on the cost of distributed power generation capacity, calculations of the best profits obtainable were made by a Monte Carlo simulation. Monte Carlo simulations that rely on repeated random sampling to compute their results take into account the cost of electricity production, daily loads and the cost of sales and generate a result faster than mathematical computations. In addition, we have suggested the optimal design, which considers the distribution loss associated with power distribution systems focus on sensing aspect and distributed power generation.

  16. Historical and Current U.S. Strategies for Boosting Distributed Generation (Chinese Translation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowder, Travis; Schwabe, Paul; Zhou, Ella

    2015-08-01

    This is the Chinese translation of NREL/TP-6A20-64843. This report seeks to introduce a variety of top-down and bottom-up practices that, in concert with the macro-environment of cost-reduction globally and early adoption in Europe, helped boost the distributed generation photovoltaic market in the United States. These experiences may serve as a reference in China's quest to promote distributed renewable energy.

  17. 26 CFR 20.2053-6 - Deduction for taxes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (3) effect distribution. Excise taxes incurred in distributing property of the estate in kind are.... If D's estate had claimed a deduction of $50x on D's United States Estate (and Generation-Skipping...

  18. 26 CFR 20.2053-6 - Deduction for taxes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (3) effect distribution. Excise taxes incurred in distributing property of the estate in kind are.... If D's estate had claimed a deduction of $50x on D's United States Estate (and Generation-Skipping...

  19. 26 CFR 20.2053-6 - Deduction for taxes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (3) effect distribution. Excise taxes incurred in distributing property of the estate in kind are.... If D's estate had claimed a deduction of $50x on D's United States Estate (and Generation-Skipping...

  20. 26 CFR 20.2053-6 - Deduction for taxes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (3) effect distribution. Excise taxes incurred in distributing property of the estate in kind are.... If D's estate had claimed a deduction of $50x on D's United States Estate (and Generation-Skipping...

  1. Polygenetic Aspect of Unit Theory Oil Generation

    NASA Astrophysics Data System (ADS)

    Galant, Yuri

    2015-04-01

    In the framework of a unified theory Oil Generation one of important moments is the consideration of the distribution of oil in the Earth's Crust. Analysis of the distribution of oil deposits in the Earth's Crust showed that oil distributed throughout the stratigraphic section from ancient to modern sediments and from a depth of 12 kilometers to the Earth's surface. The distribution of oil almost meets all stages of metamorphism of rocks. Correlation of the section of oil distribution to genetic types of ore deposits showed that each genetic type ore deposits has its analogue oil field . So it is possible to classify oil fields on 1) endogenous: the actual magmatic, post-magmatic, contact-metasomatic (skarn), hydrothermal, exhalation, carbonatite, pegmatite, 2) exogenous: weathering, oxidation, sedimentary,3) metamorphogenic: metamorphosed, metamorphic. Model of such distribution of oil deposits can be a process of successive formation of oil deposits of mantle degassing tube. Thus oil is polygenic by way of formation of deposits, but their source is united.

  2. Projected Growth in Small-Scale, Fossil-Fueled Distributed Generation: Potential Implications for the U.S. Greenhouse Gas Inventory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberle, Annika; Heath, Garvin A

    The generation capacity of small-scale (less than one megawatt) fossil-fueled electricity in the United States is anticipated to grow by threefold to twenty-fold from 2015 to 2040. However, in adherence with internationally agreed upon carbon accounting methods, the Environmental Protection Agency's (EPA's) U.S. Greenhouse Inventory (GHGI) does not currently attribute greenhouse gases (GHGs) from these small-scale distributed generation sources to the electric power sector and instead accounts for these emissions in the sector that uses the distributed generation (e.g., the commercial sector). In addition, no other federal electric-sector GHG emission data product produced by the EPA or the U.S. Energymore » Information Administration (EIA) can attribute these emissions to electricity. We reviewed the technical documentation for eight federal electric-sector GHG emission data products, interviewed the data product owners, collected their GHG emission estimates, and analyzed projections for growth in fossil-fueled distributed generation. We show that, by 2040, these small-scale generators could account for at least about 1%- 5% of total CO2 emissions from the U.S. electric power sector. If these emissions fall outside the electric power sector, the United States may not be able to completely and accurately track changes in electricity-related CO2 emissions, which could impact how the country sets GHG reduction targets and allocates mitigation resources. Because small-scale, fossil-fueled distributed generation is expected to grow in other countries as well, the results of this work also have implications for global carbon accounting.« less

  3. Experimental Testing of a Van De Graaff Generator as an Electromagnetic Pulse Generator

    DTIC Science & Technology

    2016-07-01

    EXPERIMENTAL TESTING OF A VAN DE GRAAFF GENERATOR AS AN ELECTROMAGNETIC PULSE GENERATOR THESIS...protection in the United States AFIT-ENP-MS-16-S-075 EXPERIMENTAL TESTING OF A VAN DE GRAAFF GENERATOR AS AN ELECTROMAGNETIC PULSE GENERATOR...RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENP-MS-16-S-075 EXPERIMENTAL TESTING OF A VAN DE GRAAFF GENERATOR AS AN ELECTROMAGNETIC PULSE GENERATOR

  4. [Geographic distribution of supportive care for disabled young people].

    PubMed

    Bourgarel, Sophie; Piteau-Delord, Monique

    2013-01-01

    To analyse the logic for the distribution of home care services for disabled children (SESSAD) in a context of under-equipment. Questionnaire-based survey of 75 units (82% of the region's SESSAD units) concerning patient transport. Equipment and transport mapping. Support units for disabled children are often set up in the housing facilities that contributed to their creation. These sites are sometimes situated a long way from densely populated regions, thereby generating unnecessary travel times and expenses. Chronic under-equipment makes these sites viable, as the various units are always full, despite their distance from the children for whom they provide support. Mapping illustrates the extensive recruitment zones overlapping several units managing similar patients. The major revision of accreditation of these units, planned for 2017, could lead to redefinition of geographical zones of accreditations. New unit opening procedures based on ARS calls for tenders may help to improve the geographical distribution of this supportive care.

  5. Optimal Operation of Energy Storage in Power Transmission and Distribution

    NASA Astrophysics Data System (ADS)

    Akhavan Hejazi, Seyed Hossein

    In this thesis, we investigate optimal operation of energy storage units in power transmission and distribution grids. At transmission level, we investigate the problem where an investor-owned independently-operated energy storage system seeks to offer energy and ancillary services in the day-ahead and real-time markets. We specifically consider the case where a significant portion of the power generated in the grid is from renewable energy resources and there exists significant uncertainty in system operation. In this regard, we formulate a stochastic programming framework to choose optimal energy and reserve bids for the storage units that takes into account the fluctuating nature of the market prices due to the randomness in the renewable power generation availability. At distribution level, we develop a comprehensive data set to model various stochastic factors on power distribution networks, with focus on networks that have high penetration of electric vehicle charging load and distributed renewable generation. Furthermore, we develop a data-driven stochastic model for energy storage operation at distribution level, where the distribution of nodal voltage and line power flow are modelled as stochastic functions of the energy storage unit's charge and discharge schedules. In particular, we develop new closed-form stochastic models for such key operational parameters in the system. Our approach is analytical and allows formulating tractable optimization problems. Yet, it does not involve any restricting assumption on the distribution of random parameters, hence, it results in accurate modeling of uncertainties. By considering the specific characteristics of random variables, such as their statistical dependencies and often irregularly-shaped probability distributions, we propose a non-parametric chance-constrained optimization approach to operate and plan energy storage units in power distribution girds. In the proposed stochastic optimization, we consider uncertainty from various elements, such as solar photovoltaic , electric vehicle chargers, and residential baseloads, in the form of discrete probability functions. In the last part of this thesis we address some other resources and concepts for enhancing the operation of power distribution and transmission systems. In particular, we proposed a new framework to determine the best sites, sizes, and optimal payment incentives under special contracts for committed-type DG projects to offset distribution network investment costs. In this framework, the aim is to allocate DGs such that the profit gained by the distribution company is maximized while each DG unit's individual profit is also taken into account to assure that private DG investment remains economical.

  6. Distributed Generation Market Demand Model (dGen): Documentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigrin, Benjamin; Gleason, Michael; Preus, Robert

    The Distributed Generation Market Demand model (dGen) is a geospatially rich, bottom-up, market-penetration model that simulates the potential adoption of distributed energy resources (DERs) for residential, commercial, and industrial entities in the continental United States through 2050. The National Renewable Energy Laboratory (NREL) developed dGen to analyze the key factors that will affect future market demand for distributed solar, wind, storage, and other DER technologies in the United States. The new model builds off, extends, and replaces NREL's SolarDS model (Denholm et al. 2009a), which simulates the market penetration of distributed PV only. Unlike the SolarDS model, dGen can modelmore » various DER technologies under one platform--it currently can simulate the adoption of distributed solar (the dSolar module) and distributed wind (the dWind module) and link with the ReEDS capacity expansion model (Appendix C). The underlying algorithms and datasets in dGen, which improve the representation of customer decision making as well as the spatial resolution of analyses (Figure ES-1), also are improvements over SolarDS.« less

  7. Optimal placement and sizing of wind / solar based DG sources in distribution system

    NASA Astrophysics Data System (ADS)

    Guan, Wanlin; Guo, Niao; Yu, Chunlai; Chen, Xiaoguang; Yu, Haiyang; Liu, Zhipeng; Cui, Jiapeng

    2017-06-01

    Proper placement and sizing of Distributed Generation (DG) in distribution system can obtain maximum potential benefits. This paper proposes quantum particle swarm algorithm (QPSO) based wind turbine generation unit (WTGU) and photovoltaic (PV) array placement and sizing approach for real power loss reduction and voltage stability improvement of distribution system. Performance modeling of wind and solar generation system are described and classified into PQ\\PQ (V)\\PI type models in power flow. Considering the WTGU and PV based DGs in distribution system is geographical restrictive, the optimal area and DG capacity limits of each bus in the setting area need to be set before optimization, the area optimization method is proposed . The method has been tested on IEEE 33-bus radial distribution systems to demonstrate the performance and effectiveness of the proposed method.

  8. A Study Using a Monte Carlo Method of the Optimal Configuration of a Distribution Network in Terms of Power Loss Sensing

    PubMed Central

    Moon, Hyun Ho; Lee, Jong Joo; Choi, Sang Yule; Cha, Jae Sang; Kang, Jang Mook; Kim, Jong Tae; Shin, Myong Chul

    2011-01-01

    Recently there have been many studies of power systems with a focus on “New and Renewable Energy” as part of “New Growth Engine Industry” promoted by the Korean government. “New And Renewable Energy”—especially focused on wind energy, solar energy and fuel cells that will replace conventional fossil fuels—is a part of the Power-IT Sector which is the basis of the SmartGrid. A SmartGrid is a form of highly-efficient intelligent electricity network that allows interactivity (two-way communications) between suppliers and consumers by utilizing information technology in electricity production, transmission, distribution and consumption. The New and Renewable Energy Program has been driven with a goal to develop and spread through intensive studies, by public or private institutions, new and renewable energy which, unlike conventional systems, have been operated through connections with various kinds of distributed power generation systems. Considerable research on smart grids has been pursued in the United States and Europe. In the United States, a variety of research activities on the smart power grid have been conducted within EPRI’s IntelliGrid research program. The European Union (EU), which represents Europe’s Smart Grid policy, has focused on an expansion of distributed generation (decentralized generation) and power trade between countries with improved environmental protection. Thus, there is current emphasis on a need for studies that assesses the economic efficiency of such distributed generation systems. In this paper, based on the cost of distributed power generation capacity, calculations of the best profits obtainable were made by a Monte Carlo simulation. Monte Carlo simulations that rely on repeated random sampling to compute their results take into account the cost of electricity production, daily loads and the cost of sales and generate a result faster than mathematical computations. In addition, we have suggested the optimal design, which considers the distribution loss associated with power distribution systems focus on sensing aspect and distributed power generation. PMID:22164047

  9. Real-time high speed generator system emulation with hardware-in-the-loop application

    NASA Astrophysics Data System (ADS)

    Stroupe, Nicholas

    The emerging emphasis and benefits of distributed generation on smaller scale networks has prompted much attention and focus to research in this field. Much of the research that has grown in distributed generation has also stimulated the development of simulation software and techniques. Testing and verification of these distributed power networks is a complex task and real hardware testing is often desired. This is where simulation methods such as hardware-in-the-loop become important in which an actual hardware unit can be interfaced with a software simulated environment to verify proper functionality. In this thesis, a simulation technique is taken one step further by utilizing a hardware-in-the-loop technique to emulate the output voltage of a generator system interfaced to a scaled hardware distributed power system for testing. The purpose of this thesis is to demonstrate a new method of testing a virtually simulated generation system supplying a scaled distributed power system in hardware. This task is performed by using the Non-Linear Loads Test Bed developed by the Energy Conversion and Integration Thrust at the Center for Advanced Power Systems. This test bed consists of a series of real hardware developed converters consistent with the Navy's All-Electric-Ship proposed power system to perform various tests on controls and stability under the expected non-linear load environment of the Navy weaponry. This test bed can also explore other distributed power system research topics and serves as a flexible hardware unit for a variety of tests. In this thesis, the test bed will be utilized to perform and validate this newly developed method of generator system emulation. In this thesis, the dynamics of a high speed permanent magnet generator directly coupled with a micro turbine are virtually simulated on an FPGA in real-time. The calculated output stator voltage will then serve as a reference for a controllable three phase inverter at the input of the test bed that will emulate and reproduce these voltages on real hardware. The output of the inverter is then connected with the rest of the test bed and can consist of a variety of distributed system topologies for many testing scenarios. The idea is that the distributed power system under test in hardware can also integrate real generator system dynamics without physically involving an actual generator system. The benefits of successful generator system emulation are vast and lead to much more detailed system studies without the draw backs of needing physical generator units. Some of these advantages are safety, reduced costs, and the ability of scaling while still preserving the appropriate system dynamics. This thesis will introduce the ideas behind generator emulation and explain the process and necessary steps to obtaining such an objective. It will also demonstrate real results and verification of numerical values in real-time. The final goal of this thesis is to introduce this new idea and show that it is in fact obtainable and can prove to be a highly useful tool in the simulation and verification of distributed power systems.

  10. A multi-functional high voltage experiment apparatus for vacuum surface flashover switch research.

    PubMed

    Zeng, Bo; Su, Jian-cang; Cheng, Jie; Wu, Xiao-long; Li, Rui; Zhao, Liang; Fang, Jin-peng; Wang, Li-min

    2015-04-01

    A multifunctional high voltage apparatus for experimental researches on surface flashover switch and high voltage insulation in vacuum has been developed. The apparatus is composed of five parts: pulse generating unit, axial field unit, radial field unit, and two switch units. Microsecond damped ringing pulse with peak-to-peak voltage 800 kV or unipolar pulse with maximum voltage 830 kV is generated, forming transient axial or radial electrical field. Different pulse waveforms and field distributions make up six experimental configurations in all. Based on this apparatus, preliminary experiments on vacuum surface flashover switch with different flashover dielectric materials have been conducted in the axial field unit, and nanosecond pulse is generated in the radial field unit which makes a pulse transmission line in the experiment. Basic work parameters of this kind of switch such as lifetime, breakdown voltage are obtained.

  11. Simulation of load-sharing in standalone distributed generation system

    NASA Astrophysics Data System (ADS)

    Ajewole, Titus O.; Craven, Robert P. M.; Kayode, Olakunle; Babalola, Olufisayo S.

    2018-05-01

    This paper presents a study on load-sharing among the component generating units of a multi-source electric microgrid that is operated as an autonomous ac supply-mode system. Emerging trend in power system development permits deployment of microgrids for standalone or stand-by applications, thereby requiring active- and reactive power sharing among the discrete generating units contained in hybrid-source microgrids. In this study, therefore, a laboratory-scale model of a microgrid energized with three renewable energy-based sources is employed as a simulation platform to investigate power sharing among the power-generating units. Each source is represented by a source emulator that captures the real operational characteristics of the mimicked generating unit and, with implementation of real-life weather data and load profiles on the model; the sharing of the load among the generating units is investigated. There is a proportionate generation of power by the three source emulators, with their frequencies perfectly synchronized at the point of common coupling as a result of balance flow of power among them. This hybrid topology of renewable energy-based microgrid could therefore be seamlessly adapted into national energy mix by the indigenous electric utility providers in Nigeria.

  12. Development of Protection and Control Unit for Distribution Substation

    NASA Astrophysics Data System (ADS)

    Iguchi, Fumiaki; Hayashi, Hideyuki; Takeuchi, Motohiro; Kido, Mitsuyasu; Kobayashi, Takashi; Yanaoka, Atsushi

    The Recently, electronics and IT technologies have been rapidly innovated and have been introduced to power system protection & control system to achieve high reliability, maintainability and more functionality. Concerning the distribution substation application, digital relays have been applied for more than 10 years. Because of a number of electronic devices used for it, product cost becomes higher. Also, products installed during the past high-growth period will be at the end of lifetime and will be replaced. Therefore, replacing market is expected to grow and the reduction of cost is demanded. Considering above mentioned background, second generation digital protection and control unit as a successor is designed to have following concepts. Functional integration based on advanced digital technologies, Ethernet LAN based indoor communication network, cost reduction and downsizing. Pondering above concepts, integration of protection and control function is adopted in contrary to the functional segregation applied to the previous system in order to achieve one-unit concept. Also the adoption of Ethernet LAN for inter-unit communication is objective. This report shows the development of second-generation digital relay for distribution substation, which is equipped with control function and Ethernet LAN by reducing the size of auxiliary transformer unit and the same size as previous product is realized.

  13. Hybrid PV/Wind Power Systems Incorporating Battery Storage and Considering the Stochastic Nature of Renewable Resources

    NASA Astrophysics Data System (ADS)

    Barnawi, Abdulwasa Bakr

    Hybrid power generation system and distributed generation technology are attracting more investments due to the growing demand for energy nowadays and the increasing awareness regarding emissions and their environmental impacts such as global warming and pollution. The price fluctuation of crude oil is an additional reason for the leading oil producing countries to consider renewable resources as an alternative. Saudi Arabia as the top oil exporter country in the word announced the "Saudi Arabia Vision 2030" which is targeting to generate 9.5 GW of electricity from renewable resources. Two of the most promising renewable technologies are wind turbines (WT) and photovoltaic cells (PV). The integration or hybridization of photovoltaics and wind turbines with battery storage leads to higher adequacy and redundancy for both autonomous and grid connected systems. This study presents a method for optimal generation unit planning by installing a proper number of solar cells, wind turbines, and batteries in such a way that the net present value (NPV) is minimized while the overall system redundancy and adequacy is maximized. A new renewable fraction technique (RFT) is used to perform the generation unit planning. RFT was tested and validated with particle swarm optimization and HOMER Pro under the same conditions and environment. Renewable resources and load randomness and uncertainties are considered. Both autonomous and grid-connected system designs were adopted in the optimal generation units planning process. An uncertainty factor was designed and incorporated in both autonomous and grid connected system designs. In the autonomous hybrid system design model, the strategy including an additional amount of operation reserve as a percent of the hourly load was considered to deal with resource uncertainty since the battery storage system is the only backup. While in the grid-connected hybrid system design model, demand response was incorporated to overcome the impact of uncertainty and perform energy trading between the hybrid grid utility and main grid utility in addition to the designed uncertainty factor. After the generation unit planning was carried out and component sizing was determined, adequacy evaluation was conducted by calculating the loss of load expectation adequacy index for different contingency criteria considering probability of equipment failure. Finally, a microgrid planning was conducted by finding the proper size and location to install distributed generation units in a radial distribution network.

  14. Optimized Power Generation and Distribution Unit for Mobile Applications

    DTIC Science & Technology

    2006-09-01

    reference commands to the overall system. This would be consistent with exoskeleton usage . Power Generation (prime mover) Power Distribution...technologies i.e. technologies that as of yet have not been used in the same field. • Produce list(s) in order of ranking for different properties ...developments have come through material science and bearing technology – it is the material properties of a flywheel that determine the maximum energy that can

  15. Space station electrical power system availability study

    NASA Technical Reports Server (NTRS)

    Turnquist, Scott R.; Twombly, Mark A.

    1988-01-01

    ARINC Research Corporation performed a preliminary reliability, and maintainability (RAM) anlaysis of the NASA space station Electric Power Station (EPS). The analysis was performed using the ARINC Research developed UNIRAM RAM assessment methodology and software program. The analysis was performed in two phases: EPS modeling and EPS RAM assessment. The EPS was modeled in four parts: the insolar power generation system, the eclipse power generation system, the power management and distribution system (both ring and radial power distribution control unit (PDCU) architectures), and the power distribution to the inner keel PDCUs. The EPS RAM assessment was conducted in five steps: the use of UNIRAM to perform baseline EPS model analyses and to determine the orbital replacement unit (ORU) criticalities; the determination of EPS sensitivity to on-orbit spared of ORUs and the provision of an indication of which ORUs may need to be spared on-orbit; the determination of EPS sensitivity to changes in ORU reliability; the determination of the expected annual number of ORU failures; and the integration of the power generator system model results with the distribution system model results to assess the full EPS. Conclusions were drawn and recommendations were made.

  16. Forward modeling of gravity data using geostatistically generated subsurface density variations

    USGS Publications Warehouse

    Phelps, Geoffrey

    2016-01-01

    Using geostatistical models of density variations in the subsurface, constrained by geologic data, forward models of gravity anomalies can be generated by discretizing the subsurface and calculating the cumulative effect of each cell (pixel). The results of such stochastically generated forward gravity anomalies can be compared with the observed gravity anomalies to find density models that match the observed data. These models have an advantage over forward gravity anomalies generated using polygonal bodies of homogeneous density because generating numerous realizations explores a larger region of the solution space. The stochastic modeling can be thought of as dividing the forward model into two components: that due to the shape of each geologic unit and that due to the heterogeneous distribution of density within each geologic unit. The modeling demonstrates that the internally heterogeneous distribution of density within each geologic unit can contribute significantly to the resulting calculated forward gravity anomaly. Furthermore, the stochastic models match observed statistical properties of geologic units, the solution space is more broadly explored by producing a suite of successful models, and the likelihood of a particular conceptual geologic model can be compared. The Vaca Fault near Travis Air Force Base, California, can be successfully modeled as a normal or strike-slip fault, with the normal fault model being slightly more probable. It can also be modeled as a reverse fault, although this structural geologic configuration is highly unlikely given the realizations we explored.

  17. On hydrologic similarity: A dimensionless flood frequency model using a generalized geomorphologic unit hydrograph and partial area runoff generation

    NASA Technical Reports Server (NTRS)

    Sivapalan, Murugesu; Wood, Eric F.; Beven, Keith J.

    1993-01-01

    One of the shortcomings of the original theory of the geomorphologic unit hydrograph (GUH) is that it assumes that runoff is generated uniformly from the entire catchment area. It is now recognized that in many catchments much of the runoff during storm events is produced on partial areas which usually form on narrow bands along the stream network. A storm response model that includes runoff generation on partial areas by both Hortonian and Dunne mechanisms was recently developed by the authors. In this paper a methodology for integrating this partial area runoff generation model with the GUH-based runoff routing model is presented; this leads to a generalized GUH. The generalized GUH and the storm response model are then used to estimate physically based flood frequency distributions. In most previous work the initial moisture state of the catchment had been assumed to be constant for all the storms. In this paper we relax this assumption and allow the initial moisture conditions to vary between storms. The resulting flood frequency distributions are cast in a scaled dimensionless framework where issues such as catchment scale and similarity can be conveniently addressed. A number of experiments are performed to study the sensitivity of the flood frequency response to some of the 'similarity' parameters identified in this formulation. The results indicate that one of the most important components of the derived flood frequency model relates to the specification of processes within the runoff generation model; specifically the inclusion of both saturation excess and Horton infiltration excess runoff production mechanisms. The dominance of these mechanisms over different return periods of the flood frequency distribution can significantly affect the distributional shape and confidence limits about the distribution. Comparisons with observed flood distributions seem to indicate that such mixed runoff production mechanisms influence flood distribution shape. The sensitivity analysis also indicated that the incorporation of basin and rainfall storm scale also greatly influences the distributional shape of the flood frequency curve.

  18. Estimating probable flaw distributions in PWR steam generator tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorman, J.A.; Turner, A.P.L.

    1997-02-01

    This paper describes methods for estimating the number and size distributions of flaws of various types in PWR steam generator tubes. These estimates are needed when calculating the probable primary to secondary leakage through steam generator tubes under postulated accidents such as severe core accidents and steam line breaks. The paper describes methods for two types of predictions: (1) the numbers of tubes with detectable flaws of various types as a function of time, and (2) the distributions in size of these flaws. Results are provided for hypothetical severely affected, moderately affected and lightly affected units. Discussion is provided regardingmore » uncertainties and assumptions in the data and analyses.« less

  19. Modified Shuffled Frog Leaping Optimization Algorithm Based Distributed Generation Rescheduling for Loss Minimization

    NASA Astrophysics Data System (ADS)

    Arya, L. D.; Koshti, Atul

    2018-05-01

    This paper investigates the Distributed Generation (DG) capacity optimization at location based on the incremental voltage sensitivity criteria for sub-transmission network. The Modified Shuffled Frog Leaping optimization Algorithm (MSFLA) has been used to optimize the DG capacity. Induction generator model of DG (wind based generating units) has been considered for study. Standard test system IEEE-30 bus has been considered for the above study. The obtained results are also validated by shuffled frog leaping algorithm and modified version of bare bones particle swarm optimization (BBExp). The performance of MSFLA has been found more efficient than the other two algorithms for real power loss minimization problem.

  20. Method and system for redundancy management of distributed and recoverable digital control system

    NASA Technical Reports Server (NTRS)

    Stange, Kent (Inventor); Hess, Richard (Inventor); Kelley, Gerald B (Inventor); Rogers, Randy (Inventor)

    2012-01-01

    A method and system for redundancy management is provided for a distributed and recoverable digital control system. The method uses unique redundancy management techniques to achieve recovery and restoration of redundant elements to full operation in an asynchronous environment. The system includes a first computing unit comprising a pair of redundant computational lanes for generating redundant control commands. One or more internal monitors detect data errors in the control commands, and provide a recovery trigger to the first computing unit. A second redundant computing unit provides the same features as the first computing unit. A first actuator control unit is configured to provide blending and monitoring of the control commands from the first and second computing units, and to provide a recovery trigger to each of the first and second computing units. A second actuator control unit provides the same features as the first actuator control unit.

  1. Quasirandom geometric networks from low-discrepancy sequences

    NASA Astrophysics Data System (ADS)

    Estrada, Ernesto

    2017-08-01

    We define quasirandom geometric networks using low-discrepancy sequences, such as Halton, Sobol, and Niederreiter. The networks are built in d dimensions by considering the d -tuples of digits generated by these sequences as the coordinates of the vertices of the networks in a d -dimensional Id unit hypercube. Then, two vertices are connected by an edge if they are at a distance smaller than a connection radius. We investigate computationally 11 network-theoretic properties of two-dimensional quasirandom networks and compare them with analogous random geometric networks. We also study their degree distribution and their spectral density distributions. We conclude from this intensive computational study that in terms of the uniformity of the distribution of the vertices in the unit square, the quasirandom networks look more random than the random geometric networks. We include an analysis of potential strategies for generating higher-dimensional quasirandom networks, where it is know that some of the low-discrepancy sequences are highly correlated. In this respect, we conclude that up to dimension 20, the use of scrambling, skipping and leaping strategies generate quasirandom networks with the desired properties of uniformity. Finally, we consider a diffusive process taking place on the nodes and edges of the quasirandom and random geometric graphs. We show that the diffusion time is shorter in the quasirandom graphs as a consequence of their larger structural homogeneity. In the random geometric graphs the diffusion produces clusters of concentration that make the process more slow. Such clusters are a direct consequence of the heterogeneous and irregular distribution of the nodes in the unit square in which the generation of random geometric graphs is based on.

  2. Advanced gas turbines breathe new life into vintage reheat units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-04-01

    This article describes the repowering of reheat units with advanced gas turbines. The topics of the article include a project overview, plant configuration including heat recovery steam generators and the plant-wide distributed control system, upgrade of existing steam turbines, gas turbine technology, reliability, availability, maintenance features, and training.

  3. Differential pencil beam dose computation model for photons.

    PubMed

    Mohan, R; Chui, C; Lidofsky, L

    1986-01-01

    Differential pencil beam (DPB) is defined as the dose distribution relative to the position of the first collision, per unit collision density, for a monoenergetic pencil beam of photons in an infinite homogeneous medium of unit density. We have generated DPB dose distribution tables for a number of photon energies in water using the Monte Carlo method. The three-dimensional (3D) nature of the transport of photons and electrons is automatically incorporated in DPB dose distributions. Dose is computed by evaluating 3D integrals of DPB dose. The DPB dose computation model has been applied to calculate dose distributions for 60Co and accelerator beams. Calculations for the latter are performed using energy spectra generated with the Monte Carlo program. To predict dose distributions near the beam boundaries defined by the collimation system as well as blocks, we utilize the angular distribution of incident photons. Inhomogeneities are taken into account by attenuating the primary photon fluence exponentially utilizing the average total linear attenuation coefficient of intervening tissue, by multiplying photon fluence by the linear attenuation coefficient to yield the number of collisions in the scattering volume, and by scaling the path between the scattering volume element and the computation point by an effective density.

  4. Auction-based distributed efficient economic operations of microgrid systems

    NASA Astrophysics Data System (ADS)

    Zou, Suli; Ma, Zhongjing; Liu, Xiangdong

    2014-12-01

    This paper studies the economic operations of the microgrid in a distributed way such that the operational schedule of each of the units, like generators, load units, storage units, etc., in a microgrid system, is implemented by autonomous agents. We apply and generalise the progressive second price (PSP) auction mechanism which was proposed by Lazar and Semret to efficiently allocate the divisible network resources. Considering the economic operation for the microgrid systems, the generators play as sellers to supply energy and the load units play as the buyers to consume energy, while a storage unit, like battery, super capacitor, etc., may transit between buyer and seller, such that it is a buyer when it charges and becomes a seller when it discharges. Furthermore in a connected mode, each individual unit competes against not only the other individual units in the microgrid but also the exogenous main grid possessing fixed electricity price and infinite trade capacity; that is to say, the auctioneer assigns the electricity among all individual units and the main grid with respect to the submitted bid strategies of all individual units in the microgrid in an economic way. Due to these distinct characteristics, the underlying auction games are distinct from those studied in the literature. We show that under mild conditions, the efficient economic operation strategy is a Nash equilibrium (NE) for the PSP auction games, and propose a distributed algorithm under which the system can converge to an NE. We also show that the performance of worst NE can be bounded with respect to the system parameters, say the energy trading price with the main grid, and based upon that, the implemented NE is unique and efficient under some conditions.

  5. Renewables-Friendly Grid Development Strategies. Experience in the United States, Potential Lessons for China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurlbut, David; Zhou, Ella; Porter, Kevin

    2015-10-01

    This report aims to help China's reform effort by providing a concise summary of experience in the United States with "renewables-friendly"" grid management, focusing on experiences that might be applicable to China. It focuses on utility-scale renewables and sets aside issues related to distributed generation.

  6. Comparing Different Fault Identification Algorithms in Distributed Power System

    NASA Astrophysics Data System (ADS)

    Alkaabi, Salim

    A power system is a huge complex system that delivers the electrical power from the generation units to the consumers. As the demand for electrical power increases, distributed power generation was introduced to the power system. Faults may occur in the power system at any time in different locations. These faults cause a huge damage to the system as they might lead to full failure of the power system. Using distributed generation in the power system made it even harder to identify the location of the faults in the system. The main objective of this work is to test the different fault location identification algorithms while tested on a power system with the different amount of power injected using distributed generators. As faults may lead the system to full failure, this is an important area for research. In this thesis different fault location identification algorithms have been tested and compared while the different amount of power is injected from distributed generators. The algorithms were tested on IEEE 34 node test feeder using MATLAB and the results were compared to find when these algorithms might fail and the reliability of these methods.

  7. Two dimensional distribution measurement of electric current generated in a polymer electrolyte fuel cell using 49 NMR surface coils.

    PubMed

    Ogawa, Kuniyasu; Sasaki, Tatsuyoshi; Yoneda, Shigeki; Tsujinaka, Kumiko; Asai, Ritsuko

    2018-05-17

    In order to increase the current density generated in a PEFC (polymer electrolyte fuel cell), a method for measuring the spatial distribution of both the current and the water content of the MEA (membrane electrode assembly) is necessary. Based on the frequency shifts of NMR (nuclear magnetic resonance) signals acquired from the water contained in the MEA using 49 NMR coils in a 7 × 7 arrangement inserted in the PEFC, a method for measuring the two-dimensional spatial distribution of electric current generated in a unit cell with a power generation area of 140 mm × 160 mm was devised. We also developed an inverse analysis method to determine the two-dimensional electric current distribution that can be applied to actual PEFC connections. Two analytical techniques, namely coarse graining of segments and stepwise search, were used to shorten the calculation time required for inverse analysis of the electric current map. Using this method and techniques, spatial distributions of electric current and water content in the MEA were obtained when the PEFC generated electric power at 100 A. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Temperature-Dependent Development, Cold Tolerance, and Potential Distribution of Cricotopus lebetis (Diptera: Chironomidae), a Tip Miner of Hydrilla verticillata (Hydrocharitaceae)

    PubMed Central

    Stratman, Karen N.; Overholt, William A.; Cuda, James P.; Mukherjee, A.; Diaz, R.; Netherland, Michael D.; Wilson, Patrick C.

    2014-01-01

    Abstract A chironomid midge, Cricotopus lebetis (Sublette) (Diptera: Chironomidae), was discovered attacking the apical meristems of Hydrilla verticillata (L.f. Royle) in Crystal River, Citrus Co., Florida in 1992. The larvae mine the stems of H. verticillata and cause basal branching and stunting of the plant. Temperature-dependent development, cold tolerance, and the potential distribution of the midge were investigated. The results of the temperature-dependent development study showed that optimal temperatures for larval development were between 20 and 30°C, and these data were used to construct a map of the potential number of generations per year of C. lebetis in Florida. Data from the cold tolerance study, in conjunction with historical weather data, were used to generate a predicted distribution of C. lebetis in the United States. A distribution was also predicted using an ecological niche modeling approach by characterizing the climate at locations where C. lebetis is known to occur and then finding other locations with similar climate. The distributions predicted using the two modeling approaches were not significantly different and suggested that much of the southeastern United States was climatically suitable for C. lebetis . PMID:25347841

  9. 78 FR 73239 - Small Generator Interconnection Agreements and Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-05

    ... distributed resources.\\35\\ Public Interest Organizations go on to state that: \\29\\ See, e.g., American Wind... Society and Wind on the Wires are referred to collectively as Public Interest Organizations in this Final...\\ Similarly, installed wind generation with a capacity of 20 MW or less has increased in the contiguous United...

  10. Pseudorandom number generation using chaotic true orbits of the Bernoulli map

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Asaki, E-mail: saito@fun.ac.jp; Yamaguchi, Akihiro

    We devise a pseudorandom number generator that exactly computes chaotic true orbits of the Bernoulli map on quadratic algebraic integers. Moreover, we describe a way to select the initial points (seeds) for generating multiple pseudorandom binary sequences. This selection method distributes the initial points almost uniformly (equidistantly) in the unit interval, and latter parts of the generated sequences are guaranteed not to coincide. We also demonstrate through statistical testing that the generated sequences possess good randomness properties.

  11. Simulation of a microgrid

    NASA Astrophysics Data System (ADS)

    Dulǎu, Lucian Ioan

    2015-12-01

    This paper describes the simulation of a microgrid system with storage technologies. The microgrid comprises 6 distributed generators (DGs), 3 loads and a 150 kW storage unit. The installed capacity of the generators is 1100 kW, while the total load demand is 900 kW. The simulation is performed by using a SCADA software, considering the power generation costs, the loads demand and the system's power losses. The generators access the system in order of their power generation cost. The simulation is performed for the entire day.

  12. Global Thermal Power Plants Database: Unit-Based CO2, SO2, NOX and PM2.5 Emissions in 2010

    NASA Astrophysics Data System (ADS)

    Tong, D.; Qiang, Z.; Davis, S. J.

    2016-12-01

    There are more than 30,000 thermal power plants now operating worldwide, reflecting a tremendously diverse infrastructure that includes units burning oil, natural gas, coal and biomass and ranging in capacity from <1MW to >1GW. Although the electricity generated by this infrastructure is vital to economic activities across the world, it also produces more CO2 and air pollution emissions than any other industry sector. Here we present a new database of global thermal power-generating units and their emissions as of 2010, GPED (Global Power Emissions Database), including the detailed unit information of installed capacity, operation year, geographic location, fuel type and control measures for more than 70000 units. In this study, we have compiled, combined, and harmonized the available underlying data related to thermal power-generating units (e.g. eGRID of USA, CPED of China and published Indian power plants database), and then analyzed the generating capacity, capacity factor, fuel type, age, location, and installed pollution-control technology in order to determine those units with disproportionately high levels of emissions. In total, this work is of great importance for improving spatial distribution of global thermal power plants emissions and exploring their environmental impacts at global scale.

  13. Pareto versus lognormal: A maximum entropy test

    NASA Astrophysics Data System (ADS)

    Bee, Marco; Riccaboni, Massimo; Schiavo, Stefano

    2011-08-01

    It is commonly found that distributions that seem to be lognormal over a broad range change to a power-law (Pareto) distribution for the last few percentiles. The distributions of many physical, natural, and social events (earthquake size, species abundance, income and wealth, as well as file, city, and firm sizes) display this structure. We present a test for the occurrence of power-law tails in statistical distributions based on maximum entropy. This methodology allows one to identify the true data-generating processes even in the case when it is neither lognormal nor Pareto. The maximum entropy approach is then compared with other widely used methods and applied to different levels of aggregation of complex systems. Our results provide support for the theory that distributions with lognormal body and Pareto tail can be generated as mixtures of lognormally distributed units.

  14. Location and Size Planning of Distributed Photovoltaic Generation in Distribution network System Based on K-means Clustering Analysis

    NASA Astrophysics Data System (ADS)

    Lu, Siqi; Wang, Xiaorong; Wu, Junyong

    2018-01-01

    The paper presents a method to generate the planning scenarios, which is based on K-means clustering analysis algorithm driven by data, for the location and size planning of distributed photovoltaic (PV) units in the network. Taken the power losses of the network, the installation and maintenance costs of distributed PV, the profit of distributed PV and the voltage offset as objectives and the locations and sizes of distributed PV as decision variables, Pareto optimal front is obtained through the self-adaptive genetic algorithm (GA) and solutions are ranked by a method called technique for order preference by similarity to an ideal solution (TOPSIS). Finally, select the planning schemes at the top of the ranking list based on different planning emphasis after the analysis in detail. The proposed method is applied to a 10-kV distribution network in Gansu Province, China and the results are discussed.

  15. A data distributed parallel algorithm for ray-traced volume rendering

    NASA Technical Reports Server (NTRS)

    Ma, Kwan-Liu; Painter, James S.; Hansen, Charles D.; Krogh, Michael F.

    1993-01-01

    This paper presents a divide-and-conquer ray-traced volume rendering algorithm and a parallel image compositing method, along with their implementation and performance on the Connection Machine CM-5, and networked workstations. This algorithm distributes both the data and the computations to individual processing units to achieve fast, high-quality rendering of high-resolution data. The volume data, once distributed, is left intact. The processing nodes perform local ray tracing of their subvolume concurrently. No communication between processing units is needed during this locally ray-tracing process. A subimage is generated by each processing unit and the final image is obtained by compositing subimages in the proper order, which can be determined a priori. Test results on both the CM-5 and a group of networked workstations demonstrate the practicality of our rendering algorithm and compositing method.

  16. Networked control of microgrid system of systems

    NASA Astrophysics Data System (ADS)

    Mahmoud, Magdi S.; Rahman, Mohamed Saif Ur; AL-Sunni, Fouad M.

    2016-08-01

    The microgrid has made its mark in distributed generation and has attracted widespread research. However, microgrid is a complex system which needs to be viewed from an intelligent system of systems perspective. In this paper, a network control system of systems is designed for the islanded microgrid system consisting of three distributed generation units as three subsystems supplying a load. The controller stabilises the microgrid system in the presence of communication infractions such as packet dropouts and delays. Simulation results are included to elucidate the effectiveness of the proposed control strategy.

  17. Identification of infusion strategy for achieving repeatable nanoparticle distribution and quantification of thermal dosage using micro-CT Hounsfield unit in magnetic nanoparticle hyperthermia.

    PubMed

    LeBrun, Alexander; Joglekar, Tejashree; Bieberich, Charles; Ma, Ronghui; Zhu, Liang

    2016-01-01

    The objective of this study was to identify an injection strategy leading to repeatable nanoparticle deposition patterns in tumours and to quantify volumetric heat generation rate distribution based on micro-CT Hounsfield unit (HU) in magnetic nanoparticle hyperthermia. In vivo animal experiments were performed on graft prostatic cancer (PC3) tumours in immunodeficient mice to investigate whether lowering ferrofluid infusion rate improves control of the distribution of magnetic nanoparticles in tumour tissue. Nanoparticle distribution volume obtained from micro-CT scan was used to evaluate spreading of the nanoparticles from the injection site in tumours. Heating experiments were performed to quantify relationships among micro-CT HU values, local nanoparticle concentrations in the tumours, and the ferrofluid-induced volumetric heat generation rate (q(MNH)) when nanoparticles were subject to an alternating magnetic field. An infusion rate of 3 µL/min was identified to result in the most repeatable nanoparticle distribution in PC3 tumours. Linear relationships have been obtained to first convert micro-CT greyscale values to HU values, then to local nanoparticle concentrations, and finally to nanoparticle-induced q(MNH) values. The total energy deposition rate in tumours was calculated and the observed similarity in total energy deposition rates in all three infusion rate groups suggests improvement in minimising nanoparticle leakage from the tumours. The results of this study demonstrate that micro-CT generated q(MNH) distribution and tumour physical models improve predicting capability of heat transfer simulation for designing reliable treatment protocols using magnetic nanoparticle hyperthermia.

  18. Storage dynamics in hydropedological units control hillslope connectivity, runoff generation, and the evolution of catchment transit time distributions

    PubMed Central

    Tetzlaff, D; Birkel, C; Dick, J; Geris, J; Soulsby, C

    2014-01-01

    We examined the storage dynamics and isotopic composition of soil water over 12 months in three hydropedological units in order to understand runoff generation in a montane catchment. The units form classic catena sequences from freely draining podzols on steep upper hillslopes through peaty gleys in shallower lower slopes to deeper peats in the riparian zone. The peaty gleys and peats remained saturated throughout the year, while the podzols showed distinct wetting and drying cycles. In this region, most precipitation events are <10 mm in magnitude, and storm runoff is mainly generated from the peats and peaty gleys, with runoff coefficients (RCs) typically <10%. In larger events the podzolic soils become strongly connected to the saturated areas, and RCs can exceed 40%. Isotopic variations in precipitation are significantly damped in the organic-rich soil surface horizons due to mixing with larger volumes of stored water. This damping is accentuated in the deeper soil profile and groundwater. Consequently, the isotopic composition of stream water is also damped, but the dynamics strongly reflect those of the near-surface waters in the riparian peats. “pre-event” water typically accounts for >80% of flow, even in large events, reflecting the displacement of water from the riparian soils that has been stored in the catchment for >2 years. These riparian areas are the key zone where different source waters mix. Our study is novel in showing that they act as “isostats,” not only regulating the isotopic composition of stream water, but also integrating the transit time distribution for the catchment. Key Points Hillslope connectivity is controlled by small storage changes in soil units Different catchment source waters mix in large riparian wetland storage Isotopes show riparian wetlands set the catchment transit time distribution PMID:25506098

  19. Storage dynamics in hydropedological units control hillslope connectivity, runoff generation, and the evolution of catchment transit time distributions.

    PubMed

    Tetzlaff, D; Birkel, C; Dick, J; Geris, J; Soulsby, C

    2014-02-01

    We examined the storage dynamics and isotopic composition of soil water over 12 months in three hydropedological units in order to understand runoff generation in a montane catchment. The units form classic catena sequences from freely draining podzols on steep upper hillslopes through peaty gleys in shallower lower slopes to deeper peats in the riparian zone. The peaty gleys and peats remained saturated throughout the year, while the podzols showed distinct wetting and drying cycles. In this region, most precipitation events are <10 mm in magnitude, and storm runoff is mainly generated from the peats and peaty gleys, with runoff coefficients (RCs) typically <10%. In larger events the podzolic soils become strongly connected to the saturated areas, and RCs can exceed 40%. Isotopic variations in precipitation are significantly damped in the organic-rich soil surface horizons due to mixing with larger volumes of stored water. This damping is accentuated in the deeper soil profile and groundwater. Consequently, the isotopic composition of stream water is also damped, but the dynamics strongly reflect those of the near-surface waters in the riparian peats. "pre-event" water typically accounts for >80% of flow, even in large events, reflecting the displacement of water from the riparian soils that has been stored in the catchment for >2 years. These riparian areas are the key zone where different source waters mix. Our study is novel in showing that they act as "isostats," not only regulating the isotopic composition of stream water, but also integrating the transit time distribution for the catchment. Hillslope connectivity is controlled by small storage changes in soil unitsDifferent catchment source waters mix in large riparian wetland storageIsotopes show riparian wetlands set the catchment transit time distribution.

  20. Market Transformation Pathways for Grid-Connected Rooftop Solar PV in Minnesota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbey, Ross; Ross, Brian

    2013-06-03

    This report presents the market and policy findings of the Minnesota Solar Challenge program. The report draws on information collected from state agencies, local government units, solar industry participants, rooftop photovoltaic (PV) adopters (sometimes called customer-generators), state and national experts, the Commerce distributed generation stakeholder process, and the numerous reports and data sets referenced herein.

  1. 4. DETAIL OF SMOKE GENERATOR; NORTH SIDE OF LEVEL SIX, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL OF SMOKE GENERATOR; NORTH SIDE OF LEVEL SIX, LOOKING WEST; HICKORY SAWDUST DROPPED FROM HOPPER ONTO HEATED PLATE TO MAKE SMOKE, WHICH WAS THEN DISTRIBUTED THROUGH SQUARE DUCTS (TOP CENTER) TO INDIVIDUAL SMOKEHOUSE UNITS - Rath Packing Company, Smokehouse-Hog Chilling Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  2. Three essays on U.S. electricity restructuring

    NASA Astrophysics Data System (ADS)

    Sergici, Sanem I.

    2008-04-01

    The traditional structure of the electricity sector in the U.S. has been that of large vertically integrated companies with sole responsibility for distributing power to end users within a franchise area. The restructuring of this sector that has occurred in the past 10-20 years has profoundly altered this picture. This dissertation examines three aspects of that restructuring process. First chapter of my dissertation investigates the impacts of divestitures of generation, an important part of the process of restructuring, on the efficiency of distribution systems. We find that while all divestitures as a group do not significantly affect distribution efficiency, those mandated by state public utility commissions have resulted in large and statistically significant adverse effects on distribution efficiency. Second chapter of my dissertation explores whether independent system operator (ISO) formation in New York has led to operating efficiencies at the unit and the system level. ISOs oversee the centralized management of the grid and the energy market and are expected to promote more efficient power generation. We test these efficiencies focusing on the generation units in New York ISO region from 1998 to 2004 and find that the NYISO formation has introduced limited efficiencies at the unit and the system level. Restructuring in the electricity industry has spawned a new wave of mergers, both raising questions and providing opportunities to examine these mergers. Third chapter of my dissertation investigates the drivers of electric utility mergers consummated between 1992 and 2004. My results provide support for disturbance theory of mergers, size hypothesis, and inefficient management hypothesis as drivers of electric utility mergers. I also find that the adjacency of the service territories is the most noteworthy determinant of the pairings between IOUs.

  3. Distributed Economic Dispatch in Microgrids Based on Cooperative Reinforcement Learning.

    PubMed

    Liu, Weirong; Zhuang, Peng; Liang, Hao; Peng, Jun; Huang, Zhiwu; Weirong Liu; Peng Zhuang; Hao Liang; Jun Peng; Zhiwu Huang; Liu, Weirong; Liang, Hao; Peng, Jun; Zhuang, Peng; Huang, Zhiwu

    2018-06-01

    Microgrids incorporated with distributed generation (DG) units and energy storage (ES) devices are expected to play more and more important roles in the future power systems. Yet, achieving efficient distributed economic dispatch in microgrids is a challenging issue due to the randomness and nonlinear characteristics of DG units and loads. This paper proposes a cooperative reinforcement learning algorithm for distributed economic dispatch in microgrids. Utilizing the learning algorithm can avoid the difficulty of stochastic modeling and high computational complexity. In the cooperative reinforcement learning algorithm, the function approximation is leveraged to deal with the large and continuous state spaces. And a diffusion strategy is incorporated to coordinate the actions of DG units and ES devices. Based on the proposed algorithm, each node in microgrids only needs to communicate with its local neighbors, without relying on any centralized controllers. Algorithm convergence is analyzed, and simulations based on real-world meteorological and load data are conducted to validate the performance of the proposed algorithm.

  4. A Method to Formulate the Unit Cell for Density Functional Theory (DFT) Calculations of the Electronic Band Structure of Heterostructures of Two-dimensional Nanosheets

    DTIC Science & Technology

    2015-04-01

    distribution is unlimited. i CONTENTS Page Introduction 1 Two-dimensional Material Geometry and Analogs with Close-packed Systems 1 Matching... System Lattice Vectors: An Optimization Problem 1 Generating the System Unit Cell 3 Transition Metal Dichalcogenides (TMDCS) with Mismatched... system being analyzed. The creation of a unit cell that accurately describes the system remains one of the largest challenges for DFT calculations

  5. Modeling nurses' attitude toward using automated unit-based medication storage and distribution systems: an extension of the technology acceptance model.

    PubMed

    Escobar-Rodríguez, Tomás; Romero-Alonso, María Mercedes

    2013-05-01

    This article analyzes the attitude of nurses toward the use of automated unit-based medication storage and distribution systems and identifies influencing factors. Understanding these factors provides an opportunity to explore actions that might be taken to boost adoption by potential users. The theoretical grounding for this research is the Technology Acceptance Model. The Technology Acceptance Model specifies the causal relationships between perceived usefulness, perceived ease of use, attitude toward using, and actual usage behavior. The research model has six constructs, and nine hypotheses were generated from connections between these six constructs. These constructs include perceived risks, experience level, and training. The findings indicate that these three external variables are related to the perceived ease of use and perceived usefulness of automated unit-based medication storage and distribution systems, and therefore, they have a significant influence on attitude toward the use of these systems.

  6. Compensation for Distributed Solar. A Survey of Options to Preserve Stakeholder Value

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flores-Espino, Francisco

    2015-09-01

    Compensation mechanisms for electricity generation systems installed behind the meter are under scrutiny in several jurisdictions in the United States. Legislators in 29 states introduced bills to amend net metering provisions in 2014, and in 33 states in the 2015 legislative session as of August 20, 2015. Some utilities have also sought to increase the revenue they receive from net-metered customers through rate redesign. The circumstances that have triggered the recent push for change include a growing percentage of net-metered customers, potential effects of distributed generation on cost allocation, decreasing photovoltaic (PV) system costs, the challenges of integrating high levelsmore » of solar generation in the distribution network, and increasing pressure on utility business models. This report presents a survey of options to charge and compensate PV customers, as well as options that may preserve utility revenues in scenarios with increased DG. These options could be used as building blocks to create a distributed generation (DG) compensation policy that may preserve the value of the different stakeholders and balance their interests.« less

  7. Distributed Energy Planning for Climate Resilience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stout, Sherry R; Hotchkiss, Elizabeth L; Day, Megan H

    At various levels of government across the United States and globally climate resilient solutions are being adopted and implemented. Solutions vary based on predicted hazards, community context, priorities, complexity, and available resources. Lessons are being learned through the implementation process, which can be replicated regardless of level or type of government entity carrying out the resiliency planning. Through a number of analyses and technical support across the world, NREL has learned key lessons related to resilience planning associated with power generation and water distribution. Distributed energy generation is a large factor in building resilience with clean energy technologies and solutions.more » The technical and policy solutions associated with distributed energy implementation for resilience fall into a few major categories, including spatial diversification, microgrids, water-energy nexus, policy, and redundancy.« less

  8. Wind Curtailment and the Value of Transmission under a 2050 Wind Vision

    Science.gov Websites

    dispatches each generating unit in the geographical footprint in the least- cost method based on many inputs just as the Wind Vision study did, in a somewhat different geographical distribution due to data distributed fairly well throughout the western U.S. The map shows kind of a different story. The map shows

  9. Temperature-dependent development, cold tolerance, and potential distribution of Cricotopus lebetis (Diptera: Chironomidae), a tip miner of Hydrilla verticillata (Hydrocharitaceae).

    PubMed

    Stratman, Karen N; Overholt, William A; Cuda, James P; Mukherjee, A; Diaz, R; Netherland, Michael D; Wilson, Patrick C

    2014-10-15

    A chironomid midge, Cricotopus lebetis (Sublette) (Diptera: Chironomidae), was discovered attacking the apical meristems of Hydrilla verticillata (L.f. Royle) in Crystal River, Citrus Co., Florida in 1992. The larvae mine the stems of H. verticillata and cause basal branching and stunting of the plant. Temperature-dependent development, cold tolerance, and the potential distribution of the midge were investigated. The results of the temperature-dependent development study showed that optimal temperatures for larval development were between 20 and 30°C, and these data were used to construct a map of the potential number of generations per year of C. lebetis in Florida. Data from the cold tolerance study, in conjunction with historical weather data, were used to generate a predicted distribution of C. lebetis in the United States. A distribution was also predicted using an ecological niche modeling approach by characterizing the climate at locations where C. lebetis is known to occur and then finding other locations with similar climate. The distributions predicted using the two modeling approaches were not significantly different and suggested that much of the southeastern United States was climatically suitable for C. lebetis. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  10. Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florita, A.; Hodge, B. M.; Milligan, M.

    2012-08-01

    The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites andmore » for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.« less

  11. Intense generation of respirable metal nanoparticles from a low-power soldering unit.

    PubMed

    Gómez, Virginia; Irusta, Silvia; Balas, Francisco; Santamaria, Jesus

    2013-07-15

    Evidence of intense nanoparticle generation from a low power (45W) flux soldering unit is presented. This is a familiar device often used in daily life, including home repairs and school electronic laboratories. We demonstrate that metal-containing nanoparticles may reach high concentrations (ca. 10(6) particles/cm(3)) within the breathing range of the operator, with initial size distributions centered at 35-60nm The morphological and chemical analysis of nanoparticle agglomerates collected on TEM grids and filters confirms their multiparticle structure and the presence of metals. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Estimation of synthetic flood design hydrographs using a distributed rainfall-runoff model coupled with a copula-based single storm rainfall generator

    NASA Astrophysics Data System (ADS)

    Candela, A.; Brigandì, G.; Aronica, G. T.

    2014-07-01

    In this paper a procedure to derive synthetic flood design hydrographs (SFDH) using a bivariate representation of rainfall forcing (rainfall duration and intensity) via copulas, which describes and models the correlation between two variables independently of the marginal laws involved, coupled with a distributed rainfall-runoff model, is presented. Rainfall-runoff modelling (R-R modelling) for estimating the hydrological response at the outlet of a catchment was performed by using a conceptual fully distributed procedure based on the Soil Conservation Service - Curve Number method as an excess rainfall model and on a distributed unit hydrograph with climatic dependencies for the flow routing. Travel time computation, based on the distributed unit hydrograph definition, was performed by implementing a procedure based on flow paths, determined from a digital elevation model (DEM) and roughness parameters obtained from distributed geographical information. In order to estimate the primary return period of the SFDH, which provides the probability of occurrence of a hydrograph flood, peaks and flow volumes obtained through R-R modelling were treated statistically using copulas. Finally, the shapes of hydrographs have been generated on the basis of historically significant flood events, via cluster analysis. An application of the procedure described above has been carried out and results presented for the case study of the Imera catchment in Sicily, Italy.

  13. Spatial Burnout in Water Reactors with Nonuniform Startup Distributions of Uranium and Boron

    NASA Technical Reports Server (NTRS)

    Fox, Thomas A.; Bogart, Donald

    1955-01-01

    Spatial burnout calculations have been made of two types of water moderated cylindrical reactor using boron as a burnable poison to increase reactor life. Specific reactors studied were a version of the Submarine Advanced Reactor (sAR) and a supercritical water reactor (SCW) . Burnout characteristics such as reactivity excursion, neutron-flux and heat-generation distributions, and uranium and boron distributions have been determined for core lives corresponding to a burnup of approximately 7 kilograms of fully enriched uranium. All reactivity calculations have been based on the actual nonuniform distribution of absorbers existing during intervals of core life. Spatial burnout of uranium and boron and spatial build-up of fission products and equilibrium xenon have been- considered. Calculations were performed on the NACA nuclear reactor simulator using two-group diff'usion theory. The following reactor burnout characteristics have been demonstrated: 1. A significantly lower excursion in reactivity during core life may be obtained by nonuniform rather than uniform startup distribution of uranium. Results for SCW with uranium distributed to provide constant radial heat generation and a core life corresponding to a uranium burnup of 7 kilograms indicated a maximum excursion in reactivity of 2.5 percent. This compared to a maximum excursion of 4.2 percent obtained for the same core life when w'anium was uniformly distributed at startup. Boron was incorporated uniformly in these cores at startup. 2. It is possible to approach constant radial heat generation during the life of a cylindrical core by means of startup nonuniform radial and axial distributions of uranium and boron. Results for SCW with nonuniform radial distribution of uranium to provide constant radial heat generation at startup and with boron for longevity indicate relatively small departures from the initially constant radial heat generation distribution during core life. Results for SAR with a sinusoidal distribution rather than uniform axial distributions of boron indicate significant improvements in axial heat generation distribution during the greater part of core life. 3. Uranium investments for cylindrical reactors with nonuniform radial uranium distributions which provide constant radial heat generation per unit core volume are somewhat higher than for reactors with uniform uranium concentration at startup. On the other hand, uranium investments for reactors with axial boron distributions which approach constant axial heat generation are somewhat smaller than for reactors with uniform boron distributions at startup.

  14. KSC-98pc150

    NASA Image and Video Library

    1998-01-14

    The Photovoltaic Module 1 Integrated Equipment Assembly (IEA) is moved through Kennedy Space Center’s Space Station Processing Facility (SSPF) toward the workstand where it will be processed for flight on STS-97, scheduled for launch in April 1999. The IEA is one of four integral units designed to generate, distribute, and store power for the International Space Station. It will carry solar arrays, power storage batteries, power control units, and a thermal control system. The 16-foot-long, 16,850-pound unit is now undergoing preflight preparations in the SSPF

  15. KSC-98pc154

    NASA Image and Video Library

    1998-01-14

    The Photovoltaic Module 1 Integrated Equipment Assembly (IEA) is lowered into its workstand at Kennedy Space Center’s Space Station Processing Facility (SSPF), where it will be processed for flight on STS-97, scheduled for launch in April 1999. The IEA is one of four integral units designed to generate, distribute, and store power for the International Space Station. It will carry solar arrays, power storage batteries, power control units, and a thermal control system. The 16-foot-long, 16,850-pound unit is now undergoing preflight preparations in the SSPF

  16. Integrated quantum key distribution sender unit for daily-life implementations

    NASA Astrophysics Data System (ADS)

    Mélen, Gwenaelle; Vogl, Tobias; Rau, Markus; Corrielli, Giacomo; Crespi, Andrea; Osellame, Roberto; Weinfurter, Harald

    2016-03-01

    Unlike currently implemented encryption schemes, Quantum Key Distribution provides a secure way of generating and distributing a key among two parties. Although a multitude of research platforms has been developed, the integration of QKD units within classical communication systems remains a tremendous challenge. The recently achieved maturity of integrated photonic technologies could be exploited to create miniature QKD add-ons that could extend the primary function of various existing systems such as mobile devices or optical stations. In this work we report on an integrated optics module enabling secure short-distance communication for, e.g., quantum access schemes. Using BB84-like protocols, Alice's mobile low-cost device can exchange secure key and information everywhere within a trusted node network. The new optics platform (35×20×8mm) compatible with current smartphone's technology generates NIR faint polarised laser pulses with 100MHz repetition rate. Fully automated beam tracking and live basis-alignment on Bob's side ensure user-friendly operation with a quantum link efficiency as high as 50% stable over a few seconds.

  17. Numerical Simulation and Analyses of the Loss of Feedwater Transient at the Unit 4 of Kola NPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevanovic, Vladimir D.; Stosic, Zoran V.; Kiera, Michael

    2002-07-01

    A three-dimensional numerical simulation of the loss-of-feed water transient at the horizontal steam generator of the Kola nuclear power plant is performed. Presented numerical results show transient change of integral steam generator parameters, such as steam generation rate, water mass inventory, outlet reactor coolant temperature, as well as detailed distribution of shell side thermal-hydraulic parameters: swell and collapsed levels, void fraction distributions, mass flux vectors, etc. Numerical results are compared with measurements at the Kola NPP. The agreement is satisfactory, while differences are close to or below the measurement uncertainties. Obtained numerical results are the first ones that give completemore » insight into the three-dimensional and transient horizontal steam generator thermal-hydraulics. Also, the presented results serve as benchmark tests for the assessment and further improvement of one-dimensional models of horizontal steam generator built with safety codes. (authors)« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siddiqui, Afzal; Marnay, Chris

    This paper examines a California-based microgrid s decision to invest in a distributed generation (DG) unit that operates on natural gas. While the long-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find natural gas generating cost thresholds that trigger DG investment. Furthermore, the consideration of operational flexibility by the microgrid accelerates DG investment, while the option to disconnect entirely from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an investmentmore » threshold boundary and find that high electricity price volatility relative to that of natural gas generating cost delays investment while simultaneously increasing the value of the investment. We conclude by using this result to find the implicit option value of the DG unit.« less

  19. Online Optimization Method for Operation of Generators in a Micro Grid

    NASA Astrophysics Data System (ADS)

    Hayashi, Yasuhiro; Miyamoto, Hideki; Matsuki, Junya; Iizuka, Toshio; Azuma, Hitoshi

    Recently a lot of studies and developments about distributed generator such as photovoltaic generation system, wind turbine generation system and fuel cell have been performed under the background of the global environment issues and deregulation of the electricity market, and the technique of these distributed generators have progressed. Especially, micro grid which consists of several distributed generators, loads and storage battery is expected as one of the new operation system of distributed generator. However, since precipitous load fluctuation occurs in micro grid for the reason of its smaller capacity compared with conventional power system, high-accuracy load forecasting and control scheme to balance of supply and demand are needed. Namely, it is necessary to improve the precision of operation in micro grid by observing load fluctuation and correcting start-stop schedule and output of generators online. But it is not easy to determine the operation schedule of each generator in short time, because the problem to determine start-up, shut-down and output of each generator in micro grid is a mixed integer programming problem. In this paper, the authors propose an online optimization method for the optimal operation schedule of generators in micro grid. The proposed method is based on enumeration method and particle swarm optimization (PSO). In the proposed method, after picking up all unit commitment patterns of each generators satisfied with minimum up time and minimum down time constraint by using enumeration method, optimal schedule and output of generators are determined under the other operational constraints by using PSO. Numerical simulation is carried out for a micro grid model with five generators and photovoltaic generation system in order to examine the validity of the proposed method.

  20. Universal Stationary/Mobile NoFoam Unit (USNOFU) for Aircraft Rescue and Fire Fighting (ARFF) Vehicles

    DTIC Science & Technology

    2004-01-01

    AFFF aqueous film forming foam AFRL Air Force Research Laboratory ARFF Aircraft Rescue and...distribution system checks use a fire-fighting agent called aqueous film forming foam ( AFFF ) and generate significant amounts of AFFF wastewater. Despite its...but it has been classified as persistent, bioaccumulative, and toxic (PBT). As a result, the AFFF wastewater resulting from foam distribution

  1. Transverse circular-polarized Bessel beam generation by inward cylindrical aperture distribution.

    PubMed

    Pavone, S C; Ettorre, M; Casaletti, M; Albani, M

    2016-05-16

    In this paper the focusing capability of a radiating aperture implementing an inward cylindrical traveling wave tangential electric field distribution directed along a fixed polarization unit vector is investigated. In particular, it is shown that such an aperture distribution generates a non-diffractive Bessel beam whose transverse component (with respect to the normal of the radiating aperture) of the electric field takes the form of a zero-th order Bessel function. As a practical implementation of the theoretical analysis, a circular-polarized Bessel beam launcher, made by a radial parallel plate waveguide loaded with several slot pairs, arranged on a spiral pattern, is designed and optimized. The proposed launcher performance agrees with the theoretical model and exhibits an excellent polarization purity.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudson, C.R.

    Industrial consumers of energy now have the opportunity to participate directly in electricity generation. This report seeks to give the reader (1) insights into the various types of generation services that distributed generation (DG) units could provide, (2) a mechanism to evaluate the economics of using DG, (3) an overview of the status of DG deployment in selected states, and (4) a summary of the communication technologies involved with DG and what testing activities are needed to encourage industrial application of DG. Section 1 provides details on electricity markets and the types of services that can be offered. Subsequent sectionsmore » in the report address the technical requirements for participating in such markets, the economic decision process that an industrial energy user should go through in evaluating distributed generation, the status of current deployment efforts, and the requirements for test-bed or field demonstration projects.« less

  3. 76 FR 39091 - San Luis Obispo Flood Control and Water Conservation District; Notice of Effectiveness of Surrender

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... Water Treatment Plant Hydropower Generation Unit Project No. 4804. The project was located on the county's water distribution system in San Luis Obispo County, California. \\1\\ San Luis Obispo Flood Control...

  4. 75 FR 34421 - Notice of Funds Availability for Section 514 Farm Labor Housing Loans and Section 516 Farm Labor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... units for domestic farm laborers. This notice describes the method used to distribute funds, the... regarding Net Zero Energy Consumption and Energy Generation please contact Meghan Walsh, National Office...

  5. 'Renewables-Friendly' Grid Development Strategies: Experience in the United States, Potential Lessons for China (Chinese Translation) (in Chinese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurlbut, David; Zhou, Ella; Porter, Kevin

    2015-10-03

    This is a Chinese translation of NREL/TP-6A20-64940. This report aims to help China's reform effort by providing a concise summary of experience in the United States with 'renewables-friendly' grid management, focusing on experiences that might be applicable to China. It focuses on utility-scale renewables and sets aside issues related to distributed generation.

  6. A modelling study of hyporheic exchange pattern and the sequence, size, and spacing of stream bedforms in mountain stream networks, Oregon, USA.

    Treesearch

    Michael N. Gooseff; Justin K. Anderson; Steven M. Wondzell; Justin LaNier; Roy Haggerty

    2005-01-01

    Studies of hyporheic exchange flows have identified physical features of channels that control exchange flow at the channel unit scale, namely slope breaks in the longitudinal profile of streams that generate subsurface head distributions. We recently completed a field study that suggested channel unit spacing in stream longitudinal profiles can be used to predict the...

  7. Distributed Generators Allocation in Radial Distribution Systems with Load Growth using Loss Sensitivity Approach

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwani; Vijay Babu, P.; Murty, V. V. S. N.

    2017-06-01

    Rapidly increasing electricity demands and capacity shortage of transmission and distribution facilities are the main driving forces for the growth of distributed generation (DG) integration in power grids. One of the reasons for choosing a DG is its ability to support voltage in a distribution system. Selection of effective DG characteristics and DG parameters is a significant concern of distribution system planners to obtain maximum potential benefits from the DG unit. The objective of the paper is to reduce the power losses and improve the voltage profile of the radial distribution system with optimal allocation of the multiple DG in the system. The main contribution in this paper is (i) combined power loss sensitivity (CPLS) based method for multiple DG locations, (ii) determination of optimal sizes for multiple DG units at unity and lagging power factor, (iii) impact of DG installed at optimal, that is, combined load power factor on the system performance, (iv) impact of load growth on optimal DG planning, (v) Impact of DG integration in distribution systems on voltage stability index, (vi) Economic and technical Impact of DG integration in the distribution systems. The load growth factor has been considered in the study which is essential for planning and expansion of the existing systems. The technical and economic aspects are investigated in terms of improvement in voltage profile, reduction in total power losses, cost of energy loss, cost of power obtained from DG, cost of power intake from the substation, and savings in cost of energy loss. The results are obtained on IEEE 69-bus radial distribution systems and also compared with other existing methods.

  8. Ultracapacitors for fuel saving in small size hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Solero, L.; Lidozzi, A.; Serrao, V.; Martellucci, L.; Rossi, E.

    The main purpose of the paper is to describe a small size hybrid vehicle having ultracapacitors as on-board storage unit. The vehicle on-board main power supply is achieved by a genset being formed of a 250 cm 3 internal combustion engine and a permanent magnet synchronous electric generator, whereas 4 16V-500F ultracapacitors modules are connected in series in order to supply as well as to store the power peaks during respectively acceleration and braking vehicle modes of operation. The traction power is provided by a permanent magnet synchronous electric motor, whereas a distributed power electronic interface is in charge of all the required electronic conversions as well of controlling the operating conditions for each power unit. The paper discusses the implemented control strategy and shows experimental results on the modes of operation of both generation unit and storage unit.

  9. Distribution and abundance of snowy plovers in eastern North America, the Caribbean, and the Bahamas

    USGS Publications Warehouse

    Gorman, Leah; Haig, Susan M.

    2002-01-01

    Snowy Plovers (Charadrius alexandrinus) are small, partially migrant shorebirds that are broadly distributed across North America. Snowy Plover distribution west of the Rocky Mountains has been well described. However, distribution and abundance east of the Rocky Mountains has not received much attention despite current status and ESA listing concerns for Snowy Plovers in the southeastern United States and the Caribbean. Thus, a first step in developing a monitoring program for Snowy Plovers is to understand the species' distribution. We summarize information on distribution and abundance of Snowy Plovers in the eastern United States, Caribbean, and Bahamas. Breeding and winter distribution maps for the continental United States were generated from a database of 3563 records from 388 sites in continental North America constructed from International Shorebird Survey (ISS), Christmas Bird Count (CBC), unpublished field data, and published accounts. Comparison of maximum counts per site (1980–present) indicated the number of breeding Snowy Plovers was greatest in Kansas and Oklahoma, while the greatest number of wintering birds occurred in the Laguna Madre of Texas and Mexico. Snowy Plovers concentrate at sites in Oklahoma and Texas during migration, with higher concentrations on the upper Texas coast in spring compared to fall migration. Data regarding historic abundance and trends are limited but suggest that Snowy Plovers in the eastern United States may have experienced regional population declines and may have suffered a range contraction in Texas. Serious concerns about the conservation status of Snowy Plovers in the eastern United States, the Caribbean, and the Bahamas indicate an immediate need for systematic surveys and up-to-date population estimates.

  10. The Generation Rate of Respirable Dust from Cutting Fiber Cement Siding Using Different Tools

    PubMed Central

    Qi, Chaolong; Echt, Alan; Gressel, Michael G

    2017-01-01

    This article describes the evaluation of the generation rate of respirable dust (GAPS, defined as the mass of respirable dust generated per unit linear length cut) from cutting fiber cement siding using different tools in a laboratory testing system. We used an aerodynamic particle sizer spectrometer (APS) to continuously monitor the real-time size distributions of the dust throughout cutting tests when using a variety of tools, and calculated the generation rate of respirable dust for each testing condition using the size distribution data. The test result verifies that power shears provided an almost dust-free operation with a GAPS of 0.006 gram meter−1 (g m−1) at the testing condition. For the same power saws, the cuts using saw blades with more teeth generated more respirable dusts. Using the same blade for all four miter saws tested in this study, a positive linear correlation was found between the saws’ blade rotating speed and its dust generation rate. In addition, a circular saw running at the highest blade rotating speed of 9068 RPM generated the greatest amount of dust. All the miter saws generated less dust in the ‘chopping mode’ than in the ‘chopping and sliding’ mode. For the tested saws, GAPS consistently decreased with the increases of the saw cutting feed rate and the number of board in the stack. All the test results point out that fewer cutting interactions between the saw blade’s teeth and the siding board for a unit linear length of cut tend to result in a lower generation rate of respirable dust. These results may help guide optimal operation in practice and future tool development aimed at minimizing dust generation while producing a satisfactory cut. PMID:28395343

  11. The Generation Rate of Respirable Dust from Cutting Fiber Cement Siding Using Different Tools.

    PubMed

    Qi, Chaolong; Echt, Alan; Gressel, Michael G

    2017-03-01

    This article describes the evaluation of the generation rate of respirable dust (GAPS, defined as the mass of respirable dust generated per unit linear length cut) from cutting fiber cement siding using different tools in a laboratory testing system. We used an aerodynamic particle sizer spectrometer (APS) to continuously monitor the real-time size distributions of the dust throughout cutting tests when using a variety of tools, and calculated the generation rate of respirable dust for each testing condition using the size distribution data. The test result verifies that power shears provided an almost dust-free operation with a GAPS of 0.006 g m-1 at the testing condition. For the same power saws, the cuts using saw blades with more teeth generated more respirable dusts. Using the same blade for all four miter saws tested in this study, a positive linear correlation was found between the saws' blade rotating speed and its dust generation rate. In addition, a circular saw running at the highest blade rotating speed of 9068 rpm generated the greatest amount of dust. All the miter saws generated less dust in the 'chopping mode' than in the 'chopping and sliding' mode. For the tested saws, GAPS consistently decreased with the increases of the saw cutting feed rate and the number of board in the stack. All the test results point out that fewer cutting interactions between the saw blade's teeth and the siding board for a unit linear length of cut tend to result in a lower generation rate of respirable dust. These results may help guide optimal operation in practice and future tool development aimed at minimizing dust generation while producing a satisfactory cut. Published by Oxford University Press on behalf of The British Occupational Hygiene Society 2017.

  12. The impact of electric vehicles on the outlook of future energy system

    NASA Astrophysics Data System (ADS)

    Zhuk, A.; Buzoverov, E.

    2018-02-01

    Active promotion of electric vehicles (EVs) and technology of fast EV charging in the medium term may cause significant peak loads on the energy system, what necessitates making strategic decisions related to the development of generating capacities, distribution networks with EV charging infrastructure, and priorities in the development of battery electric vehicles and vehicles with electrochemical generators. The paper analyses one of the most significant aspects of joint development of electric transport system and energy system in the conditions of substantial growth of energy consumption by EVs. The assessments of per-unit-costs of operation and depreciation of EV power unit were made, taking into consideration the expenses of electric power supply. The calculations show that the choice of electricity buffering method for EV fast charging depends on the character of electricity infrastructure in the region where the electric transport is operating. In the conditions of high density of electricity network and a large number of EVs, the stationary storage facilities or the technology of distributed energy storage in EV batteries - vehicle-to-grid (V2G) technology may be used for buffering. In the conditions of low density and low capacity of electricity networks, the most economical solution could be usage of EVs with traction power units based on the combination of air-aluminum electrochemical generator and a buffer battery of small capacity.

  13. Copilot: Monitoring Embedded Systems

    NASA Technical Reports Server (NTRS)

    Pike, Lee; Wegmann, Nis; Niller, Sebastian; Goodloe, Alwyn

    2012-01-01

    Runtime verification (RV) is a natural fit for ultra-critical systems, where correctness is imperative. In ultra-critical systems, even if the software is fault-free, because of the inherent unreliability of commodity hardware and the adversity of operational environments, processing units (and their hosted software) are replicated, and fault-tolerant algorithms are used to compare the outputs. We investigate both software monitoring in distributed fault-tolerant systems, as well as implementing fault-tolerance mechanisms using RV techniques. We describe the Copilot language and compiler, specifically designed for generating monitors for distributed, hard real-time systems. We also describe two case-studies in which we generated Copilot monitors in avionics systems.

  14. Distributed photovoltaic system impact upon utility load/supply management practices

    NASA Astrophysics Data System (ADS)

    Vachtsevanos, G. J.; Meliopoulos, A. P.; Paraskevopoulos, B. K.

    A methodology is described for simulation of the economic and technical factors of photovoltaic (PV) installations interfacing with utility load/management operations. A probabalistic technique is used to model the expected demand, reliability of the generating units, costs and profits from each unit, expected unserviced energy, and the loss of load probability. The available power from PV arrays is treated stochastically with statistical weighting on the basis of site meteorological data. The goal is to include the PV power while minimizing operational costs, taking into account the level of penetration of the total PV output. Two sample simulations for a utility with a diverse generating mix demonstrate that overall costs would decrease in both cases with PVs on-line through the emphasis on cheaper-fueled generators and peak-load shaving when possible.

  15. Generation of flat wideband chaos with suppressed time delay signature by using optical time lens.

    PubMed

    Jiang, Ning; Wang, Chao; Xue, Chenpeng; Li, Guilan; Lin, Shuqing; Qiu, Kun

    2017-06-26

    We propose a flat wideband chaos generation scheme that shows excellent time delay signature suppression effect, by injecting the chaotic output of general external cavity semiconductor laser into an optical time lens module composed of a phase modulator and two dispersive units. The numerical results demonstrate that by properly setting the parameters of the driving signal of phase modulator and the accumulated dispersion of dispersive units, the relaxation oscillation in chaos can be eliminated, wideband chaos generation with an efficient bandwidth up to several tens of GHz can be achieved, and the RF spectrum of generated chaotic signal is nearly as flat as uniform distribution. Moreover, the periodicity of chaos induced by the external cavity modes can be simultaneously destructed by the optical time lens module, based on this the time delay signature can be completely suppressed.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marnay, Chris; Siddiqui, Afzal; Marnay, Chris

    This paper examines a California-based microgrid?s decision to invest in a distributed generation (DG) unit fuelled by natural gas. While the long-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find a natural gas generation cost threshold that triggers DG investment. Furthermore, the consideration of operational flexibility by the microgrid increases DG investment, while the option to disconnect from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an investment threshold boundarymore » and find that high electricity price volatility relative to that of natural gas generation cost delays investment while simultaneously increasing the value of the investment. We conclude by using this result to find the implicit option value of the DG unit when two sources of uncertainty exist.« less

  17. Small gas-turbine units for the power industry: Ways for improving the efficiency and the scale of implementation

    NASA Astrophysics Data System (ADS)

    Kosoi, A. S.; Popel', O. S.; Beschastnykh, V. N.; Zeigarnik, Yu. A.; Sinkevich, M. V.

    2017-10-01

    Small power units (<1 MW) see increasing application due to enhanced growth of the distributed power generation and smart power supply systems. They are usually used for feeding facilities whose connection to centralized networks involves certain problems of engineering or economical nature. Small power generation is based on a wide range of processes and primary sources, including renewable and local ones, such as nonconventional hydrocarbon fuel comprising associated gas, biogas, coalmine methane, etc. Characteristics of small gas-turbine units (GTU) that are most widely available on the world market are reviewed. The most promising lines for the development of the new generation of small GTUs are examined. Special emphasis is placed on the three lines selected for improving the efficiency of small GTUs: increasing the fuel efficiency, cutting down the maintenance cost, and integration with local or renewable power sources. It is demonstrated that, as to the specific fuel consumption, small GTUs of the new generation can have an efficiency 20-25% higher than those of the previous generation, require no maintenance between overhauls, and can be capable of efficient integration into intelligent electrical networks with power facilities operating on renewable or local power sources.

  18. Estimating municipal solid waste generation by different activities and various resident groups: a case study of Beijing.

    PubMed

    Li, Zhen-shan; Fu, Hui-zhen; Qu, Xiao-yan

    2011-09-15

    Reliable and accurate determinations of the quantities and composition of wastes is required for the planning of municipal solid waste (MSW) management systems. A model, based on the interrelationships of expenditure on consumer goods, time distribution, daily activities, residents groups, and waste generation, was developed and employed to estimate MSW generation by different activities and resident groups in Beijing. The principle is that MSW is produced by consumption of consumer goods by residents in their daily activities: 'Maintenance' (meeting the basic needs of food, housing and personal care), 'Subsistence' (providing the financial requirements) and 'Leisure' (social and recreational pursuits) activities. Three series of important parameters - waste generation per unit of consumer expenditure, consumer expenditure distribution to activities in unit time, and time assignment to activities by different resident groups - were determined using a statistical analysis, a sampling survey and the Analytic Hierarchy Process, respectively. Data for analysis were obtained from the Beijing Statistical Yearbook (2004-2008) and questionnaire survey. The results reveal that 'Maintenance' activity produced the most MSW, distantly followed by 'Leisure' and 'Subsistence' activities. In 2008, in descending order of MSW generation the different resident groups were floating population, non-civil servants, retired people, civil servants, college students (including both undergraduates and graduates), primary and secondary students, and preschoolers. The new estimation model, which was successful in fitting waste generation by different activities and resident groups over the investigated years, was amenable to MSW prediction. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. KSC-98pc155

    NASA Image and Video Library

    1998-01-14

    The Photovoltaic Module 1 Integrated Equipment Assembly (IEA) is lifted from its container in Kennedy Space Center’s Space Station Processing Facility (SSPF) before it is moved into its workstand, where it will be processed for flight on STS-97, scheduled for launch in April 1999. The IEA is one of four integral units designed to generate, distribute, and store power for the International Space Station. It will carry solar arrays, power storage batteries, power control units, and a thermal control system. The 16-foot-long, 16,850-pound unit is now undergoing preflight preparations in the SSPF

  20. KSC-98pc153

    NASA Image and Video Library

    1998-01-14

    Workers in Kennedy Space Center’s Space Station Processing Facility (SSPF) observe the Photovoltaic Module 1 Integrated Equipment Assembly (IEA) as it moves past them on its way to its workstand, where it will be processed for flight on STS-97, scheduled for launch in April 1999. The IEA is one of four integral units designed to generate, distribute, and store power for the International Space Station. It will carry solar arrays, power storage batteries, power control units, and a thermal control system. The 16-foot-long, 16,850-pound unit is now undergoing preflight preparations in the SSPF

  1. KSC-98pc151

    NASA Image and Video Library

    1998-01-14

    The Photovoltaic Module 1 Integrated Equipment Assembly (IEA) is moved past a Pressurized Mating Adapter in Kennedy Space Center’s Space Station Processing Facility (SSPF) toward the workstand where it will be processed for flight on STS-97, scheduled for launch in April 1999. The IEA is one of four integral units designed to generate, distribute, and store power for the International Space Station. It will carry solar arrays, power storage batteries, power control units, and a thermal control system. The 16-foot-long, 16,850-pound unit is now undergoing preflight preparations in the SSPF

  2. Assessment of undiscovered hydrocarbon resources of sub-Saharan Africa

    USGS Publications Warehouse

    Brownfield, Michael E.

    2016-01-01

    The assessment was geology-based and used the total petroleum system (TPS) concept. The geologic elements of a TPS are hydrocarbon source rocks (source rock maturation and hydrocarbon generation and migration), reservoir rocks (quality and distribution), and traps where hydrocarbon accumulates. Using these geologic criteria, 16 conventional total petroleum systems and 18 assessment units in the 13 provinces were defined. The undiscovered, technically recoverable oil and gas resources were assessed for all assessment units.

  3. Flooding and Atmospheric Rivers across the Western United States

    NASA Astrophysics Data System (ADS)

    Villarini, G.; Barth, N. A.; White, K. D.

    2017-12-01

    Flood frequency analysis across the western United States is complicated by annual peak flow records that frequently contain flows generated from distinctly different flood generating mechanisms. Among the different flood agents, atmospheric rivers (ARs) are responsible for large, regional scale floods. USGS streamgaging stations in the central Columbia River Basin in the Pacific Northwest, the Sierra Nevada, the central and southern California coast, and central Arizona show a mixture of 30-70% AR-generated flood peaks among the complete period of record. Bulletin17B and its proposed update (Draft Bulletin 17C) continue to recognize difficulties in determining flood frequency estimates among streamflow records that contain flood peaks coming from different flood-generating mechanisms, as is the case in the western United States. They recommend developing separate frequency curves when the hydrometeorologic mechanisms that generated the annual peak flows can be separated into distinct subpopulations. Yet challenges arise when trying to consistently quantify the physical (hydrometeorologic) processes that generated the observed flows, and even more when trying to account for them in flood frequency estimation. This study provides a general statistical framework to perform a process-driven flood frequency analysis using a weighted mixed population approach, highlighting the role that ARs play on the flood peak distribution.

  4. Spatial Distribution of Counties in the Continental United States with Records of Occurrence of Amblyomma americanum (Ixodida: Ixodidae)

    PubMed Central

    SPRINGER, YURI P.; EISEN, LARS; BEATI, LORENZA; JAMES, ANGELA M.; EISEN, REBECCA J.

    2015-01-01

    In addition to being a major nuisance biter, the lone star tick, Amblyomma americanum (L.), is increasingly recognized as an important vector of pathogens affecting humans, domestic animals, and wildlife. Despite its notoriety, efforts have been lacking to define the spatial occurrence of A. americanum in the continental United States with precision beyond that conveyed in continental-scale distribution maps. Here we present a county-level distribution map for A. americanum generated by compiling collection records obtained from a search of the published literature and databases managed by the USDA, U.S. National Tick Collection, and Walter Reed Biosystematics Unit. Our decadal and cumulative maps, which visually summarize 18,121 collections made between 1898 and 2012, show that A. americanum is either established (≥six ticks or ≥two life stages) or reported (

  5. Mass and number size distributions of emitted particulates at five important operation units in a hazardous industrial waste incineration plant.

    PubMed

    Lin, Chi-Chi; Huang, Hsiao-Lin; Hsiao, Wen-Yuan

    2016-01-01

    Past studies indicated particulates generated by waste incineration contain various hazardous compounds. The aerosol characteristics are very important for particulate hazard control and workers' protection. This study explores the detailed characteristics of emitted particulates from each important operation unit in a rotary kiln-based hazardous industrial waste incineration plant. A dust size analyzer (Grimm 1.109) and a scanning mobility particle sizer (SMPS) were used to measure the aerosol mass concentration, mass size distribution, and number size distribution at five operation units (S1-S5) during periods of normal operation, furnace shutdown, and annual maintenance. The place with the highest measured PM10 concentration was located at the area of fly ash discharge from air pollution control equipment (S5) during the period of normal operation. Fine particles (PM2.5) constituted the majority of the emitted particles from the incineration plant. The mass size distributions (elucidated) made it clear that the size of aerosols caused by the increased particulate mass, resulting from work activities, were mostly greater than 1.5 μm. Whereas the number size distributions showed that the major diameters of particulates that caused the increase of particulate number concentrations, from work activities, were distributed in the sub micrometer range. The process of discharging fly ash from air pollution control equipment can significantly increase the emission of nanoparticles. The mass concentrations and size distributions of emitted particulates were different at each operation unit. This information is valuable for managers to take appropriate strategy to reduce the particulate emission and associated worker exposure.

  6. The Oak Ridge Competitive Electricity Dispatch (ORCED) Model Version 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, Stanton W.; Baek, Young Sun

    The Oak Ridge Competitive Electricity Dispatch (ORCED) model dispatches power plants in a region to meet the electricity demands for any single given year up to 2030. It uses publicly available sources of data describing electric power units such as the National Energy Modeling System and hourly demands from utility submittals to the Federal Energy Regulatory Commission that are projected to a future year. The model simulates a single region of the country for a given year, matching generation to demands and predefined net exports from the region, assuming no transmission constraints within the region. ORCED can calculate a numbermore » of key financial and operating parameters for generating units and regional market outputs including average and marginal prices, air emissions, and generation adequacy. By running the model with and without changes such as generation plants, fuel prices, emission costs, plug-in hybrid electric vehicles, distributed generation, or demand response, the marginal impact of these changes can be found.« less

  7. 36 CFR 14.95 - Authority.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... rights-of-way through public lands and certain reservations of the United States, for electrical plants, poles, and lines for the generation and distribution of electrical power, and for telephone and telegraph purposes, and for pipelines, canals, ditches, water plants, and other purposes to the extent of...

  8. Image dissemination and archiving.

    PubMed

    Robertson, Ian

    2007-08-01

    Images generated as part of the sonographic examination are an integral part of the medical record and must be retained according to local regulations. The standard medical image format, known as DICOM (Digital Imaging and COmmunications in Medicine) makes it possible for images from many different imaging modalities, including ultrasound, to be distributed via a standard internet network to distant viewing workstations and a central archive in an almost seamless fashion. The DICOM standard is a truly universal standard for the dissemination of medical images. When purchasing an ultrasound unit, the consumer should research the unit's capacity to generate images in a DICOM format, especially if one wishes interconnectivity with viewing workstations and an image archive that stores other medical images. PACS, an acronym for Picture Archive and Communication System refers to the infrastructure that links modalities, workstations, the image archive, and the medical record information system into an integrated system, allowing for efficient electronic distribution and storage of medical images and access to medical record data.

  9. [System continuity and energy distribution in laser-induced thermo therapy (LITT)].

    PubMed

    Pech, M; Werk, M; Beck, A; Stohlmann, A; Ricke, J

    2002-06-01

    Evaluation of the continuity and energy distribution of a laser system for laser-induced thermo therapy. For evaluation of the continuity of laser optical devices, laser generating units and optical fibers of three different manufactures (Dornier, Hüttinger, Somatex), we used the equipment to generate a laser beam of 25 Watt for 60 minutes. Measurements of the applied energy were done sequentially with two MY Test (Fa. Hüttinger) units. We also performed two in vitro ablations of animal liver tissue with different fiber optics [Mikrodom A 13-0540, Microflexx REF A 13-0561 (Hüttinger), Diffusor-Tip H-6111-T 3, Diffusor H-6111-T 4 (Dornier), Somaflex-Diffusor (Somatex)] over 20 minutes at- an energy flow of 25 J per second. We then evaluated the geometry of coagulation. The different equipment used for our tests showed differences of a maximum of 10 %. Some components did not work properly in certain configurations even though the manufacturer assured it would. We saw significant differences in the ablation characteristics of the different fiber optics, especially in axial and frontal directions. Knowledge of the different characteristics in energy distribution and ablation characteristics are an important factor in performing a successful laser-induced thermo therapy.

  10. Distributed and recoverable digital control system

    NASA Technical Reports Server (NTRS)

    Stange, Kent (Inventor); Hess, Richard (Inventor); Kelley, Gerald B (Inventor); Rogers, Randy (Inventor)

    2010-01-01

    A real-time multi-tasking digital control system with rapid recovery capability is disclosed. The control system includes a plurality of computing units comprising a plurality of redundant processing units, with each of the processing units configured to generate one or more redundant control commands. One or more internal monitors are employed for detecting data errors in the control commands. One or more recovery triggers are provided for initiating rapid recovery of a processing unit if data errors are detected. The control system also includes a plurality of actuator control units each in operative communication with the computing units. The actuator control units are configured to initiate a rapid recovery if data errors are detected in one or more of the processing units. A plurality of smart actuators communicates with the actuator control units, and a plurality of redundant sensors communicates with the computing units.

  11. Spatial distribution of the largest rainfall-runoff floods from basins between 2.6 and 26,000 km2 in the United States and Puerto Rico

    NASA Astrophysics Data System (ADS)

    O'Connor, Jim E.; Costa, John E.

    2004-01-01

    We assess the spatial distribution of the largest rainfall-generated streamflows from a database of 35,663 flow records composed of the largest 10% of annual peak flows from each of 14,815 U.S. Geological Survey stream gaging stations in the United States and Puerto Rico. High unit discharges (peak discharge per unit contributing area) from basins with areas of 2.6 to 26,000 km2 (1-10,000 mi2) are widespread, but streams in Hawaii, Puerto Rico, and Texas together account for more than 50% of the highest unit discharges. The Appalachians and western flanks of Pacific coastal mountain systems are also regions of high unit discharges, as are several areas in the southern Midwest. By contrast, few exceptional discharges have been recorded in the interior West, northern Midwest, and Atlantic Coastal Plain. Most areas of high unit discharges result from the combination of (1) regional atmospheric conditions that produce large precipitation volumes and (2) steep topography, which enhances precipitation by convective and orographic processes and allows flow to be quickly concentrated into stream channels. Within the conterminous United States, the greatest concentration of exceptional unit discharges is at the Balcones Escarpment of central Texas, where maximum U.S. rainfall amounts apparently coincide with appropriate basin physiography to produce many of the largest measured U.S. floods. Flood-related fatalities broadly correspond to the spatial distribution of high unit discharges, with Texas having nearly twice the average annual flood-related fatalities of any other state.

  12. Continued decline in blood collection and transfusion in the United States–2015

    PubMed Central

    Ellingson, Katherine D.; Sapiano, Mathew R. P.; Haass, Kathryn A.; Savinkina, Alexandra A.; Baker, Misha L.; Chung, Koo-Whang; Henry, Richard A.; Berger, James J.; Kuehnert, Matthew J.; Basavaraju, Sridhar V.

    2017-01-01

    BACKGROUND In 2011 and 2013, the National Blood Collection and Utilization Survey (NBCUS) revealed declines in blood collection and transfusion in the United States. The objective of this study was to describe blood services in 2015. STUDY DESIGN AND METHODS The 2015 NBCUS was distributed to all US blood collection centers, all hospitals performing at least 1000 surgeries annually, and a 40% random sample of hospitals performing 100 to 999 surgeries annually. Weighting and imputation were used to generate national estimates for units of blood and components collected, deferred, distributed, transfused, and outdated. RESULTS Response rates for the 2015 NBCUS were 78.4% for blood collection centers and 73.9% for transfusing hospitals. In 2015, 12,591,000 units of red blood cells (RBCs) (95% confidence interval [CI], 11,985,000–13,197,000 units of RBCs) were collected, and 11,349,000 (95% CI, 10,592,000–11,747,000) were transfused, representing declines since 2013 of 11.6% and 13.9%, respectively. Total platelet units distributed (2,436,000; 95% CI, 2,230,000–2,642,000) and transfused (1,983,000; 95% CI, 1,816,000=2,151,000) declined by 0.5% and 13.1%, respectively, since 2013. Plasma distributions (3,714,000; 95% CI, 3,306,000–4,121,000) and transfusions (2,727,000; 95% CI, 2,594,000–2,859,000) in 2015 declined since 2013. The median price paid per unit in 2015—$211 for leukocyte-reduced RBCs, $524 for apheresis platelets, and $54 for fresh frozen plasma—was less for all components than in 2013. CONCLUSIONS The 2015 NBCUS findings suggest that continued declines in demand for blood products resulted in fewer units collected and distributed Maintaining a blood inventory sufficient to meet routine and emergent demands will require further monitoring and understanding of these trends. PMID:28591469

  13. Modeling runoff generation in a small snow-dominated mountainous catchment

    USDA-ARS?s Scientific Manuscript database

    Snowmelt in mountainous areas is an important contributor to river water flows in the western United States. We developed a distributed model that calculates solar radiation, canopy energy balance, surface energy balance, snow pack dynamics, soil water flow, snow–soil–bedrock heat exchange, soil wat...

  14. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, H.; Wang, M.; Elgowainy, A.

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors inmore » the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.« less

  15. Electrostatic precipitator rapping with sonic horns at Atlantic Electric`s B.L. England Generating Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maziarz, M.; Gallo, F.

    1995-12-31

    B.L. England Generating Station (BLE) is located in Beesleys Point, NJ. Beesleys Point is on Great Egg Bay, which is 20 minutes south of Atlantic City and one hour east of Philadelphia. BLE has three generating units: No. 1 is a 120 Megawatt (MW) B&W cyclone boiler; No. 2 is a 160 MW B&W cyclone boiler; & No. 3 is a tangential fired Combustion Engineering boiler. Units 1 & 2 burn medium sulfur eastern bituminous coal. Unit 3 burns No. 6 oil. Units 1&2 are equipped with precipitators (ESPs). The two ESPs were manufactured by Environmental Elements Corp. (EEC) andmore » were placed in service in 1980. Units are dual chamber with each having four mechanical fields and eight electrical fields. Each field has two Transformer/Rectifier (T/R) sets for a total of sixteen per ESP. The ESPs are rigid frame design (Rigitrode by EEC) with hammer & anvil rapping. Ash reinjection systems permit direct or cross reinjection of fly ash. Both ESPs have perforated plates for inlet & outlet gas flow distribution. There are three inlet plates and one outlet plate. The first inlet plates and the outlets are cleaned via electric reciprocating vibrators. There was no means of cleaning the remaining plates provided.« less

  16. Optimal sampling design for estimating spatial distribution and abundance of a freshwater mussel population

    USGS Publications Warehouse

    Pooler, P.S.; Smith, D.R.

    2005-01-01

    We compared the ability of simple random sampling (SRS) and a variety of systematic sampling (SYS) designs to estimate abundance, quantify spatial clustering, and predict spatial distribution of freshwater mussels. Sampling simulations were conducted using data obtained from a census of freshwater mussels in a 40 X 33 m section of the Cacapon River near Capon Bridge, West Virginia, and from a simulated spatially random population generated to have the same abundance as the real population. Sampling units that were 0.25 m 2 gave more accurate and precise abundance estimates and generally better spatial predictions than 1-m2 sampling units. Systematic sampling with ???2 random starts was more efficient than SRS. Estimates of abundance based on SYS were more accurate when the distance between sampling units across the stream was less than or equal to the distance between sampling units along the stream. Three measures for quantifying spatial clustering were examined: Hopkins Statistic, the Clumping Index, and Morisita's Index. Morisita's Index was the most reliable, and the Hopkins Statistic was prone to false rejection of complete spatial randomness. SYS designs with units spaced equally across and up stream provided the most accurate predictions when estimating the spatial distribution by kriging. Our research indicates that SYS designs with sampling units equally spaced both across and along the stream would be appropriate for sampling freshwater mussels even if no information about the true underlying spatial distribution of the population were available to guide the design choice. ?? 2005 by The North American Benthological Society.

  17. The Meteosat Second Generation (MSG) power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haines, J.E.; Levins, D.; Robben, A.

    1997-12-31

    Under the direction of the European Meteorological Satellite Organization (EUMETSAT) and the European Space Agency (ESA), space industries within Europe are in the process of developing a new series of larger and more performant geostationary weather satellites. The initial three spacecraft within this new series, which are known by the name of Meteosat Second Generation (MSG), are due to be progressively launched from the year 2000 onwards. The major objective of this mission is the continuation of the European weather watch and space borne atmospheric sensing services provided by the present series of Meteosat spacecraft. To satisfy this mission requirement,more » the payload compliment to be supported by MSG will consist of a comprehensive earth viewing instrument capable of operating in both the infra-red and visible spectrum, an earth radiation measurement system and a search and rescue facility. In furnishing the power needs for these payloads, the power generating element on the spin stabilized MSG spacecraft consists of a body mounted solar array, capable of providing 628 watts of electrical power at the end of seven years of geosynchronous orbital lifetime. The energy storage elements for the spacecraft consists of two, 29 ampere-hour batteries, while centralized power management is achieved by the Power Control Unit (PCU), which satisfies the payload and battery re-charge demands by controlling the available solar array power. Power distribution for the spacecraft electrical loads and heaters is achieved by the Power Distribution Unit (PDU) and for the pyrotechnic devices by the Pyrotechnic Release Unit.« less

  18. Islanding detection and over voltage mitigation using wireless sensor networks and electric vehicle charging stations.

    DOT National Transportation Integrated Search

    2016-06-01

    An islanding condition occurs when a distributed generation (DG) unit continues to energize a : part of the grid while said part has been isolated from the main electrical utility. In this event, if : the power of the DG exceeds the load, a transient...

  19. 40 CFR 761.210 - Use of the manifest-Generator requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.210 Use of the manifest... remaining copies of the manifest. (c) For shipments of PCB waste within the United States solely by water...

  20. 40 CFR 761.210 - Use of the manifest-Generator requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.210 Use of the manifest... remaining copies of the manifest. (c) For shipments of PCB waste within the United States solely by water...

  1. KSC-98pc152

    NASA Image and Video Library

    1998-01-14

    The Photovoltaic Module 1 Integrated Equipment Assembly (IEA) is moved past Node 1, seen at left, of the International Space Station (ISS) in Kennedy Space Center’s Space Station Processing Facility (SSPF). The IEA will be processed at the SSPF for flight on STS-97, scheduled for launch in April 1999. The IEA is one of four integral units designed to generate, distribute, and store power for the ISS. It will carry solar arrays, power storage batteries, power control units, and a thermal control system. The 16-foot-long, 16,850-pound unit is now undergoing preflight preparations in the SSPF

  2. Gravity-induced stresses in stratified rock masses

    USGS Publications Warehouse

    Amadei, B.; Swolfs, H.S.; Savage, W.Z.

    1988-01-01

    This paper presents closed-form solutions for the stress field induced by gravity in anisotropic and stratified rock masses. These rocks are assumed to be laterally restrained. The rock mass consists of finite mechanical units, each unit being modeled as a homogeneous, transversely isotropic or isotropic linearly elastic material. The following results are found. The nature of the gravity induced stress field in a stratified rock mass depends on the elastic properties of each rock unit and how these properties vary with depth. It is thermodynamically admissible for the induced horizontal stress component in a given stratified rock mass to exceed the vertical stress component in certain units and to be smaller in other units; this is not possible for the classical unstratified isotropic solution. Examples are presented to explore the nature of the gravity induced stress field in stratified rock masses. It is found that a decrease in rock mass anisotropy and a stiffening of rock masses with depth can generate stress distributions comparable to empirical hyperbolic distributions previously proposed in the literature. ?? 1988 Springer-Verlag.

  3. Secure detection in quantum key distribution by real-time calibration of receiver

    NASA Astrophysics Data System (ADS)

    Marøy, Øystein; Makarov, Vadim; Skaar, Johannes

    2017-12-01

    The single-photon detectionefficiency of the detector unit is crucial for the security of common quantum key distribution protocols like Bennett-Brassard 1984 (BB84). A low value for the efficiency indicates a possible eavesdropping attack that exploits the photon receiver’s imperfections. We present a method for estimating the detection efficiency, and calculate the corresponding secure key generation rate. The estimation is done by testing gated detectors using a randomly activated photon source inside the receiver unit. This estimate gives a secure rate for any detector with non-unity single-photon detection efficiency, both inherit or due to blinding. By adding extra optical components to the receiver, we make sure that the key is extracted from photon states for which our estimate is valid. The result is a quantum key distribution scheme that is secure against any attack that exploits detector imperfections.

  4. The Kepler Science Operations Center Pipeline Framework Extensions

    NASA Technical Reports Server (NTRS)

    Klaus, Todd C.; Cote, Miles T.; McCauliff, Sean; Girouard, Forrest R.; Wohler, Bill; Allen, Christopher; Chandrasekaran, Hema; Bryson, Stephen T.; Middour, Christopher; Caldwell, Douglas A.; hide

    2010-01-01

    The Kepler Science Operations Center (SOC) is responsible for several aspects of the Kepler Mission, including managing targets, generating on-board data compression tables, monitoring photometer health and status, processing the science data, and exporting the pipeline products to the mission archive. We describe how the generic pipeline framework software developed for Kepler is extended to achieve these goals, including pipeline configurations for processing science data and other support roles, and custom unit of work generators that control how the Kepler data are partitioned and distributed across the computing cluster. We describe the interface between the Java software that manages the retrieval and storage of the data for a given unit of work and the MATLAB algorithms that process these data. The data for each unit of work are packaged into a single file that contains everything needed by the science algorithms, allowing these files to be used to debug and evolve the algorithms offline.

  5. Distributing Data from Desktop to Hand-Held Computers

    NASA Technical Reports Server (NTRS)

    Elmore, Jason L.

    2005-01-01

    A system of server and client software formats and redistributes data from commercially available desktop to commercially available hand-held computers via both wired and wireless networks. This software is an inexpensive means of enabling engineers and technicians to gain access to current sensor data while working in locations in which such data would otherwise be inaccessible. The sensor data are first gathered by a data-acquisition server computer, then transmitted via a wired network to a data-distribution computer that executes the server portion of the present software. Data in all sensor channels -- both raw sensor outputs in millivolt units and results of conversion to engineering units -- are made available for distribution. Selected subsets of the data are transmitted to each hand-held computer via the wired and then a wireless network. The selection of the subsets and the choice of the sequences and formats for displaying the data is made by means of a user interface generated by the client portion of the software. The data displayed on the screens of hand-held units can be updated at rates from 1 to

  6. Exposure to electromagnetic fields aboard high-speed electric multiple unit trains.

    PubMed

    Niu, D; Zhu, F; Qiu, R; Niu, Q

    2016-01-01

    High-speed electric multiple unit (EMU) trains generate high-frequency electric fields, low-frequency magnetic fields, and high-frequency wideband electromagnetic emissions when running. Potential human health concerns arise because the electromagnetic disturbances are transmitted mainly into the car body from windows, and from there to passengers and train staff. The transmission amount and amplitude distribution characteristics that dominate electromagnetic field emission need to be studied, and the exposure level of electromagnetic field emission to humans should be measured. We conducted a series of tests of the on board electromagnetic field distribution on several high-speed railway lines. While results showed that exposure was within permitted levels, the possibility of long-term health effects should be investigated.

  7. Synthesis and study of the vibrational spectra of a first generation phosphorus-containing dendrimer with pyridyl functional groups

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukov, A. E.; Tripathi, V.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2018-06-01

    A new phosphorus-containing dendrimer of the first-generation with potential pharmacological activity was synthesized and studied by spectral methods. The FTIR, FT Raman, 1H and 31P NMR spectra of the first generation dendrimer G1 with a cyclotriphosphazene core, six branches sbnd Osbnd C6H4sbnd CHdbnd Nsbnd N(CH3)sbnd P(S) < and twelve 4-oxyphenethylamidopyridyl end groups sbnd Osbnd C6H4sbnd (CH2)2sbnd NHsbnd COsbnd C5NH4 were recorded. Amide groups of the dendrimer participate in the formation of an intermolecular hydrogen bond. Structure, geometric parameters, the frequency and intensity of the bands in the vibrational spectra were calculated using DFT with PBE functional and TZ2P basis set. Spectral characteristics, charge distribution and reactivity of the core, repeating units and terminal groups of the dendrimer were determined. The first-generation dendrimer molecule has the shape of a concave lens with a slightly non-planar cyclotriphosphazene core and flat repeating units. Repeating units are arranged symmetrically on three on each side of the core, there are no steric hindrances in it and the end groups are able to enter into subsequent reactions and dendrimer has a sufficiently large cavity for accommodating guest molecules. The HOMO covers the repeating units with a noticeable conjugation and the LUMO belongs to the terminal groups.

  8. Assessing the Future of Distributed Wind: Opportunities for Behind-the-Meter Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, Eric; Sigrin, Benjamin; Gleason, Michael

    2016-11-01

    Wind power is one of the fastest growing sources of new electricity generation in the United States. Cumulative installed capacity was more than 74,000 megawatts (MW) at year-end 2015 and wind power supplied 4.7% of total 2015 U.S. electricity generation. Despite the growth of the wind power industry, the distributed wind market has remained limited. Cumulative installations of distributed wind through 2015 totaled 934 MW. This first-of-a-kind exploratory analysis characterizes the future opportunity for behind-the-meter distributed wind, serving primarily rural or suburban homes, farms, and manufacturing facilities. This work focuses only on the grid-connected, behind-the-meter subset of the broader distributedmore » wind market. We estimate this segment to be approximately half of the 934 MW of total installed distributed wind capacity at year-end 2015. Potential from other distributed wind market segments including systems installed in front of the meter (e.g., community wind) and in remote, off-grid locations is not assessed in this analysis and therefore, would be additive to results presented here. These other distributed wind market segments are not considered in this initial effort because of their relatively unique economic and market attributes.« less

  9. A united event grand canonical Monte Carlo study of partially doped polyaniline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byshkin, M. S., E-mail: mbyshkin@unisa.it, E-mail: gmilano@unisa.it; Correa, A.; Buonocore, F.

    2013-12-28

    A Grand Canonical Monte Carlo scheme, based on united events combining protonation/deprotonation and insertion/deletion of HCl molecules is proposed for the generation of polyaniline structures at intermediate doping levels between 0% (PANI EB) and 100% (PANI ES). A procedure based on this scheme and subsequent structure relaxations using molecular dynamics is described and validated. Using the proposed scheme and the corresponding procedure, atomistic models of amorphous PANI-HCl structures were generated and studied at different doping levels. Density, structure factors, and solubility parameters were calculated. Their values agree well with available experimental data. The interactions of HCl with PANI have beenmore » studied and distribution of their energies has been analyzed. The procedure has also been extended to the generation of PANI models including adsorbed water and the effect of inclusion of water molecules on PANI properties has also been modeled and discussed. The protocol described here is general and the proposed United Event Grand Canonical Monte Carlo scheme can be easily extended to similar polymeric materials used in gas sensing and to other systems involving adsorption and chemical reactions steps.« less

  10. Nickel recycling in the United States in 2004

    USGS Publications Warehouse

    Goonan, Thomas G.

    2009-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of nickel from production through distribution and use, with particular emphasis on the recycling of industrial scrap (new scrap) and used products (old scrap) in 2004. This materials flow study includes a description of nickel supply and demand for the United States to illustrate the extent of nickel recycling and to identify recycling trends. Understanding how materials flow from a source through disposition can aid in improving the management of natural resource delivery systems. In 2004, the old scrap recycling efficiency for nickel was estimated to be 56.2 percent. In 2004, nickel scrap consumption in the United States was as follows: new scrap containing 13,000 metric tons (t) of nickel (produced during the manufacture of products), 12 percent; and old scrap containing 95,000 t of nickel (articles discarded after serving a useful purpose), 88 percent. The recycling rate for nickel in 2004 was 40.9 percent, and the percentage of nickel in products attributed to nickel recovered from nickel-containing scrap was 51.6 percent. Furthermore, U.S. nickel scrap theoretically generated in 2004 had the following distribution: scrap to landfills, 24 percent; recovered and used scrap, 50 percent; and unaccounted for scrap, 26 percent. Of the 50 percent of old scrap generated in the United States that was recovered and then used in 2004, about one-third was exported and two-thirds was consumed in the domestic production of nickel-containing products.

  11. Consideration effect of wind farms on the network reconfiguration in the distribution systems in an uncertain environment

    NASA Astrophysics Data System (ADS)

    Rahmani, Kianoosh; Kavousifard, Farzaneh; Abbasi, Alireza

    2017-09-01

    This article proposes a novel probabilistic Distribution Feeder Reconfiguration (DFR) based method to consider the uncertainty impacts into account with high accuracy. In order to achieve the set aim, different scenarios are generated to demonstrate the degree of uncertainty in the investigated elements which are known as the active and reactive load consumption and the active power generation of the wind power units. Notably, a normal Probability Density Function (PDF) based on the desired accuracy is divided into several class intervals for each uncertain parameter. Besides, the Weiball PDF is utilised for modelling wind generators and taking the variation impacts of the power production in wind generators. The proposed problem is solved based on Fuzzy Adaptive Modified Particle Swarm Optimisation to find the most optimal switching scheme during the Multi-objective DFR. Moreover, this paper holds two suggestions known as new mutation methods to adjust the inertia weight of PSO by the fuzzy rules to enhance its ability in global searching within the entire search space.

  12. Propellant Analysis and Distillation Unit Design

    NASA Technical Reports Server (NTRS)

    Barragan, Michelle H.; Spangler, Cindy; Barrera, Louis K.

    2007-01-01

    The NASA White Sands Test Facility (WSTF) routinely operates hypergolic propulsion systems. Some of the onsite activities include performing long duration studies on the operational life of these systems. A few of them have been in use for over twenty years. During this span of time contamination has built up in the propellant and some of the distribution infrastructure. This study investigated the nature of this contamination, the pathology of its generation, and developed a process for removal of the contamination that was cost efficient with minimal waste generation.

  13. Optimal management of stationary lithium-ion battery system in electricity distribution grids

    NASA Astrophysics Data System (ADS)

    Purvins, Arturs; Sumner, Mark

    2013-11-01

    The present article proposes an optimal battery system management model in distribution grids for stationary applications. The main purpose of the management model is to maximise the utilisation of distributed renewable energy resources in distribution grids, preventing situations of reverse power flow in the distribution transformer. Secondly, battery management ensures efficient battery utilisation: charging at off-peak prices and discharging at peak prices when possible. This gives the battery system a shorter payback time. Management of the system requires predictions of residual distribution grid demand (i.e. demand minus renewable energy generation) and electricity price curves (e.g. for 24 h in advance). Results of a hypothetical study in Great Britain in 2020 show that the battery can contribute significantly to storing renewable energy surplus in distribution grids while being highly utilised. In a distribution grid with 25 households and an installed 8.9 kW wind turbine, a battery system with rated power of 8.9 kW and battery capacity of 100 kWh can store 7 MWh of 8 MWh wind energy surplus annually. Annual battery utilisation reaches 235 cycles in per unit values, where one unit is a full charge-depleting cycle depth of a new battery (80% of 100 kWh).

  14. Georgia | Midmarket Solar Policies in the United States | Solar Research |

    Science.gov Websites

    Distributed Generation Act Community solar Georgia Public Service Commission: Approval of Georgia Power's . Carve-out: None Tracking system: No formally adopted tracking system The Georgia Public Service . Midmarket customers in the Georgia Power and Tennessee Valley Authority (TVA) service territories may be

  15. ICLUS Tools and Datasets (Version 1.2) and User's Manual: Arcgis Tools and Datasets for Modeling US Housing Density (External Review Draft)

    EPA Science Inventory

    This draft Geographic Information System (GIS) tool can be used to generate scenarios of housing-density changes and calculate impervious surface cover for the conterminous United States. A draft User’s Guide accompanies the tool. This product distributes the population project...

  16. ICLUS Tools and Datasets (Version 1.2) and User's Manual ...

    EPA Pesticide Factsheets

    This draft Geographic Information System (GIS) tool can be used to generate scenarios of housing-density changes and calculate impervious surface cover for the conterminous United States. A draft User’s Guide accompanies the tool. This product distributes the population projections and creates land use data described in the 2009 EPA report

  17. Design and development of control unit and software for the ADFOSC instrument of the 3.6 m Devasthal optical telescope

    NASA Astrophysics Data System (ADS)

    Kumar, T. S.

    2016-08-01

    In this paper, we describe the details of control unit and GUI software for positioning two filter wheels, a slit wheel and a grism wheel in the ADFOSC instrument. This is a first generation instrument being built for the 3.6 m Devasthal optical telescope. The control hardware consists of five electronic boards based on low cost 8-bit PIC microcontrollers and are distributed over I2C bus. The four wheels are controlled by four identical boards which are configured in I2C slave mode while the fifth board acts as an I2C master for sending commands to and receiving status from the slave boards. The master also communicates with the interfacing PC over TCP/IP protocol using simple ASCII commands. For moving the wheels stepper motors along with suitable amplifiers have been employed. Homing after powering ON is achieved using hall effect sensors. By implementing distributed control units having identical design modularity is achieved enabling easier maintenance and upgradation. A GUI based software for commanding the instrument is developed in Microsoft Visual C++. For operating the system during observations the user selects normal mode while the engineering mode is available for offering additional flexibility and low level control during maintenance and testing. A detailed time-stamped log of commands, status and errors are continuously generated. Both the control unit and the software have been successfully tested and integrated with the ADFOSC instrument.

  18. Evaluation of kinetic uncertainty in numerical models of petroleum generation

    USGS Publications Warehouse

    Peters, K.E.; Walters, C.C.; Mankiewicz, P.J.

    2006-01-01

    Oil-prone marine petroleum source rocks contain type I or type II kerogen having Rock-Eval pyrolysis hydrogen indices greater than 600 or 300-600 mg hydrocarbon/g total organic carbon (HI, mg HC/g TOC), respectively. Samples from 29 marine source rocks worldwide that contain mainly type II kerogen (HI = 230-786 mg HC/g TOC) were subjected to open-system programmed pyrolysis to determine the activation energy distributions for petroleum generation. Assuming a burial heating rate of 1??C/m.y. for each measured activation energy distribution, the calculated average temperature for 50% fractional conversion of the kerogen in the samples to petroleum is approximately 136 ?? 7??C, but the range spans about 30??C (???121-151??C). Fifty-two outcrop samples of thermally immature Jurassic Oxford Clay Formation were collected from five locations in the United Kingdom to determine the variations of kinetic response for one source rock unit. The samples contain mainly type I or type II kerogens (HI = 230-774 mg HC/g TOC). At a heating rate of 1??C/m.y., the calculated temperatures for 50% fractional conversion of the Oxford Clay kerogens to petroleum differ by as much as 23??C (127-150??C). The data indicate that kerogen type, as defined by hydrogen index, is not systematically linked to kinetic response, and that default kinetics for the thermal decomposition of type I or type II kerogen can introduce unacceptable errors into numerical simulations. Furthermore, custom kinetics based on one or a few samples may be inadequate to account for variations in organofacies within a source rock. We propose three methods to evaluate the uncertainty contributed by kerogen kinetics to numerical simulations: (1) use the average kinetic distribution for multiple samples of source rock and the standard deviation for each activation energy in that distribution; (2) use source rock kinetics determined at several locations to describe different parts of the study area; and (3) use a weighted-average method that combines kinetics for samples from different locations in the source rock unit by giving the activation energy distribution for each sample a weight proportional to its Rock-Eval pyrolysis S2 yield (hydrocarbons generated by pyrolytic degradation of organic matter). Copyright ?? 2006. The American Association of Petroleum Geologists. All rights reserved.

  19. Terrestrial Ecosystems-Surficial Lithology of the Conterminous United States

    USGS Publications Warehouse

    Cress, Jill; Soller, David; Sayre, Roger G.; Comer, Patrick; Warner, Harumi

    2010-01-01

    As part of an effort to map terrestrial ecosystems, the U.S. Geological Survey (USGS) has generated a new classification of the lithology of surficial materials to be used in creating maps depicting standardized, terrestrial ecosystem models for the conterminous United States. The ecosystems classification used in this effort was developed by NatureServe. A biophysical stratification approach, developed for South America and now being implemented globally, was used to model the ecosystem distributions. This ecosystem mapping methodology is transparent, replicable, and rigorous. Surficial lithology strongly influences the differentiation and distribution of terrestrial ecosystems, and is one of the key input layers in this biophysical stratification. These surficial lithology classes were derived from the USGS map 'Surficial Materials in the Conterminous United States,' which was based on texture, internal structure, thickness, and environment of deposition or formation of materials. This original map was produced from a compilation of regional surficial and bedrock geology source maps using broadly defined common map units for the purpose of providing an overview of the existing data and knowledge. For the terrestrial ecosystem effort, the 28 lithology classes of Soller and Reheis (2004) were generalized and then reclassified into a set of 17 lithologies that typically control or influence the distribution of vegetation types.

  20. Converging stereotactic radiotherapy using kilovoltage X-rays: experimental irradiation of normal rabbit lung and dose-volume analysis with Monte Carlo simulation.

    PubMed

    Kawase, Takatsugu; Kunieda, Etsuo; Deloar, Hossain M; Tsunoo, Takanori; Seki, Satoshi; Oku, Yohei; Saitoh, Hidetoshi; Saito, Kimiaki; Ogawa, Eileen N; Ishizaka, Akitoshi; Kameyama, Kaori; Kubo, Atsushi

    2009-10-01

    To validate the feasibility of developing a radiotherapy unit with kilovoltage X-rays through actual irradiation of live rabbit lungs, and to explore the practical issues anticipated in future clinical application to humans through Monte Carlo dose simulation. A converging stereotactic irradiation unit was developed, consisting of a modified diagnostic computed tomography (CT) scanner. A tiny cylindrical volume in 13 normal rabbit lungs was individually irradiated with single fractional absorbed doses of 15, 30, 45, and 60 Gy. Observational CT scanning of the whole lung was performed every 2 weeks for 30 weeks after irradiation. After 30 weeks, histopathologic specimens of the lungs were examined. Dose distribution was simulated using the Monte Carlo method, and dose-volume histograms were calculated according to the data. A trial estimation of the effect of respiratory movement on dose distribution was made. A localized hypodense change and subsequent reticular opacity around the planning target volume (PTV) were observed in CT images of rabbit lungs. Dose-volume histograms of the PTVs and organs at risk showed a focused dose distribution to the target and sufficient dose lowering in the organs at risk. Our estimate of the dose distribution, taking respiratory movement into account, revealed dose reduction in the PTV. A converging stereotactic irradiation unit using kilovoltage X-rays was able to generate a focused radiobiologic reaction in rabbit lungs. Dose-volume histogram analysis and estimated sagittal dose distribution, considering respiratory movement, clarified the characteristics of the irradiation received from this type of unit.

  1. SunShot 2030 for Photovoltaics (PV): Envisioning a Low-cost PV Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Wesley J.; Frew, Bethany A.; Gagnon, Pieter J.

    In this report we summarize the implications, impacts, and deployment potential of reaching the SunShot 2030 targets for the electricity system in the contiguous United States. We model 25 scenarios of the U.S. power sector using the Regional Energy Deployment Systems (ReEDS) and Distributed Generation (dGen) capacity expansion models. The scenarios cover a wide range of sensitivities to capture future uncertainties relating to fuel prices, retirements, renewable energy capital costs, and load growth. We give special attention to the potential for storage costs to also rapidly decline due to its large synergies with low-cost solar. The ReEDS and dGen modelsmore » project utility- and distributed-scale power sector evolution, respectively, for the United States. Both models have been designed with special emphasis on capturing the unique traits of renewable energy, including variability and grid integration requirements. Across the suite of scenarios modeled, we find that reaching the SunShot 2030 target has the potential to lead to significant capacity additions of PV in the United States. By 2050, PV penetration levels are projected to reach 28-46 percent of total generation. If storage also sees significant reductions in cost, then the 2050 solar penetration levels could reach 41-64 percent. PV deployment is projected to occur in all of the lower 48 states, though the specific deployment level is scenario dependent. The growth in PV is projected to be dominated by utility-scale systems, but the actual mix between utility and distributed systems could ultimately vary depending on how policies, system costs, and rate structures evolve.« less

  2. The Distributed Geothermal Market Demand Model (dGeo): Documentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Kevin; Mooney, Meghan E; Sigrin, Benjamin O

    The National Renewable Energy Laboratory (NREL) developed the Distributed Geothermal Market Demand Model (dGeo) as a tool to explore the potential role of geothermal distributed energy resources (DERs) in meeting thermal energy demands in the United States. The dGeo model simulates the potential for deployment of geothermal DERs in the residential and commercial sectors of the continental United States for two specific technologies: ground-source heat pumps (GHP) and geothermal direct use (DU) for district heating. To quantify the opportunity space for these technologies, dGeo leverages a highly resolved geospatial database and robust bottom-up, agent-based modeling framework. This design is consistentmore » with others in the family of Distributed Generation Market Demand models (dGen; Sigrin et al. 2016), including the Distributed Solar Market Demand (dSolar) and Distributed Wind Market Demand (dWind) models. dGeo is intended to serve as a long-term scenario-modeling tool. It has the capability to simulate the technical potential, economic potential, market potential, and technology deployment of GHP and DU through the year 2050 under a variety of user-defined input scenarios. Through these capabilities, dGeo can provide substantial analytical value to various stakeholders interested in exploring the effects of various techno-economic, macroeconomic, financial, and policy factors related to the opportunity for GHP and DU in the United States. This report documents the dGeo modeling design, methodology, assumptions, and capabilities.« less

  3. Mendelism: New Insights from Gregor Mendel's Lectures in Brno.

    PubMed

    Zhang, Hui; Chen, Wen; Sun, Kun

    2017-09-01

    Interpretation of Gregor Mendel's work has previously been based on study of his published paper "Experiments in Plant Hybridization." In contrast, the lectures that he gave preceding publication of this work have been largely neglected for more than 150 years. Here, we report on and interpret the content of Mendel's previous two lectures, as they were reported in a local newspaper. We comprehensively reference both the text of his paper and the historical background of his experiments. Our analysis shows that while Mendel had inherited the traditional research program on interspecific hybridization in plants, he introduced the novel method of ratio analysis for representing the variation of unit-characters among offspring of hybrids. His aim was to characterize and explain the developmental features of the distributional pattern of unit-characters in two series of hybrid experiments, using self-crosses and backcrosses with parents. In doing so, he not only answered the question of what the unit-characters were and the nature of their hierarchical classification, but also successfully inferred the numerical principle of unit-character transmission from generation to generation. He also established the nature of the composition and behaviors of reproductive cells from one generation to the next. Here we highlight the evidence from Mendel's lectures, clearly announcing that he had discovered the general law of cross-generation transmission of unit-characters through reproductive cells containing unit-factors. The recovered content of these previous lectures more accurately describes the work he performed with his garden peas than his published paper and shows how he first presented it in Brno. It is thus an invaluable resource for understanding the origin of the science of genetics. Copyright © 2017 by the Genetics Society of America.

  4. System and method for identifying, reporting, and evaluating presence of substance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Maurice; Lusby, Michael; Van Hook, Arthur

    A system and method for identifying, reporting, and evaluating a presence of a solid, liquid, gas, or other substance of interest, particularly a dangerous, hazardous, or otherwise threatening chemical, biological, or radioactive substance. The system comprises one or more substantially automated, location self-aware remote sensing units; a control unit; and one or more data processing and storage servers. Data is collected by the remote sensing units and transmitted to the control unit; the control unit generates and uploads a report incorporating the data to the servers; and thereafter the report is available for review by a hierarchy of responsive andmore » evaluative authorities via a wide area network. The evaluative authorities include a group of relevant experts who may be widely or even globally distributed.« less

  5. System and method for identifying, reporting, and evaluating presence of substance

    DOEpatents

    Smith, Maurice [Kansas City, MO; Lusby, Michael [Kansas City, MO; Van Hook, Arthur [Lotawana, MO; Cook, Charles J [Raytown, MO; Wenski, Edward G [Lenexa, KS; Solyom, David [Overland Park, KS

    2012-02-14

    A system and method for identifying, reporting, and evaluating a presence of a solid, liquid, gas, or other substance of interest, particularly a dangerous, hazardous, or otherwise threatening chemical, biological, or radioactive substance. The system comprises one or more substantially automated, location self-aware remote sensing units; a control unit; and one or more data processing and storage servers. Data is collected by the remote sensing units and transmitted to the control unit; the control unit generates and uploads a report incorporating the data to the servers; and thereafter the report is available for review by a hierarchy of responsive and evaluative authorities via a wide area network. The evaluative authorities include a group of relevant experts who may be widely or even globally distributed.

  6. System And Method For Identifying, Reporting, And Evaluating Presence Of Substance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Maurice; Lusby, Michael; Hook, Arthur Van

    A system and method for identifying, reporting, and evaluating a presence of a solid, liquid, gas, or other substance of interest, particularly a dangerous, hazardous, or otherwise threatening chemical, biological, or radioactive substance. The system comprises one or more substantially automated, location self-aware remote sensing units; a control unit; and one or more data processing and storage servers. Data is collected by the remote sensing units and transmitted to the control unit; the control unit generates and uploads a report incorporating the data to the servers; and thereafter the report is available for review by a hierarchy of responsive andmore » evaluative authorities via a wide area network. The evaluative authorities include a group of relevant experts who may be widely or even globally distributed.« less

  7. Strain, curvature, and twist measurements in digital holographic interferometry using pseudo-Wigner-Ville distribution based method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajshekhar, G.; Gorthi, Sai Siva; Rastogi, Pramod

    2009-09-15

    Measurement of strain, curvature, and twist of a deformed object play an important role in deformation analysis. Strain depends on the first order displacement derivative, whereas curvature and twist are determined by second order displacement derivatives. This paper proposes a pseudo-Wigner-Ville distribution based method for measurement of strain, curvature, and twist in digital holographic interferometry where the object deformation or displacement is encoded as interference phase. In the proposed method, the phase derivative is estimated by peak detection of pseudo-Wigner-Ville distribution evaluated along each row/column of the reconstructed interference field. A complex exponential signal with unit amplitude and the phasemore » derivative estimate as the argument is then generated and the pseudo-Wigner-Ville distribution along each row/column of this signal is evaluated. The curvature is estimated by using peak tracking strategy for the new distribution. For estimation of twist, the pseudo-Wigner-Ville distribution is evaluated along each column/row (i.e., in alternate direction with respect to the previous one) for the generated complex exponential signal and the corresponding peak detection gives the twist estimate.« less

  8. Revisiting control establishments for emerging energy hubs

    NASA Astrophysics Data System (ADS)

    Nasirian, Vahidreza

    Emerging small-scale energy systems, i.e., microgrids and smartgrids, rely on centralized controllers for voltage regulation, load sharing, and economic dispatch. However, the central controller is a single-point-of-failure in such a design as either the controller or attached communication links failure can render the entire system inoperable. This work seeks for alternative distributed control structures to improve system reliability and help to the scalability of the system. A cooperative distributed controller is proposed that uses a noise-resilient voltage estimator and handles global voltage regulation and load sharing across a DC microgrid. Distributed adaptive droop control is also investigated as an alternative solution. A droop-free distributed control is offered to handle voltage/frequency regulation and load sharing in AC systems. This solution does not require frequency measurement and, thus, features a fast frequency regulation. Distributed economic dispatch is also studied, where a distributed protocol is designed that controls generation units to merge their incremental costs into a consensus and, thus, push the entire system to generate with the minimum cost. Experimental verifications and Hardware-in-the-Loop (HIL) simulations are used to study efficacy of the proposed control protocols.

  9. Properties and Fluxes of Primary Marine Aerosol Generated Via Detrainment of Turbulence-Modulated Bubble Plumes from Fresh North Atlantic Seawater

    NASA Astrophysics Data System (ADS)

    Keene, W. C.; Long, M. S.; Duplessis, P.; Kieber, D. J.; Maben, J. R.; Frossard, A. A.; Kinsey, J. D.; Beaupre, S. R.; Lu, X.; Chang, R.; Zhu, Y.; Bisgrove, J.

    2017-12-01

    During a September-October 2016 cruise of the R/V Endeavor in the western North Atlantic Ocean, primary marine aerosol (PMA) was produced in a high capacity generator during day and night via detrainment of bubbles from biologically productive and oligotrophic seawater. The turbulent mixing of clean air and seawater in a Venturi nozzle produced bubble plumes with tunable size distributions. Physicochemical characteristics of size-resolved PMA and seawater were measured. PMA number production efficiencies per unit air detrained (PEnum) increased with increasing detainment rate. For given conditions, PEnum values summed over size distributions were roughly ten times greater than those for frits whereas normalized size distributions were similar. Results show that bubble size distributions significantly modulated number production fluxes but not relative shapes of corresponding size distributions. In contrast, mass production efficiencies (PEmass) decreased with increasing air detrainment and were similar to those for frits, consistent with the hypothesis that bubble rafts on the seawater surface modulate emissions of larger jet droplets that dominate PMA mass production. Production efficiencies of organic matter were about three times greater than those for frits whereas organic enrichment factors integrated over size distributions were similar.

  10. Synchronization of presynaptic input to motor units of tongue, inspiratory intercostal, and diaphragm muscles.

    PubMed

    Rice, Amber; Fuglevand, Andrew J; Laine, Christopher M; Fregosi, Ralph F

    2011-05-01

    The respiratory central pattern generator distributes rhythmic excitatory input to phrenic, intercostal, and hypoglossal premotor neurons. The degree to which this input shapes motor neuron activity can vary across respiratory muscles and motor neuron pools. We evaluated the extent to which respiratory drive synchronizes the activation of motor unit pairs in tongue (genioglossus, hyoglossus) and chest-wall (diaphragm, external intercostals) muscles using coherence analysis. This is a frequency domain technique, which characterizes the frequency and relative strength of neural inputs that are common to each of the recorded motor units. We also examined coherence across the two tongue muscles, as our previous work shows that, despite being antagonists, they are strongly coactivated during the inspiratory phase, suggesting that excitatory input from the premotor neurons is distributed broadly throughout the hypoglossal motoneuron pool. All motor unit pairs showed highly correlated activity in the low-frequency range (1-8 Hz), reflecting the fundamental respiratory frequency and its harmonics. Coherence of motor unit pairs recorded either within or across the tongue muscles was similar, consistent with broadly distributed premotor input to the hypoglossal motoneuron pool. Interestingly, motor units from diaphragm and external intercostal muscles showed significantly higher coherence across the 10-20-Hz bandwidth than tongue-muscle units. We propose that the lower coherence in tongue-muscle motor units over this range reflects a larger constellation of presynaptic inputs, which collectively lead to a reduction in the coherence between hypoglossal motoneurons in this frequency band. This, in turn, may reflect the relative simplicity of the respiratory drive to the diaphragm and intercostal muscles, compared with the greater diversity of functions fulfilled by muscles of the tongue.

  11. Optimization research on the concentration field of NO in selective catalytic reduction flue gas denitration system

    NASA Astrophysics Data System (ADS)

    Zheng, Qingyu; Zhang, Guoqiang; Che, Kai; Shao, Shikuan; Li, Yanfei

    2017-08-01

    Taking 660 MW generator unit denitration system as a study object, an optimization and adjustment method shall be designed to control ammonia slip, i.e. adjust ammonia injection system based on NO concentration distribution at inlet/outlet of the denitration system to make the injected ammonia distribute evenly. The results shows that, this method can effectively improve NO concentration distribution at outlet of the denitration system and decrease ammonia injection amount and ammonia slip concentration. Reduce adverse impact of SCR denitration process on the air preheater to realize safe production by guaranteeing that NO discharge shall reach the standard.

  12. Modeling and Optimization of Commercial Buildings and Stationary Fuel Cell Systems (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ainscough, C.; McLarty, D.; Sullivan, R.

    2013-10-01

    This presentation describes the Distributed Generation Building Energy Assessment Tool (DG-BEAT) developed by the National Renewable Energy Laboratory and the University of California Irvine. DG-BEAT is designed to allow stakeholders to assess the economics of installing stationary fuel cell systems in a variety of building types in the United States.

  13. Advanced Networking and Distributed Systems Defense Advanced Research Projects Agency

    DTIC Science & Technology

    1992-06-01

    balanced. The averagenumber of raviving nodes in each subcube is 2I (1 - *A node cannot transmit a message to a faulty p),. Each will send a units of...space at the processing elements. After being tal traffic will go to memory module 0 in a 1024-node generated, a packet is discarded if it cannot be

  14. Free-Space Quantum Key Distribution using Polarization Entangled Photons

    NASA Astrophysics Data System (ADS)

    Kurtsiefer, Christian

    2007-06-01

    We report on a complete experimental implementation of a quantum key distribution protocol through a free space link using polarization-entangled photon pairs from a compact parametric down-conversion source [1]. Based on a BB84-equivalent protocol, we generated without interruption over 10 hours a secret key free-space optical link distance of 1.5 km with a rate up to 950 bits per second after error correction and privacy amplification. Our system is based on two time stamp units and relies on no specific hardware channel for coincidence identification besides an IP link. For that, initial clock synchronization with an accuracy of better than 2 ns is achieved, based on a conventional NTP protocol and a tiered cross correlation of time tags on both sides. Time tags are used to servo a local clock, allowing a streamed measurement on correctly identified photon pairs. Contrary to the majority of quantum key distribution systems, this approach does not require a trusted large-bandwidth random number generator, but integrates that into the physical key generation process. We discuss our current progress of implementing a key distribution via an atmospherical link during daylight conditions, and possible attack scenarios on a physical timing information side channel to a entanglement-based key distribution system. [1] I. Marcikic, A. Lamas-Linares, C. Kurtsiefer, Appl. Phys. Lett. 89, 101122 (2006).

  15. Future trends in computer waste generation in India.

    PubMed

    Dwivedy, Maheshwar; Mittal, R K

    2010-11-01

    The objective of this paper is to estimate the future projection of computer waste in India and to subsequently analyze their flow at the end of their useful phase. For this purpose, the study utilizes the logistic model-based approach proposed by Yang and Williams to forecast future trends in computer waste. The model estimates future projection of computer penetration rate utilizing their first lifespan distribution and historical sales data. A bounding analysis on the future carrying capacity was simulated using the three parameter logistic curve. The observed obsolete generation quantities from the extrapolated penetration rates are then used to model the disposal phase. The results of the bounding analysis indicate that in the year 2020, around 41-152 million units of computers will become obsolete. The obsolete computer generation quantities are then used to estimate the End-of-Life outflows by utilizing a time-series multiple lifespan model. Even a conservative estimate of the future recycling capacity of PCs will reach upwards of 30 million units during 2025. Apparently, more than 150 million units could be potentially recycled in the upper bound case. However, considering significant future investment in the e-waste recycling sector from all stakeholders in India, we propose a logistic growth in the recycling rate and estimate the requirement of recycling capacity between 60 and 400 million units for the lower and upper bound case during 2025. Finally, we compare the future obsolete PC generation amount of the US and India. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Determining gas hydrate distribution in sands using integrated analysis of well log and seismic data in the Terrebonne Basin, Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillman, Jess; Cook, Ann; Daigle, Hugh

    The Terrebonne Basin is a salt bounded mini-basin in the northeast section of the Walker Ridge protraction area in the Gulf of Mexico, and the main site for an upcoming gas-hydrate focused International Ocean Discovery Program (IODP) cruise. The basin is infilled by an increasingly mud rich sedimentary sequence with several 5-15 meter gas-hydrate filled sand units of Miocene to Pliocene age overlying the up-domed salt. These gas-hydrate filled sand units can be identified in logging while drilling data from two existing wells in the Terrebonne Basin, drilled in 2009 by the Gas Hydrate Joint Industry Project (JIP) Leg 2.more » The sand units are cross cut by a distinct bottom-simulating reflector (BSR), and are clearly characterized by a polarity reversal in the sand units. The polarity reversal is caused by a positive gas-hydrate filled sand within the stability zone changing to negative gas-bearing sand. Using well data and calculated synthetic seismogram well ties we are able to identify several additional 1-4 meter gas-hydrate and water-saturated sand units associated with thick (100-200 m-thick), fine grained, hydrate bearing fractured units in the upper sedimentary sequence on the seismic data. Following on previous work, we propose that microbial generation of methane occurring within the fine-grained, fractured units acts as a source for gas hydrate formation in the thin sands. In contrast, it has been proposed that the gas hydrate in the 5-15 m-thick sands first discovered by the JIP was originates from a deeper thermogenic source. Through correlating hydrate occurrence in sands from well data, to amplitudes derived from the seismic data, we can estimate possible distribution of hydrate across the basin. Overall, we find the Terrebonne basin to be a complex gas hydrate system with multiple mechanisms of methane generation and migration.« less

  17. Multi-Scale Human Respiratory System Simulations to Study Health Effects of Aging, Disease, and Inhaled Substances

    NASA Astrophysics Data System (ADS)

    Kunz, Robert; Haworth, Daniel; Dogan, Gulkiz; Kriete, Andres

    2006-11-01

    Three-dimensional, unsteady simulations of multiphase flow, gas exchange, and particle/aerosol deposition in the human lung are reported. Surface data for human tracheo-bronchial trees are derived from CT scans, and are used to generate three- dimensional CFD meshes for the first several generations of branching. One-dimensional meshes for the remaining generations down to the respiratory units are generated using branching algorithms based on those that have been proposed in the literature, and a zero-dimensional respiratory unit (pulmonary acinus) model is attached at the end of each terminal bronchiole. The process is automated to facilitate rapid model generation. The model is exercised through multiple breathing cycles to compute the spatial and temporal variations in flow, gas exchange, and particle/aerosol deposition. The depth of the 3D/1D transition (at branching generation n) is a key parameter, and can be varied. High-fidelity models (large n) are run on massively parallel distributed-memory clusters, and are used to generate physical insight and to calibrate/validate the 1D and 0D models. Suitably validated lower-order models (small n) can be run on single-processor PC’s with run times that allow model-based clinical intervention for individual patients.

  18. Wet Waste-to-Energy Resources in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milbrandt, Anelia R; Heimiller, Donna M; Seiple, Timothy

    Waste-to-energy (WTE) technologies present an opportunity to recycle organic waste material into renewable energy while offsetting disposal and environmental costs. A key challenge to ensuring economic and environmental viability of WTE is understanding the variability of individual WTE resource characteristics, including their location, amount, and quality. The main objective of this study is to estimate the wet WTE resource potential in the United States and illustrate its geographic distribution. The wet resources considered in this study are wastewater sludge, animal manure, food waste, and FOG (fats, oils, and greases). This study is the first to achieve results below national level,more » at the finest geographic resolution. Our analysis indicates that about 566 teragrams (Tg) of wet WTE resources are generated annually in the United States. This amount corresponds to about 1 exajoule (EJ), which is sufficient to displace about 18% of the 2015 U.S. on-highway diesel consumption on an energy basis. About half of this potential is generated by animal manure.« less

  19. Spatial distribution of surface action potentials generated by individual motor units in the human biceps brachii muscle.

    PubMed

    Rodriguez-Falces, Javier; Negro, Francesco; Gonzalez-Izal, Miriam; Farina, Dario

    2013-08-01

    This study analyses the spatial distribution of individual motor unit potentials (MUPs) over the skin surface and the influence of motor unit depth and recording configuration on this distribution. Multichannel surface (13×5 electrode grid) and intramuscular (wire electrodes inserted with needles of lengths 15 and 25mm) electromyographic (EMG) signals were concurrently recorded with monopolar derivations from the biceps brachii muscle of 10 healthy subjects during 60-s isometric contractions at 20% of the maximum torque. Multichannel monopolar MUPs of the target motor unit were obtained by spike-triggered averaging of the surface EMG. Amplitude and frequency characteristics of monopolar and bipolar MUPs were calculated for locations along the fibers' direction (longitudinal), and along the direction perpendicular (transverse) to the fibers. In the longitudinal direction, monopolar and bipolar MUPs exhibited marked amplitude changes that extended for 16-32mm and 16-24mm over the innervation and tendon zones, respectively. The variation of monopolar and bipolar MUP characteristics was not symmetrical about the innervation zone. Motor unit depth had a considerable influence on the relative longitudinal variation of amplitude for monopolar MUPs, but not for bipolar MUPs. The transverse extension of bipolar MUPs ranged between 24 and 32mm, whereas that of monopolar MUPs ranged between 72 and 96mm. The mean power spectral frequency of surface MUPs was highly dependent on the transverse electrode location but not on depth. This study provides a basis for the interpretation of the contribution of individual motor units to the interference surface EMG signal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Priority queues with bursty arrivals of incoming tasks

    NASA Astrophysics Data System (ADS)

    Masuda, N.; Kim, J. S.; Kahng, B.

    2009-03-01

    Recently increased accessibility of large-scale digital records enables one to monitor human activities such as the interevent time distributions between two consecutive visits to a web portal by a single user, two consecutive emails sent out by a user, two consecutive library loans made by a single individual, etc. Interestingly, those distributions exhibit a universal behavior, D(τ)˜τ-δ , where τ is the interevent time, and δ≃1 or 3/2 . The universal behaviors have been modeled via the waiting-time distribution of a task in the queue operating based on priority; the waiting time follows a power-law distribution Pw(τ)˜τ-α with either α=1 or 3/2 depending on the detail of queuing dynamics. In these models, the number of incoming tasks in a unit time interval has been assumed to follow a Poisson-type distribution. For an email system, however, the number of emails delivered to a mail box in a unit time we measured follows a power-law distribution with general exponent γ . For this case, we obtain analytically the exponent α , which is not necessarily 1 or 3/2 and takes nonuniversal values depending on γ . We develop the generating function formalism to obtain the exponent α , which is distinct from the continuous time approximation used in the previous studies.

  1. The Future of Centrally-Organized Wholesale Electricity Markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glazer, Craig; Morrison, Jay; Breakman, Paul

    The electricity grid in the United States is organized around a network of large, centralized power plants and high voltage transmission lines that transport electricity, sometimes over large distances, before it is delivered to the customer through a local distribution grid. This network of centralized generation and high voltage transmission lines is called the “bulk power system.” Costs relating to bulk power generation typically account for more than half of a customer’s electric bill.1 For this reason, the structure and functioning of wholesale electricity markets have major impacts on costs and economic value for consumers, as well as energy securitymore » and national security. Diverse arrangements for bulk power wholesale markets have evolved over the last several decades. The Southeast and Western United States outside of California have a “bilateral-based” bulk power system where market participants enter into long-term bilateral agreements — using competitive procurements through power marketers, direct arrangements among utilities or with other generation owners, and auctions and exchanges.« less

  2. Finite element analysis of heat generation from different light-polymerization sources during cementation of all-ceramic crowns.

    PubMed

    Tunc, Elif Pak

    2007-06-01

    Exothermic composite resin chemical reactions and visible light generators can produce heat during a restorative polymerization process. These thermal changes in restored teeth may cause pain and irreversible pulpitis. The purpose of this study was to analyze the temperature distribution and heat flow patterns of a crowned mandibular second premolar tooth model using 3 different light-polymerization technologies and a finite element technique. A 2-dimensional finite element model was used to simulate a clinical condition. Heat flow and thermal stress distribution in a tooth during cementation of an all-ceramic crown using 4 commercially available light-polymerization units (LPUs), each with different wavelengths (Elipar TriLight, Elipar Freelight, Apollo 95 E, and ADT 1000 PAC), were investigated. The temperature values were measured at 3, 10, 12, and 40 seconds for each light-polymerizing unit (LPU) at 6 different finite element nodes. Two-dimensional temporal and spatial distribution of the thermal stress within the tooth, including the thermal coefficients and boundary conditions of the dental materials, were obtained and evaluated. The temperature at the nodal points did not exceed 42 degrees C, which is a threshold value for tissue vitality within the recommended operating periods at the dentin and pulp surface for all LPUs, except for Elipar TriLight. In the case of Elipar TriLlight, the temperatures at the dentin and pulp surfaces were 47 degrees C and 42 degrees C, respectively. When the light-polymerization units were used according to the manufacturers' operating procedures and without prolonged operating periods, with the exception of Elipar TriLight, the investigated LPUs did not produce significant heat. However, when the operating periods were prolonged, unacceptable temperature increases were observed, especially with the high-intensity LPUs.

  3. Solar thermal power systems point-focusing distributed receiver technology project. Volume 2: Detailed report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The accomplishments of the Point-Focusing Distributed Receiver Technology Project during fiscal year 1979 are detailed. Present studies involve designs of modular units that collect and concentrate solar energy via highly reflective, parabolic-shaped dishes. The concentrated energy is then converted to heat in a working fluid, such as hot gas. In modules designed to produce heat for industrial applications, a flexible line conveys the heated fluid from the module to a heat transfer network. In modules designed to produce electricity the fluid carries the heat directly to an engine in a power conversion unit located at the focus of the concentrator. The engine is mechanically linked to an electric generator. A Brayton-cycle engine is currently being developed as the most promising electrical energy converter to meet near-future needs.

  4. PREDICTING RELATIVE RISK OF INVASION BY SALTCEDAR AND MUD SNAILS IN RIVER NETWORKS UNDER DIFFERENT SCENARIOS OF CLIMATE CHANGE AND DAM OPERATIONS IN THE WESTERN UNITED STATES

    EPA Science Inventory

    This synthetic, multi-scale approach will generate a sequence of spatially explicit maps that will provide science guidance to support strategic decision-making regarding the spatially-distributed risk of, and possible adaptation to, the spread of invasive species at local to ...

  5. Astrobiology: The Study of the Origin, Evolution, and Distribution of the Life in the Universe

    ERIC Educational Resources Information Center

    Scalice, Daniella; Wilmoth, Krisstina

    2004-01-01

    Life as known here on Earth exchanges energy and materials with the environment. Life forms grow, develop, produce waste products, and reproduce, storing genetic information in DNA and RNA and passing it from one generation to the next. Life evolves, adapting to changes in the environment and changing the environment in return. The basic unit of…

  6. 78 FR 56222 - New York Power Authority; Notice of Application Accepted for Filing, Soliciting Comments, Motions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ... Reservoir--City of New York Aqueduct, lower part of the Catskill Water Distribution System, which is owned... turbine generator units each with a rated capacity of 1,000 kilowatts installed in the existing bays... intent to cease the delivery of water through a portion of the Catskill Aqueduct required by the NYPA's...

  7. Design specification for the European Spallation Source neutron generating target element

    NASA Astrophysics Data System (ADS)

    Aguilar, A.; Sordo, F.; Mora, T.; Mena, L.; Mancisidor, M.; Aguilar, J.; Bakedano, G.; Herranz, I.; Luna, P.; Magan, M.; Vivanco, R.; Jimenez-Villacorta, F.; Sjogreen, K.; Oden, U.; Perlado, J. M.; Martinez, J. L.; Bermejo, F. J.

    2017-06-01

    The paper addresses some of the most relevant issues concerning the thermal hydraulics and radiation damage of the neutron generation target to be built at the European Spallation Source as recently approved after a critical design review. The target unit consists of a set of Tungsten blocks placed inside a wheel of 2.5 m diameter which rotates at some 0.5 Hz in order to distribute the heat generated from incoming protons which reach the target in the radial direction. The spallation material elements are composed of an array of Tungsten pieces which rest on a rotating steel support (the cassette) and are distributed in a cross-flow configuration. The thermal, mechanical and radiation effects resulting from the impact of a 2 GeV proton pulse are analysed in detail as well as an evaluation of the inventory of spallation products. The current design is found to conform to specifications and found to be robust enough to deal with several accident scenarios.

  8. Accounting for Atmospheric Rivers in the Flood Frequency Estimation in the Western United States

    NASA Astrophysics Data System (ADS)

    Barth, N. A.; Villarini, G.; White, K. D.

    2016-12-01

    The Bulletin 17B framework assumes that the observed annual peak flow data included in a flood frequency analysis are a "representative time sample of random homogeneous events." However, flood frequency analysis over the western United States is complicated by annual peak flow records that frequently contain flows generated from distinctly different flood generating mechanisms. Among the different flood generating mechanisms, atmospheric rivers (ARs) are responsible for large, regional scale floods. USGS streamgaging stations in the central Columbia River Basin in the Pacific Northwest, the Sierra Nevada, the central and southern California coast, and central Arizona show a mixture of 30-70% AR-generated flood peaks among the complete period of record. It is relatively common for the annual peaks fitted to the log-Pearson Type III distribution in these regions to show sharp breaks in the slope or a curve that reverses direction, pointing to the presence of different flood generating mechanisms. Following the recommendation by B17B to develop separate frequency curves when different flood agents can be identified, we will perform flood frequency analyses accounting for the role played by ARs. We will compare and contrast the results obtained by treating all annual maximum discharge values as generated from a single population against those from a mixed population analyses.

  9. Staged Catalytic Partial Oxidation (SCPO) System - The State of Art Integrated Short Contact Time Hydrogen Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke Liu; Jin Ki Hong; Wei Wei

    Research and development on hydrogen and syngas production have great potential in addressing the following challenges in energy arena: (1) produce more clean fuels to meet the increasing demands for clean liquid and gaseous fuels for transportation and electricity generation, (2) increase the efficiency of energy utilization for fuels and electricity production, and (3) eliminate the pollutants and decouple the link between energy utilization and greenhouse gas emissions in end-use systems [Song, 2006, Liu, Song & Subramani 2009]. In this project, GE Global Research (GEGR) collaborated with Argonne National Laboratory (ANL) and the University of Minnesota (UoMn), developed and demonstratedmore » a low cost, compact staged catalytic partial oxidation (SCPO) technology for distributed hydrogen generation. GEGR analyzed different reforming system designs, and developed the SCPO reforming system which is a unique technology staging and integrating 3 different short contact time catalysts in a single, compact reactor: catalytic partial oxidation (CPO), steam methane reforming (SMR) and water-gas shift (WGS). This integration is demonstrated via the fabrication of a prototype scale unit of each key technology. Approaches for key technical challenges of the program includes: · Analyzed different system designs · Designed the SCPO hydrogen production system · Developed highly active and sulfur tolerant CPO catalysts · Designed and built different pilot-scale reactors to demonstrate each key technology · Evaluated different operating conditions · Quantified the efficiency and cost of the system · Developed process design package (PDP) for 1500 kg H2/day distributed H2 production unit. SCPO met the Department of Energy (DOE) and GE’s cost and efficiency targets for distributed hydrogen production.« less

  10. Capillary pressure-saturation relationships for porous granular materials: Pore morphology method vs. pore unit assembly method

    NASA Astrophysics Data System (ADS)

    Sweijen, Thomas; Aslannejad, Hamed; Hassanizadeh, S. Majid

    2017-09-01

    In studies of two-phase flow in complex porous media it is often desirable to have an estimation of the capillary pressure-saturation curve prior to measurements. Therefore, we compare in this research the capability of three pore-scale approaches in reproducing experimentally measured capillary pressure-saturation curves. To do so, we have generated 12 packings of spheres that are representative of four different glass-bead packings and eight different sand packings, for which we have found experimental data on the capillary pressure-saturation curve in the literature. In generating the packings, we matched the particle size distributions and porosity values of the granular materials. We have used three different pore-scale approaches for generating the capillary pressure-saturation curves of each packing: i) the Pore Unit Assembly (PUA) method in combination with the Mayer and Stowe-Princen (MS-P) approximation for estimating the entry pressures of pore throats, ii) the PUA method in combination with the hemisphere approximation, and iii) the Pore Morphology Method (PMM) in combination with the hemisphere approximation. The three approaches were also used to produce capillary pressure-saturation curves for the coating layer of paper, used in inkjet printing. Curves for such layers are extremely difficult to determine experimentally, due to their very small thickness and the presence of extremely small pores (less than one micrometer in size). Results indicate that the PMM and PUA-hemisphere method give similar capillary pressure-saturation curves, because both methods rely on a hemisphere to represent the air-water interface. The ability of the hemisphere approximation and the MS-P approximation to reproduce correct capillary pressure seems to depend on the type of particle size distribution, with the hemisphere approximation working well for narrowly distributed granular materials.

  11. Implementation of continuous-variable quantum key distribution with discrete modulation

    NASA Astrophysics Data System (ADS)

    Hirano, Takuya; Ichikawa, Tsubasa; Matsubara, Takuto; Ono, Motoharu; Oguri, Yusuke; Namiki, Ryo; Kasai, Kenta; Matsumoto, Ryutaroh; Tsurumaru, Toyohiro

    2017-06-01

    We have developed a continuous-variable quantum key distribution (CV-QKD) system that employs discrete quadrature-amplitude modulation and homodyne detection of coherent states of light. We experimentally demonstrated automated secure key generation with a rate of 50 kbps when a quantum channel is a 10 km optical fibre. The CV-QKD system utilises a four-state and post-selection protocol and generates a secure key against the entangling cloner attack. We used a pulsed light source of 1550 nm wavelength with a repetition rate of 10 MHz. A commercially available balanced receiver is used to realise shot-noise-limited pulsed homodyne detection. We used a non-binary LDPC code for error correction (reverse reconciliation) and the Toeplitz matrix multiplication for privacy amplification. A graphical processing unit card is used to accelerate the software-based post-processing.

  12. An optimal autonomous microgrid cluster based on distributed generation droop parameter optimization and renewable energy sources using an improved grey wolf optimizer

    NASA Astrophysics Data System (ADS)

    Moazami Goodarzi, Hamed; Kazemi, Mohammad Hosein

    2018-05-01

    Microgrid (MG) clustering is regarded as an important driver in improving the robustness of MGs. However, little research has been conducted on providing appropriate MG clustering. This article addresses this shortfall. It proposes a novel multi-objective optimization approach for finding optimal clustering of autonomous MGs by focusing on variables such as distributed generation (DG) droop parameters, the location and capacity of DG units, renewable energy sources, capacitors and powerline transmission. Power losses are minimized and voltage stability is improved while virtual cut-set lines with minimum power transmission for clustering MGs are obtained. A novel chaotic grey wolf optimizer (CGWO) algorithm is applied to solve the proposed multi-objective problem. The performance of the approach is evaluated by utilizing a 69-bus MG in several scenarios.

  13. Optimal reactive power planning for distribution systems considering intermittent wind power using Markov model and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Li, Cheng

    Wind farms, photovoltaic arrays, fuel cells, and micro-turbines are all considered to be Distributed Generation (DG). DG is defined as the generation of power which is dispersed throughout a utility's service territory and either connected to the utility's distribution system or isolated in a small grid. This thesis addresses modeling and economic issues pertaining to the optimal reactive power planning for distribution system with wind power generation (WPG) units. Wind farms are inclined to cause reverse power flows and voltage variations due to the random-like outputs of wind turbines. To deal with this kind of problem caused by wide spread usage of wind power generation, this thesis investigates voltage and reactive power controls in such a distribution system. Consequently static capacitors (SC) and transformer taps are introduced into the system and treated as controllers. For the purpose of getting optimum voltage and realizing reactive power control, the research proposes a proper coordination among the controllers like on-load tap changer (OLTC), feeder-switched capacitors. What's more, in order to simulate its uncertainty, the wind power generation is modeled by the Markov model. In that way, calculating the probabilities for all the scenarios is possible. Some outputs with consecutive and discrete values have been used for transition between successive time states and within state wind speeds. The thesis will describe the method to generate the wind speed time series from the transition probability matrix. After that, utilizing genetic algorithm, the optimal locations of SCs, the sizes of SCs and transformer taps are determined so as to minimize the cost or minimize the power loss, and more importantly improve voltage profiles. The applicability of the proposed method is verified through simulation on a 9-bus system and a 30-bus system respectively. At last, the simulation results indicate that as long as the available capacitors are able to sufficiently compensate the reactive power demand, the DG operation no longer imposes a significant effect on the voltage fluctuations in the distribution system. And the proposed approach is efficient, simple and straightforward.

  14. Maternal caffeine intake during pregnancy, early growth and body fat distribution at school-age. The Generation R Study

    PubMed Central

    Voerman, Ellis; Jaddoe, Vincent WV; Gishti, Olta; Hofman, Albert; Franco, Oscar H.; Gaillard, Romy

    2017-01-01

    Objective We examined the associations of maternal caffeine intake during pregnancy with offspring growth patterns, and body fat and insulin levels at school-age. Methods In a population-based birth cohort among 7,857 mothers and their children, we assessed maternal caffeine intake during pregnancy by questionnaires. Growth characteristics were measured from birth onwards. At 6 years, body fat and insulin levels were measured. Results Compared to children whose mothers consumed <2 units of caffeine per day during pregnancy (1 unit of caffeine is equivalent to 1 cup of coffee (90 mg caffeine)), those whose mothers consumed ≥6 units of caffeine per day tended to have a lower weight at birth, higher weight gain from birth to 6 years and higher body mass index from 6 months to 6 years. Both children whose mothers consumed 4-5.9 and ≥6 units of caffeine per day during pregnancy tended to have a higher childhood body mass index and total body fat mass. Only children whose mothers consumed ≥6 units of caffeine per day had a higher android/gynoid fat mass ratio. Conclusions Our results suggest that high levels of maternal caffeine intake during pregnancy are associated with adverse offspring growth patterns and childhood body fat distribution. PMID:27015969

  15. Intake-to-delivered-energy ratios for central station and distributed electricity generation in California

    NASA Astrophysics Data System (ADS)

    Heath, Garvin A.; Nazaroff, William W.

    In previous work, we showed that the intake fraction (iF) for nonreactive primary air pollutants was 20 times higher in central tendency for small-scale, urban-sited distributed electricity generation (DG) sources than for large-scale, central station (CS) power plants in California [Heath, G.A., Granvold, P.W., Hoats, A.S., Nazaroff, W.W., 2006. Intake fraction assessment of the air pollutant exposure implications of a shift toward distributed electricity generation. Atmospheric Environment 40, 7164-7177]. The present paper builds on that study, exploring pollutant- and technology-specific aspects of population inhalation exposure from electricity generation. We compare California's existing CS-based system to one that is more reliant on DG units sited in urban areas. We use Gaussian plume modeling and a GIS-based exposure analysis to assess 25 existing CSs and 11 DG sources hypothetically located in the downtowns of California's most populous cities. We consider population intake of three pollutants—PM 2.5, NO x and formaldehyde—directly emitted by five DG technologies—natural gas (NG)-fired turbines, NG internal combustion engines (ICE), NG microturbines, diesel ICEs, and fuel cells with on-site NG reformers. We also consider intake of these pollutants from existing CS facilities, most of which use large NG turbines, as well as from hypothetical facilities located at these same sites but meeting California's best-available control technology standards. After systematically exploring the sensitivity of iF to pollutant decay rate, the iFs for each of the three pollutants for all DG and CS cases are estimated. To efficiently compare the pollutant- and technology-specific exposure potential on an appropriate common basis, a new metric is introduced and evaluated: the intake-to-delivered-energy ratio (IDER). The IDER expresses the mass of pollutant inhaled by an exposed population owing to emissions from an electricity generation unit per quantity of electric energy delivered to the place of use. We find that the central tendency of IDER is much greater for almost every DG technology evaluated than for existing CS facilities in California.

  16. Increasing Interest of Mass Communication Media and the General Public in the Distribution of Tweets About Mental Disorders: Observational Study

    PubMed Central

    Asunsolo del Barco, Angel; Lahera, Guillermo; Quintero, Javier; Ferre, Francisco; Pereira-Sanchez, Victor; Ortuño, Felipe; Alvarez-Mon, Melchor

    2018-01-01

    Background The contents of traditional communication media and new internet social media reflect the interests of society. However, certain barriers and a lack of attention towards mental disorders have been previously observed. Objective The objective of this study is to measure the relevance of influential American mainstream media outlets for the distribution of psychiatric information and the interest generated in these topics among their Twitter followers. Methods We investigated tweets generated about mental health conditions and diseases among 15 mainstream general communication media outlets in the United States of America between January 2007 and December 2016. Our study strategy focused on identifying several psychiatric terms of primary interest. The number of retweets generated from the selected tweets was also investigated. As a control, we examined tweets generated about the main causes of death in the United States of America, the main chronic neurological degenerative diseases, and HIV. Results In total, 13,119 tweets about mental health disorders sent by the American mainstream media outlets were analyzed. The results showed a heterogeneous distribution but preferential accumulation for a select number of conditions. Suicide and gender dysphoria accounted for half of the number of tweets sent. Variability in the number of tweets related to each control disease was also found (5998). The number of tweets sent regarding each different psychiatric or organic disease analyzed was significantly correlated with the number of retweets generated by followers (1,030,974 and 424,813 responses to mental health disorders and organic diseases, respectively). However, the probability of a tweet being retweeted differed significantly among the conditions and diseases analyzed. Furthermore, the retweeted to tweet ratio was significantly higher for psychiatric diseases than for the control diseases (odds ratio 1.11, CI 1.07-1.14; P<.001). Conclusions American mainstream media outlets and the general public demonstrate a preferential interest for psychiatric diseases on Twitter. The heterogeneous weights given by the media outlets analyzed to the different mental health disorders and conditions are reflected in the responses of Twitter followers. PMID:29807880

  17. Dual Cross-Linked Biofunctional and Self-Healing Networks to Generate User-Defined Modular Gradient Hydrogel Constructs.

    PubMed

    Wei, Zhao; Lewis, Daniel M; Xu, Yu; Gerecht, Sharon

    2017-08-01

    Gradient hydrogels have been developed to mimic the spatiotemporal differences of multiple gradient cues in tissues. Current approaches used to generate such hydrogels are restricted to a single gradient shape and distribution. Here, a hydrogel is designed that includes two chemical cross-linking networks, biofunctional, and self-healing networks, enabling the customizable formation of modular gradient hydrogel construct with various gradient distributions and flexible shapes. The biofunctional networks are formed via Michael addition between the acrylates of oxidized acrylated hyaluronic acid (OAHA) and the dithiol of matrix metalloproteinase (MMP)-sensitive cross-linker and RGD peptides. The self-healing networks are formed via dynamic Schiff base reaction between N-carboxyethyl chitosan (CEC) and OAHA, which drives the modular gradient units to self-heal into an integral modular gradient hydrogel. The CEC-OAHA-MMP hydrogel exhibits excellent flowability at 37 °C under shear stress, enabling its injection to generate gradient distributions and shapes. Furthermore, encapsulated sarcoma cells respond to the gradient cues of RGD peptides and MMP-sensitive cross-linkers in the hydrogel. With these superior properties, the dual cross-linked CEC-OAHA-MMP hydrogel holds significant potential for generating customizable gradient hydrogel constructs, to study and guide cellular responses to their microenvironment such as in tumor mimicking, tissue engineering, and stem cell differentiation and morphogenesis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A Simulation Framework for Battery Cell Impact Safety Modeling Using LS-DYNA

    DOE PAGES

    Marcicki, James; Zhu, Min; Bartlett, Alexander; ...

    2017-02-04

    The development process of electrified vehicles can benefit significantly from computer-aided engineering tools that predict themultiphysics response of batteries during abusive events. A coupled structural, electrical, electrochemical, and thermal model framework has been developed within the commercially available LS-DYNA software. The finite element model leverages a three-dimensional mesh structure that fully resolves the unit cell components. The mechanical solver predicts the distributed stress and strain response with failure thresholds leading to the onset of an internal short circuit. In this implementation, an arbitrary compressive strain criterion is applied locally to each unit cell. A spatially distributed equivalent circuit model providesmore » an empirical representation of the electrochemical responsewith minimal computational complexity.The thermalmodel provides state information to index the electrical model parameters, while simultaneously accepting irreversible and reversible sources of heat generation. The spatially distributed models of the electrical and thermal dynamics allow for the localization of current density and corresponding temperature response. The ability to predict the distributed thermal response of the cell as its stored energy is completely discharged through the short circuit enables an engineering safety assessment. A parametric analysis of an exemplary model is used to demonstrate the simulation capabilities.« less

  19. Universal characteristics of fractal fluctuations in prime number distribution

    NASA Astrophysics Data System (ADS)

    Selvam, A. M.

    2014-11-01

    The frequency of occurrence of prime numbers at unit number spacing intervals exhibits self-similar fractal fluctuations concomitant with inverse power law form for power spectrum generic to dynamical systems in nature such as fluid flows, stock market fluctuations and population dynamics. The physics of long-range correlations exhibited by fractals is not yet identified. A recently developed general systems theory visualizes the eddy continuum underlying fractals to result from the growth of large eddies as the integrated mean of enclosed small scale eddies, thereby generating a hierarchy of eddy circulations or an inter-connected network with associated long-range correlations. The model predictions are as follows: (1) The probability distribution and power spectrum of fractals follow the same inverse power law which is a function of the golden mean. The predicted inverse power law distribution is very close to the statistical normal distribution for fluctuations within two standard deviations from the mean of the distribution. (2) Fractals signify quantum-like chaos since variance spectrum represents probability density distribution, a characteristic of quantum systems such as electron or photon. (3) Fractal fluctuations of frequency distribution of prime numbers signify spontaneous organization of underlying continuum number field into the ordered pattern of the quasiperiodic Penrose tiling pattern. The model predictions are in agreement with the probability distributions and power spectra for different sets of frequency of occurrence of prime numbers at unit number interval for successive 1000 numbers. Prime numbers in the first 10 million numbers were used for the study.

  20. Better Lucky Than Good: Operation Earnest Will as Gunboat Diplomacy

    DTIC Science & Technology

    2007-06-01

    expectations of American behavior . These factors, which are by no means easy to understand, were not carefully considered by American planners...generated by uneven distribution of oil wealth bred social resentment, which, when coupled with the Shah’s increasingly autocratic behavior , delegitimized...the event Iran responded agressively to the U.S. policy, American planners prioritized the methods with which Tehran would challenge the United States

  1. 78 FR 28501 - Approval and Promulgation of Air Quality Implementation Plans; Minnesota; Flint Hills Resources...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ..., refinery fuel gas is generated by the facility's processes and collected into two fuel gas mix drums, designated 41V-33 and 45V-39. The gases are then distributed from these mix drums to combustion units at the facility, such as boilers and heaters. FHR Pine Bend operates H 2 S CEMs on the mix drums to satisfy the...

  2. Future War: An Assessment of Aerospace Campaigns in 2010,

    DTIC Science & Technology

    1996-01-01

    theoretician: "The impending sixth generation of warfare, with its centerpiece of superior data-processing to support precision smart weaponry, will radically...tions concept of " smart push, warrior pull." If JFACC were colocated with the worldwide intelligence manager, unit taskings and the applicable...intelligence information could be distributed concurrently (" smart push"). Intelligence officers sitting alongside the operational tasking officers would

  3. ICLUS Tools and Datasets (Version 1.3 & 1.3.1) | Science ...

    EPA Pesticide Factsheets

    As a part of the Integrated Climate and Land Use Scenarios (ICLUS) project, this Geographic Information System (GIS) tool can be used to generate scenarios of housing-density changes and calculate impervious surface cover for the conterminous United States. The ICLUS User’s Guide accompanies the tool. This product distributes the population projections and creates land use data described in the 2009 EPA report

  4. ICLUS Tools and Datasets (Version 1.3.2) | Science Inventory ...

    EPA Pesticide Factsheets

    As a part of the Integrated Climate and Land Use Scenarios (ICLUS) project, this Geographic Information System (GIS) tool can be used to generate scenarios of housing-density changes and calculate impervious surface cover for the conterminous United States. The ICLUS User’s Guide accompanies the tool. This product distributes the population projections and creates land use data described in the 2009 EPA report

  5. 76 FR 12957 - City of Tacoma, Washington; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... a total installed capacity of 500 kilowatts (kW); and (2) a station transformer at the powerhouse to... station transformer at the powerhouse to connect the turbine output to a 13.8-kV distribution line owned... turbine/generating units with a total installed capacity of 1,200 kW; and (2) a station transformer at the...

  6. A-Scan Ultrasound Measurement of Ocular Changes during Accommodation.

    DTIC Science & Technology

    1987-04-01

    r.I.FMt# I. F’riUECT TASK AREA & WORK UNIT NUMBERSAF [T S’LUt)I’ENT AT: Pacific University SI.- ITP )LtIG oF FICE NAME AND ADDRESS 12. REPORT DATE A1FIT...analysis of the distribution made. This involved writing a program on the IBM PCAT which would generate, and statistically analyze three findings grouped in

  7. Motor unit activity within the depth of the masseter characterized by an adapted scanning EMG technique.

    PubMed

    van Dijk, J P; Eiglsperger, U; Hellmann, D; Giannakopoulos, N N; McGill, K C; Schindler, H J; Lapatki, B G

    2016-09-01

    To study motor unit activity in the medio-lateral extension of the masseter using an adapted scanning EMG technique that allows studying the territories of multiple motor units (MUs) in one scan. We studied the m. masseter of 10 healthy volunteers in whom two scans were performed. A monopolar scanning needle and two pairs of fine-wire electrodes were inserted into the belly of the muscle. The signals of the fine wire electrodes were decomposed into the contribution of single MUs and used as a trigger for the scanning needle. In this manner multiple MU territory scans were obtained simultaneously. We determined 161 MU territories. The maximum number of territories obtained in one scan was 15. The median territory size was 4.0mm. Larger and smaller MU territories were found throughout the muscle. The presented technique showed its feasibility in obtaining multiple MU territories in one scan. MUs were active throughout the depth of the muscle. The distribution of electrical and anatomical size of MUs substantiates the heterogeneous distribution of MUs throughout the muscle volume. This distributed activity may be of functional significance for the stabilization of the muscle during force generation. Copyright © 2016 International Federation of Clinical Neurophysiology. All rights reserved.

  8. Encryption key distribution via chaos synchronization

    NASA Astrophysics Data System (ADS)

    Keuninckx, Lars; Soriano, Miguel C.; Fischer, Ingo; Mirasso, Claudio R.; Nguimdo, Romain M.; van der Sande, Guy

    2017-02-01

    We present a novel encryption scheme, wherein an encryption key is generated by two distant complex nonlinear units, forced into synchronization by a chaotic driver. The concept is sufficiently generic to be implemented on either photonic, optoelectronic or electronic platforms. The method for generating the key bitstream from the chaotic signals is reconfigurable. Although derived from a deterministic process, the obtained bit series fulfill the randomness conditions as defined by the National Institute of Standards test suite. We demonstrate the feasibility of our concept on an electronic delay oscillator circuit and test the robustness against attacks using a state-of-the-art system identification method.

  9. Assessment of Moderate- and High-Temperature Geothermal Resources of the United States

    USGS Publications Warehouse

    Williams, Colin F.; Reed, Marshall J.; Mariner, Robert H.; DeAngelo, Jacob; Galanis, S. Peter

    2008-01-01

    Scientists with the U.S. Geological Survey (USGS) recently completed an assessment of our Nation's geothermal resources. Geothermal power plants are currently operating in six states: Alaska, California, Hawaii, Idaho, Nevada, and Utah. The assessment indicates that the electric power generation potential from identified geothermal systems is 9,057 Megawatts-electric (MWe), distributed over 13 states. The mean estimated power production potential from undiscovered geothermal resources is 30,033 MWe. Additionally, another estimated 517,800 MWe could be generated through implementation of technology for creating geothermal reservoirs in regions characterized by high temperature, but low permeability, rock formations.

  10. Observations of the SAA radiation distribution by Liulin-E094 instrument on ISS

    NASA Astrophysics Data System (ADS)

    Dachev, Tsvetan; Atwell, William; Semones, Edward; Tomov, Borislav; Reddell, Brandon

    Space radiation measurements were made on the International Space Station (ISS) with the Bulgarian Liulin-E094 instrument, which contains 4 Mobile Dosimetry Units (MDU), and the NASA Tissue Equivalent Proportional Counter (TEPC) during the time period May 11-July 26, 2001. In the time span 11-27 May 2001 four MDUs were placed at fixed locations: one unit (MDU #1) in the ISS "Unity" Node-1 and three (MDU #2-#4) units were located in the US Laboratory module. The MDU #2 and the TEPC were located in the US Laboratory module Human Research Facility (rack #1, port side). In this paper we discuss the flight observed asymmetries in different detectors on the ascending and descending parts of the ISS orbits. The differences are described by the shielding differences generated by different geometry between the predominating eastward drifting protons and the orientation and placement of the MDUs within the ISS. Shielding distributions were generated for the combined ISS and detector shielding models. The AP8MAX and AE8MAX trapped radiation models were used to compute the daily absorbed dose for the five detectors and are compared with the flight measurements. In addition, the trapped proton incident spectra inside of ISS were calculated using calibration curve of MDU obtained during the tests with protons at the Louvain-la-Neuve cyclotron facility. The energy of incident spectra maximums were analyzed against L value for the individual passes through the South Atlantic Anomaly.

  11. Improving the efficiency of configurational-bias Monte Carlo: A density-guided method for generating bending angle trials for linear and branched molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sepehri, Aliasghar; Loeffler, Troy D.; Chen, Bin, E-mail: binchen@lsu.edu

    2014-08-21

    A new method has been developed to generate bending angle trials to improve the acceptance rate and the speed of configurational-bias Monte Carlo. Whereas traditionally the trial geometries are generated from a uniform distribution, in this method we attempt to use the exact probability density function so that each geometry generated is likely to be accepted. In actual practice, due to the complexity of this probability density function, a numerical representation of this distribution function would be required. This numerical table can be generated a priori from the distribution function. This method has been tested on a united-atom model ofmore » alkanes including propane, 2-methylpropane, and 2,2-dimethylpropane, that are good representatives of both linear and branched molecules. It has been shown from these test cases that reasonable approximations can be made especially for the highly branched molecules to reduce drastically the dimensionality and correspondingly the amount of the tabulated data that is needed to be stored. Despite these approximations, the dependencies between the various geometrical variables can be still well considered, as evident from a nearly perfect acceptance rate achieved. For all cases, the bending angles were shown to be sampled correctly by this method with an acceptance rate of at least 96% for 2,2-dimethylpropane to more than 99% for propane. Since only one trial is required to be generated for each bending angle (instead of thousands of trials required by the conventional algorithm), this method can dramatically reduce the simulation time. The profiling results of our Monte Carlo simulation code show that trial generation, which used to be the most time consuming process, is no longer the time dominating component of the simulation.« less

  12. Marital power process of Korean men married to foreign women: a qualitative study.

    PubMed

    Kim, Miyoung; Park, Gyeong Sook; Windsor, Carol

    2013-03-01

    This study explored how Korean men married to migrant women construct meaning around married life. Data were collected through in-depth interviews with 10 men who had had been married to migrant women for ≥ 2 years. Data collection and analysis were performed concurrently using a grounded theory approach. The core category generated was the process of sustaining a family unit. The men came to understand the importance of a distribution of power within the family in sustaining the family unit. Constituting this process were four stages: recognizing an imbalance of power, relinquishing power, empowering, and fine-tuning the balance of power. This study provides important insight into the dynamics of marital power from men's point of view by demonstrating a link between the way people adjust to married life and the process by which married couples adjust through the distribution and redistribution of power. © 2012 Wiley Publishing Asia Pty Ltd.

  13. MEGASTAR: The meaning of growth. An assessment of systems, technologies, and requirements. [methodology for display and analysis of energy production and consumption

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A methodology for the display and analysis of postulated energy futures for the United States is presented. A systems approach methodology including the methodology of technology assessment is used to examine three energy scenarios--the Westinghouse Nuclear Electric Economy, the Ford Technical Fix Base Case and a MEGASTAR generated Alternate to the Ford Technical Fix Base Case. The three scenarios represent different paths of energy consumption from the present to the year 2000. Associated with these paths are various mixes of fuels, conversion, distribution, conservation and end-use technologies. MEGASTAR presents the estimated times and unit requirements to supply the fuels, conversion and distribution systems for the postulated end uses for the three scenarios and then estimates the aggregate manpower, materials, and capital requirements needed to develop the energy system described by the particular scenario.

  14. A Simple Secure Hash Function Scheme Using Multiple Chaotic Maps

    NASA Astrophysics Data System (ADS)

    Ahmad, Musheer; Khurana, Shruti; Singh, Sushmita; AlSharari, Hamed D.

    2017-06-01

    The chaotic maps posses high parameter sensitivity, random-like behavior and one-way computations, which favor the construction of cryptographic hash functions. In this paper, we propose to present a novel hash function scheme which uses multiple chaotic maps to generate efficient variable-sized hash functions. The message is divided into four parts, each part is processed by a different 1D chaotic map unit yielding intermediate hash code. The four codes are concatenated to two blocks, then each block is processed through 2D chaotic map unit separately. The final hash value is generated by combining the two partial hash codes. The simulation analyses such as distribution of hashes, statistical properties of confusion and diffusion, message and key sensitivity, collision resistance and flexibility are performed. The results reveal that the proposed anticipated hash scheme is simple, efficient and holds comparable capabilities when compared with some recent chaos-based hash algorithms.

  15. Incorporating Wind Power Forecast Uncertainties Into Stochastic Unit Commitment Using Neural Network-Based Prediction Intervals.

    PubMed

    Quan, Hao; Srinivasan, Dipti; Khosravi, Abbas

    2015-09-01

    Penetration of renewable energy resources, such as wind and solar power, into power systems significantly increases the uncertainties on system operation, stability, and reliability in smart grids. In this paper, the nonparametric neural network-based prediction intervals (PIs) are implemented for forecast uncertainty quantification. Instead of a single level PI, wind power forecast uncertainties are represented in a list of PIs. These PIs are then decomposed into quantiles of wind power. A new scenario generation method is proposed to handle wind power forecast uncertainties. For each hour, an empirical cumulative distribution function (ECDF) is fitted to these quantile points. The Monte Carlo simulation method is used to generate scenarios from the ECDF. Then the wind power scenarios are incorporated into a stochastic security-constrained unit commitment (SCUC) model. The heuristic genetic algorithm is utilized to solve the stochastic SCUC problem. Five deterministic and four stochastic case studies incorporated with interval forecasts of wind power are implemented. The results of these cases are presented and discussed together. Generation costs, and the scheduled and real-time economic dispatch reserves of different unit commitment strategies are compared. The experimental results show that the stochastic model is more robust than deterministic ones and, thus, decreases the risk in system operations of smart grids.

  16. Hyperchaotic Dynamics for Light Polarization in a Laser Diode

    NASA Astrophysics Data System (ADS)

    Bonatto, Cristian

    2018-04-01

    It is shown that a highly randomlike behavior of light polarization states in the output of a free-running laser diode, covering the whole Poincaré sphere, arises as a result from a fully deterministic nonlinear process, which is characterized by a hyperchaotic dynamics of two polarization modes nonlinearly coupled with a semiconductor medium, inside the optical cavity. A number of statistical distributions were found to describe the deterministic data of the low-dimensional nonlinear flow, such as lognormal distribution for the light intensity, Gaussian distributions for the electric field components and electron densities, Rice and Rayleigh distributions, and Weibull and negative exponential distributions, for the modulus and intensity of the orthogonal linear components of the electric field, respectively. The presented results could be relevant for the generation of single units of compact light source devices to be used in low-dimensional optical hyperchaos-based applications.

  17. Real-world exhaust temperature and engine load distributions of on-road heavy-duty diesel vehicles in various vocations.

    PubMed

    Boriboonsomsin, Kanok; Durbin, Thomas; Scora, George; Johnson, Kent; Sandez, Daniel; Vu, Alexander; Jiang, Yu; Burnette, Andrew; Yoon, Seungju; Collins, John; Dai, Zhen; Fulper, Carl; Kishan, Sandeep; Sabisch, Michael; Jackson, Doug

    2018-06-01

    Real-world vehicle and engine activity data were collected from 90 heavy-duty vehicles in California, United States, most of which have engine model year 2010 or newer and are equipped with selective catalytic reduction (SCR). The 90 vehicles represent 19 different groups defined by a combination of vocational use and geographic region. The data were collected using advanced data loggers that recorded vehicle speed, position (latitude and longitude), and more than 170 engine and aftertreatment parameters (including engine load and exhaust temperature) at the frequency of one Hz. This article presents plots of real-world exhaust temperature and engine load distributions for the 19 vehicle groups. In each plot, both frequency distribution and cumulative frequency distribution are shown. These distributions are generated using the aggregated data from all vehicle samples in each group.

  18. Modeling extreme hurricane damage in the United States using generalized Pareto distribution

    NASA Astrophysics Data System (ADS)

    Dey, Asim Kumer

    Extreme value distributions are used to understand and model natural calamities, man made catastrophes and financial collapses. Extreme value theory has been developed to study the frequency of such events and to construct a predictive model so that one can attempt to forecast the frequency of a disaster and the amount of damage from such a disaster. In this study, hurricane damages in the United States from 1900-2012 have been studied. The aim of the paper is three-fold. First, normalizing hurricane damage and fitting an appropriate model for the normalized damage data. Secondly, predicting the maximum economic damage from a hurricane in future by using the concept of return period. Finally, quantifying the uncertainty in the inference of extreme return levels of hurricane losses by using a simulated hurricane series, generated by bootstrap sampling. Normalized hurricane damage data are found to follow a generalized Pareto distribution. tion. It is demonstrated that standard deviation and coecient of variation increase with the return period which indicates an increase in uncertainty with model extrapolation.

  19. Integrated, Automated Distributed Generation Technologies Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Kevin

    2014-09-01

    The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kWmore » new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Department’s stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: • Installation of a 100 kW wind turbine. • Installation of a 300 kW battery storage system. • Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources during peak hours of the day. Control system also monitors the wind turbine and battery storage system health, power output, and issues critical alarms. Of the original objectives, the following were not achieved: • 100 kW new technology waste heat generation unit. • Bi-directional customer/utility gateway for real time visibility and communications between RMP and ATK. • 3.4% reduction in peak demand. 1.7% reduction in peak demand was realized instead.« less

  20. Projection of distributed-collector solar-thermal electric power plant economics to years 1990-2000

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Elgabalawi, N.; Herrera, G.; Turner, R. H.

    1977-01-01

    A preliminary comparative evaluation of distributed-collector solar thermal power plants was undertaken by projecting power plant economics of selected systems to the 1990 to 2000 time frame. The selected systems include: (1) fixed orientation collectors with concentrating reflectors and vacuum tube absorbers, (2) one axis tracking linear concentrator including parabolic trough and variable slat designs, and (3) two axis tracking parabolic dish systems including concepts with small heat engine-electric generator assemblies at each focal point as well as approaches having steam generators at the focal point with pipeline collection to a central power conversion unit. Comparisons are presented primarily in terms of energy cost and capital cost over a wide range of operating load factors. Sensitvity of energy costs for a range of efficiency and cost of major subsystems/components is presented to delineate critical technological development needs.

  1. Space Station Freedom photovoltaic power module design status

    NASA Technical Reports Server (NTRS)

    Jimenez, Amador P.; Hoberecht, Mark A.

    1989-01-01

    Electric power generation for the Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during phase I operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units to achieve modularization. The design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate.

  2. Space Station Freedom photovoltaic power module design status

    NASA Technical Reports Server (NTRS)

    Jimenez, Amador P.; Hoberecht, Mark A.

    1989-01-01

    Electric power generation for Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during Phase 1 operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units (ORU's) to achieve modularization. Design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate.

  3. Modeling the Distribution of Nursing Effort Using Structured Labor and Delivery Documentation

    PubMed Central

    Hall, Eric S.; Poynton, Mollie R.; Narus, Scott P.; Thornton, Sidney N.

    2008-01-01

    Our study objectives included the development and evaluation of models for representing the distribution of shared unit-wide nursing care resources among individual Labor and Delivery patients using quantified measurements of nursing care, referred to as Nursing Effort. The models were intended to enable discrimination between the amounts of care delivered to patient subsets defined by attributes such as patient acuity. For each of five proposed models, scores were generated using an analysis set of 686,402 computerized nurse-documented events associated with 1,093 patients at three hospitals during January and February 2006. Significant differences were detected in Nursing Effort scores according to patient acuity, care facility, and in scores generated during shift-change versus non shift-change hours. The development of nursing care quantification strategies proposed in this study supports outcomes analysis by establishing a foundation for measuring the effect of patient-level nursing care on individual patient outcomes. PMID:18495549

  4. Disaster management and mitigation: the telecommunications infrastructure.

    PubMed

    Patricelli, Frédéric; Beakley, James E; Carnevale, Angelo; Tarabochia, Marcello; von Lubitz, Dag K J E

    2009-03-01

    Among the most typical consequences of disasters is the near or complete collapse of terrestrial telecommunications infrastructures (especially the distribution network--the 'last mile') and their concomitant unavailability to the rescuers and the higher echelons of mitigation teams. Even when such damage does not take place, the communications overload/congestion resulting from significantly elevated traffic generated by affected residents can be highly disturbing. The paper proposes innovative remedies to the telecommunications difficulties in disaster struck regions. The offered solutions are network-centric operations-cap able, and can be employed in management of disasters of any magnitude (local to national or international). Their implementation provide ground rescue teams (such as law enforcement, firemen, healthcare personnel, civilian authorities) with tactical connectivity among themselves, and, through the Next Generation Network backbone, ensure the essential bidirectional free flow of information and distribution of Actionable Knowledge among ground units, command/control centres, and civilian and military agencies participating in the rescue effort.

  5. Entangled quantum key distribution over two free-space optical links.

    PubMed

    Erven, C; Couteau, C; Laflamme, R; Weihs, G

    2008-10-13

    We report on the first real-time implementation of a quantum key distribution (QKD) system using entangled photon pairs that are sent over two free-space optical telescope links. The entangled photon pairs are produced with a type-II spontaneous parametric down-conversion source placed in a central, potentially untrusted, location. The two free-space links cover a distance of 435 m and 1,325 m respectively, producing a total separation of 1,575 m. The system relies on passive polarization analysis units, GPS timing receivers for synchronization, and custom written software to perform the complete QKD protocol including error correction and privacy amplification. Over 6.5 hours during the night, we observed an average raw key generation rate of 565 bits/s, an average quantum bit error rate (QBER) of 4.92%, and an average secure key generation rate of 85 bits/s.

  6. Modeling the Impacts of Solar Distributed Generation on U.S. Water Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amanda, Smith; Omitaomu, Olufemi A; Jaron, Peck

    2015-01-01

    Distributed electric power generation technologies typically use little or no water per unit of electrical energy produced; in particular, renewable energy sources such as solar PV systems do not require cooling systems and present an opportunity to reduce water usage for power generation. Within the US, the fuel mix used for power generation varies regionally, and certain areas use more water for power generation than others. The need to reduce water usage for power generation is even more urgent in view of climate change uncertainties. In this paper, we present an example case within the state of Tennessee, one ofmore » the top four states in water consumption for power generation and one of the states with little or no potential for developing centralized renewable energy generations. The potential for developing PV generation within Knox County, Tennessee, is studied, along with the potential for reducing water withdrawal and consumption within the Tennessee Valley stream region. Electric power generation plants in the region are quantified for their electricity production and expected water withdrawal and consumption over one year, where electrical generation data is provided over one year and water usage is modeled based on the cooling system(s) in use. Potential solar PV electrical production is modeled based on LiDAR data and weather data for the same year. Our proposed methodology can be summarized as follows: First, the potential solar generation is compared against the local grid demand. Next, electrical generation reductions are specified that would result in a given reduction in water withdrawal and a given reduction in water consumption, and compared with the current water withdrawal and consumption rates for the existing fuel mix. The increase in solar PV development that would produce an equivalent amount of power, is determined. In this way, we consider how targeted local actions may affect the larger stream region through thoughtful energy development. This model can be applied to other regions, other types of distributed generation, and used as a framework for modeling alternative growth scenarios in power production capacity in addition to modeling adjustments to existing capacity.« less

  7. A new methodology for royalties distribution of the Itaipu hydroelectric plant: The hydrographic basin as the unit of analysis.

    PubMed

    Lorenzon, Alexandre Simões; Ribeiro, Carlos Antonio Alvares Soares; Dos Santos, Alexandre Rosa; de Castro, Nero Lemos Martins; Marcatti, Gustavo Eduardo; Domingues, Getulio Fonseca; Teixeira, Thaisa Ribeiro; Silva, Elias; Soares, Vicente Paulo; Menezes, Sady Júnior Martins da Costa de; de Almeida Telles, Lucas Arthur; Mota, Pedro Henrique Santos

    2018-07-01

    Over the past few years, many sectors such as energy generation, industry, domestic supply, and agriculture have encountered serious environmental problems due to the lack of rainfall. Thus, the purpose of this paper is to review the current methodology of royalties distribution from Itaipu hydroelectric plant. In the proposed approach, two criteria were considered to establish the division of Itaipu royalties: (1) the relative percentage of the water flow in the generation of electricity and, (2) the relative percentage of the drop in the height of water. 62 hydroelectric plants were evaluated in this study. In 52 plants the water flow was the factor that most contributed to the generation of electricity. In 2013, 346 municipalities benefited the Itaipu royalties. With the proposed methodology, 1,327 municipalities will receive the resource, what would increase the revenue of each of these municipalities by, on average, US$ 87,436.91 per year. The methodology presented herein proposes a reduction in the environmental disparity that now exists in Brazil, through improvement to Government instruments and environmental policies. The distribution of royalties throughout the watershed can provide additional resources to support payment programs for environmental services at the state and municipality levels. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Ensuring the Reliable Operation of the Power Grid: State-Based and Distributed Approaches to Scheduling Energy and Contingency Reserves

    NASA Astrophysics Data System (ADS)

    Prada, Jose Fernando

    Keeping a contingency reserve in power systems is necessary to preserve the security of real-time operations. This work studies two different approaches to the optimal allocation of energy and reserves in the day-ahead generation scheduling process. Part I presents a stochastic security-constrained unit commitment model to co-optimize energy and the locational reserves required to respond to a set of uncertain generation contingencies, using a novel state-based formulation. The model is applied in an offer-based electricity market to allocate contingency reserves throughout the power grid, in order to comply with the N-1 security criterion under transmission congestion. The objective is to minimize expected dispatch and reserve costs, together with post contingency corrective redispatch costs, modeling the probability of generation failure and associated post contingency states. The characteristics of the scheduling problem are exploited to formulate a computationally efficient method, consistent with established operational practices. We simulated the distribution of locational contingency reserves on the IEEE RTS96 system and compared the results with the conventional deterministic method. We found that assigning locational spinning reserves can guarantee an N-1 secure dispatch accounting for transmission congestion at a reasonable extra cost. The simulations also showed little value of allocating downward reserves but sizable operating savings from co-optimizing locational nonspinning reserves. Overall, the results indicate the computational tractability of the proposed method. Part II presents a distributed generation scheduling model to optimally allocate energy and spinning reserves among competing generators in a day-ahead market. The model is based on the coordination between individual generators and a market entity. The proposed method uses forecasting, augmented pricing and locational signals to induce efficient commitment of generators based on firm posted prices. It is price-based but does not rely on multiple iterations, minimizes information exchange and simplifies the market clearing process. Simulations of the distributed method performed on a six-bus test system showed that, using an appropriate set of prices, it is possible to emulate the results of a conventional centralized solution, without need of providing make-whole payments to generators. Likewise, they showed that the distributed method can accommodate transactions with different products and complex security constraints.

  9. Regional Management Units for Marine Turtles: A Novel Framework for Prioritizing Conservation and Research across Multiple Scales

    PubMed Central

    Wallace, Bryan P.; DiMatteo, Andrew D.; Hurley, Brendan J.; Finkbeiner, Elena M.; Bolten, Alan B.; Chaloupka, Milani Y.; Hutchinson, Brian J.; Abreu-Grobois, F. Alberto; Amorocho, Diego; Bjorndal, Karen A.; Bourjea, Jerome; Bowen, Brian W.; Dueñas, Raquel Briseño; Casale, Paolo; Choudhury, B. C.; Costa, Alice; Dutton, Peter H.; Fallabrino, Alejandro; Girard, Alexandre; Girondot, Marc; Godfrey, Matthew H.; Hamann, Mark; López-Mendilaharsu, Milagros; Marcovaldi, Maria Angela; Mortimer, Jeanne A.; Musick, John A.; Nel, Ronel; Pilcher, Nicolas J.; Seminoff, Jeffrey A.; Troëng, Sebastian; Witherington, Blair; Mast, Roderic B.

    2010-01-01

    Background Resolving threats to widely distributed marine megafauna requires definition of the geographic distributions of both the threats as well as the population unit(s) of interest. In turn, because individual threats can operate on varying spatial scales, their impacts can affect different segments of a population of the same species. Therefore, integration of multiple tools and techniques — including site-based monitoring, genetic analyses, mark-recapture studies and telemetry — can facilitate robust definitions of population segments at multiple biological and spatial scales to address different management and research challenges. Methodology/Principal Findings To address these issues for marine turtles, we collated all available studies on marine turtle biogeography, including nesting sites, population abundances and trends, population genetics, and satellite telemetry. We georeferenced this information to generate separate layers for nesting sites, genetic stocks, and core distributions of population segments of all marine turtle species. We then spatially integrated this information from fine- to coarse-spatial scales to develop nested envelope models, or Regional Management Units (RMUs), for marine turtles globally. Conclusions/Significance The RMU framework is a solution to the challenge of how to organize marine turtles into units of protection above the level of nesting populations, but below the level of species, within regional entities that might be on independent evolutionary trajectories. Among many potential applications, RMUs provide a framework for identifying data gaps, assessing high diversity areas for multiple species and genetic stocks, and evaluating conservation status of marine turtles. Furthermore, RMUs allow for identification of geographic barriers to gene flow, and can provide valuable guidance to marine spatial planning initiatives that integrate spatial distributions of protected species and human activities. In addition, the RMU framework — including maps and supporting metadata — will be an iterative, user-driven tool made publicly available in an online application for comments, improvements, download and analysis. PMID:21253007

  10. Survey of spinal cord injury-induced neurogenic bladder studies using the Web of Science.

    PubMed

    Zou, Benjing; Zhang, Yongli; Li, Yucheng; Wang, Zantao; Zhang, Ping; Zhang, Xiyin; Wang, Bingdong; Long, Zhixin; Wang, Feng; Song, Guo; Wang, Yan

    2012-08-15

    To identify global trends in research on spinal cord injury-induced neurogenic bladder, through a bibliometric analysis using the Web of Science. We performed a bibliometric analysis of studies on spinal cord injury-induced neurogenic bladder using the Web of Science. Data retrieval was performed using key words "spinal cord injury", "spinal injury", "neurogenic bladder", "neuropathic bladder", "neurogenic lower urinary tract dysfunction", "neurogenic voiding dysfunction", "neurogenic urination disorder" and "neurogenic vesicourethral dysfunction". (a) published peer-reviewed articles on spinal cord injury-induced neurogenic bladder indexed in the Web of Science; (b) type of articles: original research articles and reviews; (c) year of publication: no limitation. (a) articles that required manual searching or telephone access; (b) Corrected papers and book chapters. (1) Annual publication output; (2) distribution according to journals; (3) distribution according to subject areas; (4) distribution according to country; (5) distribution according to institution; and (6) top cited publications. There were 646 research articles addressing spinal cord injury-induced neurogenic bladder in the Web of Science. Research on spinal cord injury-induced neurogenic bladder was found in the Science Citation Index-Expanded as of 1946. The United States, Ireland and Switzerland were the three major countries contributing to studies in spinal cord injury-induced neurogenic bladder in the 1970s. However, in the 1990s, the United States, the United Kingdom, the Netherlands, Germany and Japan published more papers on spinal cord injury-induced neurogenic bladder than Switzerland, and Ireland fell off the top ten countries list. In this century, the United States ranks first in spinal cord injury-induced neurogenic bladder studies, followed by France, the United Kingdom, Germany, Switzerland and Japan. Subject categories including urology, nephrology and clinical neurology, as well as rehabilitation, are represented in spinal cord injury-induced neurogenic bladder studies. From our analysis of the literature and research trends, we conclude that spinal cord injury-induced neurogenic bladder is a hot topic that will continue to generate considerable research interest in the future.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakafuji, Dora; Gouveia, Lauren

    This project supports development of the next generation, integrated energy management infrastructure (EMS) able to incorporate advance visualization of behind-the-meter distributed resource information and probabilistic renewable energy generation forecasts to inform real-time operational decisions. The project involves end-users and active feedback from an Utility Advisory Team (UAT) to help inform how information can be used to enhance operational functions (e.g. unit commitment, load forecasting, Automatic Generation Control (AGC) reserve monitoring, ramp alerts) within two major EMS platforms. Objectives include: Engaging utility operations personnel to develop user input on displays, set expectations, test and review; Developing ease of use and timelinessmore » metrics for measuring enhancements; Developing prototype integrated capabilities within two operational EMS environments; Demonstrating an integrated decision analysis platform with real-time wind and solar forecasting information and timely distributed resource information; Seamlessly integrating new 4-dimensional information into operations without increasing workload and complexities; Developing sufficient analytics to inform and confidently transform and adopt new operating practices and procedures; Disseminating project lessons learned through industry sponsored workshops and conferences;Building on collaborative utility-vendor partnership and industry capabilities« less

  12. Integration of HTS Cables in the Future Grid of the Netherlands

    NASA Astrophysics Data System (ADS)

    Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Aanhaanen, G.; Melnik, I.; Geschiere, A.

    Due to increasing power demand, the electricity grid of the Netherlands is changing. The future transmission grid will obtain electrical power generated by decentralized renewable sources, together with large scale generation units located at the coastal region. In this way electrical power has to be distributed and transmitted over longer distances from generation to end user. Potential grid issues like: amount of distributed power, grid stability and electrical loss dissipation merit particular attention. High temperature superconductors (HTS) can play an important role in solving these grid problems. Advantages to integrate HTS components at transmission voltages are numerous: more transmittable power together with less emissions, intrinsic fault current limiting capability, lower ac loss, better control of power flow, reduced footprint, less magnetic field emissions, etc. The main obstacle at present is the relatively high price of HTS conductor. However as the price goes down, initial market penetration of several HTS components (e.g.: cables, fault current limiters) is expected by year 2015. In the full paper we present selected ways to integrate EHV AC HTS cables depending on a particular future grid scenario in the Netherlands.

  13. Network Capacity Assessment of CHP-based Distributed Generation on Urban Energy Distribution Networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xianjun

    The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy market, considered to be an effective solution to promote energy efficiency. In the urban environment, the electricity, water and natural gas distribution networks are becoming increasingly interconnected with the growing penetration of the CHP-based DG. Subsequently, this emerging interdependence leads to new topics meriting serious consideration: how much of the CHP-based DG can be accommodated and where to locate these DERs, and given preexisting constraints, how to quantify the mutual impacts on operation performances between these urban energy distribution networks and the CHP-based DG. The early research work was conducted to investigate the feasibility and design methods for one residential microgrid system based on existing electricity, water and gas infrastructures of a residential community, mainly focusing on the economic planning. However, this proposed design method cannot determine the optimal DG sizing and siting for a larger test bed with the given information of energy infrastructures. In this context, a more systematic as well as generalized approach should be developed to solve these problems. In the later study, the model architecture that integrates urban electricity, water and gas distribution networks, and the CHP-based DG system was developed. The proposed approach addressed the challenge of identifying the optimal sizing and siting of the CHP-based DG on these urban energy networks and the mutual impacts on operation performances were also quantified. For this study, the overall objective is to maximize the electrical output and recovered thermal output of the CHP-based DG units. The electricity, gas, and water system models were developed individually and coupled by the developed CHP-based DG system model. The resultant integrated system model is used to constrain the DG's electrical output and recovered thermal output, which are affected by multiple factors and thus analyzed in different case studies. The results indicate that the designed typical gas system is capable of supplying sufficient natural gas for the DG normal operation, while the present water system cannot support the complete recovery of the exhaust heat from the DG units.

  14. The Effects of Low Income Housing Tax Credit Developments on Neighborhoods.

    PubMed

    Baum-Snow, Nathaniel; Marion, Justin

    2009-06-01

    This paper evaluates the impacts of new housing developments funded with the Low Income Housing Tax Credit (LIHTC), the largest federal project based housing program in the U.S., on the neighborhoods in which they are built. A discontinuity in the formula determining the magnitude of tax credits as a function of neighborhood characteristics generates pseudo-random assignment in the number of low income housing units built in similar sets of census tracts. Tracts where projects are awarded 30 percent higher tax credits receive approximately six more low income housing units on a base of seven units per tract. These additional new low income developments cause homeowner turnover to rise, raise property values in declining areas and reduce incomes in gentrifying areas in neighborhoods near the 30th percentile of the income distribution. LIHTC units significantly crowd out nearby new rental construction in gentrifying areas but do not displace new construction in stable or declining areas.

  15. Distribution of C22-, C24- and C26-alpha-unit-containing mycolic acid homologues in mycobacteria.

    PubMed

    Kaneda, K; Imaizumi, S; Yano, I

    1995-01-01

    There are three mycolic acid homologues with C22-, C24- and C26-alpha-units in Mycobacterium. In order to reveal the composition and distribution of these homologues in each subclass and molecular species of mycolic acids and to compare them with the composition of constitutive non-polar fatty acids (free and bound forms), we have separated non-polar fatty acids and each subclass of mycolic acids from 21 mycobacterial species by thin-layer chromatography, and analyzed non-polar fatty acid methyl esters by gas chromatography (GC) and the cleavage products of methyl mycolate by pyrolysis GC. We further performed mass chromatographic analysis of trimethylsilyl (TMS) ether derivatives of mycolic acid methyl esters by monitoring [B-29]+ ions (loss of CHO from the alpha-branched-chain structure of mycolic acids) of m/z 426, 454 and 482 which are attributed to C22-, C24- and C26-alpha-units of TMS ether derivatives of methyl mycolates, respectively, (Kaneda, K. et al, J. Clin. Microbiol. 24: 1060-1070, 1986). By pyrolysis GC, C22:0, C24:0 and C26:0 fatty acid methyl esters generated by the C2-C3 cleavage of C22-, C24- and C26-alpha-unit-containing mycolic acid methyl esters, respectively, were detected. Their proportion was almost the same among subclasses of mycolic acids in every Mycobacterium and also similar to the proportion of constitutive non-polar C22:0, C24:0 and C26:0 fatty acids. By mass chromatography, the composition and distribution of C22- and C24-alpha-unit-containing homologues were revealed to be similar between alpha- and alpha'-mycolic acids in every Mycobacterium.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Separation of swine wastewater into different concentration fractions and its contribution to combined anaerobic-aerobic process.

    PubMed

    Yang, Di; Deng, Liangwei; Zheng, Dan; Wang, Lan; Liu, Yi

    2016-03-01

    There are two problems associated with treatment of swine wastewater, low efficiency of anaerobic digestion during winter and poor performance for aerobic treatment of digested effluent. A strategy employing unbalanced distributions of the pollutant mass and wastewater volumes in anaerobic and aerobic units was proposed. To accomplish this, swine wastewater was separated into high content liquid (HCL) and low content liquid (LCL). Three separation ratios of HCL to LCL (v/v), 1:9 (S1), 2:8 (S2), and 3:7 (S3), were evaluated. Anaerobically digestion of the HCL accounted for only 10%, 20% and 30% of the total volume of raw wastewater, but produced 63.38%, 73.79% and 76.61% of the total methane output for S1, S2 and S3, respectively. The mixed liquid of digested effluents of HCL and LCL were treated aerobically using sequencing batch reactors. S2 generated the best performance, with removal efficiencies of 96.98% for COD, 98.95% for NH3-N, 91.69% for TN and 74.71% for TP. The results obtained for S1 were not as good as those for S2, but were better than those for S3. Based on methane output from the anaerobic unit and pollutants removal in the aerobic unit, S2 was the most suitable system for the treatment of swine wastewater. Additionally, the anaerobic digestion efficiency of S2 was 282% higher than that of previous techniques employing balanced distribution. Taken together, these findings indicate that unbalanced distribution could improve the efficiency of the anaerobic unit remarkably, while ensuring good performance of the aerobic unit. Copyright © 2015. Published by Elsevier Ltd.

  17. Segmentation of the mouse fourth deep lumbrical muscle connectome reveals concentric organisation of motor units

    PubMed Central

    Hirst, Theodore C; Ribchester, Richard R

    2013-01-01

    Connectomic analysis of the nervous system aims to discover and establish principles that underpin normal and abnormal neural connectivity and function. Here we performed image analysis of motor unit connectivity in the fourth deep lumbrical muscle (4DL) of mice, using transgenic expression of fluorescent protein in motor neurones as a morphological reporter. We developed a method that accelerated segmentation of confocal image projections of 4DL motor units, by applying high resolution (63×, 1.4 NA objective) imaging or deconvolution only where either proved necessary, in order to resolve axon crossings that produced ambiguities in the correct assignment of axon terminals to identified motor units imaged at lower optical resolution (40×, 1.3 NA). The 4DL muscles contained between 4 and 9 motor units and motor unit sizes ranged in distribution from 3 to 111 motor nerve terminals per unit. Several structural properties of the motor units were consistent with those reported in other muscles, including suboptimal wiring length and distribution of motor unit size. Surprisingly, however, small motor units were confined to a region of the muscle near the nerve entry point, whereas their larger counterparts were progressively more widely dispersed, suggesting a previously unrecognised form of segregated motor innervation in this muscle. We also found small but significant differences in variance of motor endplate length in motor units, which correlated weakly with their motor unit size. Thus, our connectomic analysis has revealed a pattern of concentric innervation that may perhaps also exist in other, cylindrical muscles that have not previously been thought to show segregated motor unit organisation. This organisation may be the outcome of competition during postnatal development based on intrinsic neuronal differences in synaptic size or synaptic strength that generates a territorial hierarchy in motor unit size and disposition. PMID:23940381

  18. A Novel Analysis Method for Paired-Sample Microbial Ecology Experiments.

    PubMed

    Olesen, Scott W; Vora, Suhani; Techtmann, Stephen M; Fortney, Julian L; Bastidas-Oyanedel, Juan R; Rodríguez, Jorge; Hazen, Terry C; Alm, Eric J

    2016-01-01

    Many microbial ecology experiments use sequencing data to measure a community's response to an experimental treatment. In a common experimental design, two units, one control and one experimental, are sampled before and after the treatment is applied to the experimental unit. The four resulting samples contain information about the dynamics of organisms that respond to the treatment, but there are no analytical methods designed to extract exactly this type of information from this configuration of samples. Here we present an analytical method specifically designed to visualize and generate hypotheses about microbial community dynamics in experiments that have paired samples and few or no replicates. The method is based on the Poisson lognormal distribution, long studied in macroecology, which we found accurately models the abundance distribution of taxa counts from 16S rRNA surveys. To demonstrate the method's validity and potential, we analyzed an experiment that measured the effect of crude oil on ocean microbial communities in microcosm. Our method identified known oil degraders as well as two clades, Maricurvus and Rhodobacteraceae, that responded to amendment with oil but do not include known oil degraders. Our approach is sensitive to organisms that increased in abundance only in the experimental unit but less sensitive to organisms that increased in both control and experimental units, thus mitigating the role of "bottle effects".

  19. Impact of geometrical properties on permeability and fluid phase distribution in porous media

    NASA Astrophysics Data System (ADS)

    Lehmann, P.; Berchtold, M.; Ahrenholz, B.; Tölke, J.; Kaestner, A.; Krafczyk, M.; Flühler, H.; Künsch, H. R.

    2008-09-01

    To predict fluid phase distribution in porous media, the effect of geometric properties on flow processes must be understood. In this study, we analyze the effect of volume, surface, curvature and connectivity (the four Minkowski functionals) on the hydraulic conductivity and the water retention curve. For that purpose, we generated 12 artificial structures with 800 3 voxels (the units of a 3D image) and compared them with a scanned sand sample of the same size. The structures were generated with a Boolean model based on a random distribution of overlapping ellipsoids whose size and shape were chosen to fulfill the criteria of the measured functionals. The pore structure of sand material was mapped with X-rays from synchrotrons. To analyze the effect of geometry on water flow and fluid distribution we carried out three types of analysis: Firstly, we computed geometrical properties like chord length, distance from the solids, pore size distribution and the Minkowski functionals as a function of pore size. Secondly, the fluid phase distribution as a function of the applied pressure was calculated with a morphological pore network model. Thirdly, the permeability was determined using a state-of-the-art lattice-Boltzmann method. For the simulated structure with the true Minkowski functionals the pores were larger and the computed air-entry value of the artificial medium was reduced to 85% of the value obtained from the scanned sample. The computed permeability for the geometry with the four fitted Minkowski functionals was equal to the permeability of the scanned image. The permeability was much more sensitive to the volume and surface than to curvature and connectivity of the medium. We conclude that the Minkowski functionals are not sufficient to characterize the geometrical properties of a porous structure that are relevant for the distribution of two fluid phases. Depending on the procedure to generate artificial structures with predefined Minkowski functionals, structures differing in pore size distribution can be obtained.

  20. Gibraltar v 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CURRY, MATTHEW LEON; WARD, H. LEE; & SKJELLUM, ANTHONY

    Gibraltar is a library and associated test suite which performs Reed-Solomon coding and decoding of data buffers using graphics processing units which support NVIDIA's CUDA technology. This library is used to generate redundant data allowing for recovery of lost information. For example, a user can generate m new blocks of data from n original blocks, distributing those pieces over n+m devices. If any m devices fail, the contents of those devices can be recovered from the contents of the other n devices, even if some of the original blocks are lost. This is a generalized description of RAID, a techniquemore » for increasing data storage speed and size.« less

  1. Encryption key distribution via chaos synchronization

    PubMed Central

    Keuninckx, Lars; Soriano, Miguel C.; Fischer, Ingo; Mirasso, Claudio R.; Nguimdo, Romain M.; Van der Sande, Guy

    2017-01-01

    We present a novel encryption scheme, wherein an encryption key is generated by two distant complex nonlinear units, forced into synchronization by a chaotic driver. The concept is sufficiently generic to be implemented on either photonic, optoelectronic or electronic platforms. The method for generating the key bitstream from the chaotic signals is reconfigurable. Although derived from a deterministic process, the obtained bit series fulfill the randomness conditions as defined by the National Institute of Standards test suite. We demonstrate the feasibility of our concept on an electronic delay oscillator circuit and test the robustness against attacks using a state-of-the-art system identification method. PMID:28233876

  2. A multi-level simulation platform of natural gas internal reforming solid oxide fuel cell-gas turbine hybrid generation system - Part II. Balancing units model library and system simulation

    NASA Astrophysics Data System (ADS)

    Bao, Cheng; Cai, Ningsheng; Croiset, Eric

    2011-10-01

    Following our integrated hierarchical modeling framework of natural gas internal reforming solid oxide fuel cell (IRSOFC), this paper firstly introduces the model libraries of main balancing units, including some state-of-the-art achievements and our specific work. Based on gPROMS programming code, flexible configuration and modular design are fully realized by specifying graphically all unit models in each level. Via comparison with the steady-state experimental data of Siemens-Westinghouse demonstration system, the in-house multi-level SOFC-gas turbine (GT) simulation platform is validated to be more accurate than the advanced power system analysis tool (APSAT). Moreover, some units of the demonstration system are designed reversely for analysis of a typically part-load transient process. The framework of distributed and dynamic modeling in most of units is significant for the development of control strategies in the future.

  3. Space station automation of common module power management and distribution

    NASA Technical Reports Server (NTRS)

    Miller, W.; Jones, E.; Ashworth, B.; Riedesel, J.; Myers, C.; Freeman, K.; Steele, D.; Palmer, R.; Walsh, R.; Gohring, J.

    1989-01-01

    The purpose is to automate a breadboard level Power Management and Distribution (PMAD) system which possesses many functional characteristics of a specified Space Station power system. The automation system was built upon 20 kHz ac source with redundancy of the power buses. There are two power distribution control units which furnish power to six load centers which in turn enable load circuits based upon a system generated schedule. The progress in building this specified autonomous system is described. Automation of Space Station Module PMAD was accomplished by segmenting the complete task in the following four independent tasks: (1) develop a detailed approach for PMAD automation; (2) define the software and hardware elements of automation; (3) develop the automation system for the PMAD breadboard; and (4) select an appropriate host processing environment.

  4. American Recovery & Reinvestment Act: Fuel Cell Hybrid Power Packs and Hydrogen Refueling for Lift Trucks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, Gus

    2011-07-31

    HEB Grocery Company, Inc. (H-E-B) is a privately-held supermarket chain with 310 stores throughout Texas and northern Mexico. H-E-B converted 14 of its lift reach trucks to fuel cell power using Nuvera Fuel Cells’ PowerEdge™ units to verify the value proposition and environmental benefits associated with the technology. Issues associated with the increasing power requirements of the distribution center operation, along with high ambient temperature in the summer and other operating conditions (such as air quality and floor surface condition), surfaced opportunities for improving Nuvera’s PowerEdge fuel cell system design in high-throughput forklift environments. The project included on-site generation ofmore » hydrogen from a steam methane reformer, called PowerTap™ manufactured by Nuvera. The hydrogen was generated, compressed and stored in equipment located outside H-E-B’s facility, and provided to the forklifts by hydrogen dispensers located in high forklift traffic areas. The PowerEdge fuel cell units logged over 25,300 operating hours over the course of the two-year project period. The PowerTap hydrogen generator produced more than 11,100 kg of hydrogen over the same period. Hydrogen availability at the pump was 99.9%. H-E-B management has determined that fuel cell forklifts help alleviate several issues in its distribution centers, including truck operator downtime associated with battery changing, truck and battery maintenance costs, and reduction of grid electricity usage. Data collected from this initial installation demonstrated a 10% productivity improvement, which enabled H-E-B to make economic decisions on expanding the fleet of PowerEdge and PowerTap units in the fleet, which it plans to undertake upon successful demonstration of the new PowerEdge reach truck product. H-E-B has also expressed interst in other uses of hydrogen produced on site in the future, such as for APUs used in tractor trailers and refrigerated transport trucks in its fleet.« less

  5. Emergence of the interplay between hierarchy and contact splitting in biological adhesion highlighted through a hierarchical shear lag model.

    PubMed

    Brely, Lucas; Bosia, Federico; Pugno, Nicola M

    2018-06-20

    Contact unit size reduction is a widely studied mechanism as a means to improve adhesion in natural fibrillar systems, such as those observed in beetles or geckos. However, these animals also display complex structural features in the way the contact is subdivided in a hierarchical manner. Here, we study the influence of hierarchical fibrillar architectures on the load distribution over the contact elements of the adhesive system, and the corresponding delamination behaviour. We present an analytical model to derive the load distribution in a fibrillar system loaded in shear, including hierarchical splitting of contacts, i.e. a "hierarchical shear-lag" model that generalizes the well-known shear-lag model used in mechanics. The influence on the detachment process is investigated introducing a numerical procedure that allows the derivation of the maximum delamination force as a function of the considered geometry, including statistical variability of local adhesive energy. Our study suggests that contact splitting generates improved adhesion only in the ideal case of extremely compliant contacts. In real cases, to produce efficient adhesive performance, contact splitting needs to be coupled with hierarchical architectures to counterbalance high load concentrations resulting from contact unit size reduction, generating multiple delamination fronts and helping to avoid detrimental non-uniform load distributions. We show that these results can be summarized in a generalized adhesion scaling scheme for hierarchical structures, proving the beneficial effect of multiple hierarchical levels. The model can thus be used to predict the adhesive performance of hierarchical adhesive structures, as well as the mechanical behaviour of composite materials with hierarchical reinforcements.

  6. Limits and Economic Effects of Distributed PV Generation in North and South Carolina

    NASA Astrophysics Data System (ADS)

    Holt, Kyra Moore

    The variability of renewable sources, such as wind and solar, when integrated into the electrical system must be compensated by traditional generation sources in-order to maintain the constant balance of supply and demand required for grid stability. The goal of this study is to analyze the effects of increasing large levels of solar Photovoltaic (PV) penetration (in terms of a percentage of annual energy production) on a test grid with similar characteristics to the Duke Energy Carolinas (DEC) and Progress Energy Carolinas (PEC) regions of North and South Carolina. PV production is modeled entering the system at the distribution level and regional PV capacity is based on household density. A gridded hourly global horizontal irradiance (GHI) dataset is used to capture the variable nature of PV generation. A unit commitment model (UCM) is then used determine the hourly dispatch of generators based on generator parameters and costs to supply generation to meet demand. Annual modeled results for six different scenarios are evaluated to determine technical, environmental and economic effects of varying levels of distributed PV penetration on the system. This study finds that the main limiting factor for PV integration in the DEC and PEC balancing authority regions is defined by the large generating capacity of base-load nuclear plants within the system. This threshold starts to affect system stability at integration levels of 5.7%. System errors, defined by imbalances caused by over or under generation with respect to demand, are identified in the model however the validity of these errors in real world context needs further examination due to the lack of high frequency irradiance data and modeling limitations. Operational system costs decreased as expected with PV integration although further research is needed to explore the impacts of the capital costs required to achieve the penetration levels found in this study. PV system generation was found to mainly displace coal generation creating a loss of revenue for generator owners. In all scenarios, CO 2 emissions were reduced with PV integration. This reduction could be used to meet impending EPA state-specific CO2 emissions targets.

  7. Flexible NO(x) abatement from power plants in the eastern United States.

    PubMed

    Sun, Lin; Webster, Mort; McGaughey, Gary; McDonald-Buller, Elena C; Thompson, Tammy; Prinn, Ronald; Ellerman, A Denny; Allen, David T

    2012-05-15

    Emission controls that provide incentives for maximizing reductions in emissions of ozone precursors on days when ozone concentrations are highest have the potential to be cost-effective ozone management strategies. Conventional prescriptive emissions controls or cap-and-trade programs consider all emissions similarly regardless of when they occur, despite the fact that contributions to ozone formation may vary. In contrast, a time-differentiated approach targets emissions reductions on forecasted high ozone days without imposition of additional costs on lower ozone days. This work examines simulations of such dynamic air quality management strategies for NO(x) emissions from electric generating units. Results from a model of day-specific NO(x) pricing applied to the Pennsylvania-New Jersey-Maryland (PJM) portion of the northeastern U.S. electrical grid demonstrate (i) that sufficient flexibility in electricity generation is available to allow power production to be switched from high to low NO(x) emitting facilities, (ii) that the emission price required to induce EGUs to change their strategies for power generation are competitive with other control costs, (iii) that dispatching strategies, which can change the spatial and temporal distribution of emissions, lead to ozone concentration reductions comparable to other control technologies, and (iv) that air quality forecasting is sufficiently accurate to allow EGUs to adapt their power generation strategies.

  8. Increasing Interest of Mass Communication Media and the General Public in the Distribution of Tweets About Mental Disorders: Observational Study.

    PubMed

    Alvarez-Mon, Miguel Angel; Asunsolo Del Barco, Angel; Lahera, Guillermo; Quintero, Javier; Ferre, Francisco; Pereira-Sanchez, Victor; Ortuño, Felipe; Alvarez-Mon, Melchor

    2018-05-28

    The contents of traditional communication media and new internet social media reflect the interests of society. However, certain barriers and a lack of attention towards mental disorders have been previously observed. The objective of this study is to measure the relevance of influential American mainstream media outlets for the distribution of psychiatric information and the interest generated in these topics among their Twitter followers. We investigated tweets generated about mental health conditions and diseases among 15 mainstream general communication media outlets in the United States of America between January 2007 and December 2016. Our study strategy focused on identifying several psychiatric terms of primary interest. The number of retweets generated from the selected tweets was also investigated. As a control, we examined tweets generated about the main causes of death in the United States of America, the main chronic neurological degenerative diseases, and HIV. In total, 13,119 tweets about mental health disorders sent by the American mainstream media outlets were analyzed. The results showed a heterogeneous distribution but preferential accumulation for a select number of conditions. Suicide and gender dysphoria accounted for half of the number of tweets sent. Variability in the number of tweets related to each control disease was also found (5998). The number of tweets sent regarding each different psychiatric or organic disease analyzed was significantly correlated with the number of retweets generated by followers (1,030,974 and 424,813 responses to mental health disorders and organic diseases, respectively). However, the probability of a tweet being retweeted differed significantly among the conditions and diseases analyzed. Furthermore, the retweeted to tweet ratio was significantly higher for psychiatric diseases than for the control diseases (odds ratio 1.11, CI 1.07-1.14; P<.001). American mainstream media outlets and the general public demonstrate a preferential interest for psychiatric diseases on Twitter. The heterogeneous weights given by the media outlets analyzed to the different mental health disorders and conditions are reflected in the responses of Twitter followers. ©Miguel Angel Alvarez-Mon, Angel Asunsolo del Barco, Guillermo Lahera, Javier Quintero, Francisco Ferre, Victor Pereira-Sanchez, Felipe Ortuño, Melchor Alvarez-Mon. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 28.05.2018.

  9. Improvement of radiological penumbra using intermediate energy photons (IEP) for stereotactic radiosurgery.

    PubMed

    O'Malley, Lauren; Pignol, Jean-Philippe; Beachey, David J; Keller, Brian M; Presutti, Joseph; Sharpe, Michael

    2006-05-21

    Using efficient immobilization and dedicated beam collimation devices, stereotactic radiosurgery ensures highly conformal treatment of small tumours with limited microscopic extension. One contribution to normal tissue irradiation remains the radiological penumbra. This work aims at demonstrating that intermediate energy photons (IEP), above orthovoltage but below megavoltage, improve dose distribution for stereotactic radiosurgery for small irradiation field sizes due to a dramatic reduction of radiological penumbra. Two different simulation systems were used: (i) Monte Carlo simulation to investigate the dose distribution of monoenergetic IEP between 100 keV and 1 MeV in water phantom; (ii) the Pinnacle3 TPS including a virtual IEP unit to investigate the dosimetry benefit of treating with 11 non-coplanar beams a 2 cm tumour in the middle of a brain adjacent to a 1 mm critical structure. Radiological penumbrae below 300 microm are generated for field size below 2 x 2 cm2 using monoenergetic IEP beams between 200 and 400 keV. An 800 kV beam generated in a 0.5 mm tungsten target maximizes the photon intensity in this range. Pinnacle3 confirms the dramatic reduction in penumbra size. DVHs show for a constant dose distribution conformality, improved dose distribution homogeneity and better sparing of critical structures using a 800 kV beam compared to a 6 MV beam.

  10. Improvement of radiological penumbra using intermediate energy photons (IEP) for stereotactic radiosurgery

    NASA Astrophysics Data System (ADS)

    O'Malley, Lauren; Pignol, Jean-Philippe; Beachey, David J.; Keller, Brian M.; Presutti, Joseph; Sharpe, Michael

    2006-05-01

    Using efficient immobilization and dedicated beam collimation devices, stereotactic radiosurgery ensures highly conformal treatment of small tumours with limited microscopic extension. One contribution to normal tissue irradiation remains the radiological penumbra. This work aims at demonstrating that intermediate energy photons (IEP), above orthovoltage but below megavoltage, improve dose distribution for stereotactic radiosurgery for small irradiation field sizes due to a dramatic reduction of radiological penumbra. Two different simulation systems were used: (i) Monte Carlo simulation to investigate the dose distribution of monoenergetic IEP between 100 keV and 1 MeV in water phantom; (ii) the Pinnacle3 TPS including a virtual IEP unit to investigate the dosimetry benefit of treating with 11 non-coplanar beams a 2 cm tumour in the middle of a brain adjacent to a 1 mm critical structure. Radiological penumbrae below 300 µm are generated for field size below 2 × 2 cm2 using monoenergetic IEP beams between 200 and 400 keV. An 800 kV beam generated in a 0.5 mm tungsten target maximizes the photon intensity in this range. Pinnacle3 confirms the dramatic reduction in penumbra size. DVHs show for a constant dose distribution conformality, improved dose distribution homogeneity and better sparing of critical structures using a 800 kV beam compared to a 6 MV beam.

  11. Experience with an integrated control and monitoring system at the El Segundo generating station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papilla, R.P.; McKinley, J.H.; Blanco, M.A.

    1992-01-01

    This paper describes the EPRI/Southern California Edison (SCE) El Segundo Integrated Control and Monitoring System (ICMS) project and relates key project experiences. The ICMS project is a cost-shared effort between EPRI and SCE designed to address the issues involved with integrating power plant diagnostic and condition monitoring with control. A digital distributed control system retrofit for SCE's El Segundo Units 3 and 4 provided the case study. although many utilities have retrofitted power plant units with distributed control systems (DCS's) and have applied diagnostics and monitoring programs to improve operations and performance, the approach taken in this project, that is,more » integrating the monitoring function with the control function, is profoundly new and unique. Over the life of the El Segundo ICMS, SCE expects to realize savings form life optimization, increased operating flexibility, improved heat rate, reduced NO{sub x} emissions, and lower maintenance costs. These savings are expected to be significant over the life of the system.« less

  12. MEGASTAR: The Meaning of Energy Growth: An Assessment of Systems, Technologies, and Requirements

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A methodology for the display and analysis of postulated energy futures for the United States is presented. A systems approach that includes the methodology of technology assessment is used to examine three energy scenarios--the Westinghouse Nuclear Electric Economy, the Ford Technical Fix Base Case and a MEGASTAR generated Alternate to the Ford Technical Fix Base Case. The three scenarios represent different paths of energy consumption for the present to the year 2000. Associated with these paths are various mixes of fuels, conversion, distribution, conservation and end-use technologies. MEGASTAR presents the estimated times and unit requirements to supply the fuels, conversion and distribution systems for the postulated end uses for the three scenarios and then estimates the aggregate manpower, materials, and capital requirements needed to develop the energy system described by the particular scenario. The total requirements and the energy subsystems for each scenario are assessed for their primary impacts in the areas of society, the environment, technology and the economy.

  13. Distribution Grid Integration Unit Cost Database | Solar Research | NREL

    Science.gov Websites

    Unit Cost Database Distribution Grid Integration Unit Cost Database NREL's Distribution Grid Integration Unit Cost Database contains unit cost information for different components that may be used to associated with PV. It includes information from the California utility unit cost guides on traditional

  14. Benefit-cost methodology study with example application of the use of wind generators

    NASA Technical Reports Server (NTRS)

    Zimmer, R. P.; Justus, C. G.; Mason, R. M.; Robinette, S. L.; Sassone, P. G.; Schaffer, W. A.

    1975-01-01

    An example application for cost-benefit methodology is presented for the use of wind generators. The approach adopted for the example application consisted of the following activities: (1) surveying of the available wind data and wind power system information, (2) developing models which quantitatively described wind distributions, wind power systems, and cost-benefit differences between conventional systems and wind power systems, and (3) applying the cost-benefit methodology to compare a conventional electrical energy generation system with systems which included wind power generators. Wind speed distribution data were obtained from sites throughout the contiguous United States and were used to compute plant factor contours shown on an annual and seasonal basis. Plant factor values (ratio of average output power to rated power) are found to be as high as 0.6 (on an annual average basis) in portions of the central U. S. and in sections of the New England coastal area. Two types of wind power systems were selected for the application of the cost-benefit methodology. A cost-benefit model was designed and implemented on a computer to establish a practical tool for studying the relative costs and benefits of wind power systems under a variety of conditions and to efficiently and effectively perform associated sensitivity analyses.

  15. Comparison of electrochemical and thermal storage for hybrid parabolic dish solar power plants

    NASA Technical Reports Server (NTRS)

    Steele, H. L.; Wen, L.

    1981-01-01

    The economic and operating performance of a parabolic point focus array of solar electricity generators combined with either battery or thermal energy storage are examined. Noting that low-cost, mass-producible power generating units are under development for the point focus of distributed dishes, that Zn-Cl battery tests will begin in 1981 and a 100 kWh Na-S battery in 1983, the state of thermal storage requires acceleration to reach the prototype status of the batteries. Under the assumptions of 10,000 units/yr with an expected 30 yr lifetime, cost comparisons are developed for 10 types of advanced batteries. A 5 MWe plant with full thermal or 80% battery storage discharge when demand occurs in conditions of no insolation is considered, specifically for Fe-Cr redox batteries. A necessity for the doubling of fuel prices from 1980 levels by 1990 is found in order to make the systems with batteries economically competitive.

  16. Anatomical and morphogenetic analysis of seismoelectric conversion patterns at geological units

    NASA Astrophysics Data System (ADS)

    Kröger, B.; Kemna, A.

    2012-04-01

    Characterisation of the hydraulic properties of a reservoir, such as porosity and permeability, and their spatial distribution plays an important role in many subsurface geophysical investigations. A fully developed seismoelectric exploration method is very appealing since it would offer the potential to directly determine these parameters in field-scale applications. In fluid-saturated rocks, seismic waves can generate electromagnetic fields, due to electrokinetic coupling mechanisms at the fluid-mineral interface. Using numerical modelling, we investigated the spatio-temporal occurrence and evolution of the seismoelectric effects that occur in spatially confined lithological units. Such geometries may represent clay lenses embedded in an aquifer or petroleum deposits in a host rock. For the modelling, we use a simplified time-domain formulation of the coupled physical problem and its efficient implementation in a 2D finite-element framework. Two occurring seismoelectric phenomena are investigated: (1) the co-seismic field associated with the seismic displacement at each point and (2) the interface response generated at layer boundaries. To gain insight into the morphogenetic field behaviour of the seismoelectric effects, we run numerical simulations using several material parameter set-ups for various target geometries. Accordingly, we varied both the thickness of the confined units and the value of the electrical bulk conductivity in the considered media. The analysis of the seismoelectric effects revealed an important difference in the generation of the interface response at either electrically conductive or resistive units. We find that the contrast in the electrical bulk conductivity between the host rock and the target geological unit controls the shape and structure of the seismoelectric conversion patterns. Our results show that the seismoelectric interface response captures both the petrophysical and geometrical characteristics of the converting geological unit. The considered models indicate the general potential of using the seismoelectric interface response for reservoir characterisation in hydrogeological or hydrocarbon exploration studies.

  17. Quasi-static time-series simulation using OpenDSS in IEEE distribution feeder model with high PV penetration and its impact on solar forecasting

    NASA Astrophysics Data System (ADS)

    Mohammed, Touseef Ahmed Faisal

    Since 2000, renewable electricity installations in the United States (excluding hydropower) have more than tripled. Renewable electricity has grown at a compounded annual average of nearly 14% per year from 2000-2010. Wind, Concentrated Solar Power (CSP) and solar Photo Voltaic (PV) are the fastest growing renewable energy sectors. In 2010 in the U.S., solar PV grew over 71% and CSP grew by 18% from the previous year. Globally renewable electricity installations have more than quadrupled from 2000-2010. Solar PV generation grew by a factor of more than 28 between 2000 and 2010. The amount of CSP and solar PV installations are increasing on the distribution grid. These PV installations transmit electrical current from the load centers to the generating stations. But the transmission and distribution grid have been designed for uni-directional flow of electrical energy from generating stations to load centers. This causes imbalances in voltage and switchgear of the electrical circuitry. With the continuous rise in PV installations, analysis of voltage profile and penetration levels remain an active area of research. Standard distributed photovoltaic (PV) generators represented in simulation studies do not reflect the exact location and variability properties such as distance between interconnection points to substations, voltage regulators, solar irradiance and other environmental factors. Quasi-Static simulations assist in peak load planning hour and day ahead as it gives a time sequence analysis to help in generation allocation. Simulation models can be daily, hourly or yearly depending on duty cycle and dynamics of the system. High penetration of PV into the power grid changes the voltage profile and power flow dynamically in the distribution circuits due to the inherent variability of PV. There are a number of modeling and simulations tools available for the study of such high penetration PV scenarios. This thesis will specifically utilize OpenDSS, a open source Distribution System Simulator developed by Electric Power Research Institute, to simulate grid voltage profile with a large scale PV system under quasi-static time series considering variations of PV output in seconds, minutes, and the average daily load variations. A 13 bus IEEE distribution feeder model is utilized with distributed residential and commercial scale PV at different buses for simulation studies. Time series simulations are discussed for various modes of operation considering dynamic PV penetration at different time periods in a day. In addition, this thesis demonstrates simulations taking into account the presence of moving cloud for solar forecasting studies.

  18. Optically Generated 2-Dimensional Photonic Cluster State from Coupled Quantum Dots

    DTIC Science & Technology

    2010-03-12

    coupled quantum dots 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Naval Research Laboratory,,Washington,DC,20375 8. PERFORMING ORGANIZATION REPORT NUMBER...9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM( S ) 11. SPONSOR/MONITOR’S REPORT NUMBER( S ) 12. DISTRIBUTION

  19. Data Center Energy Efficiency Technologies and Methodologies: A Review of Commercial Technologies and Recommendations for Application to Department of Defense Systems

    DTIC Science & Technology

    2015-11-01

    provided by a stand-alone desktop or hand held computing device. This introduces into the discussion a large number of mobile , tactical command...control, communications, and computer (C4) systems across the Services. A couple of examples are mobile command posts mounted on the back of an M1152... infrastructure (DCPI). This term encompasses on-site backup generators, switchgear, uninterruptible power supplies (UPS), power distribution units

  20. Distribution of high-temperature (>150 °C) geothermal resources in California

    USGS Publications Warehouse

    Sass, John H.; Priest, Susan S.

    2002-01-01

    California contains, by far, the greatest geothermal generating capacity in the United States, and with the possible exception of Alaska, the greatest potential for the development of additional resources. California has nearly 2/3 of the US geothermal electrical installed capacity of over 3,000 MW. Depending on assumptions regarding reservoir characteristics and future market conditions, additional resources of between 2,000 and 10,000 MWe might be developed (see e.g., Muffler, 1979).

  1. NMR measurement system including two synchronized ring buffers, with 128 rf coils for in situ water monitoring in a polymer electrolyte fuel cell

    NASA Astrophysics Data System (ADS)

    Ogawa, Kuniyasu; Haishi, Tomoyuki; Aoki, Masaru; Hasegawa, Hiroshi; Morisaka, Shinichi; Hashimoto, Seitaro

    2017-01-01

    A small radio-frequency (rf) coil inserted into a polymer electrolyte fuel cell (PEFC) can be used to acquire nuclear magnetic resonance (NMR) signals from the water in a membrane electrode assembly (MEA) or in oxygen gas channels in the PEFC. Measuring the spatial distribution of the water in a large PEFC requires using many rf probes, so an NMR measurement system which acquires NMR signals from 128 rf probes at intervals of 0.5 s was manufactured. The system has eight rf transceiver units with a field-programmable gate array (FPGA) for modulation of the excitation pulse and quadrature phase detection of the NMR signal, and one control unit with two ring buffers for data control. The sequence data required for the NMR measurement were written into one ring buffer. The acquired NMR signal data were then written temporarily into the other ring buffer and then were transmitted to a personal computer (PC). A total of 98 rf probes were inserted into the PEFC that had an electrical generation area of 16 cm × 14 cm, and the water generated in the PEFC was measured when the PEFC operated at 100 A. As a result, time-dependent changes in the spatial distribution of the water content in the MEA and the water in the oxygen gas channels were obtained.

  2. Application of Phasor Measurement Units for Protection of Distribution Networks with High Penetration of Photovoltaic Sources

    NASA Astrophysics Data System (ADS)

    Meskin, Matin

    The rate of the integration of distributed generation (DG) units to the distribution level to meet the growth in demand increases as a reasonable replacement for costly network expansion. This integration brings many advantages to the consumers and power grids, as well as giving rise to more challenges in relation to protection and control. Recent research has brought to light the negative effects of DG units on short circuit currents and overcurrent (OC) protection systems in distribution networks. Change in the direction of fault current flow, increment or decrement of fault current magnitude, blindness of protection, feeder sympathy trip, nuisance trip of interrupting devices, and the disruption of coordination between protective devices are some potential impacts of DG unit integration. Among other types of DG units, the integration of renewable energy resources into the electric grid has seen a vast improvement in recent years. In particular, the interconnection of photovoltaic (PV) sources to the medium voltage (MV) distribution networks has experienced a rapid increase in the last decade. In this work, the effect of PV source on conventional OC relays in MV distribution networks is shown. It is indicated that the PV output fluctuation, due to changes in solar radiation, causes the magnitude and direction of the current to change haphazardly. These variations may result in the poor operation of OC relays as the main protective devices in the MV distribution networks. In other words, due to the bi-directional power flow characteristic and the fluctuation of current magnitude occurring in the presence of PV sources, a specific setting of OC relays is difficult to realize. Therefore, OC relays may operate in normal conditions. To improve the OC relay operation, a voltage-dependent-overcurrent protection is proposed. Although, this new method prevents the OC relay from maloperation, its ability to detect earth faults and high impedance faults is poor. Thus, a comprehensive protective system is suggested at the end of the dissertation. The proposed method is based on the application of the phasor measurement unit (PMU) and the differential protection method. All of the current magnitudes and angles are collected by PMU and are sent to the phasor data concentrator (PDC), where a differential protection algorithm is applied to these data. If any fault is detected, the trip will be sent back to the corresponding circuit breakers across the network. Higher selectivity, sensitivity, and faster operation in the differential protection are superior to those of other protection schemes. Differential protection operates as unit protection, which means that it operates only when there is a fault in the protection zone. It does not function for faults occurring out of zone. Therefore, no coordination is required between differential protections across the power system. Moreover, the misoperation of this protective scheme is less likely as compared to other protection methods.

  3. Analysis on Voltage Profile of Distribution Network with Distributed Generation

    NASA Astrophysics Data System (ADS)

    Shao, Hua; Shi, Yujie; Yuan, Jianpu; An, Jiakun; Yang, Jianhua

    2018-02-01

    Penetration of distributed generation has some impacts on a distribution network in load flow, voltage profile, reliability, power loss and so on. After the impacts and the typical structures of the grid-connected distributed generation are analyzed, the back/forward sweep method of the load flow calculation of the distribution network is modelled including distributed generation. The voltage profiles of the distribution network affected by the installation location and the capacity of distributed generation are thoroughly investigated and simulated. The impacts on the voltage profiles are summarized and some suggestions to the installation location and the capacity of distributed generation are given correspondingly.

  4. Energy optimization for a wind DFIG with flywheel energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamzaoui, Ihssen, E-mail: hamzaoui-ihssen2000@yahoo.fr; Laboratory of Instrumentation, Faculty of Electronics and Computer, University of Khemis Miliana, Ain Defla; Bouchafaa, Farid, E-mail: fbouchafa@gmail.com

    2016-07-25

    The type of distributed generation unit that is the subject of this paper relates to renewable energy sources, especially wind power. The wind generator used is based on a double fed induction Generator (DFIG). The stator of the DFIG is connected directly to the network and the rotor is connected to the network through the power converter with three levels. The objective of this work is to study the association a Flywheel Energy Storage System (FESS) in wind generator. This system is used to improve the quality of electricity provided by wind generator. It is composed of a flywheel; anmore » induction machine (IM) and a power electronic converter. A maximum power tracking technique « Maximum Power Point Tracking » (MPPT) and a strategy for controlling the pitch angle is presented. The model of the complete system is developed in Matlab/Simulink environment / to analyze the results from simulation the integration of wind chain to networks.« less

  5. High thermal conductivity materials for thermal management applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broido, David A.; Reinecke, Thomas L.; Lindsay, Lucas R.

    High thermal conductivity materials and methods of their use for thermal management applications are provided. In some embodiments, a device comprises a heat generating unit (304) and a thermally conductive unit (306, 308, 310) in thermal communication with the heat generating unit (304) for conducting heat generated by the heat generating unit (304) away from the heat generating unit (304), the thermally conductive unit (306, 308, 310) comprising a thermally conductive compound, alloy or composite thereof. The thermally conductive compound may include Boron Arsenide, Boron Antimonide, Germanium Carbide and Beryllium Selenide.

  6. Structural and tectonic setting of the Charleston, South Carolina, region: Evidence from the Tertiary stratigraphic record

    USGS Publications Warehouse

    Weems, R.E.; Lewis, W.C.

    2002-01-01

    Eleven upper Eocene through Pliocene stratigraphic units occur in the subsurface of the region surrounding Charleston, South Carolina. These units contain a wealth of information concerning the long-term tectonic and structural setting of that area. These stratigraphic units have a mosaic pattern of distribution, rather than a simple layered pattern, because deposition, erosion, and tectonic warping have interacted in a complex manner through time. By generating separate structure-contour maps for the base of each stratigraphic unit, an estimate of the original basal surface of each unit can be reconstructed over wide areas. Changes in sea level over geologic time generate patterns of deposition and erosion that are geographically unique for the time of each transgression. Such patterns fail to persist when compared sequentially over time. In some areas, however, there has been persistent, repetitive net downward of upward movement over the past 34 m.y. These repetitive patterns of persistent motion are most readily attributable to tectonism. The spatial pattern of these high and low areas is complex, but it appears to correlate well with known tectonic features of the region. This correlation suggests that the tectonic setting of the Charleston region is controlled by scissors-like compression on a crustal block located between the north-trending Adams Run fault and the northwest-trending Charleston fault. Tectonism is localized in the Charleston region because it lies within a discrete hinge zone that accommodates structural movement between the Cape Fear arch and the Southeast Georgia embayment.

  7. Distributed MIMO chaotic radar based on wavelength-division multiplexing technology.

    PubMed

    Yao, Tingfeng; Zhu, Dan; Ben, De; Pan, Shilong

    2015-04-15

    A distributed multiple-input multiple-output chaotic radar based on wavelength-division multiplexing technology (WDM) is proposed and demonstrated. The wideband quasi-orthogonal chaotic signals generated by different optoelectronic oscillators (OEOs) are emitted by separated antennas to gain spatial diversity against the fluctuation of a target's radar cross section and enhance the detection capability. The received signals collected by the receive antennas and the reference signals from the OEOs are delivered to the central station for joint processing by exploiting WDM technology. The centralized signal processing avoids precise time synchronization of the distributed system and greatly simplifies the remote units, which improves the localization accuracy of the entire system. A proof-of-concept experiment for two-dimensional localization of a metal target is demonstrated. The maximum position error is less than 6.5 cm.

  8. Evaluating renewable natural resources flow and net primary productivity with a GIS-Emergy approach: A case study of Hokkaido, Japan.

    PubMed

    Wang, Chengdong; Zhang, Shenyan; Yan, Wanglin; Wang, Renqing; Liu, Jian; Wang, Yutao

    2016-11-18

    Renewable natural resources, such as solar radiation, rainfall, wind, and geothermal heat, together with ecosystem services, provide the elementary supports for the sustainable development of human society. To improve regional sustainability, we studied the spatial distributions and quantities of renewable natural resources and net primary productivity (NPP) in Hokkaido, which is the second largest island of Japan. With the help of Geographic Information System (GIS) software, distribution maps for each type of renewable natural resource were generated by kriging interpolation based on statistical records. A composite map of the flow of all types of renewable natural resources was also generated by map layer overlapping. Additionally, we utilized emergy analysis to convert each renewable flow with different attributes into a unified unit (i.e., solar equivalent joules [sej]). As a result, the spatial distributions of the flow of renewable natural resources of the Hokkaido region are presented in the form of thematic emergy maps. Thus, the areas with higher renewable emergy can be easily visualized and identified. The dominant renewable flow in certain areas can also be directly distinguished. The results can provide useful information for regional sustainable development, environmental conservation and ecological management.

  9. Evaluating renewable natural resources flow and net primary productivity with a GIS-Emergy approach: A case study of Hokkaido, Japan

    PubMed Central

    Wang, Chengdong; Zhang, Shenyan; Yan, Wanglin; Wang, Renqing; Liu, Jian; Wang, Yutao

    2016-01-01

    Renewable natural resources, such as solar radiation, rainfall, wind, and geothermal heat, together with ecosystem services, provide the elementary supports for the sustainable development of human society. To improve regional sustainability, we studied the spatial distributions and quantities of renewable natural resources and net primary productivity (NPP) in Hokkaido, which is the second largest island of Japan. With the help of Geographic Information System (GIS) software, distribution maps for each type of renewable natural resource were generated by kriging interpolation based on statistical records. A composite map of the flow of all types of renewable natural resources was also generated by map layer overlapping. Additionally, we utilized emergy analysis to convert each renewable flow with different attributes into a unified unit (i.e., solar equivalent joules [sej]). As a result, the spatial distributions of the flow of renewable natural resources of the Hokkaido region are presented in the form of thematic emergy maps. Thus, the areas with higher renewable emergy can be easily visualized and identified. The dominant renewable flow in certain areas can also be directly distinguished. The results can provide useful information for regional sustainable development, environmental conservation and ecological management. PMID:27857230

  10. The Two-Dimensional Gabor Function Adapted to Natural Image Statistics: A Model of Simple-Cell Receptive Fields and Sparse Structure in Images.

    PubMed

    Loxley, P N

    2017-10-01

    The two-dimensional Gabor function is adapted to natural image statistics, leading to a tractable probabilistic generative model that can be used to model simple cell receptive field profiles, or generate basis functions for sparse coding applications. Learning is found to be most pronounced in three Gabor function parameters representing the size and spatial frequency of the two-dimensional Gabor function and characterized by a nonuniform probability distribution with heavy tails. All three parameters are found to be strongly correlated, resulting in a basis of multiscale Gabor functions with similar aspect ratios and size-dependent spatial frequencies. A key finding is that the distribution of receptive-field sizes is scale invariant over a wide range of values, so there is no characteristic receptive field size selected by natural image statistics. The Gabor function aspect ratio is found to be approximately conserved by the learning rules and is therefore not well determined by natural image statistics. This allows for three distinct solutions: a basis of Gabor functions with sharp orientation resolution at the expense of spatial-frequency resolution, a basis of Gabor functions with sharp spatial-frequency resolution at the expense of orientation resolution, or a basis with unit aspect ratio. Arbitrary mixtures of all three cases are also possible. Two parameters controlling the shape of the marginal distributions in a probabilistic generative model fully account for all three solutions. The best-performing probabilistic generative model for sparse coding applications is found to be a gaussian copula with Pareto marginal probability density functions.

  11. Power management and frequency regulation for microgrid and smart grid: A real-time demand response approach

    NASA Astrophysics Data System (ADS)

    Pourmousavi Kani, Seyyed Ali

    Future power systems (known as smart grid) will experience a high penetration level of variable distributed energy resources to bring abundant, affordable, clean, efficient, and reliable electric power to all consumers. However, it might suffer from the uncertain and variable nature of these generations in terms of reliability and especially providing required balancing reserves. In the current power system structure, balancing reserves (provided by spinning and non-spinning power generation units) usually are provided by conventional fossil-fueled power plants. However, such power plants are not the favorite option for the smart grid because of their low efficiency, high amount of emissions, and expensive capital investments on transmission and distribution facilities, to name a few. Providing regulation services in the presence of variable distributed energy resources would be even more difficult for islanded microgrids. The impact and effectiveness of demand response are still not clear at the distribution and transmission levels. In other words, there is no solid research reported in the literature on the evaluation of the impact of DR on power system dynamic performance. In order to address these issues, a real-time demand response approach along with real-time power management (specifically for microgrids) is proposed in this research. The real-time demand response solution is utilized at the transmission (through load-frequency control model) and distribution level (both in the islanded and grid-tied modes) to provide effective and fast regulation services for the stable operation of the power system. Then, multiple real-time power management algorithms for grid-tied and islanded microgrids are proposed to economically and effectively operate microgrids. Extensive dynamic modeling of generation, storage, and load as well as different controller design are considered and developed throughout this research to provide appropriate models and simulation environment to evaluate the effectiveness of the proposed methodologies. Simulation results revealed the effectiveness of the proposed methods in providing balancing reserves and microgrids' economic and stable operation. The proposed tools and approaches can significantly enhance the application of microgrids and demand response in the smart grid era. They will also help to increase the penetration level of variable distributed generation resources in the smart grid.

  12. Effect and relevance of the artificial drainage system when assessing the hydrologic impact of the imperviousness distribution within the watershed

    NASA Astrophysics Data System (ADS)

    Thenoux, M.; Gironas, J. A.; Mejia, A.

    2013-12-01

    Cities and urban growth have relevant environmental and social impacts, which could eventually be enhanced or reduced during the urban planning process. From the point of view of hydrology, impermeability and natural soil compaction are one of the main problems that urbanization brings to watershed. Previous studies demonstrate and quantify the impacts of the distribution of imperviousness in a watershed, both on runoff volumes and flow, and the quality and integrity of streams and receiving bodies. Moreover, some studies have investigated the optimal distribution of imperviousness, based on simulating different scenarios of land use change and its effects on runoff, mostly at the outlet of the watershed. However, these studies typically do not address the impact of artificial drainage system associated with the imperviousness scenarios, despite it is known that storm sewer coverage affects the flow accumulation and generation of flow hydrographs. This study seeks to quantify the effects and relevance of the artificial system when it comes to assess the hydrological impacts of the spatial distribution of imperviousness and to determine the characteristics of this influence. For this purpose, an existing model to generate imperviousness distribution scenarios is coupled with a model developed to automatically generate artificial drainage networks. These models are applied to a natural watershed to generate a variety of imperviousness and storm sewer layout scenarios, which are evaluate with a morphoclimatic instantaneous unit hydrograph model. We first tested the ability of this approach to represent the joint effects of imperviousness (i.e. level and distribution) and storm sewer coverage. We then quantified the effects of these variables on the hydrological response, considering also different return period in order to take into account the variability of the precipitation regime. Overall, we show that the layout and spatial coverage of the storm sewer system affect the hydrologic response, and that these effects depend on the degree of imperviousness and the characteristics of the precipitation. Results of this research improve our understanding on how urban planning decisions can contribute to minimize the hydrologic and environmental impacts of urban development.

  13. A novel analysis method for paired-sample microbial ecology experiments

    DOE PAGES

    Olesen, Scott W.; Vora, Suhani; Techtmann, Stephen M.; ...

    2016-05-06

    Many microbial ecology experiments use sequencing data to measure a community s response to an experimental treatment. In a common experimental design, two units, one control and one experimental, are sampled before and after the treatment is applied to the experimental unit. The four resulting samples contain information about the dynamics of organisms that respond to the treatment, but there are no analytical methods designed to extract exactly this type of information from this configuration of samples. Here we present an analytical method specifically designed to visualize and generate hypotheses about microbial community dynamics in experiments that have paired samplesmore » and few or no replicates. The method is based on the Poisson lognormal distribution, long studied in macroecology, which we found accurately models the abundance distribution of taxa counts from 16S rRNA surveys. To demonstrate the method s validity and potential, we analyzed an experiment that measured the effect of crude oil on ocean microbial communities in microcosm. Our method identified known oil degraders as well as two clades, Maricurvus and Rhodobacteraceae, that responded to amendment with oil but do not include known oil degraders. Furthermore, our approach is sensitive to organisms that increased in abundance only in the experimental unit but less sensitive to organisms that increased in both control and experimental units, thus mitigating the role of bottle effects .« less

  14. Transient performance of fan engine with water ingestion

    NASA Technical Reports Server (NTRS)

    Murthy, S. N. B.; Mullican, A.

    1993-01-01

    In a continuing investigation on developing and applying codes for prediction of performance of a turbine jet engine and its components with water ingestion during flight operation, including power settings, and flight altitudes and speed changes, an attempt was made to establish the effects of water ingestion through simulation of a generic high bypass ratio engine with a generic control. In view of the large effects arising in the air compression system and the prediffuser-combustor unit during water ingestion, attention was focused on those effects and the resulting changes in engine performance. Under all conditions of operation, whether ingestion is steady or not, it became evident that water ingestion causes a fan-compressor unit to operate in a time-dependent fashion with periodic features, particularly with respect to the state of water in the span and the film in the casing clearance space, at the exit of the machine. On the other hand, the aerodynamic performance of the unit may be considered as quasi-steady once the distribution of water has attained an equilibrium state with respect to its distribution and motion. For purposes of engine simulation, the performance maps for the generic fan-compressor unit were generated based on the attainment of a quasi-steady state (meaning steady except for long-period variations in performance) during ingestion and operation over a wide enough range of rotational speeds.

  15. A novel analysis method for paired-sample microbial ecology experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olesen, Scott W.; Vora, Suhani; Techtmann, Stephen M.

    Many microbial ecology experiments use sequencing data to measure a community s response to an experimental treatment. In a common experimental design, two units, one control and one experimental, are sampled before and after the treatment is applied to the experimental unit. The four resulting samples contain information about the dynamics of organisms that respond to the treatment, but there are no analytical methods designed to extract exactly this type of information from this configuration of samples. Here we present an analytical method specifically designed to visualize and generate hypotheses about microbial community dynamics in experiments that have paired samplesmore » and few or no replicates. The method is based on the Poisson lognormal distribution, long studied in macroecology, which we found accurately models the abundance distribution of taxa counts from 16S rRNA surveys. To demonstrate the method s validity and potential, we analyzed an experiment that measured the effect of crude oil on ocean microbial communities in microcosm. Our method identified known oil degraders as well as two clades, Maricurvus and Rhodobacteraceae, that responded to amendment with oil but do not include known oil degraders. Furthermore, our approach is sensitive to organisms that increased in abundance only in the experimental unit but less sensitive to organisms that increased in both control and experimental units, thus mitigating the role of bottle effects .« less

  16. Electrical stimulation site influences the spatial distribution of motor units recruited in tibialis anterior.

    PubMed

    Okuma, Yoshino; Bergquist, Austin J; Hong, Mandy; Chan, K Ming; Collins, David F

    2013-11-01

    To compare the spatial distribution of motor units recruited in tibialis anterior (TA) when electrical stimulation is applied over the TA muscle belly versus the common peroneal nerve trunk. Electromyography (EMG) was recorded from the surface and from fine wires in superficial and deep regions of TA. Separate M-wave recruitment curves were constructed for muscle belly and nerve trunk stimulation. During muscle belly stimulation, significantly more current was required to generate M-waves that were 5% of the maximal M-wave (M max; M5%max), 50% M max (M 50%max) and 95% M max (M 95%max) at the deep versus the superficial recording site. In contrast, during nerve trunk stimulation, there were no differences in the current required to reach M5%max, M 50%max or M 95%max between deep and superficial recording sites. Surface EMG reflected activity in both superficial and deep muscle regions. Stimulation over the muscle belly recruited motor units from superficial to deep with increasing stimulation amplitude. Stimulation over the nerve trunk recruited superficial and deep motor units equally, regardless of stimulation amplitude. These results support the idea that where electrical stimulation is applied markedly affects how contractions are produced and have implications for the interpretation of surface EMG data. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Decentralized control of units in smart grids for the support of renewable energy supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnenschein, Michael, E-mail: Michael.Sonnenschein@Uni-Oldenburg.DE; Lünsdorf, Ontje, E-mail: Ontje.Luensdorf@OFFIS.DE; Bremer, Jörg, E-mail: Joerg.Bremer@Uni-Oldenburg.DE

    Due to the significant environmental impact of power production from fossil fuels and nuclear fission, future energy systems will increasingly rely on distributed and renewable energy sources (RES). The electrical feed-in from photovoltaic (PV) systems and wind energy converters (WEC) varies greatly both over short and long time periods (from minutes to seasons), and (not only) by this effect the supply of electrical power from RES and the demand for electrical power are not per se matching. In addition, with a growing share of generation capacity especially in distribution grids, the top-down paradigm of electricity distribution is gradually replaced bymore » a bottom-up power supply. This altogether leads to new problems regarding the safe and reliable operation of power grids. In order to address these challenges, the notion of Smart Grids has been introduced. The inherent flexibilities, i.e. the set of feasible power schedules, of distributed power units have to be controlled in order to support demand–supply matching as well as stable grid operation. Controllable power units are e.g. combined heat and power plants, power storage systems such as batteries, and flexible power consumers such as heat pumps. By controlling the flexibilities of these units we are particularly able to optimize the local utilization of RES feed-in in a given power grid by integrating both supply and demand management measures with special respect to the electrical infrastructure. In this context, decentralized systems, autonomous agents and the concept of self-organizing systems will become key elements of the ICT based control of power units. In this contribution, we first show how a decentralized load management system for battery charging/discharging of electrical vehicles (EVs) can increase the locally used share of supply from PV systems in a low voltage grid. For a reliable demand side management of large sets of appliances, dynamic clustering of these appliances into uniformly controlled appliance sets is necessary. We introduce a method for self-organized clustering for this purpose and show how control of such clusters can affect load peaks in distribution grids. Subsequently, we give a short overview on how we are going to expand the idea of self-organized clusters of units into creating a virtual control center for dynamic virtual power plants (DVPP) offering products at a power market. For an efficient organization of DVPPs, the flexibilities of units have to be represented in a compact and easy to use manner. We give an introduction how the problem of representing a set of possibly 10{sup 100} feasible schedules can be solved by a machine-learning approach. In summary, this article provides an overall impression how we use agent based control techniques and methods of self-organization to support the further integration of distributed and renewable energy sources into power grids and energy markets. - Highlights: • Distributed load management for electrical vehicles supports local supply from PV. • Appliances can self-organize into so called virtual appliances for load control. • Dynamic VPPs can be controlled by extensively decentralized control centers. • Flexibilities of units can efficiently be represented by support-vector descriptions.« less

  18. 1 ATM subcooled liquid nitrogen cryogenic system with GM-refrigerator for a HTS power transformer

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Ohashi, K.; Umeno, T.; Suzuki, Y.; Kamioka, Y.; Kimura, H.; Tsutsumi, K.; Iwakuma, M.; Funaki, K.; Bhono, T.; Yagi, Y.

    2002-05-01

    A subcooled liquid nitrogen cryogenic system with GM-refrigerators was developed. The system was operated successfully in a commercial distribution power grid for three consecutive weeks without additional liquid nitrogen supply. The system consists of two main units. One is a HTS transformer unit and the HTS transformer is installed in a G-FRP cryostat. The other one is a pump unit. The pump unit has a liquid nitrogen pump and two GM-refrigerators of 290 W at 64 K for 50 Hz operation in a stainless steel dewar. The refrigerator cold heads are immersed in liquid nitrogen and produce directly subcooled liquid nitrogen in the pump unit. Those two units are connected by transfer-tubes and 1 atmosphere (0.1 MPa) subcooled liquid nitrogen is circulated through the system. In the field test, the refrigerators were operated at 60 Hz and it took 12 hours to cool the transformer down to 70 K and 26 hours to 66 K. The refrigerator cold heads were controlled not to be below 64 K during operation. In spite of a heat generation by the HTS transformer, the subcooled liquid nitrogen temperature in the HTS transformer unit was kept lower than 68 K.

  19. Non-Relative Value Unit-Generating Activities Represent One-Fifth of Academic Neuroradiologist Productivity.

    PubMed

    Wintermark, M; Zeineh, M; Zaharchuk, G; Srivastava, A; Fischbein, N

    2016-07-01

    A neuroradiologist's activity includes many tasks beyond interpreting relative value unit-generating imaging studies. Our aim was to test a simple method to record and quantify the non-relative value unit-generating clinical activity represented by consults and clinical conferences, including tumor boards. Four full-time neuroradiologists, working an average of 50% clinical and 50% academic activity, systematically recorded all the non-relative value unit-generating consults and conferences in which they were involved during 3 months by using a simple, Web-based, computer-based application accessible from smartphones, tablets, or computers. The number and type of imaging studies they interpreted during the same period and the associated relative value units were extracted from our billing system. During 3 months, the 4 neuroradiologists working an average of 50% clinical activity interpreted 4241 relative value unit-generating imaging studies, representing 8152 work relative value units. During the same period, they recorded 792 non-relative value unit-generating study reviews as part of consults and conferences (not including reading room consults), representing 19% of the interpreted relative value unit-generating imaging studies. We propose a simple Web-based smartphone app to record and quantify non-relative value unit-generating activities including consults, clinical conferences, and tumor boards. The quantification of non-relative value unit-generating activities is paramount in this time of a paradigm shift from volume to value. It also represents an important tool for determining staffing levels, which cannot be performed on the basis of relative value unit only, considering the importance of time spent by radiologists on non-relative value unit-generating activities. It may also influence payment models from medical centers to radiology departments or practices. © 2016 by American Journal of Neuroradiology.

  20. Shaking from injection-induced earthquakes in the central and eastern United States

    USGS Publications Warehouse

    Hough, Susan E.

    2014-01-01

    In this study I consider the ground motions generated by 11 moderate (Mw4.0-5.6) earthquakes in the central and eastern United States that are thought or suspected to be induced by fluid injection. Using spatially rich intensity data from the USGS “Did You Feel It?” system, I show that the distance decay of intensities for all events is consistent with that observed for tectonic earthquakes in the region, but for all of the events, intensities are lower than values predicted from an intensity prediction equation that successfully characterizes intensities for regional tectonic events. I introduce an effective intensity magnitude, MIE, defined as the magnitude that on average would generate a given intensity distribution. For all 11 events, MIE is lower than the event magnitude by 0.4-1.3 magnitude units, with an average difference of 0.82 units. This suggests that stress drops of injection-induced earthquakes are systematically lower than tectonic earthquakes by an estimated factor of 2-10. However, relatively limited data suggest that intensities for epicentral distances less than 10 km are more commensurate with expectations for the event magnitude, which can be reasonably explained by the shallow focal depth of the events. The results suggest that damage from injection-induced earthquakes will be especially concentrated in the immediate epicentral region.

  1. Titanium recycling in the United States in 2004, chap. Y of Sibley, S.F., ed., Flow studies for recycling metal commodities in the United States

    USGS Publications Warehouse

    Goonan, Thomas G.

    2010-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the titanium metal fraction of the titanium economy, which generates and uses titanium metal scrap in its operations. Data for 2004 were selected to demonstrate the titanium flows associated with these operations. This report includes a description of titanium metal supply and demand in the United States to illustrate the extent of titanium recycling and to identify recycling trends. In 2004, U.S. apparent consumption of titanium metal (contained in various titanium-bearing products) was 45,000 metric tons (t) of titanium, which was distributed as follows: 25,000 t of titanium recovered as new scrap, 9,000 t of titanium as titanium metal and titanium alloy products delivered to the U.S. titanium products reservoir, 7,000 t of titanium consumed by steelmaking and other industries, and 4,000 t of titanium contained in unwrought and wrought products exported. Titanium recycling is concentrated within the titanium metals sector of the total titanium market. The titanium market is otherwise dominated by pigment (titanium oxide) products, which generate dissipative losses instead of recyclable scrap. In 2004, scrap (predominantly new scrap) was the source of roughly 54 percent of the titanium metal content of U.S.-produced titanium metal products.

  2. Gas hydrate reservoirs and gas migration mechanisms in the Terrebonne Basin, Gulf of Mexico

    DOE PAGES

    Hillman, Jess I. T.; Cook, Ann E.; Daigle, Hugh; ...

    2017-07-27

    Here, the interactions of microbial methane generation in fine-grained clay-rich sediments, methane migration, and gas hydrate accumulation in coarse-grained, sand-rich sediments are not yet fully understood. The Terrebonne Basin in the northern Gulf of Mexico provides an ideal setting to investigate the migration of methane resulting in the formation of hydrate in thin sand units interbedded with fractured muds. Using 3D seismic and well log data, we have identified several previously unidentified hydrate bearing units in the Terrebonne Basin. Two units are >100 m- thick fine-grained clay-rich units where gas hydrate occurs in near-vertical fractures. In some locations, these fine-grainedmore » units lack fracture features, and they contain 1-4-m thick hydrate bearing-sands. In addition, several other thin sand units were identified that contain gas hydrate, including one sand that was intersected by a well at the location of a discontinuous bottom-simulating reflector. Using correlation of well log data to seismic data, we have mapped and described these new units in detail across the extent of the available data, allowing us to determine the variation of seismic amplitudes and investigate the distribution of free gas and/or hydrate. We present several potential source-reservoir scenarios between the thick fractured mud units and thin hydrate bearing sands. We observe that hydrate preferentially forms within thin sand layers rather than fractures when sands are present in larger marine mud units. Based on regional mapping showing the patchy lateral extent of the thin sand layers, we propose that diffusive methane migration or short-migration of microbially generated methane from the marine mud units led to the formation of hydrate in these thin sands, as discontinuous sands would not be conducive to long-range migration of methane from deeper reservoirs.« less

  3. Gas hydrate reservoirs and gas migration mechanisms in the Terrebonne Basin, Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillman, Jess I. T.; Cook, Ann E.; Daigle, Hugh

    Here, the interactions of microbial methane generation in fine-grained clay-rich sediments, methane migration, and gas hydrate accumulation in coarse-grained, sand-rich sediments are not yet fully understood. The Terrebonne Basin in the northern Gulf of Mexico provides an ideal setting to investigate the migration of methane resulting in the formation of hydrate in thin sand units interbedded with fractured muds. Using 3D seismic and well log data, we have identified several previously unidentified hydrate bearing units in the Terrebonne Basin. Two units are >100 m- thick fine-grained clay-rich units where gas hydrate occurs in near-vertical fractures. In some locations, these fine-grainedmore » units lack fracture features, and they contain 1-4-m thick hydrate bearing-sands. In addition, several other thin sand units were identified that contain gas hydrate, including one sand that was intersected by a well at the location of a discontinuous bottom-simulating reflector. Using correlation of well log data to seismic data, we have mapped and described these new units in detail across the extent of the available data, allowing us to determine the variation of seismic amplitudes and investigate the distribution of free gas and/or hydrate. We present several potential source-reservoir scenarios between the thick fractured mud units and thin hydrate bearing sands. We observe that hydrate preferentially forms within thin sand layers rather than fractures when sands are present in larger marine mud units. Based on regional mapping showing the patchy lateral extent of the thin sand layers, we propose that diffusive methane migration or short-migration of microbially generated methane from the marine mud units led to the formation of hydrate in these thin sands, as discontinuous sands would not be conducive to long-range migration of methane from deeper reservoirs.« less

  4. Development of an Asset Value Map for Disaster Risk Assessment in China by Spatial Disaggregation Using Ancillary Remote Sensing Data.

    PubMed

    Wu, Jidong; Li, Ying; Li, Ning; Shi, Peijun

    2018-01-01

    The extent of economic losses due to a natural hazard and disaster depends largely on the spatial distribution of asset values in relation to the hazard intensity distribution within the affected area. Given that statistical data on asset value are collected by administrative units in China, generating spatially explicit asset exposure maps remains a key challenge for rapid postdisaster economic loss assessment. The goal of this study is to introduce a top-down (or downscaling) approach to disaggregate administrative-unit level asset value to grid-cell level. To do so, finding the highly correlated "surrogate" indicators is the key. A combination of three data sets-nighttime light grid, LandScan population grid, and road density grid, is used as ancillary asset density distribution information for spatializing the asset value. As a result, a high spatial resolution asset value map of China for 2015 is generated. The spatial data set contains aggregated economic value at risk at 30 arc-second spatial resolution. Accuracy of the spatial disaggregation reflects redistribution errors introduced by the disaggregation process as well as errors from the original ancillary data sets. The overall accuracy of the results proves to be promising. The example of using the developed disaggregated asset value map in exposure assessment of watersheds demonstrates that the data set offers immense analytical flexibility for overlay analysis according to the hazard extent. This product will help current efforts to analyze spatial characteristics of exposure and to uncover the contributions of both physical and social drivers of natural hazard and disaster across space and time. © 2017 Society for Risk Analysis.

  5. Potential of Using Solar Energy for Drinking Water Treatment Plant

    NASA Astrophysics Data System (ADS)

    Bukhary, S. S.; Batista, J.; Ahmad, S.

    2016-12-01

    Where water is essential to energy generation, energy usage is integral to life cycle processes of water extraction, treatment, distribution and disposal. Increasing population, climate change and greenhouse gas production challenges the water industry for energy conservation of the various water-related operations as well as limiting the associated carbon emissions. One of the ways to accomplish this is by incorporating renewable energy into the water sector. Treatment of drinking water, an important part of water life cycle processes, is vital for the health of any community. This study explores the feasibility of using solar energy for a drinking water treatment plant (DWTP) with the long-term goal of energy independence and sustainability. A 10 MGD groundwater DWTP in southwestern US was selected, using the treatment processes of coagulation, filtration and chlorination. Energy consumption in units of kWh/day and kWh/MG for each unit process was separately determined using industry accepted design criteria. Associated carbon emissions were evaluated in units of CO2 eq/MG. Based on the energy consumption and the existing real estate holdings, the DWTP was sized for distributed solar. Results showed that overall the motors used to operate the pumps including the groundwater intake pumps were the largest consumers of energy. Enough land was available around DWTP to deploy distributed solar. Results also showed that solar photovoltaics could potentially be used to meet the energy demands of the selected DWTP, but warrant the use of a large storage capacity, and thus increased costs. Carbon emissions related to solar based design were negligible compared to the original case. For future, this study can be used to analyze unit processes of other DWTP based on energy consumption, as well as for incorporating sustainability into the DWTP design.

  6. The Effects of Low Income Housing Tax Credit Developments on Neighborhoods

    PubMed Central

    Baum-Snow, Nathaniel; Marion, Justin

    2013-01-01

    This paper evaluates the impacts of new housing developments funded with the Low Income Housing Tax Credit (LIHTC), the largest federal project based housing program in the U.S., on the neighborhoods in which they are built. A discontinuity in the formula determining the magnitude of tax credits as a function of neighborhood characteristics generates pseudo-random assignment in the number of low income housing units built in similar sets of census tracts. Tracts where projects are awarded 30 percent higher tax credits receive approximately six more low income housing units on a base of seven units per tract. These additional new low income developments cause homeowner turnover to rise, raise property values in declining areas and reduce incomes in gentrifying areas in neighborhoods near the 30th percentile of the income distribution. LIHTC units significantly crowd out nearby new rental construction in gentrifying areas but do not displace new construction in stable or declining areas. PMID:24235779

  7. Air Quality Improvements of Increased Integration of Renewables: Solar Photovoltaics Penetration Scenarios

    NASA Astrophysics Data System (ADS)

    Duran, P.; Holloway, T.; Brinkman, G.; Denholm, P.; Littlefield, C. M.

    2011-12-01

    Solar photovoltaics (PV) are an attractive technology because they can be locally deployed and tend to yield high production during periods of peak electric demand. These characteristics can reduce the need for conventional large-scale electricity generation, thereby reducing emissions of criteria air pollutants (CAPs) and improving ambient air quality with regard to such pollutants as nitrogen oxides, sulfur oxides and fine particulates. Such effects depend on the local climate, time-of-day emissions, available solar resources, the structure of the electric grid, and existing electricity production among other factors. This study examines the air quality impacts of distributed PV across the United States Eastern Interconnection. In order to accurately model the air quality impact of distributed PV in space and time, we used the National Renewable Energy Lab's (NREL) Regional Energy Deployment System (ReEDS) model to form three unique PV penetration scenarios in which new PV construction is distributed spatially based upon economic drivers and natural solar resources. Those scenarios are 2006 Eastern Interconnection business as usual, 10% PV penetration, and 20% PV penetration. With the GridView (ABB, Inc) dispatch model, we used historical load data from 2006 to model electricity production and distribution for each of the three scenarios. Solar PV electric output was estimated using historical weather data from 2006. To bridge the gap between dispatch and air quality modeling, we will create emission profiles for electricity generating units (EGUs) in the Eastern Interconnection from historical Continuous Emissions Monitoring System (CEMS) data. Via those emissions profiles, we will create hourly emission data for EGUs in the Eastern Interconnect for each scenario during 2006. Those data will be incorporated in the Community Multi-scale Air Quality (CMAQ) model using the Sparse Matrix Operator Kernel Emissions (SMOKE) model. Initial results indicate that PV penetration significantly reduces conventional peak electricity production and that, due to reduced emissions during periods of extremely active photochemistry, air quality could see benefits.

  8. Estimating municipal solid waste generation by different activities and various resident groups in five provinces of China.

    PubMed

    Fu, Hui-zhen; Li, Zhen-shan; Wang, Rong-hua

    2015-07-01

    The quantities and composition of municipal solid waste (MSW) are important factors in the planning and management of MSW. Daily human activities were classified into three groups: maintenance activities (meeting the basic needs of food, housing and personal care, MA); subsistence activities (providing the financial support requirements, SA); and leisure activities (social and recreational pursuits, LA). A model, based on the interrelationships of expenditure on consumer goods, time distribution, daily activities, residents groups, and waste generation, was employed to estimate MSW generation by different activities and resident groups in five provinces (Zhejiang, Guangdong, Hebei, Henan and Sichuan) of China. These five provinces were chosen for this study and the distribution patterns of MSW generated by different activities and resident groups were revealed. The results show that waste generation in SA and LA fluctuated slightly from 2003 to 2008. For general waste generation in the five provinces, MA accounts for more than 70% of total MSW, SA approximately 10%, and LA between 10% and 16% by urban residents in 2008. Females produced more daily MSW than males in MA. Males produced more daily MSW than females in SA and LA. The wastes produced at weekends in MA and LA were far greater than on weekdays, but less than on weekdays for SA wastes. Furthermore, one of the model parameters (the waste generation per unit of consumer expenditure) is inversely proportional to per-capita disposable income of urban residents. A significant correlation between gross domestic product (GDP) and waste generation by SA was observed with a high coefficient of determination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Robust estimators of palaeosecular variation

    NASA Astrophysics Data System (ADS)

    Suttie, Neil; Biggin, Andrew; Holme, Richard

    2015-02-01

    The Fisher distribution is central to palaeomagnetism but presents several problems when used to characterize geomagnetic field directions as observed in sequences of volcanic rocks. First, it introduces a shallowing effect when used to define the mean of any group of directional unit vectors. This is problematic because it can suggest the presence of persistent non-axial dipole components when none are present. More importantly, it fails to capture the observed `long tail' in distributions of both directions and associated virtual geomagnetic poles in terms of angular distance from a central direction. To achieve a good fit to data, it therefore requires the introduction of a second distribution (and therefore the estimation of additional parameters) or the arbitrary removal of data. Here we present a new distribution to describe palaeomagnetic directions and demonstrate that it overcomes both of these problems, generating robust indicators of both the central direction (or pole position) and the spread of palaeomagnetic data as defined by unit vectors. Starting from the assumption that poles (or directions) have an expected colatitude, rather than a mean location, we derive the spherical exponential distribution. We demonstrate that this new distribution provides a good fit to palaeomagnetic data sets from seven large igneous provinces between 15 and 65 Ma and also those produced by numerical dynamo models. We also use it to derive a new shape parameter which may be used as a diagnostic tool for testing goodness of fit of models to data and use this to argue for a shift in geomagnetic behaviour between 5 and 15 Ma. Furthermore, we point out that this new statistic can be used to determine the most appropriate distribution to be used when constructing confidence limits for poles.

  10. Vibrational spectroscopic study of cationic phosphorus dendrimers with aminoethylpiperidine terminal groups

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukov, A. E.; Tripathi, V.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2018-04-01

    Two generations of phosphoric dendrimers with piperidine functional groups were synthesized for use in biology and medicine. Neutral samples are soluble in organic solvents but after protonation these dendrimers become water soluble and can be used for biological experiments. The FTIR and FT Raman spectra of two generations of dendrimers Gi constructed from the cyclotriphosphazene core, repeating units sbnd Osbnd C6H4sbnd CHdbnd Nsbnd N(CH3)sbnd P(S)< and aminoethylpiperidine end groups sbnd NHsbnd (CH2)2sbnd C5NH11 were recorded. The study of the IR spectra shows that the NH groups form hydrogen bonds. The calculation of the molecular structure and vibrational spectra of the first generation dendrimer was performed by the method of DFT. This molecule has flat, repeating units and a plane of symmetry passing through the core. The calculation of the distribution of potential energy made it possible to classify the bands in the experimental spectra of dendrimers. Amine groups are manifested in the form of a band of NH stretching vibrations at 3389 cm-1 in the IR spectrum of G1. NH+ stretching bands located at 2646 and 2540 cm-1 in the IR spectrum of G2. The stretching vibrations of NH+ groups are noticeably shifted to low frequencies due to the formation of a hydrogen bond with the chlorine atom. The line at 1575 cm-1 in the Raman spectrum of G1 is characteristic for repeating units.

  11. Charge transport properties of carbazole dendrimers in organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Mutkins, Karyn; Chen, Simon S. Y.; Aljada, Muhsen; Powell, Ben J.; Olsen, Seth; Burn, Paul L.; Meredith, Paul

    2011-10-01

    We report three generations of p-type dendrimer semiconductors comprised of spirobifluorene cores, carbazole branching units and fluorene surface groups for use in organic field-effect transistors (OFETs). The group of dendrimers are defined by their generation and noted as SBF-(Gx)2, where x is the generation. Top contact-bottom gate OFETs were fabricated by spin-coating the dendrimers onto an n-octyltrichlorosilane (OTS) passivated silicon dioxide surface. The dendrimer films were found to be amorphous. The highest mobility was measured for the first generation dendrimer (SBF-(G1)2), which had an average mobility of (6.6 +/- 0.2) × 10-5 cm2/V s and an ON/OFF ratio of 3.0 × 104. As the generation of the dendrimer was increased there was only a slight decrease in the measured mobility in spite of the significantly different molecular sizes of the dendrimers. The mobility of SBF-(G3)2, which had a hydrodynamic radius almost twice of SBF-(G1)2, still had an average mobility of (4.7 +/- 0.6) × 10-5 cm2/V s and an ON/OFF ratio of 2.7 × 103. Density functional theory calculations showed that the highest occupied molecular orbital was distributed over the core and carbazole units meaning that both intra- and intermolecular charge transfer could occur enabling the hole mobility to remain essentially constant even though the dendrimers would pack differently in the solid-state.

  12. Secure, Autonomous, Intelligent Controller for Integrating Distributed Sensor Webs

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2007-01-01

    This paper describes the infrastructure and protocols necessary to enable near-real-time commanding, access to space-based assets, and the secure interoperation between sensor webs owned and controlled by various entities. Select terrestrial and aeronautics-base sensor webs will be used to demonstrate time-critical interoperability between integrated, intelligent sensor webs both terrestrial and between terrestrial and space-based assets. For this work, a Secure, Autonomous, Intelligent Controller and knowledge generation unit is implemented using Virtual Mission Operation Center technology.

  13. Electric Power Consumption Coefficients for U.S. Industries: Regional Estimation and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boero, Riccardo

    Economic activity relies on electric power provided by electrical generation, transmission, and distribution systems. This paper presents a method developed at Los Alamos National Laboratory to estimate electric power consumption by different industries in the United States. Results are validated through comparisons with existing literature and benchmarking data sources. We also discuss the limitations and applications of the presented method, such as estimating indirect electric power consumption and assessing the economic impact of power outages based on input-output economic models.

  14. Effect of eddy current damping on phononic band gaps generated by locally resonant periodic structures

    NASA Astrophysics Data System (ADS)

    Ozkaya, Efe; Yilmaz, Cetin

    2017-02-01

    The effect of eddy current damping on a novel locally resonant periodic structure is investigated. The frequency response characteristics are obtained by using a lumped parameter and a finite element model. In order to obtain wide band gaps at low frequencies, the periodic structure is optimized according to certain constraints, such as mass distribution in the unit cell, lower limit of the band gap, stiffness between the components in the unit cell, the size of magnets used for eddy current damping, and the number of unit cells in the periodic structure. Then, the locally resonant periodic structure with eddy current damping is manufactured and its experimental frequency response is obtained. The frequency response results obtained analytically, numerically and experimentally match quite well. The inclusion of eddy current damping to the periodic structure decreases amplitudes of resonance peaks without disturbing stop band width.

  15. Program THEK energy production units of average power and using thermal conversion of solar radiation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    General studies undertaken by the C.N.R.S. in the field of solar power plants have generated the problem of building energy production units in the medium range of electrical power, in the order of 100 kW. Among the possible solutions, the principle of the use of distributed heliothermal converters has been selected as being, with the current status of things, the most advantageous solution. This principle consists of obtaining the conversion of concentrated radiation into heat by using a series of heliothermal conversion modules scattered over the ground; the produced heat is collected by a heat-carrying fluid circulating inside a thermal loop leading to a device for both regulation and storage.

  16. 75 FR 8149 - Arizona Public Service Company, et al. Palo Verde Nuclear Generating Station, Units 1, 2, and 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ...] Arizona Public Service Company, et al. Palo Verde Nuclear Generating Station, Units 1, 2, and 3... Verde Nuclear Generating Station (PVNGS, the facility), Units 1, 2, and 3, respectively, located in... for the Palo Verde Nuclear Generating Station, Units 1, 2, and 3, NUREG- 0841, dated February 1982...

  17. 78 FR 36277 - Vogtle Electric Generating Plant, Unit 3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 52-025; NRC-2008-0252] Vogtle Electric Generating Plant....01, for the Vogtle Electric Generating Plant, Unit 3. ADDRESSES: Please refer to Docket ID NRC-2008... Generating Plant, Unit 3 [[Page 36278

  18. Coordinated control of wind generation and energy storage for power system frequency regulation

    NASA Astrophysics Data System (ADS)

    Baone, Chaitanya Ashok

    Large-scale centralized synchronous generators have long been the primary actors in exercising active power and frequency control, and much of the existing grid control framework is predicated upon their dynamic terminal characteristics. Important among these characteristics is the inertia of such generators. These play key roles in determining the electromechanical stability of the electric power grid. Modern wind generator systems are partially or fully connected to the grid through power electronic interfaces, and hence do not present the same level of inertial coupling. The absence of inertial frequency response from modern wind generator systems is a topic of growing concern in power engineering practice, as the penetration of wind generation is expected to grow dramatically in the next few years. Solutions proposed in the literature have sought to address this problem by seeking to mimic the inherent inertial response characteristics of traditional synchronous generators via control loops added to wind generators. Recent literature has raised concerns regarding this approach, and the work here will further examine its shortcomings, motivating approaches that seek to optimally design for the characteristics of the equipment exercising the control, rather than forcing new technologies to mimic the characteristics of synchronous machines. In particular, this work will develop a new approach to power system frequency regulation, with features suited to distributed energy storage devices such as grid-scale batteries and wind turbine speed and blade pitch control. The dynamic characteristics of these new technologies are treated along with existing mechanisms, such as synchronous machine governor control, to develop a comprehensive multi-input control design approach. To make the method practically feasible for geographically distributed power systems, an observer-based distributed control design utilizing phasor measurement unit (PMU) signals along with local measurements is developed. In addition to the system-wide objective of frequency regulation, a local objective of reducing the wind turbine drivetrain stress is considered. Also, an algorithm is proposed to characterize the modal degrees of controllability and observability on a subspace of critical modes of the system, so that the most effective sensor and actuator locations to be used in the control design can be found.

  19. EDITORIAL: Environmental justice: a critical issue for all environmental scientists everywhere

    NASA Astrophysics Data System (ADS)

    Stephens, Carolyn

    2007-10-01

    It is now commonly understood that much of the worldwide burden of environmental ill health falls disproportionately on poorer peoples [1,2]. There is also substantial evidence that much environmental damage internationally is the result of the actions of richer nations or richer groups within nations—with impacts on poorer nations and poorer groups within nations [1,3,4]. It is becoming clear also that poorer peoples internationally experience multiple environmental harms, and that these may have a cumulative effect. The world is becoming more urbanized, and cities are becoming the locus for many of the local issues of environmental damage and environmental harm [4,5]. But cities are also responsible for substantial international environmental damage: for example, it is increasingly evident that cities are one of the main generators of climate change, and that the actions of people in cities in the rich world are deeply linked to the well-being of the overall ecosystem and of people worldwide. Environmental justice is a concept that links the environmental health science documenting these harms, to debates around rights, justice and equity. It fundamentally deals with the distribution of environmental goods and harms—and looks at who bears those harms and who is responsible for creating those harms, in both a practical sense but also in terms of policy decisions. It is a radical environmental health movement that has evolved from civil society groups, angered at what they perceive as the `unjust' distribution of environmental resources for health and, conversely the `unjust' distribution of environmental harms. The movement now includes a collaboration of non-governmental organizations with environmental scientists, public health professionals, and lawyers, all working on the issue of the distributions of environmental harms and the rights of everyone to a healthy environment. This special issue is both timely and important. Environmental justice is moving conceptually and empirically. It started in the US as a movement of local civil society groups against local environmental injustice and distribution of environmental harms [6]. It is becoming a movement that encompasses international environmental injustices and issues of access to environmental goods—and it discusses environmental justice issues both across countries and also across generations. One such definition was pulled together by academics and NGOs in the UK in 2001: 'that everyone should have the right and be able to live in a healthy environment, with access to enough environmental resources for a healthy life' 'that responsibilities are on this current generation to ensure a healthy environment exists for future generations, and on countries, organisations and individuals in this generation to ensure that development does not create environmental problems or distribute environmental resources in ways which damage other peoples health' [7]. This kind of broad definition of environmental justice has been gaining currency internationally, and language around justice is moving into many topic areas of environmental science—shifting discourse on 'climate change' to 'climate justice', 'water pollution' to 'rights to clean water', 'air pollution' to 'rights to healthy air'. Policy is changing too. In Europe the public is gaining more access to information on environmental harms through policy mechanisms such as the Aarhus Convention [8,9] and internationally, civil society groups are becoming aware that there are mechanisms to support them if they challenge environmental pollution. As the public becomes more aware of the issues of environmental justice, and as policy shifts in this direction, environmental scientists have a challenge. We have some of the methodology necessary to measure the distribution of environmental harms and environmental responsibilities. But we also need to develop new methods to deal with the new challenges: for example, how do we measure when an issue of water contamination becomes an issue of environmental injustice? How do we measure the impacts of environmental harm today on future generations? How do we measure the distribution of multiple or cumulative impacts on poorer groups? How do we quantify the responsibility of richer citizens in the world for the environmental harms distributed unequally to the poorer citizens? The papers in this focus issue do not answer all these questions, but we hope that this theme will recur in Environmental Research Letters and that more environmental scientists will begin to frame their analyses around the critical issues of distributions of environmental harms and benefits. References [1] United Nations Environment Programme 2007 Global Environmental Outlook 2007 (Nairobi: United Nations Environment Programme) [2] UNICEF 2005 The State of the World's Children 2005 (Oxford: Oxford University Press) [3] World Resources Institute 2002 Wastes Produced from Industrialised Countries available from www.wri.org [4] Stephens C and Stair P 2007 Charting a new course for urban public health State of the World 2007: Our Urban Future ed L Stark (New York: W W Norton) pp 134 48 [5] Lee K N 2007 An urbanizing world State of the World 2007: Our Urban Future ed L Stark (New York: W W Norton) pp 3 22 [6] United States Environmental Protection Agency 2003 Environmental Justice available from www.epa.gov/compliance/environmentaljustice/ [7] Stephens C, Bullock S and Scott A 2001 Environmental justice: rights and mean to a healthy environment for all Special Briefing Paper Economic and Social Research Council (ESRC) Global Environmental Change Programme (Brighton: ESRC Global Environmental Change Programme, University of Sussex) p 3 available from www.foe.co.uk/resource/reports/environmental_justice.pdf [8] United Nations Economic Commission for Europe Convention on Access to Information 1999 Public Participation in Decision-Making and Access to Justice in Environmental Matters (Geneva: UNECE) [9] United Nations Economic Commission for Europe (UNECE) 2007 Aarhus Clearinghouse for Environmental Democracy available from aarhusclearinghouse.unece.org/ Focus on Environmental Justice And Health Internationally Contents The articles below represent the first accepted contributions and further additions will appear in the near future. Environmental justice in Scotland: policy, pedagogy and praxis Eurig Scandrett Exploring the joint effect of atmospheric pollution and socioeconomic status on selected health outcomes: the PAISARC Project Denis Bard, O Laurent, L Filleul, S Havard, S Deguen, C Segala, G Pedrono, E Riviere, C Schillinger, L Rouil, D Arveiler and D Eilstein Environmental justice and the distributional deficit in policy appraisal in the UK G P Walker

  20. Distributed Coordination for Optimal Energy Generation and Distribution in Cyber-Physical Energy Networks.

    PubMed

    Ahn, Hyo-Sung; Kim, Byeong-Yeon; Lim, Young-Hun; Lee, Byung-Hun; Oh, Kwang-Kyo

    2018-03-01

    This paper proposes three coordination laws for optimal energy generation and distribution in energy network, which is composed of physical flow layer and cyber communication layer. The physical energy flows through the physical layer; but all the energies are coordinated to generate and flow by distributed coordination algorithms on the basis of communication information. First, distributed energy generation and energy distribution laws are proposed in a decoupled manner without considering the interactive characteristics between the energy generation and energy distribution. Second, a joint coordination law to treat the energy generation and energy distribution in a coupled manner taking account of the interactive characteristics is designed. Third, to handle over- or less-energy generation cases, an energy distribution law for networks with batteries is designed. The coordination laws proposed in this paper are fully distributed in the sense that they are decided optimally only using relative information among neighboring nodes. Through numerical simulations, the validity of the proposed distributed coordination laws is illustrated.

  1. A Fossilized Energy Distribution of Lightning.

    PubMed

    Pasek, Matthew A; Hurst, Marc

    2016-07-28

    When lightning strikes soil, it may generate a cylindrical tube of glass known as a fulgurite. The morphology of a fulgurite is ultimately a consequence of the energy of the lightning strike that formed it, and hence fulgurites may be useful in elucidating the energy distribution frequency of cloud-to-ground lightning. Fulgurites from sand mines in Polk County, Florida, USA were collected and analyzed to determine morphologic properties. Here we show that the energy per unit length of lightning strikes within quartz sand has a geometric mean of ~1.0 MJ/m, and that the distribution is lognormal with respect to energy per length and frequency. Energy per length is determined from fulgurites as a function of diameter, and frequency is determined both by cumulative number and by cumulative length. This distribution parallels those determined for a number of lightning parameters measured in actual atmospheric discharge events, such as charge transferred, voltage, and action integral. This methodology suggests a potential useful pathway for elucidating lightning energy and damage potential of strikes.

  2. A Fossilized Energy Distribution of Lightning

    PubMed Central

    Pasek, Matthew A.; Hurst, Marc

    2016-01-01

    When lightning strikes soil, it may generate a cylindrical tube of glass known as a fulgurite. The morphology of a fulgurite is ultimately a consequence of the energy of the lightning strike that formed it, and hence fulgurites may be useful in elucidating the energy distribution frequency of cloud-to-ground lightning. Fulgurites from sand mines in Polk County, Florida, USA were collected and analyzed to determine morphologic properties. Here we show that the energy per unit length of lightning strikes within quartz sand has a geometric mean of ~1.0 MJ/m, and that the distribution is lognormal with respect to energy per length and frequency. Energy per length is determined from fulgurites as a function of diameter, and frequency is determined both by cumulative number and by cumulative length. This distribution parallels those determined for a number of lightning parameters measured in actual atmospheric discharge events, such as charge transferred, voltage, and action integral. This methodology suggests a potential useful pathway for elucidating lightning energy and damage potential of strikes. PMID:27466230

  3. Some remarks about simulation of cosmic ray phenomena with use of nuclear interaction models based on the current SPS proton-antiproton data

    NASA Technical Reports Server (NTRS)

    Wrotniak, J. A.; Yodh, G. B.

    1985-01-01

    The x-y controversy is studied by introducing models with as many features (except for x and y distributions) in common, as possible, to avoid an extrapolation problem, only primary energies of 500 TeV are considered. To prove the point, Monte Carlo simulations are performed of EAS generated by 500 TeV vertical primary protons. Four different nuclear interaction models were used. Two of them are described elsewhere. Two are: (1) Model M-Y00 - with inclusive x and y distributions behaving in a scaling way; and (2) Model M-F00 - at and below ISR energies (1 TeV in Lab) exactly equivalent to the above, then gradually changing to provide the distributions in rapidity at 155 TeV as given by SPS proton-antiproton. This was achieved by gradual decrease in the scale unit in x distributions of produced secondaries, as interaction energy increases. Other modifications to the M-Y00 model were made.

  4. Present-day deformation across the Basin and Range Province, western United States

    USGS Publications Warehouse

    Thatcher, W.; Foulger, G.R.; Julian, B.R.; Svarc, J.; Quilty, E.; Bawden, G.W.

    1999-01-01

    The distribution of deformation within the Basin and Range province was determined from 1992, 1996, and 1998 surveys of a dense, 800-kilometer- aperture, Global Positioning System network, Internal deformation generally follows the pattern of Holocene fault distribution and is concentrated near the western extremity of the province, with lesser amounts focused near the eastern boundary. Little net deformation occurs across the central 500 kilometers of the network in western Utah and eastern Nevada. Concentration of deformation adjacent to the rigid Sierra Nevada block indicates that external plate-driving forces play an important role in driving deformation, modulating the extensional stress field generated by internal buoyancy forces that are due to lateral density gradients and topography near the province boundaries.

  5. Solar thermal plant impact analysis and requirements definition

    NASA Technical Reports Server (NTRS)

    Gupta, Y. P.

    1980-01-01

    Progress on a continuing study comprising of ten tasks directed at defining impact and requirements for solar thermal power systems (SPS), 1 to 10 MWe each in capacity, installed during 1985 through year 2000 in a utility or a nonutility load in the United States is summarized. The point focus distributed receiver (PFDR) solar power systems are emphasized. Tasks 1 through 4, completed to date, include the development of a comprehensive data base on SPS configurations, their performance, cost, availability, and potential applications; user loads, regional characteristics, and an analytic methodology that incorporates the generally accepted utility financial planning methods and several unique modifications to treat the significant and specific characteristics of solar power systems deployed in either central or distributed power generation modes, are discussed.

  6. Quantum cryptography with an ideal local relay

    NASA Astrophysics Data System (ADS)

    Spedalieri, Gaetana; Ottaviani, Carlo; Braunstein, Samuel L.; Gehring, Tobias; Jacobsen, Christian S.; Andersen, Ulrik L.; Pirandola, Stefano

    2015-10-01

    We consider two remote parties connected to a relay by two quantum channels. To generate a secret key, they transmit coherent states to the relay, where the states are subject to a continuous-variable (CV) Bell detection. We study the ideal case where Alice's channel is lossless, i.e., the relay is locally in her lab and the Bell detection is perfomed with unit efficiency. This configuration allows us to explore the optimal performances achievable by CV measurement-device-independent quantum key distribution. This corresponds to the limit of a trusted local relay, where the detection loss can be re-scaled. Our theoretical analysis is confirmed by an experimental simulation where 10-4 secret bits per use can potentially be distributed at 170km assuming ideal reconciliation.

  7. Geographic distribution of trauma centers and injury-related mortality in the United States.

    PubMed

    Brown, Joshua B; Rosengart, Matthew R; Billiar, Timothy R; Peitzman, Andrew B; Sperry, Jason L

    2016-01-01

    Regionalized trauma care improves outcomes; however, access to care is not uniform across the United States. The objective was to evaluate whether geographic distribution of trauma centers correlates with injury mortality across state trauma systems. Level I or II trauma centers in the contiguous United States were mapped. State-level age-adjusted injury fatality rates per 100,000 people were obtained and evaluated for spatial autocorrelation. Nearest neighbor ratios (NNRs) were generated for each state. A NNR less than 1 indicates clustering, while a NNR greater than 1 indicates dispersion. NNRs were tested for difference from random geographic distribution. Fatality rates and NNRs were examined for correlation. Fatality rates were compared between states with trauma center clustering versus dispersion. Trauma center distribution and population density were evaluated. Spatial-lag regression determined the association between fatality rate and NNR, controlling for state-level demographics, population density, injury severity, trauma system resources, and socioeconomic factors. Fatality rates were spatially autocorrelated (Moran's I = 0.35, p < 0.01). Nine states had a clustered pattern (median NNR, 0.55; interquartile range [IQR], 0.48-0.60), 22 had a dispersed pattern (median NNR, 2.00; IQR, 1.68-3.99), and 10 had a random pattern (median NNR, 0.90; IQR, 0.85-1.00) of trauma center distribution. Fatality rate and NNR were correlated (ρ = 0.34, p = 0.03). Clustered states had a lower median injury fatality rate compared with dispersed states (56.9 [IQR, 46.5-58.9] vs. 64.9 [IQR, 52.5-77.1]; p = 0.04). Dispersed compared with clustered states had more counties without a trauma center that had higher population density than counties with a trauma center (5.7% vs. 1.2%, p < 0.01). Spatial-lag regression demonstrated that fatality rates increased by 0.02 per 100,000 persons for each unit increase in NNR (p < 0.01). Geographic distribution of trauma centers correlates with injury mortality, with more clustered state trauma centers associated with lower fatality rates. This may be a result of access relative to population density. These results may have implications for trauma system planning and require further study to investigate underlying mechanisms. Therapeutic/care management study, level IV.

  8. Testing statistical self-similarity in the topology of river networks

    USGS Publications Warehouse

    Troutman, Brent M.; Mantilla, Ricardo; Gupta, Vijay K.

    2010-01-01

    Recent work has demonstrated that the topological properties of real river networks deviate significantly from predictions of Shreve's random model. At the same time the property of mean self-similarity postulated by Tokunaga's model is well supported by data. Recently, a new class of network model called random self-similar networks (RSN) that combines self-similarity and randomness has been introduced to replicate important topological features observed in real river networks. We investigate if the hypothesis of statistical self-similarity in the RSN model is supported by data on a set of 30 basins located across the continental United States that encompass a wide range of hydroclimatic variability. We demonstrate that the generators of the RSN model obey a geometric distribution, and self-similarity holds in a statistical sense in 26 of these 30 basins. The parameters describing the distribution of interior and exterior generators are tested to be statistically different and the difference is shown to produce the well-known Hack's law. The inter-basin variability of RSN parameters is found to be statistically significant. We also test generator dependence on two climatic indices, mean annual precipitation and radiative index of dryness. Some indication of climatic influence on the generators is detected, but this influence is not statistically significant with the sample size available. Finally, two key applications of the RSN model to hydrology and geomorphology are briefly discussed.

  9. Measures of dependence for multivariate Lévy distributions

    NASA Astrophysics Data System (ADS)

    Boland, J.; Hurd, T. R.; Pivato, M.; Seco, L.

    2001-02-01

    Recent statistical analysis of a number of financial databases is summarized. Increasing agreement is found that logarithmic equity returns show a certain type of asymptotic behavior of the largest events, namely that the probability density functions have power law tails with an exponent α≈3.0. This behavior does not vary much over different stock exchanges or over time, despite large variations in trading environments. The present paper proposes a class of multivariate distributions which generalizes the observed qualities of univariate time series. A new consequence of the proposed class is the "spectral measure" which completely characterizes the multivariate dependences of the extreme tails of the distribution. This measure on the unit sphere in M-dimensions, in principle completely general, can be determined empirically by looking at extreme events. If it can be observed and determined, it will prove to be of importance for scenario generation in portfolio risk management.

  10. The macro determinants of health expenditure in the United States and Canada: assessing the impact of income, age distribution and time.

    PubMed

    Di Matteo, Livio

    2005-01-01

    This paper examines the determinants of real per capita health expenditures in order to assess the impact of age distribution, income and time using American state-level data for the period 1980-1998 and Canadian province-level data for the period 1975-2000. Ageing population distributions and income explain a relatively small portion of health expenditures when the impact of time effects, which is a partial proxy for technological change, is controlled for. However, the impact of age is of more concern given that cost increases are concentrated in the last few years of life and there may be cohort effects as the "Baby-Boom" generation ages. There is an urgent need to better understand the exact mechanisms driving health expenditure increases given that time accounts for approximately two-thirds of health expenditure increases and that its effect is non-linear.

  11. Protection of autonomous microgrids using agent-based distributed communication

    DOE PAGES

    Cintuglu, Mehmet H.; Ma, Tan; Mohammed, Osama A.

    2016-04-06

    This study presents a real-time implementation of autonomous microgrid protection using agent-based distributed communication. Protection of an autonomous microgrid requires special considerations compared to large scale distribution net-works due to the presence of power converters and relatively low inertia. In this work, we introduce a practical overcurrent and a frequency selectivity method to overcome conventional limitations. The proposed overcurrent scheme defines a selectivity mechanism considering the remedial action scheme (RAS) of the microgrid after a fault instant based on feeder characteristics and the location of the intelligent electronic devices (IEDs). A synchrophasor-based online frequency selectivity approach is proposed to avoidmore » pulse loading effects in low inertia microgrids. Experimental results are presented for verification of the pro-posed schemes using a laboratory based microgrid. The setup was composed of actual generation units and IEDs using IEC 61850 protocol. The experimental results were in excellent agreement with the proposed protection scheme.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, L.; Hedman, B.; Knowles, D.

    The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications inmore » the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.« less

  13. Stochastic DG Placement for Conservation Voltage Reduction Based on Multiple Replications Procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhaoyu; Chen, Bokan; Wang, Jianhui

    2015-06-01

    Conservation voltage reduction (CVR) and distributed-generation (DG) integration are popular strategies implemented by utilities to improve energy efficiency. This paper investigates the interactions between CVR and DG placement to minimize load consumption in distribution networks, while keeping the lowest voltage level within the predefined range. The optimal placement of DG units is formulated as a stochastic optimization problem considering the uncertainty of DG outputs and load consumptions. A sample average approximation algorithm-based technique is developed to solve the formulated problem effectively. A multiple replications procedure is developed to test the stability of the solution and calculate the confidence interval ofmore » the gap between the candidate solution and optimal solution. The proposed method has been applied to the IEEE 37-bus distribution test system with different scenarios. The numerical results indicate that the implementations of CVR and DG, if combined, can achieve significant energy savings.« less

  14. Protection of autonomous microgrids using agent-based distributed communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cintuglu, Mehmet H.; Ma, Tan; Mohammed, Osama A.

    This study presents a real-time implementation of autonomous microgrid protection using agent-based distributed communication. Protection of an autonomous microgrid requires special considerations compared to large scale distribution net-works due to the presence of power converters and relatively low inertia. In this work, we introduce a practical overcurrent and a frequency selectivity method to overcome conventional limitations. The proposed overcurrent scheme defines a selectivity mechanism considering the remedial action scheme (RAS) of the microgrid after a fault instant based on feeder characteristics and the location of the intelligent electronic devices (IEDs). A synchrophasor-based online frequency selectivity approach is proposed to avoidmore » pulse loading effects in low inertia microgrids. Experimental results are presented for verification of the pro-posed schemes using a laboratory based microgrid. The setup was composed of actual generation units and IEDs using IEC 61850 protocol. The experimental results were in excellent agreement with the proposed protection scheme.« less

  15. Analysis of the effect of local heat island in Seoul using LANDSAT image

    NASA Astrophysics Data System (ADS)

    Lee, K. I.; Ryu, J.; Jeon, S. W.

    2017-12-01

    The increase in the rate of industrialization due to urbanization has caused the Urban Heat Island phenomenon which means that the temperature of the city is higher than the surrounding area, and its intensity is increasing with climate change. Among the cities where heat island phenomenon occur, Seoul city has different degree of urbanization, green area ratio, energy consumption, and population density by each district unit. As a result, the strength of heat island phenomenon is also different. The average maximum temperature in each region may differ by more than 3 °, which is bigger than the suburbs in Seoul and it means that analysis of UHI effect by regional unit is needed. Therefore, this study is to extract the UHI Intensity of the regional unit of the Seoul Metropolitan City using the satellite image, analyzed the difference of intensity according to the regional unit. And do linear regression analysis with variables included in three categories(regional meteorological conditions, anthropogenic heat generation, land use factors). As a result, The UHI Intensity value of the Gu unit is significantly different from the UHI Intensity distribution of the Dong unit. The variable having the greatest positive correlation with UHI Intensity was NDBI(Normalized Difference Built-up Index) which shows the distribution of urban area, and Urban area ratio also has high correlation. There was a negative correlation between mean wind speed but there was no significant correlation between population density and power consumption. The result of this study is to identify the regional difference of UHI Intensity and to identify the factors inducing heat island phenomenon. so It is expected that it will provide direction in urban thermal environment design and policy development in the future.

  16. Dynamic conservation of forest genetic resources in 33 European countries.

    PubMed

    Lefèvre, François; Koskela, Jarkko; Hubert, Jason; Kraigher, Hojka; Longauer, Roman; Olrik, Ditte C; Schüler, Silvio; Bozzano, Michele; Alizoti, Paraskevi; Bakys, Remigijus; Baldwin, Cathleen; Ballian, Dalibor; Black-Samuelsson, Sanna; Bednarova, Dagmar; Bordács, Sándor; Collin, Eric; de Cuyper, Bart; de Vries, Sven M G; Eysteinsson, Thröstur; Frýdl, Josef; Haverkamp, Michaela; Ivankovic, Mladen; Konrad, Heino; Koziol, Czesław; Maaten, Tiit; Notivol Paino, Eduardo; Oztürk, Hikmet; Pandeva, Ivanova Denitsa; Parnuta, Gheorghe; Pilipovič, Andrej; Postolache, Dragos; Ryan, Cathal; Steffenrem, Arne; Varela, Maria Carolina; Vessella, Federico; Volosyanchuk, Roman T; Westergren, Marjana; Wolter, Frank; Yrjänä, Leena; Zariŋa, Inga

    2013-04-01

    Dynamic conservation of forest genetic resources (FGR) means maintaining the genetic diversity of trees within an evolutionary process and allowing generation turnover in the forest. We assessed the network of forests areas managed for the dynamic conservation of FGR (conservation units) across Europe (33 countries). On the basis of information available in the European Information System on FGR (EUFGIS Portal), species distribution maps, and environmental stratification of the continent, we developed ecogeographic indicators, a marginality index, and demographic indicators to assess and monitor forest conservation efforts. The pan-European network has 1967 conservation units, 2737 populations of target trees, and 86 species of target trees. We detected a poor coincidence between FGR conservation and other biodiversity conservation objectives within this network. We identified 2 complementary strategies: a species-oriented strategy in which national conservation networks are specifically designed for key target species and a site-oriented strategy in which multiple-target units include so-called secondary species conserved within a few sites. The network is highly unbalanced in terms of species representation, and 7 key target species are conserved in 60% of the conservation units. We performed specific gap analyses for 11 tree species, including assessment of ecogeographic, demographic, and genetic criteria. For each species, we identified gaps, particularly in the marginal parts of their distribution range, and found multiple redundant conservation units in other areas. The Mediterranean forests and to a lesser extent the boreal forests are underrepresented. Monitoring the conservation efficiency of each unit remains challenging; however, <2% of the conserved populations seem to be at risk of extinction. On the basis of our results, we recommend combining species-oriented and site-oriented strategies. © 2012 Society for Conservation Biology.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baone, Chaitanya; Acharya, Naresh; Wiegman, Herman

    As microgrid installations are steadily growing in the United States and around the world, widespread adoption of commercial microgrids would rely upon the economic benefit to the owners and operators. With the introduction of new market mechanisms and growing penetration of non-traditional generation assets, there is an increasing need and interest in allowing distributed assets to participate in traditional grid services such as frequency regulation. This paper considers the problem of determining the optimal balance of energy and ancillary services for individual microgrid generation assets to participate in such markets. An optimization framework that maximizes the predicted performance of themore » microgrid over a day-ahead time horizon while accounting for individual asset constraints is proposed. Simulation results on a realistic test system with practical considerations are presented.« less

  18. An Overview of Space Power Systems for NASA Missions

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Scott, John H.

    2007-01-01

    Power is a critical commodity for all engineering efforts and is especially challenging in the aerospace field. This paper will provide a broad brush overview of some of the immediate and important challenges to NASA missions in the field of aerospace power, for generation, energy conversion, distribution, and storage. NASA s newest vehicles which are currently in the design phase will have power systems that will be developed from current technology, but will have the challenges of being light-weight, energy-efficient, and space-qualified. Future lunar and Mars "outposts" will need high power generation units for life support and energy-intensive exploration efforts. An overview of the progress in concepts for power systems and the status of the required technologies are discussed.

  19. Theta synchronizes the activity of medial prefrontal neurons during learning

    PubMed Central

    Paz, Rony; Bauer, Elizabeth P.; Paré, Denis

    2008-01-01

    Memory consolidation is thought to involve the gradual transfer of transient hippocampal-dependent traces to distributed neocortical sites via the rhinal cortices. Recently, medial prefrontal (mPFC) neurons were shown to facilitate this process when their activity becomes synchronized. However, the mechanisms underlying this enhanced synchrony remain unclear. Because the hippocampus projects to the mPFC, we tested whether theta oscillations contribute to synchronize mPFC neurons during learning. Thus, we obtained field (LFP) and unit recordings from multiple mPFC sites during the acquisition of a trace-conditioning task, where a visual conditioned stimulus (CS) predicted reward delivery. In quiet waking, the activity of mPFC neurons was modulated by theta oscillations. During conditioning, CS presentation caused an increase in mPFC theta power that augmented as the CS gained predictive value for reward delivery. This increased theta power coincided with a transient theta phase locking at distributed mPFC sites, an effect that was also manifest in the timing of mPFC unit activity. Overall, these results show that theta oscillations contribute to synchronize neuronal activity at distributed mPFC sites, suggesting that the hippocampus, by generating a stronger theta source during learning, can synchronize mPFC activity, in turn facilitating rhinal transfer of its activity to the neocortex. PMID:18612069

  20. Managing risks of market price uncertainty for a microgrid operation

    NASA Astrophysics Data System (ADS)

    Raghavan, Sriram

    After deregulation of electricity in the United States, the day-ahead and real-time markets allow load serving entities and generation companies to bid and purchase/sell energy under the supervision of the independent system operator (ISO). The electricity market prices are inherently uncertain, and can be highly volatile. The main objective of this thesis is to hedge against the risk from the uncertainty of the market prices when purchasing/selling energy from/to the market. The energy manager can also schedule distributed generators (DGs) and storage of the microgrid to meet the demand, in addition to energy transactions from the market. The risk measure used in this work is the variance of the uncertain market purchase/sale cost/revenue, assuming the price following a Gaussian distribution. Using Markowitz optimization, the risk is minimized to find the optimal mix of purchase from the markets. The problem is formulated as a mixed integer quadratic program. The microgrid at Illinois Institute of Technology (IIT) in Chicago, IL was used as a case study. The result of this work reveals the tradeoff faced by the microgrid energy manager between minimizing the risk and minimizing the mean of the total operating cost (TOC) of the microgrid. With this information, the microgrid energy manager can make decisions in the day-ahead and real-time markets according to their risk aversion preference. The assumption of market prices following Gaussian distribution is also verified to be reasonable for the purpose of hedging against their risks. This is done by comparing the result of the proposed formulation with that obtained from the sample market prices randomly generated using the distribution of actual historic market price data.

  1. Characterization of industrial waste from a natural gas distribution company and management strategies: a case study of the East Azerbaijan Gas Company (Iran).

    PubMed

    Taghipour, Hassan; Aslhashemi, Ahmad; Assadi, Mohammad; Khodaei, Firoz; Mardangahi, Baharak; Mosaferi, Mohammad; Roshani, Babak

    2012-10-01

    Although a fundamental prerequisite for the successful implementation of any waste management plan is the availability of sufficient and accurate data, there are few available studies regarding the characterization and management of gas distribution company waste (GDCW). This study aimed to characterize the industrial waste generated by the East Azerbaijan Gas Distribution Company (EAGDC) and to present environmental management strategies. The EAGDC serves 57 cities and 821 villages with a total population of more than 2.5 million as well as numerous industrial units. The methodology of this study was based on a checklist of data collected from each zone of the company, site visits (observation), and quantity and quality analysis according to the formal data available from different zones. The results indicate that more than 35 different kinds of industrial solid waste are generated in different industrial installations. The most important types of generated waste include empty barrels (including mercaptans, diesel fuel, deionized waters and oil), faulty gas meters and regulators, a variety of industrial oils, sleeves, filter elements and faulty pipes, valves and fittings. The results indicated that, currently, GDCW is generally handled and disposed of with domestic waste, deposited in companies' installation yards and stores or, sometimes, recycled through non-scientific approaches that can create health risks to the public and the environment, even though most of the GDCW was determined to be recyclable or reusable materials. This study concludes that gas distribution companies must pay more attention to source reduction, recycling and reusing of waste to preserve natural resources, landfill space and the environment.

  2. Voltage management of distribution networks with high penetration of distributed photovoltaic generation sources

    NASA Astrophysics Data System (ADS)

    Alyami, Saeed

    Installation of photovoltaic (PV) units could lead to great challenges to the existing electrical systems. Issues such as voltage rise, protection coordination, islanding detection, harmonics, increased or changed short-circuit levels, etc., need to be carefully addressed before we can see a wide adoption of this environmentally friendly technology. Voltage rise or overvoltage issues are of particular importance to be addressed for deploying more PV systems to distribution networks. This dissertation proposes a comprehensive solution to deal with the voltage violations in distribution networks, from controlling PV power outputs and electricity consumption of smart appliances in real time to optimal placement of PVs at the planning stage. The dissertation is composed of three parts: the literature review, the work that has already been done and the future research tasks. An overview on renewable energy generation and its challenges are given in Chapter 1. The overall literature survey, motivation and the scope of study are also outlined in the chapter. Detailed literature reviews are given in the rest of chapters. The overvoltage and undervoltage phenomena in typical distribution networks with integration of PVs are further explained in Chapter 2. Possible approaches for voltage quality control are also discussed in this chapter, followed by the discussion on the importance of the load management for PHEVs and appliances and its benefits to electric utilities and end users. A new real power capping method is presented in Chapter 3 to prevent overvoltage by adaptively setting the power caps for PV inverters in real time. The proposed method can maintain voltage profiles below a pre-set upper limit while maximizing the PV generation and fairly distributing the real power curtailments among all the PV systems in the network. As a result, each of the PV systems in the network has equal opportunity to generate electricity and shares the responsibility of voltage regulation. The method does not require global information and can be implemented either under a centralized supervisory control scheme or in a distributed way via consensus control. Chapter 4 investigates autonomous operation schedules for three types of intelligent appliances (or residential controllable loads) without receiving external signals for cost saving and for assisting the management of possible photovoltaic generation systems installed in the same distribution network. The three types of controllable loads studied in the chapter are electric water heaters, refrigerators deicing loads, and dishwashers, respectively. Chapter 5 investigates the method to mitigate overvoltage issues at the planning stage. A probabilistic method is presented in the chapter to evaluate the overvoltage risk in a distribution network with different PV capacity sizes under different load levels. Kolmogorov--Smirnov test (K--S test) is used to identify the most proper probability distributions for solar irradiance in different months. To increase accuracy, an iterative process is used to obtain the maximum allowable injection of active power from PVs. Conclusion and discussions on future work are given in Chapter 6.

  3. Aero-MINE (Motionless INtegrated Energy) for Distributed Scalable Wind Power.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houchens, Brent C.; Blaylock, Myra L.

    The proposed Aero-MINE technology will extract energy from wind without any exterior moving parts. Aero-MINEs can be integrated into buildings or function stand-alone, and are scalable. This gives them advantages similar to solar panels, but with the added benefit of operation in cloudy or dark conditions. Furthermore, compared to solar panels, Aero-MINEs can be manufactured at lower cost and with less environmental impact. Power generation is isolated internally by the pneumatic transmission of air and the outlet air-jet nozzles amplify the effectiveness. Multiple units can be connected to one centrally located electric generator. Aero-MINEs are ideal for the built-environment, withmore » numerous possible configurations ranging from architectural integration to modular bolt-on products. Traditional wind turbines suffer from many fundamental challenges. The fast-moving blades produce significant aero-acoustic noise, visual disturbances, light-induced flickering and impose wildlife mortality risks. The conversion of massive mechanical torque to electricity is a challenge for gears, generators and power conversion electronics. In addition, the installation, operation and maintenance of wind turbines is required at significant height. Furthermore, wind farms are often in remote locations far from dense regions of electricity customers. These technical and logistical challenges add significantly to the cost of the electricity produced by utility-scale wind farms. In contrast, distributed wind energy eliminates many of the logistical challenges. However, solutions such as micro-turbines produce relatively small amounts of energy due to the reduction in swept area and still suffer from the motion-related disadvantages of utility-scale turbines. Aero-MINEs combine the best features of distributed generation, while eliminating the disadvantages.« less

  4. Statiscal analysis of an earthquake-induced landslide distribution - The 1989 Loma Prieta, California event

    USGS Publications Warehouse

    Keefer, D.K.

    2000-01-01

    The 1989 Loma Prieta, California earthquake (moment magnitude, M=6.9) generated landslides throughout an area of about 15,000 km2 in central California. Most of these landslides occurred in an area of about 2000 km2 in the mountainous terrain around the epicenter, where they were mapped during field investigations immediately following the earthquake. The distribution of these landslides is investigated statistically, using regression and one-way analysisof variance (ANOVA) techniques to determine how the occurrence of landslides correlates with distance from the earthquake source, slope steepness, and rock type. The landslide concentration (defined as the number of landslide sources per unit area) has a strong inverse correlation with distance from the earthquake source and a strong positive correlation with slope steepness. The landslide concentration differs substantially among the various geologic units in the area. The differences correlate to some degree with differences in lithology and degree of induration, but this correlation is less clear, suggesting a more complex relationship between landslide occurrence and rock properties. ?? 2000 Elsevier Science B.V. All rights reserved.

  5. Ada Integrated Environment III Computer Program Development Specification. Volume III. Ada Optimizing Compiler.

    DTIC Science & Technology

    1981-12-01

    file.library-unit{.subunit).SYMAP Statement Map: library-file. library-unit.subunit).SMAP Type Map: 1 ibrary.fi le. 1 ibrary-unit{.subunit). TMAP The library...generator SYMAP Symbol Map code generator SMAP Updated Statement Map code generator TMAP Type Map code generator A.3.5 The PUNIT Command The P UNIT...Core.Stmtmap) NAME Tmap (Core.Typemap) END Example A-3 Compiler Command Stream for the Code Generator Texas Instruments A-5 Ada Optimizing Compiler

  6. Oil/source rock correlations in the Polish Flysch Carpathians and Mesozoic basement and organic facies of the Oligocene Menilite Shales: Insights from hydrous pyrolysis experiments

    USGS Publications Warehouse

    Curtis, John B.; Kotarba, M.J.; Lewan, M.D.; Wieclaw, D.

    2004-01-01

    The Oligocene Menilite Shales in the study area in the Polish Flysch Carpathians are organic-rich and contain varying mixtures of Type-II, Type-IIS and Type-III kerogen. The kerogens are thermally immature to marginally mature based on atomic H/C ratios and Rock-Eval data. This study defined three organic facies, i.e., sedimentary strata with differing hydrocarbon-generation potentials due to varying types and concentrations of organic matter. These facies correspond to the Silesian Unit and the eastern and western portions of the Skole Unit. Analysis of oils generated by hydrous pyrolysis of outcrop samples of Menilite Shales demonstrates that natural crude oils reservoired in the flysch sediments appear to have been generated from the Menilite Shales. Natural oils reservoired in the Mesozoic basement of the Carpathian Foredeep appear to be predominantly derived and migrated from Menilite Shales, with a minor contribution from at least one other source rock most probably within Middle Jurassic strata. Definition of organic facies may have been influenced by the heterogeneous distribution of suitable Menilite Shales outcrops and producing wells, and subsequent sample selection during the analytical phases of the study. ?? 2004 Elsevier Ltd. All rights reserved.

  7. On the possibility of generation of cold and additional electric energy at thermal power stations

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Agababov, V. S.; Borisova, P. N.

    2017-06-01

    A layout of a cogeneration plant for centralized supply of the users with electricity and cold (ECCG plant) is presented. The basic components of the plant are an expander-generator unit (EGU) and a vapor-compression thermotransformer (VCTT). At the natural-gas-pressure-reducing stations, viz., gas-distribution stations and gas-control units, the plant is connected in parallel to a throttler and replaces the latter completely or partially. The plant operates using only the energy of the natural gas flow without burning the gas; therefore, it can be classified as a fuelless installation. The authors compare the thermodynamic efficiencies of a centralized cold supply system based on the proposed plant integrated into the thermal power station scheme and a decentralized cold supply system in which the cold is generated by electrically driven vapor-compression thermotransformers installed on the user's premises. To perform comparative analysis, the exergy efficiency was taken as the criterion since in one of the systems under investigation the electricity and the cold are generated, which are energies of different kinds. It is shown that the thermodynamic efficiency of the power supply using the proposed plant proves to be higher within the entire range of the parameters under consideration. The article presents the results of investigating the impact of the gas heating temperature upstream from the expander on the electric power of the plant, its total cooling capacity, and the cooling capacities of the heat exchangers installed downstream from the EGU and the evaporator of the VCTT. The results of calculations are discussed that show that the cold generated at the gas-control unit of a powerful thermal power station can be used for the centralized supply of the cold to the ventilation and conditioning systems of both the buildings of the power station and the neighboring dwelling houses, schools, and public facilities during the summer season.

  8. 26 CFR 1.959-4 - Distributions to United States persons not counting as dividends.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... normal taxes and surtaxes) of subtitle A (relating to income taxes) of the Code as a distribution which... 26 Internal Revenue 10 2010-04-01 2010-04-01 false Distributions to United States persons not... Distributions to United States persons not counting as dividends. Except as provided in section 960(a)(3) and...

  9. Military Health Service System Ambulatory Work Unit (AWU).

    DTIC Science & Technology

    1988-04-01

    E-40 BBC-4 Ambulatory Work Unit Distribution Screen Passes BBC - Neurosurgery Clinic .... ............. . E-40 BBD -I Initial Record...Screen Failures BBD - Ophthalmology Clinic ... ............ E-41 BBD -2 Distribution Screen Failures BBD - Ophthalmology Clinic ............ E-41 BBD -3...Descriptive Statistics Distribution Screen Passes BBD - Ophthalmology Clinic ............ E-42 BBD -4 Ambulatory Work Unit Distribution Screen Passes BBD

  10. The Role of Distribution Infrastructure and Equipment in the Life-cycle Air Emissions of Liquid Transportation Fuels

    NASA Astrophysics Data System (ADS)

    Strogen, Bret Michael

    Production of fuel ethanol in the United States has increased ten-fold since 1993, largely as a result of government programs motivated by goals to improve domestic energy security, economic development, and environmental impacts. Over the next decade, the growth of and eventually the total production of second generation cellulosic biofuels is projected to exceed first generation (e.g., corn-based) biofuels, which will require continued expansion of infrastructure for producing and distributing ethanol and perhaps other biofuels. In addition to identifying potential differences in tailpipe emissions from vehicles operating with ethanol-blended or ethanol-free gasoline, environmental comparison of ethanol to petroleum fuels requires a comprehensive accounting of life-cycle environmental effects. Hundreds of published studies evaluate the life-cycle emissions from biofuels and petroleum, but the operation and maintenance of storage, handling, and distribution infrastructure and equipment for fuels and fuel feedstocks had not been adequately addressed. Little attention has been paid to estimating and minimizing emissions from these complex systems, presumably because they are believed to contribute a small fraction of total emissions for petroleum and first generation biofuels. This research aims to quantify the environmental impacts associated with the major components of fuel distribution infrastructure, and the impacts that will be introduced by expanding the parallel infrastructure needed to accommodate more biofuels in our existing systems. First, the components used in handling, storing, and transporting feedstocks and fuels are physically characterized by typical operating throughput, utilization, and lifespan. US-specific life-cycle GHG emission and water withdrawal factors are developed for each major distribution chain activity by applying a hybrid life-cycle assessment methodology to the manufacturing, construction, maintenance and operation of each component. In order to apply the new emission factors to policy-relevant scenarios, a projection is made for the fleet inventory of infrastructure components necessary to distribute 21 billion gallons of ethanol (the 2022 federal mandate for advanced biofuels under the Energy Independence and Security Act of 2007) derived entirely from Miscanthus grass, for comparison to the baseline petroleum system. Due to geographic, physical and chemical properties of biomass and alcohols, the distribution system for Miscanthus-based ethanol is more capital- and energy-intensive than petroleum per unit of fuel energy delivered. The transportation of biofuels away from producer regions poses environmental, health, and economic trade-offs that are herein evaluated using a simplified national distribution network model. In just the last ten years, ethanol transportation within the contiguous United States is estimated to have increased more than ten-fold in total t-km as ethanol has increasingly been transported away from Midwest producers due to air quality regulations pertaining to gasoline, renewable fuel mandates, and the 10% blending limit (i.e., the E10 blend wall). From 2004 to 2009, approximately 10 billion t-km of ethanol transportation are estimated to have taken place annually for reasons other than the E10 blend wall, leading to annual freight costs greater than $240 million and more than 300,000 tonnes of CO2-e emissions and significant emissions of criteria air pollutants from the combustion of more than 90 million liters of diesel. Although emissions from distribution activities are small when normalized to each unit of fuel, they are large in scale. Archetypal fuel distribution routes by rail and by truck are created to evaluate the significance of mode choice and route location on the severity of public health impacts from locomotive and truck emissions, by calculating the average PM2.5 pollution intake fraction along each route. Exposure to pollution resulting from trucking is found to be approximately twice as harmful as rail (while trucking is five times more energy intensive). Transporting fuel from the Midwest to California would result in slightly lower human health impacts than transportation to New Jersey, even though California is more than 50% farther from the Midwest than most coastal Northeast states. In summary, this dissertation integrated concepts from infrastructure management, climate and renewable fuel policy, fuel chemistry and combustion science, air pollution modeling, public health impact assessment, network optimization and geospatial analysis. In identifying and quantifying opportunities to minimize damage to the global climate and regional air quality from fuel distribution, results in this dissertation provide credence to the urgency of harmonizing policies and programs that address national and global energy and environmental goals. Under optimal future policy and economic conditions, infrastructure will be highly utilized and transportation minimized in order to reduce total economic, health, and environmental burdens associated with the entire supply and distribution chain for transportation fuels. (Abstract shortened by UMI.)

  11. Estimation of urban runoff and water quality using remote sensing and artificial intelligence.

    PubMed

    Ha, S R; Park, S Y; Park, D H

    2003-01-01

    Water quality and quantity of runoff are strongly dependent on the landuse and landcover (LULC) criteria. In this study, we developed a more improved parameter estimation procedure for the environmental model using remote sensing (RS) and artificial intelligence (AI) techniques. Landsat TM multi-band (7bands) and Korea Multi-Purpose Satellite (KOMPSAT) panchromatic data were selected for input data processing. We employed two kinds of artificial intelligence techniques, RBF-NN (radial-basis-function neural network) and ANN (artificial neural network), to classify LULC of the study area. A bootstrap resampling method, a statistical technique, was employed to generate the confidence intervals and distribution of the unit load. SWMM was used to simulate the urban runoff and water quality and applied to the study watershed. The condition of urban flow and non-point contaminations was simulated with rainfall-runoff and measured water quality data. The estimated total runoff, peak time, and pollutant generation varied considerably according to the classification accuracy and percentile unit load applied. The proposed procedure would efficiently be applied to water quality and runoff simulation in a rapidly changing urban area.

  12. Developing High PV Penetration Cases for Frequency Response Study of U.S. Western Interconnection: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Jin; Zhang, Yingchen; Veda, Santosh

    Recent large penetrations of solar photovoltaic (PV) generation and the inertial characteristics of inverter-based generation technologies have caught the attention of those in the electric power industry in the United States. This paper presents a systematic approach to developing test cases of high penetrations of PV for the Western Interconnection. First, to examine the accuracy of the base case model, the Western Electricity Coordinating Council (WECC) model is validated by using measurement data from synchronized phasor measurement units. Based on the 2022 Light Spring case, we developed four high PV penetration cases for the WECC system that are of interestmore » to the industry: 5% PV+15 % wind, 25% PV+15% wind, 45% PV+15% wind, 65% PV+15% wind). Additionally, a method to project PV is proposed that is based on collected, realistic PV distribution information, including the current and future PV power plant locations and penetrations in the WECC system. Both the utility-scale PV plant and residential rooftop PV are included in this study.« less

  13. Developing High PV Penetration Cases for Frequency Response Study of U.S. Western Interconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Jin; Zhang, Yingchen; Veda, Santosh

    Recent large penetrations of solar photovoltaic (PV) generation and the inertial characteristics of inverter-based generation technologies have caught the attention of those in the electric power industry in the United States. This paper presents a systematic approach to developing test cases of high penetrations of PV for the Western Interconnection. First, to examine the accuracy of the base case model, the Western Electricity Coordinating Council (WECC) model is validated by using measurement data from synchronized phasor measurement units. Based on the 2022 Light Spring case, we developed four high PV penetration cases for the WECC system that are of interestmore » to the industry: 5% PV+15 % wind, 25% PV+15% wind, 45% PV+15% wind, 65% PV+15% wind). Additionally, a method to project PV is proposed that is based on collected, realistic PV distribution information, including the current and future PV power plant locations and penetrations in the WECC system. Both the utility-scale PV plant and residential rooftop PV are included in this study.« less

  14. Developing High PV Penetration Cases for Frequency Response Study of U.S. Western Interconnection: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Jin; Zhang, Yingchen; Veda, Santosh

    2017-04-11

    Recent large penetrations of solar photovoltaic (PV) generation and the inertial characteristics of inverter-based generation technologies have caught the attention of those in the electric power industry in the United States. This paper presents a systematic approach to developing test cases of high penetrations of PV for the Western Interconnection. First, to examine the accuracy of the base case model, the Western Electricity Coordinating Council (WECC) model is validated by using measurement data from synchronized phasor measurement units. Based on the 2022 Light Spring case, we developed four high PV penetration cases for the WECC system that are of interestmore » to the industry: 5% PV+15 % wind, 25% PV+15% wind, 45% PV+15% wind, 65% PV+15% wind). Additionally, a method to project PV is proposed that is based on collected, realistic PV distribution information, including the current and future PV power plant locations and penetrations in the WECC system. Both the utility-scale PV plant and residential rooftop PV are included in this study.« less

  15. A Model for Generation of Martian Surface Dust, Soil and Rock Coatings: Physical vs. Chemical Interactions, and Palagonitic Plus Hydrothermal Alteration

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Murchie, S.; Pieters, C.; Zent, A.

    1999-01-01

    This model is one of many possible scenarios to explain the generation of the current surface material on Mars using chemical, magnetic and spectroscopic data from Mars and geologic analogs from terrestrial sites. One basic premise is that there are physical and chemical interactions of the atmospheric dust particles and that these two processes create distinctly different results. Physical processes distribute dust particles on rocks, forming physical rock coatings, and on the surface between rocks forming soil units; these are reversible processes. Chemical reactions of the dust/soil particles create alteration rinds on rock surfaces or duricrust surface units, both of which are relatively permanent materials. According to this model the mineral components of the dust/soil particles are derived from a combination of "typical" palagonitic weathering of volcanic ash and hydrothermally altered components, primarily from steam vents or fumeroles. Both of these altered materials are composed of tiny particles, about 1 micron or smaller, that are aggregates of silicates and iron oxide/oxyhydroxide/sulfate phases. Additional information is contained in the original extended abstract.

  16. 78 FR 68045 - Village of Morrisville, Vermont; Notice of Application Accepted for Filing, Soliciting Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ... 945-kW turbine-generator units for a total installed capacity of 1,890 kW; (9) a 14.5-foot-long... a 600-kW turbine-generator unit and a 1,200-kW turbine-generator unit for a total installed capacity...-wide concrete-brick powerhouse containing a 600-kW turbine-generator unit and a 700-kW turbine...

  17. 2014 Distributed Wind Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orell, A.; Foster, N.

    2015-08-01

    The cover of the 2014 Distributed Wind Market Report.According to the 2014 Distributed Wind Market Report, distributed wind reached a cumulative capacity of almost 1 GW (906 MW) in the United States in 2014, reflecting nearly 74,000 wind turbines deployed across all 50 states, Puerto Rico, and the U.S. Virgin Islands. In total, 63.6 MW of new distributed wind capacity was added in 2014, representing nearly 1,700 units and $170 million in investment across 24 states. In 2014, America's distributed wind energy industry supported a growing domestic industrial base as exports from United States-based small wind turbine manufacturers accounted formore » nearly 80% of United States-based manufacturers' sales.« less

  18. Accuracy or precision: Implications of sample design and methodology on abundance estimation

    USGS Publications Warehouse

    Kowalewski, Lucas K.; Chizinski, Christopher J.; Powell, Larkin A.; Pope, Kevin L.; Pegg, Mark A.

    2015-01-01

    Sampling by spatially replicated counts (point-count) is an increasingly popular method of estimating population size of organisms. Challenges exist when sampling by point-count method, and it is often impractical to sample entire area of interest and impossible to detect every individual present. Ecologists encounter logistical limitations that force them to sample either few large-sample units or many small sample-units, introducing biases to sample counts. We generated a computer environment and simulated sampling scenarios to test the role of number of samples, sample unit area, number of organisms, and distribution of organisms in the estimation of population sizes using N-mixture models. Many sample units of small area provided estimates that were consistently closer to true abundance than sample scenarios with few sample units of large area. However, sample scenarios with few sample units of large area provided more precise abundance estimates than abundance estimates derived from sample scenarios with many sample units of small area. It is important to consider accuracy and precision of abundance estimates during the sample design process with study goals and objectives fully recognized, although and with consequence, consideration of accuracy and precision of abundance estimates is often an afterthought that occurs during the data analysis process.

  19. Neutron radiation characteristics of the IVth generation reactor spent fuel

    NASA Astrophysics Data System (ADS)

    Bedenko, Sergey; Shamanin, Igor; Grachev, Victor; Knyshev, Vladimir; Ukrainets, Olesya; Zorkin, Andrey

    2018-03-01

    Exploitation of nuclear power plants as well as construction of new generation reactors lead to great accumulation of spent fuel in interim storage facilities at nuclear power plants, and in spent fuel «wet» and «dry» long-term storages. Consequently, handling the fuel needs more attention. The paper is focused on the creation of an efficient computational model used for developing the procedures and regulations of spent nuclear fuel handling in nuclear fuel cycle of the new generation reactor. A Thorium High-temperature Gas-Cooled Reactor Unit (HGTRU, Russia) was used as an object for numerical research. Fuel isotopic composition of HGTRU was calculated using the verified code of the MCU-5 program. The analysis of alpha emitters and neutron radiation sources was made. The neutron yield resulting from (α,n)-reactions and at spontaneous fission was calculated. In this work it has been shown that contribution of (α,n)-neutrons is insignificant in case of such (Th,Pu)-fuel composition and HGTRU operation mode, and integral neutron yield can be approximated by the Watt spectral function. Spectral and standardized neutron distributions were achieved by approximation of the list of high-precision nuclear data. The distribution functions were prepared in group and continuous form for further use in calculations according to MNCP, MCU, and SCALE.

  20. Assessment of Undiscovered Technically Recoverable Oil and Gas Resources of the Bakken Formation, Williston Basin, Montana and North Dakota, 2008

    USGS Publications Warehouse

    Pollastro, R.M.; Roberts, L.N.R.; Cook, T.A.; Lewan, M.D.

    2008-01-01

    The U.S. Geological Survey (USGS) has completed an assessment of the undiscovered oil and associated gas resources of the Upper Devonian to Lower Mississippian Bakken Formation in the U.S. portion of the Williston Basin of Montana and North Dakota and within the Williston Basin Province. The assessment is based on geologic elements of a total petroleum system (TPS), which include (1) source-rock distribution, thickness, organic richness, maturation, petroleum generation, and migration; (2) reservoir-rock type (conventional or continuous), distribution, and quality; and (3) character of traps and time of formation with respect to petroleum generation and migration. Framework studies in stratigraphy and structural geology and modeling of petroleum geochemistry, combined with historical exploration and production analyses, were used to estimate the undiscovered, technically recoverable oil resource of the Bakken Formation. Using this framework, the USGS defined a Bakken-Lodgepole TPS and seven assessment units (AU) within the system. For the Bakken Formation, the undiscovered oil and associated gas resources were quantitatively estimated for six of these AUs.

  1. The Case for Natural Gas Fueled Solid Oxide Fuel Cell Power Systems for Distributed Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chick, Lawrence A.; Weimar, Mark R.; Whyatt, Greg A.

    2015-02-01

    Natural-gas-fueled solid oxide fuel cell (NGSOFC) power systems yield electrical conversion efficiencies exceeding 60% and may become a viable alternative for distributed generation (DG) if stack life and manufacturing economies of scale can be realized. Currently, stacks last approximately 2 years and few systems are produced each year because of the relatively high cost of electricity from the systems. If mass manufacturing (10,000 units per year) and a stack life of 15 years can be reached, the cost of electricity from an NGSOFC system is estimated to be about 7.7 ¢/kWh, well within the price of commercial and residential retailmore » prices at the national level (9.9-10¢/kWh and 11-12 ¢/kWh, respectively). With an additional 5 ¢/kWh in estimated additional benefits from DG, NGSOFC could be well positioned to replace the forecasted 59-77 gigawatts of capacity loss resulting from coal plant closures due to stricter emissions regulations and low natural gas prices.« less

  2. Using a Simple Neural Network to Delineate Some Principles of Distributed Economic Choice.

    PubMed

    Balasubramani, Pragathi P; Moreno-Bote, Rubén; Hayden, Benjamin Y

    2018-01-01

    The brain uses a mixture of distributed and modular organization to perform computations and generate appropriate actions. While the principles under which the brain might perform computations using modular systems have been more amenable to modeling, the principles by which the brain might make choices using distributed principles have not been explored. Our goal in this perspective is to delineate some of those distributed principles using a neural network method and use its results as a lens through which to reconsider some previously published neurophysiological data. To allow for direct comparison with our own data, we trained the neural network to perform binary risky choices. We find that value correlates are ubiquitous and are always accompanied by non-value information, including spatial information (i.e., no pure value signals). Evaluation, comparison, and selection were not distinct processes; indeed, value signals even in the earliest stages contributed directly, albeit weakly, to action selection. There was no place, other than at the level of action selection, at which dimensions were fully integrated. No units were specialized for specific offers; rather, all units encoded the values of both offers in an anti-correlated format, thus contributing to comparison. Individual network layers corresponded to stages in a continuous rotation from input to output space rather than to functionally distinct modules. While our network is likely to not be a direct reflection of brain processes, we propose that these principles should serve as hypotheses to be tested and evaluated for future studies.

  3. Geostatistics and remote sensing as predictive tools of tick distribution: a cokriging system to estimate Ixodes scapularis (Acari: Ixodidae) habitat suitability in the United States and Canada from advanced very high resolution radiometer satellite imagery.

    PubMed

    Estrada-Peña, A

    1998-11-01

    Geostatistics (cokriging) was used to model the cross-correlated information between satellite-derived vegetation and climate variables and the distribution of the tick Ixodes scapularis (Say) in the Nearctic. Output was used to map the habitat suitability for I. scapularis on a continental scale. A data base of the localities where I. scapularis was collected in the United States and Canada was developed from a total of 346 published and geocoded records. This data base was cross-correlated with satellite pictures from the advanced very high resolution radiometer sensor obtained from 1984 to 1994 on the Nearctic at 10-d intervals, with a resolution of 8 km per pixel. Eight climate and vegetation variables were tabulated from this imagery. A cokriging system was generated to exploit satellite-derived data and to estimate the distribution of I. scapularis. Results obtained using 2 vegetation (standard NDVI) and 4 temperature variables closely agreed with actual records of the tick, with a sensitivity of 0.97 and a specificity of 0.89, with 6 and 4% of false-positive and false-negative sites, respectively. Such statistical analysis can be used to guide field work toward the correct interpretation of the distribution limits of I. scapularis and can also be used to make predictions about the impact of global change on tick range.

  4. Using a Simple Neural Network to Delineate Some Principles of Distributed Economic Choice

    PubMed Central

    Balasubramani, Pragathi P.; Moreno-Bote, Rubén; Hayden, Benjamin Y.

    2018-01-01

    The brain uses a mixture of distributed and modular organization to perform computations and generate appropriate actions. While the principles under which the brain might perform computations using modular systems have been more amenable to modeling, the principles by which the brain might make choices using distributed principles have not been explored. Our goal in this perspective is to delineate some of those distributed principles using a neural network method and use its results as a lens through which to reconsider some previously published neurophysiological data. To allow for direct comparison with our own data, we trained the neural network to perform binary risky choices. We find that value correlates are ubiquitous and are always accompanied by non-value information, including spatial information (i.e., no pure value signals). Evaluation, comparison, and selection were not distinct processes; indeed, value signals even in the earliest stages contributed directly, albeit weakly, to action selection. There was no place, other than at the level of action selection, at which dimensions were fully integrated. No units were specialized for specific offers; rather, all units encoded the values of both offers in an anti-correlated format, thus contributing to comparison. Individual network layers corresponded to stages in a continuous rotation from input to output space rather than to functionally distinct modules. While our network is likely to not be a direct reflection of brain processes, we propose that these principles should serve as hypotheses to be tested and evaluated for future studies. PMID:29643773

  5. Winners don't take all: Characterizing the competition for links on the web

    NASA Astrophysics Data System (ADS)

    Pennock, David M.; Flake, Gary W.; Lawrence, Steve; Glover, Eric J.; Giles, C. Lee

    2002-04-01

    As a whole, the World Wide Web displays a striking "rich get richer" behavior, with a relatively small number of sites receiving a disproportionately large share of hyperlink references and traffic. However, hidden in this skewed global distribution, we discover a qualitatively different and considerably less biased link distribution among subcategories of pagesfor example, among all university homepages or all newspaper homepages. Although the connectivity distribution over the entire web is close to a pure power law, we find that the distribution within specific categories is typically unimodal on a log scale, with the location of the mode, and thus the extent of the rich get richer phenomenon, varying across different categories. Similar distributions occur in many other naturally occurring networks, including research paper citations, movie actor collaborations, and United States power grid connections. A simple generative model, incorporating a mixture of preferential and uniform attachment, quantifies the degree to which the rich nodes grow richer, and how new (and poorly connected) nodes can compete. The model accurately accounts for the true connectivity distributions of category-specific web pages, the web as a whole, and other social networks.

  6. Older Parent – Child Relationships in Six Developed Nations: Comparisons at the Intersection of Affection and Conflict

    PubMed Central

    Silverstein, Merril; Gans, Daphna; Lowenstein, Ariela; Giarrusso, Roseann; Bengtson, Vern L.

    2014-01-01

    Intergenerational solidarity and ambivalence paradigms suggest that emotional relationships between generations consist of both positive and negative sentiments. We applied latent class analysis to measures of affection and conflict in 2,698 older parent – child relationships in 6 developed nations: England, Germany, Israel, Norway, Spain, and the United States (Southern California). The best fitting model consisted of 4 latent classes distributed differently across nations but with a cross-nationally invariant measurement structure. After controlling for demographics, health, coresidence, contact, and support, the following classes were overrepresented in corresponding nations: amicable (England), detached (Germany and Spain), disharmonious (United States), ambivalent (Israel). We discuss policy and cultural differences across societies that may explain why the prevalence of particular emotional types varied by nation. PMID:26203197

  7. Older Parent - Child Relationships in Six Developed Nations: Comparisons at the Intersection of Affection and Conflict.

    PubMed

    Silverstein, Merril; Gans, Daphna; Lowenstein, Ariela; Giarrusso, Roseann; Bengtson, Vern L

    2010-08-01

    Intergenerational solidarity and ambivalence paradigms suggest that emotional relationships between generations consist of both positive and negative sentiments. We applied latent class analysis to measures of affection and conflict in 2,698 older parent - child relationships in 6 developed nations: England, Germany, Israel, Norway, Spain, and the United States (Southern California). The best fitting model consisted of 4 latent classes distributed differently across nations but with a cross-nationally invariant measurement structure. After controlling for demographics, health, coresidence, contact, and support, the following classes were overrepresented in corresponding nations: amicable (England), detached (Germany and Spain), disharmonious (United States), ambivalent (Israel). We discuss policy and cultural differences across societies that may explain why the prevalence of particular emotional types varied by nation.

  8. Two-sided Topp-Leone Weibull distribution

    NASA Astrophysics Data System (ADS)

    Podeang, Krittaya; Bodhisuwan, Winai

    2017-11-01

    In this paper, we introduce a general class of lifetime distributions, called the two-sided Topp-Leone generated family of distribution. A special case of new family is the two-sided Topp-Leone Weibull distribution. This distribution used the two-sided Topp-Leone distribution as a generator for the Weibull distribution. The two-sided Topp-Leone Weibull distribution is presented in several shapes of distributions such as decreasing, unimodal, and bimodal which make this distribution more than flexible than the Weibull distribution. Its quantile function is presented. The parameter estimation method by using maximum likelihood estimation is discussed. The proposed distribution is applied to the strength data set, remission times of bladder cancer patients data set and time to failure of turbocharger data set. We compare the proposed distribution to the Topp-Leone Generated Weibull distribution. In conclusion, the two-sided Topp-Leone Weibull distribution performs similarly as the Topp-Leone Generated Weibull distribution in the first and second data sets. However, the proposed distribution can perform better than fit to Topp-Leone Generated Weibull distribution for the other.

  9. CLOSEUP VIEW OF A GENERATOR UNIT WITH ITS ASSOCIATED INSTRUMENTATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CLOSE-UP VIEW OF A GENERATOR UNIT WITH ITS ASSOCIATED INSTRUMENTATION AND CONTROL PANEL. - Wilson Dam & Hydroelectric Plant, Turbine & Generator Unit, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL

  10. Distributed Generation of Electricity and its Environmental Impacts

    EPA Pesticide Factsheets

    Distributed generation refers to technologies that generate electricity at or near where it will be used. Learn about how distributed energy generation can support the delivery of clean, reliable power to additional customers.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poore, WP

    The vision of the Distributed Energy Research Program (DER) program of the U.S. Department of Energy (DOE) is that the United States will have the cleanest and most efficient and reliable energy system in the world by maximizing the use of affordable distributed energy resources. Electricity consumers will be able to choose from a diverse number of efficient, cost-effective, and environmentally friendly distributed energy options and easily connect them into the nation's energy infrastructure while providing benefits to their owners and other stakeholders. The long-term goal of this vision is that DER will achieve a 20% share of new electricmore » capacity additions in the United States by 2010, thereby helping to make the nation's electric power generation and delivery system more efficient, reliable, secure, clean, economical, and diverse in terms of fuel use (oil, natural gas, solar, hydroelectric, etc.) and prime mover resource (solar, wind, gas turbines, etc.). Near- and mid-term goals are to develop new technologies for implementing and operating DER and address barriers associated with DER usage and then to reduce costs and emissions and improve the efficiency and reliability of DER. Numerous strategies for meeting these goals have been developed into a research, development, and demonstration (RD&D) program that supports generation and delivery systems architecture, including modeling and simulation tools. The benefits associated with DER installations are often significant and numerous. They almost always provide tangible economic benefits, such as energy savings or transmission and distribution upgrade deferrals, as well as intangible benefits, such as power quality improvements that lengthen maintenance or repair intervals for power equipment. Also, the benefits routinely are dispersed among end users, utilities, and the public. For instance, an end user may use the DER to reduce their peak demand and save money due to lower demand charges. Reduced end user peak demand, in turn, may lower a distribution system peak load such that upgrades are deferred or avoided. This could benefit other consumers by providing them with higher reliability and power quality as well as avoiding their cost share of a distribution system upgrade. In this example, the costs of the DER may be born by the end user, but that user reaps only a share of the benefits. This report, the first product of a study to quantify the value of DER, documents initial project efforts to develop an assessment methodology. The focus of currently available site-specific DER assessment techniques are typically limited to two parties, the owner/user and the local utility. Rarely are the impacts on other stakeholders, including interconnected distribution utilities, transmission system operators, generating system operators, other local utility customers, local and regional industry and business, various levels of government, and the environment considered. The goal of this assessment is to quantify benefits and cost savings that accrue broadly across a region, recognizing that DER installations may have local, regional, or national benefits.« less

  12. 101. CABLE DISTRIBUTION UNITS, SOUTHEAST SIDE OF LANDLINE INSTRUMENTATION ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    101. CABLE DISTRIBUTION UNITS, SOUTHEAST SIDE OF LANDLINE INSTRUMENTATION ROOM (106), LSB (BLDG. 770). NOTE CABLES ENTER CABLE DISTRIBUTION UNITS FROM OVERHEAD CABLE TRAYS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  13. Method and apparatus for anti-islanding protection of distributed generations

    DOEpatents

    Ye, Zhihong; John, Vinod; Wang, Changyong; Garces, Luis Jose; Zhou, Rui; Li, Lei; Walling, Reigh Allen; Premerlani, William James; Sanza, Peter Claudius; Liu, Yan; Dame, Mark Edward

    2006-03-21

    An apparatus for anti-islanding protection of a distributed generation with respect to a feeder connected to an electrical grid is disclosed. The apparatus includes a sensor adapted to generate a voltage signal representative of an output voltage and/or a current signal representative of an output current at the distributed generation, and a controller responsive to the signals from the sensor. The controller is productive of a control signal directed to the distributed generation to drive an operating characteristic of the distributed generation out of a nominal range in response to the electrical grid being disconnected from the feeder.

  14. A Review of Microgrid Architectures and Control Strategy

    NASA Astrophysics Data System (ADS)

    Jadav, Krishnarajsinh A.; Karkar, Hitesh M.; Trivedi, I. N.

    2017-12-01

    In this paper microgrid architecture and various converters control strategies are reviewed. Microgrid is defined as interconnected network of distributed energy resources, loads and energy storage systems. This emerging concept realizes the potential of distributed generators. AC microgrid interconnects various AC distributed generators like wind turbine and DC distributed generators like PV, fuel cell using inverter. While in DC microgrid output of an AC distributed generator must be converted to DC using rectifiers and DC distributed generator can be directly interconnected. Hybrid microgrid is the solution to avoid this multiple reverse conversions AC-DC-AC and DC-AC-DC that occur in the individual AC-DC microgrid. In hybrid microgrid all AC distributed generators will be connected in AC microgrid and DC distributed generators will be connected in DC microgrid. Interlinking converter is used for power balance in both microgrids, which transfer power from one microgrid to other if any microgrid is overloaded. At the end, review of interlinking converter control strategies is presented.

  15. GIS representation of coal-bearing areas in Antarctica

    USGS Publications Warehouse

    Merrill, Matthew D.

    2016-03-11

    Understanding the distribution of coal-bearing geologic units in Antarctica provides information that can be used in sedimentary, geomorphological, paleontological, and climatological studies. This report is a digital compilation of information on Antarctica’s coal-bearing geologic units found in the literature. It is intended to be used in small-scale spatial geographic information system (GIS) investigations and as a visual aid in the discussion of Antarctica’s coal resources or in other coal-based geologic investigations. Instead of using spatially insignificant point markers to represent large coal-bearing areas, this dataset uses polygons to represent actual coal-bearing lithologic units. Specific locations of coal deposits confirmed from the literature are provided in the attribution for the coal-bearing unit polygons. Coal-sample-location data were used to confirm some reported coal-bearing geology. The age and extent of the coal deposits indicated in the literature were checked against geologic maps ranging from local scale at 1:50,000 to Antarctic continental scale at 1:5,000,000; if satisfactory, the map boundaries were used to generate the polygons for the coal-bearing localities.

  16. Development of a Practical Broadband Active Vibration Control System

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Perey, Daniel F.; Cabell, Randolph H.

    2011-01-01

    The goal of this work is to develop robust, lightweight, and low-power control units that can be used to suppress structural vibration in flexible aerospace structures. In particular, this paper focuses on active damping, which is implemented using compact decentralized control units distributed over the structure. Each control unit consists of a diamond-shaped piezoelectric patch actuator, three miniature accelerometers, and analog electronics. The responses from the accelerometers are added together and then integrated to give a signal proportional to velocity. The signal is then inverted, amplified, and applied to the actuator, which generates a control force that is out of phase with the measured velocity. This paper describes the development of the control system, including a detailed description of the control and power electronics. The paper also presents experimental results acquired on a Plexiglas window blank. Five identical control units installed around the perimeter of the window achieved 10 dB peak reductions and a 2.4 dB integrated reduction of the spatially averaged velocity of the window between 500 and 3000 Hz.

  17. Mars: Noachian hydrology by its statistics and topology

    NASA Technical Reports Server (NTRS)

    Cabrol, N. A.; Grin, E. A.

    1993-01-01

    Discrimination between fluvial features generated by surface drainage and subsurface aquifer discharges will provide clues to the understanding of early Mars' climatic history. Our approach is to define the process of formation of the oldest fluvial valleys by statistical and topological analyses. Formation of fluvial valley systems reached its highest statistical concentration during the Noachian Period. Nevertheless, they are a scarce phenomenom in Martian history, localized on the craterized upland, and subject to latitudinal distribution. They occur sparsely on Noachian geological units with a weak distribution density, and appear in reduced isolated surface (around 5 x 10(exp 3)(sq km)), filled by short streams (100-300 km length). Topological analysis of the internal organization of 71 surveyed Noachian fluvial valley networks also provides information on the mechanisms of formation.

  18. Toward a theory of distributed word expert natural language parsing

    NASA Technical Reports Server (NTRS)

    Rieger, C.; Small, S.

    1981-01-01

    An approach to natural language meaning-based parsing in which the unit of linguistic knowledge is the word rather than the rewrite rule is described. In the word expert parser, knowledge about language is distributed across a population of procedural experts, each representing a word of the language, and each an expert at diagnosing that word's intended usage in context. The parser is structured around a coroutine control environment in which the generator-like word experts ask questions and exchange information in coming to collective agreement on sentence meaning. The word expert theory is advanced as a better cognitive model of human language expertise than the traditional rule-based approach. The technical discussion is organized around examples taken from the prototype LISP system which implements parts of the theory.

  19. Hardware system of X-wave generator with simple driving pulses

    NASA Astrophysics Data System (ADS)

    Li, Xu; Li, Yaqin; Xiao, Feng; Ding, Mingyue; Yuchi, Ming

    2013-03-01

    The limited diffraction beams such as X-wave have the properties of larger depth of field. Thus, it has the potential to generate ultra-high frame rate ultrasound images. However, in practice, the real-time generation of X-wave ultrasonic field requires complex and high-cost system, especially the precise and specific voltage time distribution part for the excitation of each distinct array element. In order to simplify the hardware realization of X-wave, based on the previous works, X-wave excitation signals were decomposed and expressed as the superposition of a group of simple driving pulses, such as rectangular and triangular waves. The hardware system for the X-wave generator was also designed. The generator consists of a computer for communication with the circuit, universal serial bus (USB) based micro-controller unit (MCU) for data transmission, field programmable gate array (FPGA) based Direct Digital Synthesizer(DDS), 12-bit digital-to-analog (D/A) converter and a two stage amplifier.The hardware simulation results show that the designed system can generate the waveforms at different radius approximating the theoretical X-wave excitations with a maximum error of 0.49% triggered by the quantification of amplitude data.

  20. Modelling and control of a microgrid including photovoltaic and wind generation

    NASA Astrophysics Data System (ADS)

    Hussain, Mohammed Touseef

    Extensive increase of distributed generation (DG) penetration and the existence of multiple DG units at distribution level have introduced the notion of micro-grid. This thesis develops a detailed non-linear and small-signal dynamic model of a microgrid that includes PV, wind and conventional small scale generation along with their power electronics interfaces and the filters. The models developed evaluate the amount of generation mix from various DGs for satisfactory steady state operation of the microgrid. In order to understand the interaction of the DGs on microgrid system initially two simpler configurations were considered. The first one consists of microalternator, PV and their electronics, and the second system consists of microalternator and wind system each connected to the power system grid. Nonlinear and linear state space model of each microgrid are developed. Small signal analysis showed that the large participation of PV/wind can drive the microgrid to the brink of unstable region without adequate control. Non-linear simulations are carried out to verify the results obtained through small-signal analysis. The role of the extent of generation mix of a composite microgrid consisting of wind, PV and conventional generation was investigated next. The findings of the smaller systems were verified through nonlinear and small signal modeling. A central supervisory capacitor energy storage controller interfaced through a STATCOM was proposed to monitor and enhance the microgrid operation. The potential of various control inputs to provide additional damping to the system has been evaluated through decomposition techniques. The signals identified to have damping contents were employed to design the supervisory control system. The controller gains were tuned through an optimal pole placement technique. Simulation studies demonstrate that the STATCOM voltage phase angle and PV inverter phase angle were the best inputs for enhanced stability boundaries.

  1. Backscattered EM-wave manipulation using low cost 1-bit reflective surface at W-band

    NASA Astrophysics Data System (ADS)

    Taher Al-Nuaimi, Mustafa K.; Hong, Wei; He, Yejun

    2018-04-01

    The design of low cost 1-bit reflective (non-absorptive) surfaces for manipulation of backscattered EM-waves and radar cross section (RCS) reduction at W-band is presented in this article. The presented surface is designed based on the reflection phase cancellation principle. The unit cell used to compose the proposed surface has an obelus (division symbol of short wire and two disks above and below) like shape printed on a grounded dielectric material. Using this unit cell, surfaces that can efficiently manipulate the backscattered RCS pattern by using the proposed obelus-shaped unit cell (as ‘0’ element) and its mirrored unit cell (as ‘1’ element) in one surface with a 180°  ±  35° reflection phase difference between their reflection phases are designed. The proposed surfaces can generate various kinds of backscattered RCS patterns, such as single, three, or four lobes or even a low-level (reduced RCS) diffused reflection pattern when those two unit cells are distributed randomly across the surface aperture. For experimental characterization purposes, a 50  ×  50 mm2 surface is fabricated and measured.

  2. Slope stability of bioreactor landfills during leachate injection: effects of heterogeneous and anisotropic municipal solid waste conditions.

    PubMed

    Giri, Rajiv K; Reddy, Krishna R

    2014-03-01

    In bioreactor landfills, leachate recirculation can significantly affect the stability of landfill slope due to generation and distribution of excessive pore fluid pressures near side slope. The current design and operation of leachate recirculation systems do not consider the effects of heterogeneous and anisotropic nature of municipal solid waste (MSW) and the increased pore gas pressures in landfilled waste caused due to leachate recirculation on the physical stability of landfill slope. In this study, a numerical two-phase flow model (landfill leachate and gas as immiscible phases) was used to investigate the effects of heterogeneous and anisotropic nature of MSW on moisture distribution and pore-water and capillary pressures and their resulting impacts on the stability of a simplified bioreactor landfill during leachate recirculation using horizontal trench system. The unsaturated hydraulic properties of MSW were considered based on the van Genuchten model. The strength reduction technique was used for slope stability analyses as it takes into account of the transient and spatially varying pore-water and gas pressures. It was concluded that heterogeneous and anisotropic MSW with varied unit weight and saturated hydraulic conductivity significantly influenced the moisture distribution and generation and distribution of pore fluid pressures in landfill and considerably reduced the stability of bioreactor landfill slope. It is recommended that heterogeneous and anisotropic MSW must be considered as it provides a more reliable approach for the design and leachate operations in bioreactor landfills.

  3. Phenology of the adult angel lichen moth (Cisthene angelus) in Grand Canyon, USA

    USGS Publications Warehouse

    Metcalfe, Anya; Kennedy, Theodore A.; Muehlbauer, Jeffrey D.

    2016-01-01

    We investigated the phenology of adult angel lichen moths (Cisthene angelus) along a 364-km long segment of the Colorado River in Grand Canyon, Arizona, USA, using a unique data set of 2,437 light-trap samples collected by citizen scientists. We found that adults of C. angelus were bivoltine from 2012 to 2014. We quantified plasticity in wing lengths and sex ratios among the two generations and across a 545-m elevation gradient. We found that abundance, but not wing length, increased at lower elevations and that the two generations differed in size and sex distributions. Our results shed light on the life history and morphology of a common, but poorly known, species of moth endemic to the southwestern United States and Mexico.

  4. Towards an improved ensemble precipitation forecast: A probabilistic post-processing approach

    NASA Astrophysics Data System (ADS)

    Khajehei, Sepideh; Moradkhani, Hamid

    2017-03-01

    Recently, ensemble post-processing (EPP) has become a commonly used approach for reducing the uncertainty in forcing data and hence hydrologic simulation. The procedure was introduced to build ensemble precipitation forecasts based on the statistical relationship between observations and forecasts. More specifically, the approach relies on a transfer function that is developed based on a bivariate joint distribution between the observations and the simulations in the historical period. The transfer function is used to post-process the forecast. In this study, we propose a Bayesian EPP approach based on copula functions (COP-EPP) to improve the reliability of the precipitation ensemble forecast. Evaluation of the copula-based method is carried out by comparing the performance of the generated ensemble precipitation with the outputs from an existing procedure, i.e. mixed type meta-Gaussian distribution. Monthly precipitation from Climate Forecast System Reanalysis (CFS) and gridded observation from Parameter-Elevation Relationships on Independent Slopes Model (PRISM) have been employed to generate the post-processed ensemble precipitation. Deterministic and probabilistic verification frameworks are utilized in order to evaluate the outputs from the proposed technique. Distribution of seasonal precipitation for the generated ensemble from the copula-based technique is compared to the observation and raw forecasts for three sub-basins located in the Western United States. Results show that both techniques are successful in producing reliable and unbiased ensemble forecast, however, the COP-EPP demonstrates considerable improvement in the ensemble forecast in both deterministic and probabilistic verification, in particular in characterizing the extreme events in wet seasons.

  5. Distributed Generation to Support Development-Focused Climate Action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Sadie; Gagnon, Pieter; Stout, Sherry

    2016-09-01

    This paper explores the role of distributed generation, with a high renewable energy contribution, in supporting low emission climate-resilient development. The paper presents potential impacts on development (via energy access), greenhouse gas emission mitigation, and climate resilience directly associated with distributed generation, as well as specific actions that may enhance or increase the likelihood of climate and development benefits. This paper also seeks to provide practical and timely insights to support distributed generation policymaking and planning within the context of common climate and development goals as the distributed generation landscape rapidly evolves globally. Country-specific distributed generation policy and program examples,more » as well as analytical tools that can inform efforts internationally, are also highlighted throughout the paper.« less

  6. Mafic-crystal distributions, viscosities, and lava structures of some Hawaiian lava flows

    NASA Astrophysics Data System (ADS)

    Rowland, Scott K.; Walker, George P. L.

    1988-09-01

    The distribution patterns of mafic phenocrysts in some Hawaiian basalt flows are consistent with simple in situ gravitational settling. We use the patterns to estimate the crystal settling velocity and hence viscosity of the lava, which in turn can be correlated with surface structures. Numerical modeling generates theoretical crystal concentration profiles through lava flow units of different thicknesses for differing settling velocities. By fitting these curves to field data, crystal-settling rates through the lavas can be estimated, from which the viscosities of the flows can be determined using Stokes' Law. Lavas in which the crystal settling velocity was relatively high (on the order of 5 × 10 -4 cm/sec) show great variations in phenocryst content, both from top to bottom of the same flow unit, and from one flow unit to another. Such lava is invariably pahoehoe, flow units of which are usually less than 1 m thick. Lavas in which the crystal-settling velocity was low show a small but measurable variation in phenocryst content. These lavas are part of a progression from a rough pahoehoe to toothpaste lava to a'a. Toothpaste lava is characterized by spiny texture as well as the ability to retain surface grooves during solidification, and flow units are usually thicker than 1 m. In the thickest of Hawaiian a'a flows, those of the distal type, no systematic crystal variations are observed, and high viscosity coupled with a finite yield strength prevented crystal settling. The amount of crystal settling in pahoehoe indicates that the viscosity ranged from 600 to 6000 Pa s. The limited amount of settling in toothpaste lava indicates a viscosity greater than this value, approaching 12,000 Pa s. We infer that distal-type a'a had a higher viscosity still and also possessed a yield strength.

  7. 40 CFR 69.11 - New exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Administrator of the Environmental Protection Agency (“EPA”) conditionally exempts electric generating units on... significant deterioration (“PSD”) permit prior to construction is granted for the electric generating units... to be constructed at Orote, with the following conditions: (i) Each electric generating unit shall...

  8. A nonparametric stochastic method for generating daily climate-adjusted streamflows

    NASA Astrophysics Data System (ADS)

    Stagge, J. H.; Moglen, G. E.

    2013-10-01

    A daily stochastic streamflow generation model is presented, which successfully replicates statistics of the historical streamflow record and can produce climate-adjusted daily time series. A monthly climate model relates general circulation model (GCM)-scale climate indicators to discrete climate-streamflow states, which in turn control parameters in a daily streamflow generation model. Daily flow is generated by a two-state (increasing/decreasing) Markov chain, with rising limb increments randomly sampled from a Weibull distribution and the falling limb modeled as exponential recession. When applied to the Potomac River, a 38,000 km2 basin in the Mid-Atlantic United States, the model reproduces the daily, monthly, and annual distribution and dynamics of the historical streamflow record, including extreme low flows. This method can be used as part of water resources planning, vulnerability, and adaptation studies and offers the advantage of a parsimonious model, requiring only a sufficiently long historical streamflow record and large-scale climate data. Simulation of Potomac streamflows subject to the Special Report on Emissions Scenarios (SRES) A1b, A2, and B1 emission scenarios predict a slight increase in mean annual flows over the next century, with the majority of this increase occurring during the winter and early spring. Conversely, mean summer flows are projected to decrease due to climate change, caused by a shift to shorter, more sporadic rain events. Date of the minimum annual flow is projected to shift 2-5 days earlier by the 2070-2099 period.

  9. New Generation General Purpose Computer (GPC) compact IBM unit

    NASA Technical Reports Server (NTRS)

    1991-01-01

    New Generation General Purpose Computer (GPC) compact IBM unit replaces a two-unit earlier generation computer. The new IBM unit is documented in table top views alone (S91-26867, S91-26868), with the onboard equipment it supports including the flight deck CRT screen and keypad (S91-26866), and next to the two earlier versions it replaces (S91-26869).

  10. Integrated-Circuit Pseudorandom-Number Generator

    NASA Technical Reports Server (NTRS)

    Steelman, James E.; Beasley, Jeff; Aragon, Michael; Ramirez, Francisco; Summers, Kenneth L.; Knoebel, Arthur

    1992-01-01

    Integrated circuit produces 8-bit pseudorandom numbers from specified probability distribution, at rate of 10 MHz. Use of Boolean logic, circuit implements pseudorandom-number-generating algorithm. Circuit includes eight 12-bit pseudorandom-number generators, outputs are uniformly distributed. 8-bit pseudorandom numbers satisfying specified nonuniform probability distribution are generated by processing uniformly distributed outputs of eight 12-bit pseudorandom-number generators through "pipeline" of D flip-flops, comparators, and memories implementing conditional probabilities on zeros and ones.

  11. Clinical assessment of pacemaker power sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilitch, M.; Parsonnet, V.; Furman, S.

    1980-01-01

    The development of power sources for cardiac pacemakers has progressed from a 15-year usage of mercury-zinc batteries to widely used and accepted lithium cells. At present, there are about 6 different types of lithium cells incorporated into commercially distributed pacemakers. The authors reviewed experience over a 5-year period with 1711 mercury-zinc, 130 nuclear (P238) and 1912 lithium powered pacemakers. The lithium units have included 698 lithium-iodide, 270 lithium-silver chromate, 135 lithium-thionyl chloride, 31 lithium-lead and 353 lithium-cupric sulfide batteries. 57 of the lithium units have failed (91.2% component failure and 5.3% battery failure). 459 mercury-zinc units failed (25% component failuremore » and 68% battery depletion). The data show that lithium powered pacemaker failures are primarily component, while mercury-zinc failures are primarily battery related. It is concluded that mercury-zinc powered pulse generators are obsolete and that lithium and nuclear (P238) power sources are highly reliable over the 5 years for which data are available. 3 refs.« less

  12. Development and validation of a subject-specific finite element model of the functional spinal unit to predict vertebral strength.

    PubMed

    Lee, Chu-Hee; Landham, Priyan R; Eastell, Richard; Adams, Michael A; Dolan, Patricia; Yang, Lang

    2017-09-01

    Finite element models of an isolated vertebral body cannot accurately predict compressive strength of the spinal column because, in life, compressive load is variably distributed across the vertebral body and neural arch. The purpose of this study was to develop and validate a patient-specific finite element model of a functional spinal unit, and then use the model to predict vertebral strength from medical images. A total of 16 cadaveric functional spinal units were scanned and then tested mechanically in bending and compression to generate a vertebral wedge fracture. Before testing, an image processing and finite element analysis framework (SpineVox-Pro), developed previously in MATLAB using ANSYS APDL, was used to generate a subject-specific finite element model with eight-node hexahedral elements. Transversely isotropic linear-elastic material properties were assigned to vertebrae, and simple homogeneous linear-elastic properties were assigned to the intervertebral disc. Forward bending loading conditions were applied to simulate manual handling. Results showed that vertebral strengths measured by experiment were positively correlated with strengths predicted by the functional spinal unit finite element model with von Mises or Drucker-Prager failure criteria ( R 2  = 0.80-0.87), with areal bone mineral density measured by dual-energy X-ray absorptiometry ( R 2  = 0.54) and with volumetric bone mineral density from quantitative computed tomography ( R 2  = 0.79). Large-displacement non-linear analyses on all specimens did not improve predictions. We conclude that subject-specific finite element models of a functional spinal unit have potential to estimate the vertebral strength better than bone mineral density alone.

  13. Miniature L-Band Radar Transceiver

    NASA Technical Reports Server (NTRS)

    McWatters, Dalia; Price, Douglas; Edelstein, Wendy

    2007-01-01

    A miniature L-band transceiver that operates at a carrier frequency of 1.25 GHz has been developed as part of a generic radar electronics module (REM) that would constitute one unit in an array of many identical units in a very-large-aperture phased-array antenna. NASA and the Department of Defense are considering the deployment of such antennas in outer space; the underlying principles of operation, and some of those of design, also are applicable on Earth. The large dimensions of the antennas make it advantageous to distribute radio-frequency electronic circuitry into elements of the arrays. The design of the REM is intended to implement the distribution. The design also reflects a requirement to minimize the size and weight of the circuitry in order to minimize the weight of any such antenna. Other requirements include making the transceiver robust and radiation-hard and minimizing power demand. Figure 1 depicts the functional blocks of the REM, including the L-band transceiver. The key functions of the REM include signal generation, frequency translation, amplification, detection, handling of data, and radar control and timing. An arbitrary-waveform generator that includes logic circuitry and a digital-to-analog converter (DAC) generates a linear-frequency-modulation chirp waveform. A frequency synthesizer produces local-oscillator signals used for frequency conversion and clock signals for the arbitrary-waveform generator, for a digitizer [that is, an analog-to-digital converter (ADC)], and for a control and timing unit. Digital functions include command, timing, telemetry, filtering, and high-rate framing and serialization of data for a high-speed scientific-data interface. The aforementioned digital implementation of filtering is a key feature of the REM architecture. Digital filters, in contradistinction to analog ones, provide consistent and temperature-independent performance, which is particularly important when REMs are distributed throughout a large array. Digital filtering also enables selection among multiple filter parameters as required for different radar operating modes. After digital filtering, data are decimated appropriately in order to minimize the data rate out of an antenna panel. The L-band transceiver (see Figure 2) includes a radio-frequency (RF)-to-baseband down-converter chain and an intermediate- frequency (IF)-to-RF up-converter chain. Transmit/receive (T/R) switches enable the use of a single feed to the antenna for both transmission and reception. The T/R switches also afford a built-in test capability by enabling injection of a calibration signal into the receiver chain. In order of decreasing priority, components of the transceiver were selected according to requirements of radiation hardness, then compactness, then low power. All of the RF components are radiation-hard. The noise figure (NF) was optimized to the extent that (1) a low-noise amplifier (LNA) (characterized by NF < 2 dB) was selected but (2) the receiver front-end T/R switches were selected for a high degree of isolation and acceptably low loss, regardless of the requirement to minimize noise.

  14. Effect of accuracy of wind power prediction on power system operator

    NASA Technical Reports Server (NTRS)

    Schlueter, R. A.; Sigari, G.; Costi, T.

    1985-01-01

    This research project proposed a modified unit commitment that schedules connection and disconnection of generating units in response to load. A modified generation control is also proposed that controls steam units under automatic generation control, fast responding diesels, gas turbines and hydro units under a feedforward control, and wind turbine array output under a closed loop array control. This modified generation control and unit commitment require prediction of trend wind power variation one hour ahead and the prediction of error in this trend wind power prediction one half hour ahead. An improved meter for predicting trend wind speed variation is developed. Methods for accurately simulating the wind array power from a limited number of wind speed prediction records was developed. Finally, two methods for predicting the error in the trend wind power prediction were developed. This research provides a foundation for testing and evaluating the modified unit commitment and generation control that was developed to maintain operating reliability at a greatly reduced overall production cost for utilities with wind generation capacity.

  15. Control of dispatch dynamics for lowering the cost of distributed generation in the built environment

    NASA Astrophysics Data System (ADS)

    Flores, Robert Joseph

    Distributed generation can provide many benefits over traditional central generation such as increased reliability and efficiency while reducing emissions. Despite these potential benefits, distributed generation is generally not purchased unless it reduces energy costs. Economic dispatch strategies can be designed such that distributed generation technologies reduce overall facility energy costs. In this thesis, a microturbine generator is dispatched using different economic control strategies, reducing the cost of energy to the facility. Several industrial and commercial facilities are simulated using acquired electrical, heating, and cooling load data. Industrial and commercial utility rate structures are modeled after Southern California Edison and Southern California Gas Company tariffs and used to find energy costs for the simulated buildings and corresponding microturbine dispatch. Using these control strategies, building models, and utility rate models, a parametric study examining various generator characteristics is performed. An economic assessment of the distributed generation is then performed for both the microturbine generator and parametric study. Without the ability to export electricity to the grid, the economic value of distributed generation is limited to reducing the individual costs that make up the cost of energy for a building. Any economic dispatch strategy must be built to reduce these individual costs. While the ability of distributed generation to reduce cost depends of factors such as electrical efficiency and operations and maintenance cost, the building energy demand being serviced has a strong effect on cost reduction. Buildings with low load factors can accept distributed generation with higher operating costs (low electrical efficiency and/or high operations and maintenance cost) due to the value of demand reduction. As load factor increases, lower operating cost generators are desired due to a larger portion of the building load being met in an effort to reduce demand. In addition, buildings with large thermal demand have access to the least expensive natural gas, lowering the cost of operating distributed generation. Recovery of exhaust heat from DG reduces cost only if the buildings thermal demand coincides with the electrical demand. Capacity limits exist where annual savings from operation of distributed generation decrease if further generation is installed. For low operating cost generators, the approximate limit is the average building load. This limit decreases as operating costs increase. In addition, a high capital cost of distributed generation can be accepted if generator operating costs are low. As generator operating costs increase, capital cost must decrease if a positive economic performance is desired.

  16. Integrated Stirling Convertor and Hall Thruster Test Conducted

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2002-01-01

    An important aspect of implementing Stirling Radioisotope Generators on future NASA missions is the integration of the generator and controller with potential spacecraft loads. Some recent studies have indicated that the combination of Stirling Radioisotope Generators and electric propulsion devices offer significant trip time and payload fraction benefits for deep space missions. A test was devised to begin to understand the interactions between Stirling generators and electric thrusters. An electrically heated RG- 350 (350-W output) Stirling convertor, designed and built by Stirling Technology Company of Kennewick, Washington, under a NASA Small Business Innovation Research agreement, was coupled to a 300-W SPT-50 Hall-effect thruster built for NASA by the Moscow Aviation Institute (RIAME). The RG-350 and the SPT-50 shown, were installed in adjacent vacuum chamber ports at NASA Glenn Research Center's Electric Propulsion Laboratory, Vacuum Facility 8. The Stirling electrical controller interfaced directly with the Hall thruster power-processing unit, both of which were located outside of the vacuum chamber. The power-processing unit accepted the 48 Vdc output from the Stirling controller and distributed the power to all the loads of the SPT-50, including the magnets, keeper, heater, and discharge. On February 28, 2001, the Glenn test team successfully operated the Hall-effect thruster with the Stirling convertor. This is the world's first known test of a dynamic power source with electric propulsion. The RG-350 successfully managed the transition from the purely resistive load bank within the Stirling controller to the highly capacitive power-processing unit load. At the time of the demonstration, the Stirling convertor was operating at a hot temperature of 530 C and a cold temperature of -6 C. The linear alternator was producing approximately 250 W at 109 Vac, while the power-processing unit was drawing 175 W at 48 Vdc. The majority of power was delivered to the Hall thruster discharge circuit operating at 115 Vdc and 0.9 A. Testing planned for late 2001 will examine the possibility of directly driving the Hall thruster discharge circuit using rectified and filtered output from the Stirling alternator.

  17. Uranium, its impact on the national and global energy mix; and its history, distribution, production, nuclear fuel-cycle, future, and relation to the environment

    USGS Publications Warehouse

    Finch, Warren Irvin

    1997-01-01

    The many aspects of uranium, a heavy radioactive metal used to generate electricity throughout the world, are briefly described in relatively simple terms intended for the lay reader. An adequate glossary of unfamiliar terms is given. Uranium is a new source of electrical energy developed since 1950, and how we harness energy from it is explained. It competes with the organic coal, oil, and gas fuels as shown graphically. Uranium resources and production for the world are tabulated and discussed by country and for various energy regions in the United States. Locations of major uranium deposits and power reactors in the United States are mapped. The nuclear fuel-cycle of uranium for a typical light-water reactor is illustrated at the front end-beginning with its natural geologic occurrence in rocks through discovery, mining, and milling; separation of the scarce isotope U-235, its enrichment, and manufacture into fuel rods for power reactors to generate electricity-and at the back end-the reprocessing and handling of the spent fuel. Environmental concerns with the entire fuel cycle are addressed. The future of the use of uranium in new, simplified, 'passively safe' reactors for the utility industry is examined. The present resource assessment of uranium in the United States is out of date, and a new assessment could aid the domestic uranium industry.

  18. Molecular simulation workflows as parallel algorithms: the execution engine of Copernicus, a distributed high-performance computing platform.

    PubMed

    Pronk, Sander; Pouya, Iman; Lundborg, Magnus; Rotskoff, Grant; Wesén, Björn; Kasson, Peter M; Lindahl, Erik

    2015-06-09

    Computational chemistry and other simulation fields are critically dependent on computing resources, but few problems scale efficiently to the hundreds of thousands of processors available in current supercomputers-particularly for molecular dynamics. This has turned into a bottleneck as new hardware generations primarily provide more processing units rather than making individual units much faster, which simulation applications are addressing by increasingly focusing on sampling with algorithms such as free-energy perturbation, Markov state modeling, metadynamics, or milestoning. All these rely on combining results from multiple simulations into a single observation. They are potentially powerful approaches that aim to predict experimental observables directly, but this comes at the expense of added complexity in selecting sampling strategies and keeping track of dozens to thousands of simulations and their dependencies. Here, we describe how the distributed execution framework Copernicus allows the expression of such algorithms in generic workflows: dataflow programs. Because dataflow algorithms explicitly state dependencies of each constituent part, algorithms only need to be described on conceptual level, after which the execution is maximally parallel. The fully automated execution facilitates the optimization of these algorithms with adaptive sampling, where undersampled regions are automatically detected and targeted without user intervention. We show how several such algorithms can be formulated for computational chemistry problems, and how they are executed efficiently with many loosely coupled simulations using either distributed or parallel resources with Copernicus.

  19. Distributed Drug Discovery, Part 2: Global Rehearsal of Alkylating Agents for the Synthesis of Resin-Bound Unnatural Amino Acids and Virtual D3 Catalog Construction

    PubMed Central

    2008-01-01

    Distributed Drug Discovery (D3) proposes solving large drug discovery problems by breaking them into smaller units for processing at multiple sites. A key component of the synthetic and computational stages of D3 is the global rehearsal of prospective reagents and their subsequent use in the creation of virtual catalogs of molecules accessible by simple, inexpensive combinatorial chemistry. The first section of this article documents the feasibility of the synthetic component of Distributed Drug Discovery. Twenty-four alkylating agents were rehearsed in the United States, Poland, Russia, and Spain, for their utility in the synthesis of resin-bound unnatural amino acids 1, key intermediates in many combinatorial chemistry procedures. This global reagent rehearsal, coupled to virtual library generation, increases the likelihood that any member of that virtual library can be made. It facilitates the realistic integration of worldwide virtual D3 catalog computational analysis with synthesis. The second part of this article describes the creation of the first virtual D3 catalog. It reports the enumeration of 24 416 acylated unnatural amino acids 5, assembled from lists of either rehearsed or well-precedented alkylating and acylating reagents, and describes how the resulting catalog can be freely accessed, searched, and downloaded by the scientific community. PMID:19105725

  20. Progress in distributed fiber optic temperature sensing

    NASA Astrophysics Data System (ADS)

    Hartog, Arthur H.

    2002-02-01

    The paper reviews the adoption of distributed temperature sensing (DTS) technology based on Raman backscatter. With one company alone having installed more than 400 units, the DTS is becoming accepted practice in several applications, notably in energy cable monitoring, specialised fire detection and oil production monitoring. The paper will provide case studies in these applications. In each case the benefit (whether economic or safety) will be addressed, together with key application engineering issues. The latter range from the selection and installation of the fibre sensor, the specific performance requirements of the opto-electronic equipment and the issues of data management. The paper will also address advanced applications of distributed sensing, notably the problem of monitoring very long ranges, which apply in subsea DC energy cables or in subsea oil wells linked to platforms through very long (e.g. 30km flowlines). These applications are creating the need for a new generation of DTS systems able to achieve measurements at up to 40km with very high temperature resolution, without sacrificing spatial resolution. This challenge is likely to drive the development of new concepts in the field of distributed sensing.

  1. Design optimization of large-size format edge-lit light guide units

    NASA Astrophysics Data System (ADS)

    Hastanin, J.; Lenaerts, C.; Fleury-Frenette, K.

    2016-04-01

    In this paper, we present an original method of dot pattern generation dedicated to large-size format light guide plate (LGP) design optimization, such as photo-bioreactors, the number of dots greatly exceeds the maximum allowable number of optical objects supported by most common ray-tracing software. In the proposed method, in order to simplify the computational problem, the original optical system is replaced by an equivalent one. Accordingly, an original dot pattern is splitted into multiple small sections, inside which the dot size variation is less than the ink dots printing typical resolution. Then, these sections are replaced by equivalent cells with continuous diffusing film. After that, we adjust the TIS (Total Integrated Scatter) two-dimensional distribution over the grid of equivalent cells, using an iterative optimization procedure. Finally, the obtained optimal TIS distribution is converted into the dot size distribution by applying an appropriate conversion rule. An original semi-empirical equation dedicated to rectangular large-size LGPs is proposed for the initial guess of TIS distribution. It allows significantly reduce the total time needed to dot pattern optimization.

  2. Predicting cyclohexane/water distribution coefficients for the SAMPL5 challenge using MOSCED and the SMD solvation model.

    PubMed

    Diaz-Rodriguez, Sebastian; Bozada, Samantha M; Phifer, Jeremy R; Paluch, Andrew S

    2016-11-01

    We present blind predictions using the solubility parameter based method MOSCED submitted for the SAMPL5 challenge on calculating cyclohexane/water distribution coefficients at 298 K. Reference data to parameterize MOSCED was generated with knowledge only of chemical structure by performing solvation free energy calculations using electronic structure calculations in the SMD continuum solvent. To maintain simplicity and use only a single method, we approximate the distribution coefficient with the partition coefficient of the neutral species. Over the final SAMPL5 set of 53 compounds, we achieved an average unsigned error of [Formula: see text] log units (ranking 15 out of 62 entries), the correlation coefficient (R) was [Formula: see text] (ranking 35), and [Formula: see text] of the predictions had the correct sign (ranking 30). While used here to predict cyclohexane/water distribution coefficients at 298 K, MOSCED is broadly applicable, allowing one to predict temperature dependent infinite dilution activity coefficients in any solvent for which parameters exist, and provides a means by which an excess Gibbs free energy model may be parameterized to predict composition dependent phase-equilibrium.

  3. Sampling--how big a sample?

    PubMed

    Aitken, C G

    1999-07-01

    It is thought that, in a consignment of discrete units, a certain proportion of the units contain illegal material. A sample of the consignment is to be inspected. Various methods for the determination of the sample size are compared. The consignment will be considered as a random sample from some super-population of units, a certain proportion of which contain drugs. For large consignments, a probability distribution, known as the beta distribution, for the proportion of the consignment which contains illegal material is obtained. This distribution is based on prior beliefs about the proportion. Under certain specific conditions the beta distribution gives the same numerical results as an approach based on the binomial distribution. The binomial distribution provides a probability for the number of units in a sample which contain illegal material, conditional on knowing the proportion of the consignment which contains illegal material. This is in contrast to the beta distribution which provides probabilities for the proportion of a consignment which contains illegal material, conditional on knowing the number of units in the sample which contain illegal material. The interpretation when the beta distribution is used is much more intuitively satisfactory. It is also much more flexible in its ability to cater for prior beliefs which may vary given the different circumstances of different crimes. For small consignments, a distribution, known as the beta-binomial distribution, for the number of units in the consignment which are found to contain illegal material, is obtained, based on prior beliefs about the number of units in the consignment which are thought to contain illegal material. As with the beta and binomial distributions for large samples, it is shown that, in certain specific conditions, the beta-binomial and hypergeometric distributions give the same numerical results. However, the beta-binomial distribution, as with the beta distribution, has a more intuitively satisfactory interpretation and greater flexibility. The beta and the beta-binomial distributions provide methods for the determination of the minimum sample size to be taken from a consignment in order to satisfy a certain criterion. The criterion requires the specification of a proportion and a probability.

  4. Inventory of Nonutility Electric Power Plants in the United States

    EIA Publications

    2003-01-01

    Final issue of this report. Provides annual aggregate statistics on generating units operated by nonutilities in the United States and the District of Columbia. Provides a 5-year outlook for generating unit additions and changes.

  5. U.S. Geological Survey: A synopsis of Three-dimensional Modeling

    USGS Publications Warehouse

    Jacobsen, Linda J.; Glynn, Pierre D.; Phelps, Geoff A.; Orndorff, Randall C.; Bawden, Gerald W.; Grauch, V.J.S.

    2011-01-01

    The U.S. Geological Survey (USGS) is a multidisciplinary agency that provides assessments of natural resources (geological, hydrological, biological), the disturbances that affect those resources, and the disturbances that affect the built environment, natural landscapes, and human society. Until now, USGS map products have been generated and distributed primarily as 2-D maps, occasionally providing cross sections or overlays, but rarely allowing the ability to characterize and understand 3-D systems, how they change over time (4-D), and how they interact. And yet, technological advances in monitoring natural resources and the environment, the ever-increasing diversity of information needed for holistic assessments, and the intrinsic 3-D/4-D nature of the information obtained increases our need to generate, verify, analyze, interpret, confirm, store, and distribute its scientific information and products using 3-D/4-D visualization, analysis, modeling tools, and information frameworks. Today, USGS scientists use 3-D/4-D tools to (1) visualize and interpret geological information, (2) verify the data, and (3) verify their interpretations and models. 3-D/4-D visualization can be a powerful quality control tool in the analysis of large, multidimensional data sets. USGS scientists use 3-D/4-D technology for 3-D surface (i.e., 2.5-D) visualization as well as for 3-D volumetric analyses. Examples of geological mapping in 3-D include characterization of the subsurface for resource assessments, such as aquifer characterization in the central United States, and for input into process models, such as seismic hazards in the western United States.

  6. Sediment provenance in contractional orogens: The detrital zircon record from modern rivers in the Andean fold-thrust belt and foreland basin of western Argentina

    NASA Astrophysics Data System (ADS)

    Capaldi, Tomas N.; Horton, Brian K.; McKenzie, N. Ryan; Stockli, Daniel F.; Odlum, Margaret L.

    2017-12-01

    This study analyzes detrital zircon U-Pb age populations from Andean rivers to assess whether active synorogenic sedimentation accurately records proportional contributions from varied bedrock source units across different drainage areas. Samples of modern river sand were collected from west-central Argentina (28-33°S), where the Andes are characterized by active uplift and deposition in diverse contractional provinces, including (1) hinterland, (2) wedge-top, (3) proximal foreland, and (4) distal broken foreland basin settings. Potential controls on sediment provenance were evaluated by comparing river U-Pb age distributions with predicted age spectra generated by a sediment mixing model weighted by relative catchment exposure (outcrop) areas for different source units. Several statistical measures (similarity, likeness, and cross-correlation) are employed to compare how well the area-weighted model predicts modern river age populations. (1) Hinterland basin provenance is influenced by local relief generated along thrust-bounded ranges and high zircon fertility of exposed crystalline basement. (2) Wedge-top (piggyback) basin provenance is controlled by variable lithologic durability among thrust-belt bedrock sources and recycled basin sediments. (3) Proximal foreland (foredeep) basin provenance of rivers and fluvial megafans accurately reflect regional bedrock distributions, with limited effects of zircon fertility and lithologic durability in large (>20,000 km2) second-order drainage systems. (4) In distal broken segments of the foreland basin, regional provenance signatures from thrust-belt and hinterland areas are diluted by local contributions from foreland basement-cored uplifts.

  7. 40 CFR 60.41c - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that 12-month period at the maximum design heat input capacity. In the case of steam generating units... generating unit. Combustion research means the experimental firing of any fuel or combination of fuels in a steam generating unit for the purpose of conducting research and development of more efficient...

  8. 40 CFR 60.41c - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that 12-month period at the maximum design heat input capacity. In the case of steam generating units... generating unit. Combustion research means the experimental firing of any fuel or combination of fuels in a steam generating unit for the purpose of conducting research and development of more efficient...

  9. Inventory of power plants in the United States as of January 1, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Inventory of Power Plants in the United States provides annual statistics on generating units operated by electric utilities in the US (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of January 1, 1998. The publication also provides a 10-year outlook for generating unit additions and generating unit changes. This report is prepared annually by the Energy Information Administration (EIA). Data summarized in this report are useful to a wide audience. This is a report of electric utility data; in cases where summary data or nonconfidential data ofmore » nonutilities are presented, it is specifically noted as nonutility data. 19 figs., 36 tabs.« less

  10. Discharge patterns of human tensor palatini motor units during sleep onset.

    PubMed

    Nicholas, Christian L; Jordan, Amy S; Heckel, Leila; Worsnop, Christopher; Bei, Bei; Saboisky, Julian P; Eckert, Danny J; White, David P; Malhotra, Atul; Trinder, John

    2012-05-01

    Upper airway muscles such as genioglossus (GG) and tensor palatini (TP) reduce activity at sleep onset. In GG reduced muscle activity is primarily due to inspiratory modulated motor units becoming silent, suggesting reduced respiratory pattern generator (RPG) output. However, unlike GG, TP shows minimal respiratory modulation and presumably has few inspiratory modulated motor units and minimal input from the RPG. Thus, we investigated the mechanism by which TP reduces activity at sleep onset. The activity of TP motor units were studied during relaxed wakefulness and over the transition from wakefulness to sleep. Sleep laboratory. Nine young (21.4 ± 3.4 years) males were studied on a total of 11 nights. Sleep onset. Two TP EMGs (thin, hooked wire electrodes), and sleep and respiratory measures were recorded. One hundred twenty-one sleep onsets were identified (13.4 ± 7.2/subject), resulting in 128 motor units (14.3 ± 13.0/subject); 29% of units were tonic, 43% inspiratory modulated (inspiratory phasic 18%, inspiratory tonic 25%), and 28% expiratory modulated (expiratory phasic 21%, expiratory tonic 7%). There was a reduction in both expiratory and inspiratory modulated units, but not tonic units, at sleep onset. Reduced TP activity was almost entirely due to de-recruitment. TP showed a similar distribution of motor units as other airway muscles. However, a greater proportion of expiratory modulated motor units were active in TP and these expiratory units, along with inspiratory units, tended to become silent over sleep onset. The data suggest that both expiratory and inspiratory drive components from the RPG are reduced at sleep onset in TP.

  11. Modeling the exposure functions of atmospheric polycyclic aromatic hydrocarbon mixtures in occupational environments.

    PubMed

    Petit, Pascal; Maître, Anne; Persoons, Renaud; Bicout, Dominique J

    2017-04-15

    The health risk assessment associated with polycyclic aromatic hydrocarbon (PAH) mixtures faces three main issues: the lack of knowledge regarding occupational exposure mixtures, the accurate chemical characterization and the estimation of cancer risks. To describe industries in which PAH exposures are encountered and construct working context-exposure function matrices, to enable the estimation of both the PAH expected exposure level and chemical characteristic profile of workers based on their occupational sector and activity. Overall, 1729 PAH samplings from the Exporisq-HAP database (E-HAP) were used. An approach was developed to (i) organize E-HAP in terms of the most detailed unit of description of a job and (ii) structure and subdivide the organized E-HAP into groups of detailed industry units, with each group described by the distribution of concentrations of gaseous and particulate PAHs, which would result in working context-exposure function matrices. PAH exposures were described using two scales: phase (total particulate and gaseous PAH distribution concentrations) and congener (16 congener PAH distribution concentrations). Nine industrial sectors were organized according to the exposure durations, short-term, mid-term and long-term into 5, 36 and 47 detailed industry units, which were structured, respectively, into 2, 4, and 7 groups for the phase scale and 2, 3, and 6 groups for the congener scale, corresponding to as much distinct distribution of concentrations of several PAHs. For the congener scale, which included groups that used products derived from coal, the correlations between the PAHs were strong; for groups that used products derived from petroleum, all PAHs in the mixtures were poorly correlated with each other. The current findings provide insights into both the PAH emissions generated by various industrial processes and their associated occupational exposures and may be further used to develop risk assessment analyses of cancers associated with PAH mixtures. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Inventory of Power Plants in the United States, October 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Inventory of Power Plants in the United States is prepared annually by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), US Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. Data summarized in this report are useful to a wide audience including Congress, Federal and State agencies, the electric utility industry, and the generalmore » public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The report is organized into the following chapters: Year in Review, Operable Electric Generating Units, and Projected Electric Generating Unit Additions. Statistics presented in these chapters reflect the status of electric generating units as of December 31, 1992.« less

  13. Real-Time Optimization and Control of Next-Generation Distribution

    Science.gov Websites

    Infrastructure | Grid Modernization | NREL Real-Time Optimization and Control of Next -Generation Distribution Infrastructure Real-Time Optimization and Control of Next-Generation Distribution Infrastructure This project develops innovative, real-time optimization and control methods for next-generation

  14. Evaluating the importance of characterizing soil structure and horizons in parameterizing a hydrologic process model

    USGS Publications Warehouse

    Mirus, Benjamin B.

    2015-01-01

    Incorporating the influence of soil structure and horizons into parameterizations of distributed surface water/groundwater models remains a challenge. Often, only a single soil unit is employed, and soil-hydraulic properties are assigned based on textural classification, without evaluating the potential impact of these simplifications. This study uses a distributed physics-based model to assess the influence of soil horizons and structure on effective parameterization. This paper tests the viability of two established and widely used hydrogeologic methods for simulating runoff and variably saturated flow through layered soils: (1) accounting for vertical heterogeneity by combining hydrostratigraphic units with contrasting hydraulic properties into homogeneous, anisotropic units and (2) use of established pedotransfer functions based on soil texture alone to estimate water retention and conductivity, without accounting for the influence of pedon structures and hysteresis. The viability of this latter method for capturing the seasonal transition from runoff-dominated to evapotranspiration-dominated regimes is also tested here. For cases tested here, event-based simulations using simplified vertical heterogeneity did not capture the state-dependent anisotropy and complex combinations of runoff generation mechanisms resulting from permeability contrasts in layered hillslopes with complex topography. Continuous simulations using pedotransfer functions that do not account for the influence of soil structure and hysteresis generally over-predicted runoff, leading to propagation of substantial water balance errors. Analysis suggests that identifying a dominant hydropedological unit provides the most acceptable simplification of subsurface layering and that modified pedotransfer functions with steeper soil-water retention curves might adequately capture the influence of soil structure and hysteresis on hydrologic response in headwater catchments.

  15. Redshift data and statistical inference

    NASA Technical Reports Server (NTRS)

    Newman, William I.; Haynes, Martha P.; Terzian, Yervant

    1994-01-01

    Frequency histograms and the 'power spectrum analysis' (PSA) method, the latter developed by Yu & Peebles (1969), have been widely employed as techniques for establishing the existence of periodicities. We provide a formal analysis of these two classes of methods, including controlled numerical experiments, to better understand their proper use and application. In particular, we note that typical published applications of frequency histograms commonly employ far greater numbers of class intervals or bins than is advisable by statistical theory sometimes giving rise to the appearance of spurious patterns. The PSA method generates a sequence of random numbers from observational data which, it is claimed, is exponentially distributed with unit mean and variance, essentially independent of the distribution of the original data. We show that the derived random processes is nonstationary and produces a small but systematic bias in the usual estimate of the mean and variance. Although the derived variable may be reasonably described by an exponential distribution, the tail of the distribution is far removed from that of an exponential, thereby rendering statistical inference and confidence testing based on the tail of the distribution completely unreliable. Finally, we examine a number of astronomical examples wherein these methods have been used giving rise to widespread acceptance of statistically unconfirmed conclusions.

  16. Apollo experience report: Command and service module electrical power distribution on subsystem

    NASA Technical Reports Server (NTRS)

    Munford, R. E.; Hendrix, B.

    1974-01-01

    A review of the design philosophy and development of the Apollo command and service modules electrical power distribution subsystem, a brief history of the evolution of the total system, and some of the more significant components within the system are discussed. The electrical power distribution primarily consisted of individual control units, interconnecting units, and associated protective devices. Because each unit within the system operated more or less independently of other units, the discussion of the subsystem proceeds generally in descending order of complexity; the discussion begins with the total system, progresses to the individual units of the system, and concludes with the components within the units.

  17. 77 FR 26476 - Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources: Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... Performance for Greenhouse Gas Emissions for New Stationary Sources: Electric Utility Generating Units AGENCY... Greenhouse Gas Emissions for New Stationary Sources: Electric Utility Generating Units.'' The EPA is making... for Greenhouse Gas Emissions for New Stationary Sources: Electric Utility Generating Units, and...

  18. 40 CFR 60.41c - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that 12-month period at the maximum design heat input capacity. In the case of steam generating units... gas to a steam generating unit. Combustion research means the experimental firing of any fuel or combination of fuels in a steam generating unit for the purpose of conducting research and development of more...

  19. 40 CFR 60.41c - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that 12-month period at the maximum design heat input capacity. In the case of steam generating units... gas to a steam generating unit. Combustion research means the experimental firing of any fuel or combination of fuels in a steam generating unit for the purpose of conducting research and development of more...

  20. 40 CFR 60.41c - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that 12-month period at the maximum design heat input capacity. In the case of steam generating units... gas to a steam generating unit. Combustion research means the experimental firing of any fuel or combination of fuels in a steam generating unit for the purpose of conducting research and development of more...

  1. PHYSICAL EFFECTS OCCURRING DURING GENERATION AND AMPLIFICATION OF LASER RADIATION: Efficiency of the vibrational excitation of CO2 molecules pumped by a capacitative discharge

    NASA Astrophysics Data System (ADS)

    Baranov, G. A.; Efremov, Yu V.; Smirnov, A. S.; Frolov, K. S.; Shevchenko, Yu I.

    1989-02-01

    An investigation was made of the distributions of the gain and input energy per unit volume along the discharge chamber length in a CO2-N2-He mixture stream excited by an rf discharge. The dependences of the gain and discharge luminescence intensity on the coordinate x were determined along the direction of the gas flow. The discharge luminescence intensity was shown to characterize the input energy distribution along the X axis. Calculations were made of the small-signal gain in the rf discharge. Experimental data on the distributions of the input energy and of the electric field in the discharge and the average values of the kinetic coefficients were used in the calculations. The efficiency of pumping CO2 lasers with an rf discharge was found to be close to the dc pumping efficiency. The results obtained provide evidence of promising prospects for using an rf discharge in fast-flow industrial lasers.

  2. Sacral Bone Mass Distribution Assessed by Averaged Three-Dimensional CT Models: Implications for Pathogenesis and Treatment of Fragility Fractures of the Sacrum.

    PubMed

    Wagner, Daniel; Kamer, Lukas; Sawaguchi, Takeshi; Richards, R Geoff; Noser, Hansrudi; Rommens, Pol M

    2016-04-06

    Fragility fractures of the sacrum are increasing in prevalence due to osteoporosis and epidemiological changes and are challenging in their treatment. They exhibit specific fracture patterns with unilateral or bilateral fractures lateral to the sacral foramina, and sometimes an additional transverse fracture leads to spinopelvic dissociation. The goal of this study was to assess sacral bone mass distribution and corresponding changes with decreased general bone mass. Clinical computed tomography (CT) scans of intact pelves in ninety-one individuals (mean age and standard deviation, 61.5 ± 11.3 years) were used to generate three-dimensional (3D) models of the sacrum averaging bone mass in Hounsfield units (HU). Individuals with decreased general bone mass were identified by measuring bone mass in L5 (group 1 with <100 HU; in contrast to group 2 with ≥100 HU). In group 1, a large zone of negative Hounsfield units was located in the paraforaminal lateral region from S1 to S3. Along the trans-sacral corridors, a Hounsfield unit peak was observed laterally, corresponding to cortical bone of the auricular surface. The lowest Hounsfield unit values were found in the paraforaminal lateral region in the sacral ala. An intermediate level of bone mass was observed in the area of the vertebral bodies, which also demonstrated the largest difference between groups 1 and 2. Overall, the Hounsfield units were lower at S2 than S1. The models of averaged bone mass in the sacrum revealed a distinct 3D distribution pattern. The negative values in the paraforaminal lateral region may explain the specific fracture patterns in fragility fractures of the sacrum involving the lateral areas of the sacrum. Transverse fractures located between S1 and S2 leading to spinopelvic dissociation may occur because of decreased bone mass in S2. The largest difference between the studied groups was found in the vertebral bodies and might support the use of transsacral or cement-augmented implants. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.

  3. Particle swarm optimization algorithm for optimizing assignment of blood in blood banking system.

    PubMed

    Olusanya, Micheal O; Arasomwan, Martins A; Adewumi, Aderemi O

    2015-01-01

    This paper reports the performance of particle swarm optimization (PSO) for the assignment of blood to meet patients' blood transfusion requests for blood transfusion. While the drive for blood donation lingers, there is need for effective and efficient management of available blood in blood banking systems. Moreover, inherent danger of transfusing wrong blood types to patients, unnecessary importation of blood units from external sources, and wastage of blood products due to nonusage necessitate the development of mathematical models and techniques for effective handling of blood distribution among available blood types in order to minimize wastages and importation from external sources. This gives rise to the blood assignment problem (BAP) introduced recently in literature. We propose a queue and multiple knapsack models with PSO-based solution to address this challenge. Simulation is based on sets of randomly generated data that mimic real-world population distribution of blood types. Results obtained show the efficiency of the proposed algorithm for BAP with no blood units wasted and very low importation, where necessary, from outside the blood bank. The result therefore can serve as a benchmark and basis for decision support tools for real-life deployment.

  4. Technology Solutions | Distributed Generation Interconnection Collaborative

    Science.gov Websites

    technologies, both hardware and software, can support the wider adoption of distributed generation on the grid . As the penetration of distributed-generation photovoltaics (DGPV) has risen rapidly in recent years posed by high penetrations of distributed PV. Other promising technologies include new utility software

  5. Distributive Education. Economics of Marketing. Instructor's Curriculum.

    ERIC Educational Resources Information Center

    House, John; Bruns, Joe

    Twelve lesson plans on economics of marketing are presented in this performance-based curriculum unit for distributive education. This unit is self-contained and consists of the following components: introduction (provides overview of unit content and describes why mastery of the objectives is important); performance objectives; and unit outline…

  6. Demand side management in recycling and electricity retail pricing

    NASA Astrophysics Data System (ADS)

    Kazan, Osman

    This dissertation addresses several problems from the recycling industry and electricity retail market. The first paper addresses a real-life scheduling problem faced by a national industrial recycling company. Based on their practices, a scheduling problem is defined, modeled, analyzed, and a solution is approximated efficiently. The recommended application is tested on the real-life data and randomly generated data. The scheduling improvements and the financial benefits are presented. The second problem is from electricity retail market. There are well-known patterns in daily usage in hours. These patterns change in shape and magnitude by seasons and days of the week. Generation costs are multiple times higher during the peak hours of the day. Yet most consumers purchase electricity at flat rates. This work explores analytic pricing tools to reduce peak load electricity demand for retailers. For that purpose, a nonlinear model that determines optimal hourly prices is established based on two major components: unit generation costs and consumers' utility. Both are analyzed and estimated empirically in the third paper. A pricing model is introduced to maximize the electric retailer's profit. As a result, a closed-form expression for the optimal price vector is obtained. Possible scenarios are evaluated for consumers' utility distribution. For the general case, we provide a numerical solution methodology to obtain the optimal pricing scheme. The models recommended are tested under various scenarios that consider consumer segmentation and multiple pricing policies. The recommended model reduces the peak load significantly in most cases. Several utility companies offer hourly pricing to their customers. They determine prices using historical data of unit electricity cost over time. In this dissertation we develop a nonlinear model that determines optimal hourly prices with parameter estimation. The last paper includes a regression analysis of the unit generation cost function obtained from Independent Service Operators. A consumer experiment is established to replicate the peak load behavior. As a result, consumers' utility function is estimated and optimal retail electricity prices are computed.

  7. No change in the regional distribution of tidal volume during lateral posture in mechanically ventilated patients assessed by electrical impedance tomography.

    PubMed

    Bein, Thomas; Ploner, Franz; Ritzka, Markus; Pfeifer, Michael; Schlitt, Hans J; Graf, Bernhard M

    2010-07-01

    We assessed the distribution of regional lung ventilation during moderate and steep lateral posture using electrical impedance tomography (EIT) in mechanically ventilated patients. Seven patients were placed on a kinetic treatment table. An elastic belt containing 16 electrodes was placed around the chest and was connected to the EIT device. Patients were moved to left and right lateral positions in a stepwise (10 degrees ) mode up to 60 degrees. EIT images [arbitrary units (AU)] were generated and scanned for assessment of relative ventilation distribution changes [tidal volume (V(T))]. A calibration procedure of arbitrary units (AUs) versus ventilator-derived V(T) performed in all patients during three predefined positions (supine, 60 degrees-left dependent and 60 degrees-right-dependent) showed a significant correlation between V(T) in supine, left and right lateral positions with the corresponding AUs (r(2) = 0.356, P<0.05). Changes in V(T) were calculated and compared to supine position, and specific regions of interest (ROIs) were analysed. In our study, in contrast to recent findings, a change in lateral positions did not induce a significant change in regional tidal volume distribution. In right lateral positions, a broader variation of V(T) with a trend towards an increase in the dependently positioned lung was observed in comparison with supine. Lateral positioning promotes the redistribution of ventilation to the ventral regions of the lung. The use of EIT technology might become a helpful tool for understanding and guiding posture therapy in mechanically ventilated patients.

  8. No change in the regional distribution of tidal volume during lateral posture in mechanically ventilated patients assessed by electrical impedance tomography

    PubMed Central

    Bein, Thomas; Ploner, Franz; Ritzka, Markus; Pfeifer, Michael; Schlitt, Hans J; Graf, Bernhard M

    2010-01-01

    We assessed the distribution of regional lung ventilation during moderate and steep lateral posture using electrical impedance tomography (EIT) in mechanically ventilated patients. Seven patients were placed on a kinetic treatment table. An elastic belt containing 16 electrodes was placed around the chest and was connected to the EIT device. Patients were moved to left and right lateral positions in a stepwise (10°) mode up to 60°. EIT images [arbitrary units (AU)] were generated and scanned for assessment of relative ventilation distribution changes [tidal volume (VT)]. A calibration procedure of arbitrary units (AUs) versus ventilator-derived VT performed in all patients during three predefined positions (supine, 60°-left dependent and 60°-right-dependent) showed a significant correlation between VT in supine, left and right lateral positions with the corresponding AUs (r2 = 0·356, P<0·05). Changes in VT were calculated and compared to supine position, and specific regions of interest (ROIs) were analysed. In our study, in contrast to recent findings, a change in lateral positions did not induce a significant change in regional tidal volume distribution. In right lateral positions, a broader variation of VT with a trend towards an increase in the dependently positioned lung was observed in comparison with supine. Lateral positioning promotes the redistribution of ventilation to the ventral regions of the lung. The use of EIT technology might become a helpful tool for understanding and guiding posture therapy in mechanically ventilated patients. PMID:20491842

  9. Building intelligence in third-generation training and battle simulations

    NASA Astrophysics Data System (ADS)

    Jacobi, Dennis; Anderson, Don; von Borries, Vance; Elmaghraby, Adel; Kantardzic, Mehmed; Ragade, Rammohan

    2003-09-01

    Current war games and simulations are primarily attrition based, and are centered on the concept of force on force. They constitute what can be defined as "second generation" war games. So-called "first generation" war games were focused on strategy with the primary concept of mind on mind. We envision "third generation" war games and battle simulations as concentrating on effects with the primary concept being system on system. Thus the third generation systems will incorporate each successive generation and take into account strategy, attrition and effects. This paper will describe the principal advantages and features that need to be implemented to create a true "third generation" battle simulation and the architectural issues faced when designing and building such a system. Areas of primary concern are doctrine, command and control, allied and coalition warfare, and cascading effects. Effectively addressing the interactive effects of these issues is of critical importance. In order to provide an adaptable and modular system that will accept future modifications and additions with relative ease, we are researching the use of a distributed Multi-Agent System (MAS) that incorporates various artificial intelligence methods. The agent architecture can mirror the military command structure from both vertical and horizontal perspectives while providing the ability to make modifications to doctrine, command structures, inter-command communications, as well as model the results of various effects upon one another, and upon the components of the simulation. This is commonly referred to as "cascading effects," in which A affects B, B affects C and so on. Agents can be used to simulate units or parts of units that interact to form the whole. Even individuals can eventually be simulated to take into account the affect to key individuals such as commanders, heroes, and aces. Each agent will have a learning component built in to provide "individual intelligence" based on experience.

  10. Modeling and control of fuel cell based distributed generation systems

    NASA Astrophysics Data System (ADS)

    Jung, Jin Woo

    This dissertation presents circuit models and control algorithms of fuel cell based distributed generation systems (DGS) for two DGS topologies. In the first topology, each DGS unit utilizes a battery in parallel to the fuel cell in a standalone AC power plant and a grid-interconnection. In the second topology, a Z-source converter, which employs both the L and C passive components and shoot-through zero vectors instead of the conventional DC/DC boost power converter in order to step up the DC-link voltage, is adopted for a standalone AC power supply. In Topology 1, two applications are studied: a standalone power generation (Single DGS Unit and Two DGS Units) and a grid-interconnection. First, dynamic model of the fuel cell is given based on electrochemical process. Second, two full-bridge DC to DC converters are adopted and their controllers are designed: an unidirectional full-bridge DC to DC boost converter for the fuel cell and a bidirectional full-bridge DC to DC buck/boost converter for the battery. Third, for a three-phase DC to AC inverter without or with a Delta/Y transformer, a discrete-time state space circuit model is given and two discrete-time feedback controllers are designed: voltage controller in the outer loop and current controller in the inner loop. And last, for load sharing of two DGS units and power flow control of two DGS units or the DGS connected to the grid, real and reactive power controllers are proposed. Particularly, for the grid-connected DGS application, a synchronization issue between an islanding mode and a paralleling mode to the grid is investigated, and two case studies are performed. To demonstrate the proposed circuit models and control strategies, simulation test-beds using Matlab/Simulink are constructed for each configuration of the fuel cell based DGS with a three-phase AC 120 V (L-N)/60 Hz/50 kVA and various simulation results are presented. In Topology 2, this dissertation presents system modeling, modified space vector PWM implementation (MSVPWM) and design of a closed-loop controller of the Z-source converter which utilizes L and C components and shoot-through zero vectors for the standalone AC power generation. The fuel cell system is modeled by an electrical R-C circuit in order to include slow dynamics of the fuel cells and a voltage-current characteristic of a cell is also considered. A discrete-time state space model is derived to implement digital control and a space vector pulse-width modulation (SVPWM) technique is modified to realize the shoot-through zero vectors that boost the DC-link voltage. Also, three discrete-time feedback controllers are designed: a discrete-time optimal voltage controller, a discrete-time sliding mode current controller, and a discrete-time PI DC-link voltage controller. Furthermore, an asymptotic observer is used to reduce the number of sensors and enhance the reliability of the system. To demonstrate the analyzed circuit model and proposed control strategy, various simulation results using Matlab/Simulink are presented under both light/heavy loads and linear/nonlinear loads for a three-phase AC 208 V (L-L)/60 Hz/10 kVA.

  11. Map of distribution of six forest ownership types in the conterminous United States

    Treesearch

    Jaketon H. Hewes; Brett J. Butler; Greg C. Liknes; Mark D. Nelson; Stephanie A. Snyder

    2014-01-01

    This map depicts the spatial distribution of ownership types across forest land in the conterminous United States circa 2009. The distribution is derived, in part, from Forest Inventory and Analysis (FIA) data that are collected at a sample intensity of approximately one plot per 2400 ha across the United States (U.S. Forest Service 2012). Ownership categories were...

  12. DOD fuel cell demonstration program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holcomb, F.H.; Binder, M.J.; Taylor, W.R.

    The supply of reliable, cost-effective electric power with minimal environmental impact is a constant concern of Department of Defense (DOD) installation energy personnel. Electricity purchased from the local utility is expensive and represents only about 30% of the original energy input at the generating station due to generation and distribution inefficiencies. Because of master metering and large air conditioning loads, the demand portion of the installation`s electric bill can be in excess of 50% of the total bill. While the electric utilities in the United States have a very good record of reliability, there is significant potential for improving themore » security of electrical power supplied by using on-site power generation. On-site, dispersed power generation can reduce power outages due to weather, terrorist activities, or lack of utility generating capacity. In addition, as increased emphasis is placed on global warming, acid rain, and air pollution in general, the development of clean, highly efficient power producing technologies is not only desirable, but mandatory. Since the majority of central heat plants on U.S. military installations are nearing the end of their useful life, there is an opportunity to replace outdated existing equipment with modem technologies.« less

  13. Generating a Dynamic Synthetic Population – Using an Age-Structured Two-Sex Model for Household Dynamics

    PubMed Central

    Namazi-Rad, Mohammad-Reza; Mokhtarian, Payam; Perez, Pascal

    2014-01-01

    Generating a reliable computer-simulated synthetic population is necessary for knowledge processing and decision-making analysis in agent-based systems in order to measure, interpret and describe each target area and the human activity patterns within it. In this paper, both synthetic reconstruction (SR) and combinatorial optimisation (CO) techniques are discussed for generating a reliable synthetic population for a certain geographic region (in Australia) using aggregated- and disaggregated-level information available for such an area. A CO algorithm using the quadratic function of population estimators is presented in this paper in order to generate a synthetic population while considering a two-fold nested structure for the individuals and households within the target areas. The baseline population in this study is generated from the confidentialised unit record files (CURFs) and 2006 Australian census tables. The dynamics of the created population is then projected over five years using a dynamic micro-simulation model for individual- and household-level demographic transitions. This projection is then compared with the 2011 Australian census. A prediction interval is provided for the population estimates obtained by the bootstrapping method, by which the variability structure of a predictor can be replicated in a bootstrap distribution. PMID:24733522

  14. Quantity, Quality, and Availability of Waste Heat from United States Thermal Power Generation.

    PubMed

    Gingerich, Daniel B; Mauter, Meagan S

    2015-07-21

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJ(th) of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 °C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.

  15. Modeling language and cognition with deep unsupervised learning: a tutorial overview

    PubMed Central

    Zorzi, Marco; Testolin, Alberto; Stoianov, Ivilin P.

    2013-01-01

    Deep unsupervised learning in stochastic recurrent neural networks with many layers of hidden units is a recent breakthrough in neural computation research. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. In this article we discuss the theoretical foundations of this approach and we review key issues related to training, testing and analysis of deep networks for modeling language and cognitive processing. The classic letter and word perception problem of McClelland and Rumelhart (1981) is used as a tutorial example to illustrate how structured and abstract representations may emerge from deep generative learning. We argue that the focus on deep architectures and generative (rather than discriminative) learning represents a crucial step forward for the connectionist modeling enterprise, because it offers a more plausible model of cortical learning as well as a way to bridge the gap between emergentist connectionist models and structured Bayesian models of cognition. PMID:23970869

  16. Modeling language and cognition with deep unsupervised learning: a tutorial overview.

    PubMed

    Zorzi, Marco; Testolin, Alberto; Stoianov, Ivilin P

    2013-01-01

    Deep unsupervised learning in stochastic recurrent neural networks with many layers of hidden units is a recent breakthrough in neural computation research. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. In this article we discuss the theoretical foundations of this approach and we review key issues related to training, testing and analysis of deep networks for modeling language and cognitive processing. The classic letter and word perception problem of McClelland and Rumelhart (1981) is used as a tutorial example to illustrate how structured and abstract representations may emerge from deep generative learning. We argue that the focus on deep architectures and generative (rather than discriminative) learning represents a crucial step forward for the connectionist modeling enterprise, because it offers a more plausible model of cortical learning as well as a way to bridge the gap between emergentist connectionist models and structured Bayesian models of cognition.

  17. Production Level CFD Code Acceleration for Hybrid Many-Core Architectures

    NASA Technical Reports Server (NTRS)

    Duffy, Austen C.; Hammond, Dana P.; Nielsen, Eric J.

    2012-01-01

    In this work, a novel graphics processing unit (GPU) distributed sharing model for hybrid many-core architectures is introduced and employed in the acceleration of a production-level computational fluid dynamics (CFD) code. The latest generation graphics hardware allows multiple processor cores to simultaneously share a single GPU through concurrent kernel execution. This feature has allowed the NASA FUN3D code to be accelerated in parallel with up to four processor cores sharing a single GPU. For codes to scale and fully use resources on these and the next generation machines, codes will need to employ some type of GPU sharing model, as presented in this work. Findings include the effects of GPU sharing on overall performance. A discussion of the inherent challenges that parallel unstructured CFD codes face in accelerator-based computing environments is included, with considerations for future generation architectures. This work was completed by the author in August 2010, and reflects the analysis and results of the time.

  18. Reducing Demand Charges and Onsite Generation Variability Using Behind-the-Meter Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattarai, Bishnu P.; Myers, Kurt S.; Bush, Jason W.

    Electric utilities in the United States are increasingly employing demand charges and/or real-time pricing. This directive is bringing potential opportunities in deploying behindthe-meter energy storage (BMES) systems for various grid functionalities. This study quantifies techno-economic benefits of BMES in reducing demand charge and smoothing load/generation intermittencies, and determines how those benefits vary with onsite distributed photovoltaic. We proposed a two-stage control algorithm, whereby the first stage proactively determines costoptimal BMES configuration for reducing peak-demands and demand charges, and the second stage adaptively compensates intermittent generations and short load spikes that may otherwise increase the demand charges. The performance of themore » proposed algorithm is evaluated through a 24 hours time sweep simulation performed using data from smart microgrid testbed at Idaho National Laboratory (INL). The simulation results demonstrated that this research provides a simple but effective solution for peak shaving, demand charge reductions, and smoothing onsite PV variability.« less

  19. Large Scale Simulation Platform for NODES Validation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sotorrio, P.; Qin, Y.; Min, L.

    2017-04-27

    This report summarizes the Large Scale (LS) simulation platform created for the Eaton NODES project. The simulation environment consists of both wholesale market simulator and distribution simulator and includes the CAISO wholesale market model and a PG&E footprint of 25-75 feeders to validate the scalability under a scenario of 33% RPS in California with additional 17% of DERS coming from distribution and customers. The simulator can generate hourly unit commitment, 5-minute economic dispatch, and 4-second AGC regulation signals. The simulator is also capable of simulating greater than 10k individual controllable devices. Simulated DERs include water heaters, EVs, residential and lightmore » commercial HVAC/buildings, and residential-level battery storage. Feeder-level voltage regulators and capacitor banks are also simulated for feeder-level real and reactive power management and Vol/Var control.« less

  20. Analysis of the Browns Ferry Unit 3 irradiation experiments. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, G.L.

    1984-11-01

    The results of the analysis of two experiments performed at the Browns Ferry-3 reactor are presented. These calculations utilize state-of-the-art neutron transport techniques and a new neutron cross-section library that has been developed for LWR applications. The calculations agree well with the experimental data obtained in irradiations inside the reactor vessel. For the measurements performed in the reactor cavity, the calculations agree well at the reactor midplane. Accurate determination of the axial distribution of the neutron fluence in the reactor cavity depends on having a concise representation of the axial-void distribution in the core. Detailed data are presented describing themore » procedures used in the generation of the new cross-section library that has been named SAILOR. This library is available from the Radiation-Shielding Information Center.« less

  1. Development of a sterilizing in-place application for a production machine using Vaporized Hydrogen Peroxide.

    PubMed

    Mau, T; Hartmann, V; Burmeister, J; Langguth, P; Häusler, H

    2004-01-01

    The use of steam in sterilization processes is limited by the implementation of heat-sensitive components inside the machines to be sterilized. Alternative low-temperature sterilization methods need to be found and their suitability evaluated. Vaporized Hydrogen Peroxide (VHP) technology was adapted for a production machine consisting of highly sensitive pressure sensors and thermo-labile air tube systems. This new kind of "cold" surface sterilization, known from the Barrier Isolator Technology, is based on the controlled release of hydrogen peroxide vapour into sealed enclosures. A mobile VHP generator was used to generate the hydrogen peroxide vapour. The unit was combined with the air conduction system of the production machine. Terminal vacuum pumps were installed to distribute the gas within the production machine and for its elimination. In order to control the sterilization process, different physical process monitors were incorporated. The validation of the process was based on biological indicators (Geobacillus stearothermophilus). The Limited Spearman Karber Method (LSKM) was used to statistically evaluate the sterilization process. The results show that it is possible to sterilize surfaces in a complex tube system with the use of gaseous hydrogen peroxide. A total microbial reduction of 6 log units was reached.

  2. Development of an Ultrasonic Resonator for Ballast Water Disinfection

    NASA Astrophysics Data System (ADS)

    Osman, Hafiiz; Lim, Fannon; Lucas, Margaret; Balasubramaniam, Prakash

    Ultrasonic disinfection involves the application of low-frequency acoustic energy in a water body to induce cavitation. The implosion of cavitation bubbles generates high speed microjets >1 km/s, intense shock wave >1 GPa, localized hot spots >1000 K, and free-radicals, resulting in cell rupture and death of micro-organisms and pathogens. Treatment of marine ballast water using power ultrasonics is an energy-intensive process. Compared with other physical treatment methods such as ultraviolet disinfection, ultrasonic disinfection require 2 to 3 orders of magnitude more energy to achieve similar rate of micro-organism mortality. Current technology limits the amount of acoustic energy that can be transferred per unit volume of fluid and presents challenges when it comes to high-flow applications. Significant advancements in ultrasonic processing technology are needed before ultrasound can be recognized as a viable alternative disinfection method. The ultrasonic resonator has been identified as one of the areas of improvement that can potentially contribute to the overall performance of an ultrasonic disinfection system. The present study focuses on the design of multiple-orifice resonators (MOR) for generating a well-distributed cavitation field. Results show that the MOR resonator offers significantly larger vibrational surface area to mass ratio. In addition, acoustic pressure measurements indicate that the MOR resonators are able to distribute the acoustic energy across a larger surface area, while generating 2-4 times higher pressures than existing ultrasonic probes.

  3. Measurement and analysis of the noise radiated by low Mach numbers centrifugal blowers

    NASA Astrophysics Data System (ADS)

    Yeager, D. M.; Lauchle, G. C.

    1987-11-01

    The broad band, aerodynamically generated noise in low tip-speed Mach number, centrifugal air moving devices is investigated. An interdisciplinary approach was taken which involved investigation of the aerodynamic and acoustic fields, and their mutual relationship. The noise generation process was studied using two experimental vehicles: (1) a scale model of a homologous family of centrifugal blowers typical of those used to cool computer and business equipment, and (2) a single blade from a centrifugal blower impeller which was placed in a known, controllable flow field. The radiation characteristics of the model blower were investigated by measuring the acoustic intensity distribution near the blower inlet and comparing it with the intensity near the inlet to an axial flow fan. Aerodynamic studies of the flow field in the inlet and at the discharge to the rotating impeller were used to assess the mean flow distribution through the impeller blade channels and to identify regions of excessive turbulence near the rotating blade row. New frequency-domain expressions for the correlation area and dipole source strength per unit area on a surface immersed in turbulence were developed which can be used to characterize the noise generation process over a rigid surface immersed in turbulence. An investigation of the noise radiated from the single, isolated airfoil (impeller blade) was performed using modern correlation and spectral analysis techniques.

  4. 77 FR 23242 - Grand Coulee Project Hydroelectric Authority; Notice of Preliminary Permit Application Accepted...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... reservoir inlet/outlet and the reversible turbine/generator units in the powerhouse; (3) an underground powerhouse containing four reversible turbine/generator units rated for 250 megawatts (MW) each, for a total... four 250-MW reversible turbine/ generator units; (4) a 2-mile-long, 500-kilovolt (kV) transmission line...

  5. 78 FR 38970 - California State Nonroad Engine Pollution Control Standards; Within-the-Scope Determination for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ... Control Measure for In-Use Diesel-Fueled Transport Refrigeration Units (TRU) and TRU Generator Sets and... Control Measure for In-Use Diesel-Fueled Transport Refrigeration Units (TRU) and TRU Generator Sets and...-Fueled Transport Refrigeration Units (TRU) and TRU Generator Sets and Facilities Where TRUs Operate Be...

  6. Testing to Characterize the Advanced Stirling Radioisotope Generator Engineering Unit

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward; Schreiber, Jeffrey

    2010-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), a high efficiency generator, is being considered for space missions. Lockheed Martin designed and fabricated an engineering unit (EU), the ASRG EU, under contract to the Department of Energy. This unit is currently undergoing extended operation testing at the NASA Glenn Research Center to generate performance data and validate life and reliability predictions for the generator and the Stirling convertors. It has also undergone performance tests to characterize generator operation while varying control parameters and system inputs. This paper summarizes and explains test results in the context of designing operating strategies for the generator during a space mission and notes expected differences between the EU performance and future generators.

  7. DC to DC power converters and methods of controlling the same

    DOEpatents

    Steigerwald, Robert Louis; Elasser, Ahmed; Sabate, Juan Antonio; Todorovic, Maja Harfman; Agamy, Mohammed

    2012-12-11

    A power generation system configured to provide direct current (DC) power to a DC link is described. The system includes a first power generation unit configured to output DC power. The system also includes a first DC to DC converter comprising an input section and an output section. The output section of the first DC to DC converter is coupled in series with the first power generation unit. The first DC to DC converter is configured to process a first portion of the DC power output by the first power generation unit and to provide an unprocessed second portion of the DC power output of the first power generation unit to the output section.

  8. Acoustic Signaling by Singing Humpback Whales (Megaptera novaeangliae): What Role Does Reverberation Play?

    PubMed

    Mercado, Eduardo

    2016-01-01

    When humpback whales (Megaptera novaeangliae) sing in coastal waters, the units they produce can generate reverberation. Traditionally, such reverberant acoustic energy has been viewed as an incidental side-effect of high-amplitude, long-distance, sound transmission in the ocean. An alternative possibility, however, is that reverberation actually contributes to the structure and function of songs. In the current study, this possibility was assessed by analyzing reverberation generated by humpback whale song units, as well as the spectral structure of unit sequences, produced by singers from different regions. Acoustical analyses revealed that: (1) a subset of units within songs generated narrowband reverberant energy that in some cases persisted for periods longer than the interval between units; (2) these highly reverberant units were regularly repeated throughout the production of songs; and (3) units occurring before and after these units often contained spectral energy peaks at non-overlapping, adjacent frequencies that were systematically related to the bands of reverberant energy generated by the units. These findings strongly suggest that some singing humpback whales not only produce sounds conducive to long-duration reverberation, but also may sequentially structure songs to avoid spectral overlap between units and ongoing reverberation. Singer-generated reverberant energy that is received simultaneously with directly transmitted song units can potentially provide listening whales with spatial cues that may enable them to more accurately determine a singer's position.

  9. Acoustic Signaling by Singing Humpback Whales (Megaptera novaeangliae): What Role Does Reverberation Play?

    PubMed Central

    Mercado, Eduardo

    2016-01-01

    When humpback whales (Megaptera novaeangliae) sing in coastal waters, the units they produce can generate reverberation. Traditionally, such reverberant acoustic energy has been viewed as an incidental side-effect of high-amplitude, long-distance, sound transmission in the ocean. An alternative possibility, however, is that reverberation actually contributes to the structure and function of songs. In the current study, this possibility was assessed by analyzing reverberation generated by humpback whale song units, as well as the spectral structure of unit sequences, produced by singers from different regions. Acoustical analyses revealed that: (1) a subset of units within songs generated narrowband reverberant energy that in some cases persisted for periods longer than the interval between units; (2) these highly reverberant units were regularly repeated throughout the production of songs; and (3) units occurring before and after these units often contained spectral energy peaks at non-overlapping, adjacent frequencies that were systematically related to the bands of reverberant energy generated by the units. These findings strongly suggest that some singing humpback whales not only produce sounds conducive to long-duration reverberation, but also may sequentially structure songs to avoid spectral overlap between units and ongoing reverberation. Singer-generated reverberant energy that is received simultaneously with directly transmitted song units can potentially provide listening whales with spatial cues that may enable them to more accurately determine a singer’s position. PMID:27907182

  10. Effect of inhomogeneity of light from light curing units on the surface hardness of composite resin.

    PubMed

    Arikawa, Hiroyuki; Kanie, Takahito; Fujii, Koichi; Takahashi, Hideo; Ban, Seiji

    2008-01-01

    This study investigated the characteristics of output light from different types of light curing units, and their effects on polymerization of light-activated composite resin. Three quartz-tungsten-halogen lamps, one plasma arc lamp, and one LED light curing unit were used. Intensity distribution of light emitted from the light guide tip was measured at 1.0-mm intervals across the guide tip. Distribution of Knoop hardness number on the surface of resin irradiated with the light curing units was also measured. For all units, inhomogeneous distribution of light intensity across the guide tip was observed. Minimum light intensity values were 19-80% of the maximum values. In terms of surface hardness, inhomogeneous distribution was also observed for the materials irradiated with the tested units. Minimum values were 53-92% of the maximum values. Our results indicated that markedly inhomogeneous light emitted from light curing unit could result in inhomogeneous polymerization in some areas of the restoration below the light guide tip.

  11. 4. INTERIOR OF POWERHOUSE GENERATOR ROOM SHOWING GENERATOR UNITS AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. INTERIOR OF POWERHOUSE GENERATOR ROOM SHOWING GENERATOR UNITS AT FOREGROUND RIGHT, GOVERNORS AND CONTROL VALVES AT LEFT, AND EXCITERS AT BACK LEFT. VIEW TO NORTH. - Rush Creek Hydroelectric System, Powerhouse Exciters, Rush Creek, June Lake, Mono County, CA

  12. Operational characteristics of energy storage high temperature superconducting flywheels considering time dependent processes

    NASA Astrophysics Data System (ADS)

    Vajda, Istvan; Kohari, Zalan; Porjesz, Tamas; Benko, Laszlo; Meerovich, V.; Sokolovsky; Gawalek, W.

    2002-08-01

    Technical and economical feasibilities of short-term energy storage flywheels with high temperature superconducting (HTS) bearing are widely investigated. It is essential to reduce the ac losses caused by magnetic field variations in HTS bulk disks/rings (levitators) used in the magnetic bearings of flywheels. For the HTS bearings the calculation and measurement of the magnetic field distribution were performed. Effects like eccentricity, tilting were measured. Time dependency of the levitation force following a jumpwise movement of the permanent magnet was measured. The results were used to setup an engineering design algorithm for energy storage HTS flywheels. This algorithm was applied to an experimental HTS flywheel model with a disk type permanent magnet motor/generator unit designed and constructed by the authors. A conceptual design of the disk-type motor/generator with radial flux is shown.

  13. Creation of problem-dependent Doppler-broadened cross sections in the KENO Monte Carlo code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Shane W. D.; Celik, Cihangir; Maldonado, G. Ivan

    2015-11-06

    In this paper, we introduce a quick method for improving the accuracy of Monte Carlo simulations by generating one- and two-dimensional cross sections at a user-defined temperature before performing transport calculations. A finite difference method is used to Doppler-broaden cross sections to the desired temperature, and unit-base interpolation is done to generate the probability distributions for double differential two-dimensional thermal moderator cross sections at any arbitrarily user-defined temperature. The accuracy of these methods is tested using a variety of contrived problems. In addition, various benchmarks at elevated temperatures are modeled, and results are compared with benchmark results. Lastly, the problem-dependentmore » cross sections are observed to produce eigenvalue estimates that are closer to the benchmark results than those without the problem-dependent cross sections.« less

  14. The MSG Central Facility - A Mission Control System for Windows NT

    NASA Astrophysics Data System (ADS)

    Thompson, R.

    The MSG Central Facility, being developed by Science Systems for EUMETSAT1, represents the first of a new generation of satellite mission control systems, based on the Windows NT operating system. The system makes use of a range of new technologies to provide an integrated environment for the planning, scheduling, control and monitoring of the entire Meteosat Second Generation mission. It supports packetised TM/TC and uses Science System's Space UNiT product to provide automated operations support at both Schedule (Timeline) and Procedure levels. Flexible access to historical data is provided through an operations archive based on ORACLE Enterprise Server, hosted on a large RAID array and off-line tape jukebox. Event driven real-time data distribution is based on the CORBA standard. Operations preparation and configuration control tools form a fully integrated element of the system.

  15. Impact of cell size on inventory and mapping errors in a cellular geographic information system

    NASA Technical Reports Server (NTRS)

    Wehde, M. E. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. The effect of grid position was found insignificant for maps but highly significant for isolated mapping units. A modelable relationship between mapping error and cell size was observed for the map segment analyzed. Map data structure was also analyzed with an interboundary distance distribution approach. Map data structure and the impact of cell size on that structure were observed. The existence of a model allowing prediction of mapping error based on map structure was hypothesized and two generations of models were tested under simplifying assumptions.

  16. A Spectrum Sensing Network for Cognitive PMSE Systems

    NASA Astrophysics Data System (ADS)

    Brendel, Johannes; Riess, Steffen; Stoeckle, Andreas; Rummel, Rafael; Fischer, Georg

    2012-09-01

    This article is about a Spectrum Sensing Network (SSN) which generates an accurate radio environment map (e.g. power over frequency, time, and location) from a given application area. It is intended to be used in combination with cognitive Program Making and Special Events (PMSE) devices (e.g. wireless microphones) to improve their operation reliability. The SSN consists of a distributed network of multiple scanning radio receivers and a central data management and storage unit. The parts of the SSN are presented in detail and the advantages and use cases of such a sensing network structure will be outlined.

  17. Distributed Computing for Signal Processing: Modeling of Asynchronous Parallel Computation. Appendix G. On the Design and Modeling of Special Purpose Parallel Processing Systems.

    DTIC Science & Technology

    1985-05-01

    unit in the data base, with knowing one generic assembly language. °-’--a 139 The 5-tuple describing single operation execution time of the operations...TSi-- generate , random eventi ( ,.0-15 tieit tmls - ((floa egus ()16 274 r Ispt imet imel I at :EVE’JS- II ktime=0.0; /0 present time 0/ rrs ptime=0.0...computing machinery capable of performing these tasks within a given time constraint. Because the majority of the available computing machinery is general

  18. Bioluminescence in the Ocean: Origins of Biological, Chemical, and Ecological Diversity

    NASA Astrophysics Data System (ADS)

    Widder, E. A.

    2010-05-01

    From bacteria to fish, a remarkable variety of marine life depends on bioluminescence (the chemical generation of light) for finding food, attracting mates, and evading predators. Disparate biochemical systems and diverse phylogenetic distribution patterns of light-emitting organisms highlight the ecological benefits of bioluminescence, with biochemical and genetic analyses providing new insights into the mechanisms of its evolution. The origins and functions of some bioluminescent systems, however, remain obscure. Here, I review recent advances in understanding bioluminescence in the ocean and highlight future research efforts that will unite molecular details with ecological and evolutionary relationships.

  19. Defense Energy Support Center Fact Book, Fiscal Year 1999, Twenty-Second Edition

    DTIC Science & Technology

    1999-01-01

    numbers SOURCE: FACILITIES AND DISTRIBUTION MANAGEMENT COMMODITY BUSINESS UNIT 11 OCONUS COCO 10 8,717,850...GOCO 7 1,518,905 SOURCE: FACILITIES AND DISTRIBUTION MANAGEMENT COMMODITY BUSINESS UNIT DLA MANAGED STORAGE...FY 95 FY 96 FY 97 FY 98 FY 99 SOURCE: FACILITIES AND DISTRIBUTION MANAGEMENT COMMODITY BUSINESS UNIT 13 0 20 40 60 80 100 120 140 160 180 200 220

  20. Drinking Water Microbiome as a Screening Tool for ...

    EPA Pesticide Factsheets

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. A chloraminated drinking water distribution system (DWDS) simulator was operated through four successive operational schemes, including two stable events (SS) and an episode of nitrification (SF), followed by a ‘chlorine burn’ (SR) by switching disinfectant from chloramine to free chlorine. The current research investigated the viability of biological signatures as potential indicators of operational failure and predictors of nitrification in DWDS. For this purpose, we examined the bulk water (BW) bacterial microbiome of a chloraminated DWDS simulator operated through successive operational schemes, including an episode of nitrification. BW data was chosen because sampling of BW in a DWDS by water utility operators is relatively simpler and easier than collecting biofilm samples from underground pipes. The methodology applied a supervised classification machine learning approach (naïve Bayes algorithm) for developing predictive models for nitrification. Classification models were trained with biological datasets (Operational Taxonomic Unit [OTU] and genus-level taxonomic groups) generated using next generation high-throughput technology, and divided into two groups (i.e. binary) of positives and negatives (Failure and Stable, respectively). We also invest

  1. A technique for generating phase-space-based Monte Carlo beamlets in radiotherapy applications.

    PubMed

    Bush, K; Popescu, I A; Zavgorodni, S

    2008-09-21

    As radiotherapy treatment planning moves toward Monte Carlo (MC) based dose calculation methods, the MC beamlet is becoming an increasingly common optimization entity. At present, methods used to produce MC beamlets have utilized a particle source model (PSM) approach. In this work we outline the implementation of a phase-space-based approach to MC beamlet generation that is expected to provide greater accuracy in beamlet dose distributions. In this approach a standard BEAMnrc phase space is sorted and divided into beamlets with particles labeled using the inheritable particle history variable. This is achieved with the use of an efficient sorting algorithm, capable of sorting a phase space of any size into the required number of beamlets in only two passes. Sorting a phase space of five million particles can be achieved in less than 8 s on a single-core 2.2 GHz CPU. The beamlets can then be transported separately into a patient CT dataset, producing separate dose distributions (doselets). Methods for doselet normalization and conversion of dose to absolute units of Gy for use in intensity modulated radiation therapy (IMRT) plan optimization are also described.

  2. Development of gravity theory application in the internalregional inter-zone commodity movement distribution with the origin zone movement generation boundary

    NASA Astrophysics Data System (ADS)

    Akbardin, J.; Parikesit, D.; Riyanto, B.; TMulyono, A.

    2018-05-01

    Zones that produce land fishery commodity and its yields have characteristics that is limited in distribution capability because infrastructure conditions availability. High demand for fishery commodities caused to a growing distribution at inefficient distribution distance. The development of the gravity theory with the limitation of movement generation from the production zone can increase the interaction inter-zones by distribution distances effectively and efficiently with shorter movement distribution distances. Regression analysis method with multiple variable of transportation infrastructure condition based on service level and quantitative capacity is determined to estimate the 'mass' of movement generation that is formed. The resulting movement distribution (Tid) model has the equation Tid = 27.04 -0.49 tid. Based on barrier function of power model with calibration value β = 0.0496. In the way of development of the movement generation 'mass' boundary at production zone will shorten the distribution distance effectively with shorter distribution distances. Shorter distribution distances will increase the accessibility inter-zones to interact according to the magnitude of the movement generation 'mass'.

  3. The origin of human complex diversity: Stochastic epistatic modules and the intrinsic compatibility between distributional robustness and phenotypic changeability.

    PubMed

    Ijichi, Shinji; Ijichi, Naomi; Ijichi, Yukina; Imamura, Chikako; Sameshima, Hisami; Kawaike, Yoichi; Morioka, Hirofumi

    2018-01-01

    The continuing prevalence of a highly heritable and hypo-reproductive extreme tail of a human neurobehavioral quantitative diversity suggests the possibility that the reproductive majority retains the genetic mechanism for the extremes. From the perspective of stochastic epistasis, the effect of an epistatic modifier variant can randomly vary in both phenotypic value and effect direction among the careers depending on the genetic individuality, and the modifier careers are ubiquitous in the population distribution. The neutrality of the mean genetic effect in the careers warrants the survival of the variant under selection pressures. Functionally or metabolically related modifier variants make an epistatic network module and dozens of modules may be involved in the phenotype. To assess the significance of stochastic epistasis, a simplified module-based model was employed. The individual repertoire of the modifier variants in a module also participates in the genetic individuality which determines the genetic contribution of each modifier in the career. Because the entire contribution of a module to the phenotypic outcome is consequently unpredictable in the model, the module effect represents the total contribution of the related modifiers as a stochastic unit in the simulations. As a result, the intrinsic compatibility between distributional robustness and quantitative changeability could mathematically be simulated using the model. The artificial normal distribution shape in large-sized simulations was preserved in each generation even if the lowest fitness tail was un-reproductive. The robustness of normality beyond generations is analogous to the real situations of human complex diversity including neurodevelopmental conditions. The repeated regeneration of the un-reproductive extreme tail may be inevitable for the reproductive majority's competence to survive and change, suggesting implications of the extremes for others. Further model-simulations to illustrate how the fitness of extreme individuals can be low through generations may be warranted to increase the credibility of this stochastic epistasis model.

  4. Novel Directional Protection Scheme for the FREEDM Smart Grid System

    NASA Astrophysics Data System (ADS)

    Sharma, Nitish

    This research primarily deals with the design and validation of the protection system for a large scale meshed distribution system. The large scale system simulation (LSSS) is a system level PSCAD model which is used to validate component models for different time-scale platforms, to provide a virtual testing platform for the Future Renewable Electric Energy Delivery and Management (FREEDM) system. It is also used to validate the cases of power system protection, renewable energy integration and storage, and load profiles. The protection of the FREEDM system against any abnormal condition is one of the important tasks. The addition of distributed generation and power electronic based solid state transformer adds to the complexity of the protection. The FREEDM loop system has a fault current limiter and in addition, the Solid State Transformer (SST) limits the fault current at 2.0 per unit. Former students at ASU have developed the protection scheme using fiber-optic cable. However, during the NSF-FREEDM site visit, the National Science Foundation (NSF) team regarded the system incompatible for the long distances. Hence, a new protection scheme with a wireless scheme is presented in this thesis. The use of wireless communication is extended to protect the large scale meshed distributed generation from any fault. The trip signal generated by the pilot protection system is used to trigger the FID (fault isolation device) which is an electronic circuit breaker operation (switched off/opening the FIDs). The trip signal must be received and accepted by the SST, and it must block the SST operation immediately. A comprehensive protection system for the large scale meshed distribution system has been developed in PSCAD with the ability to quickly detect the faults. The validation of the protection system is performed by building a hardware model using commercial relays at the ASU power laboratory.

  5. Distributed snow data as a tool to inform water management decisions: Using Airborne Snow Observatory (ASO) at the Hetch Hetchy Reservoir in Yosemite National Park, City and County of San Francisco.

    NASA Astrophysics Data System (ADS)

    Graham, C. B.

    2016-12-01

    The timing and magnitude of spring snowmelt and runoff is critical in managing reservoirs in the Western United States. The Hetch Hetchy Reservoir in Yosemite National Park provides drinking water for 2.6 million customers in over 30 communities in the San Francisco Bay Area. Power generation from Hetch Hetchy meets the municipal load of the City and County of San Francisco. Water from the Hetch Hetchy Reservoir is also released in the Tuolumne River, supporting critical ecosystems in Yosemite National Park and the Stanislaus National Forest. Better predictions of long (seasonal) and short (weekly) term streamflow allow for more secure water resource planning, earlier power generation and ecologically beneficial releases from the Reservoir. Hetch Hetchy Reservoir is fed by snow dominated watersheds in the Sierra Mountains. Better knowledge of snowpack conditions allow for better predictions of inflows, both at the seasonal and at the weekly time scales. The ASO project has provided the managers of Hetch Hetchy Reservoir with high resolution estimates of total snowpack and snowpack distribution in the 460 mi2 Hetch Hetchy. We show that there is a tight correlation between snowpack estimates and future streamflow, allowing earlier, more confident operational decisions. We also show how distributed SWE estimates were used to develop and test a hydrologic model of the system (PRMS). This model, calibrated directly to snowpack conditions, is shown to correctly simulate snowpack volume and distribution, as well as streamflow patterns.

  6. 78 FR 79709 - Duke Energy Florida, Inc., Crystal River Unit 3 Nuclear Generating Plant Post-Shutdown...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ...., Crystal River Unit 3 Nuclear Generating Plant Post-Shutdown Decommissioning Activities Report AGENCY...) Accession No. ML13340A009), for the Crystal River Unit 3 Nuclear Generating Plant (CR-3). The PSDAR provides.... until 9 p.m., EST, at the Crystal River Nuclear Plant Training Center/Emergency Operations Facility...

  7. 40 CFR 98.40 - Definition of the source category.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.40 Definition of the source category. (a) The electricity generation source category comprises electricity generating units that are subject to the requirements of the Acid Rain Program and any other electricity generating units that are...

  8. 40 CFR 98.40 - Definition of the source category.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.40 Definition of the source category. (a) The electricity generation source category comprises electricity generating units that are subject to the requirements of the Acid Rain Program and any other electricity generating units that are...

  9. 40 CFR 98.40 - Definition of the source category.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.40 Definition of the source category. (a) The electricity generation source category comprises electricity generating units that are subject to the requirements of the Acid Rain Program and any other electricity generating units that are...

  10. 40 CFR 98.40 - Definition of the source category.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.40 Definition of the source category. (a) The electricity generation source category comprises electricity generating units that are subject to the requirements of the Acid Rain Program and any other electricity generating units that are...

  11. 40 CFR 98.40 - Definition of the source category.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.40 Definition of the source category. (a) The electricity generation source category comprises electricity generating units that are subject to the requirements of the Acid Rain Program and any other electricity generating units that are...

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bill Major

    The use of stationary gas turbines for power generation has been growing rapidly with continuing trends predicted well into the future. Factors that are contributing to this growth include advances in turbine technology, operating and siting flexibility and low capital cost. Restructuring of the electric utility industry will provide new opportunities for on-site generation. In a competitive market, it maybe more cost effective to install small distributed generation units (like gas turbines) within the grid rather than constructing large power plants in remote locations with extensive transmission and distribution systems. For the customer, on-site generation will provide added reliability andmore » leverage over the cost of purchased power One of the key issues that is addressed in virtually every gas turbine application is emissions, particularly NO{sub x} emissions. Decades of research and development have significantly reduced the NO{sub x} levels emitted from gas turbines from uncontrolled levels. Emission control technologies are continuing to evolve with older technologies being gradually phased-out while new technologies are being developed and commercialized. The objective of this study is to determine and compare the cost of NO{sub x} control technologies for three size ranges of stationary gas turbines: 5 MW, 25 MW and 150 MW. The purpose of the comparison is to evaluate the cost effectiveness and impact of each control technology as a function of turbine size. The NO{sub x} control technologies evaluated in this study include: Lean premix combustion, also known as dry low NO{sub x} (DLN) combustion; Catalytic combustion; Water/steam injection; Selective catalytic reduction (SCR)--low temperature, conventional, high temperature; and SCONO{sub x}{trademark}.« less

  13. A ‘reader’ unit of the chemical computer

    PubMed Central

    Smelov, Pavel S.

    2018-01-01

    We suggest the main principals and functional units of the parallel chemical computer, namely, (i) a generator (which is a network of coupled oscillators) of oscillatory dynamic modes, (ii) a unit which is able to recognize these modes (a ‘reader’) and (iii) a decision-making unit, which analyses the current mode, compares it with the external signal and sends a command to the mode generator to switch it to the other dynamical regime. Three main methods of the functioning of the reader unit are suggested and tested computationally: (a) the polychronization method, which explores the differences between the phases of the generator oscillators; (b) the amplitude method which detects clusters of the generator and (c) the resonance method which is based on the resonances between the frequencies of the generator modes and the internal frequencies of the damped oscillations of the reader cells. Pro and contra of these methods have been analysed. PMID:29410852

  14. Effects of species biological traits and environmental heterogeneity on simulated tree species distribution shifts under climate change.

    PubMed

    Wang, Wen J; He, Hong S; Thompson, Frank R; Spetich, Martin A; Fraser, Jacob S

    2018-09-01

    Demographic processes (fecundity, dispersal, colonization, growth, and mortality) and their interactions with environmental changes are not well represented in current climate-distribution models (e.g., niche and biophysical process models) and constitute a large uncertainty in projections of future tree species distribution shifts. We investigate how species biological traits and environmental heterogeneity affect species distribution shifts. We used a species-specific, spatially explicit forest dynamic model LANDIS PRO, which incorporates site-scale tree species demography and competition, landscape-scale dispersal and disturbances, and regional-scale abiotic controls, to simulate the distribution shifts of four representative tree species with distinct biological traits in the central hardwood forest region of United States. Our results suggested that biological traits (e.g., dispersal capacity, maturation age) were important for determining tree species distribution shifts. Environmental heterogeneity, on average, reduced shift rates by 8% compared to perfect environmental conditions. The average distribution shift rates ranged from 24 to 200myear -1 under climate change scenarios, implying that many tree species may not able to keep up with climate change because of limited dispersal capacity, long generation time, and environmental heterogeneity. We suggest that climate-distribution models should include species demographic processes (e.g., fecundity, dispersal, colonization), biological traits (e.g., dispersal capacity, maturation age), and environmental heterogeneity (e.g., habitat fragmentation) to improve future predictions of species distribution shifts in response to changing climates. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Foundational Report Series. Advanced Distribution management Systems for Grid Modernization (Importance of DMS for Distribution Grid Modernization)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jianhui

    2015-09-01

    Grid modernization is transforming the operation and management of electric distribution systems from manual, paper-driven business processes to electronic, computer-assisted decisionmaking. At the center of this business transformation is the distribution management system (DMS), which provides a foundation from which optimal levels of performance can be achieved in an increasingly complex business and operating environment. Electric distribution utilities are facing many new challenges that are dramatically increasing the complexity of operating and managing the electric distribution system: growing customer expectations for service reliability and power quality, pressure to achieve better efficiency and utilization of existing distribution system assets, and reductionmore » of greenhouse gas emissions by accommodating high penetration levels of distributed generating resources powered by renewable energy sources (wind, solar, etc.). Recent “storm of the century” events in the northeastern United States and the lengthy power outages and customer hardships that followed have greatly elevated the need to make power delivery systems more resilient to major storm events and to provide a more effective electric utility response during such regional power grid emergencies. Despite these newly emerging challenges for electric distribution system operators, only a small percentage of electric utilities have actually implemented a DMS. This paper discusses reasons why a DMS is needed and why the DMS may emerge as a mission-critical system that will soon be considered essential as electric utilities roll out their grid modernization strategies.« less

  16. 40 CFR 69.11 - New exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... significant deterioration (“PSD”) permit prior to construction is granted for the electric generating units... not be operated until a final PSD permit is issued for that unit; (ii) Each electric generating unit shall not be operated until that unit complies with all requirements of its PSD permit, including, if...

  17. 40 CFR 69.11 - New exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... significant deterioration (“PSD”) permit prior to construction is granted for the electric generating units... not be operated until a final PSD permit is issued for that unit; (ii) Each electric generating unit shall not be operated until that unit complies with all requirements of its PSD permit, including, if...

  18. 40 CFR 69.11 - New exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... significant deterioration (“PSD”) permit prior to construction is granted for the electric generating units... not be operated until a final PSD permit is issued for that unit; (ii) Each electric generating unit shall not be operated until that unit complies with all requirements of its PSD permit, including, if...

  19. Adoption and supply of a distributed energy technology

    NASA Astrophysics Data System (ADS)

    Strachan, Neil Douglas

    2000-12-01

    Technical and economic developments in distributed generation (DG) represent an opportunity for a radically different energy market paradigm, and potentially significant cuts in global carbon emissions. This thesis investigates DG along two interrelated themes: (1) Early adoption and supply of the DG technology of internal combustion (IC) engine cogeneration. (2) Private and social cost implications of DG for private investors and within an energy system. IC engine cogeneration of both power and heat has been a remarkable success in the Netherlands with over 5,000 installations and 1,500MWe of installed capacity by 1997. However, the technology has struggled in the UK with an installed capacity of 110Mwe, fulfilling only 10% of its large estimated potential. An investment simulation model of DG investments in the UK and Netherlands was used, together with analysis of site level data on all DG adoptions from 1985 through 1997. In the UK over 60% of the early installations were sized too small (<140kWe) to be economically attractive (suppliers made their money with maintenance contracts). In the Netherlands, most facilities were sized well above the economic size threshold of 100kWe (lower due to reduced operating and grid connection costs). Institutional players were key in improved sizing of DG. Aided by energy market and CO2 reduction regulatory policy, Dutch distributions utilities played a proactive role in DG. This involved joint ventures with engine cogen suppliers and users, offering improved electricity buy-back tariffs and lower connection costs. This has allowed flexible operation of distributed generation, especially in electricity sales to the grid. Larger units can be sized for on-site heat requirements with electricity export providing revenue and aiding in management of energy networks. A comparison of internal and external costs of three distributed and three centralized generation technologies over a range of heat to power ratios (HPR) was made. Micro-turbines were found to be the lowest cost technology, especially at higher heat loads. Engines are also very competitive providing their NOx and CO emissions are controlled. A cost optimization program was used to develop an optimal green-field supply mix for Florida and New York. (Abstract shortened by UMI.)

  20. TH-A-19A-04: Latent Uncertainties and Performance of a GPU-Implemented Pre-Calculated Track Monte Carlo Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renaud, M; Seuntjens, J; Roberge, D

    Purpose: Assessing the performance and uncertainty of a pre-calculated Monte Carlo (PMC) algorithm for proton and electron transport running on graphics processing units (GPU). While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from recycling a limited number of tracks in the pre-generated track bank is missing from the literature. With a proper uncertainty analysis, an optimal pre-generated track bank size can be selected for a desired dose calculation uncertainty. Methods: Particle tracks were pre-generated for electrons and protons using EGSnrc and GEANT4, respectively. The PMC algorithm for track transport was implementedmore » on the CUDA programming framework. GPU-PMC dose distributions were compared to benchmark dose distributions simulated using general-purpose MC codes in the same conditions. A latent uncertainty analysis was performed by comparing GPUPMC dose values to a “ground truth” benchmark while varying the track bank size and primary particle histories. Results: GPU-PMC dose distributions and benchmark doses were within 1% of each other in voxels with dose greater than 50% of Dmax. In proton calculations, a submillimeter distance-to-agreement error was observed at the Bragg Peak. Latent uncertainty followed a Poisson distribution with the number of tracks per energy (TPE) and a track bank of 20,000 TPE produced a latent uncertainty of approximately 1%. Efficiency analysis showed a 937× and 508× gain over a single processor core running DOSXYZnrc for 16 MeV electrons in water and bone, respectively. Conclusion: The GPU-PMC method can calculate dose distributions for electrons and protons to a statistical uncertainty below 1%. The track bank size necessary to achieve an optimal efficiency can be tuned based on the desired uncertainty. Coupled with a model to calculate dose contributions from uncharged particles, GPU-PMC is a candidate for inverse planning of modulated electron radiotherapy and scanned proton beams. This work was supported in part by FRSQ-MSSS (Grant No. 22090), NSERC RG (Grant No. 432290) and CIHR MOP (Grant No. MOP-211360)« less

  1. Distributive Education. Selling. Curriculum.

    ERIC Educational Resources Information Center

    Lankford, Dave; Comte, Don

    Nineteen lesson plans on selling are presented in this performance-based curriculum unit for distributive education. This unit is self-contained and consists of the following components: introduction (provides overview of unit content and describes why mastery of the objectives is important); performance objectives; pre-assessment instrument…

  2. 78 FR 47800 - License Renewal Application for Byron Station, Units 1 and 2; Exelon Generation Company, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... Application for Byron Station, Units 1 and 2; Exelon Generation Company, LLC AGENCY: Nuclear Regulatory..., Units 1 and 2 (Byron). Byron Station is located in Byron, Illinois. The current operating license for Byron Station, Unit 1, expires on October 31, 2024, and Unit 2, expires on November 6, 2026. DATES: The...

  3. Radiologists' Variation of Time to Read Across Different Procedure Types.

    PubMed

    Forsberg, Daniel; Rosipko, Beverly; Sunshine, Jeffrey L

    2017-02-01

    The workload of US radiologists has increased over the past two decades as measured through total annual relative value units (RVUs). This increase in RVUs generated suggests that radiologists' productivity has increased. However, true productivity (output unit per input unit; RVU per time) is at large unknown since actual time required to interpret and report a case is rarely recorded. In this study, we analyzed how the time to read a case varies between radiologists over a set of different procedure types by retrospectively extracting reading times from PACS usage logs. Specifically, we tested two hypotheses that; i) relative variation in time to read per procedure type increases as the median time to read a procedure type increases, and ii) relative rankings in terms of median reading speed for individual radiologists are consistent across different procedure types. The results that, i) a correlation of -0.25 between the coefficient of variation and median time to read and ii) that only 12 out of 46 radiologists had consistent rankings in terms of time to read across different procedure types, show both hypotheses to be without support. The results show that workload distribution will not follow any general rule for a radiologist across all procedures or a general rule for a specific procedure across many readers. Rather the findings suggest that improved overall practice efficiency can be achieved only by taking into account radiologists' individual productivity per procedure type when distributing unread cases.

  4. Estimating Preferential Flow in Karstic Aquifers Using Statistical Mixed Models

    PubMed Central

    Anaya, Angel A.; Padilla, Ingrid; Macchiavelli, Raul; Vesper, Dorothy J.; Meeker, John D.; Alshawabkeh, Akram N.

    2013-01-01

    Karst aquifers are highly productive groundwater systems often associated with conduit flow. These systems can be highly vulnerable to contamination, resulting in a high potential for contaminant exposure to humans and ecosystems. This work develops statistical models to spatially characterize flow and transport patterns in karstified limestone and determines the effect of aquifer flow rates on these patterns. A laboratory-scale Geo-HydroBed model is used to simulate flow and transport processes in a karstic limestone unit. The model consists of stainless-steel tanks containing a karstified limestone block collected from a karst aquifer formation in northern Puerto Rico. Experimental work involves making a series of flow and tracer injections, while monitoring hydraulic and tracer response spatially and temporally. Statistical mixed models are applied to hydraulic data to determine likely pathways of preferential flow in the limestone units. The models indicate a highly heterogeneous system with dominant, flow-dependent preferential flow regions. Results indicate that regions of preferential flow tend to expand at higher groundwater flow rates, suggesting a greater volume of the system being flushed by flowing water at higher rates. Spatial and temporal distribution of tracer concentrations indicates the presence of conduit-like and diffuse flow transport in the system, supporting the notion of both combined transport mechanisms in the limestone unit. The temporal response of tracer concentrations at different locations in the model coincide with, and confirms the preferential flow distribution generated with the statistical mixed models used in the study. PMID:23802921

  5. Estimating preferential flow in karstic aquifers using statistical mixed models.

    PubMed

    Anaya, Angel A; Padilla, Ingrid; Macchiavelli, Raul; Vesper, Dorothy J; Meeker, John D; Alshawabkeh, Akram N

    2014-01-01

    Karst aquifers are highly productive groundwater systems often associated with conduit flow. These systems can be highly vulnerable to contamination, resulting in a high potential for contaminant exposure to humans and ecosystems. This work develops statistical models to spatially characterize flow and transport patterns in karstified limestone and determines the effect of aquifer flow rates on these patterns. A laboratory-scale Geo-HydroBed model is used to simulate flow and transport processes in a karstic limestone unit. The model consists of stainless steel tanks containing a karstified limestone block collected from a karst aquifer formation in northern Puerto Rico. Experimental work involves making a series of flow and tracer injections, while monitoring hydraulic and tracer response spatially and temporally. Statistical mixed models (SMMs) are applied to hydraulic data to determine likely pathways of preferential flow in the limestone units. The models indicate a highly heterogeneous system with dominant, flow-dependent preferential flow regions. Results indicate that regions of preferential flow tend to expand at higher groundwater flow rates, suggesting a greater volume of the system being flushed by flowing water at higher rates. Spatial and temporal distribution of tracer concentrations indicates the presence of conduit-like and diffuse flow transport in the system, supporting the notion of both combined transport mechanisms in the limestone unit. The temporal response of tracer concentrations at different locations in the model coincide with, and confirms the preferential flow distribution generated with the SMMs used in the study. © 2013, National Ground Water Association.

  6. 76 FR 64933 - Alaska Power Company, Inc.; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-19

    ...-wide powerhouse containing one 4.1-megawatt (MW) turbine/generator unit with an adjacent 40-foot-long...-foot-wide powerhouse containing one 4.8-MW turbine/generator unit with an adjacent 40-foot-long, 40... powerhouse containing one 0.9-MW turbine/generator unit with an adjacent 30-foot-long, 40-foot-wide...

  7. 76 FR 5584 - City of Salem, OR; Notice of Competing Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-01

    ... penstock intake at the powerhouse site; (2) a new powerhouse with a single turbine/generator unit at an... powerhouse site; (2) a new powerhouse with a single turbine/generator unit at an installed capacity of 0.5 MW... Franzen reservoir to the Fairmount reservoir; (2) a new powerhouse with a single turbine/ generator unit...

  8. 78 FR 17194 - North East Wisconsin Hydro, LLC: Notice of Application Tendered for Filing With the Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... D. Bose, Secretary, Federal Energy Regulatory Commission, 888 First Street NE., Washington, DC 20426... a 0.458-megawatt (MW) generator and two Kaplan turbine units each connected to a 0.662-MW generator... Kaplan turbine unit connected to a 0.225-MW generator, two Francis turbine units each connected to a 0...

  9. 78 FR 12050 - S. Martinez Livestock, Inc.; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... traditional turbine-generator facility. The pumped storage facility would consist of: (1) A new upper... storage facility would be 86,430 megawatt hours. The turbine-generator facility would consist of: (1) an... turbine-generator unit. The estimated annual generation of the turbine generator unit would be 17,286...

  10. Reward and uncertainty in exploration programs

    NASA Technical Reports Server (NTRS)

    Kaufman, G. M.; Bradley, P. G.

    1971-01-01

    A set of variables which are crucial to the economic outcome of petroleum exploration are discussed. These are treated as random variables; the values they assume indicate the number of successes that occur in a drilling program and determine, for a particular discovery, the unit production cost and net economic return if that reservoir is developed. In specifying the joint probability law for those variables, extreme and probably unrealistic assumptions are made. In particular, the different random variables are assumed to be independently distributed. Using postulated probability functions and specified parameters, values are generated for selected random variables, such as reservoir size. From this set of values the economic magnitudes of interest, net return and unit production cost are computed. This constitutes a single trial, and the procedure is repeated many times. The resulting histograms approximate the probability density functions of the variables which describe the economic outcomes of an exploratory drilling program.

  11. TDRS-L spacecraft lift to mate on Atlas V

    NASA Image and Video Library

    2014-01-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is lifted for mounting atop a United Launch Alliance Atlas V rocket. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  12. TDRS-L spacecraft lift to mate on Atlas V

    NASA Image and Video Library

    2014-01-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is moved into position for mating atop a United Launch Alliance Atlas V rocket. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  13. TDRS-L Spacecraft Fairing Encapsulation

    NASA Image and Video Library

    2014-01-08

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, United Launch Alliance engineers and technicians encapsulate the Tracking and Data Relay Satellite, or TDRS-L, spacecraft in its payload fairing. TDRS-L will then be transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html

  14. TDRS-L Spacecraft Fairing Encapsulation

    NASA Image and Video Library

    2014-01-08

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, United Launch Alliance engineers and technicians ensure precision as the Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being encapsulated in its payload fairing in preparation for begin transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html

  15. TDRS-L spacecraft lift to mate on Atlas V

    NASA Image and Video Library

    2014-01-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft has been mated atop a United Launch Alliance Atlas V rocket. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  16. Job-sharing a clinical teacher's position: an evaluation.

    PubMed

    Williams, S; Murphy, L

    1994-01-01

    The aim of this study was to evaluate the effects on staff of having two teachers share one clinical teaching position in their intensive care unit (ICU). Three, six and 12 months after the job-sharing arrangement was initiated, an 11 item questionnaire was distributed to 26 students in post-registration critical care courses, 41 clinical staff in ICU and 9 RN-managers with responsibilities for the unit. The overall response rate to the three questionnaires was 58%. All groups agreed that job-sharing was a viable alternative to full-time work. Three months after the shared position was initiated, there was uncertainty about the consistency of the teachers' performance and the adequacy of communication between them. Nine months later, there was a high level of positive responses to all areas of the teachers' performance. Most respondents felt they could approach either teacher and that more diverse ideas were generated by having two people in the teaching position.

  17. Photonic beamforming network for multibeam satellite-on-board phased-array antennas

    NASA Astrophysics Data System (ADS)

    Piqueras, M. A.; Cuesta-Soto, F.; Villalba, P.; Martí, A.; Hakansson, A.; Perdigués, J.; Caille, G.

    2017-11-01

    The implementation of a beamforming unit based on integrated photonic technologies is addressed in this work. This integrated photonic solution for multibeam coverage will be compared with the digital and the RF solution. Photonic devices show unique characteristics that match the critical requirements of space oriented devices such as low mass/size, low power consumption and easily scalable to big systems. An experimental proof-of-concept of the photonic beamforming structure based on 4x4 and 8x8 Butler matrices is presented. The proof-of-concept is based in the heterodyne generation of multiple phase engineered RF signals for the conformation of 8-4 different beams in an antenna array. Results show the feasibility of this technology for the implementation of optical beamforming with phase distribution errors below σ=10o with big savings in the required mass and size of the beamforming unit.

  18. CSP cogeneration of electricity and desalinated water at the Pentakomo field facility

    NASA Astrophysics Data System (ADS)

    Papanicolas, C. N.; Bonanos, A. M.; Georgiou, M. C.; Guillen, E.; Jarraud, N.; Marakkos, C.; Montenon, A.; Stiliaris, E.; Tsioli, E.; Tzamtzis, G.; Votyakov, E. V.

    2016-05-01

    The Cyprus Institute's Pentakomo Field Facility (PFF) is a major infrastructure for research, development and testing of technologies relating to concentrated solar power (CSP) and solar seawater desalination. It is located at the south coast of Cyprus near the sea and its environmental conditions are fully monitored. It provides a test facility specializing in the development of CSP systems suitable for island and coastal environments with particular emphasis on small units (<25 MWth) endowed with substantial storage, suitable for use in isolation or distributed in small power grids. The first major experiment to take place at the PFF concerns the development of a pilot/experimental facility for the co-generation of electricity and desalinated seawater from CSP. Specifically, the experimental plant consists of a heliostat-central receiver system for solar harvesting, thermal energy storage in molten salts followed by a Rankine cycle for electricity production and a multiple-effect distillation (MED) unit for desalination.

  19. Montana Curriculum Guidelines for Distributive Education. Revised.

    ERIC Educational Resources Information Center

    Harris, Ron, Ed.

    These distributive education curriculum guidelines are intended to provide Montana teachers with teaching information for 11 units. Units cover introduction to marketing and distributive education, human relations and communications, operations and control, processes involved in buying for resale, merchandise handling, sales promotion, sales and…

  20. Experience in connecting the power generating units of thermal power plants to automatic secondary frequency regulation within the united power system of Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukov, A. V.; Komarov, A. N.; Safronov, A. N.

    The principles of central control of the power generating units of thermal power plants by automatic secondary frequency and active power overcurrent regulation systems, and the algorithms for interactions between automatic power control systems for the power production units in thermal power plants and centralized systems for automatic frequency and power regulation, are discussed. The order of switching the power generating units of thermal power plants over to control by a centralized system for automatic frequency and power regulation and by the Central Coordinating System for automatic frequency and power regulation is presented. The results of full-scale system tests ofmore » the control of power generating units of the Kirishskaya, Stavropol, and Perm GRES (State Regional Electric Power Plants) by the Central Coordinating System for automatic frequency and power regulation at the United Power System of Russia on September 23-25, 2008, are reported.« less

  1. Computer-generated scenes depicting the HST capture and EVA repair mission

    NASA Image and Video Library

    1993-11-12

    Computer generated scenes depicting the Hubble Space Telescope capture and a sequence of planned events on the planned extravehicular activity (EVA). Scenes include the Remote Manipulator System (RMS) arm assisting two astronauts changing out the Wide Field/Planetary Camera (WF/PC) (48699); RMS arm assisting in the temporary mating of the orbiting telescope to the flight support system in Endeavour's cargo bay (48700); Endeavour's RMS arm assisting in the "capture" of the orbiting telescope (48701); Two astronauts changing out the telescope's coprocessor (48702); RMS arm assistign two astronauts replacing one of the telescope's electronic control units (48703); RMS assisting two astronauts replacing the fuse plugs on the telescope's Power Distribution Unit (PDU) (48704); The telescope's High Resolution Spectrograph (HRS) kit is depicted in this scene (48705); Two astronauts during the removal of the high speed photometer and the installation of the COSTAR instrument (48706); Two astronauts, standing on the RMS, during installation of one of the Magnetic Sensing System (MSS) (48707); High angle view of the orbiting Space Shuttle Endeavour with its cargo bay doors open, revealing the bay's pre-capture configuration. Seen are, from the left, the Solar Array Carrier, the ORU Carrier and the flight support system (48708); Two astronauts performing the replacement of HST's Rate Sensor Units (RSU) (48709); The RMS arm assisting two astronauts with the replacement of the telescope's solar array panels (48710); Two astronauts replacing the telescope's Solar Array Drive Electronics (SADE) (48711).

  2. Florida panther habitat use response to prescribed fire

    USGS Publications Warehouse

    Dees, Catherine S.; Clark, Joseph D.; van Manen, Frank T.

    2001-01-01

    The Florida panther (Puma concolor coryi) is one of the most endangered mammals in the world, with only 30-50 adults surviving in and around Florida Panther National Wildlife Refuge and the adjacent Big Cypress National Preserve. Managers at these areas conduct annual prescribed burns in pine (Pinus sp.) as a cost-effective method of managing wildlife habitat. Our objectives were to determine if temporal and spatial relationships existed between prescribed fire an panther use of pine. to accomplish this, we paired fire-event data from the Refuge an the Preserve with panther radiolocations collected between 1989 and 1998, determined the time that had elapsed since burning had occurred in management units associated with the radiolocations, and generated a frequency distribution based on those times. We then generated ant expected frequency distribution, based on random use relative to time since burning. This analysis revealed that panther use of burned pine habitats was greatest during the first year after a management unit was burned. Also, compositional analysis indicated that panthers were more likely to position their home ranges in areas that contained pine. We conclude that prescribed burning is important to panther ecology. We suggest that panthers were attracted to <1-year-old burns because of white-tailed deer (Odocoileus virginianus) and other prey responses to vegetation and structural changed caused by the prescribed fires. The strong selection for stands burned within 1 year is a persuasive indication that it is the burning in pine, rather than the pine per se, that most influenced habitat use. Before burning rotation lengths are reduced, however, we suggest managers determine effects of shorter burning intervals on vegetation composition and evaluate the landscape-scale changes that would result. 

  3. Total coliform and E. coli in public water systems using undisinfected ground water in the United States.

    PubMed

    Messner, Michael J; Berger, Philip; Javier, Julie

    2017-06-01

    Public water systems (PWSs) in the United States generate total coliform (TC) and Escherichia coli (EC) monitoring data, as required by the Total Coliform Rule (TCR). We analyzed data generated in 2011 by approximately 38,000 small (serving fewer than 4101 individuals) undisinfected public water systems (PWSs). We used statistical modeling to characterize a distribution of TC detection probabilities for each of nine groupings of PWSs based on system type (community, non-transient non-community, and transient non-community) and population served (less than 101, 101-1000 and 1001-4100 people). We found that among PWS types sampled in 2011, on average, undisinfected transient PWSs test positive for TC 4.3% of the time as compared with 3% for undisinfected non-transient PWSs and 2.5% for undisinfected community PWSs. Within each type of PWS, the smaller systems have higher median TC detection than the larger systems. All TC-positive samples were assayed for EC. Among TC-positive samples from small undisinfected PWSs, EC is detected in about 5% of samples, regardless of PWS type or size. We evaluated the upper tail of the TC detection probability distributions and found that significant percentages of some system types have high TC detection probabilities. For example, assuming the systems providing data are nationally-representative, then 5.0% of the ∼50,000 small undisinfected transient PWSs in the U.S. have TC detection probabilities of 20% or more. Communities with such high TC detection probabilities may have elevated risk of acute gastrointestinal (AGI) illness - perhaps as great or greater than the attributable risk to drinking water (6-22%) calculated for 14 Wisconsin community PWSs with much lower TC detection probabilities (about 2.3%, Borchardt et al., 2012). Published by Elsevier GmbH.

  4. A multiple-point geostatistical method for characterizing uncertainty of subsurface alluvial units and its effects on flow and transport

    USGS Publications Warehouse

    Cronkite-Ratcliff, C.; Phelps, G.A.; Boucher, A.

    2012-01-01

    This report provides a proof-of-concept to demonstrate the potential application of multiple-point geostatistics for characterizing geologic heterogeneity and its effect on flow and transport simulation. The study presented in this report is the result of collaboration between the U.S. Geological Survey (USGS) and Stanford University. This collaboration focused on improving the characterization of alluvial deposits by incorporating prior knowledge of geologic structure and estimating the uncertainty of the modeled geologic units. In this study, geologic heterogeneity of alluvial units is characterized as a set of stochastic realizations, and uncertainty is indicated by variability in the results of flow and transport simulations for this set of realizations. This approach is tested on a hypothetical geologic scenario developed using data from the alluvial deposits in Yucca Flat, Nevada. Yucca Flat was chosen as a data source for this test case because it includes both complex geologic and hydrologic characteristics and also contains a substantial amount of both surface and subsurface geologic data. Multiple-point geostatistics is used to model geologic heterogeneity in the subsurface. A three-dimensional (3D) model of spatial variability is developed by integrating alluvial units mapped at the surface with vertical drill-hole data. The SNESIM (Single Normal Equation Simulation) algorithm is used to represent geologic heterogeneity stochastically by generating 20 realizations, each of which represents an equally probable geologic scenario. A 3D numerical model is used to simulate groundwater flow and contaminant transport for each realization, producing a distribution of flow and transport responses to the geologic heterogeneity. From this distribution of flow and transport responses, the frequency of exceeding a given contaminant concentration threshold can be used as an indicator of uncertainty about the location of the contaminant plume boundary.

  5. GASPRNG: GPU accelerated scalable parallel random number generator library

    NASA Astrophysics Data System (ADS)

    Gao, Shuang; Peterson, Gregory D.

    2013-04-01

    Graphics processors represent a promising technology for accelerating computational science applications. Many computational science applications require fast and scalable random number generation with good statistical properties, so they use the Scalable Parallel Random Number Generators library (SPRNG). We present the GPU Accelerated SPRNG library (GASPRNG) to accelerate SPRNG in GPU-based high performance computing systems. GASPRNG includes code for a host CPU and CUDA code for execution on NVIDIA graphics processing units (GPUs) along with a programming interface to support various usage models for pseudorandom numbers and computational science applications executing on the CPU, GPU, or both. This paper describes the implementation approach used to produce high performance and also describes how to use the programming interface. The programming interface allows a user to be able to use GASPRNG the same way as SPRNG on traditional serial or parallel computers as well as to develop tightly coupled programs executing primarily on the GPU. We also describe how to install GASPRNG and use it. To help illustrate linking with GASPRNG, various demonstration codes are included for the different usage models. GASPRNG on a single GPU shows up to 280x speedup over SPRNG on a single CPU core and is able to scale for larger systems in the same manner as SPRNG. Because GASPRNG generates identical streams of pseudorandom numbers as SPRNG, users can be confident about the quality of GASPRNG for scalable computational science applications. Catalogue identifier: AEOI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOI_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: UTK license. No. of lines in distributed program, including test data, etc.: 167900 No. of bytes in distributed program, including test data, etc.: 1422058 Distribution format: tar.gz Programming language: C and CUDA. Computer: Any PC or workstation with NVIDIA GPU (Tested on Fermi GTX480, Tesla C1060, Tesla M2070). Operating system: Linux with CUDA version 4.0 or later. Should also run on MacOS, Windows, or UNIX. Has the code been vectorized or parallelized?: Yes. Parallelized using MPI directives. RAM: 512 MB˜ 732 MB (main memory on host CPU, depending on the data type of random numbers.) / 512 MB (GPU global memory) Classification: 4.13, 6.5. Nature of problem: Many computational science applications are able to consume large numbers of random numbers. For example, Monte Carlo simulations are able to consume limitless random numbers for the computation as long as resources for the computing are supported. Moreover, parallel computational science applications require independent streams of random numbers to attain statistically significant results. The SPRNG library provides this capability, but at a significant computational cost. The GASPRNG library presented here accelerates the generators of independent streams of random numbers using graphical processing units (GPUs). Solution method: Multiple copies of random number generators in GPUs allow a computational science application to consume large numbers of random numbers from independent, parallel streams. GASPRNG is a random number generators library to allow a computational science application to employ multiple copies of random number generators to boost performance. Users can interface GASPRNG with software code executing on microprocessors and/or GPUs. Running time: The tests provided take a few minutes to run.

  6. Diversity, distribution, and conservation status of the native freshwater fishes of the Southern United States

    Treesearch

    Melvin L. Warren; Brooks M. Burr; Stephen J. Walsh; Henry L. Bart; Robert C. Cashner; David A. Etnier; Byron J. Freeman; Bernard R. Kuhajda; Richard L. Mayden; Henry W. Robison; Stephen T. Ross; Wayne C. Starnes

    2000-01-01

    The Southeastern Fishes Council Technical Advisory Committee reviewed the diversity, distribution, and status of all native freshwater and diadromous fishes across 51 major drainage units of the Southern United States. The Southern United States supports more native fishes than any area of comparable size on the North American continent north of Mexico, but also has a...

  7. Design of a Facility to Test the Advanced Stirling Radioisotope Generator Engineering Unit

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Schreiber, Jeffrey G.; Oriti, Salvatore M.; Meer, David W.; Brace, Michael H.; Dugala, Gina

    2010-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), a high efficiency generator, is being considered for space missions. An engineering unit, the ASRG engineering unit (EU), was designed and fabricated by Lockheed Martin under contract to the Department of Energy. This unit is currently under extended operation test at the NASA Glenn Research Center (GRC) to generate performance data and validate the life and reliability predictions for the generator and the Stirling convertors. A special test facility was designed and built for the ASRG EU. This paper summarizes details of the test facility design, including the mechanical mounting, heat-rejection system, argon system, control systems, and maintenance. The effort proceeded from requirements definition through design, analysis, build, and test. Initial testing and facility performance results are discussed.

  8. WATERBORNE OUTBREAKS CAUSED BY DISTRIBUTION SYSTEM DEFICIENCIES IN THE UNITED STATES

    EPA Science Inventory


    Distribution system contamination has caused a significant number of waterborne outbreaks in the United States. The number of illnesses in a distribution-system outbreak can be quite large, and illness can be severe resulting in hospitalization and sometimes death. During t...

  9. DG Planning with Amalgamation of Operational and Reliability Considerations

    NASA Astrophysics Data System (ADS)

    Battu, Neelakanteshwar Rao; Abhyankar, A. R.; Senroy, Nilanjan

    2016-04-01

    Distributed Generation has been playing a vital role in dealing issues related to distribution systems. This paper presents an approach which provides policy maker with a set of solutions for DG placement to optimize reliability and real power loss of the system. Optimal location of a Distributed Generator is evaluated based on performance indices derived for reliability index and real power loss. The proposed approach is applied on a 15-bus radial distribution system and a 18-bus radial distribution system with conventional and wind distributed generators individually.

  10. Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser

    NASA Astrophysics Data System (ADS)

    Lu, M.; Choi, S. S.; Wagner, C. J.; Eden, J. G.; Cunningham, B. T.

    2008-06-01

    A label free biosensor based upon a vertically emitting distributed feedback (DFB) laser has been demonstrated. The DFB laser comprises a replica-molded, one-dimensional dielectric grating coated with laser dye-doped polymer as the gain medium. Adsorption of biomolecules onto the laser surface alters the DFB laser emission wavelength, thereby permitting the kinetic adsorption of a protein polymer monolayer or the specific binding of small molecules to be quantified. A bulk sensitivity of 16.6nm per refractive index unit and the detection of a monolayer of the protein polymer poly(Lys, Phe) have been observed with this biosensor. The sensor represents a departure from conventional passive resonant optical sensors from the standpoint that the device actively generates its own narrowband high intensity output without stringent requirements on the coupling alignments, resulting in a simple, robust illumination and detection configuration.

  11. bayesPop: Probabilistic Population Projections

    PubMed Central

    Ševčíková, Hana; Raftery, Adrian E.

    2016-01-01

    We describe bayesPop, an R package for producing probabilistic population projections for all countries. This uses probabilistic projections of total fertility and life expectancy generated by Bayesian hierarchical models. It produces a sample from the joint posterior predictive distribution of future age- and sex-specific population counts, fertility rates and mortality rates, as well as future numbers of births and deaths. It provides graphical ways of summarizing this information, including trajectory plots and various kinds of probabilistic population pyramids. An expression language is introduced which allows the user to produce the predictive distribution of a wide variety of derived population quantities, such as the median age or the old age dependency ratio. The package produces aggregated projections for sets of countries, such as UN regions or trading blocs. The methodology has been used by the United Nations to produce their most recent official population projections for all countries, published in the World Population Prospects. PMID:28077933

  12. Comparison of Wind Power and Load Forecasting Error Distributions: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, B. M.; Florita, A.; Orwig, K.

    2012-07-01

    The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent Systemmore » Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.« less

  13. 77 FR 58367 - Exelon Generation Company, LLC; Notice of Application Tendered for Filing With the Commission and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... Avenue, Washington, DC 20001, at (202) 347-7500 or email at [email protected] . i. FERC... integral with the dam and is composed of 13 turbine-generator units, draft tubes, and transformer bays. The... Kaplan-type hydraulic turbines. Units 1, 3, 4, 6 and 7 have 47.7-MW generators; Units 2 and 5 have 36.0...

  14. Displacement efficiency of alternative energy and trans-provincial imported electricity in China.

    PubMed

    Hu, Yuanan; Cheng, Hefa

    2017-02-17

    China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ∼0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ∼10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.

  15. Displacement efficiency of alternative energy and trans-provincial imported electricity in China

    NASA Astrophysics Data System (ADS)

    Hu, Yuanan; Cheng, Hefa

    2017-02-01

    China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ~0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ~10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.

  16. Wind energy and wildlife research at the Forest and Rangeland Ecosystem Science Center

    USGS Publications Warehouse

    Phillips, Susan L.

    2011-01-01

    The United States has embarked on a goal to increase electricity generation from clean, renewable sources by 2012. Towards this end, wind energy is emerging as a widely distributed form of renewable energy throughout the country. The national goal is for energy from wind to supply 20 percent of the country's electricity by 2030. As with many land uses, trade-offs exist between costs and benefits. New wind developments are occurring rapidly in parts of the United States, often leaving little time for evaluation of potential site-specific effects. These developments are known to affect wildlife, directly from fatality due to collision with the infrastructure and indirectly from loss of habitat and migration routes. The Department of the Interior, in particular, is challenged to balance energy development on public lands and also to conserve fish and wildlife. The Secretary of the Interior has proposed a number of initiatives to encourage responsible development of renewable energy. These initiatives are especially important in the western United States where large amounts of land are being developed or evaluated for wind farms.

  17. Predicting cyclohexane/water distribution coefficients for the SAMPL5 challenge using MOSCED and the SMD solvation model

    NASA Astrophysics Data System (ADS)

    Diaz-Rodriguez, Sebastian; Bozada, Samantha M.; Phifer, Jeremy R.; Paluch, Andrew S.

    2016-11-01

    We present blind predictions using the solubility parameter based method MOSCED submitted for the SAMPL5 challenge on calculating cyclohexane/water distribution coefficients at 298 K. Reference data to parameterize MOSCED was generated with knowledge only of chemical structure by performing solvation free energy calculations using electronic structure calculations in the SMD continuum solvent. To maintain simplicity and use only a single method, we approximate the distribution coefficient with the partition coefficient of the neutral species. Over the final SAMPL5 set of 53 compounds, we achieved an average unsigned error of 2.2± 0.2 log units (ranking 15 out of 62 entries), the correlation coefficient ( R) was 0.6± 0.1 (ranking 35), and 72± 6 % of the predictions had the correct sign (ranking 30). While used here to predict cyclohexane/water distribution coefficients at 298 K, MOSCED is broadly applicable, allowing one to predict temperature dependent infinite dilution activity coefficients in any solvent for which parameters exist, and provides a means by which an excess Gibbs free energy model may be parameterized to predict composition dependent phase-equilibrium.

  18. Investigation of the influence of vertical force on the contact between truck tyre and road using finite element analyses

    NASA Astrophysics Data System (ADS)

    Moisescu, Alexandra-Raluca; Anghelache, Gabriel

    2017-10-01

    In the modern context of automobile integration with the emerging technologies of the interconnected society, the interaction between tyre and road is an element of major importance for automobile safety systems such as the intelligent tyres, as well as for passenger comfort, fuel economy, environmental protection, infrastructure and vehicle durability. The tyre-road contact generates the distribution of forces exerted on each unit area in the contact patch, therefore the distribution of contact stresses on three orthogonal directions. The numerical investigation of stresses distribution in the contact patch requires the development of finite element models capable of accurately describing the interaction between tyre and rolling surface. The complex finite element model developed for the 11R22.5 truck tyre has been used for investigating the influence of vertical force on the distributions of contact stresses. In addition to these contributions, the paper presents aspects related to the simulation of truck tyre radial stiffness. The influence of tyre rolling has not been taken into consideration, as the purpose of the current research is the investigation of tyre-road contact in stationary conditions.

  19. Distributed and Lumped Parameter Models for the Characterization of High Throughput Bioreactors

    PubMed Central

    Conoscenti, Gioacchino; Cutrì, Elena; Tuan, Rocky S.; Raimondi, Manuela T.; Gottardi, Riccardo

    2016-01-01

    Next generation bioreactors are being developed to generate multiple human cell-based tissue analogs within the same fluidic system, to better recapitulate the complexity and interconnection of human physiology [1, 2]. The effective development of these devices requires a solid understanding of their interconnected fluidics, to predict the transport of nutrients and waste through the constructs and improve the design accordingly. In this work, we focus on a specific model of bioreactor, with multiple input/outputs, aimed at generating osteochondral constructs, i.e., a biphasic construct in which one side is cartilaginous in nature, while the other is osseous. We next develop a general computational approach to model the microfluidics of a multi-chamber, interconnected system that may be applied to human-on-chip devices. This objective requires overcoming several challenges at the level of computational modeling. The main one consists of addressing the multi-physics nature of the problem that combines free flow in channels with hindered flow in porous media. Fluid dynamics is also coupled with advection-diffusion-reaction equations that model the transport of biomolecules throughout the system and their interaction with living tissues and C constructs. Ultimately, we aim at providing a predictive approach useful for the general organ-on-chip community. To this end, we have developed a lumped parameter approach that allows us to analyze the behavior of multi-unit bioreactor systems with modest computational effort, provided that the behavior of a single unit can be fully characterized. PMID:27669413

  20. Distributed and Lumped Parameter Models for the Characterization of High Throughput Bioreactors.

    PubMed

    Iannetti, Laura; D'Urso, Giovanna; Conoscenti, Gioacchino; Cutrì, Elena; Tuan, Rocky S; Raimondi, Manuela T; Gottardi, Riccardo; Zunino, Paolo

    Next generation bioreactors are being developed to generate multiple human cell-based tissue analogs within the same fluidic system, to better recapitulate the complexity and interconnection of human physiology [1, 2]. The effective development of these devices requires a solid understanding of their interconnected fluidics, to predict the transport of nutrients and waste through the constructs and improve the design accordingly. In this work, we focus on a specific model of bioreactor, with multiple input/outputs, aimed at generating osteochondral constructs, i.e., a biphasic construct in which one side is cartilaginous in nature, while the other is osseous. We next develop a general computational approach to model the microfluidics of a multi-chamber, interconnected system that may be applied to human-on-chip devices. This objective requires overcoming several challenges at the level of computational modeling. The main one consists of addressing the multi-physics nature of the problem that combines free flow in channels with hindered flow in porous media. Fluid dynamics is also coupled with advection-diffusion-reaction equations that model the transport of biomolecules throughout the system and their interaction with living tissues and C constructs. Ultimately, we aim at providing a predictive approach useful for the general organ-on-chip community. To this end, we have developed a lumped parameter approach that allows us to analyze the behavior of multi-unit bioreactor systems with modest computational effort, provided that the behavior of a single unit can be fully characterized.

  1. Spatial relationships of sector-specific fossil fuel CO2 emissions in the United States

    NASA Astrophysics Data System (ADS)

    Zhou, Yuyu; Gurney, Kevin Robert

    2011-09-01

    Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multistate spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multistate perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements.

  2. Predicting the distribution and ecological niche of unexploited snow crab (Chionoecetes opilio) populations in Alaskan waters: a first open-access ensemble model.

    PubMed

    Hardy, Sarah M; Lindgren, Michael; Konakanchi, Hanumantharao; Huettmann, Falk

    2011-10-01

    Populations of the snow crab (Chionoecetes opilio) are widely distributed on high-latitude continental shelves of the North Pacific and North Atlantic, and represent a valuable resource in both the United States and Canada. In US waters, snow crabs are found throughout the Arctic and sub-Arctic seas surrounding Alaska, north of the Aleutian Islands, yet commercial harvest currently focuses on the more southerly population in the Bering Sea. Population dynamics are well-monitored in exploited areas, but few data exist for populations further north where climate trends in the Arctic appear to be affecting species' distributions and community structure on multiple trophic levels. Moreover, increased shipping traffic, as well as fisheries and petroleum resource development, may add additional pressures in northern portions of the range as seasonal ice cover continues to decline. In the face of these pressures, we examined the ecological niche and population distribution of snow crabs in Alaskan waters using a GIS-based spatial modeling approach. We present the first quantitative open-access model predictions of snow-crab distribution, abundance, and biomass in the Chukchi and Beaufort Seas. Multi-variate analysis of environmental drivers of species' distribution and community structure commonly rely on multiple linear regression methods. The spatial modeling approach employed here improves upon linear regression methods in allowing for exploration of nonlinear relationships and interactions between variables. Three machine-learning algorithms were used to evaluate relationships between snow-crab distribution and environmental parameters, including TreeNet, Random Forests, and MARS. An ensemble model was then generated by combining output from these three models to generate consensus predictions for presence-absence, abundance, and biomass of snow crabs. Each algorithm identified a suite of variables most important in predicting snow-crab distribution, including nutrient and chlorophyll-a concentrations in overlying waters, temperature, salinity, and annual sea-ice cover; this information may be used to develop and test hypotheses regarding the ecology of this species. This is the first such quantitative model for snow crabs, and all GIS-data layers compiled for this project are freely available from the authors, upon request, for public use and improvement.

  3. Geologic framework of the Mississippian Barnett Shale, Barnett-Paleozoic total petroleum system, Bend arch-Fort Worth Basin, Texas

    USGS Publications Warehouse

    Pollastro, R.M.; Jarvie, D.M.; Hill, R.J.; Adams, C.W.

    2007-01-01

    This article describes the primary geologic characteristics and criteria of the Barnett Shale and Barnett-Paleozoic total petroleum system (TPS) of the Fort Worth Basin used to define two geographic areas of the Barnett Shale for petroleum resource assessment. From these two areas, referred to as "assessment units," the U.S. Geological Survey estimated a mean volume of about 26 tcf of undiscovered, technically recoverable hydrocarbon gas in the Barnett Shale. The Mississippian Barnett Shale is the primary source rock for oil and gas produced from Paleozoic reservoir rocks in the Bend arch-Fort Worth Basin area and is also one of the most significant gas-producing formations in Texas. Subsurface mapping from well logs and commercial databases and petroleum geochemistry demonstrate that the Barnett Shale is organic rich and thermally mature for hydrocarbon generation over most of the Bend arch-Fort Worth Basin area. In the northeastern and structurally deepest part of the Fort Worth Basin adjacent to the Muenster arch, the formation is more than 1000 ft (305 m) thick and interbedded with thick limestone units; westward, it thins rapidly over the Mississippian Chappel shelf to only a few tens of feet. The Barnett-Paleozoic TPS is identified where thermally mature Barnett Shale has generated large volumes of hydrocarbons and is (1) contained within the Barnett Shale unconventional continuous accumulation and (2) expelled and distributed among numerous conventional clastic- and carbonate-rock reservoirs of Paleozoic age. Vitrinite reflectance (Ro) measurements show little correlation with present-day burial depth. Contours of equal Ro values measured from Barnett Shale and typing of produced hydrocarbons indicate significant uplift and erosion. Furthermore, the thermal history of the formation was enhanced by hydrothermal events along the Ouachita thrust front and Mineral Wells-Newark East fault system. Stratigraphy and thermal maturity define two gas-producing assessment units for the Barnett Shale: (1) a greater Newark East fracture-barrier continuous Barnett Shale gas assessment unit, encompassing an area of optimal gas production where dense impermeable limestones enclose thick (???300 ft; ???91 m) Barnett Shale that is within the gas-generation window (Ro ??? 1.1%); and (2) an extended continuous Barnett Shale gas assessment unit covering an area where the Barnett Shale is within the gas-generation window, but is less than 300 ft (91 m) thick, and either one or both of the overlying and underlying limestone barriers are absent. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  4. Water Treatment Technology - Distribution Systems.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  5. Impact of Rate Design Alternatives on Residential Solar Customer Bills. Increased Fixed Charges, Minimum Bills and Demand-based Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, Lori; Davidson, Carolyn; McLaren, Joyce

    With rapid growth in energy efficiency and distributed generation, electric utilities are anticipating stagnant or decreasing electricity sales, particularly in the residential sector. Utilities are increasingly considering alternative rates structures that are designed to recover fixed costs from residential solar photovoltaic (PV) customers with low net electricity consumption. Proposed structures have included fixed charge increases, minimum bills, and increasingly, demand rates - for net metered customers and all customers. This study examines the electricity bill implications of various residential rate alternatives for multiple locations within the United States. For the locations analyzed, the results suggest that residential PV customers offset,more » on average, between 60% and 99% of their annual load. However, roughly 65% of a typical customer's electricity demand is non-coincidental with PV generation, so the typical PV customer is generally highly reliant on the grid for pooling services.« less

  6. Hybrid-Lambda: simulation of multiple merger and Kingman gene genealogies in species networks and species trees.

    PubMed

    Zhu, Sha; Degnan, James H; Goldstien, Sharyn J; Eldon, Bjarki

    2015-09-15

    There has been increasing interest in coalescent models which admit multiple mergers of ancestral lineages; and to model hybridization and coalescence simultaneously. Hybrid-Lambda is a software package that simulates gene genealogies under multiple merger and Kingman's coalescent processes within species networks or species trees. Hybrid-Lambda allows different coalescent processes to be specified for different populations, and allows for time to be converted between generations and coalescent units, by specifying a population size for each population. In addition, Hybrid-Lambda can generate simulated datasets, assuming the infinitely many sites mutation model, and compute the F ST statistic. As an illustration, we apply Hybrid-Lambda to infer the time of subdivision of certain marine invertebrates under different coalescent processes. Hybrid-Lambda makes it possible to investigate biogeographic concordance among high fecundity species exhibiting skewed offspring distribution.

  7. Computer simulations of planetary accretion dynamics: Sensitivity to initial conditions

    NASA Technical Reports Server (NTRS)

    Isaacman, R.; Sagan, C.

    1976-01-01

    The implications and limitations of program ACRETE were tested. The program is a scheme based on Newtonian physics and accretion with unit sticking efficiency, devised to simulate the origin of the planets. The dependence of the results on a variety of radial and vertical density distribution laws, the ratio of gas to dust in the solar nebula, the total nebular mass, and the orbital eccentricity of the accreting grains was explored. Only for a small subset of conceivable cases are planetary systems closely like our own generated. Many models have tendencies towards one of two preferred configurations: multiple star systems, or planetary systems in which Jovian planets either have substantially smaller masses than in our system or are absent altogether. But for a wide range of cases recognizable planetary systems are generated - ranging from multiple star systems with accompanying planets, to systems with Jovian planets at several hundred AU, to single stars surrounded only by asteroids.

  8. A System for Distributing Real-Time Customized (NEXRAD-Radar) Geosciences Data

    NASA Astrophysics Data System (ADS)

    Singh, Satpreet; McWhirter, Jeff; Krajewski, Witold; Kruger, Anton; Goska, Radoslaw; Seo, Bongchul; Domaszczynski, Piotr; Weber, Jeff

    2010-05-01

    Hydrometeorologists and hydrologists can benefit from (weather) radar derived rain products, including rain rates and accumulations. The Hydro-NEXRAD system (HNX1) has been in operation since 2006 at IIHR-Hydroscience and Engineering at The University of Iowa. It provides rapid and user-friendly access to such user-customized products, generated using archived Weather Surveillance Doppler Radar (WSR-88D) data from the NEXRAD weather radar network in the United States. HNX1 allows researchers to deal directly with radar-derived rain products, without the burden of the details of radar data collection, quality control, processing, and format conversion. A number of hydrologic applications can benefit from a continuous real-time feed of customized radar-derived rain products. We are currently developing such a system, Hydro-NEXRAD 2 (HNX2). HNX2 collects real-time, unprocessed data from multiple NEXRAD radars as they become available, processes them through a user-configurable pipeline of data-processing modules, and then publishes processed products at regular intervals. Modules in the data processing pipeline encapsulate algorithms such as non-meteorological echo detection, range correction, radar-reflectivity-rain rate (Z-R) conversion, advection correction, merging products from multiple radars, and grid transformations. HNX2's implementation presents significant challenges, including quality-control, error-handling, time-synchronization of data from multiple asynchronous sources, generation of multiple-radar metadata products, distribution of products to a user base with diverse needs and constraints, and scalability. For content management and distribution, HNX2 uses RAMADDA (Repository for Archiving, Managing and Accessing Diverse Data), developed by the UCAR/Unidata Program Center in the Unites States. RAMADDA allows HNX2 to publish products through automation and gives users multiple access methods to the published products, including simple web-browser based access, and OpenDAP access. The latter allows a user to set up automation at his/her end, and fetch new data from HNX2 at regular intervals. HNX2 uses a two-dimensional metadata structure called a mosaic for managing metadata of the rain products. Currently, HNX2 is in pre-production state and is serving near real-time rain-rate map data-products for individual radars and merged data-products from seven radars covering the state of Iowa in the United States. These products then drive a rainfall-runoff model called CUENCAS, which is used as part of the Iowa Flood Center (housed at The University of Iowa) real-time flood forecasting system. We are currently developing a generalized scalable framework that will run on inexpensive hardware and will provide products for basins anywhere in the continental United States.

  9. Material Modeling of Stony Meteorites for Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Agrawal, P.

    2016-12-01

    To assess the threat posed by an asteroid entering Earth's atmosphere, one must predict if, when, and how it fragments during entry. A comprehensive understanding of the asteroid material properties is needed to achieve this objective. At present, the meteorite material found on earth are the only objects (other than synthetic meteorites) from an entering asteroid that can be used as representative material and be tested inside a laboratory setting. Due to limited number of meteorites available for testing it is difficult to develop a material model that can be purely based on statistics from the test data. Therefore, we are developing computational models to determine the effective material properties of stony meteorites and in turn deduce the properties of asteroids. The internal structure of meteorites are very complex. They consists of several minerals that include the silica based materials such as Olivine, Pyroxene, Feldspar that are found in terrestrial rocks, as well as Fe-Ni based minerals such as Kamacite, Troilite and Taenite that are unique to meteorites. Each of these minerals have different densities and mechanical properties. In addition, the meteorites have different phases that can be summarized as chondrules, metal and matrix. The meteorites have varying degree of porosity and pre-cracked structure. In order to account for diverse petrology of the meteorites a unique methodology is developed the form of unit cell model. The unit cell is representative volume that accounts for diverse minerals, porosity, and matrix composition inside a meteorite. All the minerals and phases inside these unit cells are randomly distributed. Several hundreds of Monte-Carlo simulations are performed to generate the effective mechanical properties such as Young's Modulus and Poisson's Ratio of the unit cell. Stress-strain curves as well as strength estimates are generated based on the unit cell models. These estimates will used as material models for full scale modeling of atmospheric entry for asteroids. Terrestrial analogs such as Basalt and Gabbro are being used to validate the unit cell methodology. Structural tests are also being performed on some of the meteorites including Tamdakht and Mbole to validate the predictions from unit cell models.

  10. 77 FR 40647 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... operation of the shared unit's diesel generator (emergency power) and to assure long term operation of the... actuation system limiting safety system settings, and emergency diesel generator surveillance start voltage... specification for the Vogtle Electric Generating Plant, Units 1 and 2, associated with the ``Steam Generator (SG...

  11. Installation of new Generation General Purpose Computer (GPC) compact unit

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In the Kennedy Space Center's (KSC's) Orbiter Processing Facility (OPF) high bay 2, Spacecraft Electronics technician Ed Carter (right), wearing clean suit, prepares for (26864) and installs (26865) the new Generation General Purpose Computer (GPC) compact IBM unit in Atlantis', Orbiter Vehicle (OV) 104's, middeck avionics bay as Orbiter Systems Quality Control technician Doug Snider looks on. Both men work for NASA contractor Lockheed Space Operations Company. All three orbiters are being outfitted with the compact IBM unit, which replaces a two-unit earlier generation computer.

  12. CSG delivery and installation

    NASA Image and Video Library

    2010-10-27

    John C. Stennis Space Center employees complete installation of a chemical steam generator (CSG) unit at the site's E-2 Test Stand. On Oct. 24, 2010. The unit will undergo verification and validation testing on the E-2 stand before it is moved to the A-3 Test Stand under construction at Stennis. Each CSG unit includes three modules. Steam generated by the nine CSG units that will be installed on the A-3 stand will create a vacuum that allows Stennis operators to test next-generation rocket engines at simulated altitudes up to 100,000 feet.

  13. Distributive Education: Secondary, Course Outline. Revised 1972.

    ERIC Educational Resources Information Center

    Washington State Coordinating Council for Occupational Education, Olympia.

    The document is a revision of earlier units, updated to include behavioral or performance objectives. Divided into 22 units of instruction, the course outline for distributive education presents suggested length of time for each part of a unit, prerequisites, a description of the part, objectives, sources, outline for the section, activities,…

  14. 19. DETAIL OF TURBINEGENERATOR UNIT #5, INSTALLED IN 1905; UNLIKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. DETAIL OF TURBINE-GENERATOR UNIT #5, INSTALLED IN 1905; UNLIKE UNITS #1 THROUGH #4, UNIT #5 CONTAINS A FRANCIS TURBINE; THIS TURBINE WAS MANUFACTURED BY THE PLATT IRON WORKS OF DAYTON, OHIO; THE GENERATOR IS RATED AT 5,000 KW - Snoqualmie Falls Hydroelectric Project, .5 mile north of Snoqualmie, Snoqualmie, King County, WA

  15. Can developing countries leapfrog the centralized electrification paradigm?

    DOE PAGES

    Levin, Todd; Thomas, Valerie M.

    2016-02-04

    Due to the rapidly decreasing costs of small renewable electricity generation systems, centralized power systems are no longer a necessary condition of universal access to modern energy services. Developing countries, where centralized electricity infrastructures are less developed, may be able to adopt these new technologies more quickly. We first review the costs of grid extension and distributed solar home systems (SHSs) as reported by a number of different studies. We then present a general analytic framework for analyzing the choice between extending the grid and implementing distributed solar home systems. Drawing upon reported grid expansion cost data for three specificmore » regions, we demonstrate this framework by determining the electricity consumption levels at which the costs of provision through centralized and decentralized approaches are equivalent in these regions. We then calculate SHS capital costs that are necessary for these technologies provide each of five tiers of energy access, as defined by the United Nations Sustainable Energy for All initiative. Our results suggest that solar home systems can play an important role in achieving universal access to basic energy services. The extent of this role depends on three primary factors: SHS costs, grid expansion costs, and centralized generation costs. Given current technology costs, centralized systems will still be required to enable higher levels of consumption; however, cost reduction trends have the potential to disrupt this paradigm. Furthermore, by looking ahead rather than replicating older infrastructure styles, developing countries can leapfrog to a more distributed electricity service model.« less

  16. 26. Generator Voltage Regulator Cabinet Exterior for Unit 1, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Generator Voltage Regulator Cabinet Exterior for Unit 1, view to the northwest. The exciter supplies the DC current to the generator rotor to create electricity. Each of the four original units has an exciter identical to this one, and all are scheduled for replacement. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  17. 15. Interior of Right Powerhouse, looking east, showing turbinegenerator unit ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Interior of Right Powerhouse, looking east, showing turbine-generator unit No. 11, which is undergoing repair. This is generator is identical to the other eight units located in the Right Powerhouse: Westinghouse AC generator, 108,000 kva, 13,800 volts, 4,200 amps, 3 phase, 60 cycle, 1220 exciter amps, 250 exciter volts. - Columbia Basin Project, Grand Coulee Dam Powerplant Complex, Grand Coulee, Grant County, WA

  18. Sociocultural Constraints: The Relation between Generations in the United States, Parental Education, Income, Hispanic Origin and the Financial Aid Packages of Hispanic Undergraduate Students

    ERIC Educational Resources Information Center

    Del Razo, Parvati Heliana

    2012-01-01

    The purpose of this study was to find out if the demographic variables of country of origin, generation in the United States (immigration status), income and parental education had an impact on the financial aid packages of Hispanic undergraduate students. This dissertation asked: What is the relation between generation in the United States,…

  19. Theory and implementation of a very high throughput true random number generator in field programmable gate array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yonggang, E-mail: wangyg@ustc.edu.cn; Hui, Cong; Liu, Chong

    The contribution of this paper is proposing a new entropy extraction mechanism based on sampling phase jitter in ring oscillators to make a high throughput true random number generator in a field programmable gate array (FPGA) practical. Starting from experimental observation and analysis of the entropy source in FPGA, a multi-phase sampling method is exploited to harvest the clock jitter with a maximum entropy and fast sampling speed. This parametrized design is implemented in a Xilinx Artix-7 FPGA, where the carry chains in the FPGA are explored to realize the precise phase shifting. The generator circuit is simple and resource-saving,more » so that multiple generation channels can run in parallel to scale the output throughput for specific applications. The prototype integrates 64 circuit units in the FPGA to provide a total output throughput of 7.68 Gbps, which meets the requirement of current high-speed quantum key distribution systems. The randomness evaluation, as well as its robustness to ambient temperature, confirms that the new method in a purely digital fashion can provide high-speed high-quality random bit sequences for a variety of embedded applications.« less

  20. Theory and implementation of a very high throughput true random number generator in field programmable gate array.

    PubMed

    Wang, Yonggang; Hui, Cong; Liu, Chong; Xu, Chao

    2016-04-01

    The contribution of this paper is proposing a new entropy extraction mechanism based on sampling phase jitter in ring oscillators to make a high throughput true random number generator in a field programmable gate array (FPGA) practical. Starting from experimental observation and analysis of the entropy source in FPGA, a multi-phase sampling method is exploited to harvest the clock jitter with a maximum entropy and fast sampling speed. This parametrized design is implemented in a Xilinx Artix-7 FPGA, where the carry chains in the FPGA are explored to realize the precise phase shifting. The generator circuit is simple and resource-saving, so that multiple generation channels can run in parallel to scale the output throughput for specific applications. The prototype integrates 64 circuit units in the FPGA to provide a total output throughput of 7.68 Gbps, which meets the requirement of current high-speed quantum key distribution systems. The randomness evaluation, as well as its robustness to ambient temperature, confirms that the new method in a purely digital fashion can provide high-speed high-quality random bit sequences for a variety of embedded applications.

Top