Sample records for distributed memory computing

  1. Rapid solution of large-scale systems of equations

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.

    1994-01-01

    The analysis and design of complex aerospace structures requires the rapid solution of large systems of linear and nonlinear equations, eigenvalue extraction for buckling, vibration and flutter modes, structural optimization and design sensitivity calculation. Computers with multiple processors and vector capabilities can offer substantial computational advantages over traditional scalar computer for these analyses. These computers fall into two categories: shared memory computers and distributed memory computers. This presentation covers general-purpose, highly efficient algorithms for generation/assembly or element matrices, solution of systems of linear and nonlinear equations, eigenvalue and design sensitivity analysis and optimization. All algorithms are coded in FORTRAN for shared memory computers and many are adapted to distributed memory computers. The capability and numerical performance of these algorithms will be addressed.

  2. Implementation of a parallel unstructured Euler solver on shared and distributed memory architectures

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Das, Raja; Saltz, Joel; Vermeland, R. E.

    1992-01-01

    An efficient three dimensional unstructured Euler solver is parallelized on a Cray Y-MP C90 shared memory computer and on an Intel Touchstone Delta distributed memory computer. This paper relates the experiences gained and describes the software tools and hardware used in this study. Performance comparisons between two differing architectures are made.

  3. Kanerva's sparse distributed memory: An associative memory algorithm well-suited to the Connection Machine

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1988-01-01

    The advent of the Connection Machine profoundly changes the world of supercomputers. The highly nontraditional architecture makes possible the exploration of algorithms that were impractical for standard Von Neumann architectures. Sparse distributed memory (SDM) is an example of such an algorithm. Sparse distributed memory is a particularly simple and elegant formulation for an associative memory. The foundations for sparse distributed memory are described, and some simple examples of using the memory are presented. The relationship of sparse distributed memory to three important computational systems is shown: random-access memory, neural networks, and the cerebellum of the brain. Finally, the implementation of the algorithm for sparse distributed memory on the Connection Machine is discussed.

  4. Distributed-Memory Fast Maximal Independent Set

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanewala Appuhamilage, Thejaka Amila J.; Zalewski, Marcin J.; Lumsdaine, Andrew

    The Maximal Independent Set (MIS) graph problem arises in many applications such as computer vision, information theory, molecular biology, and process scheduling. The growing scale of MIS problems suggests the use of distributed-memory hardware as a cost-effective approach to providing necessary compute and memory resources. Luby proposed four randomized algorithms to solve the MIS problem. All those algorithms are designed focusing on shared-memory machines and are analyzed using the PRAM model. These algorithms do not have direct efficient distributed-memory implementations. In this paper, we extend two of Luby’s seminal MIS algorithms, “Luby(A)” and “Luby(B),” to distributed-memory execution, and we evaluatemore » their performance. We compare our results with the “Filtered MIS” implementation in the Combinatorial BLAS library for two types of synthetic graph inputs.« less

  5. A view of Kanerva's sparse distributed memory

    NASA Technical Reports Server (NTRS)

    Denning, P. J.

    1986-01-01

    Pentti Kanerva is working on a new class of computers, which are called pattern computers. Pattern computers may close the gap between capabilities of biological organisms to recognize and act on patterns (visual, auditory, tactile, or olfactory) and capabilities of modern computers. Combinations of numeric, symbolic, and pattern computers may one day be capable of sustaining robots. The overview of the requirements for a pattern computer, a summary of Kanerva's Sparse Distributed Memory (SDM), and examples of tasks this computer can be expected to perform well are given.

  6. Parallel processing for scientific computations

    NASA Technical Reports Server (NTRS)

    Alkhatib, Hasan S.

    1995-01-01

    The scope of this project dealt with the investigation of the requirements to support distributed computing of scientific computations over a cluster of cooperative workstations. Various experiments on computations for the solution of simultaneous linear equations were performed in the early phase of the project to gain experience in the general nature and requirements of scientific applications. A specification of a distributed integrated computing environment, DICE, based on a distributed shared memory communication paradigm has been developed and evaluated. The distributed shared memory model facilitates porting existing parallel algorithms that have been designed for shared memory multiprocessor systems to the new environment. The potential of this new environment is to provide supercomputing capability through the utilization of the aggregate power of workstations cooperating in a cluster interconnected via a local area network. Workstations, generally, do not have the computing power to tackle complex scientific applications, making them primarily useful for visualization, data reduction, and filtering as far as complex scientific applications are concerned. There is a tremendous amount of computing power that is left unused in a network of workstations. Very often a workstation is simply sitting idle on a desk. A set of tools can be developed to take advantage of this potential computing power to create a platform suitable for large scientific computations. The integration of several workstations into a logical cluster of distributed, cooperative, computing stations presents an alternative to shared memory multiprocessor systems. In this project we designed and evaluated such a system.

  7. Implementation of Parallel Dynamic Simulation on Shared-Memory vs. Distributed-Memory Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Shuangshuang; Chen, Yousu; Wu, Di

    2015-12-09

    Power system dynamic simulation computes the system response to a sequence of large disturbance, such as sudden changes in generation or load, or a network short circuit followed by protective branch switching operation. It consists of a large set of differential and algebraic equations, which is computational intensive and challenging to solve using single-processor based dynamic simulation solution. High-performance computing (HPC) based parallel computing is a very promising technology to speed up the computation and facilitate the simulation process. This paper presents two different parallel implementations of power grid dynamic simulation using Open Multi-processing (OpenMP) on shared-memory platform, and Messagemore » Passing Interface (MPI) on distributed-memory clusters, respectively. The difference of the parallel simulation algorithms and architectures of the two HPC technologies are illustrated, and their performances for running parallel dynamic simulation are compared and demonstrated.« less

  8. Sparse distributed memory and related models

    NASA Technical Reports Server (NTRS)

    Kanerva, Pentti

    1992-01-01

    Described here is sparse distributed memory (SDM) as a neural-net associative memory. It is characterized by two weight matrices and by a large internal dimension - the number of hidden units is much larger than the number of input or output units. The first matrix, A, is fixed and possibly random, and the second matrix, C, is modifiable. The SDM is compared and contrasted to (1) computer memory, (2) correlation-matrix memory, (3) feet-forward artificial neural network, (4) cortex of the cerebellum, (5) Marr and Albus models of the cerebellum, and (6) Albus' cerebellar model arithmetic computer (CMAC). Several variations of the basic SDM design are discussed: the selected-coordinate and hyperplane designs of Jaeckel, the pseudorandom associative neural memory of Hassoun, and SDM with real-valued input variables by Prager and Fallside. SDM research conducted mainly at the Research Institute for Advanced Computer Science (RIACS) in 1986-1991 is highlighted.

  9. A general purpose subroutine for fast fourier transform on a distributed memory parallel machine

    NASA Technical Reports Server (NTRS)

    Dubey, A.; Zubair, M.; Grosch, C. E.

    1992-01-01

    One issue which is central in developing a general purpose Fast Fourier Transform (FFT) subroutine on a distributed memory parallel machine is the data distribution. It is possible that different users would like to use the FFT routine with different data distributions. Thus, there is a need to design FFT schemes on distributed memory parallel machines which can support a variety of data distributions. An FFT implementation on a distributed memory parallel machine which works for a number of data distributions commonly encountered in scientific applications is presented. The problem of rearranging the data after computing the FFT is also addressed. The performance of the implementation on a distributed memory parallel machine Intel iPSC/860 is evaluated.

  10. Efficient computation of aerodynamic influence coefficients for aeroelastic analysis on a transputer network

    NASA Technical Reports Server (NTRS)

    Janetzke, David C.; Murthy, Durbha V.

    1991-01-01

    Aeroelastic analysis is multi-disciplinary and computationally expensive. Hence, it can greatly benefit from parallel processing. As part of an effort to develop an aeroelastic capability on a distributed memory transputer network, a parallel algorithm for the computation of aerodynamic influence coefficients is implemented on a network of 32 transputers. The aerodynamic influence coefficients are calculated using a 3-D unsteady aerodynamic model and a parallel discretization. Efficiencies up to 85 percent were demonstrated using 32 processors. The effect of subtask ordering, problem size, and network topology are presented. A comparison to results on a shared memory computer indicates that higher speedup is achieved on the distributed memory system.

  11. Spaceborne Processor Array

    NASA Technical Reports Server (NTRS)

    Chow, Edward T.; Schatzel, Donald V.; Whitaker, William D.; Sterling, Thomas

    2008-01-01

    A Spaceborne Processor Array in Multifunctional Structure (SPAMS) can lower the total mass of the electronic and structural overhead of spacecraft, resulting in reduced launch costs, while increasing the science return through dynamic onboard computing. SPAMS integrates the multifunctional structure (MFS) and the Gilgamesh Memory, Intelligence, and Network Device (MIND) multi-core in-memory computer architecture into a single-system super-architecture. This transforms every inch of a spacecraft into a sharable, interconnected, smart computing element to increase computing performance while simultaneously reducing mass. The MIND in-memory architecture provides a foundation for high-performance, low-power, and fault-tolerant computing. The MIND chip has an internal structure that includes memory, processing, and communication functionality. The Gilgamesh is a scalable system comprising multiple MIND chips interconnected to operate as a single, tightly coupled, parallel computer. The array of MIND components shares a global, virtual name space for program variables and tasks that are allocated at run time to the distributed physical memory and processing resources. Individual processor- memory nodes can be activated or powered down at run time to provide active power management and to configure around faults. A SPAMS system is comprised of a distributed Gilgamesh array built into MFS, interfaces into instrument and communication subsystems, a mass storage interface, and a radiation-hardened flight computer.

  12. Combining Distributed and Shared Memory Models: Approach and Evolution of the Global Arrays Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nieplocha, Jarek; Harrison, Robert J.; Kumar, Mukul

    2002-07-29

    Both shared memory and distributed memory models have advantages and shortcomings. Shared memory model is much easier to use but it ignores data locality/placement. Given the hierarchical nature of the memory subsystems in the modern computers this characteristic might have a negative impact on performance and scalability. Various techniques, such as code restructuring to increase data reuse and introducing blocking in data accesses, can address the problem and yield performance competitive with message passing[Singh], however at the cost of compromising the ease of use feature. Distributed memory models such as message passing or one-sided communication offer performance and scalability butmore » they compromise the ease-of-use. In this context, the message-passing model is sometimes referred to as?assembly programming for the scientific computing?. The Global Arrays toolkit[GA1, GA2] attempts to offer the best features of both models. It implements a shared-memory programming model in which data locality is managed explicitly by the programmer. This management is achieved by explicit calls to functions that transfer data between a global address space (a distributed array) and local storage. In this respect, the GA model has similarities to the distributed shared-memory models that provide an explicit acquire/release protocol. However, the GA model acknowledges that remote data is slower to access than local data and allows data locality to be explicitly specified and hence managed. The GA model exposes to the programmer the hierarchical memory of modern high-performance computer systems, and by recognizing the communication overhead for remote data transfer, it promotes data reuse and locality of reference. This paper describes the characteristics of the Global Arrays programming model, capabilities of the toolkit, and discusses its evolution.« less

  13. BIRD: A general interface for sparse distributed memory simulators

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1990-01-01

    Kanerva's sparse distributed memory (SDM) has now been implemented for at least six different computers, including SUN3 workstations, the Apple Macintosh, and the Connection Machine. A common interface for input of commands would both aid testing of programs on a broad range of computer architectures and assist users in transferring results from research environments to applications. A common interface also allows secondary programs to generate command sequences for a sparse distributed memory, which may then be executed on the appropriate hardware. The BIRD program is an attempt to create such an interface. Simplifying access to different simulators should assist developers in finding appropriate uses for SDM.

  14. Distributed simulation using a real-time shared memory network

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Mattern, Duane L.; Wong, Edmond; Musgrave, Jeffrey L.

    1993-01-01

    The Advanced Control Technology Branch of the NASA Lewis Research Center performs research in the area of advanced digital controls for aeronautic and space propulsion systems. This work requires the real-time implementation of both control software and complex dynamical models of the propulsion system. We are implementing these systems in a distributed, multi-vendor computer environment. Therefore, a need exists for real-time communication and synchronization between the distributed multi-vendor computers. A shared memory network is a potential solution which offers several advantages over other real-time communication approaches. A candidate shared memory network was tested for basic performance. The shared memory network was then used to implement a distributed simulation of a ramjet engine. The accuracy and execution time of the distributed simulation was measured and compared to the performance of the non-partitioned simulation. The ease of partitioning the simulation, the minimal time required to develop for communication between the processors and the resulting execution time all indicate that the shared memory network is a real-time communication technique worthy of serious consideration.

  15. Distributed memory compiler design for sparse problems

    NASA Technical Reports Server (NTRS)

    Wu, Janet; Saltz, Joel; Berryman, Harry; Hiranandani, Seema

    1991-01-01

    A compiler and runtime support mechanism is described and demonstrated. The methods presented are capable of solving a wide range of sparse and unstructured problems in scientific computing. The compiler takes as input a FORTRAN 77 program enhanced with specifications for distributing data, and the compiler outputs a message passing program that runs on a distributed memory computer. The runtime support for this compiler is a library of primitives designed to efficiently support irregular patterns of distributed array accesses and irregular distributed array partitions. A variety of Intel iPSC/860 performance results obtained through the use of this compiler are presented.

  16. Parallel and distributed computation for fault-tolerant object recognition

    NASA Technical Reports Server (NTRS)

    Wechsler, Harry

    1988-01-01

    The distributed associative memory (DAM) model is suggested for distributed and fault-tolerant computation as it relates to object recognition tasks. The fault-tolerance is with respect to geometrical distortions (scale and rotation), noisy inputs, occulsion/overlap, and memory faults. An experimental system was developed for fault-tolerant structure recognition which shows the feasibility of such an approach. The approach is futher extended to the problem of multisensory data integration and applied successfully to the recognition of colored polyhedral objects.

  17. A compositional reservoir simulator on distributed memory parallel computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rame, M.; Delshad, M.

    1995-12-31

    This paper presents the application of distributed memory parallel computes to field scale reservoir simulations using a parallel version of UTCHEM, The University of Texas Chemical Flooding Simulator. The model is a general purpose highly vectorized chemical compositional simulator that can simulate a wide range of displacement processes at both field and laboratory scales. The original simulator was modified to run on both distributed memory parallel machines (Intel iPSC/960 and Delta, Connection Machine 5, Kendall Square 1 and 2, and CRAY T3D) and a cluster of workstations. A domain decomposition approach has been taken towards parallelization of the code. Amore » portion of the discrete reservoir model is assigned to each processor by a set-up routine that attempts a data layout as even as possible from the load-balance standpoint. Each of these subdomains is extended so that data can be shared between adjacent processors for stencil computation. The added routines that make parallel execution possible are written in a modular fashion that makes the porting to new parallel platforms straight forward. Results of the distributed memory computing performance of Parallel simulator are presented for field scale applications such as tracer flood and polymer flood. A comparison of the wall-clock times for same problems on a vector supercomputer is also presented.« less

  18. Implementation of a Fully-Balanced Periodic Tridiagonal Solver on a Parallel Distributed Memory Architecture

    DTIC Science & Technology

    1994-05-01

    PARALLEL DISTRIBUTED MEMORY ARCHITECTURE LTJh T. M. Eidson 0 - 8 l 9 5 " G. Erlebacher _ _ _. _ DTIe QUALITY INSPECTED a Contract NAS I - 19480 May 1994...DISTRIBUTED MEMORY ARCHITECTURE T.M. Eidson * High Technology Corporation Hampton, VA 23665 G. Erlebachert Institute for Computer Applications in Science and...developed and evaluated. Simple model calculations as well as timing results are pres.nted to evaluate the various strategies. The particular

  19. Shared versus distributed memory multiprocessors

    NASA Technical Reports Server (NTRS)

    Jordan, Harry F.

    1991-01-01

    The question of whether multiprocessors should have shared or distributed memory has attracted a great deal of attention. Some researchers argue strongly for building distributed memory machines, while others argue just as strongly for programming shared memory multiprocessors. A great deal of research is underway on both types of parallel systems. Special emphasis is placed on systems with a very large number of processors for computation intensive tasks and considers research and implementation trends. It appears that the two types of systems will likely converge to a common form for large scale multiprocessors.

  20. Frequent Statement and Dereference Elimination for Imperative and Object-Oriented Distributed Programs

    PubMed Central

    El-Zawawy, Mohamed A.

    2014-01-01

    This paper introduces new approaches for the analysis of frequent statement and dereference elimination for imperative and object-oriented distributed programs running on parallel machines equipped with hierarchical memories. The paper uses languages whose address spaces are globally partitioned. Distributed programs allow defining data layout and threads writing to and reading from other thread memories. Three type systems (for imperative distributed programs) are the tools of the proposed techniques. The first type system defines for every program point a set of calculated (ready) statements and memory accesses. The second type system uses an enriched version of types of the first type system and determines which of the ready statements and memory accesses are used later in the program. The third type system uses the information gather so far to eliminate unnecessary statement computations and memory accesses (the analysis of frequent statement and dereference elimination). Extensions to these type systems are also presented to cover object-oriented distributed programs. Two advantages of our work over related work are the following. The hierarchical style of concurrent parallel computers is similar to the memory model used in this paper. In our approach, each analysis result is assigned a type derivation (serves as a correctness proof). PMID:24892098

  1. Support for Debugging Automatically Parallelized Programs

    NASA Technical Reports Server (NTRS)

    Hood, Robert; Jost, Gabriele; Biegel, Bryan (Technical Monitor)

    2001-01-01

    This viewgraph presentation provides information on the technical aspects of debugging computer code that has been automatically converted for use in a parallel computing system. Shared memory parallelization and distributed memory parallelization entail separate and distinct challenges for a debugging program. A prototype system has been developed which integrates various tools for the debugging of automatically parallelized programs including the CAPTools Database which provides variable definition information across subroutines as well as array distribution information.

  2. A method to compute SEU fault probabilities in memory arrays with error correction

    NASA Technical Reports Server (NTRS)

    Gercek, Gokhan

    1994-01-01

    With the increasing packing densities in VLSI technology, Single Event Upsets (SEU) due to cosmic radiations are becoming more of a critical issue in the design of space avionics systems. In this paper, a method is introduced to compute the fault (mishap) probability for a computer memory of size M words. It is assumed that a Hamming code is used for each word to provide single error correction. It is also assumed that every time a memory location is read, single errors are corrected. Memory is read randomly whose distribution is assumed to be known. In such a scenario, a mishap is defined as two SEU's corrupting the same memory location prior to a read. The paper introduces a method to compute the overall mishap probability for the entire memory for a mission duration of T hours.

  3. pyCTQW: A continuous-time quantum walk simulator on distributed memory computers

    NASA Astrophysics Data System (ADS)

    Izaac, Josh A.; Wang, Jingbo B.

    2015-01-01

    In the general field of quantum information and computation, quantum walks are playing an increasingly important role in constructing physical models and quantum algorithms. We have recently developed a distributed memory software package pyCTQW, with an object-oriented Python interface, that allows efficient simulation of large multi-particle CTQW (continuous-time quantum walk)-based systems. In this paper, we present an introduction to the Python and Fortran interfaces of pyCTQW, discuss various numerical methods of calculating the matrix exponential, and demonstrate the performance behavior of pyCTQW on a distributed memory cluster. In particular, the Chebyshev and Krylov-subspace methods for calculating the quantum walk propagation are provided, as well as methods for visualization and data analysis.

  4. Hypercluster Parallel Processor

    NASA Technical Reports Server (NTRS)

    Blech, Richard A.; Cole, Gary L.; Milner, Edward J.; Quealy, Angela

    1992-01-01

    Hypercluster computer system includes multiple digital processors, operation of which coordinated through specialized software. Configurable according to various parallel-computing architectures of shared-memory or distributed-memory class, including scalar computer, vector computer, reduced-instruction-set computer, and complex-instruction-set computer. Designed as flexible, relatively inexpensive system that provides single programming and operating environment within which one can investigate effects of various parallel-computing architectures and combinations on performance in solution of complicated problems like those of three-dimensional flows in turbomachines. Hypercluster software and architectural concepts are in public domain.

  5. Address tracing for parallel machines

    NASA Technical Reports Server (NTRS)

    Stunkel, Craig B.; Janssens, Bob; Fuchs, W. Kent

    1991-01-01

    Recently implemented parallel system address-tracing methods based on several metrics are surveyed. The issues specific to collection of traces for both shared and distributed memory parallel computers are highlighted. Five general categories of address-trace collection methods are examined: hardware-captured, interrupt-based, simulation-based, altered microcode-based, and instrumented program-based traces. The problems unique to shared memory and distributed memory multiprocessors are examined separately.

  6. Sparse distributed memory overview

    NASA Technical Reports Server (NTRS)

    Raugh, Mike

    1990-01-01

    The Sparse Distributed Memory (SDM) project is investigating the theory and applications of massively parallel computing architecture, called sparse distributed memory, that will support the storage and retrieval of sensory and motor patterns characteristic of autonomous systems. The immediate objectives of the project are centered in studies of the memory itself and in the use of the memory to solve problems in speech, vision, and robotics. Investigation of methods for encoding sensory data is an important part of the research. Examples of NASA missions that may benefit from this work are Space Station, planetary rovers, and solar exploration. Sparse distributed memory offers promising technology for systems that must learn through experience and be capable of adapting to new circumstances, and for operating any large complex system requiring automatic monitoring and control. Sparse distributed memory is a massively parallel architecture motivated by efforts to understand how the human brain works. Sparse distributed memory is an associative memory, able to retrieve information from cues that only partially match patterns stored in the memory. It is able to store long temporal sequences derived from the behavior of a complex system, such as progressive records of the system's sensory data and correlated records of the system's motor controls.

  7. Benchmarking Memory Performance with the Data Cube Operator

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael A.; Shabanov, Leonid V.

    2004-01-01

    Data movement across a computer memory hierarchy and across computational grids is known to be a limiting factor for applications processing large data sets. We use the Data Cube Operator on an Arithmetic Data Set, called ADC, to benchmark capabilities of computers and of computational grids to handle large distributed data sets. We present a prototype implementation of a parallel algorithm for computation of the operatol: The algorithm follows a known approach for computing views from the smallest parent. The ADC stresses all levels of grid memory and storage by producing some of 2d views of an Arithmetic Data Set of d-tuples described by a small number of integers. We control data intensity of the ADC by selecting the tuple parameters, the sizes of the views, and the number of realized views. Benchmarking results of memory performance of a number of computer architectures and of a small computational grid are presented.

  8. Distributed-Memory Computing With the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA)

    NASA Technical Reports Server (NTRS)

    Riley, Christopher J.; Cheatwood, F. McNeil

    1997-01-01

    The Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA), a Navier-Stokes solver, has been modified for use in a parallel, distributed-memory environment using the Message-Passing Interface (MPI) standard. A standard domain decomposition strategy is used in which the computational domain is divided into subdomains with each subdomain assigned to a processor. Performance is examined on dedicated parallel machines and a network of desktop workstations. The effect of domain decomposition and frequency of boundary updates on performance and convergence is also examined for several realistic configurations and conditions typical of large-scale computational fluid dynamic analysis.

  9. Task Assignment Heuristics for Distributed CFD Applications

    NASA Technical Reports Server (NTRS)

    Lopez-Benitez, N.; Djomehri, M. J.; Biswas, R.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    CFD applications require high-performance computational platforms: 1. Complex physics and domain configuration demand strongly coupled solutions; 2. Applications are CPU and memory intensive; and 3. Huge resource requirements can only be satisfied by teraflop-scale machines or distributed computing.

  10. Common data buffer

    NASA Technical Reports Server (NTRS)

    Byrne, F.

    1981-01-01

    Time-shared interface speeds data processing in distributed computer network. Two-level high-speed scanning approach routes information to buffer, portion of which is reserved for series of "first-in, first-out" memory stacks. Buffer address structure and memory are protected from noise or failed components by error correcting code. System is applicable to any computer or processing language.

  11. Efficient implementation of multidimensional fast fourier transform on a distributed-memory parallel multi-node computer

    DOEpatents

    Bhanot, Gyan V [Princeton, NJ; Chen, Dong [Croton-On-Hudson, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2012-01-10

    The present in invention is directed to a method, system and program storage device for efficiently implementing a multidimensional Fast Fourier Transform (FFT) of a multidimensional array comprising a plurality of elements initially distributed in a multi-node computer system comprising a plurality of nodes in communication over a network, comprising: distributing the plurality of elements of the array in a first dimension across the plurality of nodes of the computer system over the network to facilitate a first one-dimensional FFT; performing the first one-dimensional FFT on the elements of the array distributed at each node in the first dimension; re-distributing the one-dimensional FFT-transformed elements at each node in a second dimension via "all-to-all" distribution in random order across other nodes of the computer system over the network; and performing a second one-dimensional FFT on elements of the array re-distributed at each node in the second dimension, wherein the random order facilitates efficient utilization of the network thereby efficiently implementing the multidimensional FFT. The "all-to-all" re-distribution of array elements is further efficiently implemented in applications other than the multidimensional FFT on the distributed-memory parallel supercomputer.

  12. Efficient implementation of a multidimensional fast fourier transform on a distributed-memory parallel multi-node computer

    DOEpatents

    Bhanot, Gyan V [Princeton, NJ; Chen, Dong [Croton-On-Hudson, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2008-01-01

    The present in invention is directed to a method, system and program storage device for efficiently implementing a multidimensional Fast Fourier Transform (FFT) of a multidimensional array comprising a plurality of elements initially distributed in a multi-node computer system comprising a plurality of nodes in communication over a network, comprising: distributing the plurality of elements of the array in a first dimension across the plurality of nodes of the computer system over the network to facilitate a first one-dimensional FFT; performing the first one-dimensional FFT on the elements of the array distributed at each node in the first dimension; re-distributing the one-dimensional FFT-transformed elements at each node in a second dimension via "all-to-all" distribution in random order across other nodes of the computer system over the network; and performing a second one-dimensional FFT on elements of the array re-distributed at each node in the second dimension, wherein the random order facilitates efficient utilization of the network thereby efficiently implementing the multidimensional FFT. The "all-to-all" re-distribution of array elements is further efficiently implemented in applications other than the multidimensional FFT on the distributed-memory parallel supercomputer.

  13. A Distributed-Memory Package for Dense Hierarchically Semi-Separable Matrix Computations Using Randomization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouet, François-Henry; Li, Xiaoye S.; Ghysels, Pieter

    In this paper, we present a distributed-memory library for computations with dense structured matrices. A matrix is considered structured if its off-diagonal blocks can be approximated by a rank-deficient matrix with low numerical rank. Here, we use Hierarchically Semi-Separable (HSS) representations. Such matrices appear in many applications, for example, finite-element methods, boundary element methods, and so on. Exploiting this structure allows for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. The compression algorithm that we use, that computes the HSS form of an input dense matrix, reliesmore » on randomized sampling with a novel adaptive sampling mechanism. We discuss the parallelization of this algorithm and also present the parallelization of structured matrix-vector product, structured factorization, and solution routines. The efficiency of the approach is demonstrated on large problems from different academic and industrial applications, on up to 8,000 cores. Finally, this work is part of a more global effort, the STRUctured Matrices PACKage (STRUMPACK) software package for computations with sparse and dense structured matrices. Hence, although useful on their own right, the routines also represent a step in the direction of a distributed-memory sparse solver.« less

  14. A Distributed-Memory Package for Dense Hierarchically Semi-Separable Matrix Computations Using Randomization

    DOE PAGES

    Rouet, François-Henry; Li, Xiaoye S.; Ghysels, Pieter; ...

    2016-06-30

    In this paper, we present a distributed-memory library for computations with dense structured matrices. A matrix is considered structured if its off-diagonal blocks can be approximated by a rank-deficient matrix with low numerical rank. Here, we use Hierarchically Semi-Separable (HSS) representations. Such matrices appear in many applications, for example, finite-element methods, boundary element methods, and so on. Exploiting this structure allows for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. The compression algorithm that we use, that computes the HSS form of an input dense matrix, reliesmore » on randomized sampling with a novel adaptive sampling mechanism. We discuss the parallelization of this algorithm and also present the parallelization of structured matrix-vector product, structured factorization, and solution routines. The efficiency of the approach is demonstrated on large problems from different academic and industrial applications, on up to 8,000 cores. Finally, this work is part of a more global effort, the STRUctured Matrices PACKage (STRUMPACK) software package for computations with sparse and dense structured matrices. Hence, although useful on their own right, the routines also represent a step in the direction of a distributed-memory sparse solver.« less

  15. Loci-STREAM Version 0.9

    NASA Technical Reports Server (NTRS)

    Wright, Jeffrey; Thakur, Siddharth

    2006-01-01

    Loci-STREAM is an evolving computational fluid dynamics (CFD) software tool for simulating possibly chemically reacting, possibly unsteady flows in diverse settings, including rocket engines, turbomachines, oil refineries, etc. Loci-STREAM implements a pressure- based flow-solving algorithm that utilizes unstructured grids. (The benefit of low memory usage by pressure-based algorithms is well recognized by experts in the field.) The algorithm is robust for flows at all speeds from zero to hypersonic. The flexibility of arbitrary polyhedral grids enables accurate, efficient simulation of flows in complex geometries, including those of plume-impingement problems. The present version - Loci-STREAM version 0.9 - includes an interface with the Portable, Extensible Toolkit for Scientific Computation (PETSc) library for access to enhanced linear-equation-solving programs therein that accelerate convergence toward a solution. The name "Loci" reflects the creation of this software within the Loci computational framework, which was developed at Mississippi State University for the primary purpose of simplifying the writing of complex multidisciplinary application programs to run in distributed-memory computing environments including clusters of personal computers. Loci has been designed to relieve application programmers of the details of programming for distributed-memory computers.

  16. Fast distributed large-pixel-count hologram computation using a GPU cluster.

    PubMed

    Pan, Yuechao; Xu, Xuewu; Liang, Xinan

    2013-09-10

    Large-pixel-count holograms are one essential part for big size holographic three-dimensional (3D) display, but the generation of such holograms is computationally demanding. In order to address this issue, we have built a graphics processing unit (GPU) cluster with 32.5 Tflop/s computing power and implemented distributed hologram computation on it with speed improvement techniques, such as shared memory on GPU, GPU level adaptive load balancing, and node level load distribution. Using these speed improvement techniques on the GPU cluster, we have achieved 71.4 times computation speed increase for 186M-pixel holograms. Furthermore, we have used the approaches of diffraction limits and subdivision of holograms to overcome the GPU memory limit in computing large-pixel-count holograms. 745M-pixel and 1.80G-pixel holograms were computed in 343 and 3326 s, respectively, for more than 2 million object points with RGB colors. Color 3D objects with 1.02M points were successfully reconstructed from 186M-pixel hologram computed in 8.82 s with all the above three speed improvement techniques. It is shown that distributed hologram computation using a GPU cluster is a promising approach to increase the computation speed of large-pixel-count holograms for large size holographic display.

  17. TESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dmitriy Morozov, Tom Peterka

    2014-07-29

    Computing a Voronoi or Delaunay tessellation from a set of points is a core part of the analysis of many simulated and measured datasets. As the scale of simulations and observations surpasses billions of particles, a distributed-memory scalable parallel algorithm is the only feasible approach. The primary contribution of this software is a distributed-memory parallel Delaunay and Voronoi tessellation algorithm based on existing serial computational geometry libraries that automatically determines which neighbor points need to be exchanged among the subdomains of a spatial decomposition. Other contributions include the addition of periodic and wall boundary conditions.

  18. System and method for programmable bank selection for banked memory subsystems

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Hoenicke, Dirk; Ohmacht, Martin; Salapura, Valentina; Sugavanam, Krishnan

    2010-09-07

    A programmable memory system and method for enabling one or more processor devices access to shared memory in a computing environment, the shared memory including one or more memory storage structures having addressable locations for storing data. The system comprises: one or more first logic devices associated with a respective one or more processor devices, each first logic device for receiving physical memory address signals and programmable for generating a respective memory storage structure select signal upon receipt of pre-determined address bit values at selected physical memory address bit locations; and, a second logic device responsive to each of the respective select signal for generating an address signal used for selecting a memory storage structure for processor access. The system thus enables each processor device of a computing environment memory storage access distributed across the one or more memory storage structures.

  19. Parallel Navier-Stokes computations on shared and distributed memory architectures

    NASA Technical Reports Server (NTRS)

    Hayder, M. Ehtesham; Jayasimha, D. N.; Pillay, Sasi Kumar

    1995-01-01

    We study a high order finite difference scheme to solve the time accurate flow field of a jet using the compressible Navier-Stokes equations. As part of our ongoing efforts, we have implemented our numerical model on three parallel computing platforms to study the computational, communication, and scalability characteristics. The platforms chosen for this study are a cluster of workstations connected through fast networks (the LACE experimental testbed at NASA Lewis), a shared memory multiprocessor (the Cray YMP), and a distributed memory multiprocessor (the IBM SPI). Our focus in this study is on the LACE testbed. We present some results for the Cray YMP and the IBM SP1 mainly for comparison purposes. On the LACE testbed, we study: (1) the communication characteristics of Ethernet, FDDI, and the ALLNODE networks and (2) the overheads induced by the PVM message passing library used for parallelizing the application. We demonstrate that clustering of workstations is effective and has the potential to be computationally competitive with supercomputers at a fraction of the cost.

  20. High-Performance Computation of Distributed-Memory Parallel 3D Voronoi and Delaunay Tessellation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterka, Tom; Morozov, Dmitriy; Phillips, Carolyn

    2014-11-14

    Computing a Voronoi or Delaunay tessellation from a set of points is a core part of the analysis of many simulated and measured datasets: N-body simulations, molecular dynamics codes, and LIDAR point clouds are just a few examples. Such computational geometry methods are common in data analysis and visualization; but as the scale of simulations and observations surpasses billions of particles, the existing serial and shared-memory algorithms no longer suffice. A distributed-memory scalable parallel algorithm is the only feasible approach. The primary contribution of this paper is a new parallel Delaunay and Voronoi tessellation algorithm that automatically determines which neighbormore » points need to be exchanged among the subdomains of a spatial decomposition. Other contributions include periodic and wall boundary conditions, comparison of our method using two popular serial libraries, and application to numerous science datasets.« less

  1. Fast associative memory + slow neural circuitry = the computational model of the brain.

    NASA Astrophysics Data System (ADS)

    Berkovich, Simon; Berkovich, Efraim; Lapir, Gennady

    1997-08-01

    We propose a computational model of the brain based on a fast associative memory and relatively slow neural processors. In this model, processing time is expensive but memory access is not, and therefore most algorithmic tasks would be accomplished by using large look-up tables as opposed to calculating. The essential feature of an associative memory in this context (characteristic for a holographic type memory) is that it works without an explicit mechanism for resolution of multiple responses. As a result, the slow neuronal processing elements, overwhelmed by the flow of information, operate as a set of templates for ranking of the retrieved information. This structure addresses the primary controversy in the brain architecture: distributed organization of memory vs. localization of processing centers. This computational model offers an intriguing explanation of many of the paradoxical features in the brain architecture, such as integration of sensors (through DMA mechanism), subliminal perception, universality of software, interrupts, fault-tolerance, certain bizarre possibilities for rapid arithmetics etc. In conventional computer science the presented type of a computational model did not attract attention as it goes against the technological grain by using a working memory faster than processing elements.

  2. Memory management and compiler support for rapid recovery from failures in computer systems

    NASA Technical Reports Server (NTRS)

    Fuchs, W. K.

    1991-01-01

    This paper describes recent developments in the use of memory management and compiler technology to support rapid recovery from failures in computer systems. The techniques described include cache coherence protocols for user transparent checkpointing in multiprocessor systems, compiler-based checkpoint placement, compiler-based code modification for multiple instruction retry, and forward recovery in distributed systems utilizing optimistic execution.

  3. NAS Applications and Advanced Algorithms

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Biswas, Rupak; VanDerWijngaart, Rob; Kutler, Paul (Technical Monitor)

    1997-01-01

    This paper examines the applications most commonly run on the supercomputers at the Numerical Aerospace Simulation (NAS) facility. It analyzes the extent to which such applications are fundamentally oriented to vector computers, and whether or not they can be efficiently implemented on hierarchical memory machines, such as systems with cache memories and highly parallel, distributed memory systems.

  4. Efficient calculation of open quantum system dynamics and time-resolved spectroscopy with distributed memory HEOM (DM-HEOM).

    PubMed

    Kramer, Tobias; Noack, Matthias; Reinefeld, Alexander; Rodríguez, Mirta; Zelinskyy, Yaroslav

    2018-06-11

    Time- and frequency-resolved optical signals provide insights into the properties of light-harvesting molecular complexes, including excitation energies, dipole strengths and orientations, as well as in the exciton energy flow through the complex. The hierarchical equations of motion (HEOM) provide a unifying theory, which allows one to study the combined effects of system-environment dissipation and non-Markovian memory without making restrictive assumptions about weak or strong couplings or separability of vibrational and electronic degrees of freedom. With increasing system size the exact solution of the open quantum system dynamics requires memory and compute resources beyond a single compute node. To overcome this barrier, we developed a scalable variant of HEOM. Our distributed memory HEOM, DM-HEOM, is a universal tool for open quantum system dynamics. It is used to accurately compute all experimentally accessible time- and frequency-resolved processes in light-harvesting molecular complexes with arbitrary system-environment couplings for a wide range of temperatures and complex sizes. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  5. Using distributed partial memories to improve self-organizing collective movements.

    PubMed

    Winder, Ransom; Reggia, James A

    2004-08-01

    Past self-organizing models of collectively moving "particles" (simulated bird flocks, fish schools, etc.) have typically been based on purely reflexive agents that have no significant memory of past movements. We hypothesized that giving such individual particles a limited distributed memory of past obstacles they encountered could lead to significantly faster travel between goal destinations. Systematic computational experiments using six terrains that had different arrangements of obstacles demonstrated that, at least in some domains, this conjecture is true. Furthermore, these experiments demonstrated that improved performance over time came not only from the avoidance of previously seen obstacles, but also (surprisingly) immediately after first encountering obstacles due to decreased delays in circumventing those obstacles. Simulations also showed that, of the four strategies we tested for removal of remembered obstacles when memory was full and a new obstacle was to be saved, none was better than random selection. These results may be useful in interpreting future experimental research on group movements in biological populations, and in improving existing methodologies for control of collective movements in computer graphics, robotic teams, particle swarm optimization, and computer games.

  6. A Cerebellar-model Associative Memory as a Generalized Random-access Memory

    NASA Technical Reports Server (NTRS)

    Kanerva, Pentti

    1989-01-01

    A versatile neural-net model is explained in terms familiar to computer scientists and engineers. It is called the sparse distributed memory, and it is a random-access memory for very long words (for patterns with thousands of bits). Its potential utility is the result of several factors: (1) a large pattern representing an object or a scene or a moment can encode a large amount of information about what it represents; (2) this information can serve as an address to the memory, and it can also serve as data; (3) the memory is noise tolerant--the information need not be exact; (4) the memory can be made arbitrarily large and hence an arbitrary amount of information can be stored in it; and (5) the architecture is inherently parallel, allowing large memories to be fast. Such memories can become important components of future computers.

  7. Execution time supports for adaptive scientific algorithms on distributed memory machines

    NASA Technical Reports Server (NTRS)

    Berryman, Harry; Saltz, Joel; Scroggs, Jeffrey

    1990-01-01

    Optimizations are considered that are required for efficient execution of code segments that consists of loops over distributed data structures. The PARTI (Parallel Automated Runtime Toolkit at ICASE) execution time primitives are designed to carry out these optimizations and can be used to implement a wide range of scientific algorithms on distributed memory machines. These primitives allow the user to control array mappings in a way that gives an appearance of shared memory. Computations can be based on a global index set. Primitives are used to carry out gather and scatter operations on distributed arrays. Communications patterns are derived at runtime, and the appropriate send and receive messages are automatically generated.

  8. Execution time support for scientific programs on distributed memory machines

    NASA Technical Reports Server (NTRS)

    Berryman, Harry; Saltz, Joel; Scroggs, Jeffrey

    1990-01-01

    Optimizations are considered that are required for efficient execution of code segments that consists of loops over distributed data structures. The PARTI (Parallel Automated Runtime Toolkit at ICASE) execution time primitives are designed to carry out these optimizations and can be used to implement a wide range of scientific algorithms on distributed memory machines. These primitives allow the user to control array mappings in a way that gives an appearance of shared memory. Computations can be based on a global index set. Primitives are used to carry out gather and scatter operations on distributed arrays. Communications patterns are derived at runtime, and the appropriate send and receive messages are automatically generated.

  9. Kinetic energy classification and smoothing for compact B-spline basis sets in quantum Monte Carlo

    DOE PAGES

    Krogel, Jaron T.; Reboredo, Fernando A.

    2018-01-25

    Quantum Monte Carlo calculations of defect properties of transition metal oxides have become feasible in recent years due to increases in computing power. As the system size has grown, availability of on-node memory has become a limiting factor. Saving memory while minimizing computational cost is now a priority. The main growth in memory demand stems from the B-spline representation of the single particle orbitals, especially for heavier elements such as transition metals where semi-core states are present. Despite the associated memory costs, splines are computationally efficient. In this paper, we explore alternatives to reduce the memory usage of splined orbitalsmore » without significantly affecting numerical fidelity or computational efficiency. We make use of the kinetic energy operator to both classify and smooth the occupied set of orbitals prior to splining. By using a partitioning scheme based on the per-orbital kinetic energy distributions, we show that memory savings of about 50% is possible for select transition metal oxide systems. Finally, for production supercells of practical interest, our scheme incurs a performance penalty of less than 5%.« less

  10. Kinetic energy classification and smoothing for compact B-spline basis sets in quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krogel, Jaron T.; Reboredo, Fernando A.

    Quantum Monte Carlo calculations of defect properties of transition metal oxides have become feasible in recent years due to increases in computing power. As the system size has grown, availability of on-node memory has become a limiting factor. Saving memory while minimizing computational cost is now a priority. The main growth in memory demand stems from the B-spline representation of the single particle orbitals, especially for heavier elements such as transition metals where semi-core states are present. Despite the associated memory costs, splines are computationally efficient. In this paper, we explore alternatives to reduce the memory usage of splined orbitalsmore » without significantly affecting numerical fidelity or computational efficiency. We make use of the kinetic energy operator to both classify and smooth the occupied set of orbitals prior to splining. By using a partitioning scheme based on the per-orbital kinetic energy distributions, we show that memory savings of about 50% is possible for select transition metal oxide systems. Finally, for production supercells of practical interest, our scheme incurs a performance penalty of less than 5%.« less

  11. Kinetic energy classification and smoothing for compact B-spline basis sets in quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Krogel, Jaron T.; Reboredo, Fernando A.

    2018-01-01

    Quantum Monte Carlo calculations of defect properties of transition metal oxides have become feasible in recent years due to increases in computing power. As the system size has grown, availability of on-node memory has become a limiting factor. Saving memory while minimizing computational cost is now a priority. The main growth in memory demand stems from the B-spline representation of the single particle orbitals, especially for heavier elements such as transition metals where semi-core states are present. Despite the associated memory costs, splines are computationally efficient. In this work, we explore alternatives to reduce the memory usage of splined orbitals without significantly affecting numerical fidelity or computational efficiency. We make use of the kinetic energy operator to both classify and smooth the occupied set of orbitals prior to splining. By using a partitioning scheme based on the per-orbital kinetic energy distributions, we show that memory savings of about 50% is possible for select transition metal oxide systems. For production supercells of practical interest, our scheme incurs a performance penalty of less than 5%.

  12. Distributed Name Servers: Naming and Caching in Large Distributed Computing Environments

    DTIC Science & Technology

    1985-12-01

    transmission rate of the communication medium1, transmission over a 56K bps line costs approx- imately 54r, and similarly, communication over a 9.6K...memories for modem computer systems attempt to maximize the hit ratio for a fixed-size cache by utilizing intelligent cache replacement algorithms

  13. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images

    PubMed Central

    Afshar, Yaser; Sbalzarini, Ivo F.

    2016-01-01

    Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 1010 pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments. PMID:27046144

  14. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images.

    PubMed

    Afshar, Yaser; Sbalzarini, Ivo F

    2016-01-01

    Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 10(10) pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments.

  15. Computer Sciences and Data Systems, volume 1

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics addressed include: software engineering; university grants; institutes; concurrent processing; sparse distributed memory; distributed operating systems; intelligent data management processes; expert system for image analysis; fault tolerant software; and architecture research.

  16. A scalable parallel black oil simulator on distributed memory parallel computers

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Liu, Hui; Chen, Zhangxin

    2015-11-01

    This paper presents our work on developing a parallel black oil simulator for distributed memory computers based on our in-house parallel platform. The parallel simulator is designed to overcome the performance issues of common simulators that are implemented for personal computers and workstations. The finite difference method is applied to discretize the black oil model. In addition, some advanced techniques are employed to strengthen the robustness and parallel scalability of the simulator, including an inexact Newton method, matrix decoupling methods, and algebraic multigrid methods. A new multi-stage preconditioner is proposed to accelerate the solution of linear systems from the Newton methods. Numerical experiments show that our simulator is scalable and efficient, and is capable of simulating extremely large-scale black oil problems with tens of millions of grid blocks using thousands of MPI processes on parallel computers.

  17. A Screen Space GPGPU Surface LIC Algorithm for Distributed Memory Data Parallel Sort Last Rendering Infrastructures

    NASA Astrophysics Data System (ADS)

    Loring, B.; Karimabadi, H.; Rortershteyn, V.

    2015-10-01

    The surface line integral convolution(LIC) visualization technique produces dense visualization of vector fields on arbitrary surfaces. We present a screen space surface LIC algorithm for use in distributed memory data parallel sort last rendering infrastructures. The motivations for our work are to support analysis of datasets that are too large to fit in the main memory of a single computer and compatibility with prevalent parallel scientific visualization tools such as ParaView and VisIt. By working in screen space using OpenGL we can leverage the computational power of GPUs when they are available and run without them when they are not. We address efficiency and performance issues that arise from the transformation of data from physical to screen space by selecting an alternate screen space domain decomposition. We analyze the algorithm's scaling behavior with and without GPUs on two high performance computing systems using data from turbulent plasma simulations.

  18. A Screen Space GPGPU Surface LIC Algorithm for Distributed Memory Data Parallel Sort Last Rendering Infrastructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loring, Burlen; Karimabadi, Homa; Rortershteyn, Vadim

    2014-07-01

    The surface line integral convolution(LIC) visualization technique produces dense visualization of vector fields on arbitrary surfaces. We present a screen space surface LIC algorithm for use in distributed memory data parallel sort last rendering infrastructures. The motivations for our work are to support analysis of datasets that are too large to fit in the main memory of a single computer and compatibility with prevalent parallel scientific visualization tools such as ParaView and VisIt. By working in screen space using OpenGL we can leverage the computational power of GPUs when they are available and run without them when they are not.more » We address efficiency and performance issues that arise from the transformation of data from physical to screen space by selecting an alternate screen space domain decomposition. We analyze the algorithm's scaling behavior with and without GPUs on two high performance computing systems using data from turbulent plasma simulations.« less

  19. Work stealing for GPU-accelerated parallel programs in a global address space framework: WORK STEALING ON GPU-ACCELERATED SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arafat, Humayun; Dinan, James; Krishnamoorthy, Sriram

    Task parallelism is an attractive approach to automatically load balance the computation in a parallel system and adapt to dynamism exhibited by parallel systems. Exploiting task parallelism through work stealing has been extensively studied in shared and distributed-memory contexts. In this paper, we study the design of a system that uses work stealing for dynamic load balancing of task-parallel programs executed on hybrid distributed-memory CPU-graphics processing unit (GPU) systems in a global-address space framework. We take into account the unique nature of the accelerator model employed by GPUs, the significant performance difference between GPU and CPU execution as a functionmore » of problem size, and the distinct CPU and GPU memory domains. We consider various alternatives in designing a distributed work stealing algorithm for CPU-GPU systems, while taking into account the impact of task distribution and data movement overheads. These strategies are evaluated using microbenchmarks that capture various execution configurations as well as the state-of-the-art CCSD(T) application module from the computational chemistry domain.« less

  20. Work stealing for GPU-accelerated parallel programs in a global address space framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arafat, Humayun; Dinan, James; Krishnamoorthy, Sriram

    Task parallelism is an attractive approach to automatically load balance the computation in a parallel system and adapt to dynamism exhibited by parallel systems. Exploiting task parallelism through work stealing has been extensively studied in shared and distributed-memory contexts. In this paper, we study the design of a system that uses work stealing for dynamic load balancing of task-parallel programs executed on hybrid distributed-memory CPU-graphics processing unit (GPU) systems in a global-address space framework. We take into account the unique nature of the accelerator model employed by GPUs, the significant performance difference between GPU and CPU execution as a functionmore » of problem size, and the distinct CPU and GPU memory domains. We consider various alternatives in designing a distributed work stealing algorithm for CPU-GPU systems, while taking into account the impact of task distribution and data movement overheads. These strategies are evaluated using microbenchmarks that capture various execution configurations as well as the state-of-the-art CCSD(T) application module from the computational chemistry domain« less

  1. Working Memory and Decision-Making in a Frontoparietal Circuit Model

    PubMed Central

    2017-01-01

    Working memory (WM) and decision-making (DM) are fundamental cognitive functions involving a distributed interacting network of brain areas, with the posterior parietal cortex (PPC) and prefrontal cortex (PFC) at the core. However, the shared and distinct roles of these areas and the nature of their coordination in cognitive function remain poorly understood. Biophysically based computational models of cortical circuits have provided insights into the mechanisms supporting these functions, yet they have primarily focused on the local microcircuit level, raising questions about the principles for distributed cognitive computation in multiregional networks. To examine these issues, we developed a distributed circuit model of two reciprocally interacting modules representing PPC and PFC circuits. The circuit architecture includes hierarchical differences in local recurrent structure and implements reciprocal long-range projections. This parsimonious model captures a range of behavioral and neuronal features of frontoparietal circuits across multiple WM and DM paradigms. In the context of WM, both areas exhibit persistent activity, but, in response to intervening distractors, PPC transiently encodes distractors while PFC filters distractors and supports WM robustness. With regard to DM, the PPC module generates graded representations of accumulated evidence supporting target selection, while the PFC module generates more categorical responses related to action or choice. These findings suggest computational principles for distributed, hierarchical processing in cortex during cognitive function and provide a framework for extension to multiregional models. SIGNIFICANCE STATEMENT Working memory and decision-making are fundamental “building blocks” of cognition, and deficits in these functions are associated with neuropsychiatric disorders such as schizophrenia. These cognitive functions engage distributed networks with prefrontal cortex (PFC) and posterior parietal cortex (PPC) at the core. It is not clear, however, what the contributions of PPC and PFC are in light of the computations that subserve working memory and decision-making. We constructed a biophysical model of a reciprocally connected frontoparietal circuit that revealed shared and distinct functions for the PFC and PPC across working memory and decision-making tasks. Our parsimonious model connects circuit-level properties to cognitive functions and suggests novel design principles beyond those of local circuits for cognitive processing in multiregional brain networks. PMID:29114071

  2. Working Memory and Decision-Making in a Frontoparietal Circuit Model.

    PubMed

    Murray, John D; Jaramillo, Jorge; Wang, Xiao-Jing

    2017-12-13

    Working memory (WM) and decision-making (DM) are fundamental cognitive functions involving a distributed interacting network of brain areas, with the posterior parietal cortex (PPC) and prefrontal cortex (PFC) at the core. However, the shared and distinct roles of these areas and the nature of their coordination in cognitive function remain poorly understood. Biophysically based computational models of cortical circuits have provided insights into the mechanisms supporting these functions, yet they have primarily focused on the local microcircuit level, raising questions about the principles for distributed cognitive computation in multiregional networks. To examine these issues, we developed a distributed circuit model of two reciprocally interacting modules representing PPC and PFC circuits. The circuit architecture includes hierarchical differences in local recurrent structure and implements reciprocal long-range projections. This parsimonious model captures a range of behavioral and neuronal features of frontoparietal circuits across multiple WM and DM paradigms. In the context of WM, both areas exhibit persistent activity, but, in response to intervening distractors, PPC transiently encodes distractors while PFC filters distractors and supports WM robustness. With regard to DM, the PPC module generates graded representations of accumulated evidence supporting target selection, while the PFC module generates more categorical responses related to action or choice. These findings suggest computational principles for distributed, hierarchical processing in cortex during cognitive function and provide a framework for extension to multiregional models. SIGNIFICANCE STATEMENT Working memory and decision-making are fundamental "building blocks" of cognition, and deficits in these functions are associated with neuropsychiatric disorders such as schizophrenia. These cognitive functions engage distributed networks with prefrontal cortex (PFC) and posterior parietal cortex (PPC) at the core. It is not clear, however, what the contributions of PPC and PFC are in light of the computations that subserve working memory and decision-making. We constructed a biophysical model of a reciprocally connected frontoparietal circuit that revealed shared and distinct functions for the PFC and PPC across working memory and decision-making tasks. Our parsimonious model connects circuit-level properties to cognitive functions and suggests novel design principles beyond those of local circuits for cognitive processing in multiregional brain networks. Copyright © 2017 the authors 0270-6474/17/3712167-20$15.00/0.

  3. Memory access in shared virtual memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berrendorf, R.

    1992-01-01

    Shared virtual memory (SVM) is a virtual memory layer with a single address space on top of a distributed real memory on parallel computers. We examine the behavior and performance of SVM running a parallel program with medium-grained, loop-level parallelism on top of it. A simulator for the underlying parallel architecture can be used to examine the behavior of SVM more deeply. The influence of several parameters, such as the number of processors, page size, cold or warm start, and restricted page replication, is studied.

  4. Memory access in shared virtual memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berrendorf, R.

    1992-09-01

    Shared virtual memory (SVM) is a virtual memory layer with a single address space on top of a distributed real memory on parallel computers. We examine the behavior and performance of SVM running a parallel program with medium-grained, loop-level parallelism on top of it. A simulator for the underlying parallel architecture can be used to examine the behavior of SVM more deeply. The influence of several parameters, such as the number of processors, page size, cold or warm start, and restricted page replication, is studied.

  5. Virtual memory support for distributed computing environments using a shared data object model

    NASA Astrophysics Data System (ADS)

    Huang, F.; Bacon, J.; Mapp, G.

    1995-12-01

    Conventional storage management systems provide one interface for accessing memory segments and another for accessing secondary storage objects. This hinders application programming and affects overall system performance due to mandatory data copying and user/kernel boundary crossings, which in the microkernel case may involve context switches. Memory-mapping techniques may be used to provide programmers with a unified view of the storage system. This paper extends such techniques to support a shared data object model for distributed computing environments in which good support for coherence and synchronization is essential. The approach is based on a microkernel, typed memory objects, and integrated coherence control. A microkernel architecture is used to support multiple coherence protocols and the addition of new protocols. Memory objects are typed and applications can choose the most suitable protocols for different types of object to avoid protocol mismatch. Low-level coherence control is integrated with high-level concurrency control so that the number of messages required to maintain memory coherence is reduced and system-wide synchronization is realized without severely impacting the system performance. These features together contribute a novel approach to the support for flexible coherence under application control.

  6. Fault-tolerant computer study. [logic designs for building block circuits

    NASA Technical Reports Server (NTRS)

    Rennels, D. A.; Avizienis, A. A.; Ercegovac, M. D.

    1981-01-01

    A set of building block circuits is described which can be used with commercially available microprocessors and memories to implement fault tolerant distributed computer systems. Each building block circuit is intended for VLSI implementation as a single chip. Several building blocks and associated processor and memory chips form a self checking computer module with self contained input output and interfaces to redundant communications buses. Fault tolerance is achieved by connecting self checking computer modules into a redundant network in which backup buses and computer modules are provided to circumvent failures. The requirements and design methodology which led to the definition of the building block circuits are discussed.

  7. Livermore Big Artificial Neural Network Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essen, Brian Van; Jacobs, Sam; Kim, Hyojin

    2016-07-01

    LBANN is a toolkit that is designed to train artificial neural networks efficiently on high performance computing architectures. It is optimized to take advantages of key High Performance Computing features to accelerate neural network training. Specifically it is optimized for low-latency, high bandwidth interconnects, node-local NVRAM, node-local GPU accelerators, and high bandwidth parallel file systems. It is built on top of the open source Elemental distributed-memory dense and spars-direct linear algebra and optimization library that is released under the BSD license. The algorithms contained within LBANN are drawn from the academic literature and implemented to work within a distributed-memory framework.

  8. Contention Modeling for Multithreaded Distributed Shared Memory Machines: The Cray XMT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Secchi, Simone; Tumeo, Antonino; Villa, Oreste

    Distributed Shared Memory (DSM) machines are a wide class of multi-processor computing systems where a large virtually-shared address space is mapped on a network of physically distributed memories. High memory latency and network contention are two of the main factors that limit performance scaling of such architectures. Modern high-performance computing DSM systems have evolved toward exploitation of massive hardware multi-threading and fine-grained memory hashing to tolerate irregular latencies, avoid network hot-spots and enable high scaling. In order to model the performance of such large-scale machines, parallel simulation has been proved to be a promising approach to achieve good accuracy inmore » reasonable times. One of the most critical factors in solving the simulation speed-accuracy trade-off is network modeling. The Cray XMT is a massively multi-threaded supercomputing architecture that belongs to the DSM class, since it implements a globally-shared address space abstraction on top of a physically distributed memory substrate. In this paper, we discuss the development of a contention-aware network model intended to be integrated in a full-system XMT simulator. We start by measuring the effects of network contention in a 128-processor XMT machine and then investigate the trade-off that exists between simulation accuracy and speed, by comparing three network models which operate at different levels of accuracy. The comparison and model validation is performed by executing a string-matching algorithm on the full-system simulator and on the XMT, using three datasets that generate noticeably different contention patterns.« less

  9. High efficiency coherent optical memory with warm rubidium vapour

    PubMed Central

    Hosseini, M.; Sparkes, B.M.; Campbell, G.; Lam, P.K.; Buchler, B.C.

    2011-01-01

    By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quantum logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require quantum optical memory as do deterministic logic gates for optical quantum computing. Here, we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory suitable for quantum information applications. We also show storage and recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory. PMID:21285952

  10. High efficiency coherent optical memory with warm rubidium vapour.

    PubMed

    Hosseini, M; Sparkes, B M; Campbell, G; Lam, P K; Buchler, B C

    2011-02-01

    By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quantum logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require quantum optical memory as do deterministic logic gates for optical quantum computing. Here, we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory suitable for quantum information applications. We also show storage and recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory.

  11. Comparison of two paradigms for distributed shared memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levelt, W.G.; Kaashoek, M.F.; Bal, H.E.

    1990-08-01

    The paper compares two paradigms for Distributed Shared Memory on loosely coupled computing systems: the shared data-object model as used in Orca, a programming language specially designed for loosely coupled computing systems and the Shared Virtual Memory model. For both paradigms the authors have implemented two systems, one using only point-to-point messages, the other using broadcasting as well. They briefly describe these two paradigms and their implementations. Then they compare their performance on four applications: the traveling salesman problem, alpha-beta search, matrix multiplication and the all pairs shortest paths problem. The measurements show that both paradigms can be used efficientlymore » for programming large-grain parallel applications. Significant speedups were obtained on all applications. The unstructured Shared Virtual Memory paradigm achieves the best absolute performance, although this is largely due to the preliminary nature of the Orca compiler used. The structured shared data-object model achieves the highest speedups and is much easier to program and to debug.« less

  12. PCI bus content-addressable-memory (CAM) implementation on FPGA for pattern recognition/image retrieval in a distributed environment

    NASA Astrophysics Data System (ADS)

    Megherbi, Dalila B.; Yan, Yin; Tanmay, Parikh; Khoury, Jed; Woods, C. L.

    2004-11-01

    Recently surveillance and Automatic Target Recognition (ATR) applications are increasing as the cost of computing power needed to process the massive amount of information continues to fall. This computing power has been made possible partly by the latest advances in FPGAs and SOPCs. In particular, to design and implement state-of-the-Art electro-optical imaging systems to provide advanced surveillance capabilities, there is a need to integrate several technologies (e.g. telescope, precise optics, cameras, image/compute vision algorithms, which can be geographically distributed or sharing distributed resources) into a programmable system and DSP systems. Additionally, pattern recognition techniques and fast information retrieval, are often important components of intelligent systems. The aim of this work is using embedded FPGA as a fast, configurable and synthesizable search engine in fast image pattern recognition/retrieval in a distributed hardware/software co-design environment. In particular, we propose and show a low cost Content Addressable Memory (CAM)-based distributed embedded FPGA hardware architecture solution with real time recognition capabilities and computing for pattern look-up, pattern recognition, and image retrieval. We show how the distributed CAM-based architecture offers a performance advantage of an order-of-magnitude over RAM-based architecture (Random Access Memory) search for implementing high speed pattern recognition for image retrieval. The methods of designing, implementing, and analyzing the proposed CAM based embedded architecture are described here. Other SOPC solutions/design issues are covered. Finally, experimental results, hardware verification, and performance evaluations using both the Xilinx Virtex-II and the Altera Apex20k are provided to show the potential and power of the proposed method for low cost reconfigurable fast image pattern recognition/retrieval at the hardware/software co-design level.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sewell, Christopher Meyer

    This is a set of slides from a guest lecture for a class at the University of Texas, El Paso on visualization and data analysis for high-performance computing. The topics covered are the following: trends in high-performance computing; scientific visualization, such as OpenGL, ray tracing and volume rendering, VTK, and ParaView; data science at scale, such as in-situ visualization, image databases, distributed memory parallelism, shared memory parallelism, VTK-m, "big data", and then an analysis example.

  14. Supercomputing '91; Proceedings of the 4th Annual Conference on High Performance Computing, Albuquerque, NM, Nov. 18-22, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Various papers on supercomputing are presented. The general topics addressed include: program analysis/data dependence, memory access, distributed memory code generation, numerical algorithms, supercomputer benchmarks, latency tolerance, parallel programming, applications, processor design, networks, performance tools, mapping and scheduling, characterization affecting performance, parallelism packaging, computing climate change, combinatorial algorithms, hardware and software performance issues, system issues. (No individual items are abstracted in this volume)

  15. Vascular system modeling in parallel environment - distributed and shared memory approaches

    PubMed Central

    Jurczuk, Krzysztof; Kretowski, Marek; Bezy-Wendling, Johanne

    2011-01-01

    The paper presents two approaches in parallel modeling of vascular system development in internal organs. In the first approach, new parts of tissue are distributed among processors and each processor is responsible for perfusing its assigned parts of tissue to all vascular trees. Communication between processors is accomplished by passing messages and therefore this algorithm is perfectly suited for distributed memory architectures. The second approach is designed for shared memory machines. It parallelizes the perfusion process during which individual processing units perform calculations concerning different vascular trees. The experimental results, performed on a computing cluster and multi-core machines, show that both algorithms provide a significant speedup. PMID:21550891

  16. Impact of Load Balancing on Unstructured Adaptive Grid Computations for Distributed-Memory Multiprocessors

    NASA Technical Reports Server (NTRS)

    Sohn, Andrew; Biswas, Rupak; Simon, Horst D.

    1996-01-01

    The computational requirements for an adaptive solution of unsteady problems change as the simulation progresses. This causes workload imbalance among processors on a parallel machine which, in turn, requires significant data movement at runtime. We present a new dynamic load-balancing framework, called JOVE, that balances the workload across all processors with a global view. Whenever the computational mesh is adapted, JOVE is activated to eliminate the load imbalance. JOVE has been implemented on an IBM SP2 distributed-memory machine in MPI for portability. Experimental results for two model meshes demonstrate that mesh adaption with load balancing gives more than a sixfold improvement over one without load balancing. We also show that JOVE gives a 24-fold speedup on 64 processors compared to sequential execution.

  17. Overset grid applications on distributed memory MIMD computers

    NASA Technical Reports Server (NTRS)

    Chawla, Kalpana; Weeratunga, Sisira

    1994-01-01

    Analysis of modern aerospace vehicles requires the computation of flowfields about complex three dimensional geometries composed of regions with varying spatial resolution requirements. Overset grid methods allow the use of proven structured grid flow solvers to address the twin issues of geometrical complexity and the resolution variation by decomposing the complex physical domain into a collection of overlapping subdomains. This flexibility is accompanied by the need for irregular intergrid boundary communication among the overlapping component grids. This study investigates a strategy for implementing such a static overset grid implicit flow solver on distributed memory, MIMD computers; i.e., the 128 node Intel iPSC/860 and the 208 node Intel Paragon. Performance data for two composite grid configurations characteristic of those encountered in present day aerodynamic analysis are also presented.

  18. Directions in parallel programming: HPF, shared virtual memory and object parallelism in pC++

    NASA Technical Reports Server (NTRS)

    Bodin, Francois; Priol, Thierry; Mehrotra, Piyush; Gannon, Dennis

    1994-01-01

    Fortran and C++ are the dominant programming languages used in scientific computation. Consequently, extensions to these languages are the most popular for programming massively parallel computers. We discuss two such approaches to parallel Fortran and one approach to C++. The High Performance Fortran Forum has designed HPF with the intent of supporting data parallelism on Fortran 90 applications. HPF works by asking the user to help the compiler distribute and align the data structures with the distributed memory modules in the system. Fortran-S takes a different approach in which the data distribution is managed by the operating system and the user provides annotations to indicate parallel control regions. In the case of C++, we look at pC++ which is based on a concurrent aggregate parallel model.

  19. CDL description of the CDC 6600 stunt box

    NASA Technical Reports Server (NTRS)

    Hertzog, J. B.

    1971-01-01

    The CDC 6600 central memory control (stunt box) is described utilizing CDL (Computer Design Language), block diagrams, and text. The stunt box is a clearing house for all central memory references from the 6600 central and peripheral processors. Since memory requests can be issued simultaneously, the stunt box must be capable of assigning priorities to requests, of labeling requests so that the data will be distributed correctly, and of remembering rejected addresses due to memory conflicts.

  20. Scalable Quantum Networks for Distributed Computing and Sensing

    DTIC Science & Technology

    2016-04-01

    probabilistic measurement , so we developed quantum memories and guided-wave implementations of same, demonstrating controlled delay of a heralded single...Second, fundamental scalability requires a method to synchronize protocols based on quantum measurements , which are inherently probabilistic. To meet...AFRL-AFOSR-UK-TR-2016-0007 Scalable Quantum Networks for Distributed Computing and Sensing Ian Walmsley THE UNIVERSITY OF OXFORD Final Report 04/01

  1. Design of multiple sequence alignment algorithms on parallel, distributed memory supercomputers.

    PubMed

    Church, Philip C; Goscinski, Andrzej; Holt, Kathryn; Inouye, Michael; Ghoting, Amol; Makarychev, Konstantin; Reumann, Matthias

    2011-01-01

    The challenge of comparing two or more genomes that have undergone recombination and substantial amounts of segmental loss and gain has recently been addressed for small numbers of genomes. However, datasets of hundreds of genomes are now common and their sizes will only increase in the future. Multiple sequence alignment of hundreds of genomes remains an intractable problem due to quadratic increases in compute time and memory footprint. To date, most alignment algorithms are designed for commodity clusters without parallelism. Hence, we propose the design of a multiple sequence alignment algorithm on massively parallel, distributed memory supercomputers to enable research into comparative genomics on large data sets. Following the methodology of the sequential progressiveMauve algorithm, we design data structures including sequences and sorted k-mer lists on the IBM Blue Gene/P supercomputer (BG/P). Preliminary results show that we can reduce the memory footprint so that we can potentially align over 250 bacterial genomes on a single BG/P compute node. We verify our results on a dataset of E.coli, Shigella and S.pneumoniae genomes. Our implementation returns results matching those of the original algorithm but in 1/2 the time and with 1/4 the memory footprint for scaffold building. In this study, we have laid the basis for multiple sequence alignment of large-scale datasets on a massively parallel, distributed memory supercomputer, thus enabling comparison of hundreds instead of a few genome sequences within reasonable time.

  2. An efficient parallel termination detection algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, A. H.; Crivelli, S.; Jessup, E. R.

    2004-05-27

    Information local to any one processor is insufficient to monitor the overall progress of most distributed computations. Typically, a second distributed computation for detecting termination of the main computation is necessary. In order to be a useful computational tool, the termination detection routine must operate concurrently with the main computation, adding minimal overhead, and it must promptly and correctly detect termination when it occurs. In this paper, we present a new algorithm for detecting the termination of a parallel computation on distributed-memory MIMD computers that satisfies all of those criteria. A variety of termination detection algorithms have been devised. Ofmore » these, the algorithm presented by Sinha, Kale, and Ramkumar (henceforth, the SKR algorithm) is unique in its ability to adapt to the load conditions of the system on which it runs, thereby minimizing the impact of termination detection on performance. Because their algorithm also detects termination quickly, we consider it to be the most efficient practical algorithm presently available. The termination detection algorithm presented here was developed for use in the PMESC programming library for distributed-memory MIMD computers. Like the SKR algorithm, our algorithm adapts to system loads and imposes little overhead. Also like the SKR algorithm, ours is tree-based, and it does not depend on any assumptions about the physical interconnection topology of the processors or the specifics of the distributed computation. In addition, our algorithm is easier to implement and requires only half as many tree traverses as does the SKR algorithm. This paper is organized as follows. In section 2, we define our computational model. In section 3, we review the SKR algorithm. We introduce our new algorithm in section 4, and prove its correctness in section 5. We discuss its efficiency and present experimental results in section 6.« less

  3. Performance of the Heavy Flavor Tracker (HFT) detector in star experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Alruwaili, Manal

    With the growing technology, the number of the processors is becoming massive. Current supercomputer processing will be available on desktops in the next decade. For mass scale application software development on massive parallel computing available on desktops, existing popular languages with large libraries have to be augmented with new constructs and paradigms that exploit massive parallel computing and distributed memory models while retaining the user-friendliness. Currently, available object oriented languages for massive parallel computing such as Chapel, X10 and UPC++ exploit distributed computing, data parallel computing and thread-parallelism at the process level in the PGAS (Partitioned Global Address Space) memory model. However, they do not incorporate: 1) any extension at for object distribution to exploit PGAS model; 2) the programs lack the flexibility of migrating or cloning an object between places to exploit load balancing; and 3) lack the programming paradigms that will result from the integration of data and thread-level parallelism and object distribution. In the proposed thesis, I compare different languages in PGAS model; propose new constructs that extend C++ with object distribution and object migration; and integrate PGAS based process constructs with these extensions on distributed objects. Object cloning and object migration. Also a new paradigm MIDD (Multiple Invocation Distributed Data) is presented when different copies of the same class can be invoked, and work on different elements of a distributed data concurrently using remote method invocations. I present new constructs, their grammar and their behavior. The new constructs have been explained using simple programs utilizing these constructs.

  4. Sparse distributed memory prototype: Principles of operation

    NASA Technical Reports Server (NTRS)

    Flynn, Michael J.; Kanerva, Pentti; Ahanin, Bahram; Bhadkamkar, Neal; Flaherty, Paul; Hickey, Philip

    1988-01-01

    Sparse distributed memory is a generalized random access memory (RAM) for long binary words. Such words can be written into and read from the memory, and they can be used to address the memory. The main attribute of the memory is sensitivity to similarity, meaning that a word can be read back not only by giving the original right address but also by giving one close to it as measured by the Hamming distance between addresses. Large memories of this kind are expected to have wide use in speech and scene analysis, in signal detection and verification, and in adaptive control of automated equipment. The memory can be realized as a simple, massively parallel computer. Digital technology has reached a point where building large memories is becoming practical. The research is aimed at resolving major design issues that have to be faced in building the memories. The design of a prototype memory with 256-bit addresses and from 8K to 128K locations for 256-bit words is described. A key aspect of the design is extensive use of dynamic RAM and other standard components.

  5. Event parallelism: Distributed memory parallel computing for high energy physics experiments

    NASA Astrophysics Data System (ADS)

    Nash, Thomas

    1989-12-01

    This paper describes the present and expected future development of distributed memory parallel computers for high energy physics experiments. It covers the use of event parallel microprocessor farms, particularly at Fermilab, including both ACP multiprocessors and farms of MicroVAXES. These systems have proven very cost effective in the past. A case is made for moving to the more open environment of UNIX and RISC processors. The 2nd Generation ACP Multiprocessor System, which is based on powerful RISC system, is described. Given the promise of still more extraordinary increases in processor performance, a new emphasis on point to point, rather than bussed, communication will be required. Developments in this direction are described.

  6. Simulation of radiation effects on three-dimensional computer optical memories

    NASA Technical Reports Server (NTRS)

    Moscovitch, M.; Emfietzoglou, D.

    1997-01-01

    A model was developed to simulate the effects of heavy charged-particle (HCP) radiation on the information stored in three-dimensional computer optical memories. The model is based on (i) the HCP track radial dose distribution, (ii) the spatial and temporal distribution of temperature in the track, (iii) the matrix-specific radiation-induced changes that will affect the response, and (iv) the kinetics of transition of photochromic molecules from the colored to the colorless isomeric form (bit flip). It is shown that information stored in a volume of several nanometers radius around the particle's track axis may be lost. The magnitude of the effect is dependent on the particle's track structure.

  7. A Multi-Level Parallelization Concept for High-Fidelity Multi-Block Solvers

    NASA Technical Reports Server (NTRS)

    Hatay, Ferhat F.; Jespersen, Dennis C.; Guruswamy, Guru P.; Rizk, Yehia M.; Byun, Chansup; Gee, Ken; VanDalsem, William R. (Technical Monitor)

    1997-01-01

    The integration of high-fidelity Computational Fluid Dynamics (CFD) analysis tools with the industrial design process benefits greatly from the robust implementations that are transportable across a wide range of computer architectures. In the present work, a hybrid domain-decomposition and parallelization concept was developed and implemented into the widely-used NASA multi-block Computational Fluid Dynamics (CFD) packages implemented in ENSAERO and OVERFLOW. The new parallel solver concept, PENS (Parallel Euler Navier-Stokes Solver), employs both fine and coarse granularity in data partitioning as well as data coalescing to obtain the desired load-balance characteristics on the available computer platforms. This multi-level parallelism implementation itself introduces no changes to the numerical results, hence the original fidelity of the packages are identically preserved. The present implementation uses the Message Passing Interface (MPI) library for interprocessor message passing and memory accessing. By choosing an appropriate combination of the available partitioning and coalescing capabilities only during the execution stage, the PENS solver becomes adaptable to different computer architectures from shared-memory to distributed-memory platforms with varying degrees of parallelism. The PENS implementation on the IBM SP2 distributed memory environment at the NASA Ames Research Center obtains 85 percent scalable parallel performance using fine-grain partitioning of single-block CFD domains using up to 128 wide computational nodes. Multi-block CFD simulations of complete aircraft simulations achieve 75 percent perfect load-balanced executions using data coalescing and the two levels of parallelism. SGI PowerChallenge, SGI Origin 2000, and a cluster of workstations are the other platforms where the robustness of the implementation is tested. The performance behavior on the other computer platforms with a variety of realistic problems will be included as this on-going study progresses.

  8. Parallel computing for probabilistic fatigue analysis

    NASA Technical Reports Server (NTRS)

    Sues, Robert H.; Lua, Yuan J.; Smith, Mark D.

    1993-01-01

    This paper presents the results of Phase I research to investigate the most effective parallel processing software strategies and hardware configurations for probabilistic structural analysis. We investigate the efficiency of both shared and distributed-memory architectures via a probabilistic fatigue life analysis problem. We also present a parallel programming approach, the virtual shared-memory paradigm, that is applicable across both types of hardware. Using this approach, problems can be solved on a variety of parallel configurations, including networks of single or multiprocessor workstations. We conclude that it is possible to effectively parallelize probabilistic fatigue analysis codes; however, special strategies will be needed to achieve large-scale parallelism to keep large number of processors busy and to treat problems with the large memory requirements encountered in practice. We also conclude that distributed-memory architecture is preferable to shared-memory for achieving large scale parallelism; however, in the future, the currently emerging hybrid-memory architectures will likely be optimal.

  9. Automated quantitative muscle biopsy analysis system

    NASA Technical Reports Server (NTRS)

    Castleman, Kenneth R. (Inventor)

    1980-01-01

    An automated system to aid the diagnosis of neuromuscular diseases by producing fiber size histograms utilizing histochemically stained muscle biopsy tissue. Televised images of the microscopic fibers are processed electronically by a multi-microprocessor computer, which isolates, measures, and classifies the fibers and displays the fiber size distribution. The architecture of the multi-microprocessor computer, which is iterated to any required degree of complexity, features a series of individual microprocessors P.sub.n each receiving data from a shared memory M.sub.n-1 and outputing processed data to a separate shared memory M.sub.n+1 under control of a program stored in dedicated memory M.sub.n.

  10. 3-D parallel program for numerical calculation of gas dynamics problems with heat conductivity on distributed memory computational systems (CS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sofronov, I.D.; Voronin, B.L.; Butnev, O.I.

    1997-12-31

    The aim of the work performed is to develop a 3D parallel program for numerical calculation of gas dynamics problem with heat conductivity on distributed memory computational systems (CS), satisfying the condition of numerical result independence from the number of processors involved. Two basically different approaches to the structure of massive parallel computations have been developed. The first approach uses the 3D data matrix decomposition reconstructed at temporal cycle and is a development of parallelization algorithms for multiprocessor CS with shareable memory. The second approach is based on using a 3D data matrix decomposition not reconstructed during a temporal cycle.more » The program was developed on 8-processor CS MP-3 made in VNIIEF and was adapted to a massive parallel CS Meiko-2 in LLNL by joint efforts of VNIIEF and LLNL staffs. A large number of numerical experiments has been carried out with different number of processors up to 256 and the efficiency of parallelization has been evaluated in dependence on processor number and their parameters.« less

  11. Running ATLAS workloads within massively parallel distributed applications using Athena Multi-Process framework (AthenaMP)

    NASA Astrophysics Data System (ADS)

    Calafiura, Paolo; Leggett, Charles; Seuster, Rolf; Tsulaia, Vakhtang; Van Gemmeren, Peter

    2015-12-01

    AthenaMP is a multi-process version of the ATLAS reconstruction, simulation and data analysis framework Athena. By leveraging Linux fork and copy-on-write mechanisms, it allows for sharing of memory pages between event processors running on the same compute node with little to no change in the application code. Originally targeted to optimize the memory footprint of reconstruction jobs, AthenaMP has demonstrated that it can reduce the memory usage of certain configurations of ATLAS production jobs by a factor of 2. AthenaMP has also evolved to become the parallel event-processing core of the recently developed ATLAS infrastructure for fine-grained event processing (Event Service) which allows the running of AthenaMP inside massively parallel distributed applications on hundreds of compute nodes simultaneously. We present the architecture of AthenaMP, various strategies implemented by AthenaMP for scheduling workload to worker processes (for example: Shared Event Queue and Shared Distributor of Event Tokens) and the usage of AthenaMP in the diversity of ATLAS event processing workloads on various computing resources: Grid, opportunistic resources and HPC.

  12. Numerical methods on some structured matrix algebra problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessup, E.R.

    1996-06-01

    This proposal concerned the design, analysis, and implementation of serial and parallel algorithms for certain structured matrix algebra problems. It emphasized large order problems and so focused on methods that can be implemented efficiently on distributed-memory MIMD multiprocessors. Such machines supply the computing power and extensive memory demanded by the large order problems. We proposed to examine three classes of matrix algebra problems: the symmetric and nonsymmetric eigenvalue problems (especially the tridiagonal cases) and the solution of linear systems with specially structured coefficient matrices. As all of these are of practical interest, a major goal of this work was tomore » translate our research in linear algebra into useful tools for use by the computational scientists interested in these and related applications. Thus, in addition to software specific to the linear algebra problems, we proposed to produce a programming paradigm and library to aid in the design and implementation of programs for distributed-memory MIMD computers. We now report on our progress on each of the problems and on the programming tools.« less

  13. SharP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkata, Manjunath Gorentla; Aderholdt, William F

    The pre-exascale systems are expected to have a significant amount of hierarchical and heterogeneous on-node memory, and this trend of system architecture in extreme-scale systems is expected to continue into the exascale era. along with hierarchical-heterogeneous memory, the system typically has a high-performing network ad a compute accelerator. This system architecture is not only effective for running traditional High Performance Computing (HPC) applications (Big-Compute), but also for running data-intensive HPC applications and Big-Data applications. As a consequence, there is a growing desire to have a single system serve the needs of both Big-Compute and Big-Data applications. Though the system architecturemore » supports the convergence of the Big-Compute and Big-Data, the programming models and software layer have yet to evolve to support either hierarchical-heterogeneous memory systems or the convergence. A programming abstraction to address this problem. The programming abstraction is implemented as a software library and runs on pre-exascale and exascale systems supporting current and emerging system architecture. Using distributed data-structures as a central concept, it provides (1) a simple, usable, and portable abstraction for hierarchical-heterogeneous memory and (2) a unified programming abstraction for Big-Compute and Big-Data applications.« less

  14. An Evaluation of Architectural Platforms for Parallel Navier-Stokes Computations

    NASA Technical Reports Server (NTRS)

    Jayasimha, D. N.; Hayder, M. E.; Pillay, S. K.

    1996-01-01

    We study the computational, communication, and scalability characteristics of a computational fluid dynamics application, which solves the time accurate flow field of a jet using the compressible Navier-Stokes equations, on a variety of parallel architecture platforms. The platforms chosen for this study are a cluster of workstations (the LACE experimental testbed at NASA Lewis), a shared memory multiprocessor (the Cray YMP), and distributed memory multiprocessors with different topologies - the IBM SP and the Cray T3D. We investigate the impact of various networks connecting the cluster of workstations on the performance of the application and the overheads induced by popular message passing libraries used for parallelization. The work also highlights the importance of matching the memory bandwidth to the processor speed for good single processor performance. By studying the performance of an application on a variety of architectures, we are able to point out the strengths and weaknesses of each of the example computing platforms.

  15. Parallelizing Navier-Stokes Computations on a Variety of Architectural Platforms

    NASA Technical Reports Server (NTRS)

    Jayasimha, D. N.; Hayder, M. E.; Pillay, S. K.

    1997-01-01

    We study the computational, communication, and scalability characteristics of a Computational Fluid Dynamics application, which solves the time accurate flow field of a jet using the compressible Navier-Stokes equations, on a variety of parallel architectural platforms. The platforms chosen for this study are a cluster of workstations (the LACE experimental testbed at NASA Lewis), a shared memory multiprocessor (the Cray YMP), distributed memory multiprocessors with different topologies-the IBM SP and the Cray T3D. We investigate the impact of various networks, connecting the cluster of workstations, on the performance of the application and the overheads induced by popular message passing libraries used for parallelization. The work also highlights the importance of matching the memory bandwidth to the processor speed for good single processor performance. By studying the performance of an application on a variety of architectures, we are able to point out the strengths and weaknesses of each of the example computing platforms.

  16. Aerodynamic Shape Optimization of Supersonic Aircraft Configurations via an Adjoint Formulation on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Reuther, James; Alonso, Juan Jose; Rimlinger, Mark J.; Jameson, Antony

    1996-01-01

    This work describes the application of a control theory-based aerodynamic shape optimization method to the problem of supersonic aircraft design. The design process is greatly accelerated through the use of both control theory and a parallel implementation on distributed memory computers. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods. The resulting problem is then implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) Standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on higher order computational fluid dynamics methods (CFD). In our earlier studies, the serial implementation of this design method was shown to be effective for the optimization of airfoils, wings, wing-bodies, and complex aircraft configurations using both the potential equation and the Euler equations. In our most recent paper, the Euler method was extended to treat complete aircraft configurations via a new multiblock implementation. Furthermore, during the same conference, we also presented preliminary results demonstrating that this basic methodology could be ported to distributed memory parallel computing architectures. In this paper, our concern will be to demonstrate that the combined power of these new technologies can be used routinely in an industrial design environment by applying it to the case study of the design of typical supersonic transport configurations. A particular difficulty of this test case is posed by the propulsion/airframe integration.

  17. [Series: Medical Applications of the PHITS Code (2): Acceleration by Parallel Computing].

    PubMed

    Furuta, Takuya; Sato, Tatsuhiko

    2015-01-01

    Time-consuming Monte Carlo dose calculation becomes feasible owing to the development of computer technology. However, the recent development is due to emergence of the multi-core high performance computers. Therefore, parallel computing becomes a key to achieve good performance of software programs. A Monte Carlo simulation code PHITS contains two parallel computing functions, the distributed-memory parallelization using protocols of message passing interface (MPI) and the shared-memory parallelization using open multi-processing (OpenMP) directives. Users can choose the two functions according to their needs. This paper gives the explanation of the two functions with their advantages and disadvantages. Some test applications are also provided to show their performance using a typical multi-core high performance workstation.

  18. A multiarchitecture parallel-processing development environment

    NASA Technical Reports Server (NTRS)

    Townsend, Scott; Blech, Richard; Cole, Gary

    1993-01-01

    A description is given of the hardware and software of a multiprocessor test bed - the second generation Hypercluster system. The Hypercluster architecture consists of a standard hypercube distributed-memory topology, with multiprocessor shared-memory nodes. By using standard, off-the-shelf hardware, the system can be upgraded to use rapidly improving computer technology. The Hypercluster's multiarchitecture nature makes it suitable for researching parallel algorithms in computational field simulation applications (e.g., computational fluid dynamics). The dedicated test-bed environment of the Hypercluster and its custom-built software allows experiments with various parallel-processing concepts such as message passing algorithms, debugging tools, and computational 'steering'. Such research would be difficult, if not impossible, to achieve on shared, commercial systems.

  19. Distributed state-space generation of discrete-state stochastic models

    NASA Technical Reports Server (NTRS)

    Ciardo, Gianfranco; Gluckman, Joshua; Nicol, David

    1995-01-01

    High-level formalisms such as stochastic Petri nets can be used to model complex systems. Analysis of logical and numerical properties of these models of ten requires the generation and storage of the entire underlying state space. This imposes practical limitations on the types of systems which can be modeled. Because of the vast amount of memory consumed, we investigate distributed algorithms for the generation of state space graphs. The distributed construction allows us to take advantage of the combined memory readily available on a network of workstations. The key technical problem is to find effective methods for on-the-fly partitioning, so that the state space is evenly distributed among processors. In this paper we report on the implementation of a distributed state-space generator that may be linked to a number of existing system modeling tools. We discuss partitioning strategies in the context of Petri net models, and report on performance observed on a network of workstations, as well as on a distributed memory multi-computer.

  20. A new parallel-vector finite element analysis software on distributed-memory computers

    NASA Technical Reports Server (NTRS)

    Qin, Jiangning; Nguyen, Duc T.

    1993-01-01

    A new parallel-vector finite element analysis software package MPFEA (Massively Parallel-vector Finite Element Analysis) is developed for large-scale structural analysis on massively parallel computers with distributed-memory. MPFEA is designed for parallel generation and assembly of the global finite element stiffness matrices as well as parallel solution of the simultaneous linear equations, since these are often the major time-consuming parts of a finite element analysis. Block-skyline storage scheme along with vector-unrolling techniques are used to enhance the vector performance. Communications among processors are carried out concurrently with arithmetic operations to reduce the total execution time. Numerical results on the Intel iPSC/860 computers (such as the Intel Gamma with 128 processors and the Intel Touchstone Delta with 512 processors) are presented, including an aircraft structure and some very large truss structures, to demonstrate the efficiency and accuracy of MPFEA.

  1. Dynamic Load Balancing for Adaptive Computations on Distributed-Memory Machines

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Dynamic load balancing is central to adaptive mesh-based computations on large-scale parallel computers. The principal investigator has investigated various issues on the dynamic load balancing problem under NASA JOVE and JAG rants. The major accomplishments of the project are two graph partitioning algorithms and a load balancing framework. The S-HARP dynamic graph partitioner is known to be the fastest among the known dynamic graph partitioners to date. It can partition a graph of over 100,000 vertices in 0.25 seconds on a 64- processor Cray T3E distributed-memory multiprocessor while maintaining the scalability of over 16-fold speedup. Other known and widely used dynamic graph partitioners take over a second or two while giving low scalability of a few fold speedup on 64 processors. These results have been published in journals and peer-reviewed flagship conferences.

  2. Reduction of Used Memory Ensemble Kalman Filtering (RumEnKF): A data assimilation scheme for memory intensive, high performance computing

    NASA Astrophysics Data System (ADS)

    Hut, Rolf; Amisigo, Barnabas A.; Steele-Dunne, Susan; van de Giesen, Nick

    2015-12-01

    Reduction of Used Memory Ensemble Kalman Filtering (RumEnKF) is introduced as a variant on the Ensemble Kalman Filter (EnKF). RumEnKF differs from EnKF in that it does not store the entire ensemble, but rather only saves the first two moments of the ensemble distribution. In this way, the number of ensemble members that can be calculated is less dependent on available memory, and mainly on available computing power (CPU). RumEnKF is developed to make optimal use of current generation super computer architecture, where the number of available floating point operations (flops) increases more rapidly than the available memory and where inter-node communication can quickly become a bottleneck. RumEnKF reduces the used memory compared to the EnKF when the number of ensemble members is greater than half the number of state variables. In this paper, three simple models are used (auto-regressive, low dimensional Lorenz and high dimensional Lorenz) to show that RumEnKF performs similarly to the EnKF. Furthermore, it is also shown that increasing the ensemble size has a similar impact on the estimation error from the three algorithms.

  3. Sparse distributed memory: Principles and operation

    NASA Technical Reports Server (NTRS)

    Flynn, M. J.; Kanerva, P.; Bhadkamkar, N.

    1989-01-01

    Sparse distributed memory is a generalized random access memory (RAM) for long (1000 bit) binary words. Such words can be written into and read from the memory, and they can also be used to address the memory. The main attribute of the memory is sensitivity to similarity, meaning that a word can be read back not only by giving the original write address but also by giving one close to it as measured by the Hamming distance between addresses. Large memories of this kind are expected to have wide use in speech recognition and scene analysis, in signal detection and verification, and in adaptive control of automated equipment, in general, in dealing with real world information in real time. The memory can be realized as a simple, massively parallel computer. Digital technology has reached a point where building large memories is becoming practical. Major design issues were resolved which were faced in building the memories. The design is described of a prototype memory with 256 bit addresses and from 8 to 128 K locations for 256 bit words. A key aspect of the design is extensive use of dynamic RAM and other standard components.

  4. SciSpark's SRDD : A Scientific Resilient Distributed Dataset for Multidimensional Data

    NASA Astrophysics Data System (ADS)

    Palamuttam, R. S.; Wilson, B. D.; Mogrovejo, R. M.; Whitehall, K. D.; Mattmann, C. A.; McGibbney, L. J.; Ramirez, P.

    2015-12-01

    Remote sensing data and climate model output are multi-dimensional arrays of massive sizes locked away in heterogeneous file formats (HDF5/4, NetCDF 3/4) and metadata models (HDF-EOS, CF) making it difficult to perform multi-stage, iterative science processing since each stage requires writing and reading data to and from disk. We have developed SciSpark, a robust Big Data framework, that extends ApacheTM Spark for scaling scientific computations. Apache Spark improves the map-reduce implementation in ApacheTM Hadoop for parallel computing on a cluster, by emphasizing in-memory computation, "spilling" to disk only as needed, and relying on lazy evaluation. Central to Spark is the Resilient Distributed Dataset (RDD), an in-memory distributed data structure that extends the functional paradigm provided by the Scala programming language. However, RDDs are ideal for tabular or unstructured data, and not for highly dimensional data. The SciSpark project introduces the Scientific Resilient Distributed Dataset (sRDD), a distributed-computing array structure which supports iterative scientific algorithms for multidimensional data. SciSpark processes data stored in NetCDF and HDF files by partitioning them across time or space and distributing the partitions among a cluster of compute nodes. We show usability and extensibility of SciSpark by implementing distributed algorithms for geospatial operations on large collections of multi-dimensional grids. In particular we address the problem of scaling an automated method for finding Mesoscale Convective Complexes. SciSpark provides a tensor interface to support the pluggability of different matrix libraries. We evaluate performance of the various matrix libraries in distributed pipelines, such as Nd4jTM and BreezeTM. We detail the architecture and design of SciSpark, our efforts to integrate climate science algorithms, parallel ingest and partitioning (sharding) of A-Train satellite observations from model grids. These solutions are encompassed in SciSpark, an open-source software framework for distributed computing on scientific data.

  5. UPC++ Programmer’s Guide (v1.0 2017.9)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachan, J.; Baden, S.; Bonachea, D.

    UPC++ is a C++11 library that provides Asynchronous Partitioned Global Address Space (APGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The APGAS model is single program, multiple-data (SPMD), with each separate thread of execution (referred to as a rank, a term borrowed from MPI) having access to local memory as it would in C++. However, APGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the ranks. UPC++ provides numerous methods for accessing and using global memory. In UPC++, allmore » operations that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.« less

  6. UPC++ Programmer’s Guide, v1.0-2018.3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachan, J.; Baden, S.; Bonachea, Dan

    UPC++ is a C++11 library that provides Partitioned Global Address Space (PGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The PGAS model is single program, multiple-data (SPMD), with each separate thread of execution (referred to as a rank, a term borrowed from MPI) having access to local memory as it would in C++. However, PGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the ranks. UPC++ provides numerous methods for accessing and using global memory. In UPC++, all operationsmore » that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.« less

  7. Efficient implementation of a 3-dimensional ADI method on the iPSC/860

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van der Wijngaart, R.F.

    1993-12-31

    A comparison is made between several domain decomposition strategies for the solution of three-dimensional partial differential equations on a MIMD distributed memory parallel computer. The grids used are structured, and the numerical algorithm is ADI. Important implementation issues regarding load balancing, storage requirements, network latency, and overlap of computations and communications are discussed. Results of the solution of the three-dimensional heat equation on the Intel iPSC/860 are presented for the three most viable methods. It is found that the Bruno-Cappello decomposition delivers optimal computational speed through an almost complete elimination of processor idle time, while providing good memory efficiency.

  8. The Modeling of Vibration Damping in SMA Wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, D R; Kloucek, P; Seidman, T I

    Through a mathematical and computational model of the physical behavior of shape memory alloy wires, this study shows that localized heating and cooling of such materials provides an effective means of damping vibrational energy. The thermally induced pseudo-elastic behavior of a shape memory wire is modeled using a continuum thermodynamic model and solved computationally as described by the authors in [23]. Computational experiments confirm that up to 80% of an initial shock of vibrational energy can be eliminated at the onset of a thermally-induced phase transformation through the use of spatially-distributed transformation regions along the length of a shape memorymore » alloy wire.« less

  9. Multi-processor including data flow accelerator module

    DOEpatents

    Davidson, George S.; Pierce, Paul E.

    1990-01-01

    An accelerator module for a data flow computer includes an intelligent memory. The module is added to a multiprocessor arrangement and uses a shared tagged memory architecture in the data flow computer. The intelligent memory module assigns locations for holding data values in correspondence with arcs leading to a node in a data dependency graph. Each primitive computation is associated with a corresponding memory cell, including a number of slots for operands needed to execute a primitive computation, a primitive identifying pointer, and linking slots for distributing the result of the cell computation to other cells requiring that result as an operand. Circuitry is provided for utilizing tag bits to determine automatically when all operands required by a processor are available and for scheduling the primitive for execution in a queue. Each memory cell of the module may be associated with any of the primitives, and the particular primitive to be executed by the processor associated with the cell is identified by providing an index, such as the cell number for the primitive, to the primitive lookup table of starting addresses. The module thus serves to perform functions previously performed by a number of sections of data flow architectures and coexists with conventional shared memory therein. A multiprocessing system including the module operates in a hybrid mode, wherein the same processing modules are used to perform some processing in a sequential mode, under immediate control of an operating system, while performing other processing in a data flow mode.

  10. A mixed parallel strategy for the solution of coupled multi-scale problems at finite strains

    NASA Astrophysics Data System (ADS)

    Lopes, I. A. Rodrigues; Pires, F. M. Andrade; Reis, F. J. P.

    2018-02-01

    A mixed parallel strategy for the solution of homogenization-based multi-scale constitutive problems undergoing finite strains is proposed. The approach aims to reduce the computational time and memory requirements of non-linear coupled simulations that use finite element discretization at both scales (FE^2). In the first level of the algorithm, a non-conforming domain decomposition technique, based on the FETI method combined with a mortar discretization at the interface of macroscopic subdomains, is employed. A master-slave scheme, which distributes tasks by macroscopic element and adopts dynamic scheduling, is then used for each macroscopic subdomain composing the second level of the algorithm. This strategy allows the parallelization of FE^2 simulations in computers with either shared memory or distributed memory architectures. The proposed strategy preserves the quadratic rates of asymptotic convergence that characterize the Newton-Raphson scheme. Several examples are presented to demonstrate the robustness and efficiency of the proposed parallel strategy.

  11. Parallelization of NAS Benchmarks for Shared Memory Multiprocessors

    NASA Technical Reports Server (NTRS)

    Waheed, Abdul; Yan, Jerry C.; Saini, Subhash (Technical Monitor)

    1998-01-01

    This paper presents our experiences of parallelizing the sequential implementation of NAS benchmarks using compiler directives on SGI Origin2000 distributed shared memory (DSM) system. Porting existing applications to new high performance parallel and distributed computing platforms is a challenging task. Ideally, a user develops a sequential version of the application, leaving the task of porting to new generations of high performance computing systems to parallelization tools and compilers. Due to the simplicity of programming shared-memory multiprocessors, compiler developers have provided various facilities to allow the users to exploit parallelism. Native compilers on SGI Origin2000 support multiprocessing directives to allow users to exploit loop-level parallelism in their programs. Additionally, supporting tools can accomplish this process automatically and present the results of parallelization to the users. We experimented with these compiler directives and supporting tools by parallelizing sequential implementation of NAS benchmarks. Results reported in this paper indicate that with minimal effort, the performance gain is comparable with the hand-parallelized, carefully optimized, message-passing implementations of the same benchmarks.

  12. Parallel Computing for Probabilistic Response Analysis of High Temperature Composites

    NASA Technical Reports Server (NTRS)

    Sues, R. H.; Lua, Y. J.; Smith, M. D.

    1994-01-01

    The objective of this Phase I research was to establish the required software and hardware strategies to achieve large scale parallelism in solving PCM problems. To meet this objective, several investigations were conducted. First, we identified the multiple levels of parallelism in PCM and the computational strategies to exploit these parallelisms. Next, several software and hardware efficiency investigations were conducted. These involved the use of three different parallel programming paradigms and solution of two example problems on both a shared-memory multiprocessor and a distributed-memory network of workstations.

  13. Compiling for Application Specific Computational Acceleration in Reconfigurable Architectures Final Report CRADA No. TSB-2033-01

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Supinski, B.; Caliga, D.

    2017-09-28

    The primary objective of this project was to develop memory optimization technology to efficiently deliver data to, and distribute data within, the SRC-6's Field Programmable Gate Array- ("FPGA") based Multi-Adaptive Processors (MAPs). The hardware/software approach was to explore efficient MAP configurations and generate the compiler technology to exploit those configurations. This memory accessing technology represents an important step towards making reconfigurable symmetric multi-processor (SMP) architectures that will be a costeffective solution for large-scale scientific computing.

  14. In Situ Three-Dimensional Reciprocal-Space Mapping of Diffuse Scattering Intensity Distribution and Data Analysis for Precursor Phenomenon in Shape-Memory Alloy

    NASA Astrophysics Data System (ADS)

    Cheng, Tian-Le; Ma, Fengde D.; Zhou, Jie E.; Jennings, Guy; Ren, Yang; Jin, Yongmei M.; Wang, Yu U.

    2012-01-01

    Diffuse scattering contains rich information on various structural disorders, thus providing a useful means to study the nanoscale structural deviations from the average crystal structures determined by Bragg peak analysis. Extraction of maximal information from diffuse scattering requires concerted efforts in high-quality three-dimensional (3D) data measurement, quantitative data analysis and visualization, theoretical interpretation, and computer simulations. Such an endeavor is undertaken to study the correlated dynamic atomic position fluctuations caused by thermal vibrations (phonons) in precursor state of shape-memory alloys. High-quality 3D diffuse scattering intensity data around representative Bragg peaks are collected by using in situ high-energy synchrotron x-ray diffraction and two-dimensional digital x-ray detector (image plate). Computational algorithms and codes are developed to construct the 3D reciprocal-space map of diffuse scattering intensity distribution from the measured data, which are further visualized and quantitatively analyzed to reveal in situ physical behaviors. Diffuse scattering intensity distribution is explicitly formulated in terms of atomic position fluctuations to interpret the experimental observations and identify the most relevant physical mechanisms, which help set up reduced structural models with minimal parameters to be efficiently determined by computer simulations. Such combined procedures are demonstrated by a study of phonon softening phenomenon in precursor state and premartensitic transformation of Ni-Mn-Ga shape-memory alloy.

  15. Optimizing NEURON Simulation Environment Using Remote Memory Access with Recursive Doubling on Distributed Memory Systems.

    PubMed

    Shehzad, Danish; Bozkuş, Zeki

    2016-01-01

    Increase in complexity of neuronal network models escalated the efforts to make NEURON simulation environment efficient. The computational neuroscientists divided the equations into subnets amongst multiple processors for achieving better hardware performance. On parallel machines for neuronal networks, interprocessor spikes exchange consumes large section of overall simulation time. In NEURON for communication between processors Message Passing Interface (MPI) is used. MPI_Allgather collective is exercised for spikes exchange after each interval across distributed memory systems. The increase in number of processors though results in achieving concurrency and better performance but it inversely affects MPI_Allgather which increases communication time between processors. This necessitates improving communication methodology to decrease the spikes exchange time over distributed memory systems. This work has improved MPI_Allgather method using Remote Memory Access (RMA) by moving two-sided communication to one-sided communication, and use of recursive doubling mechanism facilitates achieving efficient communication between the processors in precise steps. This approach enhanced communication concurrency and has improved overall runtime making NEURON more efficient for simulation of large neuronal network models.

  16. Optimizing NEURON Simulation Environment Using Remote Memory Access with Recursive Doubling on Distributed Memory Systems

    PubMed Central

    Bozkuş, Zeki

    2016-01-01

    Increase in complexity of neuronal network models escalated the efforts to make NEURON simulation environment efficient. The computational neuroscientists divided the equations into subnets amongst multiple processors for achieving better hardware performance. On parallel machines for neuronal networks, interprocessor spikes exchange consumes large section of overall simulation time. In NEURON for communication between processors Message Passing Interface (MPI) is used. MPI_Allgather collective is exercised for spikes exchange after each interval across distributed memory systems. The increase in number of processors though results in achieving concurrency and better performance but it inversely affects MPI_Allgather which increases communication time between processors. This necessitates improving communication methodology to decrease the spikes exchange time over distributed memory systems. This work has improved MPI_Allgather method using Remote Memory Access (RMA) by moving two-sided communication to one-sided communication, and use of recursive doubling mechanism facilitates achieving efficient communication between the processors in precise steps. This approach enhanced communication concurrency and has improved overall runtime making NEURON more efficient for simulation of large neuronal network models. PMID:27413363

  17. Proceedings: Sisal `93

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feo, J.T.

    1993-10-01

    This report contain papers on: Programmability and performance issues; The case of an iterative partial differential equation solver; Implementing the kernal of the Australian Region Weather Prediction Model in Sisal; Even and quarter-even prime length symmetric FFTs and their Sisal Implementations; Top-down thread generation for Sisal; Overlapping communications and computations on NUMA architechtures; Compiling technique based on dataflow analysis for funtional programming language Valid; Copy elimination for true multidimensional arrays in Sisal 2.0; Increasing parallelism for an optimization that reduces copying in IF2 graphs; Caching in on Sisal; Cache performance of Sisal Vs. FORTRAN; FFT algorithms on a shared-memory multiprocessor;more » A parallel implementation of nonnumeric search problems in Sisal; Computer vision algorithms in Sisal; Compilation of Sisal for a high-performance data driven vector processor; Sisal on distributed memory machines; A virtual shared addressing system for distributed memory Sisal; Developing a high-performance FFT algorithm in Sisal for a vector supercomputer; Implementation issues for IF2 on a static data-flow architechture; and Systematic control of parallelism in array-based data-flow computation. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less

  18. An Interactive Simulation Program for Exploring Computational Models of Auto-Associative Memory.

    PubMed

    Fink, Christian G

    2017-01-01

    While neuroscience students typically learn about activity-dependent plasticity early in their education, they often struggle to conceptually connect modification at the synaptic scale with network-level neuronal dynamics, not to mention with their own everyday experience of recalling a memory. We have developed an interactive simulation program (based on the Hopfield model of auto-associative memory) that enables the user to visualize the connections generated by any pattern of neural activity, as well as to simulate the network dynamics resulting from such connectivity. An accompanying set of student exercises introduces the concepts of pattern completion, pattern separation, and sparse versus distributed neural representations. Results from a conceptual assessment administered before and after students worked through these exercises indicate that the simulation program is a useful pedagogical tool for illustrating fundamental concepts of computational models of memory.

  19. Aerodynamic Shape Optimization of Supersonic Aircraft Configurations via an Adjoint Formulation on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Reuther, James; Alonso, Juan Jose; Rimlinger, Mark J.; Jameson, Antony

    1996-01-01

    This work describes the application of a control theory-based aerodynamic shape optimization method to the problem of supersonic aircraft design. The design process is greatly accelerated through the use of both control theory and a parallel implementation on distributed memory computers. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods (13, 12, 44, 38). The resulting problem is then implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) Standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on higher order computational fluid dynamics methods (CFD). In our earlier studies, the serial implementation of this design method (19, 20, 21, 23, 39, 25, 40, 41, 42, 43, 9) was shown to be effective for the optimization of airfoils, wings, wing-bodies, and complex aircraft configurations using both the potential equation and the Euler equations (39, 25). In our most recent paper, the Euler method was extended to treat complete aircraft configurations via a new multiblock implementation. Furthermore, during the same conference, we also presented preliminary results demonstrating that the basic methodology could be ported to distributed memory parallel computing architectures [241. In this paper, our concem will be to demonstrate that the combined power of these new technologies can be used routinely in an industrial design environment by applying it to the case study of the design of typical supersonic transport configurations. A particular difficulty of this test case is posed by the propulsion/airframe integration.

  20. JuxtaView - A tool for interactive visualization of large imagery on scalable tiled displays

    USGS Publications Warehouse

    Krishnaprasad, N.K.; Vishwanath, V.; Venkataraman, S.; Rao, A.G.; Renambot, L.; Leigh, J.; Johnson, A.E.; Davis, B.

    2004-01-01

    JuxtaView is a cluster-based application for viewing ultra-high-resolution images on scalable tiled displays. We present in JuxtaView, a new parallel computing and distributed memory approach for out-of-core montage visualization, using LambdaRAM, a software-based network-level cache system. The ultimate goal of JuxtaView is to enable a user to interactively roam through potentially terabytes of distributed, spatially referenced image data such as those from electron microscopes, satellites and aerial photographs. In working towards this goal, we describe our first prototype implemented over a local area network, where the image is distributed using LambdaRAM, on the memory of all nodes of a PC cluster driving a tiled display wall. Aggressive pre-fetching schemes employed by LambdaRAM help to reduce latency involved in remote memory access. We compare LambdaRAM with a more traditional memory-mapped file approach for out-of-core visualization. ?? 2004 IEEE.

  1. Software/hardware distributed processing network supporting the Ada environment

    NASA Astrophysics Data System (ADS)

    Wood, Richard J.; Pryk, Zen

    1993-09-01

    A high-performance, fault-tolerant, distributed network has been developed, tested, and demonstrated. The network is based on the MIPS Computer Systems, Inc. R3000 Risc for processing, VHSIC ASICs for high speed, reliable, inter-node communications and compatible commercial memory and I/O boards. The network is an evolution of the Advanced Onboard Signal Processor (AOSP) architecture. It supports Ada application software with an Ada- implemented operating system. A six-node implementation (capable of expansion up to 256 nodes) of the RISC multiprocessor architecture provides 120 MIPS of scalar throughput, 96 Mbytes of RAM and 24 Mbytes of non-volatile memory. The network provides for all ground processing applications, has merit for space-qualified RISC-based network, and interfaces to advanced Computer Aided Software Engineering (CASE) tools for application software development.

  2. Equation solvers for distributed-memory computers

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.

    1994-01-01

    A large number of scientific and engineering problems require the rapid solution of large systems of simultaneous equations. The performance of parallel computers in this area now dwarfs traditional vector computers by nearly an order of magnitude. This talk describes the major issues involved in parallel equation solvers with particular emphasis on the Intel Paragon, IBM SP-1 and SP-2 processors.

  3. Multiplexed memory-insensitive quantum repeaters.

    PubMed

    Collins, O A; Jenkins, S D; Kuzmich, A; Kennedy, T A B

    2007-02-09

    Long-distance quantum communication via distant pairs of entangled quantum bits (qubits) is the first step towards secure message transmission and distributed quantum computing. To date, the most promising proposals require quantum repeaters to mitigate the exponential decrease in communication rate due to optical fiber losses. However, these are exquisitely sensitive to the lifetimes of their memory elements. We propose a multiplexing of quantum nodes that should enable the construction of quantum networks that are largely insensitive to the coherence times of the quantum memory elements.

  4. Array distribution in data-parallel programs

    NASA Technical Reports Server (NTRS)

    Chatterjee, Siddhartha; Gilbert, John R.; Schreiber, Robert; Sheffler, Thomas J.

    1994-01-01

    We consider distribution at compile time of the array data in a distributed-memory implementation of a data-parallel program written in a language like Fortran 90. We allow dynamic redistribution of data and define a heuristic algorithmic framework that chooses distribution parameters to minimize an estimate of program completion time. We represent the program as an alignment-distribution graph. We propose a divide-and-conquer algorithm for distribution that initially assigns a common distribution to each node of the graph and successively refines this assignment, taking computation, realignment, and redistribution costs into account. We explain how to estimate the effect of distribution on computation cost and how to choose a candidate set of distributions. We present the results of an implementation of our algorithms on several test problems.

  5. Contrasting single and multi-component working-memory systems in dual tasking.

    PubMed

    Nijboer, Menno; Borst, Jelmer; van Rijn, Hedderik; Taatgen, Niels

    2016-05-01

    Working memory can be a major source of interference in dual tasking. However, there is no consensus on whether this interference is the result of a single working memory bottleneck, or of interactions between different working memory components that together form a complete working-memory system. We report a behavioral and an fMRI dataset in which working memory requirements are manipulated during multitasking. We show that a computational cognitive model that assumes a distributed version of working memory accounts for both behavioral and neuroimaging data better than a model that takes a more centralized approach. The model's working memory consists of an attentional focus, declarative memory, and a subvocalized rehearsal mechanism. Thus, the data and model favor an account where working memory interference in dual tasking is the result of interactions between different resources that together form a working-memory system. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Representation-Independent Iteration of Sparse Data Arrays

    NASA Technical Reports Server (NTRS)

    James, Mark

    2007-01-01

    An approach is defined that describes a method of iterating over massively large arrays containing sparse data using an approach that is implementation independent of how the contents of the sparse arrays are laid out in memory. What is unique and important here is the decoupling of the iteration over the sparse set of array elements from how they are internally represented in memory. This enables this approach to be backward compatible with existing schemes for representing sparse arrays as well as new approaches. What is novel here is a new approach for efficiently iterating over sparse arrays that is independent of the underlying memory layout representation of the array. A functional interface is defined for implementing sparse arrays in any modern programming language with a particular focus for the Chapel programming language. Examples are provided that show the translation of a loop that computes a matrix vector product into this representation for both the distributed and not-distributed cases. This work is directly applicable to NASA and its High Productivity Computing Systems (HPCS) program that JPL and our current program are engaged in. The goal of this program is to create powerful, scalable, and economically viable high-powered computer systems suitable for use in national security and industry by 2010. This is important to NASA for its computationally intensive requirements for analyzing and understanding the volumes of science data from our returned missions.

  7. Cross-scale efficient tensor contractions for coupled cluster computations through multiple programming model backends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Khaled Z.; Epifanovsky, Evgeny; Williams, Samuel

    Coupled-cluster methods provide highly accurate models of molecular structure through explicit numerical calculation of tensors representing the correlation between electrons. These calculations are dominated by a sequence of tensor contractions, motivating the development of numerical libraries for such operations. While based on matrix–matrix multiplication, these libraries are specialized to exploit symmetries in the molecular structure and in electronic interactions, and thus reduce the size of the tensor representation and the complexity of contractions. The resulting algorithms are irregular and their parallelization has been previously achieved via the use of dynamic scheduling or specialized data decompositions. We introduce our efforts tomore » extend the Libtensor framework to work in the distributed memory environment in a scalable and energy-efficient manner. We achieve up to 240× speedup compared with the optimized shared memory implementation of Libtensor. We attain scalability to hundreds of thousands of compute cores on three distributed-memory architectures (Cray XC30 and XC40, and IBM Blue Gene/Q), and on a heterogeneous GPU-CPU system (Cray XK7). As the bottlenecks shift from being compute-bound DGEMM's to communication-bound collectives as the size of the molecular system scales, we adopt two radically different parallelization approaches for handling load-imbalance, tasking and bulk synchronous models. Nevertheless, we preserve a unified interface to both programming models to maintain the productivity of computational quantum chemists.« less

  8. Cross-scale efficient tensor contractions for coupled cluster computations through multiple programming model backends

    DOE PAGES

    Ibrahim, Khaled Z.; Epifanovsky, Evgeny; Williams, Samuel; ...

    2017-03-08

    Coupled-cluster methods provide highly accurate models of molecular structure through explicit numerical calculation of tensors representing the correlation between electrons. These calculations are dominated by a sequence of tensor contractions, motivating the development of numerical libraries for such operations. While based on matrix–matrix multiplication, these libraries are specialized to exploit symmetries in the molecular structure and in electronic interactions, and thus reduce the size of the tensor representation and the complexity of contractions. The resulting algorithms are irregular and their parallelization has been previously achieved via the use of dynamic scheduling or specialized data decompositions. We introduce our efforts tomore » extend the Libtensor framework to work in the distributed memory environment in a scalable and energy-efficient manner. We achieve up to 240× speedup compared with the optimized shared memory implementation of Libtensor. We attain scalability to hundreds of thousands of compute cores on three distributed-memory architectures (Cray XC30 and XC40, and IBM Blue Gene/Q), and on a heterogeneous GPU-CPU system (Cray XK7). As the bottlenecks shift from being compute-bound DGEMM's to communication-bound collectives as the size of the molecular system scales, we adopt two radically different parallelization approaches for handling load-imbalance, tasking and bulk synchronous models. Nevertheless, we preserve a unified interface to both programming models to maintain the productivity of computational quantum chemists.« less

  9. A Distributed Representation of Remembered Time

    DTIC Science & Technology

    2015-11-19

    hippocampus , time, and memory across scales. Journal of Experimental Psychology: General., 142(4), 1211-30. doi: 10.1037/a0033621 Howard, M. W...The hippocampus , time, and memory across scales. Journal of Experimental Psychology: General., 142(4), 1211-30. doi: 10.1037/a0033621 Howard, M. W...accomplished this goal by developing a computational framework that describes a wide range of functional cellular correlates in the hippocampus and

  10. Implementations of BLAST for parallel computers.

    PubMed

    Jülich, A

    1995-02-01

    The BLAST sequence comparison programs have been ported to a variety of parallel computers-the shared memory machine Cray Y-MP 8/864 and the distributed memory architectures Intel iPSC/860 and nCUBE. Additionally, the programs were ported to run on workstation clusters. We explain the parallelization techniques and consider the pros and cons of these methods. The BLAST programs are very well suited for parallelization for a moderate number of processors. We illustrate our results using the program blastp as an example. As input data for blastp, a 799 residue protein query sequence and the protein database PIR were used.

  11. Demonstration of Cost-Effective, High-Performance Computing at Performance and Reliability Levels Equivalent to a 1994 Vector Supercomputer

    NASA Technical Reports Server (NTRS)

    Babrauckas, Theresa

    2000-01-01

    The Affordable High Performance Computing (AHPC) project demonstrated that high-performance computing based on a distributed network of computer workstations is a cost-effective alternative to vector supercomputers for running CPU and memory intensive design and analysis tools. The AHPC project created an integrated system called a Network Supercomputer. By connecting computer work-stations through a network and utilizing the workstations when they are idle, the resulting distributed-workstation environment has the same performance and reliability levels as the Cray C90 vector Supercomputer at less than 25 percent of the C90 cost. In fact, the cost comparison between a Cray C90 Supercomputer and Sun workstations showed that the number of distributed networked workstations equivalent to a C90 costs approximately 8 percent of the C90.

  12. A class of designs for a sparse distributed memory

    NASA Technical Reports Server (NTRS)

    Jaeckel, Louis A.

    1989-01-01

    A general class of designs for a space distributed memory (SDM) is described. The author shows that Kanerva's original design and the selected-coordinate design are related, and that there is a series of possible intermediate designs between those two designs. In each such design, the set of addresses that activate a memory location is a sphere in the address space. We can also have hybrid designs, in which the memory locations may be a mixture of those found in the other designs. In some applications, the bits of the read and write addresses that will actually be used might be mostly zeros; that is, the addresses might lie on or near z hyperplane in the address space. The author describes a hyperplane design which is adapted to this situation and compares it to an adaptation of Kanerva's design. To study the performance of these designs, he computes the expected number of memory locations activated by both of two addresses.

  13. Shared prefetching to reduce execution skew in multi-threaded systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichenberger, Alexandre E; Gunnels, John A

    Mechanisms are provided for optimizing code to perform prefetching of data into a shared memory of a computing device that is shared by a plurality of threads that execute on the computing device. A memory stream of a portion of code that is shared by the plurality of threads is identified. A set of prefetch instructions is distributed across the plurality of threads. Prefetch instructions are inserted into the instruction sequences of the plurality of threads such that each instruction sequence has a separate sub-portion of the set of prefetch instructions, thereby generating optimized code. Executable code is generated basedmore » on the optimized code and stored in a storage device. The executable code, when executed, performs the prefetches associated with the distributed set of prefetch instructions in a shared manner across the plurality of threads.« less

  14. ClimateSpark: An in-memory distributed computing framework for big climate data analytics

    NASA Astrophysics Data System (ADS)

    Hu, Fei; Yang, Chaowei; Schnase, John L.; Duffy, Daniel Q.; Xu, Mengchao; Bowen, Michael K.; Lee, Tsengdar; Song, Weiwei

    2018-06-01

    The unprecedented growth of climate data creates new opportunities for climate studies, and yet big climate data pose a grand challenge to climatologists to efficiently manage and analyze big data. The complexity of climate data content and analytical algorithms increases the difficulty of implementing algorithms on high performance computing systems. This paper proposes an in-memory, distributed computing framework, ClimateSpark, to facilitate complex big data analytics and time-consuming computational tasks. Chunking data structure improves parallel I/O efficiency, while a spatiotemporal index is built for the chunks to avoid unnecessary data reading and preprocessing. An integrated, multi-dimensional, array-based data model (ClimateRDD) and ETL operations are developed to address big climate data variety by integrating the processing components of the climate data lifecycle. ClimateSpark utilizes Spark SQL and Apache Zeppelin to develop a web portal to facilitate the interaction among climatologists, climate data, analytic operations and computing resources (e.g., using SQL query and Scala/Python notebook). Experimental results show that ClimateSpark conducts different spatiotemporal data queries/analytics with high efficiency and data locality. ClimateSpark is easily adaptable to other big multiple-dimensional, array-based datasets in various geoscience domains.

  15. Iterative load-balancing method with multigrid level relaxation for particle simulation with short-range interactions

    NASA Astrophysics Data System (ADS)

    Furuichi, Mikito; Nishiura, Daisuke

    2017-10-01

    We developed dynamic load-balancing algorithms for Particle Simulation Methods (PSM) involving short-range interactions, such as Smoothed Particle Hydrodynamics (SPH), Moving Particle Semi-implicit method (MPS), and Discrete Element method (DEM). These are needed to handle billions of particles modeled in large distributed-memory computer systems. Our method utilizes flexible orthogonal domain decomposition, allowing the sub-domain boundaries in the column to be different for each row. The imbalances in the execution time between parallel logical processes are treated as a nonlinear residual. Load-balancing is achieved by minimizing the residual within the framework of an iterative nonlinear solver, combined with a multigrid technique in the local smoother. Our iterative method is suitable for adjusting the sub-domain frequently by monitoring the performance of each computational process because it is computationally cheaper in terms of communication and memory costs than non-iterative methods. Numerical tests demonstrated the ability of our approach to handle workload imbalances arising from a non-uniform particle distribution, differences in particle types, or heterogeneous computer architecture which was difficult with previously proposed methods. We analyzed the parallel efficiency and scalability of our method using Earth simulator and K-computer supercomputer systems.

  16. Distributed parallel messaging for multiprocessor systems

    DOEpatents

    Chen, Dong; Heidelberger, Philip; Salapura, Valentina; Senger, Robert M; Steinmacher-Burrow, Burhard; Sugawara, Yutaka

    2013-06-04

    A method and apparatus for distributed parallel messaging in a parallel computing system. The apparatus includes, at each node of a multiprocessor network, multiple injection messaging engine units and reception messaging engine units, each implementing a DMA engine and each supporting both multiple packet injection into and multiple reception from a network, in parallel. The reception side of the messaging unit (MU) includes a switch interface enabling writing of data of a packet received from the network to the memory system. The transmission side of the messaging unit, includes switch interface for reading from the memory system when injecting packets into the network.

  17. ABINIT: Plane-Wave-Based Density-Functional Theory on High Performance Computers

    NASA Astrophysics Data System (ADS)

    Torrent, Marc

    2014-03-01

    For several years, a continuous effort has been produced to adapt electronic structure codes based on Density-Functional Theory to the future computing architectures. Among these codes, ABINIT is based on a plane-wave description of the wave functions which allows to treat systems of any kind. Porting such a code on petascale architectures pose difficulties related to the many-body nature of the DFT equations. To improve the performances of ABINIT - especially for what concerns standard LDA/GGA ground-state and response-function calculations - several strategies have been followed: A full multi-level parallelisation MPI scheme has been implemented, exploiting all possible levels and distributing both computation and memory. It allows to increase the number of distributed processes and could not be achieved without a strong restructuring of the code. The core algorithm used to solve the eigen problem (``Locally Optimal Blocked Congugate Gradient''), a Blocked-Davidson-like algorithm, is based on a distribution of processes combining plane-waves and bands. In addition to the distributed memory parallelization, a full hybrid scheme has been implemented, using standard shared-memory directives (openMP/openACC) or porting some comsuming code sections to Graphics Processing Units (GPU). As no simple performance model exists, the complexity of use has been increased; the code efficiency strongly depends on the distribution of processes among the numerous levels. ABINIT is able to predict the performances of several process distributions and automatically choose the most favourable one. On the other hand, a big effort has been carried out to analyse the performances of the code on petascale architectures, showing which sections of codes have to be improved; they all are related to Matrix Algebra (diagonalisation, orthogonalisation). The different strategies employed to improve the code scalability will be described. They are based on an exploration of new diagonalization algorithm, as well as the use of external optimized librairies. Part of this work has been supported by the european Prace project (PaRtnership for Advanced Computing in Europe) in the framework of its workpackage 8.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Khaled Z.; Epifanovsky, Evgeny; Williams, Samuel W.

    Coupled-cluster methods provide highly accurate models of molecular structure by explicit numerical calculation of tensors representing the correlation between electrons. These calculations are dominated by a sequence of tensor contractions, motivating the development of numerical libraries for such operations. While based on matrix-matrix multiplication, these libraries are specialized to exploit symmetries in the molecular structure and in electronic interactions, and thus reduce the size of the tensor representation and the complexity of contractions. The resulting algorithms are irregular and their parallelization has been previously achieved via the use of dynamic scheduling or specialized data decompositions. We introduce our efforts tomore » extend the Libtensor framework to work in the distributed memory environment in a scalable and energy efficient manner. We achieve up to 240 speedup compared with the best optimized shared memory implementation. We attain scalability to hundreds of thousands of compute cores on three distributed-memory architectures, (Cray XC30&XC40, BlueGene/Q), and on a heterogeneous GPU-CPU system (Cray XK7). As the bottlenecks shift from being compute-bound DGEMM's to communication-bound collectives as the size of the molecular system scales, we adopt two radically different parallelization approaches for handling load-imbalance. Nevertheless, we preserve a uni ed interface to both programming models to maintain the productivity of computational quantum chemists.« less

  19. Distributed memory parallel Markov random fields using graph partitioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinemann, C.; Perciano, T.; Ushizima, D.

    Markov random fields (MRF) based algorithms have attracted a large amount of interest in image analysis due to their ability to exploit contextual information about data. Image data generated by experimental facilities, though, continues to grow larger and more complex, making it more difficult to analyze in a reasonable amount of time. Applying image processing algorithms to large datasets requires alternative approaches to circumvent performance problems. Aiming to provide scientists with a new tool to recover valuable information from such datasets, we developed a general purpose distributed memory parallel MRF-based image analysis framework (MPI-PMRF). MPI-PMRF overcomes performance and memory limitationsmore » by distributing data and computations across processors. The proposed approach was successfully tested with synthetic and experimental datasets. Additionally, the performance of the MPI-PMRF framework is analyzed through a detailed scalability study. We show that a performance increase is obtained while maintaining an accuracy of the segmentation results higher than 98%. The contributions of this paper are: (a) development of a distributed memory MRF framework; (b) measurement of the performance increase of the proposed approach; (c) verification of segmentation accuracy in both synthetic and experimental, real-world datasets« less

  20. Distributed Memory Parallel Computing with SEAWAT

    NASA Astrophysics Data System (ADS)

    Verkaik, J.; Huizer, S.; van Engelen, J.; Oude Essink, G.; Ram, R.; Vuik, K.

    2017-12-01

    Fresh groundwater reserves in coastal aquifers are threatened by sea-level rise, extreme weather conditions, increasing urbanization and associated groundwater extraction rates. To counteract these threats, accurate high-resolution numerical models are required to optimize the management of these precious reserves. The major model drawbacks are long run times and large memory requirements, limiting the predictive power of these models. Distributed memory parallel computing is an efficient technique for reducing run times and memory requirements, where the problem is divided over multiple processor cores. A new Parallel Krylov Solver (PKS) for SEAWAT is presented. PKS has recently been applied to MODFLOW and includes Conjugate Gradient (CG) and Biconjugate Gradient Stabilized (BiCGSTAB) linear accelerators. Both accelerators are preconditioned by an overlapping additive Schwarz preconditioner in a way that: a) subdomains are partitioned using Recursive Coordinate Bisection (RCB) load balancing, b) each subdomain uses local memory only and communicates with other subdomains by Message Passing Interface (MPI) within the linear accelerator, c) it is fully integrated in SEAWAT. Within SEAWAT, the PKS-CG solver replaces the Preconditioned Conjugate Gradient (PCG) solver for solving the variable-density groundwater flow equation and the PKS-BiCGSTAB solver replaces the Generalized Conjugate Gradient (GCG) solver for solving the advection-diffusion equation. PKS supports the third-order Total Variation Diminishing (TVD) scheme for computing advection. Benchmarks were performed on the Dutch national supercomputer (https://userinfo.surfsara.nl/systems/cartesius) using up to 128 cores, for a synthetic 3D Henry model (100 million cells) and the real-life Sand Engine model ( 10 million cells). The Sand Engine model was used to investigate the potential effect of the long-term morphological evolution of a large sand replenishment and climate change on fresh groundwater resources. Speed-ups up to 40 were obtained with the new PKS solver.

  1. ClimateSpark: An In-memory Distributed Computing Framework for Big Climate Data Analytics

    NASA Astrophysics Data System (ADS)

    Hu, F.; Yang, C. P.; Duffy, D.; Schnase, J. L.; Li, Z.

    2016-12-01

    Massive array-based climate data is being generated from global surveillance systems and model simulations. They are widely used to analyze the environment problems, such as climate changes, natural hazards, and public health. However, knowing the underlying information from these big climate datasets is challenging due to both data- and computing- intensive issues in data processing and analyzing. To tackle the challenges, this paper proposes ClimateSpark, an in-memory distributed computing framework to support big climate data processing. In ClimateSpark, the spatiotemporal index is developed to enable Apache Spark to treat the array-based climate data (e.g. netCDF4, HDF4) as native formats, which are stored in Hadoop Distributed File System (HDFS) without any preprocessing. Based on the index, the spatiotemporal query services are provided to retrieve dataset according to a defined geospatial and temporal bounding box. The data subsets will be read out, and a data partition strategy will be applied to equally split the queried data to each computing node, and store them in memory as climateRDDs for processing. By leveraging Spark SQL and User Defined Function (UDFs), the climate data analysis operations can be conducted by the intuitive SQL language. ClimateSpark is evaluated by two use cases using the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) climate reanalysis dataset. One use case is to conduct the spatiotemporal query and visualize the subset results in animation; the other one is to compare different climate model outputs using Taylor-diagram service. Experimental results show that ClimateSpark can significantly accelerate data query and processing, and enable the complex analysis services served in the SQL-style fashion.

  2. Memory Network For Distributed Data Processors

    NASA Technical Reports Server (NTRS)

    Bolen, David; Jensen, Dean; Millard, ED; Robinson, Dave; Scanlon, George

    1992-01-01

    Universal Memory Network (UMN) is modular, digital data-communication system enabling computers with differing bus architectures to share 32-bit-wide data between locations up to 3 km apart with less than one millisecond of latency. Makes it possible to design sophisticated real-time and near-real-time data-processing systems without data-transfer "bottlenecks". This enterprise network permits transmission of volume of data equivalent to an encyclopedia each second. Facilities benefiting from Universal Memory Network include telemetry stations, simulation facilities, power-plants, and large laboratories or any facility sharing very large volumes of data. Main hub of UMN is reflection center including smaller hubs called Shared Memory Interfaces.

  3. Realization of reliable solid-state quantum memory for photonic polarization qubit.

    PubMed

    Zhou, Zong-Quan; Lin, Wei-Bin; Yang, Ming; Li, Chuan-Feng; Guo, Guang-Can

    2012-05-11

    Faithfully storing an unknown quantum light state is essential to advanced quantum communication and distributed quantum computation applications. The required quantum memory must have high fidelity to improve the performance of a quantum network. Here we report the reversible transfer of photonic polarization states into collective atomic excitation in a compact solid-state device. The quantum memory is based on an atomic frequency comb (AFC) in rare-earth ion-doped crystals. We obtain up to 0.999 process fidelity for the storage and retrieval process of single-photon-level coherent pulse. This reliable quantum memory is a crucial step toward quantum networks based on solid-state devices.

  4. Achieving supercomputer performance for neural net simulation with an array of digital signal processors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, U.A.; Baumle, B.; Kohler, P.

    1992-10-01

    Music, a DSP-based system with a parallel distributed-memory architecture, provides enormous computing power yet retains the flexibility of a general-purpose computer. Reaching a peak performance of 2.7 Gflops at a significantly lower cost, power consumption, and space requirement than conventional supercomputers, Music is well suited to computationally intensive applications such as neural network simulation. 12 refs., 9 figs., 2 tabs.

  5. Static analysis of the hull plate using the finite element method

    NASA Astrophysics Data System (ADS)

    Ion, A.

    2015-11-01

    This paper aims at presenting the static analysis for two levels of a container ship's construction as follows: the first level is at the girder / hull plate and the second level is conducted at the entire strength hull of the vessel. This article will describe the work for the static analysis of a hull plate. We shall use the software package ANSYS Mechanical 14.5. The program is run on a computer with four Intel Xeon X5260 CPU processors at 3.33 GHz, 32 GB memory installed. In terms of software, the shared memory parallel version of ANSYS refers to running ANSYS across multiple cores on a SMP system. The distributed memory parallel version of ANSYS (Distributed ANSYS) refers to running ANSYS across multiple processors on SMP systems or DMP systems.

  6. SU-F-BRD-09: A Random Walk Model Algorithm for Proton Dose Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, W; Farr, J

    2015-06-15

    Purpose: To develop a random walk model algorithm for calculating proton dose with balanced computation burden and accuracy. Methods: Random walk (RW) model is sometimes referred to as a density Monte Carlo (MC) simulation. In MC proton dose calculation, the use of Gaussian angular distribution of protons due to multiple Coulomb scatter (MCS) is convenient, but in RW the use of Gaussian angular distribution requires an extremely large computation and memory. Thus, our RW model adopts spatial distribution from the angular one to accelerate the computation and to decrease the memory usage. From the physics and comparison with the MCmore » simulations, we have determined and analytically expressed those critical variables affecting the dose accuracy in our RW model. Results: Besides those variables such as MCS, stopping power, energy spectrum after energy absorption etc., which have been extensively discussed in literature, the following variables were found to be critical in our RW model: (1) inverse squared law that can significantly reduce the computation burden and memory, (2) non-Gaussian spatial distribution after MCS, and (3) the mean direction of scatters at each voxel. In comparison to MC results, taken as reference, for a water phantom irradiated by mono-energetic proton beams from 75 MeV to 221.28 MeV, the gamma test pass rate was 100% for the 2%/2mm/10% criterion. For a highly heterogeneous phantom consisting of water embedded by a 10 cm cortical bone and a 10 cm lung in the Bragg peak region of the proton beam, the gamma test pass rate was greater than 98% for the 3%/3mm/10% criterion. Conclusion: We have determined key variables in our RW model for proton dose calculation. Compared with commercial pencil beam algorithms, our RW model much improves the dose accuracy in heterogeneous regions, and is about 10 times faster than MC simulations.« less

  7. Remembered or Forgotten?—An EEG-Based Computational Prediction Approach

    PubMed Central

    Sun, Xuyun; Qian, Cunle; Chen, Zhongqin; Wu, Zhaohui; Luo, Benyan; Pan, Gang

    2016-01-01

    Prediction of memory performance (remembered or forgotten) has various potential applications not only for knowledge learning but also for disease diagnosis. Recently, subsequent memory effects (SMEs)—the statistical differences in electroencephalography (EEG) signals before or during learning between subsequently remembered and forgotten events—have been found. This finding indicates that EEG signals convey the information relevant to memory performance. In this paper, based on SMEs we propose a computational approach to predict memory performance of an event from EEG signals. We devise a convolutional neural network for EEG, called ConvEEGNN, to predict subsequently remembered and forgotten events from EEG recorded during memory process. With the ConvEEGNN, prediction of memory performance can be achieved by integrating two main stages: feature extraction and classification. To verify the proposed approach, we employ an auditory memory task to collect EEG signals from scalp electrodes. For ConvEEGNN, the average prediction accuracy was 72.07% by using EEG data from pre-stimulus and during-stimulus periods, outperforming other approaches. It was observed that signals from pre-stimulus period and those from during-stimulus period had comparable contributions to memory performance. Furthermore, the connection weights of ConvEEGNN network can reveal prominent channels, which are consistent with the distribution of SME studied previously. PMID:27973531

  8. Parallel computing method for simulating hydrological processesof large rivers under climate change

    NASA Astrophysics Data System (ADS)

    Wang, H.; Chen, Y.

    2016-12-01

    Climate change is one of the proverbial global environmental problems in the world.Climate change has altered the watershed hydrological processes in time and space distribution, especially in worldlarge rivers.Watershed hydrological process simulation based on physically based distributed hydrological model can could have better results compared with the lumped models.However, watershed hydrological process simulation includes large amount of calculations, especially in large rivers, thus needing huge computing resources that may not be steadily available for the researchers or at high expense, this seriously restricted the research and application. To solve this problem, the current parallel method are mostly parallel computing in space and time dimensions.They calculate the natural features orderly thatbased on distributed hydrological model by grid (unit, a basin) from upstream to downstream.This articleproposes ahigh-performancecomputing method of hydrological process simulation with high speedratio and parallel efficiency.It combinedthe runoff characteristics of time and space of distributed hydrological model withthe methods adopting distributed data storage, memory database, distributed computing, parallel computing based on computing power unit.The method has strong adaptability and extensibility,which means it canmake full use of the computing and storage resources under the condition of limited computing resources, and the computing efficiency can be improved linearly with the increase of computing resources .This method can satisfy the parallel computing requirements ofhydrological process simulation in small, medium and large rivers.

  9. Synaptic clustering within dendrites: an emerging theory of memory formation

    PubMed Central

    Kastellakis, George; Cai, Denise J.; Mednick, Sara C.; Silva, Alcino J.; Poirazi, Panayiota

    2015-01-01

    It is generally accepted that complex memories are stored in distributed representations throughout the brain, however the mechanisms underlying these representations are not understood. Here, we review recent findings regarding the subcellular mechanisms implicated in memory formation, which provide evidence for a dendrite-centered theory of memory. Plasticity-related phenomena which affect synaptic properties, such as synaptic tagging and capture, synaptic clustering, branch strength potentiation and spinogenesis provide the foundation for a model of memory storage that relies heavily on processes operating at the dendrite level. The emerging picture suggests that clusters of functionally related synapses may serve as key computational and memory storage units in the brain. We discuss both experimental evidence and theoretical models that support this hypothesis and explore its advantages for neuronal function. PMID:25576663

  10. Digital Holographic Memories

    NASA Astrophysics Data System (ADS)

    Hesselink, Lambertus; Orlov, Sergei S.

    Optical data storage is a phenomenal success story. Since its introduction in the early 1980s, optical data storage devices have evolved from being focused primarily on music distribution, to becoming the prevailing data distribution and recording medium. Each year, billions of optical recordable and prerecorded disks are sold worldwide. Almost every computer today is shipped with a CD or DVD drive installed.

  11. Research in Computational Aeroscience Applications Implemented on Advanced Parallel Computing Systems

    NASA Technical Reports Server (NTRS)

    Wigton, Larry

    1996-01-01

    Improving the numerical linear algebra routines for use in new Navier-Stokes codes, specifically Tim Barth's unstructured grid code, with spin-offs to TRANAIR is reported. A fast distance calculation routine for Navier-Stokes codes using the new one-equation turbulence models is written. The primary focus of this work was devoted to improving matrix-iterative methods. New algorithms have been developed which activate the full potential of classical Cray-class computers as well as distributed-memory parallel computers.

  12. Implementation and performance of FDPS: a framework for developing parallel particle simulation codes

    NASA Astrophysics Data System (ADS)

    Iwasawa, Masaki; Tanikawa, Ataru; Hosono, Natsuki; Nitadori, Keigo; Muranushi, Takayuki; Makino, Junichiro

    2016-08-01

    We present the basic idea, implementation, measured performance, and performance model of FDPS (Framework for Developing Particle Simulators). FDPS is an application-development framework which helps researchers to develop simulation programs using particle methods for large-scale distributed-memory parallel supercomputers. A particle-based simulation program for distributed-memory parallel computers needs to perform domain decomposition, exchange of particles which are not in the domain of each computing node, and gathering of the particle information in other nodes which are necessary for interaction calculation. Also, even if distributed-memory parallel computers are not used, in order to reduce the amount of computation, algorithms such as the Barnes-Hut tree algorithm or the Fast Multipole Method should be used in the case of long-range interactions. For short-range interactions, some methods to limit the calculation to neighbor particles are required. FDPS provides all of these functions which are necessary for efficient parallel execution of particle-based simulations as "templates," which are independent of the actual data structure of particles and the functional form of the particle-particle interaction. By using FDPS, researchers can write their programs with the amount of work necessary to write a simple, sequential and unoptimized program of O(N2) calculation cost, and yet the program, once compiled with FDPS, will run efficiently on large-scale parallel supercomputers. A simple gravitational N-body program can be written in around 120 lines. We report the actual performance of these programs and the performance model. The weak scaling performance is very good, and almost linear speed-up was obtained for up to the full system of the K computer. The minimum calculation time per timestep is in the range of 30 ms (N = 107) to 300 ms (N = 109). These are currently limited by the time for the calculation of the domain decomposition and communication necessary for the interaction calculation. We discuss how we can overcome these bottlenecks.

  13. A computationally efficient ductile damage model accounting for nucleation and micro-inertia at high triaxialities

    DOE PAGES

    Versino, Daniele; Bronkhorst, Curt Allan

    2018-01-31

    The computational formulation of a micro-mechanical material model for the dynamic failure of ductile metals is presented in this paper. The statistical nature of porosity initiation is accounted for by introducing an arbitrary probability density function which describes the pores nucleation pressures. Each micropore within the representative volume element is modeled as a thick spherical shell made of plastically incompressible material. The treatment of porosity by a distribution of thick-walled spheres also allows for the inclusion of micro-inertia effects under conditions of shock and dynamic loading. The second order ordinary differential equation governing the microscopic porosity evolution is solved withmore » a robust implicit procedure. A new Chebyshev collocation method is employed to approximate the porosity distribution and remapping is used to optimize memory usage. The adaptive approximation of the porosity distribution leads to a reduction of computational time and memory usage of up to two orders of magnitude. Moreover, the proposed model affords consistent performance: changing the nucleation pressure probability density function and/or the applied strain rate does not reduce accuracy or computational efficiency of the material model. The numerical performance of the model and algorithms presented is tested against three problems for high density tantalum: single void, one-dimensional uniaxial strain, and two-dimensional plate impact. Here, the results using the integration and algorithmic advances suggest a significant improvement in computational efficiency and accuracy over previous treatments for dynamic loading conditions.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Versino, Daniele; Bronkhorst, Curt Allan

    The computational formulation of a micro-mechanical material model for the dynamic failure of ductile metals is presented in this paper. The statistical nature of porosity initiation is accounted for by introducing an arbitrary probability density function which describes the pores nucleation pressures. Each micropore within the representative volume element is modeled as a thick spherical shell made of plastically incompressible material. The treatment of porosity by a distribution of thick-walled spheres also allows for the inclusion of micro-inertia effects under conditions of shock and dynamic loading. The second order ordinary differential equation governing the microscopic porosity evolution is solved withmore » a robust implicit procedure. A new Chebyshev collocation method is employed to approximate the porosity distribution and remapping is used to optimize memory usage. The adaptive approximation of the porosity distribution leads to a reduction of computational time and memory usage of up to two orders of magnitude. Moreover, the proposed model affords consistent performance: changing the nucleation pressure probability density function and/or the applied strain rate does not reduce accuracy or computational efficiency of the material model. The numerical performance of the model and algorithms presented is tested against three problems for high density tantalum: single void, one-dimensional uniaxial strain, and two-dimensional plate impact. Here, the results using the integration and algorithmic advances suggest a significant improvement in computational efficiency and accuracy over previous treatments for dynamic loading conditions.« less

  15. Evaluation of the Effectiveness of the Storage and Distribution Entry-Level Computer-Based Training (CBT) Program

    DTIC Science & Technology

    1990-09-01

    learning occurs when this final Zink is made into long-term memory (13:79). Cognitive scientists realize the role of the trainee as a passive receiver of...of property on the computer, and when they did, this piece of paperwork printed out on their printer . Someone from the receiving section brought this

  16. Run-time scheduling and execution of loops on message passing machines

    NASA Technical Reports Server (NTRS)

    Crowley, Kay; Saltz, Joel; Mirchandaney, Ravi; Berryman, Harry

    1989-01-01

    Sparse system solvers and general purpose codes for solving partial differential equations are examples of the many types of problems whose irregularity can result in poor performance on distributed memory machines. Often, the data structures used in these problems are very flexible. Crucial details concerning loop dependences are encoded in these structures rather than being explicitly represented in the program. Good methods for parallelizing and partitioning these types of problems require assignment of computations in rather arbitrary ways. Naive implementations of programs on distributed memory machines requiring general loop partitions can be extremely inefficient. Instead, the scheduling mechanism needs to capture the data reference patterns of the loops in order to partition the problem. First, the indices assigned to each processor must be locally numbered. Next, it is necessary to precompute what information is needed by each processor at various points in the computation. The precomputed information is then used to generate an execution template designed to carry out the computation, communication, and partitioning of data, in an optimized manner. The design is presented for a general preprocessor and schedule executer, the structures of which do not vary, even though the details of the computation and of the type of information are problem dependent.

  17. Run-time scheduling and execution of loops on message passing machines

    NASA Technical Reports Server (NTRS)

    Saltz, Joel; Crowley, Kathleen; Mirchandaney, Ravi; Berryman, Harry

    1990-01-01

    Sparse system solvers and general purpose codes for solving partial differential equations are examples of the many types of problems whose irregularity can result in poor performance on distributed memory machines. Often, the data structures used in these problems are very flexible. Crucial details concerning loop dependences are encoded in these structures rather than being explicitly represented in the program. Good methods for parallelizing and partitioning these types of problems require assignment of computations in rather arbitrary ways. Naive implementations of programs on distributed memory machines requiring general loop partitions can be extremely inefficient. Instead, the scheduling mechanism needs to capture the data reference patterns of the loops in order to partition the problem. First, the indices assigned to each processor must be locally numbered. Next, it is necessary to precompute what information is needed by each processor at various points in the computation. The precomputed information is then used to generate an execution template designed to carry out the computation, communication, and partitioning of data, in an optimized manner. The design is presented for a general preprocessor and schedule executer, the structures of which do not vary, even though the details of the computation and of the type of information are problem dependent.

  18. Parallel discrete event simulation using shared memory

    NASA Technical Reports Server (NTRS)

    Reed, Daniel A.; Malony, Allen D.; Mccredie, Bradley D.

    1988-01-01

    With traditional event-list techniques, evaluating a detailed discrete-event simulation-model can often require hours or even days of computation time. By eliminating the event list and maintaining only sufficient synchronization to ensure causality, parallel simulation can potentially provide speedups that are linear in the numbers of processors. A set of shared-memory experiments, using the Chandy-Misra distributed-simulation algorithm, to simulate networks of queues is presented. Parameters of the study include queueing network topology and routing probabilities, number of processors, and assignment of network nodes to processors. These experiments show that Chandy-Misra distributed simulation is a questionable alternative to sequential-simulation of most queueing network models.

  19. Fog computing job scheduling optimization based on bees swarm

    NASA Astrophysics Data System (ADS)

    Bitam, Salim; Zeadally, Sherali; Mellouk, Abdelhamid

    2018-04-01

    Fog computing is a new computing architecture, composed of a set of near-user edge devices called fog nodes, which collaborate together in order to perform computational services such as running applications, storing an important amount of data, and transmitting messages. Fog computing extends cloud computing by deploying digital resources at the premise of mobile users. In this new paradigm, management and operating functions, such as job scheduling aim at providing high-performance, cost-effective services requested by mobile users and executed by fog nodes. We propose a new bio-inspired optimization approach called Bees Life Algorithm (BLA) aimed at addressing the job scheduling problem in the fog computing environment. Our proposed approach is based on the optimized distribution of a set of tasks among all the fog computing nodes. The objective is to find an optimal tradeoff between CPU execution time and allocated memory required by fog computing services established by mobile users. Our empirical performance evaluation results demonstrate that the proposal outperforms the traditional particle swarm optimization and genetic algorithm in terms of CPU execution time and allocated memory.

  20. Sparse distributed memory

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1989-01-01

    Sparse distributed memory was proposed be Pentti Kanerva as a realizable architecture that could store large patterns and retrieve them based on partial matches with patterns representing current sensory inputs. This memory exhibits behaviors, both in theory and in experiment, that resemble those previously unapproached by machines - e.g., rapid recognition of faces or odors, discovery of new connections between seemingly unrelated ideas, continuation of a sequence of events when given a cue from the middle, knowing that one doesn't know, or getting stuck with an answer on the tip of one's tongue. These behaviors are now within reach of machines that can be incorporated into the computing systems of robots capable of seeing, talking, and manipulating. Kanerva's theory is a break with the Western rationalistic tradition, allowing a new interpretation of learning and cognition that respects biology and the mysteries of individual human beings.

  1. A parallel Monte Carlo code for planar and SPECT imaging: implementation, verification and applications in (131)I SPECT.

    PubMed

    Dewaraja, Yuni K; Ljungberg, Michael; Majumdar, Amitava; Bose, Abhijit; Koral, Kenneth F

    2002-02-01

    This paper reports the implementation of the SIMIND Monte Carlo code on an IBM SP2 distributed memory parallel computer. Basic aspects of running Monte Carlo particle transport calculations on parallel architectures are described. Our parallelization is based on equally partitioning photons among the processors and uses the Message Passing Interface (MPI) library for interprocessor communication and the Scalable Parallel Random Number Generator (SPRNG) to generate uncorrelated random number streams. These parallelization techniques are also applicable to other distributed memory architectures. A linear increase in computing speed with the number of processors is demonstrated for up to 32 processors. This speed-up is especially significant in Single Photon Emission Computed Tomography (SPECT) simulations involving higher energy photon emitters, where explicit modeling of the phantom and collimator is required. For (131)I, the accuracy of the parallel code is demonstrated by comparing simulated and experimental SPECT images from a heart/thorax phantom. Clinically realistic SPECT simulations using the voxel-man phantom are carried out to assess scatter and attenuation correction.

  2. Research in Parallel Algorithms and Software for Computational Aerosciences

    NASA Technical Reports Server (NTRS)

    Domel, Neal D.

    1996-01-01

    Phase I is complete for the development of a Computational Fluid Dynamics parallel code with automatic grid generation and adaptation for the Euler analysis of flow over complex geometries. SPLITFLOW, an unstructured Cartesian grid code developed at Lockheed Martin Tactical Aircraft Systems, has been modified for a distributed memory/massively parallel computing environment. The parallel code is operational on an SGI network, Cray J90 and C90 vector machines, SGI Power Challenge, and Cray T3D and IBM SP2 massively parallel machines. Parallel Virtual Machine (PVM) is the message passing protocol for portability to various architectures. A domain decomposition technique was developed which enforces dynamic load balancing to improve solution speed and memory requirements. A host/node algorithm distributes the tasks. The solver parallelizes very well, and scales with the number of processors. Partially parallelized and non-parallelized tasks consume most of the wall clock time in a very fine grain environment. Timing comparisons on a Cray C90 demonstrate that Parallel SPLITFLOW runs 2.4 times faster on 8 processors than its non-parallel counterpart autotasked over 8 processors.

  3. Research in Parallel Algorithms and Software for Computational Aerosciences

    NASA Technical Reports Server (NTRS)

    Domel, Neal D.

    1996-01-01

    Phase 1 is complete for the development of a computational fluid dynamics CFD) parallel code with automatic grid generation and adaptation for the Euler analysis of flow over complex geometries. SPLITFLOW, an unstructured Cartesian grid code developed at Lockheed Martin Tactical Aircraft Systems, has been modified for a distributed memory/massively parallel computing environment. The parallel code is operational on an SGI network, Cray J90 and C90 vector machines, SGI Power Challenge, and Cray T3D and IBM SP2 massively parallel machines. Parallel Virtual Machine (PVM) is the message passing protocol for portability to various architectures. A domain decomposition technique was developed which enforces dynamic load balancing to improve solution speed and memory requirements. A host/node algorithm distributes the tasks. The solver parallelizes very well, and scales with the number of processors. Partially parallelized and non-parallelized tasks consume most of the wall clock time in a very fine grain environment. Timing comparisons on a Cray C90 demonstrate that Parallel SPLITFLOW runs 2.4 times faster on 8 processors than its non-parallel counterpart autotasked over 8 processors.

  4. Low latency messages on distributed memory multiprocessors

    NASA Technical Reports Server (NTRS)

    Rosing, Matthew; Saltz, Joel

    1993-01-01

    Many of the issues in developing an efficient interface for communication on distributed memory machines are described and a portable interface is proposed. Although the hardware component of message latency is less than one microsecond on many distributed memory machines, the software latency associated with sending and receiving typed messages is on the order of 50 microseconds. The reason for this imbalance is that the software interface does not match the hardware. By changing the interface to match the hardware more closely, applications with fine grained communication can be put on these machines. Based on several tests that were run on the iPSC/860, an interface that will better match current distributed memory machines is proposed. The model used in the proposed interface consists of a computation processor and a communication processor on each node. Communication between these processors and other nodes in the system is done through a buffered network. Information that is transmitted is either data or procedures to be executed on the remote processor. The dual processor system is better suited for efficiently handling asynchronous communications compared to a single processor system. The ability to send data or procedure is very flexible for minimizing message latency, based on the type of communication being performed. The test performed and the proposed interface are described.

  5. A study of the viability of exploiting memory content similarity to improve resilience to memory errors

    DOE PAGES

    Levy, Scott; Ferreira, Kurt B.; Bridges, Patrick G.; ...

    2014-12-09

    Building the next-generation of extreme-scale distributed systems will require overcoming several challenges related to system resilience. As the number of processors in these systems grow, the failure rate increases proportionally. One of the most common sources of failure in large-scale systems is memory. In this paper, we propose a novel runtime for transparently exploiting memory content similarity to improve system resilience by reducing the rate at which memory errors lead to node failure. We evaluate the viability of this approach by examining memory snapshots collected from eight high-performance computing (HPC) applications and two important HPC operating systems. Based on themore » characteristics of the similarity uncovered, we conclude that our proposed approach shows promise for addressing system resilience in large-scale systems.« less

  6. A fast multi-resolution approach to tomographic PIV

    NASA Astrophysics Data System (ADS)

    Discetti, Stefano; Astarita, Tommaso

    2012-03-01

    Tomographic particle image velocimetry (Tomo-PIV) is a recently developed three-component, three-dimensional anemometric non-intrusive measurement technique, based on an optical tomographic reconstruction applied to simultaneously recorded images of the distribution of light intensity scattered by seeding particles immersed into the flow. Nowadays, the reconstruction process is carried out mainly by iterative algebraic reconstruction techniques, well suited to handle the problem of limited number of views, but computationally intensive and memory demanding. The adoption of the multiplicative algebraic reconstruction technique (MART) has become more and more accepted. In the present work, a novel multi-resolution approach is proposed, relying on the adoption of a coarser grid in the first step of the reconstruction to obtain a fast estimation of a reliable and accurate first guess. A performance assessment, carried out on three-dimensional computer-generated distributions of particles, shows a substantial acceleration of the reconstruction process for all the tested seeding densities with respect to the standard method based on 5 MART iterations; a relevant reduction in the memory storage is also achieved. Furthermore, a slight accuracy improvement is noticed. A modified version, improved by a multiplicative line of sight estimation of the first guess on the compressed configuration, is also tested, exhibiting a further remarkable decrease in both memory storage and computational effort, mostly at the lowest tested seeding densities, while retaining the same performances in terms of accuracy.

  7. Use of Massive Parallel Computing Libraries in the Context of Global Gravity Field Determination from Satellite Data

    NASA Astrophysics Data System (ADS)

    Brockmann, J. M.; Schuh, W.-D.

    2011-07-01

    The estimation of the global Earth's gravity field parametrized as a finite spherical harmonic series is computationally demanding. The computational effort depends on the one hand on the maximal resolution of the spherical harmonic expansion (i.e. the number of parameters to be estimated) and on the other hand on the number of observations (which are several millions for e.g. observations from the GOCE satellite missions). To circumvent these restrictions, a massive parallel software based on high-performance computing (HPC) libraries as ScaLAPACK, PBLAS and BLACS was designed in the context of GOCE HPF WP6000 and the GOCO consortium. A prerequisite for the use of these libraries is that all matrices are block-cyclic distributed on a processor grid comprised by a large number of (distributed memory) computers. Using this set of standard HPC libraries has the benefit that once the matrices are distributed across the computer cluster, a huge set of efficient and highly scalable linear algebra operations can be used.

  8. Robust uncertainty evaluation for system identification on distributed wireless platforms

    NASA Astrophysics Data System (ADS)

    Crinière, Antoine; Döhler, Michael; Le Cam, Vincent; Mevel, Laurent

    2016-04-01

    Health monitoring of civil structures by system identification procedures from automatic control is now accepted as a valid approach. These methods provide frequencies and modeshapes from the structure over time. For a continuous monitoring the excitation of a structure is usually ambient, thus unknown and assumed to be noise. Hence, all estimates from the vibration measurements are realizations of random variables with inherent uncertainty due to (unknown) process and measurement noise and finite data length. The underlying algorithms are usually running under Matlab under the assumption of large memory pool and considerable computational power. Even under these premises, computational and memory usage are heavy and not realistic for being embedded in on-site sensor platforms such as the PEGASE platform. Moreover, the current push for distributed wireless systems calls for algorithmic adaptation for lowering data exchanges and maximizing local processing. Finally, the recent breakthrough in system identification allows us to process both frequency information and its related uncertainty together from one and only one data sequence, at the expense of computational and memory explosion that require even more careful attention than before. The current approach will focus on presenting a system identification procedure called multi-setup subspace identification that allows to process both frequencies and their related variances from a set of interconnected wireless systems with all computation running locally within the limited memory pool of each system before being merged on a host supervisor. Careful attention will be given to data exchanges and I/O satisfying OGC standards, as well as minimizing memory footprints and maximizing computational efficiency. Those systems are built in a way of autonomous operations on field and could be later included in a wide distributed architecture such as the Cloud2SM project. The usefulness of these strategies is illustrated on data from a progressive damage action on a prestressed concrete bridge. References [1] E. Carden and P. Fanning. Vibration based condition monitoring: a review. Structural Health Monitoring, 3(4):355-377, 2004. [2] M. Döhler and L. Mevel. Efficient multi-order uncertainty computation for stochastic subspace identification. Mechanical Systems and Signal Processing, 38(2):346-366, 2013. [3] M.Döhler, L. Mevel. Modular subspace-based system identification from multi-setup measurements. IEEE Transactions on Automatic Control, 57(11):2951-2956, 2012. [4] M. Döhler, X.-B. Lam, and L. Mevel. Uncertainty quantification for modal parameters from stochastic subspace identification on multi-setup measurements. MechanicalSystems and Signal Processing, 36(2):562-581, 2013. [5] A Crinière, J Dumoulin, L Mevel, G Andrade-Barosso, M Simonin. The Cloud2SM Project.European Geosciences Union General Assembly (EGU2015), Apr 2015, Vienne, Austria. 2015.

  9. High Performance Data Transfer for Distributed Data Intensive Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Chin; Cottrell, R 'Les' A.; Hanushevsky, Andrew B.

    We report on the development of ZX software providing high performance data transfer and encryption. The design scales in: computation power, network interfaces, and IOPS while carefully balancing the available resources. Two U.S. patent-pending algorithms help tackle data sets containing lots of small files and very large files, and provide insensitivity to network latency. It has a cluster-oriented architecture, using peer-to-peer technologies to ease deployment, operation, usage, and resource discovery. Its unique optimizations enable effective use of flash memory. Using a pair of existing data transfer nodes at SLAC and NERSC, we compared its performance to that of bbcp andmore » GridFTP and determined that they were comparable. With a proof of concept created using two four-node clusters with multiple distributed multi-core CPUs, network interfaces and flash memory, we achieved 155Gbps memory-to-memory over a 2x100Gbps link aggregated channel and 70Gbps file-to-file with encryption over a 5000 mile 100Gbps link.« less

  10. Systems Suitable for Information Professionals.

    ERIC Educational Resources Information Center

    Blair, John C., Jr.

    1983-01-01

    Describes computer operating systems applicable to microcomputers, noting hardware components, advantages and disadvantages of each system, local area networks, distributed processing, and a fully configured system. Lists of hardware components (disk drives, solid state disk emulators, input/output and memory components, and processors) and…

  11. Distributed Cognition (DCOG): Foundations for a Computational Associative Memory Model

    DTIC Science & Technology

    2006-08-01

    retrieved through context and attention . Instead of looking up an old exemplar in memory, we simulate it by activating the same (or almost the same) set of...association, regardless of current activation. We restrict our attention here to immediate links; although the algorithm can be generalized to include...recognition. A shift in attention may, by creating a new context, trigger the recognition of a concept. A detailed example of the use of attention in

  12. Think globally and solve locally: secondary memory-based network learning for automated multi-species function prediction

    PubMed Central

    2014-01-01

    Background Network-based learning algorithms for automated function prediction (AFP) are negatively affected by the limited coverage of experimental data and limited a priori known functional annotations. As a consequence their application to model organisms is often restricted to well characterized biological processes and pathways, and their effectiveness with poorly annotated species is relatively limited. A possible solution to this problem might consist in the construction of big networks including multiple species, but this in turn poses challenging computational problems, due to the scalability limitations of existing algorithms and the main memory requirements induced by the construction of big networks. Distributed computation or the usage of big computers could in principle respond to these issues, but raises further algorithmic problems and require resources not satisfiable with simple off-the-shelf computers. Results We propose a novel framework for scalable network-based learning of multi-species protein functions based on both a local implementation of existing algorithms and the adoption of innovative technologies: we solve “locally” the AFP problem, by designing “vertex-centric” implementations of network-based algorithms, but we do not give up thinking “globally” by exploiting the overall topology of the network. This is made possible by the adoption of secondary memory-based technologies that allow the efficient use of the large memory available on disks, thus overcoming the main memory limitations of modern off-the-shelf computers. This approach has been applied to the analysis of a large multi-species network including more than 300 species of bacteria and to a network with more than 200,000 proteins belonging to 13 Eukaryotic species. To our knowledge this is the first work where secondary-memory based network analysis has been applied to multi-species function prediction using biological networks with hundreds of thousands of proteins. Conclusions The combination of these algorithmic and technological approaches makes feasible the analysis of large multi-species networks using ordinary computers with limited speed and primary memory, and in perspective could enable the analysis of huge networks (e.g. the whole proteomes available in SwissProt), using well-equipped stand-alone machines. PMID:24843788

  13. Review and analysis of dense linear system solver package for distributed memory machines

    NASA Technical Reports Server (NTRS)

    Narang, H. N.

    1993-01-01

    A dense linear system solver package recently developed at the University of Texas at Austin for distributed memory machine (e.g. Intel Paragon) has been reviewed and analyzed. The package contains about 45 software routines, some written in FORTRAN, and some in C-language, and forms the basis for parallel/distributed solutions of systems of linear equations encountered in many problems of scientific and engineering nature. The package, being studied by the Computer Applications Branch of the Analysis and Computation Division, may provide a significant computational resource for NASA scientists and engineers in parallel/distributed computing. Since the package is new and not well tested or documented, many of its underlying concepts and implementations were unclear; our task was to review, analyze, and critique the package as a step in the process that will enable scientists and engineers to apply it to the solution of their problems. All routines in the package were reviewed and analyzed. Underlying theory or concepts which exist in the form of published papers or technical reports, or memos, were either obtained from the author, or from the scientific literature; and general algorithms, explanations, examples, and critiques have been provided to explain the workings of these programs. Wherever the things were still unclear, communications were made with the developer (author), either by telephone or by electronic mail, to understand the workings of the routines. Whenever possible, tests were made to verify the concepts and logic employed in their implementations. A detailed report is being separately documented to explain the workings of these routines.

  14. A Communication-Optimal Framework for Contracting Distributed Tensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajbhandari, Samyam; NIkam, Akshay; Lai, Pai-Wei

    Tensor contractions are extremely compute intensive generalized matrix multiplication operations encountered in many computational science fields, such as quantum chemistry and nuclear physics. Unlike distributed matrix multiplication, which has been extensively studied, limited work has been done in understanding distributed tensor contractions. In this paper, we characterize distributed tensor contraction algorithms on torus networks. We develop a framework with three fundamental communication operators to generate communication-efficient contraction algorithms for arbitrary tensor contractions. We show that for a given amount of memory per processor, our framework is communication optimal for all tensor contractions. We demonstrate performance and scalability of our frameworkmore » on up to 262,144 cores of BG/Q supercomputer using five tensor contraction examples.« less

  15. Portable parallel stochastic optimization for the design of aeropropulsion components

    NASA Technical Reports Server (NTRS)

    Sues, Robert H.; Rhodes, G. S.

    1994-01-01

    This report presents the results of Phase 1 research to develop a methodology for performing large-scale Multi-disciplinary Stochastic Optimization (MSO) for the design of aerospace systems ranging from aeropropulsion components to complete aircraft configurations. The current research recognizes that such design optimization problems are computationally expensive, and require the use of either massively parallel or multiple-processor computers. The methodology also recognizes that many operational and performance parameters are uncertain, and that uncertainty must be considered explicitly to achieve optimum performance and cost. The objective of this Phase 1 research was to initialize the development of an MSO methodology that is portable to a wide variety of hardware platforms, while achieving efficient, large-scale parallelism when multiple processors are available. The first effort in the project was a literature review of available computer hardware, as well as review of portable, parallel programming environments. The first effort was to implement the MSO methodology for a problem using the portable parallel programming language, Parallel Virtual Machine (PVM). The third and final effort was to demonstrate the example on a variety of computers, including a distributed-memory multiprocessor, a distributed-memory network of workstations, and a single-processor workstation. Results indicate the MSO methodology can be well-applied towards large-scale aerospace design problems. Nearly perfect linear speedup was demonstrated for computation of optimization sensitivity coefficients on both a 128-node distributed-memory multiprocessor (the Intel iPSC/860) and a network of workstations (speedups of almost 19 times achieved for 20 workstations). Very high parallel efficiencies (75 percent for 31 processors and 60 percent for 50 processors) were also achieved for computation of aerodynamic influence coefficients on the Intel. Finally, the multi-level parallelization strategy that will be needed for large-scale MSO problems was demonstrated to be highly efficient. The same parallel code instructions were used on both platforms, demonstrating portability. There are many applications for which MSO can be applied, including NASA's High-Speed-Civil Transport, and advanced propulsion systems. The use of MSO will reduce design and development time and testing costs dramatically.

  16. Parallel language constructs for tensor product computations on loosely coupled architectures

    NASA Technical Reports Server (NTRS)

    Mehrotra, Piyush; Vanrosendale, John

    1989-01-01

    Distributed memory architectures offer high levels of performance and flexibility, but have proven awkard to program. Current languages for nonshared memory architectures provide a relatively low level programming environment, and are poorly suited to modular programming, and to the construction of libraries. A set of language primitives designed to allow the specification of parallel numerical algorithms at a higher level is described. Tensor product array computations are focused on along with a simple but important class of numerical algorithms. The problem of programming 1-D kernal routines is focused on first, such as parallel tridiagonal solvers, and then how such parallel kernels can be combined to form parallel tensor product algorithms is examined.

  17. Studying an Eulerian Computer Model on Different High-performance Computer Platforms and Some Applications

    NASA Astrophysics Data System (ADS)

    Georgiev, K.; Zlatev, Z.

    2010-11-01

    The Danish Eulerian Model (DEM) is an Eulerian model for studying the transport of air pollutants on large scale. Originally, the model was developed at the National Environmental Research Institute of Denmark. The model computational domain covers Europe and some neighbour parts belong to the Atlantic Ocean, Asia and Africa. If DEM model is to be applied by using fine grids, then its discretization leads to a huge computational problem. This implies that such a model as DEM must be run only on high-performance computer architectures. The implementation and tuning of such a complex large-scale model on each different computer is a non-trivial task. Here, some comparison results of running of this model on different kind of vector (CRAY C92A, Fujitsu, etc.), parallel computers with distributed memory (IBM SP, CRAY T3E, Beowulf clusters, Macintosh G4 clusters, etc.), parallel computers with shared memory (SGI Origin, SUN, etc.) and parallel computers with two levels of parallelism (IBM SMP, IBM BlueGene/P, clusters of multiprocessor nodes, etc.) will be presented. The main idea in the parallel version of DEM is domain partitioning approach. Discussions according to the effective use of the cache and hierarchical memories of the modern computers as well as the performance, speed-ups and efficiency achieved will be done. The parallel code of DEM, created by using MPI standard library, appears to be highly portable and shows good efficiency and scalability on different kind of vector and parallel computers. Some important applications of the computer model output are presented in short.

  18. System for simultaneously loading program to master computer memory devices and corresponding slave computer memory devices

    NASA Technical Reports Server (NTRS)

    Hall, William A. (Inventor)

    1993-01-01

    A bus programmable slave module card for use in a computer control system is disclosed which comprises a master computer and one or more slave computer modules interfacing by means of a bus. Each slave module includes its own microprocessor, memory, and control program for acting as a single loop controller. The slave card includes a plurality of memory means (S1, S2...) corresponding to a like plurality of memory devices (C1, C2...) in the master computer, for each slave memory means its own communication lines connectable through the bus with memory communication lines of an associated memory device in the master computer, and a one-way electronic door which is switchable to either a closed condition or a one-way open condition. With the door closed, communication lines between master computer memory (C1, C2...) and slave memory (S1, S2...) are blocked. In the one-way open condition invention, the memory communication lines or each slave memory means (S1, S2...) connect with the memory communication lines of its associated memory device (C1, C2...) in the master computer, and the memory devices (C1, C2...) of the master computer and slave card are electrically parallel such that information seen by the master's memory is also seen by the slave's memory. The slave card is also connectable to a switch for electronically removing the slave microprocessor from the system. With the master computer and the slave card in programming mode relationship, and the slave microprocessor electronically removed from the system, loading a program in the memory devices (C1, C2...) of the master accomplishes a parallel loading into the memory devices (S1, S2...) of the slave.

  19. Systemic Lisbon Battery: Normative Data for Memory and Attention Assessments.

    PubMed

    Gamito, Pedro; Morais, Diogo; Oliveira, Jorge; Ferreira Lopes, Paulo; Picareli, Luís Felipe; Matias, Marcelo; Correia, Sara; Brito, Rodrigo

    2016-05-04

    Memory and attention are two cognitive domains pivotal for the performance of instrumental activities of daily living (IADLs). The assessment of these functions is still widely carried out with pencil-and-paper tests, which lack ecological validity. The evaluation of cognitive and memory functions while the patients are performing IADLs should contribute to the ecological validity of the evaluation process. The objective of this study is to establish normative data from virtual reality (VR) IADLs designed to activate memory and attention functions. A total of 243 non-clinical participants carried out a paper-and-pencil Mini-Mental State Examination (MMSE) and performed 3 VR activities: art gallery visual matching task, supermarket shopping task, and memory fruit matching game. The data (execution time and errors, and money spent in the case of the supermarket activity) was automatically generated from the app. Outcomes were computed using non-parametric statistics, due to non-normality of distributions. Age, academic qualifications, and computer experience all had significant effects on most measures. Normative values for different levels of these measures were defined. Age, academic qualifications, and computer experience should be taken into account while using our VR-based platform for cognitive assessment purposes. ©Pedro Gamito, Diogo Morais, Jorge Oliveira, Paulo Ferreira Lopes, Luís Felipe Picareli, Marcelo Matias, Sara Correia, Rodrigo Brito. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org), 04.05.2016.

  20. Robust quantum network architectures and topologies for entanglement distribution

    NASA Astrophysics Data System (ADS)

    Das, Siddhartha; Khatri, Sumeet; Dowling, Jonathan P.

    2018-01-01

    Entanglement distribution is a prerequisite for several important quantum information processing and computing tasks, such as quantum teleportation, quantum key distribution, and distributed quantum computing. In this work, we focus on two-dimensional quantum networks based on optical quantum technologies using dual-rail photonic qubits for the building of a fail-safe quantum internet. We lay out a quantum network architecture for entanglement distribution between distant parties using a Bravais lattice topology, with the technological constraint that quantum repeaters equipped with quantum memories are not easily accessible. We provide a robust protocol for simultaneous entanglement distribution between two distant groups of parties on this network. We also discuss a memory-based quantum network architecture that can be implemented on networks with an arbitrary topology. We examine networks with bow-tie lattice and Archimedean lattice topologies and use percolation theory to quantify the robustness of the networks. In particular, we provide figures of merit on the loss parameter of the optical medium that depend only on the topology of the network and quantify the robustness of the network against intermittent photon loss and intermittent failure of nodes. These figures of merit can be used to compare the robustness of different network topologies in order to determine the best topology in a given real-world scenario, which is critical in the realization of the quantum internet.

  1. Distributed Mission Operations: Training Today’s Warfighters for Tomorrow’s Conflicts

    DTIC Science & Technology

    2016-02-01

    systems or include dissimilar weapons systems to rehearse more complex mission sets. In addition to networking geographically separated simulators...over the past decade. Today, distributed mission operations can facilitate the rehearsal of theater wide operations, integrating all the anticipated...effective that many aviators earn their basic aircraft qualification before their first flight in the airplane.11 Computer memory was once a

  2. Programming model for distributed intelligent systems

    NASA Technical Reports Server (NTRS)

    Sztipanovits, J.; Biegl, C.; Karsai, G.; Bogunovic, N.; Purves, B.; Williams, R.; Christiansen, T.

    1988-01-01

    A programming model and architecture which was developed for the design and implementation of complex, heterogeneous measurement and control systems is described. The Multigraph Architecture integrates artificial intelligence techniques with conventional software technologies, offers a unified framework for distributed and shared memory based parallel computational models and supports multiple programming paradigms. The system can be implemented on different hardware architectures and can be adapted to strongly different applications.

  3. Optical interconnection network for parallel access to multi-rank memory in future computing systems.

    PubMed

    Wang, Kang; Gu, Huaxi; Yang, Yintang; Wang, Kun

    2015-08-10

    With the number of cores increasing, there is an emerging need for a high-bandwidth low-latency interconnection network, serving core-to-memory communication. In this paper, aiming at the goal of simultaneous access to multi-rank memory, we propose an optical interconnection network for core-to-memory communication. In the proposed network, the wavelength usage is delicately arranged so that cores can communicate with different ranks at the same time and broadcast for flow control can be achieved. A distributed memory controller architecture that works in a pipeline mode is also designed for efficient optical communication and transaction address processes. The scaling method and wavelength assignment for the proposed network are investigated. Compared with traditional electronic bus-based core-to-memory communication, the simulation results based on the PARSEC benchmark show that the bandwidth enhancement and latency reduction are apparent.

  4. Method and apparatus for managing access to a memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeBenedictis, Erik

    A method and apparatus for managing access to a memory of a computing system. A controller transforms a plurality of operations that represent a computing job into an operational memory layout that reduces a size of a selected portion of the memory that needs to be accessed to perform the computing job. The controller stores the operational memory layout in a plurality of memory cells within the selected portion of the memory. The controller controls a sequence by which a processor in the computing system accesses the memory to perform the computing job using the operational memory layout. The operationalmore » memory layout reduces an amount of energy consumed by the processor to perform the computing job.« less

  5. An implicit scheme with memory reduction technique for steady state solutions of DVBE in all flow regimes

    NASA Astrophysics Data System (ADS)

    Yang, L. M.; Shu, C.; Yang, W. M.; Wu, J.

    2018-04-01

    High consumption of memory and computational effort is the major barrier to prevent the widespread use of the discrete velocity method (DVM) in the simulation of flows in all flow regimes. To overcome this drawback, an implicit DVM with a memory reduction technique for solving a steady discrete velocity Boltzmann equation (DVBE) is presented in this work. In the method, the distribution functions in the whole discrete velocity space do not need to be stored, and they are calculated from the macroscopic flow variables. As a result, its memory requirement is in the same order as the conventional Euler/Navier-Stokes solver. In the meantime, it is more efficient than the explicit DVM for the simulation of various flows. To make the method efficient for solving flow problems in all flow regimes, a prediction step is introduced to estimate the local equilibrium state of the DVBE. In the prediction step, the distribution function at the cell interface is calculated by the local solution of DVBE. For the flow simulation, when the cell size is less than the mean free path, the prediction step has almost no effect on the solution. However, when the cell size is much larger than the mean free path, the prediction step dominates the solution so as to provide reasonable results in such a flow regime. In addition, to further improve the computational efficiency of the developed scheme in the continuum flow regime, the implicit technique is also introduced into the prediction step. Numerical results showed that the proposed implicit scheme can provide reasonable results in all flow regimes and increase significantly the computational efficiency in the continuum flow regime as compared with the existing DVM solvers.

  6. Parallelization of Program to Optimize Simulated Trajectories (POST3D)

    NASA Technical Reports Server (NTRS)

    Hammond, Dana P.; Korte, John J. (Technical Monitor)

    2001-01-01

    This paper describes the parallelization of the Program to Optimize Simulated Trajectories (POST3D). POST3D uses a gradient-based optimization algorithm that reaches an optimum design point by moving from one design point to the next. The gradient calculations required to complete the optimization process, dominate the computational time and have been parallelized using a Single Program Multiple Data (SPMD) on a distributed memory NUMA (non-uniform memory access) architecture. The Origin2000 was used for the tests presented.

  7. Efficient Parallel Algorithm For Direct Numerical Simulation of Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Moitra, Stuti; Gatski, Thomas B.

    1997-01-01

    A distributed algorithm for a high-order-accurate finite-difference approach to the direct numerical simulation (DNS) of transition and turbulence in compressible flows is described. This work has two major objectives. The first objective is to demonstrate that parallel and distributed-memory machines can be successfully and efficiently used to solve computationally intensive and input/output intensive algorithms of the DNS class. The second objective is to show that the computational complexity involved in solving the tridiagonal systems inherent in the DNS algorithm can be reduced by algorithm innovations that obviate the need to use a parallelized tridiagonal solver.

  8. Simulation of n-qubit quantum systems. I. Quantum registers and quantum gates

    NASA Astrophysics Data System (ADS)

    Radtke, T.; Fritzsche, S.

    2005-12-01

    During recent years, quantum computations and the study of n-qubit quantum systems have attracted a lot of interest, both in theory and experiment. Apart from the promise of performing quantum computations, however, these investigations also revealed a great deal of difficulties which still need to be solved in practice. In quantum computing, unitary and non-unitary quantum operations act on a given set of qubits to form (entangled) states, in which the information is encoded by the overall system often referred to as quantum registers. To facilitate the simulation of such n-qubit quantum systems, we present the FEYNMAN program to provide all necessary tools in order to define and to deal with quantum registers and quantum operations. Although the present version of the program is restricted to unitary transformations, it equally supports—whenever possible—the representation of the quantum registers both, in terms of their state vectors and density matrices. In addition to the composition of two or more quantum registers, moreover, the program also supports their decomposition into various parts by applying the partial trace operation and the concept of the reduced density matrix. Using an interactive design within the framework of MAPLE, therefore, we expect the FEYNMAN program to be helpful not only for teaching the basic elements of quantum computing but also for studying their physical realization in the future. Program summaryTitle of program:FEYNMAN Catalogue number:ADWE Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:None Computers for which the program is designed:All computers with a license of the computer algebra system MAPLE [Maple is a registered trademark of Waterlo Maple Inc.] Operating systems or monitors under which the program has been tested:Linux, MS Windows XP Programming language used:MAPLE 9.5 (but should be compatible with 9.0 and 8.0, too) Memory and time required to execute with typical data:Storage and time requirements critically depend on the number of qubits, n, in the quantum registers due to the exponential increase of the associated Hilbert space. In particular, complex algebraic operations may require large amounts of memory even for small qubit numbers. However, most of the standard commands (see Section 4 for simple examples) react promptly for up to five qubits on a normal single-processor machine ( ⩾1GHz with 512 MB memory) and use less than 10 MB memory. No. of lines in distributed program, including test data, etc.: 8864 No. of bytes in distributed program, including test data, etc.: 493 182 Distribution format: tar.gz Nature of the physical problem:During the last decade, quantum computing has been found to provide a revolutionary new form of computation. The algorithms by Shor [P.W. Shor, SIAM J. Sci. Statist. Comput. 26 (1997) 1484] and Grover [L.K. Grover, Phys. Rev. Lett. 79 (1997) 325. [2

  9. Likelihood ratio decisions in memory: three implied regularities.

    PubMed

    Glanzer, Murray; Hilford, Andrew; Maloney, Laurence T

    2009-06-01

    We analyze four general signal detection models for recognition memory that differ in their distributional assumptions. Our analyses show that a basic assumption of signal detection theory, the likelihood ratio decision axis, implies three regularities in recognition memory: (1) the mirror effect, (2) the variance effect, and (3) the z-ROC length effect. For each model, we present the equations that produce the three regularities and show, in computed examples, how they do so. We then show that the regularities appear in data from a range of recognition studies. The analyses and data in our study support the following generalization: Individuals make efficient recognition decisions on the basis of likelihood ratios.

  10. CLUSTOM-CLOUD: In-Memory Data Grid-Based Software for Clustering 16S rRNA Sequence Data in the Cloud Environment.

    PubMed

    Oh, Jeongsu; Choi, Chi-Hwan; Park, Min-Kyu; Kim, Byung Kwon; Hwang, Kyuin; Lee, Sang-Heon; Hong, Soon Gyu; Nasir, Arshan; Cho, Wan-Sup; Kim, Kyung Mo

    2016-01-01

    High-throughput sequencing can produce hundreds of thousands of 16S rRNA sequence reads corresponding to different organisms present in the environmental samples. Typically, analysis of microbial diversity in bioinformatics starts from pre-processing followed by clustering 16S rRNA reads into relatively fewer operational taxonomic units (OTUs). The OTUs are reliable indicators of microbial diversity and greatly accelerate the downstream analysis time. However, existing hierarchical clustering algorithms that are generally more accurate than greedy heuristic algorithms struggle with large sequence datasets. To keep pace with the rapid rise in sequencing data, we present CLUSTOM-CLOUD, which is the first distributed sequence clustering program based on In-Memory Data Grid (IMDG) technology-a distributed data structure to store all data in the main memory of multiple computing nodes. The IMDG technology helps CLUSTOM-CLOUD to enhance both its capability of handling larger datasets and its computational scalability better than its ancestor, CLUSTOM, while maintaining high accuracy. Clustering speed of CLUSTOM-CLOUD was evaluated on published 16S rRNA human microbiome sequence datasets using the small laboratory cluster (10 nodes) and under the Amazon EC2 cloud-computing environments. Under the laboratory environment, it required only ~3 hours to process dataset of size 200 K reads regardless of the complexity of the human microbiome data. In turn, one million reads were processed in approximately 20, 14, and 11 hours when utilizing 20, 30, and 40 nodes on the Amazon EC2 cloud-computing environment. The running time evaluation indicates that CLUSTOM-CLOUD can handle much larger sequence datasets than CLUSTOM and is also a scalable distributed processing system. The comparative accuracy test using 16S rRNA pyrosequences of a mock community shows that CLUSTOM-CLOUD achieves higher accuracy than DOTUR, mothur, ESPRIT-Tree, UCLUST and Swarm. CLUSTOM-CLOUD is written in JAVA and is freely available at http://clustomcloud.kopri.re.kr.

  11. CLUSTOM-CLOUD: In-Memory Data Grid-Based Software for Clustering 16S rRNA Sequence Data in the Cloud Environment

    PubMed Central

    Park, Min-Kyu; Kim, Byung Kwon; Hwang, Kyuin; Lee, Sang-Heon; Hong, Soon Gyu; Nasir, Arshan; Cho, Wan-Sup; Kim, Kyung Mo

    2016-01-01

    High-throughput sequencing can produce hundreds of thousands of 16S rRNA sequence reads corresponding to different organisms present in the environmental samples. Typically, analysis of microbial diversity in bioinformatics starts from pre-processing followed by clustering 16S rRNA reads into relatively fewer operational taxonomic units (OTUs). The OTUs are reliable indicators of microbial diversity and greatly accelerate the downstream analysis time. However, existing hierarchical clustering algorithms that are generally more accurate than greedy heuristic algorithms struggle with large sequence datasets. To keep pace with the rapid rise in sequencing data, we present CLUSTOM-CLOUD, which is the first distributed sequence clustering program based on In-Memory Data Grid (IMDG) technology–a distributed data structure to store all data in the main memory of multiple computing nodes. The IMDG technology helps CLUSTOM-CLOUD to enhance both its capability of handling larger datasets and its computational scalability better than its ancestor, CLUSTOM, while maintaining high accuracy. Clustering speed of CLUSTOM-CLOUD was evaluated on published 16S rRNA human microbiome sequence datasets using the small laboratory cluster (10 nodes) and under the Amazon EC2 cloud-computing environments. Under the laboratory environment, it required only ~3 hours to process dataset of size 200 K reads regardless of the complexity of the human microbiome data. In turn, one million reads were processed in approximately 20, 14, and 11 hours when utilizing 20, 30, and 40 nodes on the Amazon EC2 cloud-computing environment. The running time evaluation indicates that CLUSTOM-CLOUD can handle much larger sequence datasets than CLUSTOM and is also a scalable distributed processing system. The comparative accuracy test using 16S rRNA pyrosequences of a mock community shows that CLUSTOM-CLOUD achieves higher accuracy than DOTUR, mothur, ESPRIT-Tree, UCLUST and Swarm. CLUSTOM-CLOUD is written in JAVA and is freely available at http://clustomcloud.kopri.re.kr. PMID:26954507

  12. Recognition of simple visual images using a sparse distributed memory: Some implementations and experiments

    NASA Technical Reports Server (NTRS)

    Jaeckel, Louis A.

    1990-01-01

    Previously, a method was described of representing a class of simple visual images so that they could be used with a Sparse Distributed Memory (SDM). Herein, two possible implementations are described of a SDM, for which these images, suitably encoded, will serve both as addresses to the memory and as data to be stored in the memory. A key feature of both implementations is that a pattern that is represented as an unordered set with a variable number of members can be used as an address to the memory. In the 1st model, an image is encoded as a 9072 bit string to be used as a read or write address; the bit string may also be used as data to be stored in the memory. Another representation, in which an image is encoded as a 256 bit string, may be used with either model as data to be stored in the memory, but not as an address. In the 2nd model, an image is not represented as a vector of fixed length to be used as an address. Instead, a rule is given for determining which memory locations are to be activated in response to an encoded image. This activation rule treats the pieces of an image as an unordered set. With this model, the memory can be simulated, based on a method of computing the approximate result of a read operation.

  13. Computational mechanics analysis tools for parallel-vector supercomputers

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.; Nguyen, Duc T.; Baddourah, Majdi; Qin, Jiangning

    1993-01-01

    Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigensolution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization search analysis and domain decomposition. The source code for many of these algorithms is available.

  14. The MIT Alewife Machine: A Large-Scale Distributed-Memory Multiprocessor

    DTIC Science & Technology

    1991-06-01

    Symposium on Compiler Construction, June 1986. [14] Daniel Gajski , David Kuck, Duncan Lawrie, and Ahmed Saleh. Cedar - A Large Scale Multiprocessor. In...Directory Methods. In Proceedings 17th Annual International Symposium on Computer Architecture, June 1990. [31] G . M. Papadopoulos and D.E. Culler...Monsoon: An Explicit Token-Store Ar- chitecture. In Proceedings 17th Annual International Symposium on Computer Architecture, June 1990. [32] G . F

  15. Preconditioned implicit solvers for the Navier-Stokes equations on distributed-memory machines

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Liou, Meng-Sing; Dyson, Rodger W.

    1994-01-01

    The GMRES method is parallelized, and combined with local preconditioning to construct an implicit parallel solver to obtain steady-state solutions for the Navier-Stokes equations of fluid flow on distributed-memory machines. The new implicit parallel solver is designed to preserve the convergence rate of the equivalent 'serial' solver. A static domain-decomposition is used to partition the computational domain amongst the available processing nodes of the parallel machine. The SPMD (Single-Program Multiple-Data) programming model is combined with message-passing tools to develop the parallel code on a 32-node Intel Hypercube and a 512-node Intel Delta machine. The implicit parallel solver is validated for internal and external flow problems, and is found to compare identically with flow solutions obtained on a Cray Y-MP/8. A peak computational speed of 2300 MFlops/sec has been achieved on 512 nodes of the Intel Delta machine,k for a problem size of 1024 K equations (256 K grid points).

  16. The effectiveness of a new algorithm on a three-dimensional finite element model construction of bone trabeculae in implant biomechanics.

    PubMed

    Sato, Y; Teixeira, E R; Tsuga, K; Shindoi, N

    1999-08-01

    More validity of finite element analysis (FEA) in implant biomechanics requires element downsizing. However, excess downsizing needs computer memory and calculation time. To evaluate the effectiveness of a new algorithm established for more valid FEA model construction without downsizing, three-dimensional FEA bone trabeculae models with different element sizes (300, 150 and 75 micron) were constructed. Four algorithms of stepwise (1 to 4 ranks) assignment of Young's modulus accorded with bone volume in the individual cubic element was used and then stress distribution against vertical loading was analysed. The model with 300 micron element size, with 4 ranks of Young's moduli accorded with bone volume in each element presented similar stress distribution to the model with the 75 micron element size. These results show that the new algorithm was effective, and the use of the 300 micron element for bone trabeculae representation was proposed, without critical changes in stress values and for possible savings on computer memory and calculation time in the laboratory.

  17. Integrating Cache Performance Modeling and Tuning Support in Parallelization Tools

    NASA Technical Reports Server (NTRS)

    Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    With the resurgence of distributed shared memory (DSM) systems based on cache-coherent Non Uniform Memory Access (ccNUMA) architectures and increasing disparity between memory and processors speeds, data locality overheads are becoming the greatest bottlenecks in the way of realizing potential high performance of these systems. While parallelization tools and compilers facilitate the users in porting their sequential applications to a DSM system, a lot of time and effort is needed to tune the memory performance of these applications to achieve reasonable speedup. In this paper, we show that integrating cache performance modeling and tuning support within a parallelization environment can alleviate this problem. The Cache Performance Modeling and Prediction Tool (CPMP), employs trace-driven simulation techniques without the overhead of generating and managing detailed address traces. CPMP predicts the cache performance impact of source code level "what-if" modifications in a program to assist a user in the tuning process. CPMP is built on top of a customized version of the Computer Aided Parallelization Tools (CAPTools) environment. Finally, we demonstrate how CPMP can be applied to tune a real Computational Fluid Dynamics (CFD) application.

  18. The Science of Computing: Virtual Memory

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1986-01-01

    In the March-April issue, I described how a computer's storage system is organized as a hierarchy consisting of cache, main memory, and secondary memory (e.g., disk). The cache and main memory form a subsystem that functions like main memory but attains speeds approaching cache. What happens if a program and its data are too large for the main memory? This is not a frivolous question. Every generation of computer users has been frustrated by insufficient memory. A new line of computers may have sufficient storage for the computations of its predecessor, but new programs will soon exhaust its capacity. In 1960, a longrange planning committee at MIT dared to dream of a computer with 1 million words of main memory. In 1985, the Cray-2 was delivered with 256 million words. Computational physicists dream of computers with 1 billion words. Computer architects have done an outstanding job of enlarging main memories yet they have never kept up with demand. Only the shortsighted believe they can.

  19. Simple and Efficient Single Photon Filter for a Rb-based Quantum Memory

    NASA Astrophysics Data System (ADS)

    Stack, Daniel; Li, Xiao; Quraishi, Qudsia

    2015-05-01

    Distribution of entangled quantum states over significant distances is important to the development of future quantum technologies such as long-distance cryptography, networks of atomic clocks, distributed quantum computing, etc. Long-lived quantum memories and single photons are building blocks for systems capable of realizing such applications. The ability to store and retrieve quantum information while filtering unwanted light signals is critical to the operation of quantum memories based on neutral-atom ensembles. We report on an efficient frequency filter which uses a glass cell filled with 85Rb vapor to attenuate noise photons by an order of magnitude with little loss to the single photons associated with the operation of our cold 87Rb quantum memory. An Ar buffer gas is required to differentiate between signal and noise photons or similar statement. Our simple, passive filter requires no optical pumping or external frequency references and provides an additional 18 dB attenuation of our pump laser for every 1 dB loss of the single photon signal. We observe improved non-classical correlations and our data shows that the addition of a frequency filter increases the non-classical correlations and readout efficiency of our quantum memory by ~ 35%.

  20. Efficient iteration in data-parallel programs with irregular and dynamically distributed data structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Littlefield, R.J.

    1990-02-01

    To implement an efficient data-parallel program on a non-shared memory MIMD multicomputer, data and computations must be properly partitioned to achieve good load balance and locality of reference. Programs with irregular data reference patterns often require irregular partitions. Although good partitions may be easy to determine, they can be difficult or impossible to implement in programming languages that provide only regular data distributions, such as blocked or cyclic arrays. We are developing Onyx, a programming system that provides a shared memory model of distributed data structures and extends the concept of data distribution to include irregular and dynamic distributions. Thismore » provides a powerful means to specify irregular partitions. Perhaps surprisingly, programs using it can also execute efficiently. In this paper, we describe and evaluate the Onyx implementation of a model problem that repeatedly executes an irregular but fixed data reference pattern. On an NCUBE hypercube, the speed of the Onyx implementation is comparable to that of carefully handwritten message-passing code.« less

  1. Support for non-locking parallel reception of packets belonging to a single memory reception FIFO

    DOEpatents

    Chen, Dong [Yorktown Heights, NY; Heidelberger, Philip [Yorktown Heights, NY; Salapura, Valentina [Yorktown Heights, NY; Senger, Robert M [Yorktown Heights, NY; Steinmacher-Burow, Burkhard [Boeblingen, DE; Sugawara, Yutaka [Yorktown Heights, NY

    2011-01-27

    A method and apparatus for distributed parallel messaging in a parallel computing system. A plurality of DMA engine units are configured in a multiprocessor system to operate in parallel, one DMA engine unit for transferring a current packet received at a network reception queue to a memory location in a memory FIFO (rmFIFO) region of a memory. A control unit implements logic to determine whether any prior received packet destined for that rmFIFO is still in a process of being stored in the associated memory by another DMA engine unit of the plurality, and prevent the one DMA engine unit from indicating completion of storing the current received packet in the reception memory FIFO (rmFIFO) until all prior received packets destined for that rmFIFO are completely stored by the other DMA engine units. Thus, there is provided non-locking support so that multiple packets destined for a single rmFIFO are transferred and stored in parallel to predetermined locations in a memory.

  2. Memory-efficient dynamic programming backtrace and pairwise local sequence alignment.

    PubMed

    Newberg, Lee A

    2008-08-15

    A backtrace through a dynamic programming algorithm's intermediate results in search of an optimal path, or to sample paths according to an implied probability distribution, or as the second stage of a forward-backward algorithm, is a task of fundamental importance in computational biology. When there is insufficient space to store all intermediate results in high-speed memory (e.g. cache) existing approaches store selected stages of the computation, and recompute missing values from these checkpoints on an as-needed basis. Here we present an optimal checkpointing strategy, and demonstrate its utility with pairwise local sequence alignment of sequences of length 10,000. Sample C++-code for optimal backtrace is available in the Supplementary Materials. Supplementary data is available at Bioinformatics online.

  3. HipMCL: a high-performance parallel implementation of the Markov clustering algorithm for large-scale networks

    PubMed Central

    Azad, Ariful; Ouzounis, Christos A; Kyrpides, Nikos C; Buluç, Aydin

    2018-01-01

    Abstract Biological networks capture structural or functional properties of relevant entities such as molecules, proteins or genes. Characteristic examples are gene expression networks or protein–protein interaction networks, which hold information about functional affinities or structural similarities. Such networks have been expanding in size due to increasing scale and abundance of biological data. While various clustering algorithms have been proposed to find highly connected regions, Markov Clustering (MCL) has been one of the most successful approaches to cluster sequence similarity or expression networks. Despite its popularity, MCL’s scalability to cluster large datasets still remains a bottleneck due to high running times and memory demands. Here, we present High-performance MCL (HipMCL), a parallel implementation of the original MCL algorithm that can run on distributed-memory computers. We show that HipMCL can efficiently utilize 2000 compute nodes and cluster a network of ∼70 million nodes with ∼68 billion edges in ∼2.4 h. By exploiting distributed-memory environments, HipMCL clusters large-scale networks several orders of magnitude faster than MCL and enables clustering of even bigger networks. HipMCL is based on MPI and OpenMP and is freely available under a modified BSD license. PMID:29315405

  4. HipMCL: a high-performance parallel implementation of the Markov clustering algorithm for large-scale networks

    DOE PAGES

    Azad, Ariful; Pavlopoulos, Georgios A.; Ouzounis, Christos A.; ...

    2018-01-05

    Biological networks capture structural or functional properties of relevant entities such as molecules, proteins or genes. Characteristic examples are gene expression networks or protein–protein interaction networks, which hold information about functional affinities or structural similarities. Such networks have been expanding in size due to increasing scale and abundance of biological data. While various clustering algorithms have been proposed to find highly connected regions, Markov Clustering (MCL) has been one of the most successful approaches to cluster sequence similarity or expression networks. Despite its popularity, MCL’s scalability to cluster large datasets still remains a bottleneck due to high running times andmore » memory demands. In this paper, we present High-performance MCL (HipMCL), a parallel implementation of the original MCL algorithm that can run on distributed-memory computers. We show that HipMCL can efficiently utilize 2000 compute nodes and cluster a network of ~70 million nodes with ~68 billion edges in ~2.4 h. By exploiting distributed-memory environments, HipMCL clusters large-scale networks several orders of magnitude faster than MCL and enables clustering of even bigger networks. Finally, HipMCL is based on MPI and OpenMP and is freely available under a modified BSD license.« less

  5. HipMCL: a high-performance parallel implementation of the Markov clustering algorithm for large-scale networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azad, Ariful; Pavlopoulos, Georgios A.; Ouzounis, Christos A.

    Biological networks capture structural or functional properties of relevant entities such as molecules, proteins or genes. Characteristic examples are gene expression networks or protein–protein interaction networks, which hold information about functional affinities or structural similarities. Such networks have been expanding in size due to increasing scale and abundance of biological data. While various clustering algorithms have been proposed to find highly connected regions, Markov Clustering (MCL) has been one of the most successful approaches to cluster sequence similarity or expression networks. Despite its popularity, MCL’s scalability to cluster large datasets still remains a bottleneck due to high running times andmore » memory demands. In this paper, we present High-performance MCL (HipMCL), a parallel implementation of the original MCL algorithm that can run on distributed-memory computers. We show that HipMCL can efficiently utilize 2000 compute nodes and cluster a network of ~70 million nodes with ~68 billion edges in ~2.4 h. By exploiting distributed-memory environments, HipMCL clusters large-scale networks several orders of magnitude faster than MCL and enables clustering of even bigger networks. Finally, HipMCL is based on MPI and OpenMP and is freely available under a modified BSD license.« less

  6. Unleashing the Power of Distributed CPU/GPU Architectures: Massive Astronomical Data Analysis and Visualization Case Study

    NASA Astrophysics Data System (ADS)

    Hassan, A. H.; Fluke, C. J.; Barnes, D. G.

    2012-09-01

    Upcoming and future astronomy research facilities will systematically generate terabyte-sized data sets moving astronomy into the Petascale data era. While such facilities will provide astronomers with unprecedented levels of accuracy and coverage, the increases in dataset size and dimensionality will pose serious computational challenges for many current astronomy data analysis and visualization tools. With such data sizes, even simple data analysis tasks (e.g. calculating a histogram or computing data minimum/maximum) may not be achievable without access to a supercomputing facility. To effectively handle such dataset sizes, which exceed today's single machine memory and processing limits, we present a framework that exploits the distributed power of GPUs and many-core CPUs, with a goal of providing data analysis and visualizing tasks as a service for astronomers. By mixing shared and distributed memory architectures, our framework effectively utilizes the underlying hardware infrastructure handling both batched and real-time data analysis and visualization tasks. Offering such functionality as a service in a “software as a service” manner will reduce the total cost of ownership, provide an easy to use tool to the wider astronomical community, and enable a more optimized utilization of the underlying hardware infrastructure.

  7. Paging memory from random access memory to backing storage in a parallel computer

    DOEpatents

    Archer, Charles J; Blocksome, Michael A; Inglett, Todd A; Ratterman, Joseph D; Smith, Brian E

    2013-05-21

    Paging memory from random access memory (`RAM`) to backing storage in a parallel computer that includes a plurality of compute nodes, including: executing a data processing application on a virtual machine operating system in a virtual machine on a first compute node; providing, by a second compute node, backing storage for the contents of RAM on the first compute node; and swapping, by the virtual machine operating system in the virtual machine on the first compute node, a page of memory from RAM on the first compute node to the backing storage on the second compute node.

  8. Multiprocessor shared-memory information exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santoline, L.L.; Bowers, M.D.; Crew, A.W.

    1989-02-01

    In distributed microprocessor-based instrumentation and control systems, the inter-and intra-subsystem communication requirements ultimately form the basis for the overall system architecture. This paper describes a software protocol which addresses the intra-subsystem communications problem. Specifically the protocol allows for multiple processors to exchange information via a shared-memory interface. The authors primary goal is to provide a reliable means for information to be exchanged between central application processor boards (masters) and dedicated function processor boards (slaves) in a single computer chassis. The resultant Multiprocessor Shared-Memory Information Exchange (MSMIE) protocol, a standard master-slave shared-memory interface suitable for use in nuclear safety systems, ismore » designed to pass unidirectional buffers of information between the processors while providing a minimum, deterministic cycle time for this data exchange.« less

  9. Enabling the High Level Synthesis of Data Analytics Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minutoli, Marco; Castellana, Vito G.; Tumeo, Antonino

    Conventional High Level Synthesis (HLS) tools mainly tar- get compute intensive kernels typical of digital signal pro- cessing applications. We are developing techniques and ar- chitectural templates to enable HLS of data analytics appli- cations. These applications are memory intensive, present fine-grained, unpredictable data accesses, and irregular, dy- namic task parallelism. We discuss an architectural tem- plate based around a distributed controller to efficiently ex- ploit thread level parallelism. We present a memory in- terface that supports parallel memory subsystems and en- ables implementing atomic memory operations. We intro- duce a dynamic task scheduling approach to efficiently ex- ecute heavilymore » unbalanced workload. The templates are val- idated by synthesizing queries from the Lehigh University Benchmark (LUBM), a well know SPARQL benchmark.« less

  10. Parallel Computation of the Regional Ocean Modeling System (ROMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, P; Song, Y T; Chao, Y

    2005-04-05

    The Regional Ocean Modeling System (ROMS) is a regional ocean general circulation modeling system solving the free surface, hydrostatic, primitive equations over varying topography. It is free software distributed world-wide for studying both complex coastal ocean problems and the basin-to-global scale ocean circulation. The original ROMS code could only be run on shared-memory systems. With the increasing need to simulate larger model domains with finer resolutions and on a variety of computer platforms, there is a need in the ocean-modeling community to have a ROMS code that can be run on any parallel computer ranging from 10 to hundreds ofmore » processors. Recently, we have explored parallelization for ROMS using the MPI programming model. In this paper, an efficient parallelization strategy for such a large-scale scientific software package, based on an existing shared-memory computing model, is presented. In addition, scientific applications and data-performance issues on a couple of SGI systems, including Columbia, the world's third-fastest supercomputer, are discussed.« less

  11. Computational mechanics analysis tools for parallel-vector supercomputers

    NASA Technical Reports Server (NTRS)

    Storaasli, O. O.; Nguyen, D. T.; Baddourah, M. A.; Qin, J.

    1993-01-01

    Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigen-solution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization algorithm and domain decomposition. The source code for many of these algorithms is available from NASA Langley.

  12. Parallel discrete event simulation: A shared memory approach

    NASA Technical Reports Server (NTRS)

    Reed, Daniel A.; Malony, Allen D.; Mccredie, Bradley D.

    1987-01-01

    With traditional event list techniques, evaluating a detailed discrete event simulation model can often require hours or even days of computation time. Parallel simulation mimics the interacting servers and queues of a real system by assigning each simulated entity to a processor. By eliminating the event list and maintaining only sufficient synchronization to insure causality, parallel simulation can potentially provide speedups that are linear in the number of processors. A set of shared memory experiments is presented using the Chandy-Misra distributed simulation algorithm to simulate networks of queues. Parameters include queueing network topology and routing probabilities, number of processors, and assignment of network nodes to processors. These experiments show that Chandy-Misra distributed simulation is a questionable alternative to sequential simulation of most queueing network models.

  13. A reservoir of time constants for memory traces in cortical neurons

    PubMed Central

    Bernacchia, Alberto; Seo, Hyojung; Lee, Daeyeol; Wang, Xiao-Jing

    2011-01-01

    According to reinforcement learning theory of decision making, reward expectation is computed by integrating past rewards with a fixed timescale. By contrast, we found that a wide range of time constants is available across cortical neurons recorded from monkeys performing a competitive game task. By recognizing that reward modulates neural activity multiplicatively, we found that one or two time constants of reward memory can be extracted for each neuron in prefrontal, cingulate, and parietal cortex. These timescales ranged from hundreds of milliseconds to tens of seconds, according to a power-law distribution, which is consistent across areas and reproduced by a “reservoir” neural network model. These neuronal memory timescales were weakly but significantly correlated with those of monkey's decisions. Our findings suggest a flexible memory system, where neural subpopulations with distinct sets of long or short memory timescales may be selectively deployed according to the task demands. PMID:21317906

  14. Quantitative Analysis of Charge Injection and Discharging of Si Nanocrystals and Arrays by Electrostatic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Bell, L. D.; Boer, E.; Ostraat, M.; Brongersma, M. L.; Flagan, R. C.; Atwater, H. A.

    2000-01-01

    NASA requirements for computing and memory for microspacecraft emphasize high density, low power, small size, and radiation hardness. The distributed nature of storage elements in nanocrystal floating-gate memories leads to intrinsic fault tolerance and radiation hardness. Conventional floating-gate non-volatile memories are more susceptible to radiation damage. Nanocrystal-based memories also offer the possibility of faster, lower power operation. In the pursuit of filling these requirements, the following tasks have been accomplished: (1) Si nanocrystal charging has been accomplished with conducting-tip AFM; (2) Both individual nanocrystals on an oxide surface and nanocrystals formed by implantation have been charged; (3) Discharging is consistent with tunneling through a field-lowered oxide barrier; (4) Modeling of the response of the AFM to trapped charge has allowed estimation of the quantity of trapped charge; and (5) Initial attempts to fabricate competitive nanocrystal non-volatile memories have been extremely successful.

  15. Distributed computing for membrane-based modeling of action potential propagation.

    PubMed

    Porras, D; Rogers, J M; Smith, W M; Pollard, A E

    2000-08-01

    Action potential propagation simulations with physiologic membrane currents and macroscopic tissue dimensions are computationally expensive. We, therefore, analyzed distributed computing schemes to reduce execution time in workstation clusters by parallelizing solutions with message passing. Four schemes were considered in two-dimensional monodomain simulations with the Beeler-Reuter membrane equations. Parallel speedups measured with each scheme were compared to theoretical speedups, recognizing the relationship between speedup and code portions that executed serially. A data decomposition scheme based on total ionic current provided the best performance. Analysis of communication latencies in that scheme led to a load-balancing algorithm in which measured speedups at 89 +/- 2% and 75 +/- 8% of theoretical speedups were achieved in homogeneous and heterogeneous clusters of workstations. Speedups in this scheme with the Luo-Rudy dynamic membrane equations exceeded 3.0 with eight distributed workstations. Cluster speedups were comparable to those measured during parallel execution on a shared memory machine.

  16. Structure and Deterioration of Semantic Memory: A Neuropsychological and Computational Investigation

    ERIC Educational Resources Information Center

    Rogers, Timothy T.; Lambon Ralph, Matthew A.; Garrard, Peter; Bozeat, Sasha; McClelland, James L.; Hodges, John R.; Patterson, Karalyn

    2004-01-01

    Wernicke (1900, as cited in G. H. Eggert, 1977) suggested that semantic knowledge arises from the interaction of perceptual representations of objects and words. The authors present a parallel distributed processing implementation of this theory, in which semantic representations emerge from mechanisms that acquire the mappings between visual…

  17. Schemas in Problem Solving: An Integrated Model of Learning, Memory, and Instruction

    DTIC Science & Technology

    1992-01-01

    article: "Hybrid Computation in Cognitive Science: Neural Networks and Symbols" (J. A. Anderson, 1990). And, Marvin Minsky echoes the sentiment in his...distributed processing: A handbook of models, programs, and exercises. Cambridge, MA: The MIT Press. Minsky , M. (1991). Logical versus analogical or symbolic

  18. A third-generation density-functional-theory-based method for calculating canonical molecular orbitals of large molecules.

    PubMed

    Hirano, Toshiyuki; Sato, Fumitoshi

    2014-07-28

    We used grid-free modified Cholesky decomposition (CD) to develop a density-functional-theory (DFT)-based method for calculating the canonical molecular orbitals (CMOs) of large molecules. Our method can be used to calculate standard CMOs, analytically compute exchange-correlation terms, and maximise the capacity of next-generation supercomputers. Cholesky vectors were first analytically downscaled using low-rank pivoted CD and CD with adaptive metric (CDAM). The obtained Cholesky vectors were distributed and stored on each computer node in a parallel computer, and the Coulomb, Fock exchange, and pure exchange-correlation terms were calculated by multiplying the Cholesky vectors without evaluating molecular integrals in self-consistent field iterations. Our method enables DFT and massively distributed memory parallel computers to be used in order to very efficiently calculate the CMOs of large molecules.

  19. NavP: Structured and Multithreaded Distributed Parallel Programming

    NASA Technical Reports Server (NTRS)

    Pan, Lei

    2007-01-01

    We present Navigational Programming (NavP) -- a distributed parallel programming methodology based on the principles of migrating computations and multithreading. The four major steps of NavP are: (1) Distribute the data using the data communication pattern in a given algorithm; (2) Insert navigational commands for the computation to migrate and follow large-sized distributed data; (3) Cut the sequential migrating thread and construct a mobile pipeline; and (4) Loop back for refinement. NavP is significantly different from the current prevailing Message Passing (MP) approach. The advantages of NavP include: (1) NavP is structured distributed programming and it does not change the code structure of an original algorithm. This is in sharp contrast to MP as MP implementations in general do not resemble the original sequential code; (2) NavP implementations are always competitive with the best MPI implementations in terms of performance. Approaches such as DSM or HPF have failed to deliver satisfying performance as of today in contrast, even if they are relatively easy to use compared to MP; (3) NavP provides incremental parallelization, which is beyond the reach of MP; and (4) NavP is a unifying approach that allows us to exploit both fine- (multithreading on shared memory) and coarse- (pipelined tasks on distributed memory) grained parallelism. This is in contrast to the currently popular hybrid use of MP+OpenMP, which is known to be complex to use. We present experimental results that demonstrate the effectiveness of NavP.

  20. A universal quantum module for quantum communication, computation, and metrology

    NASA Astrophysics Data System (ADS)

    Hanks, Michael; Lo Piparo, Nicolò; Trupke, Michael; Schmiedmayer, Jorg; Munro, William J.; Nemoto, Kae

    2017-08-01

    In this work, we describe a simple module that could be ubiquitous for quantum information based applications. The basic modules comprises a single NV- center in diamond embedded in an optical cavity, where the cavity mediates interactions between photons and the electron spin (enabling entanglement distribution and efficient readout), while the nuclear spins constitutes a long-lived quantum memories capable of storing and processing quantum information. We discuss how a network of connected modules can be used for distributed metrology, communication and computation applications. Finally, we investigate the possible use of alternative diamond centers (SiV/GeV) within the module and illustrate potential advantages.

  1. HAlign-II: efficient ultra-large multiple sequence alignment and phylogenetic tree reconstruction with distributed and parallel computing.

    PubMed

    Wan, Shixiang; Zou, Quan

    2017-01-01

    Multiple sequence alignment (MSA) plays a key role in biological sequence analyses, especially in phylogenetic tree construction. Extreme increase in next-generation sequencing results in shortage of efficient ultra-large biological sequence alignment approaches for coping with different sequence types. Distributed and parallel computing represents a crucial technique for accelerating ultra-large (e.g. files more than 1 GB) sequence analyses. Based on HAlign and Spark distributed computing system, we implement a highly cost-efficient and time-efficient HAlign-II tool to address ultra-large multiple biological sequence alignment and phylogenetic tree construction. The experiments in the DNA and protein large scale data sets, which are more than 1GB files, showed that HAlign II could save time and space. It outperformed the current software tools. HAlign-II can efficiently carry out MSA and construct phylogenetic trees with ultra-large numbers of biological sequences. HAlign-II shows extremely high memory efficiency and scales well with increases in computing resource. THAlign-II provides a user-friendly web server based on our distributed computing infrastructure. HAlign-II with open-source codes and datasets was established at http://lab.malab.cn/soft/halign.

  2. STEMsalabim: A high-performance computing cluster friendly code for scanning transmission electron microscopy image simulations of thin specimens.

    PubMed

    Oelerich, Jan Oliver; Duschek, Lennart; Belz, Jürgen; Beyer, Andreas; Baranovskii, Sergei D; Volz, Kerstin

    2017-06-01

    We present a new multislice code for the computer simulation of scanning transmission electron microscope (STEM) images based on the frozen lattice approximation. Unlike existing software packages, the code is optimized to perform well on highly parallelized computing clusters, combining distributed and shared memory architectures. This enables efficient calculation of large lateral scanning areas of the specimen within the frozen lattice approximation and fine-grained sweeps of parameter space. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Event boundaries and memory improvement.

    PubMed

    Pettijohn, Kyle A; Thompson, Alexis N; Tamplin, Andrea K; Krawietz, Sabine A; Radvansky, Gabriel A

    2016-03-01

    The structure of events can influence later memory for information that is embedded in them, with evidence indicating that event boundaries can both impair and enhance memory. The current study explored whether the presence of event boundaries during encoding can structure information to improve memory. In Experiment 1, memory for a list of words was tested in which event structure was manipulated by having participants walk through a doorway, or not, halfway through the word list. In Experiment 2, memory for lists of words was tested in which event structure was manipulated using computer windows. Finally, in Experiments 3 and 4, event structure was manipulated by having event shifts described in narrative texts. The consistent finding across all of these methods and materials was that memory was better when the information was distributed across two events rather than combined into a single event. Moreover, Experiment 4 demonstrated that increasing the number of event boundaries from one to two increased the memory benefit. These results are interpreted in the context of the Event Horizon Model of event cognition. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A Massively Parallel Code for Polarization Calculations

    NASA Astrophysics Data System (ADS)

    Akiyama, Shizuka; Höflich, Peter

    2001-03-01

    We present an implementation of our Monte-Carlo radiation transport method for rapidly expanding, NLTE atmospheres for massively parallel computers which utilizes both the distributed and shared memory models. This allows us to take full advantage of the fast communication and low latency inherent to nodes with multiple CPUs, and to stretch the limits of scalability with the number of nodes compared to a version which is based on the shared memory model. Test calculations on a local 20-node Beowulf cluster with dual CPUs showed an improved scalability by about 40%.

  5. FPGA cluster for high-performance AO real-time control system

    NASA Astrophysics Data System (ADS)

    Geng, Deli; Goodsell, Stephen J.; Basden, Alastair G.; Dipper, Nigel A.; Myers, Richard M.; Saunter, Chris D.

    2006-06-01

    Whilst the high throughput and low latency requirements for the next generation AO real-time control systems have posed a significant challenge to von Neumann architecture processor systems, the Field Programmable Gate Array (FPGA) has emerged as a long term solution with high performance on throughput and excellent predictability on latency. Moreover, FPGA devices have highly capable programmable interfacing, which lead to more highly integrated system. Nevertheless, a single FPGA is still not enough: multiple FPGA devices need to be clustered to perform the required subaperture processing and the reconstruction computation. In an AO real-time control system, the memory bandwidth is often the bottleneck of the system, simply because a vast amount of supporting data, e.g. pixel calibration maps and the reconstruction matrix, need to be accessed within a short period. The cluster, as a general computing architecture, has excellent scalability in processing throughput, memory bandwidth, memory capacity, and communication bandwidth. Problems, such as task distribution, node communication, system verification, are discussed.

  6. Block-Parallel Data Analysis with DIY2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozov, Dmitriy; Peterka, Tom

    DIY2 is a programming model and runtime for block-parallel analytics on distributed-memory machines. Its main abstraction is block-structured data parallelism: data are decomposed into blocks; blocks are assigned to processing elements (processes or threads); computation is described as iterations over these blocks, and communication between blocks is defined by reusable patterns. By expressing computation in this general form, the DIY2 runtime is free to optimize the movement of blocks between slow and fast memories (disk and flash vs. DRAM) and to concurrently execute blocks residing in memory with multiple threads. This enables the same program to execute in-core, out-of-core, serial,more » parallel, single-threaded, multithreaded, or combinations thereof. This paper describes the implementation of the main features of the DIY2 programming model and optimizations to improve performance. DIY2 is evaluated on benchmark test cases to establish baseline performance for several common patterns and on larger complete analysis codes running on large-scale HPC machines.« less

  7. Proceedings of the second SISAL users` conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feo, J T; Frerking, C; Miller, P J

    1992-12-01

    This report contains papers on the following topics: A sisal code for computing the fourier transform on S{sub N}; five ways to fill your knapsack; simulating material dislocation motion in sisal; candis as an interface for sisal; parallelisation and performance of the burg algorithm on a shared-memory multiprocessor; use of genetic algorithm in sisal to solve the file design problem; implementing FFT`s in sisal; programming and evaluating the performance of signal processing applications in the sisal programming environment; sisal and Von Neumann-based languages: translation and intercommunication; an IF2 code generator for ADAM architecture; program partitioning for NUMA multiprocessor computer systems;more » mapping functional parallelism on distributed memory machines; implicit array copying: prevention is better than cure ; mathematical syntax for sisal; an approach for optimizing recursive functions; implementing arrays in sisal 2.0; Fol: an object oriented extension to the sisal language; twine: a portable, extensible sisal execution kernel; and investigating the memory performance of the optimizing sisal compiler.« less

  8. Dynamic Load-Balancing for Distributed Heterogeneous Computing of Parallel CFD Problems

    NASA Technical Reports Server (NTRS)

    Ecer, A.; Chien, Y. P.; Boenisch, T.; Akay, H. U.

    2000-01-01

    The developed methodology is aimed at improving the efficiency of executing block-structured algorithms on parallel, distributed, heterogeneous computers. The basic approach of these algorithms is to divide the flow domain into many sub- domains called blocks, and solve the governing equations over these blocks. Dynamic load balancing problem is defined as the efficient distribution of the blocks among the available processors over a period of several hours of computations. In environments with computers of different architecture, operating systems, CPU speed, memory size, load, and network speed, balancing the loads and managing the communication between processors becomes crucial. Load balancing software tools for mutually dependent parallel processes have been created to efficiently utilize an advanced computation environment and algorithms. These tools are dynamic in nature because of the chances in the computer environment during execution time. More recently, these tools were extended to a second operating system: NT. In this paper, the problems associated with this application will be discussed. Also, the developed algorithms were combined with the load sharing capability of LSF to efficiently utilize workstation clusters for parallel computing. Finally, results will be presented on running a NASA based code ADPAC to demonstrate the developed tools for dynamic load balancing.

  9. Optical memories in digital computing

    NASA Technical Reports Server (NTRS)

    Alford, C. O.; Gaylord, T. K.

    1979-01-01

    High capacity optical memories with relatively-high data-transfer rate and multiport simultaneous access capability may serve as basis for new computer architectures. Several computer structures that might profitably use memories are: a) simultaneous record-access system, b) simultaneously-shared memory computer system, and c) parallel digital processing structure.

  10. FORENSIC ANALYSIS OF WINDOW’S® VIRTUAL MEMORY INCORPORATING THE SYSTEM’S PAGEFILE COUNTERINTELLIGENCE THROUGH MALICIOUS CODE ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jared Stimson

    FORENSIC ANALYSIS OF WINDOW’S® VIRTUAL MEMORY INCORPORATING THE SYSTEM’S PAGEFILE Computer Forensics is concerned with the use of computer investigation and analysis techniques in order to collect evidence suitable for presentation in court. The examination of volatile memory is a relatively new but important area in computer forensics. More recently criminals are becoming more forensically aware and are now able to compromise computers without accessing the hard disk of the target computer. This means that traditional incident response practice of pulling the plug will destroy the only evidence of the crime. While some techniques are available for acquiring the contentsmore » of main memory, few exist which can analyze these data in a meaningful way. One reason for this is how memory is managed by the operating system. Data belonging to one process can be distributed arbitrarily across physical memory or the hard disk, making it very difficult to recover useful information. This report will focus on how these disparate sources of information can be combined to give a single, contiguous address space for each process. Using address translation a tool is developed to reconstruct the virtual address space of a process by combining a physical memory dump with the page-file on the hard disk. COUNTERINTELLIGENCE THROUGH MALICIOUS CODE ANALYSIS As computer network technology continues to grow so does the reliance on this technology for everyday business functionality. To appeal to customers and employees alike, businesses are seeking an increased online prescience, and to increase productivity the same businesses are computerizing their day-to-day operations. The combination of a publicly accessible interface to the businesses network, and the increase in the amount of intellectual property present on these networks presents serious risks. All of this intellectual property now faces constant attacks from a wide variety of malicious software that is intended to uncover company and government secrets. Every year billions of dollars are invested in preventing and recovering from the introduction of malicious code into a system. However, there is little research being done on leveraging these attacks for counterintelligence opportunities. With the ever-increasing number of vulnerable computers on the Internet the task of attributing these attacks to an organization or a single person is a daunting one. This thesis will demonstrate the idea of intentionally running a piece of malicious code in a secure environment in order to gain counterintelligence on an attacker.« less

  11. Implementation of a fully-balanced periodic tridiagonal solver on a parallel distributed memory architecture

    NASA Technical Reports Server (NTRS)

    Eidson, T. M.; Erlebacher, G.

    1994-01-01

    While parallel computers offer significant computational performance, it is generally necessary to evaluate several programming strategies. Two programming strategies for a fairly common problem - a periodic tridiagonal solver - are developed and evaluated. Simple model calculations as well as timing results are presented to evaluate the various strategies. The particular tridiagonal solver evaluated is used in many computational fluid dynamic simulation codes. The feature that makes this algorithm unique is that these simulation codes usually require simultaneous solutions for multiple right-hand-sides (RHS) of the system of equations. Each RHS solutions is independent and thus can be computed in parallel. Thus a Gaussian elimination type algorithm can be used in a parallel computation and the more complicated approaches such as cyclic reduction are not required. The two strategies are a transpose strategy and a distributed solver strategy. For the transpose strategy, the data is moved so that a subset of all the RHS problems is solved on each of the several processors. This usually requires significant data movement between processor memories across a network. The second strategy attempts to have the algorithm allow the data across processor boundaries in a chained manner. This usually requires significantly less data movement. An approach to accomplish this second strategy in a near-perfect load-balanced manner is developed. In addition, an algorithm will be shown to directly transform a sequential Gaussian elimination type algorithm into the parallel chained, load-balanced algorithm.

  12. A high performance parallel algorithm for 1-D FFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, R.C.; Gustavson, F.G.; Zubair, M.

    1994-12-31

    In this paper the authors propose a parallel high performance FFT algorithm based on a multi-dimensional formulation. They use this to solve a commonly encountered FFT based kernel on a distributed memory parallel machine, the IBM scalable parallel system, SP1. The kernel requires a forward FFT computation of an input sequence, multiplication of the transformed data by a coefficient array, and finally an inverse FFT computation of the resultant data. They show that the multi-dimensional formulation helps in reducing the communication costs and also improves the single node performance by effectively utilizing the memory system of the node. They implementedmore » this kernel on the IBM SP1 and observed a performance of 1.25 GFLOPS on a 64-node machine.« less

  13. From biological neural networks to thinking machines: Transitioning biological organizational principles to computer technology

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.

    1991-01-01

    The three-dimensional organization of the vestibular macula is under study by computer assisted reconstruction and simulation methods as a model for more complex neural systems. One goal of this research is to transition knowledge of biological neural network architecture and functioning to computer technology, to contribute to the development of thinking computers. Maculas are organized as weighted neural networks for parallel distributed processing of information. The network is characterized by non-linearity of its terminal/receptive fields. Wiring appears to develop through constrained randomness. A further property is the presence of two main circuits, highly channeled and distributed modifying, that are connected through feedforward-feedback collaterals and biasing subcircuit. Computer simulations demonstrate that differences in geometry of the feedback (afferent) collaterals affects the timing and the magnitude of voltage changes delivered to the spike initiation zone. Feedforward (efferent) collaterals act as voltage followers and likely inhibit neurons of the distributed modifying circuit. These results illustrate the importance of feedforward-feedback loops, of timing, and of inhibition in refining neural network output. They also suggest that it is the distributed modifying network that is most involved in adaptation, memory, and learning. Tests of macular adaptation, through hyper- and microgravitational studies, support this hypothesis since synapses in the distributed modifying circuit, but not the channeled circuit, are altered. Transitioning knowledge of biological systems to computer technology, however, remains problematical.

  14. Full Parallel Implementation of an All-Electron Four-Component Dirac-Kohn-Sham Program.

    PubMed

    Rampino, Sergio; Belpassi, Leonardo; Tarantelli, Francesco; Storchi, Loriano

    2014-09-09

    A full distributed-memory implementation of the Dirac-Kohn-Sham (DKS) module of the program BERTHA (Belpassi et al., Phys. Chem. Chem. Phys. 2011, 13, 12368-12394) is presented, where the self-consistent field (SCF) procedure is replicated on all the parallel processes, each process working on subsets of the global matrices. The key feature of the implementation is an efficient procedure for switching between two matrix distribution schemes, one (integral-driven) optimal for the parallel computation of the matrix elements and another (block-cyclic) optimal for the parallel linear algebra operations. This approach, making both CPU-time and memory scalable with the number of processors used, virtually overcomes at once both time and memory barriers associated with DKS calculations. Performance, portability, and numerical stability of the code are illustrated on the basis of test calculations on three gold clusters of increasing size, an organometallic compound, and a perovskite model. The calculations are performed on a Beowulf and a BlueGene/Q system.

  15. Reducing power consumption during execution of an application on a plurality of compute nodes

    DOEpatents

    Archer, Charles J.; Blocksome, Michael A.; Peters, Amanda E.; Ratterman, Joseph D.; Smith, Brian E.

    2013-09-10

    Methods, apparatus, and products are disclosed for reducing power consumption during execution of an application on a plurality of compute nodes that include: powering up, during compute node initialization, only a portion of computer memory of the compute node, including configuring an operating system for the compute node in the powered up portion of computer memory; receiving, by the operating system, an instruction to load an application for execution; allocating, by the operating system, additional portions of computer memory to the application for use during execution; powering up the additional portions of computer memory allocated for use by the application during execution; and loading, by the operating system, the application into the powered up additional portions of computer memory.

  16. Comparative Analysis of VaR Estimation of Double Long-Memory GARCH Models: Empirical Analysis of China's Stock Market

    NASA Astrophysics Data System (ADS)

    Cao, Guangxi; Guo, Jianping; Xu, Lin

    GARCH models are widely used to model the volatility of financial assets and measure VaR. Based on the characteristics of long-memory and lepkurtosis and fat tail of stock market return series, we compared the ability of double long-memory GARCH models with skewed student-t-distribution to compute VaR, through the empirical analysis of Shanghai Composite Index (SHCI) and Shenzhen Component Index (SZCI). The results show that the ARFIMA-HYGARCH model performance better than others, and at less than or equal to 2.5 percent of the level of VaR, double long-memory GARCH models have stronger ability to evaluate in-sample VaRs in long position than in short position while there is a diametrically opposite conclusion for ability of out-of-sample VaR forecast.

  17. Colored noise and memory effects on formal spiking neuron models

    NASA Astrophysics Data System (ADS)

    da Silva, L. A.; Vilela, R. D.

    2015-06-01

    Simplified neuronal models capture the essence of the electrical activity of a generic neuron, besides being more interesting from the computational point of view when compared to higher-dimensional models such as the Hodgkin-Huxley one. In this work, we propose a generalized resonate-and-fire model described by a generalized Langevin equation that takes into account memory effects and colored noise. We perform a comprehensive numerical analysis to study the dynamics and the point process statistics of the proposed model, highlighting interesting new features such as (i) nonmonotonic behavior (emergence of peak structures, enhanced by the choice of colored noise characteristic time scale) of the coefficient of variation (CV) as a function of memory characteristic time scale, (ii) colored noise-induced shift in the CV, and (iii) emergence and suppression of multimodality in the interspike interval (ISI) distribution due to memory-induced subthreshold oscillations. Moreover, in the noise-induced spike regime, we study how memory and colored noise affect the coherence resonance (CR) phenomenon. We found that for sufficiently long memory, not only is CR suppressed but also the minimum of the CV-versus-noise intensity curve that characterizes the presence of CR may be replaced by a maximum. The aforementioned features allow to interpret the interplay between memory and colored noise as an effective control mechanism to neuronal variability. Since both variability and nontrivial temporal patterns in the ISI distribution are ubiquitous in biological cells, we hope the present model can be useful in modeling real aspects of neurons.

  18. Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision.

    PubMed

    Shi, Junxing; Wen, Haiguang; Zhang, Yizhen; Han, Kuan; Liu, Zhongming

    2018-05-01

    The human visual cortex extracts both spatial and temporal visual features to support perception and guide behavior. Deep convolutional neural networks (CNNs) provide a computational framework to model cortical representation and organization for spatial visual processing, but unable to explain how the brain processes temporal information. To overcome this limitation, we extended a CNN by adding recurrent connections to different layers of the CNN to allow spatial representations to be remembered and accumulated over time. The extended model, or the recurrent neural network (RNN), embodied a hierarchical and distributed model of process memory as an integral part of visual processing. Unlike the CNN, the RNN learned spatiotemporal features from videos to enable action recognition. The RNN better predicted cortical responses to natural movie stimuli than the CNN, at all visual areas, especially those along the dorsal stream. As a fully observable model of visual processing, the RNN also revealed a cortical hierarchy of temporal receptive window, dynamics of process memory, and spatiotemporal representations. These results support the hypothesis of process memory, and demonstrate the potential of using the RNN for in-depth computational understanding of dynamic natural vision. © 2018 Wiley Periodicals, Inc.

  19. Over-Distribution in Source Memory

    PubMed Central

    Brainerd, C. J.; Reyna, V. F.; Holliday, R. E.; Nakamura, K.

    2012-01-01

    Semantic false memories are confounded with a second type of error, over-distribution, in which items are attributed to contradictory episodic states. Over-distribution errors have proved to be more common than false memories when the two are disentangled. We investigated whether over-distribution is prevalent in another classic false memory paradigm: source monitoring. It is. Conventional false memory responses (source misattributions) were predominantly over-distribution errors, but unlike semantic false memory, over-distribution also accounted for more than half of true memory responses (correct source attributions). Experimental control of over-distribution was achieved via a series of manipulations that affected either recollection of contextual details or item memory (concreteness, frequency, list-order, number of presentation contexts, and individual differences in verbatim memory). A theoretical model was used to analyze the data (conjoint process dissociation) that predicts that predicts that (a) over-distribution is directly proportional to item memory but inversely proportional to recollection and (b) item memory is not a necessary precondition for recollection of contextual details. The results were consistent with both predictions. PMID:21942494

  20. A parallel implementation of an off-lattice individual-based model of multicellular populations

    NASA Astrophysics Data System (ADS)

    Harvey, Daniel G.; Fletcher, Alexander G.; Osborne, James M.; Pitt-Francis, Joe

    2015-07-01

    As computational models of multicellular populations include ever more detailed descriptions of biophysical and biochemical processes, the computational cost of simulating such models limits their ability to generate novel scientific hypotheses and testable predictions. While developments in microchip technology continue to increase the power of individual processors, parallel computing offers an immediate increase in available processing power. To make full use of parallel computing technology, it is necessary to develop specialised algorithms. To this end, we present a parallel algorithm for a class of off-lattice individual-based models of multicellular populations. The algorithm divides the spatial domain between computing processes and comprises communication routines that ensure the model is correctly simulated on multiple processors. The parallel algorithm is shown to accurately reproduce the results of a deterministic simulation performed using a pre-existing serial implementation. We test the scaling of computation time, memory use and load balancing as more processes are used to simulate a cell population of fixed size. We find approximate linear scaling of both speed-up and memory consumption on up to 32 processor cores. Dynamic load balancing is shown to provide speed-up for non-regular spatial distributions of cells in the case of a growing population.

  1. A fast three-dimensional gamma evaluation using a GPU utilizing texture memory for on-the-fly interpolations.

    PubMed

    Persoon, Lucas C G G; Podesta, Mark; van Elmpt, Wouter J C; Nijsten, Sebastiaan M J J G; Verhaegen, Frank

    2011-07-01

    A widely accepted method to quantify differences in dose distributions is the gamma (gamma) evaluation. Currently, almost all gamma implementations utilize the central processing unit (CPU). Recently, the graphics processing unit (GPU) has become a powerful platform for specific computing tasks. In this study, we describe the implementation of a 3D gamma evaluation using a GPU to improve calculation time. The gamma evaluation algorithm was implemented on an NVIDIA Tesla C2050 GPU using the compute unified device architecture (CUDA). First, several cubic virtual phantoms were simulated. These phantoms were tested with varying dose cube sizes and set-ups, introducing artificial dose differences. Second, to show applicability in clinical practice, five patient cases have been evaluated using the 3D dose distribution from a treatment planning system as the reference and the delivered dose determined during treatment as the comparison. A calculation time comparison between the CPU and GPU was made with varying thread-block sizes including the option of using texture or global memory. A GPU over CPU speed-up of 66 +/- 12 was achieved for the virtual phantoms. For the patient cases, a speed-up of 57 +/- 15 using the GPU was obtained. A thread-block size of 16 x 16 performed best in all cases. The use of texture memory improved the total calculation time, especially when interpolation was applied. Differences between the CPU and GPU gammas were negligible. The GPU and its features, such as texture memory, decreased the calculation time for gamma evaluations considerably without loss of accuracy.

  2. NRL Fact Book 2010

    DTIC Science & Technology

    2010-01-01

    service) High assurance software Distributed network-based battle management High performance computing supporting uniform and nonuniform memory...VNIR, MWIR, and LWIR high-resolution systems Wideband SAR systems RF and laser data links High-speed, high-power photodetector characteriza- tion...Antimonide (InSb) imaging system Long-wave infrared ( LWIR ) quantum well IR photodetector (QWIP) imaging system Research and Development Services

  3. High-Dimensional Semantic Space Accounts of Priming

    ERIC Educational Resources Information Center

    Jones, Michael N.; Kintsch, Walter; Mewhort, Douglas J. K.

    2006-01-01

    A broad range of priming data has been used to explore the structure of semantic memory and to test between models of word representation. In this paper, we examine the computational mechanisms required to learn distributed semantic representations for words directly from unsupervised experience with language. To best account for the variety of…

  4. Distributed Memory Compiler Methods for Irregular Problems - Data Copy Reuse and Runtime Partitioning

    DTIC Science & Technology

    1991-09-01

    addition, support for Saltz was provided by NSF from NSF Grant ASC-8819374. i 1, introduction Over the past fewyers, ,we have devoped -methods needed to... network . In Third Conf. on Hypercube Concurrent Computers and Applications, pages 241-27278, 1988. [17] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel

  5. Ensuring correct rollback recovery in distributed shared memory systems

    NASA Technical Reports Server (NTRS)

    Janssens, Bob; Fuchs, W. Kent

    1995-01-01

    Distributed shared memory (DSM) implemented on a cluster of workstations is an increasingly attractive platform for executing parallel scientific applications. Checkpointing and rollback techniques can be used in such a system to allow the computation to progress in spite of the temporary failure of one or more processing nodes. This paper presents the design of an independent checkpointing method for DSM that takes advantage of DSM's specific properties to reduce error-free and rollback overhead. The scheme reduces the dependencies that need to be considered for correct rollback to those resulting from transfers of pages. Furthermore, in-transit messages can be recovered without the use of logging. We extend the scheme to a DSM implementation using lazy release consistency, where the frequency of dependencies is further reduced.

  6. Execution models for mapping programs onto distributed memory parallel computers

    NASA Technical Reports Server (NTRS)

    Sussman, Alan

    1992-01-01

    The problem of exploiting the parallelism available in a program to efficiently employ the resources of the target machine is addressed. The problem is discussed in the context of building a mapping compiler for a distributed memory parallel machine. The paper describes using execution models to drive the process of mapping a program in the most efficient way onto a particular machine. Through analysis of the execution models for several mapping techniques for one class of programs, we show that the selection of the best technique for a particular program instance can make a significant difference in performance. On the other hand, the results of benchmarks from an implementation of a mapping compiler show that our execution models are accurate enough to select the best mapping technique for a given program.

  7. Scalable parallel distance field construction for large-scale applications

    DOE PAGES

    Yu, Hongfeng; Xie, Jinrong; Ma, Kwan -Liu; ...

    2015-10-01

    Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. Anew distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking overtime, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate itsmore » efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. In conclusion, our work greatly extends the usability of distance fields for demanding applications.« less

  8. Scalable Parallel Distance Field Construction for Large-Scale Applications.

    PubMed

    Yu, Hongfeng; Xie, Jinrong; Ma, Kwan-Liu; Kolla, Hemanth; Chen, Jacqueline H

    2015-10-01

    Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. A new distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking over time, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate its efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. Our work greatly extends the usability of distance fields for demanding applications.

  9. Implementing Molecular Dynamics on Hybrid High Performance Computers - Three-Body Potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, W Michael; Yamada, Masako

    The use of coprocessors or accelerators such as graphics processing units (GPUs) has become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power re- quirements. Hybrid high-performance computers, defined as machines with nodes containing more than one type of floating-point processor (e.g. CPU and GPU), are now becoming more prevalent due to these advantages. Although there has been extensive research into methods to efficiently use accelerators to improve the performance of molecular dynamics (MD) employing pairwise potential energy models, little is reported in the literature for models that includemore » many-body effects. 3-body terms are required for many popular potentials such as MEAM, Tersoff, REBO, AIREBO, Stillinger-Weber, Bond-Order Potentials, and others. Because the per-atom simulation times are much higher for models incorporating 3-body terms, there is a clear need for efficient algo- rithms usable on hybrid high performance computers. Here, we report a shared-memory force-decomposition for 3-body potentials that avoids memory conflicts to allow for a deterministic code with substantial performance improvements on hybrid machines. We describe modifications necessary for use in distributed memory MD codes and show results for the simulation of water with Stillinger-Weber on the hybrid Titan supercomputer. We compare performance of the 3-body model to the SPC/E water model when using accelerators. Finally, we demonstrate that our approach can attain a speedup of 5.1 with acceleration on Titan for production simulations to study water droplet freezing on a surface.« less

  10. The potential of multi-port optical memories in digital computing

    NASA Technical Reports Server (NTRS)

    Alford, C. O.; Gaylord, T. K.

    1975-01-01

    A high-capacity memory with a relatively high data transfer rate and multi-port simultaneous access capability may serve as the basis for new computer architectures. The implementation of a multi-port optical memory is discussed. Several computer structures are presented that might profitably use such a memory. These structures include (1) a simultaneous record access system, (2) a simultaneously shared memory computer system, and (3) a parallel digital processing structure.

  11. A matrix-algebraic formulation of distributed-memory maximal cardinality matching algorithms in bipartite graphs

    DOE PAGES

    Azad, Ariful; Buluç, Aydın

    2016-05-16

    We describe parallel algorithms for computing maximal cardinality matching in a bipartite graph on distributed-memory systems. Unlike traditional algorithms that match one vertex at a time, our algorithms process many unmatched vertices simultaneously using a matrix-algebraic formulation of maximal matching. This generic matrix-algebraic framework is used to develop three efficient maximal matching algorithms with minimal changes. The newly developed algorithms have two benefits over existing graph-based algorithms. First, unlike existing parallel algorithms, cardinality of matching obtained by the new algorithms stays constant with increasing processor counts, which is important for predictable and reproducible performance. Second, relying on bulk-synchronous matrix operations,more » these algorithms expose a higher degree of parallelism on distributed-memory platforms than existing graph-based algorithms. We report high-performance implementations of three maximal matching algorithms using hybrid OpenMP-MPI and evaluate the performance of these algorithm using more than 35 real and randomly generated graphs. On real instances, our algorithms achieve up to 200 × speedup on 2048 cores of a Cray XC30 supercomputer. Even higher speedups are obtained on larger synthetically generated graphs where our algorithms show good scaling on up to 16,384 cores.« less

  12. Perspectives on the Future of CFD

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan

    2000-01-01

    This viewgraph presentation gives an overview of the future of computational fluid dynamics (CFD), which in the past has pioneered the field of flow simulation. Over time CFD has progressed as computing power. Numerical methods have been advanced as CPU and memory capacity increases. Complex configurations are routinely computed now and direct numerical simulations (DNS) and large eddy simulations (LES) are used to study turbulence. As the computing resources changed to parallel and distributed platforms, computer science aspects such as scalability (algorithmic and implementation) and portability and transparent codings have advanced. Examples of potential future (or current) challenges include risk assessment, limitations of the heuristic model, and the development of CFD and information technology (IT) tools.

  13. Arranging computer architectures to create higher-performance controllers

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.

    1988-01-01

    Techniques for integrating microprocessors, array processors, and other intelligent devices in control systems are reviewed, with an emphasis on the (re)arrangement of components to form distributed or parallel processing systems. Consideration is given to the selection of the host microprocessor, increasing the power and/or memory capacity of the host, multitasking software for the host, array processors to reduce computation time, the allocation of real-time and non-real-time events to different computer subsystems, intelligent devices to share the computational burden for real-time events, and intelligent interfaces to increase communication speeds. The case of a helicopter vibration-suppression and stabilization controller is analyzed as an example, and significant improvements in computation and throughput rates are demonstrated.

  14. Analytical modeling and feasibility study of a multi-GPU cloud-based server (MGCS) framework for non-voxel-based dose calculations.

    PubMed

    Neylon, J; Min, Y; Kupelian, P; Low, D A; Santhanam, A

    2017-04-01

    In this paper, a multi-GPU cloud-based server (MGCS) framework is presented for dose calculations, exploring the feasibility of remote computing power for parallelization and acceleration of computationally and time intensive radiotherapy tasks in moving toward online adaptive therapies. An analytical model was developed to estimate theoretical MGCS performance acceleration and intelligently determine workload distribution. Numerical studies were performed with a computing setup of 14 GPUs distributed over 4 servers interconnected by a 1 Gigabits per second (Gbps) network. Inter-process communication methods were optimized to facilitate resource distribution and minimize data transfers over the server interconnect. The analytically predicted computation time predicted matched experimentally observations within 1-5 %. MGCS performance approached a theoretical limit of acceleration proportional to the number of GPUs utilized when computational tasks far outweighed memory operations. The MGCS implementation reproduced ground-truth dose computations with negligible differences, by distributing the work among several processes and implemented optimization strategies. The results showed that a cloud-based computation engine was a feasible solution for enabling clinics to make use of fast dose calculations for advanced treatment planning and adaptive radiotherapy. The cloud-based system was able to exceed the performance of a local machine even for optimized calculations, and provided significant acceleration for computationally intensive tasks. Such a framework can provide access to advanced technology and computational methods to many clinics, providing an avenue for standardization across institutions without the requirements of purchasing, maintaining, and continually updating hardware.

  15. Entanglement of spin waves among four quantum memories.

    PubMed

    Choi, K S; Goban, A; Papp, S B; van Enk, S J; Kimble, H J

    2010-11-18

    Quantum networks are composed of quantum nodes that interact coherently through quantum channels, and open a broad frontier of scientific opportunities. For example, a quantum network can serve as a 'web' for connecting quantum processors for computation and communication, or as a 'simulator' allowing investigations of quantum critical phenomena arising from interactions among the nodes mediated by the channels. The physical realization of quantum networks generically requires dynamical systems capable of generating and storing entangled states among multiple quantum memories, and efficiently transferring stored entanglement into quantum channels for distribution across the network. Although such capabilities have been demonstrated for diverse bipartite systems, entangled states have not been achieved for interconnects capable of 'mapping' multipartite entanglement stored in quantum memories to quantum channels. Here we demonstrate measurement-induced entanglement stored in four atomic memories; user-controlled, coherent transfer of the atomic entanglement to four photonic channels; and characterization of the full quadripartite entanglement using quantum uncertainty relations. Our work therefore constitutes an advance in the distribution of multipartite entanglement across quantum networks. We also show that our entanglement verification method is suitable for studying the entanglement order of condensed-matter systems in thermal equilibrium.

  16. Quantum teleportation between remote atomic-ensemble quantum memories.

    PubMed

    Bao, Xiao-Hui; Xu, Xiao-Fan; Li, Che-Ming; Yuan, Zhen-Sheng; Lu, Chao-Yang; Pan, Jian-Wei

    2012-12-11

    Quantum teleportation and quantum memory are two crucial elements for large-scale quantum networks. With the help of prior distributed entanglement as a "quantum channel," quantum teleportation provides an intriguing means to faithfully transfer quantum states among distant locations without actual transmission of the physical carriers [Bennett CH, et al. (1993) Phys Rev Lett 70(13):1895-1899]. Quantum memory enables controlled storage and retrieval of fast-flying photonic quantum bits with stationary matter systems, which is essential to achieve the scalability required for large-scale quantum networks. Combining these two capabilities, here we realize quantum teleportation between two remote atomic-ensemble quantum memory nodes, each composed of ∼10(8) rubidium atoms and connected by a 150-m optical fiber. The spin wave state of one atomic ensemble is mapped to a propagating photon and subjected to Bell state measurements with another single photon that is entangled with the spin wave state of the other ensemble. Two-photon detection events herald the success of teleportation with an average fidelity of 88(7)%. Besides its fundamental interest as a teleportation between two remote macroscopic objects, our technique may be useful for quantum information transfer between different nodes in quantum networks and distributed quantum computing.

  17. General purpose molecular dynamics simulations fully implemented on graphics processing units

    NASA Astrophysics Data System (ADS)

    Anderson, Joshua A.; Lorenz, Chris D.; Travesset, A.

    2008-05-01

    Graphics processing units (GPUs), originally developed for rendering real-time effects in computer games, now provide unprecedented computational power for scientific applications. In this paper, we develop a general purpose molecular dynamics code that runs entirely on a single GPU. It is shown that our GPU implementation provides a performance equivalent to that of fast 30 processor core distributed memory cluster. Our results show that GPUs already provide an inexpensive alternative to such clusters and discuss implications for the future.

  18. A VME-based software trigger system using UNIX processors

    NASA Astrophysics Data System (ADS)

    Atmur, Robert; Connor, David F.; Molzon, William

    1997-02-01

    We have constructed a distributed computing platform with eight processors to assemble and filter data from digitization crates. The filtered data were transported to a tape-writing UNIX computer via ethernet. Each processor ran a UNIX operating system and was installed in its own VME crate. Each VME crate contained dual-port memories which interfaced with the digitizers. Using standard hardware and software (VME and UNIX) allows us to select from a wide variety of non-proprietary products and makes upgrades simpler, if they are necessary.

  19. Parallel volume ray-casting for unstructured-grid data on distributed-memory architectures

    NASA Technical Reports Server (NTRS)

    Ma, Kwan-Liu

    1995-01-01

    As computing technology continues to advance, computational modeling of scientific and engineering problems produces data of increasing complexity: large in size and unstructured in shape. Volume visualization of such data is a challenging problem. This paper proposes a distributed parallel solution that makes ray-casting volume rendering of unstructured-grid data practical. Both the data and the rendering process are distributed among processors. At each processor, ray-casting of local data is performed independent of the other processors. The global image composing processes, which require inter-processor communication, are overlapped with the local ray-casting processes to achieve maximum parallel efficiency. This algorithm differs from previous ones in four ways: it is completely distributed, less view-dependent, reasonably scalable, and flexible. Without using dynamic load balancing, test results on the Intel Paragon using from two to 128 processors show, on average, about 60% parallel efficiency.

  20. Advanced computer architecture specification for automated weld systems

    NASA Technical Reports Server (NTRS)

    Katsinis, Constantine

    1994-01-01

    This report describes the requirements for an advanced automated weld system and the associated computer architecture, and defines the overall system specification from a broad perspective. According to the requirements of welding procedures as they relate to an integrated multiaxis motion control and sensor architecture, the computer system requirements are developed based on a proven multiple-processor architecture with an expandable, distributed-memory, single global bus architecture, containing individual processors which are assigned to specific tasks that support sensor or control processes. The specified architecture is sufficiently flexible to integrate previously developed equipment, be upgradable and allow on-site modifications.

  1. Application of Local Discretization Methods in the NASA Finite-Volume General Circulation Model

    NASA Technical Reports Server (NTRS)

    Yeh, Kao-San; Lin, Shian-Jiann; Rood, Richard B.

    2002-01-01

    We present the basic ideas of the dynamics system of the finite-volume General Circulation Model developed at NASA Goddard Space Flight Center for climate simulations and other applications in meteorology. The dynamics of this model is designed with emphases on conservative and monotonic transport, where the property of Lagrangian conservation is used to maintain the physical consistency of the computational fluid for long-term simulations. As the model benefits from the noise-free solutions of monotonic finite-volume transport schemes, the property of Lagrangian conservation also partly compensates the accuracy of transport for the diffusion effects due to the treatment of monotonicity. By faithfully maintaining the fundamental laws of physics during the computation, this model is able to achieve sufficient accuracy for the global consistency of climate processes. Because the computing algorithms are based on local memory, this model has the advantage of efficiency in parallel computation with distributed memory. Further research is yet desirable to reduce the diffusion effects of monotonic transport for better accuracy, and to mitigate the limitation due to fast-moving gravity waves for better efficiency.

  2. Proteinortho: detection of (co-)orthologs in large-scale analysis.

    PubMed

    Lechner, Marcus; Findeiss, Sven; Steiner, Lydia; Marz, Manja; Stadler, Peter F; Prohaska, Sonja J

    2011-04-28

    Orthology analysis is an important part of data analysis in many areas of bioinformatics such as comparative genomics and molecular phylogenetics. The ever-increasing flood of sequence data, and hence the rapidly increasing number of genomes that can be compared simultaneously, calls for efficient software tools as brute-force approaches with quadratic memory requirements become infeasible in practise. The rapid pace at which new data become available, furthermore, makes it desirable to compute genome-wide orthology relations for a given dataset rather than relying on relations listed in databases. The program Proteinortho described here is a stand-alone tool that is geared towards large datasets and makes use of distributed computing techniques when run on multi-core hardware. It implements an extended version of the reciprocal best alignment heuristic. We apply Proteinortho to compute orthologous proteins in the complete set of all 717 eubacterial genomes available at NCBI at the beginning of 2009. We identified thirty proteins present in 99% of all bacterial proteomes. Proteinortho significantly reduces the required amount of memory for orthology analysis compared to existing tools, allowing such computations to be performed on off-the-shelf hardware.

  3. Efficient Numeric and Geometric Computations using Heterogeneous Shared Memory Architectures

    DTIC Science & Technology

    2017-10-04

    Report: Efficient Numeric and Geometric Computations using Heterogeneous Shared Memory Architectures The views, opinions and/or findings contained in this...Chapel Hill Title: Efficient Numeric and Geometric Computations using Heterogeneous Shared Memory Architectures Report Term: 0-Other Email: dm...algorithms for scientific and geometric computing by exploiting the power and performance efficiency of heterogeneous shared memory architectures . These

  4. Internode data communications in a parallel computer

    DOEpatents

    Archer, Charles J.; Blocksome, Michael A.; Miller, Douglas R.; Parker, Jeffrey J.; Ratterman, Joseph D.; Smith, Brian E.

    2013-09-03

    Internode data communications in a parallel computer that includes compute nodes that each include main memory and a messaging unit, the messaging unit including computer memory and coupling compute nodes for data communications, in which, for each compute node at compute node boot time: a messaging unit allocates, in the messaging unit's computer memory, a predefined number of message buffers, each message buffer associated with a process to be initialized on the compute node; receives, prior to initialization of a particular process on the compute node, a data communications message intended for the particular process; and stores the data communications message in the message buffer associated with the particular process. Upon initialization of the particular process, the process establishes a messaging buffer in main memory of the compute node and copies the data communications message from the message buffer of the messaging unit into the message buffer of main memory.

  5. Internode data communications in a parallel computer

    DOEpatents

    Archer, Charles J; Blocksome, Michael A; Miller, Douglas R; Parker, Jeffrey J; Ratterman, Joseph D; Smith, Brian E

    2014-02-11

    Internode data communications in a parallel computer that includes compute nodes that each include main memory and a messaging unit, the messaging unit including computer memory and coupling compute nodes for data communications, in which, for each compute node at compute node boot time: a messaging unit allocates, in the messaging unit's computer memory, a predefined number of message buffers, each message buffer associated with a process to be initialized on the compute node; receives, prior to initialization of a particular process on the compute node, a data communications message intended for the particular process; and stores the data communications message in the message buffer associated with the particular process. Upon initialization of the particular process, the process establishes a messaging buffer in main memory of the compute node and copies the data communications message from the message buffer of the messaging unit into the message buffer of main memory.

  6. Microdot - A Four-Bit Microcontroller Designed for Distributed Low-End Computing in Satellites

    NASA Astrophysics Data System (ADS)

    2002-03-01

    Many satellites are an integrated collection of sensors and actuators that require dedicated real-time control. For single processor systems, additional sensors require an increase in computing power and speed to provide the multi-tasking capability needed to service each sensor. Faster processors cost more and consume more power, which taxes a satellite's power resources and may lead to shorter satellite lifetimes. An alternative design approach is a distributed network of small and low power microcontrollers designed for space that handle the computing requirements of each individual sensor and actuator. The design of microdot, a four-bit microcontroller for distributed low-end computing, is presented. The design is based on previous research completed at the Space Electronics Branch, Air Force Research Laboratory (AFRL/VSSE) at Kirtland AFB, NM, and the Air Force Institute of Technology at Wright-Patterson AFB, OH. The Microdot has 29 instructions and a 1K x 4 instruction memory. The distributed computing architecture is based on the Philips Semiconductor I2C Serial Bus Protocol. A prototype was implemented and tested using an Altera Field Programmable Gate Array (FPGA). The prototype was operable to 9.1 MHz. The design was targeted for fabrication in a radiation-hardened-by-design gate-array cell library for the TSMC 0.35 micrometer CMOS process.

  7. Vector computer memory bank contention

    NASA Technical Reports Server (NTRS)

    Bailey, D. H.

    1985-01-01

    A number of vector supercomputers feature very large memories. Unfortunately the large capacity memory chips that are used in these computers are much slower than the fast central processing unit (CPU) circuitry. As a result, memory bank reservation times (in CPU ticks) are much longer than on previous generations of computers. A consequence of these long reservation times is that memory bank contention is sharply increased, resulting in significantly lowered performance rates. The phenomenon of memory bank contention in vector computers is analyzed using both a Markov chain model and a Monte Carlo simulation program. The results of this analysis indicate that future generations of supercomputers must either employ much faster memory chips or else feature very large numbers of independent memory banks.

  8. Vector computer memory bank contention

    NASA Technical Reports Server (NTRS)

    Bailey, David H.

    1987-01-01

    A number of vector supercomputers feature very large memories. Unfortunately the large capacity memory chips that are used in these computers are much slower than the fast central processing unit (CPU) circuitry. As a result, memory bank reservation times (in CPU ticks) are much longer than on previous generations of computers. A consequence of these long reservation times is that memory bank contention is sharply increased, resulting in significantly lowered performance rates. The phenomenon of memory bank contention in vector computers is analyzed using both a Markov chain model and a Monte Carlo simulation program. The results of this analysis indicate that future generations of supercomputers must either employ much faster memory chips or else feature very large numbers of independent memory banks.

  9. Enhancing an appointment diary on a pocket computer for use by people after brain injury.

    PubMed

    Wright, P; Rogers, N; Hall, C; Wilson, B; Evans, J; Emslie, H

    2001-12-01

    People with memory loss resulting from brain injury benefit from purpose-designed memory aids such as appointment diaries on pocket computers. The present study explores the effects of extending the range of memory aids and including games. For 2 months, 12 people who had sustained brain injury were loaned a pocket computer containing three purpose-designed memory aids: diary, notebook and to-do list. A month later they were given another computer with the same memory aids but a different method of text entry (physical keyboard or touch-screen keyboard). Machine order was counterbalanced across participants. Assessment was by interviews during the loan periods, rating scales, performance tests and computer log files. All participants could use the memory aids and ten people (83%) found them very useful. Correlations among the three memory aids were not significant, suggesting individual variation in how they were used. Games did not increase use of the memory aids, nor did loan of the preferred pocket computer (with physical keyboard). Significantly more diary entries were made by people who had previously used other memory aids, suggesting that a better understanding of how to use a range of memory aids could benefit some people with brain injury.

  10. Resource-Efficient, Hierarchical Auto-Tuning of a Hybrid Lattice Boltzmann Computation on the Cray XT4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Computational Research Division, Lawrence Berkeley National Laboratory; NERSC, Lawrence Berkeley National Laboratory; Computer Science Department, University of California, Berkeley

    2009-05-04

    We apply auto-tuning to a hybrid MPI-pthreads lattice Boltzmann computation running on the Cray XT4 at National Energy Research Scientific Computing Center (NERSC). Previous work showed that multicore-specific auto-tuning can improve the performance of lattice Boltzmann magnetohydrodynamics (LBMHD) by a factor of 4x when running on dual- and quad-core Opteron dual-socket SMPs. We extend these studies to the distributed memory arena via a hybrid MPI/pthreads implementation. In addition to conventional auto-tuning at the local SMP node, we tune at the message-passing level to determine the optimal aspect ratio as well as the correct balance between MPI tasks and threads permore » MPI task. Our study presents a detailed performance analysis when moving along an isocurve of constant hardware usage: fixed total memory, total cores, and total nodes. Overall, our work points to approaches for improving intra- and inter-node efficiency on large-scale multicore systems for demanding scientific applications.« less

  11. The molecular basis of memory. Part 2: chemistry of the tripartite mechanism.

    PubMed

    Marx, Gerard; Gilon, Chaim

    2013-06-19

    We propose a tripartite mechanism to describe the processing of cognitive information (cog-info), comprising the (1) neuron, (2) surrounding neural extracellular matrix (nECM), and (3) numerous "trace" metals distributed therein. The neuron is encased in a polyanionic nECM lattice doped with metals (>10), wherein it processes (computes) and stores cog-info. Each [nECM:metal] complex is the molecular correlate of a cognitive unit of information (cuinfo), similar to a computer "bit". These are induced/sensed by the neuron via surface iontophoretic and electroelastic (piezoelectric) sensors. The generic cuinfo are used by neurons to biochemically encode and store cog-info in a rapid, energy efficient, but computationally expansive manner. Here, we describe chemical reactions involved in various processes that underline the tripartite mechanism. In addition, we present novel iconographic representations of various types of cuinfo resulting from"tagging" and cross-linking reactions, essential for the indexing cuinfo for organized retrieval and storage of memory.

  12. Solution of large nonlinear quasistatic structural mechanics problems on distributed-memory multiprocessor computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanford, M.

    1997-12-31

    Most commercially-available quasistatic finite element programs assemble element stiffnesses into a global stiffness matrix, then use a direct linear equation solver to obtain nodal displacements. However, for large problems (greater than a few hundred thousand degrees of freedom), the memory size and computation time required for this approach becomes prohibitive. Moreover, direct solution does not lend itself to the parallel processing needed for today`s multiprocessor systems. This talk gives an overview of the iterative solution strategy of JAS3D, the nonlinear large-deformation quasistatic finite element program. Because its architecture is derived from an explicit transient-dynamics code, it does not ever assemblemore » a global stiffness matrix. The author describes the approach he used to implement the solver on multiprocessor computers, and shows examples of problems run on hundreds of processors and more than a million degrees of freedom. Finally, he describes some of the work he is presently doing to address the challenges of iterative convergence for ill-conditioned problems.« less

  13. Using process groups to implement failure detection in asynchronous environments

    NASA Technical Reports Server (NTRS)

    Ricciardi, Aleta M.; Birman, Kenneth P.

    1991-01-01

    Agreement on the membership of a group of processes in a distributed system is a basic problem that arises in a wide range of applications. Such groups occur when a set of processes cooperate to perform some task, share memory, monitor one another, subdivide a computation, and so forth. The group membership problems is discussed as it relates to failure detection in asynchronous, distributed systems. A rigorous, formal specification for group membership is presented under this interpretation. A solution is then presented for this problem.

  14. A model for the distributed storage and processing of large arrays

    NASA Technical Reports Server (NTRS)

    Mehrota, P.; Pratt, T. W.

    1983-01-01

    A conceptual model for parallel computations on large arrays is developed. The model provides a set of language concepts appropriate for processing arrays which are generally too large to fit in the primary memories of a multiprocessor system. The semantic model is used to represent arrays on a concurrent architecture in such a way that the performance realities inherent in the distributed storage and processing can be adequately represented. An implementation of the large array concept as an Ada package is also described.

  15. Design and implementation of a UNIX based distributed computing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Love, J.S.; Michael, M.W.

    1994-12-31

    We have designed, implemented, and are running a corporate-wide distributed processing batch queue on a large number of networked workstations using the UNIX{reg_sign} operating system. Atlas Wireline researchers and scientists have used the system for over a year. The large increase in available computer power has greatly reduced the time required for nuclear and electromagnetic tool modeling. Use of remote distributed computing has simultaneously reduced computation costs and increased usable computer time. The system integrates equipment from different manufacturers, using various CPU architectures, distinct operating system revisions, and even multiple processors per machine. Various differences between the machines have tomore » be accounted for in the master scheduler. These differences include shells, command sets, swap spaces, memory sizes, CPU sizes, and OS revision levels. Remote processing across a network must be performed in a manner that is seamless from the users` perspective. The system currently uses IBM RISC System/6000{reg_sign}, SPARCstation{sup TM}, HP9000s700, HP9000s800, and DEC Alpha AXP{sup TM} machines. Each CPU in the network has its own speed rating, allowed working hours, and workload parameters. The system if designed so that all of the computers in the network can be optimally scheduled without adversely impacting the primary users of the machines. The increase in the total usable computational capacity by means of distributed batch computing can change corporate computing strategy. The integration of disparate computer platforms eliminates the need to buy one type of computer for computations, another for graphics, and yet another for day-to-day operations. It might be possible, for example, to meet all research and engineering computing needs with existing networked computers.« less

  16. High Performance Computing (HPC)-Enabled Computational Study on the Feasibility of using Shape Memory Alloys for Gas Turbine Blade Actuation

    DTIC Science & Technology

    2016-11-01

    Feasibility of using Shape Memory Alloys for Gas Turbine Blade Actuation by Kathryn Esham, Luis Bravo, Anindya Ghoshal, Muthuvel Murugan, and Michael...Computational Study on the Feasibility of using Shape Memory Alloys for Gas Turbine Blade Actuation by Luis Bravo, Anindya Ghoshal, Muthuvel...High Performance Computing (HPC)-Enabled Computational Study on the Feasibility of using Shape Memory Alloys for Gas Turbine Blade Actuation 5a

  17. Naval Research Laboratory Fact Book 2012

    DTIC Science & Technology

    2012-11-01

    Distributed network-based battle management High performance computing supporting uniform and nonuniform memory access with single and multithreaded...hyperspectral systems VNIR, MWIR, and LWIR high-resolution systems Wideband SAR systems RF and laser data links High-speed, high-power...hyperspectral imaging system Long-wave infrared ( LWIR ) quantum well IR photodetector (QWIP) imaging system Research and Development Services Divi- sion

  18. NRL Fact Book

    DTIC Science & Technology

    2008-01-01

    Distributed network-based battle management High performance computing supporting uniform and nonuniform memory access with single and multithreaded...pallet Airborne EO/IR and radar sensors VNIR through SWIR hyperspectral systems VNIR, MWIR, and LWIR high-resolution sys- tems Wideband SAR systems...meteorological sensors Hyperspectral sensor systems (PHILLS) Mid-wave infrared (MWIR) Indium Antimonide (InSb) imaging system Long-wave infrared ( LWIR

  19. Computational Algorithms or Identification of Distributed Parameter Systems

    DTIC Science & Technology

    1993-04-24

    delay-differential equations, Volterra integral equations, and partial differential equations with memory terms . In particular we investigated a...tested for estimating parameters in a Volterra integral equation arising from a viscoelastic model of a flexible structure with Boltzmann damping. In...particular, one of the parameters identified was the order of the derivative in Volterra integro-differential equations containing fractional

  20. Parallel Implementation of Triangular Cellular Automata for Computing Two-Dimensional Elastodynamic Response on Arbitrary Domains

    NASA Astrophysics Data System (ADS)

    Leamy, Michael J.; Springer, Adam C.

    In this research we report parallel implementation of a Cellular Automata-based simulation tool for computing elastodynamic response on complex, two-dimensional domains. Elastodynamic simulation using Cellular Automata (CA) has recently been presented as an alternative, inherently object-oriented technique for accurately and efficiently computing linear and nonlinear wave propagation in arbitrarily-shaped geometries. The local, autonomous nature of the method should lead to straight-forward and efficient parallelization. We address this notion on symmetric multiprocessor (SMP) hardware using a Java-based object-oriented CA code implementing triangular state machines (i.e., automata) and the MPI bindings written in Java (MPJ Express). We use MPJ Express to reconfigure our existing CA code to distribute a domain's automata to cores present on a dual quad-core shared-memory system (eight total processors). We note that this message passing parallelization strategy is directly applicable to computer clustered computing, which will be the focus of follow-on research. Results on the shared memory platform indicate nearly-ideal, linear speed-up. We conclude that the CA-based elastodynamic simulator is easily configured to run in parallel, and yields excellent speed-up on SMP hardware.

  1. Concepts and Relations in Neurally Inspired In Situ Concept-Based Computing

    PubMed Central

    van der Velde, Frank

    2016-01-01

    In situ concept-based computing is based on the notion that conceptual representations in the human brain are “in situ.” In this way, they are grounded in perception and action. Examples are neuronal assemblies, whose connection structures develop over time and are distributed over different brain areas. In situ concepts representations cannot be copied or duplicated because that will disrupt their connection structure, and thus the meaning of these concepts. Higher-level cognitive processes, as found in language and reasoning, can be performed with in situ concepts by embedding them in specialized neurally inspired “blackboards.” The interactions between the in situ concepts and the blackboards form the basis for in situ concept computing architectures. In these architectures, memory (concepts) and processing are interwoven, in contrast with the separation between memory and processing found in Von Neumann architectures. Because the further development of Von Neumann computing (more, faster, yet power limited) is questionable, in situ concept computing might be an alternative for concept-based computing. In situ concept computing will be illustrated with a recently developed BABI reasoning task. Neurorobotics can play an important role in the development of in situ concept computing because of the development of in situ concept representations derived in scenarios as needed for reasoning tasks. Neurorobotics would also benefit from power limited and in situ concept computing. PMID:27242504

  2. Concepts and Relations in Neurally Inspired In Situ Concept-Based Computing.

    PubMed

    van der Velde, Frank

    2016-01-01

    In situ concept-based computing is based on the notion that conceptual representations in the human brain are "in situ." In this way, they are grounded in perception and action. Examples are neuronal assemblies, whose connection structures develop over time and are distributed over different brain areas. In situ concepts representations cannot be copied or duplicated because that will disrupt their connection structure, and thus the meaning of these concepts. Higher-level cognitive processes, as found in language and reasoning, can be performed with in situ concepts by embedding them in specialized neurally inspired "blackboards." The interactions between the in situ concepts and the blackboards form the basis for in situ concept computing architectures. In these architectures, memory (concepts) and processing are interwoven, in contrast with the separation between memory and processing found in Von Neumann architectures. Because the further development of Von Neumann computing (more, faster, yet power limited) is questionable, in situ concept computing might be an alternative for concept-based computing. In situ concept computing will be illustrated with a recently developed BABI reasoning task. Neurorobotics can play an important role in the development of in situ concept computing because of the development of in situ concept representations derived in scenarios as needed for reasoning tasks. Neurorobotics would also benefit from power limited and in situ concept computing.

  3. Spin-transfer torque magnetoresistive random-access memory technologies for normally off computing (invited)

    NASA Astrophysics Data System (ADS)

    Ando, K.; Fujita, S.; Ito, J.; Yuasa, S.; Suzuki, Y.; Nakatani, Y.; Miyazaki, T.; Yoda, H.

    2014-05-01

    Most parts of present computer systems are made of volatile devices, and the power to supply them to avoid information loss causes huge energy losses. We can eliminate this meaningless energy loss by utilizing the non-volatile function of advanced spin-transfer torque magnetoresistive random-access memory (STT-MRAM) technology and create a new type of computer, i.e., normally off computers. Critical tasks to achieve normally off computers are implementations of STT-MRAM technologies in the main memory and low-level cache memories. STT-MRAM technology for applications to the main memory has been successfully developed by using perpendicular STT-MRAMs, and faster STT-MRAM technologies for applications to the cache memory are now being developed. The present status of STT-MRAMs and challenges that remain for normally off computers are discussed.

  4. Parallel Simulation of Unsteady Turbulent Flames

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1996-01-01

    Time-accurate simulation of turbulent flames in high Reynolds number flows is a challenging task since both fluid dynamics and combustion must be modeled accurately. To numerically simulate this phenomenon, very large computer resources (both time and memory) are required. Although current vector supercomputers are capable of providing adequate resources for simulations of this nature, the high cost and their limited availability, makes practical use of such machines less than satisfactory. At the same time, the explicit time integration algorithms used in unsteady flow simulations often possess a very high degree of parallelism, making them very amenable to efficient implementation on large-scale parallel computers. Under these circumstances, distributed memory parallel computers offer an excellent near-term solution for greatly increased computational speed and memory, at a cost that may render the unsteady simulations of the type discussed above more feasible and affordable.This paper discusses the study of unsteady turbulent flames using a simulation algorithm that is capable of retaining high parallel efficiency on distributed memory parallel architectures. Numerical studies are carried out using large-eddy simulation (LES). In LES, the scales larger than the grid are computed using a time- and space-accurate scheme, while the unresolved small scales are modeled using eddy viscosity based subgrid models. This is acceptable for the moment/energy closure since the small scales primarily provide a dissipative mechanism for the energy transferred from the large scales. However, for combustion to occur, the species must first undergo mixing at the small scales and then come into molecular contact. Therefore, global models cannot be used. Recently, a new model for turbulent combustion was developed, in which the combustion is modeled, within the subgrid (small-scales) using a methodology that simulates the mixing and the molecular transport and the chemical kinetics within each LES grid cell. Finite-rate kinetics can be included without any closure and this approach actually provides a means to predict the turbulent rates and the turbulent flame speed. The subgrid combustion model requires resolution of the local time scales associated with small-scale mixing, molecular diffusion and chemical kinetics and, therefore, within each grid cell, a significant amount of computations must be carried out before the large-scale (LES resolved) effects are incorporated. Therefore, this approach is uniquely suited for parallel processing and has been implemented on various systems such as: Intel Paragon, IBM SP-2, Cray T3D and SGI Power Challenge (PC) using the system independent Message Passing Interface (MPI) compiler. In this paper, timing data on these machines is reported along with some characteristic results.

  5. HPC-NMF: A High-Performance Parallel Algorithm for Nonnegative Matrix Factorization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kannan, Ramakrishnan; Sukumar, Sreenivas R.; Ballard, Grey M.

    NMF is a useful tool for many applications in different domains such as topic modeling in text mining, background separation in video analysis, and community detection in social networks. Despite its popularity in the data mining community, there is a lack of efficient distributed algorithms to solve the problem for big data sets. We propose a high-performance distributed-memory parallel algorithm that computes the factorization by iteratively solving alternating non-negative least squares (NLS) subproblems formore » $$\\WW$$ and $$\\HH$$. It maintains the data and factor matrices in memory (distributed across processors), uses MPI for interprocessor communication, and, in the dense case, provably minimizes communication costs (under mild assumptions). As opposed to previous implementation, our algorithm is also flexible: It performs well for both dense and sparse matrices, and allows the user to choose any one of the multiple algorithms for solving the updates to low rank factors $$\\WW$$ and $$\\HH$$ within the alternating iterations.« less

  6. The Glass Computer

    ERIC Educational Resources Information Center

    Paesler, M. A.

    2009-01-01

    Digital computers use different kinds of memory, each of which is either volatile or nonvolatile. On most computers only the hard drive memory is nonvolatile, i.e., it retains all information stored on it when the power is off. When a computer is turned on, an operating system stored on the hard drive is loaded into the computer's memory cache and…

  7. An accurate, compact and computationally efficient representation of orbitals for quantum Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Luo, Ye; Esler, Kenneth; Kent, Paul; Shulenburger, Luke

    Quantum Monte Carlo (QMC) calculations of giant molecules, surface and defect properties of solids have been feasible recently due to drastically expanding computational resources. However, with the most computationally efficient basis set, B-splines, these calculations are severely restricted by the memory capacity of compute nodes. The B-spline coefficients are shared on a node but not distributed among nodes, to ensure fast evaluation. A hybrid representation which incorporates atomic orbitals near the ions and B-spline ones in the interstitial regions offers a more accurate and less memory demanding description of the orbitals because they are naturally more atomic like near ions and much smoother in between, thus allowing coarser B-spline grids. We will demonstrate the advantage of hybrid representation over pure B-spline and Gaussian basis sets and also show significant speed-up like computing the non-local pseudopotentials with our new scheme. Moreover, we discuss a new algorithm for atomic orbital initialization which used to require an extra workflow step taking a few days. With this work, the highly efficient hybrid representation paves the way to simulate large size even in-homogeneous systems using QMC. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Computational Materials Sciences Program.

  8. Projection multiplex recording of computer-synthesised one-dimensional Fourier holograms for holographic memory systems: mathematical and experimental modelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betin, A Yu; Bobrinev, V I; Verenikina, N M

    A multiplex method of recording computer-synthesised one-dimensional Fourier holograms intended for holographic memory devices is proposed. The method potentially allows increasing the recording density in the previously proposed holographic memory system based on the computer synthesis and projection recording of data page holograms. (holographic memory)

  9. The declarative/procedural model of lexicon and grammar.

    PubMed

    Ullman, M T

    2001-01-01

    Our use of language depends upon two capacities: a mental lexicon of memorized words and a mental grammar of rules that underlie the sequential and hierarchical composition of lexical forms into predictably structured larger words, phrases, and sentences. The declarative/procedural model posits that the lexicon/grammar distinction in language is tied to the distinction between two well-studied brain memory systems. On this view, the memorization and use of at least simple words (those with noncompositional, that is, arbitrary form-meaning pairings) depends upon an associative memory of distributed representations that is subserved by temporal-lobe circuits previously implicated in the learning and use of fact and event knowledge. This "declarative memory" system appears to be specialized for learning arbitrarily related information (i.e., for associative binding). In contrast, the acquisition and use of grammatical rules that underlie symbol manipulation is subserved by frontal/basal-ganglia circuits previously implicated in the implicit (nonconscious) learning and expression of motor and cognitive "skills" and "habits" (e.g., from simple motor acts to skilled game playing). This "procedural" system may be specialized for computing sequences. This novel view of lexicon and grammar offers an alternative to the two main competing theoretical frameworks. It shares the perspective of traditional dual-mechanism theories in positing that the mental lexicon and a symbol-manipulating mental grammar are subserved by distinct computational components that may be linked to distinct brain structures. However, it diverges from these theories where they assume components dedicated to each of the two language capacities (that is, domain-specific) and in their common assumption that lexical memory is a rote list of items. Conversely, while it shares with single-mechanism theories the perspective that the two capacities are subserved by domain-independent computational mechanisms, it diverges from them where they link both capacities to a single associative memory system with broad anatomic distribution. The declarative/procedural model, but neither traditional dual- nor single-mechanism models, predicts double dissociations between lexicon and grammar, with associations among associative memory properties, memorized words and facts, and temporal-lobe structures, and among symbol-manipulation properties, grammatical rule products, motor skills, and frontal/basal-ganglia structures. In order to contrast lexicon and grammar while holding other factors constant, we have focused our investigations of the declarative/procedural model on morphologically complex word forms. Morphological transformations that are (largely) unproductive (e.g., in go-went, solemn-solemnity) are hypothesized to depend upon declarative memory. These have been contrasted with morphological transformations that are fully productive (e.g., in walk-walked, happy-happiness), whose computation is posited to be solely dependent upon grammatical rules subserved by the procedural system. Here evidence is presented from studies that use a range of psycholinguistic and neurolinguistic approaches with children and adults. It is argued that converging evidence from these studies supports the declarative/procedural model of lexicon and grammar.

  10. Performing an allreduce operation using shared memory

    DOEpatents

    Archer, Charles J [Rochester, MN; Dozsa, Gabor [Ardsley, NY; Ratterman, Joseph D [Rochester, MN; Smith, Brian E [Rochester, MN

    2012-04-17

    Methods, apparatus, and products are disclosed for performing an allreduce operation using shared memory that include: receiving, by at least one of a plurality of processing cores on a compute node, an instruction to perform an allreduce operation; establishing, by the core that received the instruction, a job status object for specifying a plurality of shared memory allreduce work units, the plurality of shared memory allreduce work units together performing the allreduce operation on the compute node; determining, by an available core on the compute node, a next shared memory allreduce work unit in the job status object; and performing, by that available core on the compute node, that next shared memory allreduce work unit.

  11. Performing an allreduce operation using shared memory

    DOEpatents

    Archer, Charles J; Dozsa, Gabor; Ratterman, Joseph D; Smith, Brian E

    2014-06-10

    Methods, apparatus, and products are disclosed for performing an allreduce operation using shared memory that include: receiving, by at least one of a plurality of processing cores on a compute node, an instruction to perform an allreduce operation; establishing, by the core that received the instruction, a job status object for specifying a plurality of shared memory allreduce work units, the plurality of shared memory allreduce work units together performing the allreduce operation on the compute node; determining, by an available core on the compute node, a next shared memory allreduce work unit in the job status object; and performing, by that available core on the compute node, that next shared memory allreduce work unit.

  12. Efficient parallelization for AMR MHD multiphysics calculations; implementation in AstroBEAR

    NASA Astrophysics Data System (ADS)

    Carroll-Nellenback, Jonathan J.; Shroyer, Brandon; Frank, Adam; Ding, Chen

    2013-03-01

    Current adaptive mesh refinement (AMR) simulations require algorithms that are highly parallelized and manage memory efficiently. As compute engines grow larger, AMR simulations will require algorithms that achieve new levels of efficient parallelization and memory management. We have attempted to employ new techniques to achieve both of these goals. Patch or grid based AMR often employs ghost cells to decouple the hyperbolic advances of each grid on a given refinement level. This decoupling allows each grid to be advanced independently. In AstroBEAR we utilize this independence by threading the grid advances on each level with preference going to the finer level grids. This allows for global load balancing instead of level by level load balancing and allows for greater parallelization across both physical space and AMR level. Threading of level advances can also improve performance by interleaving communication with computation, especially in deep simulations with many levels of refinement. While we see improvements of up to 30% on deep simulations run on a few cores, the speedup is typically more modest (5-20%) for larger scale simulations. To improve memory management we have employed a distributed tree algorithm that requires processors to only store and communicate local sections of the AMR tree structure with neighboring processors. Using this distributed approach we are able to get reasonable scaling efficiency (>80%) out to 12288 cores and up to 8 levels of AMR - independent of the use of threading.

  13. Paradeisos: A perfect hashing algorithm for many-body eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Jia, C. J.; Wang, Y.; Mendl, C. B.; Moritz, B.; Devereaux, T. P.

    2018-03-01

    We describe an essentially perfect hashing algorithm for calculating the position of an element in an ordered list, appropriate for the construction and manipulation of many-body Hamiltonian, sparse matrices. Each element of the list corresponds to an integer value whose binary representation reflects the occupation of single-particle basis states for each element in the many-body Hilbert space. The algorithm replaces conventional methods, such as binary search, for locating the elements of the ordered list, eliminating the need to store the integer representation for each element, without increasing the computational complexity. Combined with the "checkerboard" decomposition of the Hamiltonian matrix for distribution over parallel computing environments, this leads to a substantial savings in aggregate memory. While the algorithm can be applied broadly to many-body, correlated problems, we demonstrate its utility in reducing total memory consumption for a series of fermionic single-band Hubbard model calculations on small clusters with progressively larger Hilbert space dimension.

  14. Confessions of a robot lobotomist

    NASA Technical Reports Server (NTRS)

    Gottshall, R. Marc

    1994-01-01

    Since its inception, numerically controlled (NC) machining methods have been used throughout the aerospace industry to mill, drill, and turn complex shapes by sequentially stepping through motion programs. However, the recent demand for more precision, faster feeds, exotic sensors, and branching execution have existing computer numerical control (CNC) and distributed numerical control (DNC) systems running at maximum controller capacity. Typical disadvantages of current CNC's include fixed memory capacities, limited communication ports, and the use of multiple control languages. The need to tailor CNC's to meet specific applications, whether it be expanded memory, additional communications, or integrated vision, often requires replacing the original controller supplied with the commercial machine tool with a more powerful and capable system. This paper briefly describes the process and equipment requirements for new controllers and their evolutionary implementation in an aerospace environment. The process of controller retrofit with currently available machines is examined, along with several case studies and their computational and architectural implications.

  15. Computation of Engine Noise Propagation and Scattering Off an Aircraft

    NASA Technical Reports Server (NTRS)

    Xu, J.; Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2003-01-01

    The paper presents a comparison of experimental noise data measured in flight on a two-engine business jet aircraft with Kulite microphones placed on the suction surface of the wing with computational results. Both a time-domain discontinuous Galerkin spectral method and a frequency-domain spectral element method are used to simulate the radiation of the dominant spinning mode from the engine and its reflection and scattering by the fuselage and the wing. Both methods are implemented in computer codes that use the distributed memory model to make use of large parallel architectures. The results show that trends of the noise field are well predicted by both methods.

  16. Computational modeling of the negative priming effect based on inhibition patterns and working memory

    PubMed Central

    Chung, Dongil; Raz, Amir; Lee, Jaewon; Jeong, Jaeseung

    2013-01-01

    Negative priming (NP), slowing down of the response for target stimuli that have been previously exposed, but ignored, has been reported in multiple psychological paradigms including the Stroop task. Although NP likely results from the interplay of selective attention, episodic memory retrieval, working memory, and inhibition mechanisms, a comprehensive theoretical account of NP is currently unavailable. This lacuna may result from the complexity of stimuli combinations in NP. Thus, we aimed to investigate the presence of different degrees of the NP effect according to prime-probe combinations within a classic Stroop task. We recorded reaction times (RTs) from 66 healthy participants during Stroop task performance and examined three different NP subtypes, defined according to the type of the Stroop probe in prime-probe pairs. Our findings show significant RT differences among NP subtypes that are putatively due to the presence of differential disinhibition, i.e., release from inhibition. Among the several potential origins for differential subtypes of NP, we investigated the involvement of selective attention and/or working memory using a parallel distributed processing (PDP) model (employing selective attention only) and a modified PDP model with working memory (PDP-WM, employing both selective attention and working memory). Our findings demonstrate that, unlike the conventional PDP model, the PDP-WM successfully simulates different levels of NP effects that closely follow the behavioral data. This outcome suggests that working memory engages in the re-accumulation of the evidence for target response and induces differential NP effects. Our computational model complements earlier efforts and may pave the road to further insights into an integrated theoretical account of complex NP effects. PMID:24312046

  17. Soft-error tolerance and energy consumption evaluation of embedded computer with magnetic random access memory in practical systems using computer simulations

    NASA Astrophysics Data System (ADS)

    Nebashi, Ryusuke; Sakimura, Noboru; Sugibayashi, Tadahiko

    2017-08-01

    We evaluated the soft-error tolerance and energy consumption of an embedded computer with magnetic random access memory (MRAM) using two computer simulators. One is a central processing unit (CPU) simulator of a typical embedded computer system. We simulated the radiation-induced single-event-upset (SEU) probability in a spin-transfer-torque MRAM cell and also the failure rate of a typical embedded computer due to its main memory SEU error. The other is a delay tolerant network (DTN) system simulator. It simulates the power dissipation of wireless sensor network nodes of the system using a revised CPU simulator and a network simulator. We demonstrated that the SEU effect on the embedded computer with 1 Gbit MRAM-based working memory is less than 1 failure in time (FIT). We also demonstrated that the energy consumption of the DTN sensor node with MRAM-based working memory can be reduced to 1/11. These results indicate that MRAM-based working memory enhances the disaster tolerance of embedded computers.

  18. Quantum teleportation between remote atomic-ensemble quantum memories

    PubMed Central

    Bao, Xiao-Hui; Xu, Xiao-Fan; Li, Che-Ming; Yuan, Zhen-Sheng; Lu, Chao-Yang; Pan, Jian-Wei

    2012-01-01

    Quantum teleportation and quantum memory are two crucial elements for large-scale quantum networks. With the help of prior distributed entanglement as a “quantum channel,” quantum teleportation provides an intriguing means to faithfully transfer quantum states among distant locations without actual transmission of the physical carriers [Bennett CH, et al. (1993) Phys Rev Lett 70(13):1895–1899]. Quantum memory enables controlled storage and retrieval of fast-flying photonic quantum bits with stationary matter systems, which is essential to achieve the scalability required for large-scale quantum networks. Combining these two capabilities, here we realize quantum teleportation between two remote atomic-ensemble quantum memory nodes, each composed of ∼108 rubidium atoms and connected by a 150-m optical fiber. The spin wave state of one atomic ensemble is mapped to a propagating photon and subjected to Bell state measurements with another single photon that is entangled with the spin wave state of the other ensemble. Two-photon detection events herald the success of teleportation with an average fidelity of 88(7)%. Besides its fundamental interest as a teleportation between two remote macroscopic objects, our technique may be useful for quantum information transfer between different nodes in quantum networks and distributed quantum computing. PMID:23144222

  19. A survey of visual preprocessing and shape representation techniques

    NASA Technical Reports Server (NTRS)

    Olshausen, Bruno A.

    1988-01-01

    Many recent theories and methods proposed for visual preprocessing and shape representation are summarized. The survey brings together research from the fields of biology, psychology, computer science, electrical engineering, and most recently, neural networks. It was motivated by the need to preprocess images for a sparse distributed memory (SDM), but the techniques presented may also prove useful for applying other associative memories to visual pattern recognition. The material of this survey is divided into three sections: an overview of biological visual processing; methods of preprocessing (extracting parts of shape, texture, motion, and depth); and shape representation and recognition (form invariance, primitives and structural descriptions, and theories of attention).

  20. Arithmetic Data Cube as a Data Intensive Benchmark

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael A.; Shabano, Leonid

    2003-01-01

    Data movement across computational grids and across memory hierarchy of individual grid machines is known to be a limiting factor for application involving large data sets. In this paper we introduce the Data Cube Operator on an Arithmetic Data Set which we call Arithmetic Data Cube (ADC). We propose to use the ADC to benchmark grid capabilities to handle large distributed data sets. The ADC stresses all levels of grid memory by producing 2d views of an Arithmetic Data Set of d-tuples described by a small number of parameters. We control data intensity of the ADC by controlling the sizes of the views through choice of the tuple parameters.

  1. Virtual memory

    NASA Technical Reports Server (NTRS)

    Denning, P. J.

    1986-01-01

    Virtual memory was conceived as a way to automate overlaying of program segments. Modern computers have very large main memories, but need automatic solutions to the relocation and protection problems. Virtual memory serves this need as well and is thus useful in computers of all sizes. The history of the idea is traced, showing how it has become a widespread, little noticed feature of computers today.

  2. A gossip based information fusion protocol for distributed frequent itemset mining

    NASA Astrophysics Data System (ADS)

    Sohrabi, Mohammad Karim

    2018-07-01

    The computational complexity, huge memory space requirement, and time-consuming nature of frequent pattern mining process are the most important motivations for distribution and parallelization of this mining process. On the other hand, the emergence of distributed computational and operational environments, which causes the production and maintenance of data on different distributed data sources, makes the parallelization and distribution of the knowledge discovery process inevitable. In this paper, a gossip based distributed itemset mining (GDIM) algorithm is proposed to extract frequent itemsets, which are special types of frequent patterns, in a wireless sensor network environment. In this algorithm, local frequent itemsets of each sensor are extracted using a bit-wise horizontal approach (LHPM) from the nodes which are clustered using a leach-based protocol. Heads of clusters exploit a gossip based protocol in order to communicate each other to find the patterns which their global support is equal to or more than the specified support threshold. Experimental results show that the proposed algorithm outperforms the best existing gossip based algorithm in term of execution time.

  3. Stochastic Computations in Cortical Microcircuit Models

    PubMed Central

    Maass, Wolfgang

    2013-01-01

    Experimental data from neuroscience suggest that a substantial amount of knowledge is stored in the brain in the form of probability distributions over network states and trajectories of network states. We provide a theoretical foundation for this hypothesis by showing that even very detailed models for cortical microcircuits, with data-based diverse nonlinear neurons and synapses, have a stationary distribution of network states and trajectories of network states to which they converge exponentially fast from any initial state. We demonstrate that this convergence holds in spite of the non-reversibility of the stochastic dynamics of cortical microcircuits. We further show that, in the presence of background network oscillations, separate stationary distributions emerge for different phases of the oscillation, in accordance with experimentally reported phase-specific codes. We complement these theoretical results by computer simulations that investigate resulting computation times for typical probabilistic inference tasks on these internally stored distributions, such as marginalization or marginal maximum-a-posteriori estimation. Furthermore, we show that the inherent stochastic dynamics of generic cortical microcircuits enables them to quickly generate approximate solutions to difficult constraint satisfaction problems, where stored knowledge and current inputs jointly constrain possible solutions. This provides a powerful new computing paradigm for networks of spiking neurons, that also throws new light on how networks of neurons in the brain could carry out complex computational tasks such as prediction, imagination, memory recall and problem solving. PMID:24244126

  4. The dynamics of neuronal redundancy in decision making

    NASA Astrophysics Data System (ADS)

    Daniels, Bryan; Flack, Jessica; Krakauer, David

    We propose two temporal phases of collective computation in a visual motion direction discrimination task by analyzing recordings from 169 neural channels in the prefrontal cortex of macaque monkeys. Phase I is a distributed phase in which uncertainty is substantially reduced by pooling information from many cells. Phase II is a redundant phase in which numerous single cells contain all the information present at the population level in Phase I. A dynamic distributed model connects low redundancy to a slow timescale of information aggregation, and provides a common explanation for both behaviors that differs only in the degree of recurrent excitation. We attribute the slow timescale of information accumulation to critical slowing down near the transition to a memory-carrying collective state. We suggest that this dynamic of slow distributed accumulation followed by fast collective propagation is a generic feature of robust collective computing systems related to consensus formation.

  5. User-Defined Data Distributions in High-Level Programming Languages

    NASA Technical Reports Server (NTRS)

    Diaconescu, Roxana E.; Zima, Hans P.

    2006-01-01

    One of the characteristic features of today s high performance computing systems is a physically distributed memory. Efficient management of locality is essential for meeting key performance requirements for these architectures. The standard technique for dealing with this issue has involved the extension of traditional sequential programming languages with explicit message passing, in the context of a processor-centric view of parallel computation. This has resulted in complex and error-prone assembly-style codes in which algorithms and communication are inextricably interwoven. This paper presents a high-level approach to the design and implementation of data distributions. Our work is motivated by the need to improve the current parallel programming methodology by introducing a paradigm supporting the development of efficient and reusable parallel code. This approach is currently being implemented in the context of a new programming language called Chapel, which is designed in the HPCS project Cascade.

  6. Multi-GPU and multi-CPU accelerated FDTD scheme for vibroacoustic applications

    NASA Astrophysics Data System (ADS)

    Francés, J.; Otero, B.; Bleda, S.; Gallego, S.; Neipp, C.; Márquez, A.; Beléndez, A.

    2015-06-01

    The Finite-Difference Time-Domain (FDTD) method is applied to the analysis of vibroacoustic problems and to study the propagation of longitudinal and transversal waves in a stratified media. The potential of the scheme and the relevance of each acceleration strategy for massively computations in FDTD are demonstrated in this work. In this paper, we propose two new specific implementations of the bi-dimensional scheme of the FDTD method using multi-CPU and multi-GPU, respectively. In the first implementation, an open source message passing interface (OMPI) has been included in order to massively exploit the resources of a biprocessor station with two Intel Xeon processors. Moreover, regarding CPU code version, the streaming SIMD extensions (SSE) and also the advanced vectorial extensions (AVX) have been included with shared memory approaches that take advantage of the multi-core platforms. On the other hand, the second implementation called the multi-GPU code version is based on Peer-to-Peer communications available in CUDA on two GPUs (NVIDIA GTX 670). Subsequently, this paper presents an accurate analysis of the influence of the different code versions including shared memory approaches, vector instructions and multi-processors (both CPU and GPU) and compares them in order to delimit the degree of improvement of using distributed solutions based on multi-CPU and multi-GPU. The performance of both approaches was analysed and it has been demonstrated that the addition of shared memory schemes to CPU computing improves substantially the performance of vector instructions enlarging the simulation sizes that use efficiently the cache memory of CPUs. In this case GPU computing is slightly twice times faster than the fine tuned CPU version in both cases one and two nodes. However, for massively computations explicit vector instructions do not worth it since the memory bandwidth is the limiting factor and the performance tends to be the same than the sequential version with auto-vectorisation and also shared memory approach. In this scenario GPU computing is the best option since it provides a homogeneous behaviour. More specifically, the speedup of GPU computing achieves an upper limit of 12 for both one and two GPUs, whereas the performance reaches peak values of 80 GFlops and 146 GFlops for the performance for one GPU and two GPUs respectively. Finally, the method is applied to an earth crust profile in order to demonstrate the potential of our approach and the necessity of applying acceleration strategies in these type of applications.

  7. Analysis, tuning and comparison of two general sparse solvers for distributed memory computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amestoy, P.R.; Duff, I.S.; L'Excellent, J.-Y.

    2000-06-30

    We describe the work performed in the context of a Franco-Berkeley funded project between NERSC-LBNL located in Berkeley (USA) and CERFACS-ENSEEIHT located in Toulouse (France). We discuss both the tuning and performance analysis of two distributed memory sparse solvers (superlu from Berkeley and mumps from Toulouse) on the 512 processor Cray T3E from NERSC (Lawrence Berkeley National Laboratory). This project gave us the opportunity to improve the algorithms and add new features to the codes. We then quite extensively analyze and compare the two approaches on a set of large problems from real applications. We further explain the main differencesmore » in the behavior of the approaches on artificial regular grid problems. As a conclusion to this activity report, we mention a set of parallel sparse solvers on which this type of study should be extended.« less

  8. Patterns across multiple memories are identified over time.

    PubMed

    Richards, Blake A; Xia, Frances; Santoro, Adam; Husse, Jana; Woodin, Melanie A; Josselyn, Sheena A; Frankland, Paul W

    2014-07-01

    Memories are not static but continue to be processed after encoding. This is thought to allow the integration of related episodes via the identification of patterns. Although this idea lies at the heart of contemporary theories of systems consolidation, it has yet to be demonstrated experimentally. Using a modified water-maze paradigm in which platforms are drawn stochastically from a spatial distribution, we found that mice were better at matching platform distributions 30 d compared to 1 d after training. Post-training time-dependent improvements in pattern matching were associated with increased sensitivity to new platforms that conflicted with the pattern. Increased sensitivity to pattern conflict was reduced by pharmacogenetic inhibition of the medial prefrontal cortex (mPFC). These results indicate that pattern identification occurs over time, which can lead to conflicts between new information and existing knowledge that must be resolved, in part, by computations carried out in the mPFC.

  9. Parallel algorithms for modeling flow in permeable media. Annual report, February 15, 1995 - February 14, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G.A. Pope; K. Sephernoori; D.C. McKinney

    1996-03-15

    This report describes the application of distributed-memory parallel programming techniques to a compositional simulator called UTCHEM. The University of Texas Chemical Flooding reservoir simulator (UTCHEM) is a general-purpose vectorized chemical flooding simulator that models the transport of chemical species in three-dimensional, multiphase flow through permeable media. The parallel version of UTCHEM addresses solving large-scale problems by reducing the amount of time that is required to obtain the solution as well as providing a flexible and portable programming environment. In this work, the original parallel version of UTCHEM was modified and ported to CRAY T3D and CRAY T3E, distributed-memory, multiprocessor computersmore » using CRAY-PVM as the interprocessor communication library. Also, the data communication routines were modified such that the portability of the original code across different computer architectures was mad possible.« less

  10. 40 CFR 86.099-17 - Emission control diagnostic system for 1999 and later light-duty vehicles and light-duty trucks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of computer codes. The emission control diagnostic system shall record and store in computer memory..., shall be stored in computer memory to identify correctly functioning emission control systems and those... in computer memory. Should a subsequent fuel system or misfire malfunction occur, any previously...

  11. 40 CFR 86.099-17 - Emission control diagnostic system for 1999 and later light-duty vehicles and light-duty trucks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of computer codes. The emission control diagnostic system shall record and store in computer memory..., shall be stored in computer memory to identify correctly functioning emission control systems and those... in computer memory. Should a subsequent fuel system or misfire malfunction occur, any previously...

  12. The Distributed Memory Computing Conference (5th) Held in Charleston, South Carolina on April 8-12, 1990. Volume 1. Applications

    DTIC Science & Technology

    1991-03-31

    nodes, directional arrows show the parent and child rela- and the graphics driver runs on the CP, i.e., the tionship of processes. Although there is a...about ODB plus some number of transitory primitives, whether or not its child primitives are resident. Transitory primitives are discarded as needed...true if this Hnode’s child primitives approached. are not resident. This method of ODB decomposition has the ability to distribute a very large number of

  13. Compacting de Bruijn graphs from sequencing data quickly and in low memory.

    PubMed

    Chikhi, Rayan; Limasset, Antoine; Medvedev, Paul

    2016-06-15

    As the quantity of data per sequencing experiment increases, the challenges of fragment assembly are becoming increasingly computational. The de Bruijn graph is a widely used data structure in fragment assembly algorithms, used to represent the information from a set of reads. Compaction is an important data reduction step in most de Bruijn graph based algorithms where long simple paths are compacted into single vertices. Compaction has recently become the bottleneck in assembly pipelines, and improving its running time and memory usage is an important problem. We present an algorithm and a tool bcalm 2 for the compaction of de Bruijn graphs. bcalm 2 is a parallel algorithm that distributes the input based on a minimizer hashing technique, allowing for good balance of memory usage throughout its execution. For human sequencing data, bcalm 2 reduces the computational burden of compacting the de Bruijn graph to roughly an hour and 3 GB of memory. We also applied bcalm 2 to the 22 Gbp loblolly pine and 20 Gbp white spruce sequencing datasets. Compacted graphs were constructed from raw reads in less than 2 days and 40 GB of memory on a single machine. Hence, bcalm 2 is at least an order of magnitude more efficient than other available methods. Source code of bcalm 2 is freely available at: https://github.com/GATB/bcalm rayan.chikhi@univ-lille1.fr. © The Author 2016. Published by Oxford University Press.

  14. Efficient Machine Learning Approach for Optimizing Scientific Computing Applications on Emerging HPC Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arumugam, Kamesh

    Efficient parallel implementations of scientific applications on multi-core CPUs with accelerators such as GPUs and Xeon Phis is challenging. This requires - exploiting the data parallel architecture of the accelerator along with the vector pipelines of modern x86 CPU architectures, load balancing, and efficient memory transfer between different devices. It is relatively easy to meet these requirements for highly structured scientific applications. In contrast, a number of scientific and engineering applications are unstructured. Getting performance on accelerators for these applications is extremely challenging because many of these applications employ irregular algorithms which exhibit data-dependent control-ow and irregular memory accesses. Furthermore,more » these applications are often iterative with dependency between steps, and thus making it hard to parallelize across steps. As a result, parallelism in these applications is often limited to a single step. Numerical simulation of charged particles beam dynamics is one such application where the distribution of work and memory access pattern at each time step is irregular. Applications with these properties tend to present significant branch and memory divergence, load imbalance between different processor cores, and poor compute and memory utilization. Prior research on parallelizing such irregular applications have been focused around optimizing the irregular, data-dependent memory accesses and control-ow during a single step of the application independent of the other steps, with the assumption that these patterns are completely unpredictable. We observed that the structure of computation leading to control-ow divergence and irregular memory accesses in one step is similar to that in the next step. It is possible to predict this structure in the current step by observing the computation structure of previous steps. In this dissertation, we present novel machine learning based optimization techniques to address the parallel implementation challenges of such irregular applications on different HPC architectures. In particular, we use supervised learning to predict the computation structure and use it to address the control-ow and memory access irregularities in the parallel implementation of such applications on GPUs, Xeon Phis, and heterogeneous architectures composed of multi-core CPUs with GPUs or Xeon Phis. We use numerical simulation of charged particles beam dynamics simulation as a motivating example throughout the dissertation to present our new approach, though they should be equally applicable to a wide range of irregular applications. The machine learning approach presented here use predictive analytics and forecasting techniques to adaptively model and track the irregular memory access pattern at each time step of the simulation to anticipate the future memory access pattern. Access pattern forecasts can then be used to formulate optimization decisions during application execution which improves the performance of the application at a future time step based on the observations from earlier time steps. In heterogeneous architectures, forecasts can also be used to improve the memory performance and resource utilization of all the processing units to deliver a good aggregate performance. We used these optimization techniques and anticipation strategy to design a cache-aware, memory efficient parallel algorithm to address the irregularities in the parallel implementation of charged particles beam dynamics simulation on different HPC architectures. Experimental result using a diverse mix of HPC architectures shows that our approach in using anticipation strategy is effective in maximizing data reuse, ensuring workload balance, minimizing branch and memory divergence, and in improving resource utilization.« less

  15. Visual Memories Bypass Normalization.

    PubMed

    Bloem, Ilona M; Watanabe, Yurika L; Kibbe, Melissa M; Ling, Sam

    2018-05-01

    How distinct are visual memory representations from visual perception? Although evidence suggests that briefly remembered stimuli are represented within early visual cortices, the degree to which these memory traces resemble true visual representations remains something of a mystery. Here, we tested whether both visual memory and perception succumb to a seemingly ubiquitous neural computation: normalization. Observers were asked to remember the contrast of visual stimuli, which were pitted against each other to promote normalization either in perception or in visual memory. Our results revealed robust normalization between visual representations in perception, yet no signature of normalization occurring between working memory stores-neither between representations in memory nor between memory representations and visual inputs. These results provide unique insight into the nature of visual memory representations, illustrating that visual memory representations follow a different set of computational rules, bypassing normalization, a canonical visual computation.

  16. Visual Memories Bypass Normalization

    PubMed Central

    Bloem, Ilona M.; Watanabe, Yurika L.; Kibbe, Melissa M.; Ling, Sam

    2018-01-01

    How distinct are visual memory representations from visual perception? Although evidence suggests that briefly remembered stimuli are represented within early visual cortices, the degree to which these memory traces resemble true visual representations remains something of a mystery. Here, we tested whether both visual memory and perception succumb to a seemingly ubiquitous neural computation: normalization. Observers were asked to remember the contrast of visual stimuli, which were pitted against each other to promote normalization either in perception or in visual memory. Our results revealed robust normalization between visual representations in perception, yet no signature of normalization occurring between working memory stores—neither between representations in memory nor between memory representations and visual inputs. These results provide unique insight into the nature of visual memory representations, illustrating that visual memory representations follow a different set of computational rules, bypassing normalization, a canonical visual computation. PMID:29596038

  17. A highly efficient multi-core algorithm for clustering extremely large datasets

    PubMed Central

    2010-01-01

    Background In recent years, the demand for computational power in computational biology has increased due to rapidly growing data sets from microarray and other high-throughput technologies. This demand is likely to increase. Standard algorithms for analyzing data, such as cluster algorithms, need to be parallelized for fast processing. Unfortunately, most approaches for parallelizing algorithms largely rely on network communication protocols connecting and requiring multiple computers. One answer to this problem is to utilize the intrinsic capabilities in current multi-core hardware to distribute the tasks among the different cores of one computer. Results We introduce a multi-core parallelization of the k-means and k-modes cluster algorithms based on the design principles of transactional memory for clustering gene expression microarray type data and categorial SNP data. Our new shared memory parallel algorithms show to be highly efficient. We demonstrate their computational power and show their utility in cluster stability and sensitivity analysis employing repeated runs with slightly changed parameters. Computation speed of our Java based algorithm was increased by a factor of 10 for large data sets while preserving computational accuracy compared to single-core implementations and a recently published network based parallelization. Conclusions Most desktop computers and even notebooks provide at least dual-core processors. Our multi-core algorithms show that using modern algorithmic concepts, parallelization makes it possible to perform even such laborious tasks as cluster sensitivity and cluster number estimation on the laboratory computer. PMID:20370922

  18. Proteinortho: Detection of (Co-)orthologs in large-scale analysis

    PubMed Central

    2011-01-01

    Background Orthology analysis is an important part of data analysis in many areas of bioinformatics such as comparative genomics and molecular phylogenetics. The ever-increasing flood of sequence data, and hence the rapidly increasing number of genomes that can be compared simultaneously, calls for efficient software tools as brute-force approaches with quadratic memory requirements become infeasible in practise. The rapid pace at which new data become available, furthermore, makes it desirable to compute genome-wide orthology relations for a given dataset rather than relying on relations listed in databases. Results The program Proteinortho described here is a stand-alone tool that is geared towards large datasets and makes use of distributed computing techniques when run on multi-core hardware. It implements an extended version of the reciprocal best alignment heuristic. We apply Proteinortho to compute orthologous proteins in the complete set of all 717 eubacterial genomes available at NCBI at the beginning of 2009. We identified thirty proteins present in 99% of all bacterial proteomes. Conclusions Proteinortho significantly reduces the required amount of memory for orthology analysis compared to existing tools, allowing such computations to be performed on off-the-shelf hardware. PMID:21526987

  19. The application of a sparse, distributed memory to the detection, identification and manipulation of physical objects

    NASA Technical Reports Server (NTRS)

    Kanerva, P.

    1986-01-01

    To determine the relation of the sparse, distributed memory to other architectures, a broad review of the literature was made. The memory is called a pattern memory because they work with large patterns of features (high-dimensional vectors). A pattern is stored in a pattern memory by distributing it over a large number of storage elements and by superimposing it over other stored patterns. A pattern is retrieved by mathematical or statistical reconstruction from the distributed elements. Three pattern memories are discussed.

  20. Side-channel-free quantum key distribution.

    PubMed

    Braunstein, Samuel L; Pirandola, Stefano

    2012-03-30

    Quantum key distribution (QKD) offers the promise of absolutely secure communications. However, proofs of absolute security often assume perfect implementation from theory to experiment. Thus, existing systems may be prone to insidious side-channel attacks that rely on flaws in experimental implementation. Here we replace all real channels with virtual channels in a QKD protocol, making the relevant detectors and settings inside private spaces inaccessible while simultaneously acting as a Hilbert space filter to eliminate side-channel attacks. By using a quantum memory we find that we are able to bound the secret-key rate below by the entanglement-distillation rate computed over the distributed states.

  1. Toward an automated parallel computing environment for geosciences

    NASA Astrophysics Data System (ADS)

    Zhang, Huai; Liu, Mian; Shi, Yaolin; Yuen, David A.; Yan, Zhenzhen; Liang, Guoping

    2007-08-01

    Software for geodynamic modeling has not kept up with the fast growing computing hardware and network resources. In the past decade supercomputing power has become available to most researchers in the form of affordable Beowulf clusters and other parallel computer platforms. However, to take full advantage of such computing power requires developing parallel algorithms and associated software, a task that is often too daunting for geoscience modelers whose main expertise is in geosciences. We introduce here an automated parallel computing environment built on open-source algorithms and libraries. Users interact with this computing environment by specifying the partial differential equations, solvers, and model-specific properties using an English-like modeling language in the input files. The system then automatically generates the finite element codes that can be run on distributed or shared memory parallel machines. This system is dynamic and flexible, allowing users to address different problems in geosciences. It is capable of providing web-based services, enabling users to generate source codes online. This unique feature will facilitate high-performance computing to be integrated with distributed data grids in the emerging cyber-infrastructures for geosciences. In this paper we discuss the principles of this automated modeling environment and provide examples to demonstrate its versatility.

  2. SKIRT: Hybrid parallelization of radiative transfer simulations

    NASA Astrophysics Data System (ADS)

    Verstocken, S.; Van De Putte, D.; Camps, P.; Baes, M.

    2017-07-01

    We describe the design, implementation and performance of the new hybrid parallelization scheme in our Monte Carlo radiative transfer code SKIRT, which has been used extensively for modelling the continuum radiation of dusty astrophysical systems including late-type galaxies and dusty tori. The hybrid scheme combines distributed memory parallelization, using the standard Message Passing Interface (MPI) to communicate between processes, and shared memory parallelization, providing multiple execution threads within each process to avoid duplication of data structures. The synchronization between multiple threads is accomplished through atomic operations without high-level locking (also called lock-free programming). This improves the scaling behaviour of the code and substantially simplifies the implementation of the hybrid scheme. The result is an extremely flexible solution that adjusts to the number of available nodes, processors and memory, and consequently performs well on a wide variety of computing architectures.

  3. A Neural Network Architecture For Rapid Model Indexing In Computer Vision Systems

    NASA Astrophysics Data System (ADS)

    Pawlicki, Ted

    1988-03-01

    Models of objects stored in memory have been shown to be useful for guiding the processing of computer vision systems. A major consideration in such systems, however, is how stored models are initially accessed and indexed by the system. As the number of stored models increases, the time required to search memory for the correct model becomes high. Parallel distributed, connectionist, neural networks' have been shown to have appealing content addressable memory properties. This paper discusses an architecture for efficient storage and reference of model memories stored as stable patterns of activity in a parallel, distributed, connectionist, neural network. The emergent properties of content addressability and resistance to noise are exploited to perform indexing of the appropriate object centered model from image centered primitives. The system consists of three network modules each of which represent information relative to a different frame of reference. The model memory network is a large state space vector where fields in the vector correspond to ordered component objects and relative, object based spatial relationships between the component objects. The component assertion network represents evidence about the existence of object primitives in the input image. It establishes local frames of reference for object primitives relative to the image based frame of reference. The spatial relationship constraint network is an intermediate representation which enables the association between the object based and the image based frames of reference. This intermediate level represents information about possible object orderings and establishes relative spatial relationships from the image based information in the component assertion network below. It is also constrained by the lawful object orderings in the model memory network above. The system design is consistent with current psychological theories of recognition by component. It also seems to support Marr's notions of hierarchical indexing. (i.e. the specificity, adjunct, and parent indices) It supports the notion that multiple canonical views of an object may have to be stored in memory to enable its efficient identification. The use of variable fields in the state space vectors appears to keep the number of required nodes in the network down to a tractable number while imposing a semantic value on different areas of the state space. This semantic imposition supports an interface between the analogical aspects of neural networks and the propositional paradigms of symbolic processing.

  4. Trace: a high-throughput tomographic reconstruction engine for large-scale datasets

    DOE PAGES

    Bicer, Tekin; Gursoy, Doga; Andrade, Vincent De; ...

    2017-01-28

    Here, synchrotron light source and detector technologies enable scientists to perform advanced experiments. These scientific instruments and experiments produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used data acquisition technique at light sources is Computed Tomography, which can generate tens of GB/s depending on x-ray range. A large-scale tomographic dataset, such as mouse brain, may require hours of computation time with a medium size workstation. In this paper, we present Trace, a data-intensive computing middleware we developed for implementation and parallelization of iterative tomographic reconstruction algorithms. Tracemore » provides fine-grained reconstruction of tomography datasets using both (thread level) shared memory and (process level) distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to maximize application performance. We also present the optimizations we have done on the replicated reconstruction objects and evaluate them using a shale and a mouse brain sinogram. Our experimental evaluations show that the applied optimizations and parallelization techniques can provide 158x speedup (using 32 compute nodes) over single core configuration, which decreases the reconstruction time of a sinogram (with 4501 projections and 22400 detector resolution) from 12.5 hours to less than 5 minutes per iteration.« less

  5. Trace: a high-throughput tomographic reconstruction engine for large-scale datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bicer, Tekin; Gursoy, Doga; Andrade, Vincent De

    Here, synchrotron light source and detector technologies enable scientists to perform advanced experiments. These scientific instruments and experiments produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used data acquisition technique at light sources is Computed Tomography, which can generate tens of GB/s depending on x-ray range. A large-scale tomographic dataset, such as mouse brain, may require hours of computation time with a medium size workstation. In this paper, we present Trace, a data-intensive computing middleware we developed for implementation and parallelization of iterative tomographic reconstruction algorithms. Tracemore » provides fine-grained reconstruction of tomography datasets using both (thread level) shared memory and (process level) distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to maximize application performance. We also present the optimizations we have done on the replicated reconstruction objects and evaluate them using a shale and a mouse brain sinogram. Our experimental evaluations show that the applied optimizations and parallelization techniques can provide 158x speedup (using 32 compute nodes) over single core configuration, which decreases the reconstruction time of a sinogram (with 4501 projections and 22400 detector resolution) from 12.5 hours to less than 5 minutes per iteration.« less

  6. Technology Leadership and Supervision: An Analysis Based on Turkish Computer Teachers' Professional Memories

    ERIC Educational Resources Information Center

    Deryakulu, Deniz; Olkun, Sinan

    2009-01-01

    This study examined Turkish computer teachers' professional memories telling of their experiences with school administrators and supervisors. Seventy-four computer teachers participated in the study. Content analysis of the memories revealed that the most frequently mentioned themes concerning school administrators were "unsupportive…

  7. Integrating Commercial Off-The-Shelf (COTS) graphics and extended memory packages with CLIPS

    NASA Technical Reports Server (NTRS)

    Callegari, Andres C.

    1990-01-01

    This paper addresses the question of how to mix CLIPS with graphics and how to overcome PC's memory limitations by using the extended memory available in the computer. By adding graphics and extended memory capabilities, CLIPS can be converted into a complete and powerful system development tool, on the other most economical and popular computer platform. New models of PCs have amazing processing capabilities and graphic resolutions that cannot be ignored and should be used to the fullest of their resources. CLIPS is a powerful expert system development tool, but it cannot be complete without the support of a graphics package needed to create user interfaces and general purpose graphics, or without enough memory to handle large knowledge bases. Now, a well known limitation on the PC's is the usage of real memory which limits CLIPS to use only 640 Kb of real memory, but now that problem can be solved by developing a version of CLIPS that uses extended memory. The user has access of up to 16 MB of memory on 80286 based computers and, practically, all the available memory (4 GB) on computers that use the 80386 processor. So if we give CLIPS a self-configuring graphics package that will automatically detect the graphics hardware and pointing device present in the computer, and we add the availability of the extended memory that exists in the computer (with no special hardware needed), the user will be able to create more powerful systems at a fraction of the cost and on the most popular, portable, and economic platform available such as the PC platform.

  8. A Case Study on Neural Inspired Dynamic Memory Management Strategies for High Performance Computing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vineyard, Craig Michael; Verzi, Stephen Joseph

    As high performance computing architectures pursue more computational power there is a need for increased memory capacity and bandwidth as well. A multi-level memory (MLM) architecture addresses this need by combining multiple memory types with different characteristics as varying levels of the same architecture. How to efficiently utilize this memory infrastructure is an unknown challenge, and in this research we sought to investigate whether neural inspired approaches can meaningfully help with memory management. In particular we explored neurogenesis inspired re- source allocation, and were able to show a neural inspired mixed controller policy can beneficially impact how MLM architectures utilizemore » memory.« less

  9. An Implementation Method of the Fractional-Order PID Control System Considering the Memory Constraint and its Application to the Temperature Control of Heat Plate

    NASA Astrophysics Data System (ADS)

    Sasano, Koji; Okajima, Hiroshi; Matsunaga, Nobutomo

    Recently, the fractional order PID (FO-PID) control, which is the extension of the PID control, has been focused on. Even though the FO-PID requires the high-order filter, it is difficult to realize the high-order filter due to the memory limitation of digital computer. For implementation of FO-PID, approximation of the fractional integrator and differentiator are required. Short memory principle (SMP) is one of the effective approximation methods. However, there is a disadvantage that the approximated filter with SMP cannot eliminate the steady-state error. For this problem, we introduce the distributed implementation of the integrator and the dynamic quantizer to make the efficient use of permissible memory. The objective of this study is to clarify how to implement the accurate FO-PID with limited memories. In this paper, we propose the implementation method of FO-PID with memory constraint using dynamic quantizer. And the trade off between approximation of fractional elements and quantized data size are examined so as to close to the ideal FO-PID responses. The effectiveness of proposed method is evaluated by numerical example and experiment in the temperature control of heat plate.

  10. A divide and conquer approach to the nonsymmetric eigenvalue problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessup, E.R.

    1991-01-01

    Serial computation combined with high communication costs on distributed-memory multiprocessors make parallel implementations of the QR method for the nonsymmetric eigenvalue problem inefficient. This paper introduces an alternative algorithm for the nonsymmetric tridiagonal eigenvalue problem based on rank two tearing and updating of the matrix. The parallelism of this divide and conquer approach stems from independent solution of the updating problems. 11 refs.

  11. Scalability improvements to NRLMOL for DFT calculations of large molecules

    NASA Astrophysics Data System (ADS)

    Diaz, Carlos Manuel

    Advances in high performance computing (HPC) have provided a way to treat large, computationally demanding tasks using thousands of processors. With the development of more powerful HPC architectures, the need to create efficient and scalable code has grown more important. Electronic structure calculations are valuable in understanding experimental observations and are routinely used for new materials predictions. For the electronic structure calculations, the memory and computation time are proportional to the number of atoms. Memory requirements for these calculations scale as N2, where N is the number of atoms. While the recent advances in HPC offer platforms with large numbers of cores, the limited amount of memory available on a given node and poor scalability of the electronic structure code hinder their efficient usage of these platforms. This thesis will present some developments to overcome these bottlenecks in order to study large systems. These developments, which are implemented in the NRLMOL electronic structure code, involve the use of sparse matrix storage formats and the use of linear algebra using sparse and distributed matrices. These developments along with other related development now allow ground state density functional calculations using up to 25,000 basis functions and the excited state calculations using up to 17,000 basis functions while utilizing all cores on a node. An example on a light-harvesting triad molecule is described. Finally, future plans to further improve the scalability will be presented.

  12. Implementing Molecular Dynamics for Hybrid High Performance Computers - 1. Short Range Forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, W Michael; Wang, Peng; Plimpton, Steven J

    The use of accelerators such as general-purpose graphics processing units (GPGPUs) have become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high performance computers, machines with more than one type of floating-point processor, are now becoming more prevalent due to these advantages. In this work, we discuss several important issues in porting a large molecular dynamics code for use on parallel hybrid machines - 1) choosing a hybrid parallel decomposition that works on central processing units (CPUs) with distributed memory and accelerator cores with shared memory,more » 2) minimizing the amount of code that must be ported for efficient acceleration, 3) utilizing the available processing power from both many-core CPUs and accelerators, and 4) choosing a programming model for acceleration. We present our solution to each of these issues for short-range force calculation in the molecular dynamics package LAMMPS. We describe algorithms for efficient short range force calculation on hybrid high performance machines. We describe a new approach for dynamic load balancing of work between CPU and accelerator cores. We describe the Geryon library that allows a single code to compile with both CUDA and OpenCL for use on a variety of accelerators. Finally, we present results on a parallel test cluster containing 32 Fermi GPGPUs and 180 CPU cores.« less

  13. DMA shared byte counters in a parallel computer

    DOEpatents

    Chen, Dong; Gara, Alan G.; Heidelberger, Philip; Vranas, Pavlos

    2010-04-06

    A parallel computer system is constructed as a network of interconnected compute nodes. Each of the compute nodes includes at least one processor, a memory and a DMA engine. The DMA engine includes a processor interface for interfacing with the at least one processor, DMA logic, a memory interface for interfacing with the memory, a DMA network interface for interfacing with the network, injection and reception byte counters, injection and reception FIFO metadata, and status registers and control registers. The injection FIFOs maintain memory locations of the injection FIFO metadata memory locations including its current head and tail, and the reception FIFOs maintain the reception FIFO metadata memory locations including its current head and tail. The injection byte counters and reception byte counters may be shared between messages.

  14. Proceedings of the 14th International Conference on the Numerical Simulation of Plasmas

    NASA Astrophysics Data System (ADS)

    Partial Contents are as follows: Numerical Simulations of the Vlasov-Maxwell Equations by Coupled Particle-Finite Element Methods on Unstructured Meshes; Electromagnetic PIC Simulations Using Finite Elements on Unstructured Grids; Modelling Travelling Wave Output Structures with the Particle-in-Cell Code CONDOR; SST--A Single-Slice Particle Simulation Code; Graphical Display and Animation of Data Produced by Electromagnetic, Particle-in-Cell Codes; A Post-Processor for the PEST Code; Gray Scale Rendering of Beam Profile Data; A 2D Electromagnetic PIC Code for Distributed Memory Parallel Computers; 3-D Electromagnetic PIC Simulation on the NRL Connection Machine; Plasma PIC Simulations on MIMD Computers; Vlasov-Maxwell Algorithm for Electromagnetic Plasma Simulation on Distributed Architectures; MHD Boundary Layer Calculation Using the Vortex Method; and Eulerian Codes for Plasma Simulations.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumalla, Kalyan S.; Yoginath, Srikanth B.

    Problems such as fault tolerance and scalable synchronization can be efficiently solved using reversibility of applications. Making applications reversible by relying on computation rather than on memory is ideal for large scale parallel computing, especially for the next generation of supercomputers in which memory is expensive in terms of latency, energy, and price. In this direction, a case study is presented here in reversing a computational core, namely, Basic Linear Algebra Subprograms, which is widely used in scientific applications. A new Reversible BLAS (RBLAS) library interface has been designed, and a prototype has been implemented with two modes: (1) amore » memory-mode in which reversibility is obtained by checkpointing to memory in forward and restoring from memory in reverse, and (2) a computational-mode in which nothing is saved in the forward, but restoration is done entirely via inverse computation in reverse. The article is focused on detailed performance benchmarking to evaluate the runtime dynamics and performance effects, comparing reversible computation with checkpointing on both traditional CPU platforms and recent GPU accelerator platforms. For BLAS Level-1 subprograms, data indicates over an order of magnitude better speed of reversible computation compared to checkpointing. For BLAS Level-2 and Level-3, a more complex tradeoff is observed between reversible computation and checkpointing, depending on computational and memory complexities of the subprograms.« less

  16. Parallel Optimization of Polynomials for Large-scale Problems in Stability and Control

    NASA Astrophysics Data System (ADS)

    Kamyar, Reza

    In this thesis, we focus on some of the NP-hard problems in control theory. Thanks to the converse Lyapunov theory, these problems can often be modeled as optimization over polynomials. To avoid the problem of intractability, we establish a trade off between accuracy and complexity. In particular, we develop a sequence of tractable optimization problems --- in the form of Linear Programs (LPs) and/or Semi-Definite Programs (SDPs) --- whose solutions converge to the exact solution of the NP-hard problem. However, the computational and memory complexity of these LPs and SDPs grow exponentially with the progress of the sequence - meaning that improving the accuracy of the solutions requires solving SDPs with tens of thousands of decision variables and constraints. Setting up and solving such problems is a significant challenge. The existing optimization algorithms and software are only designed to use desktop computers or small cluster computers --- machines which do not have sufficient memory for solving such large SDPs. Moreover, the speed-up of these algorithms does not scale beyond dozens of processors. This in fact is the reason we seek parallel algorithms for setting-up and solving large SDPs on large cluster- and/or super-computers. We propose parallel algorithms for stability analysis of two classes of systems: 1) Linear systems with a large number of uncertain parameters; 2) Nonlinear systems defined by polynomial vector fields. First, we develop a distributed parallel algorithm which applies Polya's and/or Handelman's theorems to some variants of parameter-dependent Lyapunov inequalities with parameters defined over the standard simplex. The result is a sequence of SDPs which possess a block-diagonal structure. We then develop a parallel SDP solver which exploits this structure in order to map the computation, memory and communication to a distributed parallel environment. Numerical tests on a supercomputer demonstrate the ability of the algorithm to efficiently utilize hundreds and potentially thousands of processors, and analyze systems with 100+ dimensional state-space. Furthermore, we extend our algorithms to analyze robust stability over more complicated geometries such as hypercubes and arbitrary convex polytopes. Our algorithms can be readily extended to address a wide variety of problems in control such as Hinfinity synthesis for systems with parametric uncertainty and computing control Lyapunov functions.

  17. Importance of balanced architectures in the design of high-performance imaging systems

    NASA Astrophysics Data System (ADS)

    Sgro, Joseph A.; Stanton, Paul C.

    1999-03-01

    Imaging systems employed in demanding military and industrial applications, such as automatic target recognition and computer vision, typically require real-time high-performance computing resources. While high- performances computing systems have traditionally relied on proprietary architectures and custom components, recent advances in high performance general-purpose microprocessor technology have produced an abundance of low cost components suitable for use in high-performance computing systems. A common pitfall in the design of high performance imaging system, particularly systems employing scalable multiprocessor architectures, is the failure to balance computational and memory bandwidth. The performance of standard cluster designs, for example, in which several processors share a common memory bus, is typically constrained by memory bandwidth. The symptom characteristic of this problem is failure to the performance of the system to scale as more processors are added. The problem becomes exacerbated if I/O and memory functions share the same bus. The recent introduction of microprocessors with large internal caches and high performance external memory interfaces makes it practical to design high performance imaging system with balanced computational and memory bandwidth. Real word examples of such designs will be presented, along with a discussion of adapting algorithm design to best utilize available memory bandwidth.

  18. Spacecraft On-Board Information Extraction Computer (SOBIEC)

    NASA Technical Reports Server (NTRS)

    Eisenman, David; Decaro, Robert E.; Jurasek, David W.

    1994-01-01

    The Jet Propulsion Laboratory is the Technical Monitor on an SBIR Program issued for Irvine Sensors Corporation to develop a highly compact, dual use massively parallel processing node known as SOBIEC. SOBIEC couples 3D memory stacking technology provided by nCUBE. The node contains sufficient network Input/Output to implement up to an order-13 binary hypercube. The benefit of this network, is that it scales linearly as more processors are added, and it is a superset of other commonly used interconnect topologies such as: meshes, rings, toroids, and trees. In this manner, a distributed processing network can be easily devised and supported. The SOBIEC node has sufficient memory for most multi-computer applications, and also supports external memory expansion and DMA interfaces. The SOBIEC node is supported by a mature set of software development tools from nCUBE. The nCUBE operating system (OS) provides configuration and operational support for up to 8000 SOBIEC processors in an order-13 binary hypercube or any subset or partition(s) thereof. The OS is UNIX (USL SVR4) compatible, with C, C++, and FORTRAN compilers readily available. A stand-alone development system is also available to support SOBIEC test and integration.

  19. A biased competition account of attention and memory in Alzheimer's disease

    PubMed Central

    Finke, Kathrin; Myers, Nicholas; Bublak, Peter; Sorg, Christian

    2013-01-01

    The common view of Alzheimer's disease (AD) is that of an age-related memory disorder, i.e. declarative memory deficits are the first signs of the disease and associated with progressive brain changes in the medial temporal lobes and the default mode network. However, two findings challenge this view. First, new model-based tools of attention research have revealed that impaired selective attention accompanies memory deficits from early pre-dementia AD stages on. Second, very early distributed lesions of lateral parietal networks may cause these attention deficits by disrupting brain mechanisms underlying attentional biased competition. We suggest that memory and attention impairments might indicate disturbances of a common underlying neurocognitive mechanism. We propose a unifying account of impaired neural interactions within and across brain networks involved in attention and memory inspired by the biased competition principle. We specify this account at two levels of analysis: at the computational level, the selective competition of representations during both perception and memory is biased by AD-induced lesions; at the large-scale brain level, integration within and across intrinsic brain networks, which overlap in parietal and temporal lobes, is disrupted. This account integrates a large amount of previously unrelated findings of changed behaviour and brain networks and favours a brain mechanism-centred view on AD. PMID:24018724

  20. A biased competition account of attention and memory in Alzheimer's disease.

    PubMed

    Finke, Kathrin; Myers, Nicholas; Bublak, Peter; Sorg, Christian

    2013-10-19

    The common view of Alzheimer's disease (AD) is that of an age-related memory disorder, i.e. declarative memory deficits are the first signs of the disease and associated with progressive brain changes in the medial temporal lobes and the default mode network. However, two findings challenge this view. First, new model-based tools of attention research have revealed that impaired selective attention accompanies memory deficits from early pre-dementia AD stages on. Second, very early distributed lesions of lateral parietal networks may cause these attention deficits by disrupting brain mechanisms underlying attentional biased competition. We suggest that memory and attention impairments might indicate disturbances of a common underlying neurocognitive mechanism. We propose a unifying account of impaired neural interactions within and across brain networks involved in attention and memory inspired by the biased competition principle. We specify this account at two levels of analysis: at the computational level, the selective competition of representations during both perception and memory is biased by AD-induced lesions; at the large-scale brain level, integration within and across intrinsic brain networks, which overlap in parietal and temporal lobes, is disrupted. This account integrates a large amount of previously unrelated findings of changed behaviour and brain networks and favours a brain mechanism-centred view on AD.

  1. Visual Short-Term Memory Compared in Rhesus Monkeys and Humans

    PubMed Central

    Elmore, L. Caitlin; Ma, Wei Ji; Magnotti, John F.; Leising, Kenneth J.; Passaro, Antony D.; Katz, Jeffrey S.; Wright, Anthony A.

    2011-01-01

    Summary Change detection is a popular task to study visual short-term memory (STM) in humans [1–4]. Much of this work suggests that STM has a fixed capacity of 4 ± 1 items [1–6]. Here we report the first comparison of change detection memory between humans and a species closely related to humans, the rhesus monkey. Monkeys and humans were tested in nearly identical procedures with overlapping display sizes. Although the monkeys’ STM was well fit by a 1-item fixed-capacity memory model, other monkey memory tests with 4-item lists have shown performance impossible to obtain with a 1-item capacity [7]. We suggest that this contradiction can be resolved using a continuous-resource approach more closely tied to the neural basis of memory [8,9]. In this view, items have a noisy memory representation whose noise level depends on display size due to distributed allocation of a continuous resource. In accord with this theory, we show that performance depends on the perceptual distance between items before and after the change, and d′ depends on display size in an approximately power law fashion. Our results open the door to combining the power of psychophysics, computation, and physiology to better understand the neural basis of STM. PMID:21596568

  2. Managing internode data communications for an uninitialized process in a parallel computer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer, Charles J; Blocksome, Michael A; Miller, Douglas R

    2014-05-20

    A parallel computer includes nodes, each having main memory and a messaging unit (MU). Each MU includes computer memory, which in turn includes, MU message buffers. Each MU message buffer is associated with an uninitialized process on the compute node. In the parallel computer, managing internode data communications for an uninitialized process includes: receiving, by an MU of a compute node, one or more data communications messages in an MU message buffer associated with an uninitialized process on the compute node; determining, by an application agent, that the MU message buffer associated with the uninitialized process is full prior tomore » initialization of the uninitialized process; establishing, by the application agent, a temporary message buffer for the uninitialized process in main computer memory; and moving, by the application agent, data communications messages from the MU message buffer associated with the uninitialized process to the temporary message buffer in main computer memory.« less

  3. Managing internode data communications for an uninitialized process in a parallel computer

    DOEpatents

    Archer, Charles J; Blocksome, Michael A; Miller, Douglas R; Parker, Jeffrey J; Ratterman, Joseph D; Smith, Brian E

    2014-05-20

    A parallel computer includes nodes, each having main memory and a messaging unit (MU). Each MU includes computer memory, which in turn includes, MU message buffers. Each MU message buffer is associated with an uninitialized process on the compute node. In the parallel computer, managing internode data communications for an uninitialized process includes: receiving, by an MU of a compute node, one or more data communications messages in an MU message buffer associated with an uninitialized process on the compute node; determining, by an application agent, that the MU message buffer associated with the uninitialized process is full prior to initialization of the uninitialized process; establishing, by the application agent, a temporary message buffer for the uninitialized process in main computer memory; and moving, by the application agent, data communications messages from the MU message buffer associated with the uninitialized process to the temporary message buffer in main computer memory.

  4. Implementing Access to Data Distributed on Many Processors

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    A reference architecture is defined for an object-oriented implementation of domains, arrays, and distributions written in the programming language Chapel. This technology primarily addresses domains that contain arrays that have regular index sets with the low-level implementation details being beyond the scope of this discussion. What is defined is a complete set of object-oriented operators that allows one to perform data distributions for domain arrays involving regular arithmetic index sets. What is unique is that these operators allow for the arbitrary regions of the arrays to be fragmented and distributed across multiple processors with a single point of access giving the programmer the illusion that all the elements are collocated on a single processor. Today's massively parallel High Productivity Computing Systems (HPCS) are characterized by a modular structure, with a large number of processing and memory units connected by a high-speed network. Locality of access as well as load balancing are primary concerns in these systems that are typically used for high-performance scientific computation. Data distributions address these issues by providing a range of methods for spreading large data sets across the components of a system. Over the past two decades, many languages, systems, tools, and libraries have been developed for the support of distributions. Since the performance of data parallel applications is directly influenced by the distribution strategy, users often resort to low-level programming models that allow fine-tuning of the distribution aspects affecting performance, but, at the same time, are tedious and error-prone. This technology presents a reusable design of a data-distribution framework for data parallel high-performance applications. Distributions are a means to express locality in systems composed of large numbers of processor and memory components connected by a network. Since distributions have a great effect on the performance of applications, it is important that the distribution strategy is flexible, so its behavior can change depending on the needs of the application. At the same time, high productivity concerns require that the user be shielded from error-prone, tedious details such as communication and synchronization.

  5. Performance Prediction Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chennupati, Gopinath; Santhi, Nanadakishore; Eidenbenz, Stephen

    The Performance Prediction Toolkit (PPT), is a scalable co-design tool that contains the hardware and middle-ware models, which accept proxy applications as input in runtime prediction. PPT relies on Simian, a parallel discrete event simulation engine in Python or Lua, that uses the process concept, where each computing unit (host, node, core) is a Simian entity. Processes perform their task through message exchanges to remain active, sleep, wake-up, begin and end. The PPT hardware model of a compute core (such as a Haswell core) consists of a set of parameters, such as clock speed, memory hierarchy levels, their respective sizes,more » cache-lines, access times for different cache levels, average cycle counts of ALU operations, etc. These parameters are ideally read off a spec sheet or are learned using regression models learned from hardware counters (PAPI) data. The compute core model offers an API to the software model, a function called time_compute(), which takes as input a tasklist. A tasklist is an unordered set of ALU, and other CPU-type operations (in particular virtual memory loads and stores). The PPT application model mimics the loop structure of the application and replaces the computational kernels with a call to the hardware model's time_compute() function giving tasklists as input that model the compute kernel. A PPT application model thus consists of tasklists representing kernels and the high-er level loop structure that we like to think of as pseudo code. The key challenge for the hardware model's time_compute-function is to translate virtual memory accesses into actual cache hierarchy level hits and misses.PPT also contains another CPU core level hardware model, Analytical Memory Model (AMM). The AMM solves this challenge soundly, where our previous alternatives explicitly include the L1,L2,L3 hit-rates as inputs to the tasklists. Explicit hit-rates inevitably only reflect the application modeler's best guess, perhaps informed by a few small test problems using hardware counters; also, hard-coded hit-rates make the hardware model insensitive to changes in cache sizes. Alternatively, we use reuse distance distributions in the tasklists. In general, reuse profiles require the application modeler to run a very expensive trace analysis on the real code that realistically can be done at best for small examples.« less

  6. Turbomachinery CFD on parallel computers

    NASA Technical Reports Server (NTRS)

    Blech, Richard A.; Milner, Edward J.; Quealy, Angela; Townsend, Scott E.

    1992-01-01

    The role of multistage turbomachinery simulation in the development of propulsion system models is discussed. Particularly, the need for simulations with higher fidelity and faster turnaround time is highlighted. It is shown how such fast simulations can be used in engineering-oriented environments. The use of parallel processing to achieve the required turnaround times is discussed. Current work by several researchers in this area is summarized. Parallel turbomachinery CFD research at the NASA Lewis Research Center is then highlighted. These efforts are focused on implementing the average-passage turbomachinery model on MIMD, distributed memory parallel computers. Performance results are given for inviscid, single blade row and viscous, multistage applications on several parallel computers, including networked workstations.

  7. Sequential structural damage diagnosis algorithm using a change point detection method

    NASA Astrophysics Data System (ADS)

    Noh, H.; Rajagopal, R.; Kiremidjian, A. S.

    2013-11-01

    This paper introduces a damage diagnosis algorithm for civil structures that uses a sequential change point detection method. The general change point detection method uses the known pre- and post-damage feature distributions to perform a sequential hypothesis test. In practice, however, the post-damage distribution is unlikely to be known a priori, unless we are looking for a known specific type of damage. Therefore, we introduce an additional algorithm that estimates and updates this distribution as data are collected using the maximum likelihood and the Bayesian methods. We also applied an approximate method to reduce the computation load and memory requirement associated with the estimation. The algorithm is validated using a set of experimental data collected from a four-story steel special moment-resisting frame and multiple sets of simulated data. Various features of different dimensions have been explored, and the algorithm was able to identify damage, particularly when it uses multidimensional damage sensitive features and lower false alarm rates, with a known post-damage feature distribution. For unknown feature distribution cases, the post-damage distribution was consistently estimated and the detection delays were only a few time steps longer than the delays from the general method that assumes we know the post-damage feature distribution. We confirmed that the Bayesian method is particularly efficient in declaring damage with minimal memory requirement, but the maximum likelihood method provides an insightful heuristic approach.

  8. Damage diagnosis algorithm using a sequential change point detection method with an unknown distribution for damage

    NASA Astrophysics Data System (ADS)

    Noh, Hae Young; Rajagopal, Ram; Kiremidjian, Anne S.

    2012-04-01

    This paper introduces a damage diagnosis algorithm for civil structures that uses a sequential change point detection method for the cases where the post-damage feature distribution is unknown a priori. This algorithm extracts features from structural vibration data using time-series analysis and then declares damage using the change point detection method. The change point detection method asymptotically minimizes detection delay for a given false alarm rate. The conventional method uses the known pre- and post-damage feature distributions to perform a sequential hypothesis test. In practice, however, the post-damage distribution is unlikely to be known a priori. Therefore, our algorithm estimates and updates this distribution as data are collected using the maximum likelihood and the Bayesian methods. We also applied an approximate method to reduce the computation load and memory requirement associated with the estimation. The algorithm is validated using multiple sets of simulated data and a set of experimental data collected from a four-story steel special moment-resisting frame. Our algorithm was able to estimate the post-damage distribution consistently and resulted in detection delays only a few seconds longer than the delays from the conventional method that assumes we know the post-damage feature distribution. We confirmed that the Bayesian method is particularly efficient in declaring damage with minimal memory requirement, but the maximum likelihood method provides an insightful heuristic approach.

  9. Effects of Ordering Strategies and Programming Paradigms on Sparse Matrix Computations

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Li, Xiaoye; Husbands, Parry; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2002-01-01

    The Conjugate Gradient (CG) algorithm is perhaps the best-known iterative technique to solve sparse linear systems that are symmetric and positive definite. For systems that are ill-conditioned, it is often necessary to use a preconditioning technique. In this paper, we investigate the effects of various ordering and partitioning strategies on the performance of parallel CG and ILU(O) preconditioned CG (PCG) using different programming paradigms and architectures. Results show that for this class of applications: ordering significantly improves overall performance on both distributed and distributed shared-memory systems, that cache reuse may be more important than reducing communication, that it is possible to achieve message-passing performance using shared-memory constructs through careful data ordering and distribution, and that a hybrid MPI+OpenMP paradigm increases programming complexity with little performance gains. A implementation of CG on the Cray MTA does not require special ordering or partitioning to obtain high efficiency and scalability, giving it a distinct advantage for adaptive applications; however, it shows limited scalability for PCG due to a lack of thread level parallelism.

  10. Video game experience and its influence on visual attention parameters: an investigation using the framework of the Theory of Visual Attention (TVA).

    PubMed

    Schubert, Torsten; Finke, Kathrin; Redel, Petra; Kluckow, Steffen; Müller, Hermann; Strobach, Tilo

    2015-05-01

    Experts with video game experience, in contrast to non-experienced persons, are superior in multiple domains of visual attention. However, it is an open question which basic aspects of attention underlie this superiority. We approached this question using the framework of Theory of Visual Attention (TVA) with tools that allowed us to assess various parameters that are related to different visual attention aspects (e.g., perception threshold, processing speed, visual short-term memory storage capacity, top-down control, spatial distribution of attention) and that are measurable on the same experimental basis. In Experiment 1, we found advantages of video game experts in perception threshold and visual processing speed; the latter being restricted to the lower positions of the used computer display. The observed advantages were not significantly moderated by general person-related characteristics such as personality traits, sensation seeking, intelligence, social anxiety, or health status. Experiment 2 tested a potential causal link between the expert advantages and video game practice with an intervention protocol. It found no effects of action video gaming on perception threshold, visual short-term memory storage capacity, iconic memory storage, top-down control, and spatial distribution of attention after 15 days of training. However, observations of a selected improvement of processing speed at the lower positions of the computer screen after video game training and of retest effects are suggestive for limited possibilities to improve basic aspects of visual attention (TVA) with practice. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Empirical performance of the multivariate normal universal portfolio

    NASA Astrophysics Data System (ADS)

    Tan, Choon Peng; Pang, Sook Theng

    2013-09-01

    Universal portfolios generated by the multivariate normal distribution are studied with emphasis on the case where variables are dependent, namely, the covariance matrix is not diagonal. The moving-order multivariate normal universal portfolio requires very long implementation time and large computer memory in its implementation. With the objective of reducing memory and implementation time, the finite-order universal portfolio is introduced. Some stock-price data sets are selected from the local stock exchange and the finite-order universal portfolio is run on the data sets, for small finite order. Empirically, it is shown that the portfolio can outperform the moving-order Dirichlet universal portfolio of Cover and Ordentlich[2] for certain parameters in the selected data sets.

  12. MSAProbs-MPI: parallel multiple sequence aligner for distributed-memory systems.

    PubMed

    González-Domínguez, Jorge; Liu, Yongchao; Touriño, Juan; Schmidt, Bertil

    2016-12-15

    MSAProbs is a state-of-the-art protein multiple sequence alignment tool based on hidden Markov models. It can achieve high alignment accuracy at the expense of relatively long runtimes for large-scale input datasets. In this work we present MSAProbs-MPI, a distributed-memory parallel version of the multithreaded MSAProbs tool that is able to reduce runtimes by exploiting the compute capabilities of common multicore CPU clusters. Our performance evaluation on a cluster with 32 nodes (each containing two Intel Haswell processors) shows reductions in execution time of over one order of magnitude for typical input datasets. Furthermore, MSAProbs-MPI using eight nodes is faster than the GPU-accelerated QuickProbs running on a Tesla K20. Another strong point is that MSAProbs-MPI can deal with large datasets for which MSAProbs and QuickProbs might fail due to time and memory constraints, respectively. Source code in C ++ and MPI running on Linux systems as well as a reference manual are available at http://msaprobs.sourceforge.net CONTACT: jgonzalezd@udc.esSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Polarization-dependent atomic dipole traps behind a circular aperture for neutral-atom quantum computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillen-Christandl, Katharina; Copsey, Bert D.

    2011-02-15

    The neutral-atom quantum computing community has successfully implemented almost all necessary steps for constructing a neutral-atom quantum computer. We present computational results of a study aimed at solving the remaining problem of creating a quantum memory with individually addressable sites for quantum computing. The basis of this quantum memory is the diffraction pattern formed by laser light incident on a circular aperture. Very close to the aperture, the diffraction pattern has localized bright and dark spots that can serve as red-detuned or blue-detuned atomic dipole traps. These traps are suitable for quantum computing even for moderate laser powers. In particular,more » for moderate laser intensities ({approx}100 W/cm{sup 2}) and comparatively small detunings ({approx}1000-10 000 linewidths), trap depths of {approx}1 mK and trap frequencies of several to tens of kilohertz are achieved. Our results indicate that these dipole traps can be moved by tilting the incident laser beams without significantly changing the trap properties. We also explored the polarization dependence of these dipole traps. We developed a code that calculates the trapping potential energy for any magnetic substate of any hyperfine ground state of any alkali-metal atom for any laser detuning much smaller than the fine-structure splitting for any given electric field distribution. We describe details of our calculations and include a summary of different notations and conventions for the reduced matrix element and how to convert it to SI units. We applied this code to these traps and found a method for bringing two traps together and apart controllably without expelling the atoms from the trap and without significant tunneling probability between the traps. This approach can be scaled up to a two-dimensional array of many pinholes, forming a quantum memory with single-site addressability, in which pairs of atoms can be brought together and apart for two-qubit gates for quantum computing.« less

  14. Efficient Memory Access with NumPy Global Arrays using Local Memory Access

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daily, Jeffrey A.; Berghofer, Dan C.

    This paper discusses the work completed working with Global Arrays of data on distributed multi-computer systems and improving their performance. The tasks completed were done at Pacific Northwest National Laboratory in the Science Undergrad Laboratory Internship program in the summer of 2013 for the Data Intensive Computing Group in the Fundamental and Computational Sciences DIrectorate. This work was done on the Global Arrays Toolkit developed by this group. This toolkit is an interface for programmers to more easily create arrays of data on networks of computers. This is useful because scientific computation is often done on large amounts of datamore » sometimes so large that individual computers cannot hold all of it. This data is held in array form and can best be processed on supercomputers which often consist of a network of individual computers doing their computation in parallel. One major challenge for this sort of programming is that operations on arrays on multiple computers is very complex and an interface is needed so that these arrays seem like they are on a single computer. This is what global arrays does. The work done here is to use more efficient operations on that data that requires less copying of data to be completed. This saves a lot of time because copying data on many different computers is time intensive. The way this challenge was solved is when data to be operated on with binary operations are on the same computer, they are not copied when they are accessed. When they are on separate computers, only one set is copied when accessed. This saves time because of less copying done although more data access operations were done.« less

  15. The computational nature of memory modification.

    PubMed

    Gershman, Samuel J; Monfils, Marie-H; Norman, Kenneth A; Niv, Yael

    2017-03-15

    Retrieving a memory can modify its influence on subsequent behavior. We develop a computational theory of memory modification, according to which modification of a memory trace occurs through classical associative learning, but which memory trace is eligible for modification depends on a structure learning mechanism that discovers the units of association by segmenting the stream of experience into statistically distinct clusters (latent causes). New memories are formed when the structure learning mechanism infers that a new latent cause underlies current sensory observations. By the same token, old memories are modified when old and new sensory observations are inferred to have been generated by the same latent cause. We derive this framework from probabilistic principles, and present a computational implementation. Simulations demonstrate that our model can reproduce the major experimental findings from studies of memory modification in the Pavlovian conditioning literature.

  16. Technical support for digital systems technology development. Task order 1: ISP contention analysis and control

    NASA Technical Reports Server (NTRS)

    Stehle, Roy H.; Ogier, Richard G.

    1993-01-01

    Alternatives for realizing a packet-based network switch for use on a frequency division multiple access/time division multiplexed (FDMA/TDM) geostationary communication satellite were investigated. Each of the eight downlink beams supports eight directed dwells. The design needed to accommodate multicast packets with very low probability of loss due to contention. Three switch architectures were designed and analyzed. An output-queued, shared bus system yielded a functionally simple system, utilizing a first-in, first-out (FIFO) memory per downlink dwell, but at the expense of a large total memory requirement. A shared memory architecture offered the most efficiency in memory requirements, requiring about half the memory of the shared bus design. The processing requirement for the shared-memory system adds system complexity that may offset the benefits of the smaller memory. An alternative design using a shared memory buffer per downlink beam decreases circuit complexity through a distributed design, and requires at most 1000 packets of memory more than the completely shared memory design. Modifications to the basic packet switch designs were proposed to accommodate circuit-switched traffic, which must be served on a periodic basis with minimal delay. Methods for dynamically controlling the downlink dwell lengths were developed and analyzed. These methods adapt quickly to changing traffic demands, and do not add significant complexity or cost to the satellite and ground station designs. Methods for reducing the memory requirement by not requiring the satellite to store full packets were also proposed and analyzed. In addition, optimal packet and dwell lengths were computed as functions of memory size for the three switch architectures.

  17. Random Access Memories: A New Paradigm for Target Detection in High Resolution Aerial Remote Sensing Images.

    PubMed

    Zou, Zhengxia; Shi, Zhenwei

    2018-03-01

    We propose a new paradigm for target detection in high resolution aerial remote sensing images under small target priors. Previous remote sensing target detection methods frame the detection as learning of detection model + inference of class-label and bounding-box coordinates. Instead, we formulate it from a Bayesian view that at inference stage, the detection model is adaptively updated to maximize its posterior that is determined by both training and observation. We call this paradigm "random access memories (RAM)." In this paradigm, "Memories" can be interpreted as any model distribution learned from training data and "random access" means accessing memories and randomly adjusting the model at detection phase to obtain better adaptivity to any unseen distribution of test data. By leveraging some latest detection techniques e.g., deep Convolutional Neural Networks and multi-scale anchors, experimental results on a public remote sensing target detection data set show our method outperforms several other state of the art methods. We also introduce a new data set "LEarning, VIsion and Remote sensing laboratory (LEVIR)", which is one order of magnitude larger than other data sets of this field. LEVIR consists of a large set of Google Earth images, with over 22 k images and 10 k independently labeled targets. RAM gives noticeable upgrade of accuracy (an mean average precision improvement of 1% ~ 4%) of our baseline detectors with acceptable computational overhead.

  18. Towards reversible basic linear algebra subprograms: A performance study

    DOE PAGES

    Perumalla, Kalyan S.; Yoginath, Srikanth B.

    2014-12-06

    Problems such as fault tolerance and scalable synchronization can be efficiently solved using reversibility of applications. Making applications reversible by relying on computation rather than on memory is ideal for large scale parallel computing, especially for the next generation of supercomputers in which memory is expensive in terms of latency, energy, and price. In this direction, a case study is presented here in reversing a computational core, namely, Basic Linear Algebra Subprograms, which is widely used in scientific applications. A new Reversible BLAS (RBLAS) library interface has been designed, and a prototype has been implemented with two modes: (1) amore » memory-mode in which reversibility is obtained by checkpointing to memory in forward and restoring from memory in reverse, and (2) a computational-mode in which nothing is saved in the forward, but restoration is done entirely via inverse computation in reverse. The article is focused on detailed performance benchmarking to evaluate the runtime dynamics and performance effects, comparing reversible computation with checkpointing on both traditional CPU platforms and recent GPU accelerator platforms. For BLAS Level-1 subprograms, data indicates over an order of magnitude better speed of reversible computation compared to checkpointing. For BLAS Level-2 and Level-3, a more complex tradeoff is observed between reversible computation and checkpointing, depending on computational and memory complexities of the subprograms.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, J.P.; Bangs, A.L.; Butler, P.L.

    Hetero Helix is a programming environment which simulates shared memory on a heterogeneous network of distributed-memory computers. The machines in the network may vary with respect to their native operating systems and internal representation of numbers. Hetero Helix presents a simple programming model to developers, and also considers the needs of designers, system integrators, and maintainers. The key software technology underlying Hetero Helix is the use of a compiler'' which analyzes the data structures in shared memory and automatically generates code which translates data representations from the format native to each machine into a common format, and vice versa. Themore » design of Hetero Helix was motivated in particular by the requirements of robotics applications. Hetero Helix has been used successfully in an integration effort involving 27 CPUs in a heterogeneous network and a body of software totaling roughly 100,00 lines of code. 25 refs., 6 figs.« less

  20. Realization of Quantum Digital Signatures without the Requirement of Quantum Memory

    NASA Astrophysics Data System (ADS)

    Collins, Robert J.; Donaldson, Ross J.; Dunjko, Vedran; Wallden, Petros; Clarke, Patrick J.; Andersson, Erika; Jeffers, John; Buller, Gerald S.

    2014-07-01

    Digital signatures are widely used to provide security for electronic communications, for example, in financial transactions and electronic mail. Currently used classical digital signature schemes, however, only offer security relying on unproven computational assumptions. In contrast, quantum digital signatures offer information-theoretic security based on laws of quantum mechanics. Here, security against forging relies on the impossibility of perfectly distinguishing between nonorthogonal quantum states. A serious drawback of previous quantum digital signature schemes is that they require long-term quantum memory, making them impractical at present. We present the first realization of a scheme that does not need quantum memory and which also uses only standard linear optical components and photodetectors. In our realization, the recipients measure the distributed quantum signature states using a new type of quantum measurement, quantum state elimination. This significantly advances quantum digital signatures as a quantum technology with potential for real applications.

  1. Realization of quantum digital signatures without the requirement of quantum memory.

    PubMed

    Collins, Robert J; Donaldson, Ross J; Dunjko, Vedran; Wallden, Petros; Clarke, Patrick J; Andersson, Erika; Jeffers, John; Buller, Gerald S

    2014-07-25

    Digital signatures are widely used to provide security for electronic communications, for example, in financial transactions and electronic mail. Currently used classical digital signature schemes, however, only offer security relying on unproven computational assumptions. In contrast, quantum digital signatures offer information-theoretic security based on laws of quantum mechanics. Here, security against forging relies on the impossibility of perfectly distinguishing between nonorthogonal quantum states. A serious drawback of previous quantum digital signature schemes is that they require long-term quantum memory, making them impractical at present. We present the first realization of a scheme that does not need quantum memory and which also uses only standard linear optical components and photodetectors. In our realization, the recipients measure the distributed quantum signature states using a new type of quantum measurement, quantum state elimination. This significantly advances quantum digital signatures as a quantum technology with potential for real applications.

  2. Hybrid Parallelism for Volume Rendering on Large-, Multi-, and Many-Core Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howison, Mark; Bethel, E. Wes; Childs, Hank

    2012-01-01

    With the computing industry trending towards multi- and many-core processors, we study how a standard visualization algorithm, ray-casting volume rendering, can benefit from a hybrid parallelism approach. Hybrid parallelism provides the best of both worlds: using distributed-memory parallelism across a large numbers of nodes increases available FLOPs and memory, while exploiting shared-memory parallelism among the cores within each node ensures that each node performs its portion of the larger calculation as efficiently as possible. We demonstrate results from weak and strong scaling studies, at levels of concurrency ranging up to 216,000, and with datasets as large as 12.2 trillion cells.more » The greatest benefit from hybrid parallelism lies in the communication portion of the algorithm, the dominant cost at higher levels of concurrency. We show that reducing the number of participants with a hybrid approach significantly improves performance.« less

  3. Distributed computing system with dual independent communications paths between computers and employing split tokens

    NASA Technical Reports Server (NTRS)

    Rasmussen, Robert D. (Inventor); Manning, Robert M. (Inventor); Lewis, Blair F. (Inventor); Bolotin, Gary S. (Inventor); Ward, Richard S. (Inventor)

    1990-01-01

    This is a distributed computing system providing flexible fault tolerance; ease of software design and concurrency specification; and dynamic balance of the loads. The system comprises a plurality of computers each having a first input/output interface and a second input/output interface for interfacing to communications networks each second input/output interface including a bypass for bypassing the associated computer. A global communications network interconnects the first input/output interfaces for providing each computer the ability to broadcast messages simultaneously to the remainder of the computers. A meshwork communications network interconnects the second input/output interfaces providing each computer with the ability to establish a communications link with another of the computers bypassing the remainder of computers. Each computer is controlled by a resident copy of a common operating system. Communications between respective ones of computers is by means of split tokens each having a moving first portion which is sent from computer to computer and a resident second portion which is disposed in the memory of at least one of computer and wherein the location of the second portion is part of the first portion. The split tokens represent both functions to be executed by the computers and data to be employed in the execution of the functions. The first input/output interfaces each include logic for detecting a collision between messages and for terminating the broadcasting of a message whereby collisions between messages are detected and avoided.

  4. Trace: a high-throughput tomographic reconstruction engine for large-scale datasets.

    PubMed

    Bicer, Tekin; Gürsoy, Doğa; Andrade, Vincent De; Kettimuthu, Rajkumar; Scullin, William; Carlo, Francesco De; Foster, Ian T

    2017-01-01

    Modern synchrotron light sources and detectors produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used imaging techniques that generates data at tens of gigabytes per second is computed tomography (CT). Although CT experiments result in rapid data generation, the analysis and reconstruction of the collected data may require hours or even days of computation time with a medium-sized workstation, which hinders the scientific progress that relies on the results of analysis. We present Trace, a data-intensive computing engine that we have developed to enable high-performance implementation of iterative tomographic reconstruction algorithms for parallel computers. Trace provides fine-grained reconstruction of tomography datasets using both (thread-level) shared memory and (process-level) distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to maximize application performance. We also present the optimizations that we apply to the replicated reconstruction objects and evaluate them using tomography datasets collected at the Advanced Photon Source. Our experimental evaluations show that our optimizations and parallelization techniques can provide 158× speedup using 32 compute nodes (384 cores) over a single-core configuration and decrease the end-to-end processing time of a large sinogram (with 4501 × 1 × 22,400 dimensions) from 12.5 h to <5 min per iteration. The proposed tomographic reconstruction engine can efficiently process large-scale tomographic data using many compute nodes and minimize reconstruction times.

  5. Implementation of a parallel unstructured Euler solver on the CM-5

    NASA Technical Reports Server (NTRS)

    Morano, Eric; Mavriplis, D. J.

    1995-01-01

    An efficient unstructured 3D Euler solver is parallelized on a Thinking Machine Corporation Connection Machine 5, distributed memory computer with vectoring capability. In this paper, the single instruction multiple data (SIMD) strategy is employed through the use of the CM Fortran language and the CMSSL scientific library. The performance of the CMSSL mesh partitioner is evaluated and the overall efficiency of the parallel flow solver is discussed.

  6. A numerical differentiation library exploiting parallel architectures

    NASA Astrophysics Data System (ADS)

    Voglis, C.; Hadjidoukas, P. E.; Lagaris, I. E.; Papageorgiou, D. G.

    2009-08-01

    We present a software library for numerically estimating first and second order partial derivatives of a function by finite differencing. Various truncation schemes are offered resulting in corresponding formulas that are accurate to order O(h), O(h), and O(h), h being the differencing step. The derivatives are calculated via forward, backward and central differences. Care has been taken that only feasible points are used in the case where bound constraints are imposed on the variables. The Hessian may be approximated either from function or from gradient values. There are three versions of the software: a sequential version, an OpenMP version for shared memory architectures and an MPI version for distributed systems (clusters). The parallel versions exploit the multiprocessing capability offered by computer clusters, as well as modern multi-core systems and due to the independent character of the derivative computation, the speedup scales almost linearly with the number of available processors/cores. Program summaryProgram title: NDL (Numerical Differentiation Library) Catalogue identifier: AEDG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 73 030 No. of bytes in distributed program, including test data, etc.: 630 876 Distribution format: tar.gz Programming language: ANSI FORTRAN-77, ANSI C, MPI, OPENMP Computer: Distributed systems (clusters), shared memory systems Operating system: Linux, Solaris Has the code been vectorised or parallelized?: Yes RAM: The library uses O(N) internal storage, N being the dimension of the problem Classification: 4.9, 4.14, 6.5 Nature of problem: The numerical estimation of derivatives at several accuracy levels is a common requirement in many computational tasks, such as optimization, solution of nonlinear systems, etc. The parallel implementation that exploits systems with multiple CPUs is very important for large scale and computationally expensive problems. Solution method: Finite differencing is used with carefully chosen step that minimizes the sum of the truncation and round-off errors. The parallel versions employ both OpenMP and MPI libraries. Restrictions: The library uses only double precision arithmetic. Unusual features: The software takes into account bound constraints, in the sense that only feasible points are used to evaluate the derivatives, and given the level of the desired accuracy, the proper formula is automatically employed. Running time: Running time depends on the function's complexity. The test run took 15 ms for the serial distribution, 0.6 s for the OpenMP and 4.2 s for the MPI parallel distribution on 2 processors.

  7. A maximum entropy reconstruction technique for tomographic particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Bilsky, A. V.; Lozhkin, V. A.; Markovich, D. M.; Tokarev, M. P.

    2013-04-01

    This paper studies a novel approach for reducing tomographic PIV computational complexity. The proposed approach is an algebraic reconstruction technique, termed MENT (maximum entropy). This technique computes the three-dimensional light intensity distribution several times faster than SMART, using at least ten times less memory. Additionally, the reconstruction quality remains nearly the same as with SMART. This paper presents the theoretical computation performance comparison for MENT, SMART and MART, followed by validation using synthetic particle images. Both the theoretical assessment and validation of synthetic images demonstrate significant computational time reduction. The data processing accuracy of MENT was compared to that of SMART in a slot jet experiment. A comparison of the average velocity profiles shows a high level of agreement between the results obtained with MENT and those obtained with SMART.

  8. Parallel grid generation algorithm for distributed memory computers

    NASA Technical Reports Server (NTRS)

    Moitra, Stuti; Moitra, Anutosh

    1994-01-01

    A parallel grid-generation algorithm and its implementation on the Intel iPSC/860 computer are described. The grid-generation scheme is based on an algebraic formulation of homotopic relations. Methods for utilizing the inherent parallelism of the grid-generation scheme are described, and implementation of multiple levELs of parallelism on multiple instruction multiple data machines are indicated. The algorithm is capable of providing near orthogonality and spacing control at solid boundaries while requiring minimal interprocessor communications. Results obtained on the Intel hypercube for a blended wing-body configuration are used to demonstrate the effectiveness of the algorithm. Fortran implementations bAsed on the native programming model of the iPSC/860 computer and the Express system of software tools are reported. Computational gains in execution time speed-up ratios are given.

  9. Change Detection of Mobile LIDAR Data Using Cloud Computing

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Boehm, Jan; Alis, Christian

    2016-06-01

    Change detection has long been a challenging problem although a lot of research has been conducted in different fields such as remote sensing and photogrammetry, computer vision, and robotics. In this paper, we blend voxel grid and Apache Spark together to propose an efficient method to address the problem in the context of big data. Voxel grid is a regular geometry representation consisting of the voxels with the same size, which fairly suites parallel computation. Apache Spark is a popular distributed parallel computing platform which allows fault tolerance and memory cache. These features can significantly enhance the performance of Apache Spark and results in an efficient and robust implementation. In our experiments, both synthetic and real point cloud data are employed to demonstrate the quality of our method.

  10. Parallel structures in human and computer memory

    NASA Astrophysics Data System (ADS)

    Kanerva, Pentti

    1986-08-01

    If we think of our experiences as being recorded continuously on film, then human memory can be compared to a film library that is indexed by the contents of the film strips stored in it. Moreover, approximate retrieval cues suffice to retrieve information stored in this library: We recognize a familiar person in a fuzzy photograph or a familiar tune played on a strange instrument. This paper is about how to construct a computer memory that would allow a computer to recognize patterns and to recall sequences the way humans do. Such a memory is remarkably similar in structure to a conventional computer memory and also to the neural circuits in the cortex of the cerebellum of the human brain. The paper concludes that the frame problem of artificial intelligence could be solved by the use of such a memory if we were able to encode information about the world properly.

  11. Parallel structures in human and computer memory

    NASA Technical Reports Server (NTRS)

    Kanerva, P.

    1986-01-01

    If one thinks of our experiences as being recorded continuously on film, then human memory can be compared to a film library that is indexed by the contents of the film strips stored in it. Moreover, approximate retrieval cues suffice to retrieve information stored in this library. One recognizes a familiar person in a fuzzy photograph or a familiar tune played on a strange instrument. A computer memory that would allow a computer to recognize patterns and to recall sequences the way humans do is constructed. Such a memory is remarkably similiar in structure to a conventional computer memory and also to the neural circuits in the cortex of the cerebellum of the human brain. It is concluded that the frame problem of artificial intelligence could be solved by the use of such a memory if one were able to encode information about the world properly.

  12. Static Memory Deduplication for Performance Optimization in Cloud Computing.

    PubMed

    Jia, Gangyong; Han, Guangjie; Wang, Hao; Yang, Xuan

    2017-04-27

    In a cloud computing environment, the number of virtual machines (VMs) on a single physical server and the number of applications running on each VM are continuously growing. This has led to an enormous increase in the demand of memory capacity and subsequent increase in the energy consumption in the cloud. Lack of enough memory has become a major bottleneck for scalability and performance of virtualization interfaces in cloud computing. To address this problem, memory deduplication techniques which reduce memory demand through page sharing are being adopted. However, such techniques suffer from overheads in terms of number of online comparisons required for the memory deduplication. In this paper, we propose a static memory deduplication (SMD) technique which can reduce memory capacity requirement and provide performance optimization in cloud computing. The main innovation of SMD is that the process of page detection is performed offline, thus potentially reducing the performance cost, especially in terms of response time. In SMD, page comparisons are restricted to the code segment, which has the highest shared content. Our experimental results show that SMD efficiently reduces memory capacity requirement and improves performance. We demonstrate that, compared to other approaches, the cost in terms of the response time is negligible.

  13. Static Memory Deduplication for Performance Optimization in Cloud Computing

    PubMed Central

    Jia, Gangyong; Han, Guangjie; Wang, Hao; Yang, Xuan

    2017-01-01

    In a cloud computing environment, the number of virtual machines (VMs) on a single physical server and the number of applications running on each VM are continuously growing. This has led to an enormous increase in the demand of memory capacity and subsequent increase in the energy consumption in the cloud. Lack of enough memory has become a major bottleneck for scalability and performance of virtualization interfaces in cloud computing. To address this problem, memory deduplication techniques which reduce memory demand through page sharing are being adopted. However, such techniques suffer from overheads in terms of number of online comparisons required for the memory deduplication. In this paper, we propose a static memory deduplication (SMD) technique which can reduce memory capacity requirement and provide performance optimization in cloud computing. The main innovation of SMD is that the process of page detection is performed offline, thus potentially reducing the performance cost, especially in terms of response time. In SMD, page comparisons are restricted to the code segment, which has the highest shared content. Our experimental results show that SMD efficiently reduces memory capacity requirement and improves performance. We demonstrate that, compared to other approaches, the cost in terms of the response time is negligible. PMID:28448434

  14. Flash drive memory apparatus and method

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor)

    2010-01-01

    A memory apparatus includes a non-volatile computer memory, a USB mass storage controller connected to the non-volatile computer memory, the USB mass storage controller including a daisy chain component, a male USB interface connected to the USB mass storage controller, and at least one other interface for a memory device, other than a USB interface, the at least one other interface being connected to the USB mass storage controller.

  15. The computational nature of memory modification

    PubMed Central

    Gershman, Samuel J; Monfils, Marie-H; Norman, Kenneth A; Niv, Yael

    2017-01-01

    Retrieving a memory can modify its influence on subsequent behavior. We develop a computational theory of memory modification, according to which modification of a memory trace occurs through classical associative learning, but which memory trace is eligible for modification depends on a structure learning mechanism that discovers the units of association by segmenting the stream of experience into statistically distinct clusters (latent causes). New memories are formed when the structure learning mechanism infers that a new latent cause underlies current sensory observations. By the same token, old memories are modified when old and new sensory observations are inferred to have been generated by the same latent cause. We derive this framework from probabilistic principles, and present a computational implementation. Simulations demonstrate that our model can reproduce the major experimental findings from studies of memory modification in the Pavlovian conditioning literature. DOI: http://dx.doi.org/10.7554/eLife.23763.001 PMID:28294944

  16. Method of up-front load balancing for local memory parallel processors

    NASA Technical Reports Server (NTRS)

    Baffes, Paul Thomas (Inventor)

    1990-01-01

    In a parallel processing computer system with multiple processing units and shared memory, a method is disclosed for uniformly balancing the aggregate computational load in, and utilizing minimal memory by, a network having identical computations to be executed at each connection therein. Read-only and read-write memory are subdivided into a plurality of process sets, which function like artificial processing units. Said plurality of process sets is iteratively merged and reduced to the number of processing units without exceeding the balance load. Said merger is based upon the value of a partition threshold, which is a measure of the memory utilization. The turnaround time and memory savings of the instant method are functions of the number of processing units available and the number of partitions into which the memory is subdivided. Typical results of the preferred embodiment yielded memory savings of from sixty to seventy five percent.

  17. Conditional load and store in a shared memory

    DOEpatents

    Blumrich, Matthias A; Ohmacht, Martin

    2015-02-03

    A method, system and computer program product for implementing load-reserve and store-conditional instructions in a multi-processor computing system. The computing system includes a multitude of processor units and a shared memory cache, and each of the processor units has access to the memory cache. In one embodiment, the method comprises providing the memory cache with a series of reservation registers, and storing in these registers addresses reserved in the memory cache for the processor units as a result of issuing load-reserve requests. In this embodiment, when one of the processor units makes a request to store data in the memory cache using a store-conditional request, the reservation registers are checked to determine if an address in the memory cache is reserved for that processor unit. If an address in the memory cache is reserved for that processor, the data are stored at this address.

  18. A parallel algorithm for 2D visco-acoustic frequency-domain full-waveform inversion: application to a dense OBS data set

    NASA Astrophysics Data System (ADS)

    Sourbier, F.; Operto, S.; Virieux, J.

    2006-12-01

    We present a distributed-memory parallel algorithm for 2D visco-acoustic full-waveform inversion of wide-angle seismic data. Our code is written in fortran90 and use MPI for parallelism. The algorithm was applied to real wide-angle data set recorded by 100 OBSs with a 1-km spacing in the eastern-Nankai trough (Japan) to image the deep structure of the subduction zone. Full-waveform inversion is applied sequentially to discrete frequencies by proceeding from the low to the high frequencies. The inverse problem is solved with a classic gradient method. Full-waveform modeling is performed with a frequency-domain finite-difference method. In the frequency-domain, solving the wave equation requires resolution of a large unsymmetric system of linear equations. We use the massively parallel direct solver MUMPS (http://www.enseeiht.fr/irit/apo/MUMPS) for distributed-memory computer to solve this system. The MUMPS solver is based on a multifrontal method for the parallel factorization. The MUMPS algorithm is subdivided in 3 main steps: a symbolic analysis step that performs re-ordering of the matrix coefficients to minimize the fill-in of the matrix during the subsequent factorization and an estimation of the assembly tree of the matrix. Second, the factorization is performed with dynamic scheduling to accomodate numerical pivoting and provides the LU factors distributed over all the processors. Third, the resolution is performed for multiple sources. To compute the gradient of the cost function, 2 simulations per shot are required (one to compute the forward wavefield and one to back-propagate residuals). The multi-source resolutions can be performed in parallel with MUMPS. In the end, each processor stores in core a sub-domain of all the solutions. These distributed solutions can be exploited to compute in parallel the gradient of the cost function. Since the gradient of the cost function is a weighted stack of the shot and residual solutions of MUMPS, each processor computes the corresponding sub-domain of the gradient. In the end, the gradient is centralized on the master processor using a collective communation. The gradient is scaled by the diagonal elements of the Hessian matrix. This scaling is computed only once per frequency before the first iteration of the inversion. Estimation of the diagonal terms of the Hessian requires performing one simulation per non redondant shot and receiver position. The same strategy that the one used for the gradient is used to compute the diagonal Hessian in parallel. This algorithm was applied to a dense wide-angle data set recorded by 100 OBSs in the eastern Nankai trough, offshore Japan. Thirteen frequencies ranging from 3 and 15 Hz were inverted. Tweny iterations per frequency were computed leading to 260 tomographic velocity models of increasing resolution. The velocity model dimensions are 105 km x 25 km corresponding to a finite-difference grid of 4201 x 1001 grid with a 25-m grid interval. The number of shot was 1005 and the number of inverted OBS gathers was 93. The inversion requires 20 days on 6 32-bits bi-processor nodes with 4 Gbytes of RAM memory per node when only the LU factorization is performed in parallel. Preliminary estimations of the time required to perform the inversion with the fully-parallelized code is 6 and 4 days using 20 and 50 processors respectively.

  19. Parallel computation and the Basis system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, G.R.

    1992-12-16

    A software package has been written that can facilitate efforts to develop powerful, flexible, and easy-to-use programs that can run in single-processor, massively parallel, and distributed computing environments. Particular attention has been given to the difficulties posed by a program consisting of many science packages that represent subsystems of a complicated, coupled system. Methods have been found to maintain independence of the packages by hiding data structures without increasing the communication costs in a parallel computing environment. Concepts developed in this work are demonstrated by a prototype program that uses library routines from two existing software systems, Basis and Parallelmore » Virtual Machine (PVM). Most of the details of these libraries have been encapsulated in routines and macros that could be rewritten for alternative libraries that possess certain minimum capabilities. The prototype software uses a flexible master-and-slaves paradigm for parallel computation and supports domain decomposition with message passing for partitioning work among slaves. Facilities are provided for accessing variables that are distributed among the memories of slaves assigned to subdomains. The software is named PROTOPAR.« less

  20. Parallel computation and the basis system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, G.R.

    1993-05-01

    A software package has been written that can facilitate efforts to develop powerful, flexible, and easy-to use programs that can run in single-processor, massively parallel, and distributed computing environments. Particular attention has been given to the difficulties posed by a program consisting of many science packages that represent subsystems of a complicated, coupled system. Methods have been found to maintain independence of the packages by hiding data structures without increasing the communications costs in a parallel computing environment. Concepts developed in this work are demonstrated by a prototype program that uses library routines from two existing software systems, Basis andmore » Parallel Virtual Machine (PVM). Most of the details of these libraries have been encapsulated in routines and macros that could be rewritten for alternative libraries that possess certain minimum capabilities. The prototype software uses a flexible master-and-slaves paradigm for parallel computation and supports domain decomposition with message passing for partitioning work among slaves. Facilities are provided for accessing variables that are distributed among the memories of slaves assigned to subdomains. The software is named PROTOPAR.« less

  1. Immunological memory is associative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.J.; Forrest, S.; Perelson, A.S.

    1996-12-31

    The purpose of this paper is to show that immunological memory is an associative and robust memory that belongs to the class of sparse distributed memories. This class of memories derives its associative and robust nature by sparsely sampling the input space and distributing the data among many independent agents. Other members of this class include a model of the cerebellar cortex and Sparse Distributed Memory (SDM). First we present a simplified account of the immune response and immunological memory. Next we present SDM, and then we show the correlations between immunological memory and SDM. Finally, we show how associativemore » recall in the immune response can be both beneficial and detrimental to the fitness of an individual.« less

  2. Searching for memories, Sudoku, implicit check bits, and the iterative use of not-always-correct rapid neural computation.

    PubMed

    Hopfield, J J

    2008-05-01

    The algorithms that simple feedback neural circuits representing a brain area can rapidly carry out are often adequate to solve easy problems but for more difficult problems can return incorrect answers. A new excitatory-inhibitory circuit model of associative memory displays the common human problem of failing to rapidly find a memory when only a small clue is present. The memory model and a related computational network for solving Sudoku puzzles produce answers that contain implicit check bits in the representation of information across neurons, allowing a rapid evaluation of whether the putative answer is correct or incorrect through a computation related to visual pop-out. This fact may account for our strong psychological feeling of right or wrong when we retrieve a nominal memory from a minimal clue. This information allows more difficult computations or memory retrievals to be done in a serial fashion by using the fast but limited capabilities of a computational module multiple times. The mathematics of the excitatory-inhibitory circuits for associative memory and for Sudoku, both of which are understood in terms of energy or Lyapunov functions, is described in detail.

  3. ELAS: A general-purpose computer program for the equilibrium problems of linear structures. Volume 2: Documentation of the program. [subroutines and flow charts

    NASA Technical Reports Server (NTRS)

    Utku, S.

    1969-01-01

    A general purpose digital computer program for the in-core solution of linear equilibrium problems of structural mechanics is documented. The program requires minimum input for the description of the problem. The solution is obtained by means of the displacement method and the finite element technique. Almost any geometry and structure may be handled because of the availability of linear, triangular, quadrilateral, tetrahedral, hexahedral, conical, triangular torus, and quadrilateral torus elements. The assumption of piecewise linear deflection distribution insures monotonic convergence of the deflections from the stiffer side with decreasing mesh size. The stresses are provided by the best-fit strain tensors in the least squares at the mesh points where the deflections are given. The selection of local coordinate systems whenever necessary is automatic. The core memory is used by means of dynamic memory allocation, an optional mesh-point relabelling scheme and imposition of the boundary conditions during the assembly time.

  4. Matrix decomposition graphics processing unit solver for Poisson image editing

    NASA Astrophysics Data System (ADS)

    Lei, Zhao; Wei, Li

    2012-10-01

    In recent years, gradient-domain methods have been widely discussed in the image processing field, including seamless cloning and image stitching. These algorithms are commonly carried out by solving a large sparse linear system: the Poisson equation. However, solving the Poisson equation is a computational and memory intensive task which makes it not suitable for real-time image editing. A new matrix decomposition graphics processing unit (GPU) solver (MDGS) is proposed to settle the problem. A matrix decomposition method is used to distribute the work among GPU threads, so that MDGS will take full advantage of the computing power of current GPUs. Additionally, MDGS is a hybrid solver (combines both the direct and iterative techniques) and has two-level architecture. These enable MDGS to generate identical solutions with those of the common Poisson methods and achieve high convergence rate in most cases. This approach is advantageous in terms of parallelizability, enabling real-time image processing, low memory-taken and extensive applications.

  5. Paradeisos: A perfect hashing algorithm for many-body eigenvalue problems

    DOE PAGES

    Jia, C. J.; Wang, Y.; Mendl, C. B.; ...

    2017-12-02

    Here, we describe an essentially perfect hashing algorithm for calculating the position of an element in an ordered list, appropriate for the construction and manipulation of many-body Hamiltonian, sparse matrices. Each element of the list corresponds to an integer value whose binary representation reflects the occupation of single-particle basis states for each element in the many-body Hilbert space. The algorithm replaces conventional methods, such as binary search, for locating the elements of the ordered list, eliminating the need to store the integer representation for each element, without increasing the computational complexity. Combined with the “checkerboard” decomposition of the Hamiltonian matrixmore » for distribution over parallel computing environments, this leads to a substantial savings in aggregate memory. While the algorithm can be applied broadly to many-body, correlated problems, we demonstrate its utility in reducing total memory consumption for a series of fermionic single-band Hubbard model calculations on small clusters with progressively larger Hilbert space dimension.« less

  6. Paradeisos: A perfect hashing algorithm for many-body eigenvalue problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, C. J.; Wang, Y.; Mendl, C. B.

    Here, we describe an essentially perfect hashing algorithm for calculating the position of an element in an ordered list, appropriate for the construction and manipulation of many-body Hamiltonian, sparse matrices. Each element of the list corresponds to an integer value whose binary representation reflects the occupation of single-particle basis states for each element in the many-body Hilbert space. The algorithm replaces conventional methods, such as binary search, for locating the elements of the ordered list, eliminating the need to store the integer representation for each element, without increasing the computational complexity. Combined with the “checkerboard” decomposition of the Hamiltonian matrixmore » for distribution over parallel computing environments, this leads to a substantial savings in aggregate memory. While the algorithm can be applied broadly to many-body, correlated problems, we demonstrate its utility in reducing total memory consumption for a series of fermionic single-band Hubbard model calculations on small clusters with progressively larger Hilbert space dimension.« less

  7. Memory conformity affects inaccurate memories more than accurate memories.

    PubMed

    Wright, Daniel B; Villalba, Daniella K

    2012-01-01

    After controlling for initial confidence, inaccurate memories were shown to be more easily distorted than accurate memories. In two experiments groups of participants viewed 50 stimuli and were then presented with these stimuli plus 50 fillers. During this test phase participants reported their confidence that each stimulus was originally shown. This was followed by computer-generated responses from a bogus participant. After being exposed to this response participants again rated the confidence of their memory. The computer-generated responses systematically distorted participants' responses. Memory distortion depended on initial memory confidence, with uncertain memories being more malleable than confident memories. This effect was moderated by whether the participant's memory was initially accurate or inaccurate. Inaccurate memories were more malleable than accurate memories. The data were consistent with a model describing two types of memory (i.e., recollective and non-recollective memories), which differ in how susceptible these memories are to memory distortion.

  8. Computers, the Human Mind, and My In-Laws' House.

    ERIC Educational Resources Information Center

    Esque, Timm J.

    1996-01-01

    Discussion of human memory, computer memory, and the storage of information focuses on a metaphor that can account for memory without storage and can set the stage for systemic research around a more comprehensive, understandable theory. (Author/LRW)

  9. Fast self contained exponential random deviate algorithm

    NASA Astrophysics Data System (ADS)

    Fernández, Julio F.

    1997-03-01

    An algorithm that generates random numbers with an exponential distribution and is about ten times faster than other well known algorithms has been reported before (J. F. Fernández and J. Rivero, Comput. Phys. 10), 83 (1996). That algorithm requires input of uniform random deviates. We now report a new version of it that needs no input and is nearly as fast. The only limitation we predict thus far for the quality of the output is the amount of computer memory available. Performance results under various tests will be reported. The algorithm works in close analogy to the set up that is often used in statistical physics in order to obtain the Gibb's distribution. N numbers, that are are stored in N registers, change with time according to the rules of the algorithm, keeping their sum constant. Further details will be given.

  10. A parallel algorithm for the two-dimensional time fractional diffusion equation with implicit difference method.

    PubMed

    Gong, Chunye; Bao, Weimin; Tang, Guojian; Jiang, Yuewen; Liu, Jie

    2014-01-01

    It is very time consuming to solve fractional differential equations. The computational complexity of two-dimensional fractional differential equation (2D-TFDE) with iterative implicit finite difference method is O(M(x)M(y)N(2)). In this paper, we present a parallel algorithm for 2D-TFDE and give an in-depth discussion about this algorithm. A task distribution model and data layout with virtual boundary are designed for this parallel algorithm. The experimental results show that the parallel algorithm compares well with the exact solution. The parallel algorithm on single Intel Xeon X5540 CPU runs 3.16-4.17 times faster than the serial algorithm on single CPU core. The parallel efficiency of 81 processes is up to 88.24% compared with 9 processes on a distributed memory cluster system. We do think that the parallel computing technology will become a very basic method for the computational intensive fractional applications in the near future.

  11. Implementing Molecular Dynamics on Hybrid High Performance Computers - Particle-Particle Particle-Mesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, W Michael; Kohlmeyer, Axel; Plimpton, Steven J

    The use of accelerators such as graphics processing units (GPUs) has become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high-performance computers, machines with nodes containing more than one type of floating-point processor (e.g. CPU and GPU), are now becoming more prevalent due to these advantages. In this paper, we present a continuation of previous work implementing algorithms for using accelerators into the LAMMPS molecular dynamics software for distributed memory parallel hybrid machines. In our previous work, we focused on acceleration for short-range models with anmore » approach intended to harness the processing power of both the accelerator and (multi-core) CPUs. To augment the existing implementations, we present an efficient implementation of long-range electrostatic force calculation for molecular dynamics. Specifically, we present an implementation of the particle-particle particle-mesh method based on the work by Harvey and De Fabritiis. We present benchmark results on the Keeneland InfiniBand GPU cluster. We provide a performance comparison of the same kernels compiled with both CUDA and OpenCL. We discuss limitations to parallel efficiency and future directions for improving performance on hybrid or heterogeneous computers.« less

  12. Fast analysis of molecular dynamics trajectories with graphics processing units-Radial distribution function histogramming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Benjamin G., E-mail: ben.levine@temple.ed; Stone, John E., E-mail: johns@ks.uiuc.ed; Kohlmeyer, Axel, E-mail: akohlmey@temple.ed

    2011-05-01

    The calculation of radial distribution functions (RDFs) from molecular dynamics trajectory data is a common and computationally expensive analysis task. The rate limiting step in the calculation of the RDF is building a histogram of the distance between atom pairs in each trajectory frame. Here we present an implementation of this histogramming scheme for multiple graphics processing units (GPUs). The algorithm features a tiling scheme to maximize the reuse of data at the fastest levels of the GPU's memory hierarchy and dynamic load balancing to allow high performance on heterogeneous configurations of GPUs. Several versions of the RDF algorithm aremore » presented, utilizing the specific hardware features found on different generations of GPUs. We take advantage of larger shared memory and atomic memory operations available on state-of-the-art GPUs to accelerate the code significantly. The use of atomic memory operations allows the fast, limited-capacity on-chip memory to be used much more efficiently, resulting in a fivefold increase in performance compared to the version of the algorithm without atomic operations. The ultimate version of the algorithm running in parallel on four NVIDIA GeForce GTX 480 (Fermi) GPUs was found to be 92 times faster than a multithreaded implementation running on an Intel Xeon 5550 CPU. On this multi-GPU hardware, the RDF between two selections of 1,000,000 atoms each can be calculated in 26.9 s per frame. The multi-GPU RDF algorithms described here are implemented in VMD, a widely used and freely available software package for molecular dynamics visualization and analysis.« less

  13. Fast Analysis of Molecular Dynamics Trajectories with Graphics Processing Units—Radial Distribution Function Histogramming

    PubMed Central

    Stone, John E.; Kohlmeyer, Axel

    2011-01-01

    The calculation of radial distribution functions (RDFs) from molecular dynamics trajectory data is a common and computationally expensive analysis task. The rate limiting step in the calculation of the RDF is building a histogram of the distance between atom pairs in each trajectory frame. Here we present an implementation of this histogramming scheme for multiple graphics processing units (GPUs). The algorithm features a tiling scheme to maximize the reuse of data at the fastest levels of the GPU’s memory hierarchy and dynamic load balancing to allow high performance on heterogeneous configurations of GPUs. Several versions of the RDF algorithm are presented, utilizing the specific hardware features found on different generations of GPUs. We take advantage of larger shared memory and atomic memory operations available on state-of-the-art GPUs to accelerate the code significantly. The use of atomic memory operations allows the fast, limited-capacity on-chip memory to be used much more efficiently, resulting in a fivefold increase in performance compared to the version of the algorithm without atomic operations. The ultimate version of the algorithm running in parallel on four NVIDIA GeForce GTX 480 (Fermi) GPUs was found to be 92 times faster than a multithreaded implementation running on an Intel Xeon 5550 CPU. On this multi-GPU hardware, the RDF between two selections of 1,000,000 atoms each can be calculated in 26.9 seconds per frame. The multi-GPU RDF algorithms described here are implemented in VMD, a widely used and freely available software package for molecular dynamics visualization and analysis. PMID:21547007

  14. Continuous-variable quantum computing in optical time-frequency modes using quantum memories.

    PubMed

    Humphreys, Peter C; Kolthammer, W Steven; Nunn, Joshua; Barbieri, Marco; Datta, Animesh; Walmsley, Ian A

    2014-09-26

    We develop a scheme for time-frequency encoded continuous-variable cluster-state quantum computing using quantum memories. In particular, we propose a method to produce, manipulate, and measure two-dimensional cluster states in a single spatial mode by exploiting the intrinsic time-frequency selectivity of Raman quantum memories. Time-frequency encoding enables the scheme to be extremely compact, requiring a number of memories that are a linear function of only the number of different frequencies in which the computational state is encoded, independent of its temporal duration. We therefore show that quantum memories can be a powerful component for scalable photonic quantum information processing architectures.

  15. All-memristive neuromorphic computing with level-tuned neurons

    NASA Astrophysics Data System (ADS)

    Pantazi, Angeliki; Woźniak, Stanisław; Tuma, Tomas; Eleftheriou, Evangelos

    2016-09-01

    In the new era of cognitive computing, systems will be able to learn and interact with the environment in ways that will drastically enhance the capabilities of current processors, especially in extracting knowledge from vast amount of data obtained from many sources. Brain-inspired neuromorphic computing systems increasingly attract research interest as an alternative to the classical von Neumann processor architecture, mainly because of the coexistence of memory and processing units. In these systems, the basic components are neurons interconnected by synapses. The neurons, based on their nonlinear dynamics, generate spikes that provide the main communication mechanism. The computational tasks are distributed across the neural network, where synapses implement both the memory and the computational units, by means of learning mechanisms such as spike-timing-dependent plasticity. In this work, we present an all-memristive neuromorphic architecture comprising neurons and synapses realized by using the physical properties and state dynamics of phase-change memristors. The architecture employs a novel concept of interconnecting the neurons in the same layer, resulting in level-tuned neuronal characteristics that preferentially process input information. We demonstrate the proposed architecture in the tasks of unsupervised learning and detection of multiple temporal correlations in parallel input streams. The efficiency of the neuromorphic architecture along with the homogenous neuro-synaptic dynamics implemented with nanoscale phase-change memristors represent a significant step towards the development of ultrahigh-density neuromorphic co-processors.

  16. All-memristive neuromorphic computing with level-tuned neurons.

    PubMed

    Pantazi, Angeliki; Woźniak, Stanisław; Tuma, Tomas; Eleftheriou, Evangelos

    2016-09-02

    In the new era of cognitive computing, systems will be able to learn and interact with the environment in ways that will drastically enhance the capabilities of current processors, especially in extracting knowledge from vast amount of data obtained from many sources. Brain-inspired neuromorphic computing systems increasingly attract research interest as an alternative to the classical von Neumann processor architecture, mainly because of the coexistence of memory and processing units. In these systems, the basic components are neurons interconnected by synapses. The neurons, based on their nonlinear dynamics, generate spikes that provide the main communication mechanism. The computational tasks are distributed across the neural network, where synapses implement both the memory and the computational units, by means of learning mechanisms such as spike-timing-dependent plasticity. In this work, we present an all-memristive neuromorphic architecture comprising neurons and synapses realized by using the physical properties and state dynamics of phase-change memristors. The architecture employs a novel concept of interconnecting the neurons in the same layer, resulting in level-tuned neuronal characteristics that preferentially process input information. We demonstrate the proposed architecture in the tasks of unsupervised learning and detection of multiple temporal correlations in parallel input streams. The efficiency of the neuromorphic architecture along with the homogenous neuro-synaptic dynamics implemented with nanoscale phase-change memristors represent a significant step towards the development of ultrahigh-density neuromorphic co-processors.

  17. 40 CFR 1042.110 - Recording reductant use and other diagnostic functions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) The onboard computer log must record in nonvolatile computer memory all incidents of engine operation... such operation in nonvolatile computer memory. You are not required to monitor NOX concentrations...

  18. Enriched Encoding: Reward Motivation Organizes Cortical Networks for Hippocampal Detection of Unexpected Events

    PubMed Central

    Murty, Vishnu P.; Adcock, R. Alison

    2014-01-01

    Learning how to obtain rewards requires learning about their contexts and likely causes. How do long-term memory mechanisms balance the need to represent potential determinants of reward outcomes with the computational burden of an over-inclusive memory? One solution would be to enhance memory for salient events that occur during reward anticipation, because all such events are potential determinants of reward. We tested whether reward motivation enhances encoding of salient events like expectancy violations. During functional magnetic resonance imaging, participants performed a reaction-time task in which goal-irrelevant expectancy violations were encountered during states of high- or low-reward motivation. Motivation amplified hippocampal activation to and declarative memory for expectancy violations. Connectivity of the ventral tegmental area (VTA) with medial prefrontal, ventrolateral prefrontal, and visual cortices preceded and predicted this increase in hippocampal sensitivity. These findings elucidate a novel mechanism whereby reward motivation can enhance hippocampus-dependent memory: anticipatory VTA-cortical–hippocampal interactions. Further, the findings integrate literatures on dopaminergic neuromodulation of prefrontal function and hippocampus-dependent memory. We conclude that during reward motivation, VTA modulation induces distributed neural changes that amplify hippocampal signals and records of expectancy violations to improve predictions—a potentially unique contribution of the hippocampus to reward learning. PMID:23529005

  19. Scattering and Absorption Properties of Polydisperse Wavelength-sized Particles Covered with Much Smaller Grains

    NASA Technical Reports Server (NTRS)

    Dlugach, Jana M.; Mishchenko, Michael I.; Mackowski, Daniel W.

    2012-01-01

    Using the results of direct, numerically exact computer solutions of the Maxwell equations, we analyze scattering and absorption characteristics of polydisperse compound particles in the form of wavelength-sized spheres covered with a large number of much smaller spherical grains.The results pertain to the complex refractive indices1.55 + i0.0003,1.55 + i0.3, and 3 + i0.1. We show that the optical effects of dusting wavelength-sized hosts by microscopic grains can vary depending on the number and size of the grains as well as on the complex refractive index. Our computations also demonstrate the high efficiency of the new superposition T-matrix code developed for use on distributed memory computer clusters.

  20. Flexible language constructs for large parallel programs

    NASA Technical Reports Server (NTRS)

    Rosing, Matthew; Schnabel, Robert

    1993-01-01

    The goal of the research described is to develop flexible language constructs for writing large data parallel numerical programs for distributed memory (MIMD) multiprocessors. Previously, several models have been developed to support synchronization and communication. Models for global synchronization include SIMD (Single Instruction Multiple Data), SPMD (Single Program Multiple Data), and sequential programs annotated with data distribution statements. The two primary models for communication include implicit communication based on shared memory and explicit communication based on messages. None of these models by themselves seem sufficient to permit the natural and efficient expression of the variety of algorithms that occur in large scientific computations. An overview of a new language that combines many of these programming models in a clean manner is given. This is done in a modular fashion such that different models can be combined to support large programs. Within a module, the selection of a model depends on the algorithm and its efficiency requirements. An overview of the language and discussion of some of the critical implementation details is given.

  1. Spreading Activation in an Attractor Network with Latching Dynamics: Automatic Semantic Priming Revisited

    PubMed Central

    Lerner, Itamar; Bentin, Shlomo; Shriki, Oren

    2012-01-01

    Localist models of spreading activation (SA) and models assuming distributed-representations offer very different takes on semantic priming, a widely investigated paradigm in word recognition and semantic memory research. In the present study we implemented SA in an attractor neural network model with distributed representations and created a unified framework for the two approaches. Our models assumes a synaptic depression mechanism leading to autonomous transitions between encoded memory patterns (latching dynamics), which account for the major characteristics of automatic semantic priming in humans. Using computer simulations we demonstrated how findings that challenged attractor-based networks in the past, such as mediated and asymmetric priming, are a natural consequence of our present model’s dynamics. Puzzling results regarding backward priming were also given a straightforward explanation. In addition, the current model addresses some of the differences between semantic and associative relatedness and explains how these differences interact with stimulus onset asynchrony in priming experiments. PMID:23094718

  2. Development of 3-Year Roadmap to Transform the Discipline of Systems Engineering

    DTIC Science & Technology

    2010-03-31

    quickly humans could physically construct them. Indeed, magnetic core memory was entirely constructed by human hands until it was superseded by...For their mainframe computers, IBM develops the applications, operating system, computer hardware and microprocessors (off the shelf standard memory ...processor developers work on potential computational and memory pipelines to support the required performance capabilities and use the available transistors

  3. Automatic data partitioning on distributed memory multicomputers. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gupta, Manish

    1992-01-01

    Distributed-memory parallel computers are increasingly being used to provide high levels of performance for scientific applications. Unfortunately, such machines are not very easy to program. A number of research efforts seek to alleviate this problem by developing compilers that take over the task of generating communication. The communication overheads and the extent of parallelism exploited in the resulting target program are determined largely by the manner in which data is partitioned across different processors of the machine. Most of the compilers provide no assistance to the programmer in the crucial task of determining a good data partitioning scheme. A novel approach is presented, the constraints-based approach, to the problem of automatic data partitioning for numeric programs. In this approach, the compiler identifies some desirable requirements on the distribution of various arrays being referenced in each statement, based on performance considerations. These desirable requirements are referred to as constraints. For each constraint, the compiler determines a quality measure that captures its importance with respect to the performance of the program. The quality measure is obtained through static performance estimation, without actually generating the target data-parallel program with explicit communication. Each data distribution decision is taken by combining all the relevant constraints. The compiler attempts to resolve any conflicts between constraints such that the overall execution time of the parallel program is minimized. This approach has been implemented as part of a compiler called Paradigm, that accepts Fortran 77 programs, and specifies the partitioning scheme to be used for each array in the program. We have obtained results on some programs taken from the Linpack and Eispack libraries, and the Perfect Benchmarks. These results are quite promising, and demonstrate the feasibility of automatic data partitioning for a significant class of scientific application programs with regular computations.

  4. Human Memory Organization for Computer Programs.

    ERIC Educational Resources Information Center

    Norcio, A. F.; Kerst, Stephen M.

    1983-01-01

    Results of study investigating human memory organization in processing of computer programming languages indicate that algorithmic logic segments form a cognitive organizational structure in memory for programs. Statement indentation and internal program documentation did not enhance organizational process of recall of statements in five Fortran…

  5. Scalable Cloning on Large-Scale GPU Platforms with Application to Time-Stepped Simulations on Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoginath, Srikanth B.; Perumalla, Kalyan S.

    Cloning is a technique to efficiently simulate a tree of multiple what-if scenarios that are unraveled during the course of a base simulation. However, cloned execution is highly challenging to realize on large, distributed memory computing platforms, due to the dynamic nature of the computational load across clones, and due to the complex dependencies spanning the clone tree. In this paper, we present the conceptual simulation framework, algorithmic foundations, and runtime interface of CloneX, a new system we designed for scalable simulation cloning. It efficiently and dynamically creates whole logical copies of a dynamic tree of simulations across a largemore » parallel system without full physical duplication of computation and memory. The performance of a prototype implementation executed on up to 1,024 graphical processing units of a supercomputing system has been evaluated with three benchmarks—heat diffusion, forest fire, and disease propagation models—delivering a speed up of over two orders of magnitude compared to replicated runs. Finally, the results demonstrate a significantly faster and scalable way to execute many what-if scenario ensembles of large simulations via cloning using the CloneX interface.« less

  6. A scalable approach to solving dense linear algebra problems on hybrid CPU-GPU systems

    DOE PAGES

    Song, Fengguang; Dongarra, Jack

    2014-10-01

    Aiming to fully exploit the computing power of all CPUs and all graphics processing units (GPUs) on hybrid CPU-GPU systems to solve dense linear algebra problems, in this paper we design a class of heterogeneous tile algorithms to maximize the degree of parallelism, to minimize the communication volume, and to accommodate the heterogeneity between CPUs and GPUs. The new heterogeneous tile algorithms are executed upon our decentralized dynamic scheduling runtime system, which schedules a task graph dynamically and transfers data between compute nodes automatically. The runtime system uses a new distributed task assignment protocol to solve data dependencies between tasksmore » without any coordination between processing units. By overlapping computation and communication through dynamic scheduling, we are able to attain scalable performance for the double-precision Cholesky factorization and QR factorization. Finally, our approach demonstrates a performance comparable to Intel MKL on shared-memory multicore systems and better performance than both vendor (e.g., Intel MKL) and open source libraries (e.g., StarPU) in the following three environments: heterogeneous clusters with GPUs, conventional clusters without GPUs, and shared-memory systems with multiple GPUs.« less

  7. Scalable Cloning on Large-Scale GPU Platforms with Application to Time-Stepped Simulations on Grids

    DOE PAGES

    Yoginath, Srikanth B.; Perumalla, Kalyan S.

    2018-01-31

    Cloning is a technique to efficiently simulate a tree of multiple what-if scenarios that are unraveled during the course of a base simulation. However, cloned execution is highly challenging to realize on large, distributed memory computing platforms, due to the dynamic nature of the computational load across clones, and due to the complex dependencies spanning the clone tree. In this paper, we present the conceptual simulation framework, algorithmic foundations, and runtime interface of CloneX, a new system we designed for scalable simulation cloning. It efficiently and dynamically creates whole logical copies of a dynamic tree of simulations across a largemore » parallel system without full physical duplication of computation and memory. The performance of a prototype implementation executed on up to 1,024 graphical processing units of a supercomputing system has been evaluated with three benchmarks—heat diffusion, forest fire, and disease propagation models—delivering a speed up of over two orders of magnitude compared to replicated runs. Finally, the results demonstrate a significantly faster and scalable way to execute many what-if scenario ensembles of large simulations via cloning using the CloneX interface.« less

  8. A scalable approach to solving dense linear algebra problems on hybrid CPU-GPU systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Fengguang; Dongarra, Jack

    Aiming to fully exploit the computing power of all CPUs and all graphics processing units (GPUs) on hybrid CPU-GPU systems to solve dense linear algebra problems, in this paper we design a class of heterogeneous tile algorithms to maximize the degree of parallelism, to minimize the communication volume, and to accommodate the heterogeneity between CPUs and GPUs. The new heterogeneous tile algorithms are executed upon our decentralized dynamic scheduling runtime system, which schedules a task graph dynamically and transfers data between compute nodes automatically. The runtime system uses a new distributed task assignment protocol to solve data dependencies between tasksmore » without any coordination between processing units. By overlapping computation and communication through dynamic scheduling, we are able to attain scalable performance for the double-precision Cholesky factorization and QR factorization. Finally, our approach demonstrates a performance comparable to Intel MKL on shared-memory multicore systems and better performance than both vendor (e.g., Intel MKL) and open source libraries (e.g., StarPU) in the following three environments: heterogeneous clusters with GPUs, conventional clusters without GPUs, and shared-memory systems with multiple GPUs.« less

  9. Computer Use and Its Effect on the Memory Process in Young and Adults

    ERIC Educational Resources Information Center

    Alliprandini, Paula Mariza Zedu; Straub, Sandra Luzia Wrobel; Brugnera, Elisangela; de Oliveira, Tânia Pitombo; Souza, Isabela Augusta Andrade

    2013-01-01

    This work investigates the effect of computer use in the memory process in young and adults under the Perceptual and Memory experimental conditions. The memory condition involved the phases acquisition of information and recovery, on time intervals (2 min, 24 hours and 1 week) on situations of pre and post-test (before and after the participants…

  10. Computational Model-Based Prediction of Human Episodic Memory Performance Based on Eye Movements

    NASA Astrophysics Data System (ADS)

    Sato, Naoyuki; Yamaguchi, Yoko

    Subjects' episodic memory performance is not simply reflected by eye movements. We use a ‘theta phase coding’ model of the hippocampus to predict subjects' memory performance from their eye movements. Results demonstrate the ability of the model to predict subjects' memory performance. These studies provide a novel approach to computational modeling in the human-machine interface.

  11. Parallel spatial direct numerical simulations on the Intel iPSC/860 hypercube

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Zubair, Mohammad

    1993-01-01

    The implementation and performance of a parallel spatial direct numerical simulation (PSDNS) approach on the Intel iPSC/860 hypercube is documented. The direct numerical simulation approach is used to compute spatially evolving disturbances associated with the laminar-to-turbulent transition in boundary-layer flows. The feasibility of using the PSDNS on the hypercube to perform transition studies is examined. The results indicate that the direct numerical simulation approach can effectively be parallelized on a distributed-memory parallel machine. By increasing the number of processors nearly ideal linear speedups are achieved with nonoptimized routines; slower than linear speedups are achieved with optimized (machine dependent library) routines. This slower than linear speedup results because the Fast Fourier Transform (FFT) routine dominates the computational cost and because the routine indicates less than ideal speedups. However with the machine-dependent routines the total computational cost decreases by a factor of 4 to 5 compared with standard FORTRAN routines. The computational cost increases linearly with spanwise wall-normal and streamwise grid refinements. The hypercube with 32 processors was estimated to require approximately twice the amount of Cray supercomputer single processor time to complete a comparable simulation; however it is estimated that a subgrid-scale model which reduces the required number of grid points and becomes a large-eddy simulation (PSLES) would reduce the computational cost and memory requirements by a factor of 10 over the PSDNS. This PSLES implementation would enable transition simulations on the hypercube at a reasonable computational cost.

  12. Vienna Fortran - A Language Specification. Version 1.1

    DTIC Science & Technology

    1992-03-01

    other computer archi- tectures is the fact that the memory is physically distributed among the processors; the time required to access a non-local...datum may be an order of magnitude higher than the time taken to access locally stored data. This has important consequences for program efficiency. In...machine in many aspects. It is tedious, time -consuming and error prone. It has led to particularly slow software development cycles and, in consequence

  13. Convergent method of and apparatus for distributed control of robotic systems using fuzzy logic

    DOEpatents

    Feddema, John T.; Driessen, Brian J.; Kwok, Kwan S.

    2002-01-01

    A decentralized fuzzy logic control system for one vehicle or for multiple robotic vehicles provides a way to control each vehicle to converge on a goal without collisions between vehicles or collisions with other obstacles, in the presence of noisy input measurements and a limited amount of compute-power and memory on board each robotic vehicle. The fuzzy controller demonstrates improved robustness to noise relative to an exact controller.

  14. Distributed representations in memory: Insights from functional brain imaging

    PubMed Central

    Rissman, Jesse; Wagner, Anthony D.

    2015-01-01

    Forging new memories for facts and events, holding critical details in mind on a moment-to-moment basis, and retrieving knowledge in the service of current goals all depend on a complex interplay between neural ensembles throughout the brain. Over the past decade, researchers have increasingly leveraged powerful analytical tools (e.g., multi-voxel pattern analysis) to decode the information represented within distributed fMRI activity patterns. In this review, we discuss how these methods can sensitively index neural representations of perceptual and semantic content, and how leverage on the engagement of distributed representations provides unique insights into distinct aspects of memory-guided behavior. We emphasize that, in addition to characterizing the contents of memories, analyses of distributed patterns shed light on the processes that influence how information is encoded, maintained, or retrieved, and thus inform memory theory. We conclude by highlighting open questions about memory that can be addressed through distributed pattern analyses. PMID:21943171

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chao; Pouransari, Hadi; Rajamanickam, Sivasankaran

    We present a parallel hierarchical solver for general sparse linear systems on distributed-memory machines. For large-scale problems, this fully algebraic algorithm is faster and more memory-efficient than sparse direct solvers because it exploits the low-rank structure of fill-in blocks. Depending on the accuracy of low-rank approximations, the hierarchical solver can be used either as a direct solver or as a preconditioner. The parallel algorithm is based on data decomposition and requires only local communication for updating boundary data on every processor. Moreover, the computation-to-communication ratio of the parallel algorithm is approximately the volume-to-surface-area ratio of the subdomain owned by everymore » processor. We also provide various numerical results to demonstrate the versatility and scalability of the parallel algorithm.« less

  16. FFTs in external or hierarchical memory

    NASA Technical Reports Server (NTRS)

    Bailey, David H.

    1989-01-01

    A description is given of advanced techniques for computing an ordered FFT on a computer with external or hierarchical memory. These algorithms (1) require as few as two passes through the external data set, (2) use strictly unit stride, long vector transfers between main memory and external storage, (3) require only a modest amount of scratch space in main memory, and (4) are well suited for vector and parallel computation. Performance figures are included for implementations of some of these algorithms on Cray supercomputers. Of interest is the fact that a main memory version outperforms the current Cray library FFT routines on the Cray-2, the Cray X-MP, and the Cray Y-MP systems. Using all eight processors on the Cray Y-MP, this main memory routine runs at nearly 2 Gflops.

  17. Circuit-Switched Memory Access in Photonic Interconnection Networks for High-Performance Embedded Computing

    DTIC Science & Technology

    2010-07-22

    dependent , providing a natural bandwidth match between compute cores and the memory subsystem. • High Bandwidth Dcnsity. Waveguides crossing the chip...simulate this memory access architecture on a 2S6-core chip with a concentrated 64-node network lIsing detailed traces of high-performance embedded...memory modulcs, wc placc memory access poi nts (MAPs) around the pcriphery of the chip connected to thc nctwork. These MAPs, shown in Figure 4, contain

  18. Memory Analysis of the KBeast Linux Rootkit: Investigating Publicly Available Linux Rootkit Using the Volatility Memory Analysis Framework

    DTIC Science & Technology

    2015-06-01

    examine how a computer forensic investigator/incident handler, without specialised computer memory or software reverse engineering skills , can successfully...memory images and malware, this new series of reports will be directed at those who must analyse Linux malware-infected memory images. The skills ...disable 1287 1000 1000 /usr/lib/policykit-1-gnome/polkit-gnome-authentication- agent-1 1310 1000 1000 /usr/lib/pulseaudio/pulse/gconf- helper 1350

  19. Multicore Challenges and Benefits for High Performance Scientific Computing

    DOE PAGES

    Nielsen, Ida M. B.; Janssen, Curtis L.

    2008-01-01

    Until recently, performance gains in processors were achieved largely by improvements in clock speeds and instruction level parallelism. Thus, applications could obtain performance increases with relatively minor changes by upgrading to the latest generation of computing hardware. Currently, however, processor performance improvements are realized by using multicore technology and hardware support for multiple threads within each core, and taking full advantage of this technology to improve the performance of applications requires exposure of extreme levels of software parallelism. We will here discuss the architecture of parallel computers constructed from many multicore chips as well as techniques for managing the complexitymore » of programming such computers, including the hybrid message-passing/multi-threading programming model. We will illustrate these ideas with a hybrid distributed memory matrix multiply and a quantum chemistry algorithm for energy computation using Møller–Plesset perturbation theory.« less

  20. Class network routing

    DOEpatents

    Bhanot, Gyan [Princeton, NJ; Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Takken, Todd E [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2009-09-08

    Class network routing is implemented in a network such as a computer network comprising a plurality of parallel compute processors at nodes thereof. Class network routing allows a compute processor to broadcast a message to a range (one or more) of other compute processors in the computer network, such as processors in a column or a row. Normally this type of operation requires a separate message to be sent to each processor. With class network routing pursuant to the invention, a single message is sufficient, which generally reduces the total number of messages in the network as well as the latency to do a broadcast. Class network routing is also applied to dense matrix inversion algorithms on distributed memory parallel supercomputers with hardware class function (multicast) capability. This is achieved by exploiting the fact that the communication patterns of dense matrix inversion can be served by hardware class functions, which results in faster execution times.

  1. Nonvolatile “AND,” “OR,” and “NOT” Boolean logic gates based on phase-change memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Zhong, Y. P.; Deng, Y. F.

    2013-12-21

    Electronic devices or circuits that can implement both logic and memory functions are regarded as the building blocks for future massive parallel computing beyond von Neumann architecture. Here we proposed phase-change memory (PCM)-based nonvolatile logic gates capable of AND, OR, and NOT Boolean logic operations verified in SPICE simulations and circuit experiments. The logic operations are parallel computing and results can be stored directly in the states of the logic gates, facilitating the combination of computing and memory in the same circuit. These results are encouraging for ultralow-power and high-speed nonvolatile logic circuit design based on novel memory devices.

  2. OS friendly microprocessor architecture: Hardware level computer security

    NASA Astrophysics Data System (ADS)

    Jungwirth, Patrick; La Fratta, Patrick

    2016-05-01

    We present an introduction to the patented OS Friendly Microprocessor Architecture (OSFA) and hardware level computer security. Conventional microprocessors have not tried to balance hardware performance and OS performance at the same time. Conventional microprocessors have depended on the Operating System for computer security and information assurance. The goal of the OS Friendly Architecture is to provide a high performance and secure microprocessor and OS system. We are interested in cyber security, information technology (IT), and SCADA control professionals reviewing the hardware level security features. The OS Friendly Architecture is a switched set of cache memory banks in a pipeline configuration. For light-weight threads, the memory pipeline configuration provides near instantaneous context switching times. The pipelining and parallelism provided by the cache memory pipeline provides for background cache read and write operations while the microprocessor's execution pipeline is running instructions. The cache bank selection controllers provide arbitration to prevent the memory pipeline and microprocessor's execution pipeline from accessing the same cache bank at the same time. This separation allows the cache memory pages to transfer to and from level 1 (L1) caching while the microprocessor pipeline is executing instructions. Computer security operations are implemented in hardware. By extending Unix file permissions bits to each cache memory bank and memory address, the OSFA provides hardware level computer security.

  3. A high performance linear equation solver on the VPP500 parallel supercomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakanishi, Makoto; Ina, Hiroshi; Miura, Kenichi

    1994-12-31

    This paper describes the implementation of two high performance linear equation solvers developed for the Fujitsu VPP500, a distributed memory parallel supercomputer system. The solvers take advantage of the key architectural features of VPP500--(1) scalability for an arbitrary number of processors up to 222 processors, (2) flexible data transfer among processors provided by a crossbar interconnection network, (3) vector processing capability on each processor, and (4) overlapped computation and transfer. The general linear equation solver based on the blocked LU decomposition method achieves 120.0 GFLOPS performance with 100 processors in the LIN-PACK Highly Parallel Computing benchmark.

  4. Geospace simulations using modern accelerator processor technology

    NASA Astrophysics Data System (ADS)

    Germaschewski, K.; Raeder, J.; Larson, D. J.

    2009-12-01

    OpenGGCM (Open Geospace General Circulation Model) is a well-established numerical code simulating the Earth's space environment. The most computing intensive part is the MHD (magnetohydrodynamics) solver that models the plasma surrounding Earth and its interaction with Earth's magnetic field and the solar wind flowing in from the sun. Like other global magnetosphere codes, OpenGGCM's realism is currently limited by computational constraints on grid resolution. OpenGGCM has been ported to make use of the added computational powerof modern accelerator based processor architectures, in particular the Cell processor. The Cell architecture is a novel inhomogeneous multicore architecture capable of achieving up to 230 GFLops on a single chip. The University of New Hampshire recently acquired a PowerXCell 8i based computing cluster, and here we will report initial performance results of OpenGGCM. Realizing the high theoretical performance of the Cell processor is a programming challenge, though. We implemented the MHD solver using a multi-level parallelization approach: On the coarsest level, the problem is distributed to processors based upon the usual domain decomposition approach. Then, on each processor, the problem is divided into 3D columns, each of which is handled by the memory limited SPEs (synergistic processing elements) slice by slice. Finally, SIMD instructions are used to fully exploit the SIMD FPUs in each SPE. Memory management needs to be handled explicitly by the code, using DMA to move data from main memory to the per-SPE local store and vice versa. We use a modern technique, automatic code generation, which shields the application programmer from having to deal with all of the implementation details just described, keeping the code much more easily maintainable. Our preliminary results indicate excellent performance, a speed-up of a factor of 30 compared to the unoptimized version.

  5. CUDA Optimization Strategies for Compute- and Memory-Bound Neuroimaging Algorithms

    PubMed Central

    Lee, Daren; Dinov, Ivo; Dong, Bin; Gutman, Boris; Yanovsky, Igor; Toga, Arthur W.

    2011-01-01

    As neuroimaging algorithms and technology continue to grow faster than CPU performance in complexity and image resolution, data-parallel computing methods will be increasingly important. The high performance, data-parallel architecture of modern graphical processing units (GPUs) can reduce computational times by orders of magnitude. However, its massively threaded architecture introduces challenges when GPU resources are exceeded. This paper presents optimization strategies for compute- and memory-bound algorithms for the CUDA architecture. For compute-bound algorithms, the registers are reduced through variable reuse via shared memory and the data throughput is increased through heavier thread workloads and maximizing the thread configuration for a single thread block per multiprocessor. For memory-bound algorithms, fitting the data into the fast but limited GPU resources is achieved through reorganizing the data into self-contained structures and employing a multi-pass approach. Memory latencies are reduced by selecting memory resources whose cache performance are optimized for the algorithm's access patterns. We demonstrate the strategies on two computationally expensive algorithms and achieve optimized GPU implementations that perform up to 6× faster than unoptimized ones. Compared to CPU implementations, we achieve peak GPU speedups of 129× for the 3D unbiased nonlinear image registration technique and 93× for the non-local means surface denoising algorithm. PMID:21159404

  6. CUDA optimization strategies for compute- and memory-bound neuroimaging algorithms.

    PubMed

    Lee, Daren; Dinov, Ivo; Dong, Bin; Gutman, Boris; Yanovsky, Igor; Toga, Arthur W

    2012-06-01

    As neuroimaging algorithms and technology continue to grow faster than CPU performance in complexity and image resolution, data-parallel computing methods will be increasingly important. The high performance, data-parallel architecture of modern graphical processing units (GPUs) can reduce computational times by orders of magnitude. However, its massively threaded architecture introduces challenges when GPU resources are exceeded. This paper presents optimization strategies for compute- and memory-bound algorithms for the CUDA architecture. For compute-bound algorithms, the registers are reduced through variable reuse via shared memory and the data throughput is increased through heavier thread workloads and maximizing the thread configuration for a single thread block per multiprocessor. For memory-bound algorithms, fitting the data into the fast but limited GPU resources is achieved through reorganizing the data into self-contained structures and employing a multi-pass approach. Memory latencies are reduced by selecting memory resources whose cache performance are optimized for the algorithm's access patterns. We demonstrate the strategies on two computationally expensive algorithms and achieve optimized GPU implementations that perform up to 6× faster than unoptimized ones. Compared to CPU implementations, we achieve peak GPU speedups of 129× for the 3D unbiased nonlinear image registration technique and 93× for the non-local means surface denoising algorithm. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Mnemonic transmission, social contagion, and emergence of collective memory: Influence of emotional valence, group structure, and information distribution.

    PubMed

    Choi, Hae-Yoon; Kensinger, Elizabeth A; Rajaram, Suparna

    2017-09-01

    Social transmission of memory and its consequence on collective memory have generated enduring interdisciplinary interest because of their widespread significance in interpersonal, sociocultural, and political arenas. We tested the influence of 3 key factors-emotional salience of information, group structure, and information distribution-on mnemonic transmission, social contagion, and collective memory. Participants individually studied emotionally salient (negative or positive) and nonemotional (neutral) picture-word pairs that were completely shared, partially shared, or unshared within participant triads, and then completed 3 consecutive recalls in 1 of 3 conditions: individual-individual-individual (control), collaborative-collaborative (identical group; insular structure)-individual, and collaborative-collaborative (reconfigured group; diverse structure)-individual. Collaboration enhanced negative memories especially in insular group structure and especially for shared information, and promoted collective forgetting of positive memories. Diverse group structure reduced this negativity effect. Unequally distributed information led to social contagion that creates false memories; diverse structure propagated a greater variety of false memories whereas insular structure promoted confidence in false recognition and false collective memory. A simultaneous assessment of network structure, information distribution, and emotional valence breaks new ground to specify how network structure shapes the spread of negative memories and false memories, and the emergence of collective memory. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Microprogramming Handbook. Second Edition.

    ERIC Educational Resources Information Center

    Microdata Corp., Santa Ana, CA.

    Instead of instructions residing in the main memory as in a fixed instruction computer, a micro-programable computer has a separete read-only memory which is alterable so that the system can be efficiently adapted to the application at hand. Microprogramable computers are faster than fixed instruction computers for several reasons: instruction…

  9. Three Types of Memory in Emergency Medical Services Communication

    ERIC Educational Resources Information Center

    Angeli, Elizabeth L.

    2015-01-01

    This article examines memory and distributed cognition involved in the writing practices of emergency medical services (EMS) professionals. Results from a 16-month study indicate that EMS professionals rely on distributed cognition and three kinds of memory: individual, collaborative, and professional. Distributed cognition and the three types of…

  10. Restricted access Improved hydrogeophysical characterization and monitoring through parallel modeling and inversion of time-domain resistivity andinduced-polarization data

    USGS Publications Warehouse

    Johnson, Timothy C.; Versteeg, Roelof J.; Ward, Andy; Day-Lewis, Frederick D.; Revil, André

    2010-01-01

    Electrical geophysical methods have found wide use in the growing discipline of hydrogeophysics for characterizing the electrical properties of the subsurface and for monitoring subsurface processes in terms of the spatiotemporal changes in subsurface conductivity, chargeability, and source currents they govern. Presently, multichannel and multielectrode data collections systems can collect large data sets in relatively short periods of time. Practitioners, however, often are unable to fully utilize these large data sets and the information they contain because of standard desktop-computer processing limitations. These limitations can be addressed by utilizing the storage and processing capabilities of parallel computing environments. We have developed a parallel distributed-memory forward and inverse modeling algorithm for analyzing resistivity and time-domain induced polar-ization (IP) data. The primary components of the parallel computations include distributed computation of the pole solutions in forward mode, distributed storage and computation of the Jacobian matrix in inverse mode, and parallel execution of the inverse equation solver. We have tested the corresponding parallel code in three efforts: (1) resistivity characterization of the Hanford 300 Area Integrated Field Research Challenge site in Hanford, Washington, U.S.A., (2) resistivity characterization of a volcanic island in the southern Tyrrhenian Sea in Italy, and (3) resistivity and IP monitoring of biostimulation at a Superfund site in Brandywine, Maryland, U.S.A. Inverse analysis of each of these data sets would be limited or impossible in a standard serial computing environment, which underscores the need for parallel high-performance computing to fully utilize the potential of electrical geophysical methods in hydrogeophysical applications.

  11. Memory management in genome-wide association studies

    PubMed Central

    2009-01-01

    Genome-wide association is a powerful tool for the identification of genes that underlie common diseases. Genome-wide association studies generate billions of genotypes and pose significant computational challenges for most users including limited computer memory. We applied a recently developed memory management tool to two analyses of North American Rheumatoid Arthritis Consortium studies and measured the performance in terms of central processing unit and memory usage. We conclude that our memory management approach is simple, efficient, and effective for genome-wide association studies. PMID:20018047

  12. Computer memory power control for the Galileo spacecraft

    NASA Technical Reports Server (NTRS)

    Detwiler, R. C.

    1983-01-01

    The developmental history, major design drives, and final topology of the computer memory power system on the Galileo spacecraft are described. A unique method of generating memory backup power directly from the fault current drawn during a spacecraft power overload or fault condition allows this system to provide continuous memory power. This concept provides a unique solution to the problem of volatile memory loss without the use of a battery of other large energy storage elements usually associated with uninterrupted power supply designs.

  13. Reconfigurable modular computer networks for spacecraft on-board processing

    NASA Technical Reports Server (NTRS)

    Rennels, D. A.

    1978-01-01

    The core electronics subsystems on unmanned spacecraft, which have been sent over the last 20 years to investigate the moon, Mars, Venus, and Mercury, have progressed through an evolution from simple fixed controllers and analog computers in the 1960's to general-purpose digital computers in current designs. This evolution is now moving in the direction of distributed computer networks. Current Voyager spacecraft already use three on-board computers. One is used to store commands and provide overall spacecraft management. Another is used for instrument control and telemetry collection, and the third computer is used for attitude control and scientific instrument pointing. An examination of the control logic in the instruments shows that, for many, it is cost-effective to replace the sequencing logic with a microcomputer. The Unified Data System architecture considered consists of a set of standard microcomputers connected by several redundant buses. A typical self-checking computer module will contain 23 RAMs, two microprocessors, one memory interface, three bus interfaces, and one core building block.

  14. High-Efficiency High-Resolution Global Model Developments at the NASA Goddard Data Assimilation Office

    NASA Technical Reports Server (NTRS)

    Lin, Shian-Jiann; Atlas, Robert (Technical Monitor)

    2002-01-01

    The Data Assimilation Office (DAO) has been developing a new generation of ultra-high resolution General Circulation Model (GCM) that is suitable for 4-D data assimilation, numerical weather predictions, and climate simulations. These three applications have conflicting requirements. For 4-D data assimilation and weather predictions, it is highly desirable to run the model at the highest possible spatial resolution (e.g., 55 km or finer) so as to be able to resolve and predict socially and economically important weather phenomena such as tropical cyclones, hurricanes, and severe winter storms. For climate change applications, the model simulations need to be carried out for decades, if not centuries. To reduce uncertainty in climate change assessments, the next generation model would also need to be run at a fine enough spatial resolution that can at least marginally simulate the effects of intense tropical cyclones. Scientific problems (e.g., parameterization of subgrid scale moist processes) aside, all three areas of application require the model's computational performance to be dramatically improved as compared to the previous generation. In this talk, I will present the current and future developments of the "finite-volume dynamical core" at the Data Assimilation Office. This dynamical core applies modem monotonicity preserving algorithms and is genuinely conservative by construction, not by an ad hoc fixer. The "discretization" of the conservation laws is purely local, which is clearly advantageous for resolving sharp gradient flow features. In addition, the local nature of the finite-volume discretization also has a significant advantage on distributed memory parallel computers. Together with a unique vertically Lagrangian control volume discretization that essentially reduces the dimension of the computational problem from three to two, the finite-volume dynamical core is very efficient, particularly at high resolutions. I will also present the computational design of the dynamical core using a hybrid distributed-shared memory programming paradigm that is portable to virtually any of today's high-end parallel super-computing clusters.

  15. High-Efficiency High-Resolution Global Model Developments at the NASA Goddard Data Assimilation Office

    NASA Technical Reports Server (NTRS)

    Lin, Shian-Jiann; Atlas, Robert (Technical Monitor)

    2002-01-01

    The Data Assimilation Office (DAO) has been developing a new generation of ultra-high resolution General Circulation Model (GCM) that is suitable for 4-D data assimilation, numerical weather predictions, and climate simulations. These three applications have conflicting requirements. For 4-D data assimilation and weather predictions, it is highly desirable to run the model at the highest possible spatial resolution (e.g., 55 kin or finer) so as to be able to resolve and predict socially and economically important weather phenomena such as tropical cyclones, hurricanes, and severe winter storms. For climate change applications, the model simulations need to be carried out for decades, if not centuries. To reduce uncertainty in climate change assessments, the next generation model would also need to be run at a fine enough spatial resolution that can at least marginally simulate the effects of intense tropical cyclones. Scientific problems (e.g., parameterization of subgrid scale moist processes) aside, all three areas of application require the model's computational performance to be dramatically improved as compared to the previous generation. In this talk, I will present the current and future developments of the "finite-volume dynamical core" at the Data Assimilation Office. This dynamical core applies modem monotonicity preserving algorithms and is genuinely conservative by construction, not by an ad hoc fixer. The "discretization" of the conservation laws is purely local, which is clearly advantageous for resolving sharp gradient flow features. In addition, the local nature of the finite-volume discretization also has a significant advantage on distributed memory parallel computers. Together with a unique vertically Lagrangian control volume discretization that essentially reduces the dimension of the computational problem from three to two, the finite-volume dynamical core is very efficient, particularly at high resolutions. I will also present the computational design of the dynamical core using a hybrid distributed- shared memory programming paradigm that is portable to virtually any of today's high-end parallel super-computing clusters.

  16. Parallel, Distributed Scripting with Python

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, P J

    2002-05-24

    Parallel computers used to be, for the most part, one-of-a-kind systems which were extremely difficult to program portably. With SMP architectures, the advent of the POSIX thread API and OpenMP gave developers ways to portably exploit on-the-box shared memory parallelism. Since these architectures didn't scale cost-effectively, distributed memory clusters were developed. The associated MPI message passing libraries gave these systems a portable paradigm too. Having programmers effectively use this paradigm is a somewhat different question. Distributed data has to be explicitly transported via the messaging system in order for it to be useful. In high level languages, the MPI librarymore » gives access to data distribution routines in C, C++, and FORTRAN. But we need more than that. Many reasonable and common tasks are best done in (or as extensions to) scripting languages. Consider sysadm tools such as password crackers, file purgers, etc ... These are simple to write in a scripting language such as Python (an open source, portable, and freely available interpreter). But these tasks beg to be done in parallel. Consider the a password checker that checks an encrypted password against a 25,000 word dictionary. This can take around 10 seconds in Python (6 seconds in C). It is trivial to parallelize if you can distribute the information and co-ordinate the work.« less

  17. Automation of Data Traffic Control on DSM Architecture

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Jin, Hao-Qiang; Yan, Jerry

    2001-01-01

    The design of distributed shared memory (DSM) computers liberates users from the duty to distribute data across processors and allows for the incremental development of parallel programs using, for example, OpenMP or Java threads. DSM architecture greatly simplifies the development of parallel programs having good performance on a few processors. However, to achieve a good program scalability on DSM computers requires that the user understand data flow in the application and use various techniques to avoid data traffic congestions. In this paper we discuss a number of such techniques, including data blocking, data placement, data transposition and page size control and evaluate their efficiency on the NAS (NASA Advanced Supercomputing) Parallel Benchmarks. We also present a tool which automates the detection of constructs causing data congestions in Fortran array oriented codes and advises the user on code transformations for improving data traffic in the application.

  18. Meeting the memory challenges of brain-scale network simulation.

    PubMed

    Kunkel, Susanne; Potjans, Tobias C; Eppler, Jochen M; Plesser, Hans Ekkehard; Morrison, Abigail; Diesmann, Markus

    2011-01-01

    The development of high-performance simulation software is crucial for studying the brain connectome. Using connectome data to generate neurocomputational models requires software capable of coping with models on a variety of scales: from the microscale, investigating plasticity, and dynamics of circuits in local networks, to the macroscale, investigating the interactions between distinct brain regions. Prior to any serious dynamical investigation, the first task of network simulations is to check the consistency of data integrated in the connectome and constrain ranges for yet unknown parameters. Thanks to distributed computing techniques, it is possible today to routinely simulate local cortical networks of around 10(5) neurons with up to 10(9) synapses on clusters and multi-processor shared-memory machines. However, brain-scale networks are orders of magnitude larger than such local networks, in terms of numbers of neurons and synapses as well as in terms of computational load. Such networks have been investigated in individual studies, but the underlying simulation technologies have neither been described in sufficient detail to be reproducible nor made publicly available. Here, we discover that as the network model sizes approach the regime of meso- and macroscale simulations, memory consumption on individual compute nodes becomes a critical bottleneck. This is especially relevant on modern supercomputers such as the Blue Gene/P architecture where the available working memory per CPU core is rather limited. We develop a simple linear model to analyze the memory consumption of the constituent components of neuronal simulators as a function of network size and the number of cores used. This approach has multiple benefits. The model enables identification of key contributing components to memory saturation and prediction of the effects of potential improvements to code before any implementation takes place. As a consequence, development cycles can be shorter and less expensive. Applying the model to our freely available Neural Simulation Tool (NEST), we identify the software components dominant at different scales, and develop general strategies for reducing the memory consumption, in particular by using data structures that exploit the sparseness of the local representation of the network. We show that these adaptations enable our simulation software to scale up to the order of 10,000 processors and beyond. As memory consumption issues are likely to be relevant for any software dealing with complex connectome data on such architectures, our approach and our findings should be useful for researchers developing novel neuroinformatics solutions to the challenges posed by the connectome project.

  19. Synthetic Analog and Digital Circuits for Cellular Computation and Memory

    PubMed Central

    Purcell, Oliver; Lu, Timothy K.

    2014-01-01

    Biological computation is a major area of focus in synthetic biology because it has the potential to enable a wide range of applications. Synthetic biologists have applied engineering concepts to biological systems in order to construct progressively more complex gene circuits capable of processing information in living cells. Here, we review the current state of computational genetic circuits and describe artificial gene circuits that perform digital and analog computation. We then discuss recent progress in designing gene circuits that exhibit memory, and how memory and computation have been integrated to yield more complex systems that can both process and record information. Finally, we suggest new directions for engineering biological circuits capable of computation. PMID:24794536

  20. On-chip phase-change photonic memory and computing

    NASA Astrophysics Data System (ADS)

    Cheng, Zengguang; Ríos, Carlos; Youngblood, Nathan; Wright, C. David; Pernice, Wolfram H. P.; Bhaskaran, Harish

    2017-08-01

    The use of photonics in computing is a hot topic of interest, driven by the need for ever-increasing speed along with reduced power consumption. In existing computing architectures, photonic data storage would dramatically improve the performance by reducing latencies associated with electrical memories. At the same time, the rise of `big data' and `deep learning' is driving the quest for non-von Neumann and brain-inspired computing paradigms. To succeed in both aspects, we have demonstrated non-volatile multi-level photonic memory avoiding the von Neumann bottleneck in the existing computing paradigm and a photonic synapse resembling the biological synapses for brain-inspired computing using phase-change materials (Ge2Sb2Te5).

  1. Experiences using OpenMP based on Computer Directed Software DSM on a PC Cluster

    NASA Technical Reports Server (NTRS)

    Hess, Matthias; Jost, Gabriele; Mueller, Matthias; Ruehle, Roland

    2003-01-01

    In this work we report on our experiences running OpenMP programs on a commodity cluster of PCs running a software distributed shared memory (DSM) system. We describe our test environment and report on the performance of a subset of the NAS Parallel Benchmarks that have been automaticaly parallelized for OpenMP. We compare the performance of the OpenMP implementations with that of their message passing counterparts and discuss performance differences.

  2. Continuous Time Random Walks with memory and financial distributions

    NASA Astrophysics Data System (ADS)

    Montero, Miquel; Masoliver, Jaume

    2017-11-01

    We study financial distributions from the perspective of Continuous Time Random Walks with memory. We review some of our previous developments and apply them to financial problems. We also present some new models with memory that can be useful in characterizing tendency effects which are inherent in most markets. We also briefly study the effect on return distributions of fractional behaviors in the distribution of pausing times between successive transactions.

  3. Objective measures of prospective memory do not correlate with subjective complaints in schizophrenia.

    PubMed

    Chan, Raymond C K; Wang, Ya; Ma, Zheng; Hong, Xiao-hong; Yuan, Yanbo; Yu, Xin; Li, Zhanjiang; Shum, David; Gong, Qi-yong

    2008-08-01

    While a number of studies have shown that individuals with schizophrenia are impaired on various types of prospective memory, few studies have examined the relationship between subjective and objective measures of this construct in this clinical group. The purpose of the current study was to explore the relationship between computer-based prospective memory tasks and the corresponding subjective complaints in patients with schizophrenia, individuals with schizotypal personality features, and healthy volunteers. The findings showed that patients with schizophrenia demonstrated significantly poorer performance in all domains of memory function except visual memory than individuals with schizotypal personality disorder and healthy controls. More importantly, there was a significant interaction effect of prospective memory type and group. Although patients with schizophrenia were found to show significantly poorer performance on computer-based measures of prospective memory than controls, their level of subjective complaint was not found to be significantly higher. While subjective complaints of prospective memory were found to associate significantly with self-reported executive dysfunctions, significant relationships were not found between these complaints and performance on a computer-based task of prospective memory and other objective measures of memory. Taken together, these findings suggest that subjective and objective measures of prospective memory are two distinct domains that might need to be assessed and addressed separately.

  4. Computational modelling of memory retention from synapse to behaviour

    NASA Astrophysics Data System (ADS)

    van Rossum, Mark C. W.; Shippi, Maria

    2013-03-01

    One of our most intriguing mental abilities is the capacity to store information and recall it from memory. Computational neuroscience has been influential in developing models and concepts of learning and memory. In this tutorial review we focus on the interplay between learning and forgetting. We discuss recent advances in the computational description of the learning and forgetting processes on synaptic, neuronal, and systems levels, as well as recent data that open up new challenges for statistical physicists.

  5. Design and Implementation of an MC68020-Based Educational Computer Board

    DTIC Science & Technology

    1989-12-01

    device and the other for a Macintosh personal computer. A stored program can be installed in 8K bytes Programmable Read Only Memory (PROM) to initialize...MHz. It includes four * Static Random Access Memory (SRAM) chips which provide a storage of 32K bytes. Two Programmable Array Logic (PAL) chips...device and the other for a Macintosh personal computer. A stored program can be installed in 8K bytes Programmable Read Only Memory (PROM) to

  6. The Sensitivity of Memory Consolidation and Reconsolidation to Inhibitors of Protein Synthesis and Kinases: Computational Analysis

    ERIC Educational Resources Information Center

    Zhang, Yili; Smolen, Paul; Baxter, Douglas A.; Byrne, John H.

    2010-01-01

    Memory consolidation and reconsolidation require kinase activation and protein synthesis. Blocking either process during or shortly after training or recall disrupts memory stabilization, which suggests the existence of a critical time window during which these processes are necessary. Using a computational model of kinase synthesis and…

  7. Total recall in distributive associative memories

    NASA Technical Reports Server (NTRS)

    Danforth, Douglas G.

    1991-01-01

    Iterative error correction of asymptotically large associative memories is equivalent to a one-step learning rule. This rule is the inverse of the activation function of the memory. Spectral representations of nonlinear activation functions are used to obtain the inverse in closed form for Sparse Distributed Memory, Selected-Coordinate Design, and Radial Basis Functions.

  8. Trial-by-Trial Modulation of Associative Memory Formation by Reward Prediction Error and Reward Anticipation as Revealed by a Biologically Plausible Computational Model.

    PubMed

    Aberg, Kristoffer C; Müller, Julia; Schwartz, Sophie

    2017-01-01

    Anticipation and delivery of rewards improves memory formation, but little effort has been made to disentangle their respective contributions to memory enhancement. Moreover, it has been suggested that the effects of reward on memory are mediated by dopaminergic influences on hippocampal plasticity. Yet, evidence linking memory improvements to actual reward computations reflected in the activity of the dopaminergic system, i.e., prediction errors and expected values, is scarce and inconclusive. For example, different previous studies reported that the magnitude of prediction errors during a reinforcement learning task was a positive, negative, or non-significant predictor of successfully encoding simultaneously presented images. Individual sensitivities to reward and punishment have been found to influence the activation of the dopaminergic reward system and could therefore help explain these seemingly discrepant results. Here, we used a novel associative memory task combined with computational modeling and showed independent effects of reward-delivery and reward-anticipation on memory. Strikingly, the computational approach revealed positive influences from both reward delivery, as mediated by prediction error magnitude, and reward anticipation, as mediated by magnitude of expected value, even in the absence of behavioral effects when analyzed using standard methods, i.e., by collapsing memory performance across trials within conditions. We additionally measured trait estimates of reward and punishment sensitivity and found that individuals with increased reward (vs. punishment) sensitivity had better memory for associations encoded during positive (vs. negative) prediction errors when tested after 20 min, but a negative trend when tested after 24 h. In conclusion, modeling trial-by-trial fluctuations in the magnitude of reward, as we did here for prediction errors and expected value computations, provides a comprehensive and biologically plausible description of the dynamic interplay between reward, dopamine, and associative memory formation. Our results also underline the importance of considering individual traits when assessing reward-related influences on memory.

  9. Opportunities for nonvolatile memory systems in extreme-scale high-performance computing

    DOE PAGES

    Vetter, Jeffrey S.; Mittal, Sparsh

    2015-01-12

    For extreme-scale high-performance computing systems, system-wide power consumption has been identified as one of the key constraints moving forward, where DRAM main memory systems account for about 30 to 50 percent of a node's overall power consumption. As the benefits of device scaling for DRAM memory slow, it will become increasingly difficult to keep memory capacities balanced with increasing computational rates offered by next-generation processors. However, several emerging memory technologies related to nonvolatile memory (NVM) devices are being investigated as an alternative for DRAM. Moving forward, NVM devices could offer solutions for HPC architectures. Researchers are investigating how to integratemore » these emerging technologies into future extreme-scale HPC systems and how to expose these capabilities in the software stack and applications. In addition, current results show several of these strategies could offer high-bandwidth I/O, larger main memory capacities, persistent data structures, and new approaches for application resilience and output postprocessing, such as transaction-based incremental checkpointing and in situ visualization, respectively.« less

  10. How can individual differences in autobiographical memory distributions of older adults be explained?

    PubMed

    Wolf, Tabea; Zimprich, Daniel

    2016-10-01

    The reminiscence bump phenomenon has frequently been reported for the recall of autobiographical memories. The present study complements previous research by examining individual differences in the distribution of word-cued autobiographical memories. More importantly, we introduce predictor variables that might account for individual differences in the mean (location) and the standard deviation (scale) of individual memory distributions. All variables were derived from different theoretical accounts for the reminiscence bump phenomenon. We used a mixed location-scale logitnormal model, to analyse the 4602 autobiographical memories reported by 118 older participants. Results show reliable individual differences in the location and the scale. After controlling for age and gender, individual proportions of first-time experiences and individual proportions of positive memories, as well as the ratings on Openness to new Experiences and Self-Concept Clarity accounted for 29% of individual differences in location and 42% of individual differences in scale of autobiographical memory distributions. Results dovetail with a life-story account for the reminiscence bump which integrates central components of previous accounts.

  11. Enriched encoding: reward motivation organizes cortical networks for hippocampal detection of unexpected events.

    PubMed

    Murty, Vishnu P; Adcock, R Alison

    2014-08-01

    Learning how to obtain rewards requires learning about their contexts and likely causes. How do long-term memory mechanisms balance the need to represent potential determinants of reward outcomes with the computational burden of an over-inclusive memory? One solution would be to enhance memory for salient events that occur during reward anticipation, because all such events are potential determinants of reward. We tested whether reward motivation enhances encoding of salient events like expectancy violations. During functional magnetic resonance imaging, participants performed a reaction-time task in which goal-irrelevant expectancy violations were encountered during states of high- or low-reward motivation. Motivation amplified hippocampal activation to and declarative memory for expectancy violations. Connectivity of the ventral tegmental area (VTA) with medial prefrontal, ventrolateral prefrontal, and visual cortices preceded and predicted this increase in hippocampal sensitivity. These findings elucidate a novel mechanism whereby reward motivation can enhance hippocampus-dependent memory: anticipatory VTA-cortical-hippocampal interactions. Further, the findings integrate literatures on dopaminergic neuromodulation of prefrontal function and hippocampus-dependent memory. We conclude that during reward motivation, VTA modulation induces distributed neural changes that amplify hippocampal signals and records of expectancy violations to improve predictions-a potentially unique contribution of the hippocampus to reward learning. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. The effect of visual and interaction fidelity on spatial cognition in immersive virtual environments.

    PubMed

    Mania, Katerina; Wooldridge, Dave; Coxon, Matthew; Robinson, Andrew

    2006-01-01

    Accuracy of memory performance per se is an imperfect reflection of the cognitive activity (awareness states) that underlies performance in memory tasks. The aim of this research is to investigate the effect of varied visual and interaction fidelity of immersive virtual environments on memory awareness states. A between groups experiment was carried out to explore the effect of rendering quality on location-based recognition memory for objects and associated states of awareness. The experimental space, consisting of two interconnected rooms, was rendered either flat-shaded or using radiosity rendering. The computer graphics simulations were displayed on a stereo head-tracked Head Mounted Display. Participants completed a recognition memory task after exposure to the experimental space and reported one of four states of awareness following object recognition. These reflected the level of visual mental imagery involved during retrieval, the familiarity of the recollection, and also included guesses. Experimental results revealed variations in the distribution of participants' awareness states across conditions while memory performance failed to reveal any. Interestingly, results revealed a higher proportion of recollections associated with mental imagery in the flat-shaded condition. These findings comply with similar effects revealed in two earlier studies summarized here, which demonstrated that the less "naturalistic" interaction interface or interface of low interaction fidelity provoked a higher proportion of recognitions based on visual mental images.

  13. A communication-avoiding, hybrid-parallel, rank-revealing orthogonalization method.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoemmen, Mark

    2010-11-01

    Orthogonalization consumes much of the run time of many iterative methods for solving sparse linear systems and eigenvalue problems. Commonly used algorithms, such as variants of Gram-Schmidt or Householder QR, have performance dominated by communication. Here, 'communication' includes both data movement between the CPU and memory, and messages between processors in parallel. Our Tall Skinny QR (TSQR) family of algorithms requires asymptotically fewer messages between processors and data movement between CPU and memory than typical orthogonalization methods, yet achieves the same accuracy as Householder QR factorization. Furthermore, in block orthogonalizations, TSQR is faster and more accurate than existing approaches formore » orthogonalizing the vectors within each block ('normalization'). TSQR's rank-revealing capability also makes it useful for detecting deflation in block iterative methods, for which existing approaches sacrifice performance, accuracy, or both. We have implemented a version of TSQR that exploits both distributed-memory and shared-memory parallelism, and supports real and complex arithmetic. Our implementation is optimized for the case of orthogonalizing a small number (5-20) of very long vectors. The shared-memory parallel component uses Intel's Threading Building Blocks, though its modular design supports other shared-memory programming models as well, including computation on the GPU. Our implementation achieves speedups of 2 times or more over competing orthogonalizations. It is available now in the development branch of the Trilinos software package, and will be included in the 10.8 release.« less

  14. Space-Bounded Church-Turing Thesis and Computational Tractability of Closed Systems.

    PubMed

    Braverman, Mark; Schneider, Jonathan; Rojas, Cristóbal

    2015-08-28

    We report a new limitation on the ability of physical systems to perform computation-one that is based on generalizing the notion of memory, or storage space, available to the system to perform the computation. Roughly, we define memory as the maximal amount of information that the evolving system can carry from one instant to the next. We show that memory is a limiting factor in computation even in lieu of any time limitations on the evolving system-such as when considering its equilibrium regime. We call this limitation the space-bounded Church-Turing thesis (SBCT). The SBCT is supported by a simulation assertion (SA), which states that predicting the long-term behavior of bounded-memory systems is computationally tractable. In particular, one corollary of SA is an explicit bound on the computational hardness of the long-term behavior of a discrete-time finite-dimensional dynamical system that is affected by noise. We prove such a bound explicitly.

  15. Synthetic analog and digital circuits for cellular computation and memory.

    PubMed

    Purcell, Oliver; Lu, Timothy K

    2014-10-01

    Biological computation is a major area of focus in synthetic biology because it has the potential to enable a wide range of applications. Synthetic biologists have applied engineering concepts to biological systems in order to construct progressively more complex gene circuits capable of processing information in living cells. Here, we review the current state of computational genetic circuits and describe artificial gene circuits that perform digital and analog computation. We then discuss recent progress in designing gene networks that exhibit memory, and how memory and computation have been integrated to yield more complex systems that can both process and record information. Finally, we suggest new directions for engineering biological circuits capable of computation. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Efficient generation of sum-of-products representations of high-dimensional potential energy surfaces based on multimode expansions

    NASA Astrophysics Data System (ADS)

    Ziegler, Benjamin; Rauhut, Guntram

    2016-03-01

    The transformation of multi-dimensional potential energy surfaces (PESs) from a grid-based multimode representation to an analytical one is a standard procedure in quantum chemical programs. Within the framework of linear least squares fitting, a simple and highly efficient algorithm is presented, which relies on a direct product representation of the PES and a repeated use of Kronecker products. It shows the same scalings in computational cost and memory requirements as the potfit approach. In comparison to customary linear least squares fitting algorithms, this corresponds to a speed-up and memory saving by several orders of magnitude. Different fitting bases are tested, namely, polynomials, B-splines, and distributed Gaussians. Benchmark calculations are provided for the PESs of a set of small molecules.

  17. Efficient generation of sum-of-products representations of high-dimensional potential energy surfaces based on multimode expansions.

    PubMed

    Ziegler, Benjamin; Rauhut, Guntram

    2016-03-21

    The transformation of multi-dimensional potential energy surfaces (PESs) from a grid-based multimode representation to an analytical one is a standard procedure in quantum chemical programs. Within the framework of linear least squares fitting, a simple and highly efficient algorithm is presented, which relies on a direct product representation of the PES and a repeated use of Kronecker products. It shows the same scalings in computational cost and memory requirements as the potfit approach. In comparison to customary linear least squares fitting algorithms, this corresponds to a speed-up and memory saving by several orders of magnitude. Different fitting bases are tested, namely, polynomials, B-splines, and distributed Gaussians. Benchmark calculations are provided for the PESs of a set of small molecules.

  18. A message passing kernel for the hypercluster parallel processing test bed

    NASA Technical Reports Server (NTRS)

    Blech, Richard A.; Quealy, Angela; Cole, Gary L.

    1989-01-01

    A Message-Passing Kernel (MPK) for the Hypercluster parallel-processing test bed is described. The Hypercluster is being developed at the NASA Lewis Research Center to support investigations of parallel algorithms and architectures for computational fluid and structural mechanics applications. The Hypercluster resembles the hypercube architecture except that each node consists of multiple processors communicating through shared memory. The MPK efficiently routes information through the Hypercluster, using a message-passing protocol when necessary and faster shared-memory communication whenever possible. The MPK also interfaces all of the processors with the Hypercluster operating system (HYCLOPS), which runs on a Front-End Processor (FEP). This approach distributes many of the I/O tasks to the Hypercluster processors and eliminates the need for a separate I/O support program on the FEP.

  19. Toward cognitive robotics

    NASA Astrophysics Data System (ADS)

    Laird, John E.

    2009-05-01

    Our long-term goal is to develop autonomous robotic systems that have the cognitive abilities of humans, including communication, coordination, adapting to novel situations, and learning through experience. Our approach rests on the recent integration of the Soar cognitive architecture with both virtual and physical robotic systems. Soar has been used to develop a wide variety of knowledge-rich agents for complex virtual environments, including distributed training environments and interactive computer games. For development and testing in robotic virtual environments, Soar interfaces to a variety of robotic simulators and a simple mobile robot. We have recently made significant extensions to Soar that add new memories and new non-symbolic reasoning to Soar's original symbolic processing, which should significantly improve Soar abilities for control of robots. These extensions include episodic memory, semantic memory, reinforcement learning, and mental imagery. Episodic memory and semantic memory support the learning and recalling of prior events and situations as well as facts about the world. Reinforcement learning provides the ability of the system to tune its procedural knowledge - knowledge about how to do things. Mental imagery supports the use of diagrammatic and visual representations that are critical to support spatial reasoning. We speculate on the future of unmanned systems and the need for cognitive robotics to support dynamic instruction and taskability.

  20. Towards quantum networks of single spins: analysis of a quantum memory with an optical interface in diamond.

    PubMed

    Blok, M S; Kalb, N; Reiserer, A; Taminiau, T H; Hanson, R

    2015-01-01

    Single defect centers in diamond have emerged as a powerful platform for quantum optics experiments and quantum information processing tasks. Connecting spatially separated nodes via optical photons into a quantum network will enable distributed quantum computing and long-range quantum communication. Initial experiments on trapped atoms and ions as well as defects in diamond have demonstrated entanglement between two nodes over several meters. To realize multi-node networks, additional quantum bit systems that store quantum states while new entanglement links are established are highly desirable. Such memories allow for entanglement distillation, purification and quantum repeater protocols that extend the size, speed and distance of the network. However, to be effective, the memory must be robust against the entanglement generation protocol, which typically must be repeated many times. Here we evaluate the prospects of using carbon nuclear spins in diamond as quantum memories that are compatible with quantum networks based on single nitrogen vacancy (NV) defects in diamond. We present a theoretical framework to describe the dephasing of the nuclear spins under repeated generation of NV spin-photon entanglement and show that quantum states can be stored during hundreds of repetitions using typical experimental coupling parameters. This result demonstrates that nuclear spins with weak hyperfine couplings are promising quantum memories for quantum networks.

  1. Robust sequential working memory recall in heterogeneous cognitive networks

    PubMed Central

    Rabinovich, Mikhail I.; Sokolov, Yury; Kozma, Robert

    2014-01-01

    Psychiatric disorders are often caused by partial heterogeneous disinhibition in cognitive networks, controlling sequential and spatial working memory (SWM). Such dynamic connectivity changes suggest that the normal relationship between the neuronal components within the network deteriorates. As a result, competitive network dynamics is qualitatively altered. This dynamics defines the robust recall of the sequential information from memory and, thus, the SWM capacity. To understand pathological and non-pathological bifurcations of the sequential memory dynamics, here we investigate the model of recurrent inhibitory-excitatory networks with heterogeneous inhibition. We consider the ensemble of units with all-to-all inhibitory connections, in which the connection strengths are monotonically distributed at some interval. Based on computer experiments and studying the Lyapunov exponents, we observed and analyzed the new phenomenon—clustered sequential dynamics. The results are interpreted in the context of the winnerless competition principle. Accordingly, clustered sequential dynamics is represented in the phase space of the model by two weakly interacting quasi-attractors. One of them is similar to the sequential heteroclinic chain—the regular image of SWM, while the other is a quasi-chaotic attractor. Coexistence of these quasi-attractors means that the recall of the normal information sequence is intermittently interrupted by episodes with chaotic dynamics. We indicate potential dynamic ways for augmenting damaged working memory and other cognitive functions. PMID:25452717

  2. Progress In Optical Memory Technology

    NASA Astrophysics Data System (ADS)

    Tsunoda, Yoshito

    1987-01-01

    More than 20 years have passed since the concept of optical memory was first proposed in 1966. Since then considerable progress has been made in this area together with the creation of completely new markets of optical memory in consumer and computer application areas. The first generation of optical memory was mainly developed with holographic recording technology in late 1960s and early 1970s. Considerable number of developments have been done in both analog and digital memory applications. Unfortunately, these technologies did not meet a chance to be a commercial product. The second generation of optical memory started at the beginning of 1970s with bit by bit recording technology. Read-only type optical memories such as video disks and compact audio disks have extensively investigated. Since laser diodes were first applied to optical video disk read out in 1976, there have been extensive developments of laser diode pick-ups for optical disk memory systems. The third generation of optical memory started in 1978 with bit by bit read/write technology using laser diodes. Developments of recording materials including both write-once and erasable have been actively pursued at several research institutes. These technologies are mainly focused on the optical memory systems for computer application. Such practical applications of optical memory technology has resulted in the creation of such new products as compact audio disks and computer file memories.

  3. A multiprocessor computer simulation model employing a feedback scheduler/allocator for memory space and bandwidth matching and TMR processing

    NASA Technical Reports Server (NTRS)

    Bradley, D. B.; Irwin, J. D.

    1974-01-01

    A computer simulation model for a multiprocessor computer is developed that is useful for studying the problem of matching multiprocessor's memory space, memory bandwidth and numbers and speeds of processors with aggregate job set characteristics. The model assumes an input work load of a set of recurrent jobs. The model includes a feedback scheduler/allocator which attempts to improve system performance through higher memory bandwidth utilization by matching individual job requirements for space and bandwidth with space availability and estimates of bandwidth availability at the times of memory allocation. The simulation model includes provisions for specifying precedence relations among the jobs in a job set, and provisions for specifying precedence execution of TMR (Triple Modular Redundant and SIMPLEX (non redundant) jobs.

  4. Computational principles of working memory in sentence comprehension.

    PubMed

    Lewis, Richard L; Vasishth, Shravan; Van Dyke, Julie A

    2006-10-01

    Understanding a sentence requires a working memory of the partial products of comprehension, so that linguistic relations between temporally distal parts of the sentence can be rapidly computed. We describe an emerging theoretical framework for this working memory system that incorporates several independently motivated principles of memory: a sharply limited attentional focus, rapid retrieval of item (but not order) information subject to interference from similar items, and activation decay (forgetting over time). A computational model embodying these principles provides an explanation of the functional capacities and severe limitations of human processing, as well as accounts of reading times. The broad implication is that the detailed nature of cross-linguistic sentence processing emerges from the interaction of general principles of human memory with the specialized task of language comprehension.

  5. TiD-Introducing and Benchmarking an Event-Delivery System for Brain-Computer Interfaces.

    PubMed

    Breitwieser, Christian; Tavella, Michele; Schreuder, Martijn; Cincotti, Febo; Leeb, Robert; Muller-Putz, Gernot R

    2017-12-01

    In this paper, we present and analyze an event distribution system for brain-computer interfaces. Events are commonly used to mark and describe incidents during an experiment and are therefore critical for later data analysis or immediate real-time processing. The presented approach, called Tools for brain-computer interaction interface D (TiD), delivers messages in XML format via a buslike system using transmission control protocol connections or shared memory. A dedicated server dispatches TiD messages to distributed or local clients. The TiD message is designed to be flexible and contains time stamps for event synchronization, whereas events describe incidents, which occur during an experiment. TiD was tested extensively toward stability and latency. The effect of an occurring event jitter was analyzed and benchmarked on a reference implementation under different conditions as gigabit and 100-Mb Ethernet or Wi-Fi with a different number of event receivers. A 3-dB signal attenuation, which occurs when averaging jitter influenced trials aligned by events, is starting to become visible at around 1-2 kHz in the case of a gigabit connection. Mean event distribution times across operating systems are ranging from 0.3 to 0.5ms for a gigabit network connection for 10 6 events. Results for other environmental conditions are available in this paper. References already using TiD for event distribution are provided showing the applicability of TiD for event delivery with distributed or local clients.

  6. MRPack: Multi-Algorithm Execution Using Compute-Intensive Approach in MapReduce

    PubMed Central

    2015-01-01

    Large quantities of data have been generated from multiple sources at exponential rates in the last few years. These data are generated at high velocity as real time and streaming data in variety of formats. These characteristics give rise to challenges in its modeling, computation, and processing. Hadoop MapReduce (MR) is a well known data-intensive distributed processing framework using the distributed file system (DFS) for Big Data. Current implementations of MR only support execution of a single algorithm in the entire Hadoop cluster. In this paper, we propose MapReducePack (MRPack), a variation of MR that supports execution of a set of related algorithms in a single MR job. We exploit the computational capability of a cluster by increasing the compute-intensiveness of MapReduce while maintaining its data-intensive approach. It uses the available computing resources by dynamically managing the task assignment and intermediate data. Intermediate data from multiple algorithms are managed using multi-key and skew mitigation strategies. The performance study of the proposed system shows that it is time, I/O, and memory efficient compared to the default MapReduce. The proposed approach reduces the execution time by 200% with an approximate 50% decrease in I/O cost. Complexity and qualitative results analysis shows significant performance improvement. PMID:26305223

  7. MRPack: Multi-Algorithm Execution Using Compute-Intensive Approach in MapReduce.

    PubMed

    Idris, Muhammad; Hussain, Shujaat; Siddiqi, Muhammad Hameed; Hassan, Waseem; Syed Muhammad Bilal, Hafiz; Lee, Sungyoung

    2015-01-01

    Large quantities of data have been generated from multiple sources at exponential rates in the last few years. These data are generated at high velocity as real time and streaming data in variety of formats. These characteristics give rise to challenges in its modeling, computation, and processing. Hadoop MapReduce (MR) is a well known data-intensive distributed processing framework using the distributed file system (DFS) for Big Data. Current implementations of MR only support execution of a single algorithm in the entire Hadoop cluster. In this paper, we propose MapReducePack (MRPack), a variation of MR that supports execution of a set of related algorithms in a single MR job. We exploit the computational capability of a cluster by increasing the compute-intensiveness of MapReduce while maintaining its data-intensive approach. It uses the available computing resources by dynamically managing the task assignment and intermediate data. Intermediate data from multiple algorithms are managed using multi-key and skew mitigation strategies. The performance study of the proposed system shows that it is time, I/O, and memory efficient compared to the default MapReduce. The proposed approach reduces the execution time by 200% with an approximate 50% decrease in I/O cost. Complexity and qualitative results analysis shows significant performance improvement.

  8. Massively parallel sparse matrix function calculations with NTPoly

    NASA Astrophysics Data System (ADS)

    Dawson, William; Nakajima, Takahito

    2018-04-01

    We present NTPoly, a massively parallel library for computing the functions of sparse, symmetric matrices. The theory of matrix functions is a well developed framework with a wide range of applications including differential equations, graph theory, and electronic structure calculations. One particularly important application area is diagonalization free methods in quantum chemistry. When the input and output of the matrix function are sparse, methods based on polynomial expansions can be used to compute matrix functions in linear time. We present a library based on these methods that can compute a variety of matrix functions. Distributed memory parallelization is based on a communication avoiding sparse matrix multiplication algorithm. OpenMP task parallellization is utilized to implement hybrid parallelization. We describe NTPoly's interface and show how it can be integrated with programs written in many different programming languages. We demonstrate the merits of NTPoly by performing large scale calculations on the K computer.

  9. User's manual: Subsonic/supersonic advanced panel pilot code

    NASA Technical Reports Server (NTRS)

    Moran, J.; Tinoco, E. N.; Johnson, F. T.

    1978-01-01

    Sufficient instructions for running the subsonic/supersonic advanced panel pilot code were developed. This software was developed as a vehicle for numerical experimentation and it should not be construed to represent a finished production program. The pilot code is based on a higher order panel method using linearly varying source and quadratically varying doublet distributions for computing both linearized supersonic and subsonic flow over arbitrary wings and bodies. This user's manual contains complete input and output descriptions. A brief description of the method is given as well as practical instructions for proper configurations modeling. Computed results are also included to demonstrate some of the capabilities of the pilot code. The computer program is written in FORTRAN IV for the SCOPE 3.4.4 operations system of the Ames CDC 7600 computer. The program uses overlay structure and thirteen disk files, and it requires approximately 132000 (Octal) central memory words.

  10. Towards Image Documentation of Grave Coverings and Epitaphs for Exhibition Purposes

    NASA Astrophysics Data System (ADS)

    Pomaska, G.; Dementiev, N.

    2015-08-01

    Epitaphs and memorials as immovable items in sacred spaces provide with their inscriptions valuable documents of history. Today not only photography or photos are suitable as presentation material for cultural assets in museums. Computer vision and photogrammetry provide methods for recording, 3D modelling, rendering under artificial light conditions as well as further options for analysis and investigation of artistry. For exhibition purposes epitaphs have been recorded by the structure from motion method. A comparison of different kinds of SFM software distributions could be worked out. The suitability of open source software in the mesh processing chain from modelling up to displaying on computer monitors should be answered. Raspberry Pi, a computer in SoC technology works as a media server under Linux applying Python scripts. Will the little computer meet the requirements for a museum and is the handling comfortable enough for staff and visitors? This contribution reports about the case study.

  11. Performance and scalability evaluation of "Big Memory" on Blue Gene Linux.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshii, K.; Iskra, K.; Naik, H.

    2011-05-01

    We address memory performance issues observed in Blue Gene Linux and discuss the design and implementation of 'Big Memory' - an alternative, transparent memory space introduced to eliminate the memory performance issues. We evaluate the performance of Big Memory using custom memory benchmarks, NAS Parallel Benchmarks, and the Parallel Ocean Program, at a scale of up to 4,096 nodes. We find that Big Memory successfully resolves the performance issues normally encountered in Blue Gene Linux. For the ocean simulation program, we even find that Linux with Big Memory provides better scalability than does the lightweight compute node kernel designed solelymore » for high-performance applications. Originally intended exclusively for compute node tasks, our new memory subsystem dramatically improves the performance of certain I/O node applications as well. We demonstrate this performance using the central processor of the LOw Frequency ARray radio telescope as an example.« less

  12. Low latency and persistent data storage

    DOEpatents

    Fitch, Blake G; Franceschini, Michele M; Jagmohan, Ashish; Takken, Todd

    2014-11-04

    Persistent data storage is provided by a computer program product that includes computer program code configured for receiving a low latency store command that includes write data. The write data is written to a first memory device that is implemented by a nonvolatile solid-state memory technology characterized by a first access speed. It is acknowledged that the write data has been successfully written to the first memory device. The write data is written to a second memory device that is implemented by a volatile memory technology. At least a portion of the data in the first memory device is written to a third memory device when a predetermined amount of data has been accumulated in the first memory device. The third memory device is implemented by a nonvolatile solid-state memory technology characterized by a second access speed that is slower than the first access speed.

  13. A simplified computational memory model from information processing.

    PubMed

    Zhang, Lanhua; Zhang, Dongsheng; Deng, Yuqin; Ding, Xiaoqian; Wang, Yan; Tang, Yiyuan; Sun, Baoliang

    2016-11-23

    This paper is intended to propose a computational model for memory from the view of information processing. The model, called simplified memory information retrieval network (SMIRN), is a bi-modular hierarchical functional memory network by abstracting memory function and simulating memory information processing. At first meta-memory is defined to express the neuron or brain cortices based on the biology and graph theories, and we develop an intra-modular network with the modeling algorithm by mapping the node and edge, and then the bi-modular network is delineated with intra-modular and inter-modular. At last a polynomial retrieval algorithm is introduced. In this paper we simulate the memory phenomena and functions of memorization and strengthening by information processing algorithms. The theoretical analysis and the simulation results show that the model is in accordance with the memory phenomena from information processing view.

  14. A portable MPI-based parallel vector template library

    NASA Technical Reports Server (NTRS)

    Sheffler, Thomas J.

    1995-01-01

    This paper discusses the design and implementation of a polymorphic collection library for distributed address-space parallel computers. The library provides a data-parallel programming model for C++ by providing three main components: a single generic collection class, generic algorithms over collections, and generic algebraic combining functions. Collection elements are the fourth component of a program written using the library and may be either of the built-in types of C or of user-defined types. Many ideas are borrowed from the Standard Template Library (STL) of C++, although a restricted programming model is proposed because of the distributed address-space memory model assumed. Whereas the STL provides standard collections and implementations of algorithms for uniprocessors, this paper advocates standardizing interfaces that may be customized for different parallel computers. Just as the STL attempts to increase programmer productivity through code reuse, a similar standard for parallel computers could provide programmers with a standard set of algorithms portable across many different architectures. The efficacy of this approach is verified by examining performance data collected from an initial implementation of the library running on an IBM SP-2 and an Intel Paragon.

  15. A Portable MPI-Based Parallel Vector Template Library

    NASA Technical Reports Server (NTRS)

    Sheffler, Thomas J.

    1995-01-01

    This paper discusses the design and implementation of a polymorphic collection library for distributed address-space parallel computers. The library provides a data-parallel programming model for C + + by providing three main components: a single generic collection class, generic algorithms over collections, and generic algebraic combining functions. Collection elements are the fourth component of a program written using the library and may be either of the built-in types of c or of user-defined types. Many ideas are borrowed from the Standard Template Library (STL) of C++, although a restricted programming model is proposed because of the distributed address-space memory model assumed. Whereas the STL provides standard collections and implementations of algorithms for uniprocessors, this paper advocates standardizing interfaces that may be customized for different parallel computers. Just as the STL attempts to increase programmer productivity through code reuse, a similar standard for parallel computers could provide programmers with a standard set of algorithms portable across many different architectures. The efficacy of this approach is verified by examining performance data collected from an initial implementation of the library running on an IBM SP-2 and an Intel Paragon.

  16. A computer program for two-particle generalized coefficients of fractional parentage

    NASA Astrophysics Data System (ADS)

    Deveikis, A.; Juodagalvis, A.

    2008-10-01

    We present a FORTRAN90 program GCFP for the calculation of the generalized coefficients of fractional parentage (generalized CFPs or GCFP). The approach is based on the observation that the multi-shell CFPs can be expressed in terms of single-shell CFPs, while the latter can be readily calculated employing a simple enumeration scheme of antisymmetric A-particle states and an efficient method of construction of the idempotent matrix eigenvectors. The program provides fast calculation of GCFPs for a given particle number and produces results possessing numerical uncertainties below the desired tolerance. A single j-shell is defined by four quantum numbers, (e,l,j,t). A supplemental C++ program parGCFP allows calculation to be done in batches and/or in parallel. Program summaryProgram title:GCFP, parGCFP Catalogue identifier: AEBI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 17 199 No. of bytes in distributed program, including test data, etc.: 88 658 Distribution format: tar.gz Programming language: FORTRAN 77/90 ( GCFP), C++ ( parGCFP) Computer: Any computer with suitable compilers. The program GCFP requires a FORTRAN 77/90 compiler. The auxiliary program parGCFP requires GNU-C++ compatible compiler, while its parallel version additionally requires MPI-1 standard libraries Operating system: Linux (Ubuntu, Scientific) (all programs), also checked on Windows XP ( GCFP, serial version of parGCFP) RAM: The memory demand depends on the computation and output mode. If this mode is not 4, the program GCFP demands the following amounts of memory on a computer with Linux operating system. It requires around 2 MB of RAM for the A=12 system at E⩽2. Computation of the A=50 particle system requires around 60 MB of RAM at E=0 and ˜70 MB at E=2 (note, however, that the calculation of this system will take a very long time). If the computation and output mode is set to 4, the memory demands by GCFP are significantly larger. Calculation of GCFPs of A=12 system at E=1 requires 145 MB. The program parGCFP requires additional 2.5 and 4.5 MB of memory for the serial and parallel version, respectively. Classification: 17.18 Nature of problem: The program GCFP generates a list of two-particle coefficients of fractional parentage for several j-shells with isospin. Solution method: The method is based on the observation that multishell coefficients of fractional parentage can be expressed in terms of single-shell CFPs [1]. The latter are calculated using the algorithm [2,3] for a spectral decomposition of an antisymmetrization operator matrix Y. The coefficients of fractional parentage are those eigenvectors of the antisymmetrization operator matrix Y that correspond to unit eigenvalues. A computer code for these coefficients is available [4]. The program GCFP offers computation of two-particle multishell coefficients of fractional parentage. The program parGCFP allows a batch calculation using one input file. Sets of GCFPs are independent and can be calculated in parallel. Restrictions:A<86 when E=0 (due to the memory constraints); small numbers of particles allow significantly higher excitations, though the shell with j⩾11/2 cannot get full (it is the implementation constraint). Unusual features: Using the program GCFP it is possible to determine allowed particle configurations without the GCFP computation. The GCFPs can be calculated either for all particle configurations at once or for a specified particle configuration. The values of GCFPs can be printed out with a complete specification in either one file or with the parent and daughter configurations printed in separate files. The latter output mode requires additional time and RAM memory. It is possible to restrict the ( J,T) values of the considered particle configurations. (Here J is the total angular momentum and T is the total isospin of the system.) The program parGCFP produces several result files the number of which equals to the number of particle configurations. To work correctly, the program GCFP needs to be compiled to read parameters from the standard input (the default setting). Running time: It depends on the size of the problem. The minimum time is required, if the computation and output mode ( CompMode) is not 4, but the resulting file is larger. A system with A=12 particles at E=0 (all 9411 GCFPs) took around 1 sec on a Pentium4 2.8 GHz processor with 1 MB L2 cache. The program required about 14 min to calculate all 1.3×10 GCFPs of E=1. The time for all 5.5×10 GCFPs of E=2 was about 53 hours. For this number of particles, the calculation time of both E=0 and E=1 with CompMode = 1 and 4 is nearly the same, when no other processes are running. The case of E=2 could not be calculated with CompMode = 4, because the RAM memory was insufficient. In general, the latter CompMode requires a longer computation time, although the resulting files are smaller in size. The program parGCFP puts virtually no time overhead. Its parallel version speeds-up the calculation. However, the results need to be collected from several files created for each configuration. References: [1] J. Levinsonas, Works of Lithuanian SSR Academy of Sciences 4 (1957) 17. [2] A. Deveikis, A. Bončkus, R. Kalinauskas, Lithuanian Phys. J. 41 (2001) 3. [3] A. Deveikis, R.K. Kalinauskas, B.R. Barrett, Ann. Phys. 296 (2002) 287. [4] A. Deveikis, Comput. Phys. Comm. 173 (2005) 186. (CPC Catalogue ID. ADWI_v1_0)

  17. Malware Memory Analysis of the IVYL Linux Rootkit: Investigating a Publicly Available Linux Rootkit Using the Volatility Memory Analysis Framework

    DTIC Science & Technology

    2015-04-01

    report is to examine how a computer forensic investigator/incident handler, without specialised computer memory or software reverse engineering skills ...The skills amassed by incident handlers and investigators alike while using Volatility to examine Windows memory images will be of some help...bin/pulseaudio --start --log-target=syslog 1362 1000 1000 nautilus 1366 1000 1000 /usr/lib/pulseaudio/pulse/gconf- helper 1370 1000 1000 nm-applet

  18. Fast entrainment of human electroencephalogram to a theta-band photic flicker during successful memory encoding.

    PubMed

    Sato, Naoyuki

    2013-01-01

    Theta band power (4-8 Hz) in the scalp electroencephalogram (EEG) is thought to be stronger during memory encoding for subsequently remembered items than for forgotten items. According to simultaneous EEG-functional magnetic resonance imaging (fMRI) measurements, the memory-dependent EEG theta is associated with multiple regions of the brain. This suggests that the multiple regions cooperate with EEG theta synchronization during successful memory encoding. However, a question still remains: What kind of neural dynamic organizes such a memory-dependent global network? In this study, the modulation of the EEG theta entrainment property during successful encoding was hypothesized to lead to EEG theta synchronization among a distributed network. Then, a transient response of EEG theta to a theta-band photic flicker with a short duration was evaluated during memory encoding. In the results, flicker-induced EEG power increased and decreased with a time constant of several hundred milliseconds following the onset and the offset of the flicker, respectively. Importantly, the offset response of EEG power was found to be significantly decreased during successful encoding. Moreover, the offset response of the phase locking index was also found to associate with memory performance. According to computational simulations, the results are interpreted as a smaller time constant (i.e., faster response) of a driven harmonic oscillator rather than a change in the spontaneous oscillatory input. This suggests that the fast response of EEG theta forms a global EEG theta network among memory-related regions during successful encoding, and it contributes to a flexible formation of the network along the time course.

  19. Load Balancing Unstructured Adaptive Grids for CFD Problems

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Oliker, Leonid

    1996-01-01

    Mesh adaption is a powerful tool for efficient unstructured-grid computations but causes load imbalance among processors on a parallel machine. A dynamic load balancing method is presented that balances the workload across all processors with a global view. After each parallel tetrahedral mesh adaption, the method first determines if the new mesh is sufficiently unbalanced to warrant a repartitioning. If so, the adapted mesh is repartitioned, with new partitions assigned to processors so that the redistribution cost is minimized. The new partitions are accepted only if the remapping cost is compensated by the improved load balance. Results indicate that this strategy is effective for large-scale scientific computations on distributed-memory multiprocessors.

  20. Nonlinear Fluid Computations in a Distributed Environment

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher A.; Smith, Merritt H.

    1995-01-01

    The performance of a loosely and tightly-coupled workstation cluster is compared against a conventional vector supercomputer for the solution the Reynolds- averaged Navier-Stokes equations. The application geometries include a transonic airfoil, a tiltrotor wing/fuselage, and a wing/body/empennage/nacelle transport. Decomposition is of the manager-worker type, with solution of one grid zone per worker process coupled using the PVM message passing library. Task allocation is determined by grid size and processor speed, subject to available memory penalties. Each fluid zone is computed using an implicit diagonal scheme in an overset mesh framework, while relative body motion is accomplished using an additional worker process to re-establish grid communication.

  1. The Generalized Quantum Episodic Memory Model.

    PubMed

    Trueblood, Jennifer S; Hemmer, Pernille

    2017-11-01

    Recent evidence suggests that experienced events are often mapped to too many episodic states, including those that are logically or experimentally incompatible with one another. For example, episodic over-distribution patterns show that the probability of accepting an item under different mutually exclusive conditions violates the disjunction rule. A related example, called subadditivity, occurs when the probability of accepting an item under mutually exclusive and exhaustive instruction conditions sums to a number >1. Both the over-distribution effect and subadditivity have been widely observed in item and source-memory paradigms. These phenomena are difficult to explain using standard memory frameworks, such as signal-detection theory. A dual-trace model called the over-distribution (OD) model (Brainerd & Reyna, 2008) can explain the episodic over-distribution effect, but not subadditivity. Our goal is to develop a model that can explain both effects. In this paper, we propose the Generalized Quantum Episodic Memory (GQEM) model, which extends the Quantum Episodic Memory (QEM) model developed by Brainerd, Wang, and Reyna (2013). We test GQEM by comparing it to the OD model using data from a novel item-memory experiment and a previously published source-memory experiment (Kellen, Singmann, & Klauer, 2014) examining the over-distribution effect. Using the best-fit parameters from the over-distribution experiments, we conclude by showing that the GQEM model can also account for subadditivity. Overall these results add to a growing body of evidence suggesting that quantum probability theory is a valuable tool in modeling recognition memory. Copyright © 2016 Cognitive Science Society, Inc.

  2. Differentiation and Response Bias in Episodic Memory: Evidence from Reaction Time Distributions

    ERIC Educational Resources Information Center

    Criss, Amy H.

    2010-01-01

    In differentiation models, the processes of encoding and retrieval produce an increase in the distribution of memory strength for targets and a decrease in the distribution of memory strength for foils as the amount of encoding increases. This produces an increase in the hit rate and decrease in the false-alarm rate for a strongly encoded compared…

  3. Direct match data flow memory for data driven computing

    DOEpatents

    Davidson, George S.; Grafe, Victor Gerald

    1997-01-01

    A data flow computer and method of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status bit to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a "fire" signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor.

  4. Direct match data flow memory for data driven computing

    DOEpatents

    Davidson, G.S.; Grafe, V.G.

    1997-10-07

    A data flow computer and method of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status bit to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a ``fire`` signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor. 11 figs.

  5. Quantum computers: Definition and implementations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Delgado, Carlos A.; Kok, Pieter

    The DiVincenzo criteria for implementing a quantum computer have been seminal in focusing both experimental and theoretical research in quantum-information processing. These criteria were formulated specifically for the circuit model of quantum computing. However, several new models for quantum computing (paradigms) have been proposed that do not seem to fit the criteria well. Therefore, the question is what are the general criteria for implementing quantum computers. To this end, a formal operational definition of a quantum computer is introduced. It is then shown that, according to this definition, a device is a quantum computer if it obeys the following criteria:more » Any quantum computer must consist of a quantum memory, with an additional structure that (1) facilitates a controlled quantum evolution of the quantum memory; (2) includes a method for information theoretic cooling of the memory; and (3) provides a readout mechanism for subsets of the quantum memory. The criteria are met when the device is scalable and operates fault tolerantly. We discuss various existing quantum computing paradigms and how they fit within this framework. Finally, we present a decision tree for selecting an avenue toward building a quantum computer. This is intended to help experimentalists determine the most natural paradigm given a particular physical implementation.« less

  6. Impact of singular excessive computer game and television exposure on sleep patterns and memory performance of school-aged children.

    PubMed

    Dworak, Markus; Schierl, Thomas; Bruns, Thomas; Strüder, Heiko Klaus

    2007-11-01

    Television and computer game consumption are a powerful influence in the lives of most children. Previous evidence has supported the notion that media exposure could impair a variety of behavioral characteristics. Excessive television viewing and computer game playing have been associated with many psychiatric symptoms, especially emotional and behavioral symptoms, somatic complaints, attention problems such as hyperactivity, and family interaction problems. Nevertheless, there is insufficient knowledge about the relationship between singular excessive media consumption on sleep patterns and linked implications on children. The aim of this study was to investigate the effects of singular excessive television and computer game consumption on sleep patterns and memory performance of children. Eleven school-aged children were recruited for this polysomnographic study. Children were exposed to voluntary excessive television and computer game consumption. In the subsequent night, polysomnographic measurements were conducted to measure sleep-architecture and sleep-continuity parameters. In addition, a visual and verbal memory test was conducted before media stimulation and after the subsequent sleeping period to determine visuospatial and verbal memory performance. Only computer game playing resulted in significant reduced amounts of slow-wave sleep as well as significant declines in verbal memory performance. Prolonged sleep-onset latency and more stage 2 sleep were also detected after previous computer game consumption. No effects on rapid eye movement sleep were observed. Television viewing reduced sleep efficiency significantly but did not affect sleep patterns. The results suggest that television and computer game exposure affect children's sleep and deteriorate verbal cognitive performance, which supports the hypothesis of the negative influence of media consumption on children's sleep, learning, and memory.

  7. Newton-like methods for Navier-Stokes solution

    NASA Astrophysics Data System (ADS)

    Qin, N.; Xu, X.; Richards, B. E.

    1992-12-01

    The paper reports on Newton-like methods called SFDN-alpha-GMRES and SQN-alpha-GMRES methods that have been devised and proven as powerful schemes for large nonlinear problems typical of viscous compressible Navier-Stokes solutions. They can be applied using a partially converged solution from a conventional explicit or approximate implicit method. Developments have included the efficient parallelization of the schemes on a distributed memory parallel computer. The methods are illustrated using a RISC workstation and a transputer parallel system respectively to solve a hypersonic vortical flow.

  8. 3D Navier-Stokes Flow Analysis for Shared and Distributed Memory MIMD Computers

    DTIC Science & Technology

    1992-09-15

    arithmetical averaged density or Stefan -Boltzmann constant (= 5.67032 x 10-8 ) Oai+1/2 intermediate term for Harten-Yee fluxes - k, O’ constants for k...system of algebraic equations. These equations I are solved using point Gauss- Seidel relaxation. This relaxation scheme is modified to be a lower-upper...interaction of the radiation with the gas. The radiative heat flux per unit area is then I = -(T [EwT - awTdb] (19) Here a is the Stefan Boltzmann

  9. Experiences Using OpenMP Based on Compiler Directed Software DSM on a PC Cluster

    NASA Technical Reports Server (NTRS)

    Hess, Matthias; Jost, Gabriele; Mueller, Matthias; Ruehle, Roland; Biegel, Bryan (Technical Monitor)

    2002-01-01

    In this work we report on our experiences running OpenMP (message passing) programs on a commodity cluster of PCs (personal computers) running a software distributed shared memory (DSM) system. We describe our test environment and report on the performance of a subset of the NAS (NASA Advanced Supercomputing) Parallel Benchmarks that have been automatically parallelized for OpenMP. We compare the performance of the OpenMP implementations with that of their message passing counterparts and discuss performance differences.

  10. Theta synchronization networks emerge during human object-place memory encoding.

    PubMed

    Sato, Naoyuki; Yamaguchi, Yoko

    2007-03-26

    Recent rodent hippocampus studies have suggested that theta rhythm-dependent neural dynamics ('theta phase precession') is essential for an on-line memory formation. A computational study indicated that the phase precession enables a human object-place association memory with voluntary eye movements, although it is still an open question whether the human brain uses the dynamics. Here we elucidated subsequent memory-correlated activities in human scalp electroencephalography in an object-place association memory designed according the former computational study. Our results successfully demonstrated that subsequent memory recall is characterized by an increase in theta power and coherence, and further, that multiple theta synchronization networks emerge. These findings suggest the human theta dynamics in common with rodents in episodic memory formation.

  11. Method and structure for skewed block-cyclic distribution of lower-dimensional data arrays in higher-dimensional processor grids

    DOEpatents

    Chatterjee, Siddhartha [Yorktown Heights, NY; Gunnels, John A [Brewster, NY

    2011-11-08

    A method and structure of distributing elements of an array of data in a computer memory to a specific processor of a multi-dimensional mesh of parallel processors includes designating a distribution of elements of at least a portion of the array to be executed by specific processors in the multi-dimensional mesh of parallel processors. The pattern of the designating includes a cyclical repetitive pattern of the parallel processor mesh, as modified to have a skew in at least one dimension so that both a row of data in the array and a column of data in the array map to respective contiguous groupings of the processors such that a dimension of the contiguous groupings is greater than one.

  12. Computer memory: the LLL experience. [Octopus computer network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fletcher, J.G.

    1976-02-01

    Those aspects of Octopus computer network design are reviewed that relate to memory and storage. Emphasis is placed on the difficulties and problems that arise because of the limitations of present storage devices, and indications are made of the directions in which technological advance could be of most value. (auth)

  13. Xyce parallel electronic simulator users guide, version 6.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R; Mei, Ting; Russo, Thomas V.

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas; Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers; A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models; Device models that are specifically tailored to meet Sandia's needs, including some radiationaware devices (for Sandia users only); and Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase-a message passing parallel implementation-which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  14. Xyce parallel electronic simulator users' guide, Version 6.0.1.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R; Mei, Ting; Russo, Thomas V.

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandias needs, including some radiationaware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase a message passing parallel implementation which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  15. Xyce parallel electronic simulator users guide, version 6.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R; Mei, Ting; Russo, Thomas V.

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandias needs, including some radiationaware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase a message passing parallel implementation which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  16. Parallelization and checkpointing of GPU applications through program transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solano-Quinde, Lizandro Damian

    2012-01-01

    GPUs have emerged as a powerful tool for accelerating general-purpose applications. The availability of programming languages that makes writing general-purpose applications for running on GPUs tractable have consolidated GPUs as an alternative for accelerating general purpose applications. Among the areas that have benefited from GPU acceleration are: signal and image processing, computational fluid dynamics, quantum chemistry, and, in general, the High Performance Computing (HPC) Industry. In order to continue to exploit higher levels of parallelism with GPUs, multi-GPU systems are gaining popularity. In this context, single-GPU applications are parallelized for running in multi-GPU systems. Furthermore, multi-GPU systems help to solvemore » the GPU memory limitation for applications with large application memory footprint. Parallelizing single-GPU applications has been approached by libraries that distribute the workload at runtime, however, they impose execution overhead and are not portable. On the other hand, on traditional CPU systems, parallelization has been approached through application transformation at pre-compile time, which enhances the application to distribute the workload at application level and does not have the issues of library-based approaches. Hence, a parallelization scheme for GPU systems based on application transformation is needed. Like any computing engine of today, reliability is also a concern in GPUs. GPUs are vulnerable to transient and permanent failures. Current checkpoint/restart techniques are not suitable for systems with GPUs. Checkpointing for GPU systems present new and interesting challenges, primarily due to the natural differences imposed by the hardware design, the memory subsystem architecture, the massive number of threads, and the limited amount of synchronization among threads. Therefore, a checkpoint/restart technique suitable for GPU systems is needed. The goal of this work is to exploit higher levels of parallelism and to develop support for application-level fault tolerance in applications using multiple GPUs. Our techniques reduce the burden of enhancing single-GPU applications to support these features. To achieve our goal, this work designs and implements a framework for enhancing a single-GPU OpenCL application through application transformation.« less

  17. Computational Cognitive Neuroscience of Early Memory Development

    ERIC Educational Resources Information Center

    Munakata, Yuko

    2004-01-01

    Numerous brain areas work in concert to subserve memory, with distinct memory functions relying differentially on distinct brain areas. For example, semantic memory relies heavily on posterior cortical regions, episodic memory on hippocampal regions, and working memory on prefrontal cortical regions. This article reviews relevant findings from…

  18. Quantitative Characterization of the T Cell Receptor Repertoire of Naïve and Memory Subsets Using an Integrated Experimental and Computational Pipeline Which Is Robust, Economical, and Versatile

    PubMed Central

    Oakes, Theres; Heather, James M.; Best, Katharine; Byng-Maddick, Rachel; Husovsky, Connor; Ismail, Mazlina; Joshi, Kroopa; Maxwell, Gavin; Noursadeghi, Mahdad; Riddell, Natalie; Ruehl, Tabea; Turner, Carolin T.; Uddin, Imran; Chain, Benny

    2017-01-01

    The T cell receptor (TCR) repertoire can provide a personalized biomarker for infectious and non-infectious diseases. We describe a protocol for amplifying, sequencing, and analyzing TCRs which is robust, sensitive, and versatile. The key experimental step is ligation of a single-stranded oligonucleotide to the 3′ end of the TCR cDNA. This allows amplification of all possible rearrangements using a single set of primers per locus. It also introduces a unique molecular identifier to label each starting cDNA molecule. This molecular identifier is used to correct for sequence errors and for effects of differential PCR amplification efficiency, thus producing more accurate measures of the true TCR frequency within the sample. This integrated experimental and computational pipeline is applied to the analysis of human memory and naive subpopulations, and results in consistent measures of diversity and inequality. After error correction, the distribution of TCR sequence abundance in all subpopulations followed a power law over a wide range of values. The power law exponent differed between naïve and memory populations, but was consistent between individuals. The integrated experimental and analysis pipeline we describe is appropriate to studies of T cell responses in a broad range of physiological and pathological contexts. PMID:29075258

  19. Multiprocessing MCNP on an IBN RS/6000 cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinney, G.W.; West, J.T.

    1993-01-01

    The advent of high-performance computer systems has brought to maturity programming concepts like vectorization, multiprocessing, and multitasking. While there are many schools of thought as to the most significant factor in obtaining order-of-magnitude increases in performance, such speedup can only be achieved by integrating the computer system and application code. Vectorization leads to faster manipulation of arrays by overlapping instruction CPU cycles. Discrete ordinates codes, which require the solving of large matrices, have proved to be major benefactors of vectorization. Monte Carlo transport, on the other hand, typically contains numerous logic statements and requires extensive redevelopment to benefit from vectorization.more » Multiprocessing and multitasking provide additional CPU cycles via multiple processors. Such systems are generally designed with either common memory access (multitasking) or distributed memory access. In both cases, theoretical speedup, as a function of the number of processors P and the fraction f of task time that multiprocesses, can be formulated using Amdahl's law: S(f, P) =1/(1-f+f/P). However, for most applications, this theoretical limit cannot be achieved because of additional terms (e.g., multitasking overhead, memory overlap, etc.) that are not included in Amdahl's law. Monte Carlo transport is a natural candidate for multiprocessing because the particle tracks are generally independent, and the precision of the result increases as the square Foot of the number of particles tracked.« less

  20. Geospace simulations on the Cell BE processor

    NASA Astrophysics Data System (ADS)

    Germaschewski, K.; Raeder, J.; Larson, D.

    2008-12-01

    OpenGGCM (Open Geospace General circulation Model) is an established numerical code that simulates the Earth's space environment. The most computing intensive part is the MHD (magnetohydrodynamics) solver that models the plasma surrounding Earth and its interaction with Earth's magnetic field and the solar wind flowing in from the sun. Like other global magnetosphere codes, OpenGGCM's realism is limited by computational constraints on grid resolution. We investigate porting of the MHD solver to the Cell BE architecture, a novel inhomogeneous multicore architecture capable of up to 230 GFlops per processor. Realizing this high performance on the Cell processor is a programming challenge, though. We implemented the MHD solver using a multi-level parallel approach: On the coarsest level, the problem is distributed to processors based upon the usual domain decomposition approach. Then, on each processor, the problem is divided into 3D columns, each of which is handled by the memory limited SPEs (synergistic processing elements) slice by slice. Finally, SIMD instructions are used to fully exploit the vector/SIMD FPUs in each SPE. Memory management needs to be handled explicitly by the code, using DMA to move data from main memory to the per-SPE local store and vice versa. We obtained excellent performance numbers, a speed-up of a factor of 25 compared to just using the main processor, while still keeping the numerical implementation details of the code maintainable.

Top