Humidity-Induced Charge Leakage and Field Attenuation in Electric Field Microsensors
Zhang, Haiyan; Fang, Dongming; Yang, Pengfei; Peng, Chunrong; Wen, Xiaolong; Xia, Shanhong
2012-01-01
The steady-state zero output of static electric field measuring systems often fluctuates, which is caused mainly by the finite leakage resistance of the water film on the surface of the electric field microsensor package. The water adsorption has been calculated using the Boltzmann distribution equation at various relative humidities for borosilicate glass and polytetrafluoroethylene surfaces. At various humidities, water film thickness has been calculated, and the induced charge leakage and field attenuation have been theoretically investigated. Experiments have been performed with microsensors to verify the theoretical predictions and the results are in good agreement. PMID:22666077
Lee, Chi-Yuan; Weng, Fang-Bor; Kuo, Yzu-Wei; Tsai, Chao-Hsuan; Cheng, Yen-Ting; Cheng, Chih-Kai; Lin, Jyun-Ting
2016-01-01
In the chemical reaction that proceeds in a high-temperature proton exchange membrane fuel cell stack (HT-PEMFC stack), the internal local temperature, voltage, pressure, flow and current nonuniformity may cause poor membrane material durability and nonuniform fuel distribution, thus influencing the performance and lifetime of the fuel cell stack. In this paper micro-electro-mechanical systems (MEMS) are utilized to develop a high-temperature electrochemical environment-resistant five-in-one micro-sensor embedded in the cathode channel plate of an HT-PEMFC stack, and materials and process parameters are appropriately selected to protect the micro-sensor against failure or destruction during long-term operation. In-situ measurement of the local temperature, voltage, pressure, flow and current distributions in the HT-PEMFC stack is carried out. This integrated micro-sensor has five functions, and is favorably characterized by small size, good acid resistance and temperature resistance, quick response, real-time measurement, and the goal is being able to be put in any place for measurement without affecting the performance of the battery. PMID:27763559
Lee, Chi-Yuan; Weng, Fang-Bor; Kuo, Yzu-Wei; Tsai, Chao-Hsuan; Cheng, Yen-Ting; Cheng, Chih-Kai; Lin, Jyun-Ting
2016-10-18
In the chemical reaction that proceeds in a high-temperature proton exchange membrane fuel cell stack (HT-PEMFC stack), the internal local temperature, voltage, pressure, flow and current nonuniformity may cause poor membrane material durability and nonuniform fuel distribution, thus influencing the performance and lifetime of the fuel cell stack. In this paper micro-electro-mechanical systems (MEMS) are utilized to develop a high-temperature electrochemical environment-resistant five-in-one micro-sensor embedded in the cathode channel plate of an HT-PEMFC stack, and materials and process parameters are appropriately selected to protect the micro-sensor against failure or destruction during long-term operation. In-situ measurement of the local temperature, voltage, pressure, flow and current distributions in the HT-PEMFC stack is carried out. This integrated micro-sensor has five functions, and is favorably characterized by small size, good acid resistance and temperature resistance, quick response, real-time measurement, and the goal is being able to be put in any place for measurement without affecting the performance of the battery.
Kuo, Long-Sheng; Huang, Hao-Hsiu; Yang, Cheng-Hao; Chen, Ping-Hei
2011-01-01
This study developed portable, non-invasive flexible humidity and temperature microsensors and an in situ wireless sensing system for a proton exchange membrane fuel cell (PEMFC). The system integrated three parts: a flexible capacitive humidity microsensor, a flexible resistive temperature microsensor, and a radio frequency (RF) module for signal transmission. The results show that the capacitive humidity microsensor has a high sensitivity of 0.83 pF%RH−1 and the resistive temperature microsensor also exhibits a high sensitivity of 2.94 × 10−3 °C−1. The established RF module transmits the signals from the two microsensors. The transmission distance can reach 4 m and the response time is less than 0.25 s. The performance measurements demonstrate that the maximum power density of the fuel cell with and without these microsensors are 14.76 mW·cm−2 and 15.90 mW·cm−2, with only 7.17% power loss. PMID:22164099
NASA Technical Reports Server (NTRS)
Kim, Chang-Soo; Lee, Cae-Hyang; Fiering, Jason O.; Ufer, Stefan; Scarantino, Charles W.; Nagle, H. Troy; Fiering, Jason O.; Ufer, Stefan; Nagle, H. Troy; Scarantino, Charles W.
2004-01-01
Abstract - Biochemical sensors for continuous monitoring require dependable periodic self- diagnosis with acceptable simplicity to check its functionality during operation. An in situ self- diagnostic technique for a dissolved oxygen microsensor is proposed in an effort to devise an intelligent microsensor system with an integrated electrochemical actuation electrode. With a built- in platinum microelectrode that surrounds the microsensor, two kinds of microenvironments, called the oxygen-saturated or oxygen-depleted phases, can be created by water electrolysis depending on the polarity. The functionality of the microsensor can be checked during these microenvironment phases. The polarographic oxygen microsensor is fabricated on a flexible polyimide substrate (Kapton) and the feasibility of the proposed concept is demonstrated in a physiological solution. The sensor responds properly during the oxygen-generating and oxygen- depleting phases. The use of these microenvironments for in situ self-calibration is discussed to achieve functional integration as well as structural integration of the microsensor system.
Carbon-Fiber Nitrite Microsensor for In Situ Biofilm Monitoring
During nitrification, nitrite is produced as an intermediate when ammonia is oxidized to nitrate. It is well established that nitrifying biofilm are involved in nitrification episodes in chloraminated drinking water distribution systems with nitrite accumulation occurring during ...
Carbon-Fiber Nitrite Microsensor for In Situ Biofilm Monitoring
During nitrification, nitrite is produced as an intermediate when ammonia is oxidized to nitrate. It is well established that nitrifying biofilm are involved in nitrification episodes in chloraminated drinking water distribution systems with nitrite accumulation occurring during...
Microsensor Technologies for Plant Growth System Monitoring
NASA Technical Reports Server (NTRS)
Kim, Chang-Soo
2004-01-01
This document covered the following: a) demonstration of feasibility of microsensor for tube and particulate growth systems; b) Dissolved oxygen; c)Wetness; d) Flexible microfluidic substrate with microfluidic channels and microsensor arrays; e)Dynamic root zone control/monitoring in microgravity; f)Rapid prototyping of phytoremediation; and g) A new tool for root physiology and pathology.
Flexible Microsensor Array for the Monitoring and Control of Plant Growth System
NASA Technical Reports Server (NTRS)
Kim, Chang-Soo; Porterfield, D. Marshall; Nagle, H. Troy; Brown, Christopher S.
2004-01-01
Testing for plant experiments in space has begun to explore active nutrient delivery concepts in which water and nutrients are replenished on a continuous basis for long-term growth. The goal of this study is to develop a novel microsensor array to provide information on the dissolved oxygen environment in the plant root zone for the optimum control of hydroponics and solid substrate plant cultivation systems in the space environment. Miniaturized polarographic dissolved oxygen sensors have been designed and fabricated on a flexible Kapton (trademark) (polyimide) substrate. Two capabilities of the new microsensor array were explored. First, measurements of dissolved oxygen in the plant root zone in hydroponics and solid substrate culture systems were made. The microsensor array was fabricated on a flexible substrate, and then cut out into a mesh type to make a suspended array that could be placed either in a hydroponics system or in a solid substrate cultivation system to measure the oxygen environments. Second, the in situ self-diagnostic and self-calibration capability (two-point for oxygen) was adopted by dynamically controlling the microenvironment in close proximity to the microsensors. With a built-in generating electrode that surrounds the microsensor, two kinds of microenvironments (oxygen-saturated and oxygen-depleted phases) could be established by water electrolysis depending on the polarity of the generating electrode. The unique features of the new microsensor array (small size, multiple sensors, flexibility and self-diagnosis) can have exceptional benefits for the study and optimization of plant cultivation systems in both terrestrial and microgravity environments. The in situ self-diagnostic and self-calibration features of the microsensor array will also enable continuous verification of the operability during entire plant growth cycles. This concept of automated control of a novel chemical monitoring system will minimize crew time required for maintenance, as well as reduce volume, mass, and power consumption by eliminating bulky diagnosis systems including calibrant (fluid and gas) reservoir and flow system hardware.
Encapsulated microsensors for reservoir interrogation
Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.
2016-03-08
In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.
Electrochemical microsensor system for cancer research on photodynamic therapy in vitro
NASA Astrophysics Data System (ADS)
Marzioch, J.; Kieninger, J.; Sandvik, J. A.; Pettersen, E. O.; Peng, Q.; Urban, G.
2016-10-01
An electrochemical microsensor system to investigate photodynamic therapy of cancer cells in vitro was developed and applied to monitor the cellular respiration during and after photodynamic therapy. The redox activity and therefore influence of the photodynamic drug on the sensor performance was investigated by electrochemical characterization. It was shown, that appropriate operation conditions avoid cross-sensitivity of the sensors to the drug itself. The presented system features a cell culture chamber equipped with microsensors and a laser source to photodynamically treat the cells while simultaneous monitoring of metabolic parameter in situ. Additionally, the optical setup allows to read back fluorescence signals from the photosensitizer itself or other marker molecules parallel to the microsensor readings.
Chemical Microsensor Development for Aerospace Applications
NASA Technical Reports Server (NTRS)
Xu, Jennifer C.; Hunter, Gary W.; Lukco, Dorothy; Chen, Liangyu; Biaggi-Labiosa, Azlin M.
2013-01-01
Numerous aerospace applications, including low-false-alarm fire detection, environmental monitoring, fuel leak detection, and engine emission monitoring, would benefit greatly from robust and low weight, cost, and power consumption chemical microsensors. NASA Glenn Research Center has been working to develop a variety of chemical microsensors with these attributes to address the aforementioned applications. Chemical microsensors using different material platforms and sensing mechanisms have been produced. Approaches using electrochemical cells, resistors, and Schottky diode platforms, combined with nano-based materials, high temperature solid electrolytes, and room temperature polymer electrolytes have been realized to enable different types of microsensors. By understanding the application needs and chemical gas species to be detected, sensing materials and unique microfabrication processes were selected and applied. The chemical microsensors were designed utilizing simple structures and the least number of microfabrication processes possible, while maintaining high yield and low cost. In this presentation, an overview of carbon dioxide (CO2), oxygen (O2), and hydrogen/hydrocarbons (H2/CxHy) microsensors and their fabrication, testing results, and applications will be described. Particular challenges associated with improving the H2/CxHy microsensor contact wire-bonding pad will be discussed. These microsensors represent our research approach and serve as major tools as we expand our sensor development toolbox. Our ultimate goal is to develop robust chemical microsensor systems for aerospace and commercial applications.
NASA Technical Reports Server (NTRS)
Kim, Chang-Soo; Brown, Christopher S.; Nagle, H. Troy
2004-01-01
Plant experiments in space will require active nutrient delivery concepts in which water and nutrients are replenished on a continuous basis for long-term growth. The goal of this study is to develop a novel microsensor array to provide information on the dissolved oxygen environment in the plant root zone for the optimum control of plant cultivation systems in the space environment. Control of water and oxygen is limited by the current state-of-the-art in sensor technology. Two capabilities of the new microsensor array were tested. First, a novel in situ self-diagnosis/self-calibration capability for the microsensor was explored by dynamically controlling the oxygen microenvironment in close proximity to an amperometric dissolved oxygen microsensors. A pair of integrated electrochemical actuator electrodes provided the microenvironments based on water electrolysis. Miniaturized thin film dissolved oxygen microsensors on a flexible polyimide (Kapton(Registered Trademark)? substrate were fabricated and their performances were tested. Secondly, measurements of dissolved oxygen in two representative plant growth systems were made, which had not been performed previously due to lack of proper sensing technology. The responses of the oxygen microsensor array on a flexible polymer substrate properly reflected the oxygen contents on the surface of a porous tube nutrient delivery system and within a particulate substrate system. Additionally, we demonstrated the feasibility of using a 4-point thin film microprobe for water contents measurements for both plant growth systems. mechanical flexibility, and self-diagnosis. The proposed technology is anticipated to provide a reliable sensor feedback plant growth nutrient delivery systems in both terrestrial environment and the microgravity environment during long term space missions. The unique features of the sensor include small size and volume, multiple-point sensing,
Flexible Microsensor Array for the Root Zone Monitoring of Porous Tube Plant Growth System
NASA Technical Reports Server (NTRS)
Sathyan, Sandeep; Kim, Chang-Soo; Porterfield, D. Marshall; Nagle, H. Troy; Brown, Christopher S.
2004-01-01
Control of oxygen and water in the root zone is vital to support plant growth in the microgravity environment. The ability to control these sometimes opposing parameters in the root zone is dependent upon the availability of sensors to detect these elements and provide feedback for control systems. In the present study we demonstrate the feasibility of using microsensor arrays on a flexible substrate for dissolved oxygen detection, and a 4-point impedance microprobe for surface wetness detection on the surface of a porous tube (PT) nutrient delivery system. The oxygen microsensor reported surface oxygen concentrations that correlated with the oxygen concentrations of the solution inside the PT when operated at positive pressures. At negative pressures the microsensor shows convergence to zero saturation (2.2 micro mol/L) values due to inadequate water film formation on porous tube surface. The 4-point microprobe is useful as a wetness detector as it provides a clear differentiation between dry and wet surfaces. The unique features of the dissolved oxygen microsensor array and 4-point microprobe include small and simple design, flexibility and multipoint sensing. The demonstrated technology is anticipated to provide low cost, and highly reliable sensor feedback monitoring plant growth nutrient delivery system in both terrestrial and microgravity environments.
Study on digital closed-loop system of silicon resonant micro-sensor
NASA Astrophysics Data System (ADS)
Xu, Yefeng; He, Mengke
2008-10-01
Designing a micro, high reliability weak signal extracting system is a critical problem need to be solved in the application of silicon resonant micro-sensor. The closed-loop testing system based on FPGA uses software to replace hardware circuit which dramatically decrease the system's mass and power consumption and make the system more compact, both correlation theory and frequency scanning scheme are used in extracting weak signal, the adaptive frequency scanning arithmetic ensures the system real-time. The error model was analyzed to show the solution to enhance the system's measurement precision. The experiment results show that the closed-loop testing system based on FPGA has the personality of low power consumption, high precision, high-speed, real-time etc, and also the system is suitable for different kinds of Silicon Resonant Micro-sensor.
2000-08-01
lecturer of LATIN 2006 , (Latin America Theoretical Informat- ics, 2006 ), Valdivia , Chile, March 2006 . 67. Sergio Verdu gave a Keynote Talk at the New...NUMBER OF PAGES 20. LIMITATION OF ABSTRACT UL - 31-Jan- 2006 Data Fusion in Large Arrays of Microsensors (SensorWeb): A Comprehensive Approach to...Transactions on Wireless Communications, February 2006 . 21. A.P. George, W.B. Powell, S.R. Kulkarni. The Statistics of Hierarchical Aggregation for
Chiu, Shih-Wen; Wu, Hsiang-Chiu; Chou, Ting-I; Chen, Hsin; Tang, Kea-Tiong
2014-06-01
This article introduces a power-efficient, miniature electronic nose (e-nose) system. The e-nose system primarily comprises two self-developed chips, a multiple-walled carbon nanotube (MWNT)-polymer based microsensor array, and a low-power signal-processing chip. The microsensor array was fabricated on a silicon wafer by using standard photolithography technology. The microsensor array comprised eight interdigitated electrodes surrounded by SU-8 "walls," which restrained the material-solvent liquid in a defined area of 650 × 760 μm(2). To achieve a reliable sensor-manufacturing process, we used a two-layer deposition method, coating the MWNTs and polymer film as the first and second layers, respectively. The low-power signal-processing chip included array data acquisition circuits and a signal-processing core. The MWNT-polymer microsensor array can directly connect with array data acquisition circuits, which comprise sensor interface circuitry and an analog-to-digital converter; the signal-processing core consists of memory and a microprocessor. The core executes the program, classifying the odor data received from the array data acquisition circuits. The low-power signal-processing chip was designed and fabricated using the Taiwan Semiconductor Manufacturing Company 0.18-μm 1P6M standard complementary metal oxide semiconductor process. The chip consumes only 1.05 mW of power at supply voltages of 1 and 1.8 V for the array data acquisition circuits and the signal-processing core, respectively. The miniature e-nose system, which used a microsensor array, a low-power signal-processing chip, and an embedded k-nearest-neighbor-based pattern recognition algorithm, was developed as a prototype that successfully recognized the complex odors of tincture, sorghum wine, sake, whisky, and vodka.
Wireless microsensors for health monitoring of aircraft structures
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.
2003-01-01
The integration of MEMS, IDTs (interdigital transducers) and required microelectronics and conformal antennas to realize programmable, robust and low cost passive microsensors suitable for many military structures and systems including aircraft, missiles and munitions is presented in this paper. The technology is currently being applied to the structural health monitoring of critical aircraft components. The approach integrates acoustic emission, strain gauges, MEMS accelerometers, gyroscopes and vibration monitoring devices with signal processing electronics to provide real-time indicators of incipient failure of aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ Aircraft structural health monitoring (ASHM) system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensors and MEMS for structural applications including load, vibration and acoustics characterization and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. Additionally a range of sensor types can be integrated onto a single chip with built-in electronics and ASIC (Application Specific Integrated Circuit), providing a low power Microsystems. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State smart electronics or wireless communication systems suitable for condition monitoring of aircraft structures in-flight. A hybrid accelerometer and gyroscope in a single chip suitable for inertial navigation system and other microsensors for health monitoring and condition-based maintenance of structures, drag sensing and control of aircraft, strain and deflection of structures and systems, ice sensing on aircraft, remote temperature and humidity measurement of propellant in munitions, chemical sensing, etc. are discussed.
Intraluminal measurement of papillary duct urine pH, in vivo: a pilot study in the swine kidney.
Handa, Rajash K; Lingeman, James E; Bledsoe, Sharon B; Evan, Andrew P; Connors, Bret A; Johnson, Cynthia D
2016-06-01
We describe the in vivo use of an optic-chemo microsensor to measure intraluminal papillary duct urine pH in a large mammal. Fiber-optic pH microsensors have a tip diameter of 140-µm that allows insertion into papillary Bellini ducts to measure tubule urine proton concentration. Anesthetized adult pigs underwent percutaneous nephrolithotomy to access the lower pole of the urinary collecting system. A flexible nephroscope was advanced towards an upper pole papilla with the fiber-optic microsensor contained within the working channel. The microsensor was then carefully inserted into Bellini ducts to measure tubule urine pH in real time. We successfully recorded tubule urine pH values in five papillary ducts from three pigs (1 farm pig and 2 metabolic syndrome Ossabaw pigs). Our results demonstrate that optical microsensor technology can be used to measure intraluminal urine pH in real time in a living large mammal. This opens the possibility for application of this optical pH sensing technology in nephrolithiasis.
Integrated Inductors for RF Transmitters in CMOS/MEMS Smart Microsensor Systems
Kim, Jong-Wan; Takao, Hidekuni; Sawada, Kazuaki; Ishida, Makoto
2007-01-01
This paper presents the integration of an inductor by complementary metal-oxide-semiconductor (CMOS) compatible processes for integrated smart microsensor systems that have been developed to monitor the motion and vital signs of humans in various environments. Integration of radio frequency transmitter (RF) technology with complementary metal-oxide-semiconductor/micro electro mechanical systems (CMOS/MEMS) microsensors is required to realize the wireless smart microsensors system. The essential RF components such as a voltage controlled RF-CMOS oscillator (VCO), spiral inductors for an LC resonator and an integrated antenna have been fabricated and evaluated experimentally. The fabricated RF transmitter and integrated antenna were packaged with subminiature series A (SMA) connectors, respectively. For the impedance (50 Ω) matching, a bonding wire type inductor was developed. In this paper, the design and fabrication of the bonding wire inductor for impedance matching is described. Integrated techniques for the RF transmitter by CMOS compatible processes have been successfully developed. After matching by inserting the bonding wire inductor between the on-chip integrated antenna and the VCO output, the measured emission power at distance of 5 m from RF transmitter was -37 dBm (0.2 μW).
NASA Astrophysics Data System (ADS)
Rezanezhad, F.; Milojevic, T.; Parsons, C. T.; Smeaton, C. M.; Van Cappellen, P.
2017-12-01
Molecular oxygen (O2) measurements in field and laboratory soil and sediment systems provide useful insight into the biogeochemical functioning of natural environments. However, monitoring soil and sediment O2 is often challenging due to high costs, analyte consumption, and limited customizability and durability of existing O2 sensors. To meet this challenge, an in-house luminescence-based Multi Fibre Optode (MuFO) microsensor system was developed to monitor O2 levels under changing moisture and temperature regimes. The design is simplified by the use of a basic DSLR camera, LED light and fibre optic cables. The technique is based on O2 quenching the luminescent light intensity emitted from a luminophore (platinum(II) meso-tetra(pentafluorophenyl)porphyrin, PtTFPP) that is dip-coated onto the tips of the fibre optic cables, where increasing O2 corresponds to decreasing light intensity, based on the classic Stern-Volmer relationship. High-resolution digital images of the sensor-emitted light are then converted into % O2 saturation. The method was successfully tested in two artificial soil (20% peat, 80% sand) column experiments designed to simulate freeze-thaw cycles (temperature cycling from -10°C to 25°C) and water table fluctuations under controlled conditions. Depth distributions of O2 levels were monitored without interruption for multiple freeze-thaw and water table cycles. No degradation of optode performance or O2 signals were observed for the duration of the column experiments, which supports the long-term deployment of the microsensors for continuous O2 monitoring in field and laboratory settings. The technical specifications of the system are fair, with a detection limit of 0.2% O2 saturation. The main advantages of the MuFO system over commercial applications are the comparatively low cost ($1,800 USD; about ¼ the cost of commercial versions) and ease of customizability. The system has been further developed for near real-time monitoring in the field, where the imaged data is transmitted remotely using a photo-logging system. The MuFO sensor is currently being tested at a Southern Ontario field site in a year-long experiment. Here we present the field and laboratory results of soil O2 monitoring by this newly developed MuFO microsensor system under varying environmental conditions.
Microsensors for border patrol applications
NASA Astrophysics Data System (ADS)
Falkofske, Dwight; Krantz, Brian; Shimazu, Ron; Berglund, Victor
2005-05-01
A top concern in homeland security efforts is the lack of ability to monitor the thousands of miles of open border with our neighbors. It is not currently feasible to continually monitor the borders for illegal intrusions. The MicroSensor System (MSS) seeks to achieve a low-cost monitoring solution that can be efficiently deployed for border patrol applications. The modifications and issues regarding the unique requirements of this application will be discussed and presented. The MicroSensor System was developed by the Defense Microelectronics Activity (DMEA) for military applications, but border patrol applications, with their unique sensor requirements, demand careful adaptation and modification from the military application. Adaptation of the existing sensor design for border applications has been initiated. Coverage issues, communications needs, and other requirements need to be explored for the border patrol application. Currently, border patrol has a number of deficiencies that can be addressed with a microsensor network. First, a distributed networked sensor field could mitigate the porous border intruder detection problem. Second, a unified database needs to be available to identify aliens attempting to cross into the United States. This database needs to take unique characteristics (e.g. biometrics, fingerprints) recovered from a specialized field unit to reliably identify intruders. Finally, this sensor network needs to provide a communication ability to allow border patrol officers to have quick access to intrusion information as well as equipment tracking and voice communication. MSS already addresses the sensing portion of the solution, including detection of acoustic, infrared, magnetic, and seismic events. MSS also includes a low-power networking protocol to lengthen the battery life. In addition to current military requirements, MSS needs a solar panel solution to extend its battery life to 5 years, and an additional backbone communication link. Expanding the capabilities of MSS will go a long way to improving the security of the nation's porous borders.
Conformal and embedded IDT microsensors for health monitoring of structures
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.; Varadan, Vasundara V.
2000-06-01
MEMS are currently being applied to the structural health monitoring of critical aircraft components and composites. The approach integrates acoustic emission, strain gauges, MEMS accelerometers and vibration monitoring aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ aircraft structural health monitoring system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensor and MEMS for structural applications including load, vibration and acoustics characterization and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State wireless communication systems suitable for condition monitoring of aircraft structures in-flight. The main application areas of this investigation include continuos monitoring of a) structural integrity of aging aircraft, b) fatigue cracking, c) corrosion, d) deflection and strain of aircraft structures, wings, and rotorblades, e) impact damage, f) delamination and g) location and propagation of cracks. In this paper we give an overview of wireless programmable microsensors and MEMS and their associated driving electronics for such applications.
Liu, Hong; Tan, Shuying; Sheng, Zhiya; Liu, Yang; Yu, Tong
2014-11-01
The activities and vertical spatial distribution of sulfate reducing bacteria (SRB) in an oxygen (O2 )-based membrane aerated biofilm (MAB) were investigated using microsensor (O2 and H2 S) measurements and molecular techniques (polymerase chain reaction-denaturing gradient gel electrophoresis [PCR-DGGE] and fluorescence in situ hybridization [FISH]). The O2 concentration profile revealed that O2 penetrated from the bottom (substratum) of the gas permeable membrane, and was gradually consumed within the biofilm until it was completely depleted near the biofilm/bulk liquid interface, indicating oxic and anoxic zone in the MAB. The H2 S concentration profile showed that H2 S production was found in the upper 285 µm of the biofilm, indicating a high activity of SRB in this region. The results from DGGE of the PCR-amplified dissimilatory sulfite reductase subunit B (dsrB) gene and FISH showed an uneven spatial distribution of SRB. The maximum SRB biomass was located in the upper biofilm. The information from the molecular analysis can be supplemented with that from microsensor measurements to better understand the microbial community and activity of SRB in the MAB. © 2014 Wiley Periodicals, Inc.
Assessment of air quality microsensors versus reference methods: The EuNetAir joint exercise
NASA Astrophysics Data System (ADS)
Borrego, C.; Costa, A. M.; Ginja, J.; Amorim, M.; Coutinho, M.; Karatzas, K.; Sioumis, Th.; Katsifarakis, N.; Konstantinidis, K.; De Vito, S.; Esposito, E.; Smith, P.; André, N.; Gérard, P.; Francis, L. A.; Castell, N.; Schneider, P.; Viana, M.; Minguillón, M. C.; Reimringer, W.; Otjes, R. P.; von Sicard, O.; Pohle, R.; Elen, B.; Suriano, D.; Pfister, V.; Prato, M.; Dipinto, S.; Penza, M.
2016-12-01
The 1st EuNetAir Air Quality Joint Intercomparison Exercise organized in Aveiro (Portugal) from 13th-27th October 2014, focused on the evaluation and assessment of environmental gas, particulate matter (PM) and meteorological microsensors, versus standard air quality reference methods through an experimental urban air quality monitoring campaign. The IDAD-Institute of Environment and Development Air Quality Mobile Laboratory was placed at an urban traffic location in the city centre of Aveiro to conduct continuous measurements with standard equipment and reference analysers for CO, NOx, O3, SO2, PM10, PM2.5, temperature, humidity, wind speed and direction, solar radiation and precipitation. The comparison of the sensor data generated by different microsensor-systems installed side-by-side with reference analysers, contributes to the assessment of the performance and the accuracy of microsensor-systems in a real-world context, and supports their calibration and further development. The overall performance of the sensors in terms of their statistical metrics and measurement profile indicates significant differences in the results depending on the platform and on the sensors considered. In terms of pollutants, some promising results were observed for O3 (r2: 0.12-0.77), CO (r2: 0.53-0.87), and NO2 (r2: 0.02-0.89). For PM (r2: 0.07-0.36) and SO2 (r2: 0.09-0.20) the results show a poor performance with low correlation coefficients between the reference and microsensor measurements. These field observations under specific environmental conditions suggest that the relevant microsensor platforms, if supported by the proper post processing and data modelling tools, have enormous potential for new strategies in air quality control.
An error-based micro-sensor capture system for real-time motion estimation
NASA Astrophysics Data System (ADS)
Yang, Lin; Ye, Shiwei; Wang, Zhibo; Huang, Zhipei; Wu, Jiankang; Kong, Yongmei; Zhang, Li
2017-10-01
A wearable micro-sensor motion capture system with 16 IMUs and an error-compensatory complementary filter algorithm for real-time motion estimation has been developed to acquire accurate 3D orientation and displacement in real life activities. In the proposed filter algorithm, the gyroscope bias error, orientation error and magnetic disturbance error are estimated and compensated, significantly reducing the orientation estimation error due to sensor noise and drift. Displacement estimation, especially for activities such as jumping, has been the challenge in micro-sensor motion capture. An adaptive gait phase detection algorithm has been developed to accommodate accurate displacement estimation in different types of activities. The performance of this system is benchmarked with respect to the results of VICON optical capture system. The experimental results have demonstrated effectiveness of the system in daily activities tracking, with estimation error 0.16 ± 0.06 m for normal walking and 0.13 ± 0.11 m for jumping motions. Research supported by the National Natural Science Foundation of China (Nos. 61431017, 81272166).
Smart sensor systems for human health breath monitoring applications.
Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A
2011-09-01
Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.
Wireless health monitoring of cracks in structures with MEMS-IDT sensors
NASA Astrophysics Data System (ADS)
Kim, Jae-Sung; Vinoy, K. J.; Varadan, Vijay K.
2002-07-01
The integration of MEMS, IDTs and required microelectronics and conformal antennas to realize programmable, robust and low cost passive microsensors suitable for many military structures and systems including aircraft, missiles and munitions is presented in this paper. The technology is currently being applied to the structural health monitoring of accelerometers, gyroscopes and vibration monitoring devices with signal processing electronics to provide real- time indicators of incipient failure of aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ Aircraft structural health monitoring system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensors and MEMS for structural applications including load, vibration and acoustics characteristics and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. Additionally a range of sensor types can be integrated onto a single chip with built-in electronics and ASIC, providing a low power microsystem. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State smart electronics or wireless communication systems suitable for condition monitoring of aircraft structures in-flight. A hybrid accelerometer and gyroscope in a single chip suitable for inertial navigation system and other microsensors for health monitoring and condition-based maintenance of structures, drag sensing and control of aircraft, strain and deflection of structures and systems, ice sensing on aircraft, remote temperature and humidity measurement of propellant in munitions, chemical sensing, etc. are discussed.
Sensor Needs for Advanced Life Support
NASA Technical Reports Server (NTRS)
Graf, John C.
2000-01-01
Sensors and feedback systems are critical to life support flight systems and life support systems research. New sensor capabilities can allow for new system architectures to be considered, and can facilitate dramatic improvements in system performance. This paper will describe three opportunities for biosensor researchers to develop sensors that will enable life support system improvements. The first opportunity relates to measuring physical, chemical, and biological parameters in the Space Station Water Processing System. Measuring pH, iodine, total organic carbon, microbiological activity, total dissolved solids, or conductivity with a safe, effective, stable, reliable microsensor could benefit the water processing system considerably. Of special interest is a sensor which can monitor biological contamination rapidly. The second opportunity relates to sensing microbiological contamination and water condensation on the surface of large inflatable structures. It is the goal of large inflatable structures used for habitation to take advantage of the large surface area of the structure and reject waste heat passively through the walls of the structure. Too much heat rejection leads to a cold spot with water condensation, and eventually microbiological contamination. A distributed sensor system that can measure temperature, humidity, and microbiological contamination across a large surface would benefit designers of large inflatable habitable structures. The third opportunity relates to sensing microbial bioreactors used for waste water processing and reuse. Microbiological bioreactors offer considerable advantages in weight and power compared to adsorption bed based systems when used for long periods of time. Managing and controlling bioreactors is greatly helped if distributed microsensors measured the biological populations continuously in many locations within the bioreactor. Nitrifying bacteria are of special interest to bioreactor designers, and any sensors that could measure the populations of these types of bacteria would help the control and operation of bioreactors. J
1996-10-01
systems currently headed for deployment ( BIDS is highlighted in the chart) to widely dispersed microsensors on micro, autonomous platforms. Small room... Small , Rapidly Deployable Forces" Joe Polito, Dan Rondeau, Sandia National Laboratory V.2. "Robotic Concepts for Small Rapidly Deployable Forces" V-7...Robert Palmquist, Jill Fahrenholtz, Richard Wheeler, Sandia National Laboratory V.3. "Potential for Distributed Ground Sensors in Support of Small Unit V
Lee, Chi-Yuan; Chan, Pin-Cheng; Lee, Chung-Ju
2010-01-01
Temperature, voltage and fuel flow distribution all contribute considerably to fuel cell performance. Conventional methods cannot accurately determine parameter changes inside a fuel cell. This investigation developed flexible and multi-functional micro sensors on a 40 μm-thick stainless steel foil substrate by using micro-electro-mechanical systems (MEMS) and embedded them in a proton exchange membrane fuel cell (PEMFC) to measure the temperature, voltage and flow. Users can monitor and control in situ the temperature, voltage and fuel flow distribution in the cell. Thereby, both fuel cell performance and lifetime can be increased.
Fiber-optic microsensor for high resolution pCO2 sensing in marine environment.
Neurauter, G; Klimant, I; Wolfbeis, O S
2000-03-01
A fast responding fiber-optic microsensor for sensing pCO2 in marine sediments with high spatial resolution is presented. The tip diameter varies typically between 20 and 50 microm. In order to make the pH-indicator 8-hydroxypyrene-1,3,6-trisulfonate soluble in the ethyl cellulose matrix, it was lipophilized with tetraoctylammonium as the counterion [HPTS-(TOA)4]. The microsensor was tuned to sense very low levels of dissolved carbon dioxide which are typically present in marine systems. The detection limit is 0.04 hPa pCO2 which corresponds to 60 ppb CO2 of dissolved carbon dioxide. A soluble Teflon derivative with an extraordinarily high gas permeability was chosen as a protective coating to eliminate interferences by ionic species like chloride or pH. Response times of less than 1 min were observed. The performance of the new microsensor is described with respect to reproducibility of the calibration curves, dynamic range, temperature behavior, long term stability and storage stability. The effect of hydrogen sulfide as an interferent, which is frequently present in anaerobic sediment layers, was studied in detail.
Identification of soft drinks using MEMS-IDT microsensors
NASA Astrophysics Data System (ADS)
Abraham, Jose K.; Karjathkar, Sonal; Jacesko, Stefany; Varadan, Vijay K.; Gardner, Julian W.
2005-05-01
Development of a taste sensor with high sensitivity, stability and selectivity is highly desirable for the food and beverage industries. The main goal of a taste sensor is to reproduce five kinds of senses of humans, which is quite difficult. The importance of knowing quality of beverages and drinking water has been recognized as a result of increase in concern in environmental pollution issues. However, no accurate measuring system appropriate for quality evaluation of beverages is available. A highly sensitive microsensor using horizontally polarized Surface Acoustic Waves (SH-SAW) for the detection and identification of soft drinks is presented in this paper. Different soft drinks were tested using this sensor and the results which could distinguish between two popular soft drinks like Pepsi and Coca cola is presented in this paper. The SH-SAW microsensors are fabricated on 36°-rotated Y cut X propagating LiTaO3 (36YX.LT) substrate. This design consists of a dual delay line configuration in which one line is free and other one is metallized and shielded. Due to high electromechanical coupling of 36YX.LT, it could detect difference in electrical properties and hence to distinguish different soft drinks. Measured electrical characteristics of these soft drinks at X-band frequency using free space system show distinguishable results. It is clear from these results that the microsensor based on 36YX.LT is an effective liquid identification system for quantifying human sensory expressions.
Lee, Chi-Yuan; Chan, Pin-Cheng; Lee, Chung-Ju
2010-01-01
Temperature, voltage and fuel flow distribution all contribute considerably to fuel cell performance. Conventional methods cannot accurately determine parameter changes inside a fuel cell. This investigation developed flexible and multi-functional micro sensors on a 40 μm-thick stainless steel foil substrate by using micro-electro-mechanical systems (MEMS) and embedded them in a proton exchange membrane fuel cell (PEMFC) to measure the temperature, voltage and flow. Users can monitor and control in situ the temperature, voltage and fuel flow distribution in the cell. Thereby, both fuel cell performance and lifetime can be increased. PMID:22163545
Spatial distribution of Chloroflexus-like bacteria in the hypersaline artificial microbial mat
NASA Astrophysics Data System (ADS)
Bachar, A.; Polerecky, L.; Vamvakopoulos, K.; de Beer, D.; Jonkers, H. M.
An artificial microbial mat grown in a mesocosm originated from the Hypersaline Lake of La Salada de Chiprana NE Spain was examined with respect to its organism s spatial distribution via high resolution methods A special attention was given to the elucidative Chloroflexus -like bacteria on which spatial distribution data is not available We have characterized this thick 1cm and developed mat for photopigments HPLC and obtained the general pigment distribution pattern Furthermore fiberoptic and photosynthetic microsensor measurements gave inner light attenuations and flux rates of oxygen within the different layers respectively Using fluorescence and spectral imaging we were able to detect characteristic pigmentation in the different layers FISH probes targeting Chloroflexus -like bacteria confirmed the visualization techniques and showed a single hybridized layer below the cyanobacterial layer as did the HPLC fiberoptic microsensor and fluorescence imaging We conclude that Chloroflexus -like bacteria are located below the cyanobacterial layer and above the purple sulfur bacteria and for the firs time we are able to show it by different independent state of the art techniques These approaches can be important for rapid community investigations within a millimeter scale microniches
A wireless portable system with microsensors for monitoring respiratory diseases.
Cao, Zhe; Zhu, Rong; Que, Rui-Yi
2012-11-01
A wireless portable monitoring system for respiratory diseases using microsensors is proposed. The monitoring system consists of two sensor nodes integrating with Bluetooth transmitters that measure user's respiratory airflow, blood oxygen saturation, and body posture. The utility of micro-hot-film flow sensor makes the monitor can acquire comprehensive respiration parameters which are useful for diagnoses of obstructive sleep apnea, chronic obstructive pulmonary disease, and asthma. The system can serve as both sleep recorder and spirometer. Additionally, a mobile phone or a PC connected to the Internet serving as a monitoring and transfer terminal makes telemedicine achievable. Several experiments were conducted to verify the feasibility and effectiveness of the proposed system for monitoring and diagnosing OSA, COPD, and asthma.
Integrated Microsensors for Autonomous Microrobots
DOE Office of Scientific and Technical Information (OSTI.GOV)
ADKINS, DOUGLAS R.; BYRNE, RAYMOND H.; HELLER, EDWIN J.
2003-02-01
This report describes the development of a miniature mobile microrobot device and several microsystems needed to create a miniature microsensor delivery platform. This work was funded under LDRD No.10785, entitled, ''Integrated Microsensors for Autonomous Microrobots''. The approach adopted in this project was to develop a mobile platform, to which would be attached wireless RF remote control and data acquisition in addition to various microsensors. A modular approach was used to produce a versatile microrobot platform and reduce power consumption and physical size.
The Use of Wearable Microsensors to Quantify Sport-Specific Movements.
Chambers, Ryan; Gabbett, Tim J; Cole, Michael H; Beard, Adam
2015-07-01
Microtechnology has allowed sport scientists to understand the locomotor demands of various sports. While wearable global positioning technology has been used to quantify the locomotor demands of sporting activities, microsensors (i.e. accelerometers, gyroscopes and magnetometers) embedded within the units also have the capability to detect sport-specific movements. The objective of this study was to determine the extent to which microsensors (also referred to as inertial measurement units and microelectromechanical sensors) have been utilised in quantifying sport-specific movements. A systematic review of the use of microsensors and associated terms to evaluate sport-specific movements was conducted; permutations of the terms used included alternate names of the various technologies used, their applications and different applied environments. Studies for this review were published between 2008 and 2014 and were identified through a systematic search of six electronic databases: Academic Search Complete, CINAHL, PsycINFO, PubMed, SPORTDiscus, and Web of Science. Articles were required to have used athlete-mounted sensors to detect sport-specific movements (e.g. rugby union tackle) rather than sensors mounted to equipment and monitoring generic movement patterns. A total of 2395 studies were initially retrieved from the six databases and 737 results were removed as they were duplicates, review articles or conference abstracts. After screening titles and abstracts of the remaining papers, the full text of 47 papers was reviewed, resulting in the inclusion of 28 articles that met the set criteria around the application of microsensors for detecting sport-specific movements. Eight articles addressed the use of microsensors within individual sports, team sports provided seven results, water sports provided eight articles, and five articles addressed the use of microsensors in snow sports. All articles provided evidence of the ability of microsensors to detect sport-specific movements. Results demonstrated varying purposes for the use of microsensors, encompassing the detection of movement and movement frequency, the identification of movement errors and the assessment of forces during collisions. This systematic review has highlighted the use of microsensors to detect sport-specific movements across a wide range of individual and team sports. The ability of microsensors to capture sport-specific movements emphasises the capability of this technology to provide further detail on athlete demands and performance. However, there was mixed evidence on the ability of microsensors to quantify some movements (e.g. tackling within rugby union, rugby league and Australian rules football). Given these contrasting results, further research is required to validate the ability of wearable microsensors containing accelerometers, gyroscopes and magnetometers to detect tackles in collision sports, as well as other contact events such as the ruck, maul and scrum in rugby union.
Integration of P-CuO Thin Sputtered Layers onto Microsensor Platforms for Gas Sensing
Presmanes, Lionel; Thimont, Yohann; el Younsi, Imane; Chapelle, Audrey; Blanc, Frédéric; Talhi, Chabane; Bonningue, Corine; Barnabé, Antoine; Menini, Philippe; Tailhades, Philippe
2017-01-01
P-type semiconducting copper oxide (CuO) thin films deposited by radio-frequency (RF) sputtering were integrated onto microsensors using classical photolithography technologies. The integration of the 50-nm-thick layer could be successfully carried out using the lift-off process. The microsensors were tested with variable thermal sequences under carbon monoxide (CO), ammonia (NH3), acetaldehyde (C2H4O), and nitrogen dioxide (NO2) which are among the main pollutant gases measured by metal-oxide (MOS) gas sensors for air quality control systems in automotive cabins. Because the microheaters were designed on a membrane, it was then possible to generate very rapid temperature variations (from room temperature to 550 °C in only 50 ms) and a rapid temperature cycling mode could be applied. This measurement mode allowed a significant improvement of the sensor response under 2 and 5 ppm of acetaldehyde. PMID:28621738
Santegoeds, Cecilia M.; Damgaard, Lars Riis; Hesselink, Gijs; Zopfi, Jakob; Lens, Piet; Muyzer, Gerard; de Beer, Dirk
1999-01-01
Using molecular techniques and microsensors for H2S and CH4, we studied the population structure of and the activity distribution in anaerobic aggregates. The aggregates originated from three different types of reactors: a methanogenic reactor, a methanogenic-sulfidogenic reactor, and a sulfidogenic reactor. Microsensor measurements in methanogenic-sulfidogenic aggregates revealed that the activity of sulfate-reducing bacteria (2 to 3 mmol of S2− m−3 s−1 or 2 × 10−9 mmol s−1 per aggregate) was located in a surface layer of 50 to 100 μm thick. The sulfidogenic aggregates contained a wider sulfate-reducing zone (the first 200 to 300 μm from the aggregate surface) with a higher activity (1 to 6 mmol of S2− m−3 s−1 or 7 × 10−9 mol s−1 per aggregate). The methanogenic aggregates did not show significant sulfate-reducing activity. Methanogenic activity in the methanogenic-sulfidogenic aggregates (1 to 2 mmol of CH4 m−3 s−1 or 10−9 mmol s−1 per aggregate) and the methanogenic aggregates (2 to 4 mmol of CH4 m−3 s−1 or 5 × 10−9 mmol s−1 per aggregate) was located more inward, starting at ca. 100 μm from the aggregate surface. The methanogenic activity was not affected by 10 mM sulfate during a 1-day incubation. The sulfidogenic and methanogenic activities were independent of the type of electron donor (acetate, propionate, ethanol, or H2), but the substrates were metabolized in different zones. The localization of the populations corresponded to the microsensor data. A distinct layered structure was found in the methanogenic-sulfidogenic aggregates, with sulfate-reducing bacteria in the outer 50 to 100 μm, methanogens in the inner part, and Eubacteria spp. (partly syntrophic bacteria) filling the gap between sulfate-reducing and methanogenic bacteria. In methanogenic aggregates, few sulfate-reducing bacteria were detected, while methanogens were found in the core. In the sulfidogenic aggregates, sulfate-reducing bacteria were present in the outer 300 μm, and methanogens were distributed over the inner part in clusters with syntrophic bacteria. PMID:10508098
Using Microsensor Technology to Quantify Match Demands in Collegiate Women's Volleyball.
Vlantes, Travis G; Readdy, Tucker
2017-12-01
Vlantes, TG and Readdy, T. Using microsensor technology to quantify match demands in collegiate women's volleyball. J Strength Cond Res 31(12): 3266-3278, 2017-The purpose of this study was to quantify internal and external load demands of women's NCAA Division I collegiate volleyball competitions using microsensor technology and session rating of perceived exertion (S-RPE). Eleven collegiate volleyball players wore microsensor technology (Optimeye S5; Catapult Sports, Chicago, IL, USA) during 15 matches played throughout the 2016 season. Parameters examined include player load (PL), high impact PL, percentage of HI PL, explosive efforts (EEs), and jumps. Session rating of perceived exertion was collected 20 minutes postmatch using a modified Borg scale. The relationship between internal and external load was explored, comparing S-RPE data with the microsensor metrics (PL, HI PL, % HI PL, EEs, and jumps). The setter had the greatest mean PL and highest number of jumps of all positions in a 5-1 system, playing all 6 rotations. Playing 4 sets yielded a mean PL increase of 25.1% over 3 sets, whereas playing 5 sets showed a 31.0% increase in PL. A multivariate analysis of variance revealed significant differences (p < 0.01) across all position groups when examining % HI PL and jumps. Cohen's d analysis revealed large (≥0.8) effect sizes for these differences. Defensive specialists recorded the greatest mean S-RPE values over all 15 matches (886 ± 384.6). Establishing positional load demands allows coaches, trainers, and strength and conditioning professionals to implement training programs for position-specific demands, creating consistent peak performance, and reducing injury risk.
NASA Astrophysics Data System (ADS)
Hughes, R. C.; Drebing, C. G.
1990-04-01
The technology that led to very large scale integrated circuits on silicon chips also provides a basis for new microsensors that are small, inexpensive, low power, rugged, and reliable. Two examples of microsensors Sandia is developing that take advantage of this technology are the microelectronic chemical sensor array and the radiation sensing field effect transistor (RADFET). Increasingly, the technology of chemical sensing needs new microsensor concepts. Applications in this area include environmental monitoring, criminal investigations, and state-of-health monitoring, both for equipment and living things. Chemical microsensors can satisfy sensing needs in the industrial, consumer, aerospace, and defense sectors. The microelectronic chemical-sensor array may address some of these applications. We have fabricated six separate chemical gas sensing areas on the microelectronic chemical sensor array. By using different catalytic metals on the gate areas of the diodes, we can selectively sense several gases.
Magnetically guiding and orienting integrated chemical sensors
NASA Astrophysics Data System (ADS)
Anker, Jeffrey N.; Lee, Yong-Eun Koo; Kopelman, Raoul
2014-08-01
Fluorescent microsensors for detecting pH and oxygen were positioned and oriented using magnetic tweezers. These multifunctional integrated microsensors were fabricated by physically linking together nano-components including magnetic nanoparticles, fluorescent nanoparticles, and metal hemisphere-shells. Two such microsensors are magnetic roll-shaped polystyrene particles with 120 nm fluorescent oxygen-sensing ormosil nanospheres that are physically pressed ("breaded") into the roll surface, and 4-5 µm fluorescent microspheres that are capped with a 50 nm thick metal hemispherical shell. The magnetic tweezers consisted of an iron wire that was magnetized in an external magnetic field. Rotating this external field oriented and rotated the microsensors.
Lee, Chi-Yuan; Peng, Huan-Chih; Lee, Shuo-Jen; Hung, I-Ming; Hsieh, Chien-Te; Chiou, Chuan-Sheng; Chang, Yu-Ming; Huang, Yen-Pu
2015-05-19
Lithium batteries are widely used in notebook computers, mobile phones, 3C electronic products, and electric vehicles. However, under a high charge/discharge rate, the internal temperature of lithium battery may rise sharply, thus causing safety problems. On the other hand, when the lithium battery is overcharged, the voltage and current may be affected, resulting in battery instability. This study applies the micro-electro-mechanical systems (MEMS) technology on a flexible substrate, and develops a flexible three-in-one microsensor that can withstand the internal harsh environment of a lithium battery and instantly measure the internal temperature, voltage and current of the battery. Then, the internal information can be fed back to the outside in advance for the purpose of safety management without damaging the lithium battery structure. The proposed flexible three-in-one microsensor should prove helpful for the improvement of lithium battery design or material development in the future.
Novel Carbon Dioxide Microsensor Based on Tin Oxide Nanomaterial Doped With Copper Oxide
NASA Technical Reports Server (NTRS)
Xu, Jennifer C.; Hunter, Gary W.; Lukco, Dorothy; Liu, Chung-Chiun; Ward, Benjamin J.
2008-01-01
Carbon dioxide (CO2) is one of the major indicators of fire and therefore its measurement is very important for low-false-alarm fire detection and emissions monitoring. However, only a limited number of CO2 sensing materials exist due to the high chemical stability of CO2. In this work, a novel CO2 microsensor based on nanocrystalline tin oxide (SnO2) doped with copper oxide (CuO) has been successfully demonstrated. The CuO-SnO2 based CO2 microsensors are fabricated by means of microelectromechanical systems (MEMS) technology and sol-gel nanomaterial-synthesis processes. At a doping level of CuO: SnO2 = 1:8 (molar ratio), the resistance of the sensor has a linear response to CO2 concentrations for the range of 1 to 4 percent CO2 in air at 450 C. This approach has demonstrated the use of SnO2, typically used for the detection of reducing gases, in the detection of an oxidizing gas.
Proof of Concept of Automated Collision Detection Technology in Rugby Sevens.
Clarke, Anthea C; Anson, Judith M; Pyne, David B
2017-04-01
Clarke, AC, Anson, JM, and Pyne, DB. Proof of concept of automated collision detection technology in rugby sevens. J Strength Cond Res 31(4): 1116-1120, 2017-Developments in microsensor technology allow for automated detection of collisions in various codes of football, removing the need for time-consuming postprocessing of video footage. However, little research is available on the ability of microsensor technology to be used across various sports or genders. Game video footage was matched with microsensor-detected collisions (GPSports) in one men's (n = 12 players) and one women's (n = 12) rugby sevens match. True-positive, false-positive, and false-negative events between video and microsensor-detected collisions were used to calculate recall (ability to detect a collision) and precision (accurately identify a collision). The precision was similar between the men's and women's rugby sevens game (∼0.72; scale 0.00-1.00); however, the recall in the women's game (0.45) was less than that for the men's game (0.69). This resulted in 45% of collisions for men and 62% of collisions for women being incorrectly labeled. Currently, the automated collision detection system in GPSports microtechnology units has only modest utility in rugby sevens, and it seems that a rugby sevens-specific algorithm is needed. Differences in measures between the men's and women's game may be a result of physical size, and strength, and physicality, as well as technical and tactical factors.
Amperometric Solid Electrolyte Oxygen Microsensors with Easy Batch Fabrication
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Xu, Jennifer C.; Liu, ChungChiun
2011-01-01
An amperometric solid electrolyte oxygen (O2) microsensor using a novel and robust structure has been developed with a detection range of 0.025 to 21 percent of O2 concentration. The microsensor has a simple structure with a sensing area of 1.10 0.99 mm(exp 2), and is operated by applying voltage across the electrodes and measuring the resulting current flow at a temperature of 600 C.
López-Gejo, Juan; Arranz, Antonio; Navarro, Alvaro; Palacio, Carlos; Muñoz, Elías; Orellana, Guillermo
2010-02-17
Covalent tethering of a Ru(II) dye to gallium nitride surfaces has been accomplished as a key step in the development of innovative sensing devices in which the indicator support (semiconductor) plays the role of both support and excitation source. Luminescence emission decays and time-resolved emission spectra confirm the presence of the dye on the semiconductor surfaces, while X-ray photoelectron spectroscopy proves its covalent bonding. The O(2) sensitivity of the new device is comparable to those of other ruthenium-based sensor systems. This achievement paves the way to a new generation of integrable ultracompact microsensors that combine semiconductor emitter-probe assemblies.
Qin, Caidie; Bai, Xue; Zhang, Yue; Gao, Kai
2018-05-03
A photoelectrochemical wire microelectrode was constructed based on the use of a TiO 2 nanotube array with electrochemically deposited CdSe semiconductor. A strongly amplified photocurrent is generated on the sensor surface. The microsensor has a response in the 0.05-20 μM dopamine (DA) concentration range and a 16.7 μM detection limit at a signal-to-noise ratio of 3. Sensitivity, recovery and reproducibility of the sensor were validated by detecting DA in spiked human urine, and satisfactory results were obtained. Graphical abstract Schematic of a sensitive photoelectrochemical microsensor based on CdSe modified TiO 2 nanotube array. The photoelectrochemical microsensor was successfully applied to the determination of dopamine in urine samples.
Determination of external and internal mass transfer limitation in nitrifying microbial aggregates.
Wilén, Britt-Marie; Gapes, Daniel; Keller, Jürg
2004-05-20
In this article we present a study of the effects of external and internal mass transfer limitation of oxygen in a nitrifying system. The oxygen uptake rates (OUR) were measured on both a macro-scale with a respirometric reactor using off-gas analysis (Titrimetric and Off-Gas Analysis (TOGA) sensor) and on a micro-scale with microsensors. These two methods provide independent, accurate measurements of the reaction rates and concentration profiles around and in the granules. The TOGA sensor and microsensor measurements showed a significant external mass transfer effect at low dissolved oxygen (DO) concentrations in the bulk liquid while it was insignificant at higher DO concentrations. The oxygen distribution with anaerobic or anoxic conditions in the center clearly shows major mass transfer limitation in the aggregate interior. The large drop in DO concentration of 22-80% between the bulk liquid and aggregate surface demonstrates that the external mass transfer resistance is also highly important. The maximum OUR even for floccular biomass was only attained at much higher DO concentrations (approximately 8 mg/L) than typically used in such systems. For granules, the DO required for maximal activity was estimated to be >20 mg/L, clearly indicating the effects of the major external and internal mass transfer limitations on the overall biomass activity. Smaller aggregates had a larger volumetric OUR indicating that the granules may have a lower activity in the interior part of the aggregate. Copyright 2004 Wiley Periodicals, Inc.
Fiber optic microsensor technology for detection of hydrogen in space applications
NASA Astrophysics Data System (ADS)
Kazemi, Alex A.
2008-04-01
Optical hydrogen sensors are intrinsically safe since they produce no arc or spark in an explosive environment caused by the leakage of hydrogen. Safety remains a top priority since leakage of hydrogen in air during production, storage, transfer and distribution creates an explosive atmosphere for concentrations between 4% (v/v) - the lower explosive limit (LEL) and 74.5% (v/v) - the upper explosive limit (UEL) at room temperature and pressure. Being a very small molecule, hydrogen is prone to leakage through seals and micro-cracks. Hydrogen detection in space application is very challenging; public acceptance of hydrogen fuel would require the integration of a reliable hydrogen safety sensor. For detecting leakage of cryogenic fluids in spaceport facilities, Launch vehicle industry and aerospace agencies are currently relying heavily on the bulky mass spectrometers, which fill one or more equipment racks, and weigh several hundred kilograms. This paper describes the successful development and test of a multi-point fiber optic hydrogen sensor system during the static firing of an Evolved Expandable Launch Vehicle at NASA's Stennis Space Center. The system consisted of microsensors (optrodes) using hydrogen gas sensitive indicator incorporated onto an optically transparent porous substrate. The modular optoelectronics and multiplexing network system was designed and assembled utilizing a multi-channel optoelectronic sensor readout unit that monitored the hydrogen and temperature response of the individual optrodes in real-time and communicated this information via a serial communication port to a remote laptop computer. The paper would discuss the sensor design and performance data under field deployment conditions.
NASA Astrophysics Data System (ADS)
Zhou, Lingfei; Chapuis, Yves-Andre; Blonde, Jean-Philippe; Bervillier, Herve; Fukuta, Yamato; Fujita, Hiroyuki
2004-07-01
In this paper, the authors proposed to study a model and a control strategy of a two-dimensional conveyance system based on the principles of the Autonomous Decentralized Microsystems (ADM). The microconveyance system is based on distributed cooperative MEMS actuators which can produce a force field onto the surface of the device to grip and move a micro-object. The modeling approach proposed here is based on a simple model of a microconveyance system which is represented by a 5 x 5 matrix of cells. Each cell is consisted of a microactuator, a microsensor, and a microprocessor to provide actuation, autonomy and decentralized intelligence to the cell. Thus, each cell is able to identify a micro-object crossing on it and to decide by oneself the appropriate control strategy to convey the micro-object to its destination target. The control strategy could be established through five simple decision rules that the cell itself has to respect at each calculate cycle time. Simulation and FPGA implementation results are given in the end of the paper in order to validate model and control approach of the microconveyance system.
Heat flux instrumentation for Hyflite thermal protection system
NASA Technical Reports Server (NTRS)
Diller, T. E.
1994-01-01
Using Thermal Protection Tile core samples supplied by NASA, the surface characteristics of the FRCI, TUFI, and RCG coatings were evaluated. Based on these results, appropriate methods of surface preparation were determined and tested for the required sputtering processes. Sample sensors were fabricated on the RCG coating and adhesion was acceptable. Based on these encouraging results, complete Heat Flux Microsensors were fabricated on the RCG coating. The issue of lead attachment was addressed with the annnealing and welding methods developed at NASA Lewis. Parallel gap welding appears to be the best method of lead attachment with prior heat treatment of the sputtered pads. Sample Heat Flux Microsensors were submitted for testing in the NASA Ames arc jet facility. Details of the project are contained in two attached reports. One additional item of interest is contained in the attached AIAA paper, which gives details of the transient response of a Heat Flux Microsensors in a shock tube facility at Virginia Tech. The response of the heat flux sensor was measured to be faster than 10 micro-s.
Fabrication and characterization of polyaniline/PVA humidity microsensors.
Yang, Ming-Zhi; Dai, Ching-Liang; Lin, Wei-Yi
2011-01-01
This study presents the fabrication and characterization of a humidity microsensor that consists of interdigitated electrodes and a sensitive film. The area of the humidity microsensor is about 2 mm(2). The sensitive film is polyaniline doping polyvinyl alcohol (PVA) that is prepared by the sol-gel method, and the film has nanofiber and porous structures that help increase the sensing reaction. The commercial 0.35 μm Complimentary Metal Oxide Semiconductor (CMOS) process is used to fabricate the humidity microsensor. The sensor needs a post-CMOS process to etch the sacrificial layer and to coat the sensitive film on the interdigitated electrodes. The sensor produces a change in resistance as the polyaniline/PVA film absorbs or desorbs vapor. Experimental results show that the sensitivity of the humidity sensor is about 12.6 kΩ/%RH at 25 °C.
Novel Organic Membrane-based Thin-film Microsensors for the Determination of Heavy Metal Cations
Arida, Hassan A.; Kloock, Joachim P.; Schöning, Michael J.
2006-01-01
A first step towards the fabrication and electrochemical evaluation of thin-film microsensors based on organic PVC membranes for the determination of Hg(II), Cd(II), Pb(II) and Cu(II) ions in solutions has been realised. The membrane-coating mixture used in the preparation of this new type of microsensors is incorporating PVC as supporting matrix, o-nitrophenyloctylether (o-NPOE) as solvent mediator and a recently synthesized Hg[dimethylglyoxime(phene)]2+ and Bis-(4-hydroxyacetophenone)-ethylenediamine as electroactive materials for Hg(II) and Cd(II), respectively. A set of three commercialised ionophores for Cd(II), Pb(II) and Cu(II) has been also used for comparison. Thin-film microsensors based on these membranes showed a Nernstian response of slope (26-30 mV/dec.) for the respective tested cations. The potentiometric response characteristics (linear range, pH range, detection limit and response time) are comparable with those obtained by conventional membranes as well as coated wire electrodes prepared from the same membrane. The realisation of the new organic membrane-based thin-film microsensors overcomes the problem of an insufficient selectivity of solid-state-based thin-film sensors.
ISFET Based Microsensors for Environmental Monitoring
Jimenez-Jorquera, Cecilia; Orozco, Jahir; Baldi, Antoni
2010-01-01
The use of microsensors for in-field monitoring of environmental parameters is gaining interest due to their advantages over conventional sensors. Among them microsensors based on semiconductor technology offer additional advantages such as small size, robustness, low output impedance and rapid response. Besides, the technology used allows integration of circuitry and multiple sensors in the same substrate and accordingly they can be implemented in compact probes for particular applications e.g., in situ monitoring and/or on-line measurements. In the field of microsensors for environmental applications, Ion Selective Field Effect Transistors (ISFETs) have a special interest. They are particularly helpful for measuring pH and other ions in small volumes and they can be integrated in compact flow cells for continuous measurements. In this paper the technologies used to fabricate ISFETs and a review of the role of ISFETs in the environmental field are presented. PMID:22315527
Xie, Bo; Xing, Yonghao; Wang, Yanshuang; Chen, Jian; Chen, Deyong; Wang, Junbo
2015-09-21
This paper presents the fabrication and characterization of a resonant pressure microsensor based on SOI-glass wafer-level vacuum packaging. The SOI-based pressure microsensor consists of a pressure-sensitive diaphragm at the handle layer and two lateral resonators (electrostatic excitation and capacitive detection) on the device layer as a differential setup. The resonators were vacuum packaged with a glass cap using anodic bonding and the wire interconnection was realized using a mask-free electrochemical etching approach by selectively patterning an Au film on highly topographic surfaces. The fabricated resonant pressure microsensor with dual resonators was characterized in a systematic manner, producing a quality factor higher than 10,000 (~6 months), a sensitivity of about 166 Hz/kPa and a reduced nonlinear error of 0.033% F.S. Based on the differential output, the sensitivity was increased to two times and the temperature-caused frequency drift was decreased to 25%.
A Lateral Differential Resonant Pressure Microsensor Based on SOI-Glass Wafer-Level Vacuum Packaging
Xie, Bo; Xing, Yonghao; Wang, Yanshuang; Chen, Jian; Chen, Deyong; Wang, Junbo
2015-01-01
This paper presents the fabrication and characterization of a resonant pressure microsensor based on SOI-glass wafer-level vacuum packaging. The SOI-based pressure microsensor consists of a pressure-sensitive diaphragm at the handle layer and two lateral resonators (electrostatic excitation and capacitive detection) on the device layer as a differential setup. The resonators were vacuum packaged with a glass cap using anodic bonding and the wire interconnection was realized using a mask-free electrochemical etching approach by selectively patterning an Au film on highly topographic surfaces. The fabricated resonant pressure microsensor with dual resonators was characterized in a systematic manner, producing a quality factor higher than 10,000 (~6 months), a sensitivity of about 166 Hz/kPa and a reduced nonlinear error of 0.033% F.S. Based on the differential output, the sensitivity was increased to two times and the temperature-caused frequency drift was decreased to 25%. PMID:26402679
Microsensors to monitor missile storage and maintenance needs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mee, D.K.; Thundat, T.G.; Oden, P.I.
1997-10-30
Accurate assessments of reliability and condition based maintenance can only be implemented where a good understanding of ammunition stockpile condition exists. Use of miniaturized intelligent sensors provides an inexpensive means of nondestructively gaining insight into stockpile condition while keeping costs low. In the past, evaluation of ammunition lifetimes has utilized humidity, temperature, pressure, shock, and corrosion. New technologies provide the possibility of obtaining these environmental parameters, as well as a number of other indicators of propellant degradation, including NOx by utilizing a microsensor with capability for remote wireless monitoring. Micro-electro-mechanical systems (MEMS) like microcantilevers promise to revolutionize the field ofmore » sensor design. In the automobile industry, micromachined acceleration sensors are now used for triggering airbags and pressure sensors adjust the air-fuel intake ratio in the engine. By applying coatings to the sensor`s surface the behavior of the microdevice can be measurably altered to respond to chemical species as demonstrated by ORNL using microcantilevers to detect mercury vapor and humidity. Ultimately, single-chip detectors with electronics and telemetry could be developed with conceivably hundreds of individual microsensors on each chip to simultaneously monitor identify, and quantify many important chemical species for ammunition as well as measure environmental parameters.« less
Mammalian Odor Information Recognition by Implanted Microsensor Array in vivo
NASA Astrophysics Data System (ADS)
Zhou, Jun; Dong, Qi; Zhuang, Liujing; Liu, Qingjun; Wang, Ping
2011-09-01
The mammalian olfactory system has an exquisite capacity to rapidly recognize and discriminate thousands of distinct odors in our environment. Our research group focus on reading information from olfactory bulb circuit of anethetized Sprague-Dawley rat and utilize artificial recognition system for odor discrimination. After being stimulated by three odors with concentration of 10 μM to rat nose, the response of mitral cells in olfactory bulb is recorded by eight channel microwire sensor array. In 20 sessions with 3 animals, we obtained 30 discriminated individual cells recordings. The average firing rates of the cells are Isoamyl acetate 26 Hz, Methoxybenzene 16 Hz, and Rose essential oil 11 Hz. By spike sorting, we detect peaks and analyze the interspike interval distribution. Further more, principal component analysis is applied to reduce the dimensionality of the data sets and classify the response.
Amperometric monochloramine detection using newly fabricated gold, platinum, and carbon-fiber microsensors was investigated to optimize sensor operation and eliminate oxygen interference. Gold and platinum microsensors exhibited no oxygen interference during monochloramine measu...
Amperometric Carbon Fiber Nitrite Microsensor for In Situ Biofilm Monitoring
A highly selective needle type solid state amperometric nitrite microsensor based on direct nitrite oxidation on carbon fiber was developed using a simplified fabrication method. The microsensor’s tip diameter was approximately 7 µm, providing a high spatial resolution of at lea...
Namour, Philippe; Lepot, Mathieu; Jaffrezic-Renault, Nicole
2010-01-01
This review discusses from a critical perspective the development of new sensors for the measurement of priority pollutants targeted in the E.U. Water Framework Directive. Significant advances are reported in the paper and their advantages and limitations are also discussed. Future perspectives in this area are also pointed out in the conclusions. This review covers publications appeared since December 2006 (the publication date of the Swift report). Among priority substances, sensors for monitoring the four WFD metals represent 81% of published papers. None of analyzed publications present a micro-sensor totally validated in laboratory, ready for tests under real conditions in the field. The researches are mainly focused on the sensing part of the micro-sensors. Nevertheless, the main factor limiting micro-sensor applications in the environment is the ruggedness of the receptor towards environmental conditions. This point constitutes the first technological obstacle to be overcome for any long-term field tests. PMID:22163635
Gutiérrez, Manuel; Llobera, Andreu; Vila-Planas, Jordi; Capdevila, Fina; Demming, Stefanie; Büttgenbach, Stephanus; Mínguez, Santiago; Jiménez-Jorquera, Cecilia
2010-07-01
A multiparametric system able to classify red and white wines according to the grape varieties and for analysing some specific parameters is presented. The system, known as hybrid electronic tongue, consists of an array of electrochemical microsensors and a colorimetric optofluidic system. The array of electrochemical sensors is composed of six ISFETs based sensors, a conductivity sensor, a redox potential sensor and two amperometric electrodes, an Au microelectrode and a microelectrode for sensing electrochemical oxygen demand. The optofluidic system is entirely fabricated in polymer technology and comprises a hollow structure, air mirrors, microlenses and self-alignment structures. The data obtained from these sensors has been treated with multivariate advanced tools; Principal Component Analysis (PCA), for the patterning recognition and classification of wine samples, and Partial-Least Squares (PLS) regression, for quantification of several chemical and optical parameters of interest in wine quality. The results have demonstrated the utility of this system for distinguishing the samples according to the grape variety and year vintage and for quantifying several sample parameters of interest in wine quality control.
Piezoresistive position microsensors with ppm-accuracy
NASA Astrophysics Data System (ADS)
Stavrov, Vladimir; Shulev, Assen; Stavreva, Galina; Todorov, Vencislav
2015-05-01
In this article, the relation between position accuracy and the number of simultaneously measured values, such as coordinates, has been analyzed. Based on this, a conceptual layout of MEMS devices (microsensors) for multidimensional position monitoring comprising a single anchored and a single actuated part has been developed. Both parts are connected with a plurality of micromechanical flexures, and each flexure includes position detecting cantilevers. Microsensors having detecting cantilevers oriented in X and Y direction have been designed and prototyped. Experimentally measured results at characterization of 1D, 2D and 3D position microsensors are reported as well. Exploiting different flexure layouts, a travel range between 50μm and 1.8mm and sensors' sensitivity in the range between 30μV/μm and 5mV/μm@ 1V DC supply voltage have been demonstrated. A method for accurate calculation of all three Cartesian coordinates, based on measurement of at least three microsensors' signals has also been described. The analyses of experimental results prove the capability of position monitoring with ppm-(part per million) accuracy. The technology for fabrication of MEMS devices with sidewall embedded piezoresistors removes restrictions in strong improvement of their usability for position sensing with a high accuracy. The present study is, also a part of a common strategy for developing a novel MEMS-based platform for simultaneous accurate measurement of various physical values when they are transduced to a change of position.
MEMS inertial sensors with integral rotation means.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohler, Stewart M.
The state-of-the-art of inertial micro-sensors (gyroscopes and accelerometers) has advanced to the point where they are displacing the more traditional sensors in many size, power, and/or cost-sensitive applications. A factor limiting the range of application of inertial micro-sensors has been their relatively poor bias stability. The incorporation of an integral sensitive axis rotation capability would enable bias mitigation through proven techniques such as indexing, and foster the use of inertial micro-sensors in more accuracy-sensitive applications. Fabricating the integral rotation mechanism in MEMS technology would minimize the penalties associated with incorporation of this capability, and preserve the inherent advantages of inertialmore » micro-sensors.« less
AOI [3] High-Temperature Nano-Derived Micro-H 2 and - H 2S Sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabolsky, Edward M.
2014-08-01
The emissions from coal-fired power plants remain a significant concern for air quality. This environmental challenge must be overcome by controlling the emission of sulfur dioxide (SO 2) and hydrogen sulfide (H 2S) throughout the entire coal combustion process. One of the processes which could specifically benefit from robust, low cost, and high temperature compatible gas sensors is the coal gasification process which converts coal and/or biomass into syngas. Hydrogen (H 2), carbon monoxide (CO) and sulfur compounds make up 33%, 43% and 2% of syngas, respectively. Therefore, development of a high temperature (>500°C) chemical sensor for in-situ monitoring ofmore » H 2, H 2S and SO2 2 levels during coal gasification is strongly desired. The selective detection of SO 2/H 2S in the presence of H 2, is a formidable task for a sensor designer. In order to ensure effective operation of these chemical sensors, the sensor system must inexpensively function within harsh temperature and chemical environment. Currently available sensing approaches, which are based on gas chromatography, electrochemistry, and IR-spectroscopy, do not satisfy the required cost and performance targets. This work focused on the development microsensors that can be applied to this application. In order to develop the high- temperature compatible microsensor, this work addressed various issues related to sensor stability, selectivity, and miniaturization. In the research project entitled “High-Temperature Nano-Derived Micro-H 2 and -H 2S Sensors”, the team worked to develop micro-scale, chemical sensors and sensor arrays composed of nano-derived, metal-oxide composite materials to detect gases like H 2, SO 2, and H 2S within high-temperature environments (>500°C). The research was completed in collaboration with NexTech Materials, Ltd. (Lewis Center, Ohio). NexTech assisted in the testing of the sensors in syngas with contaminate levels of H 2S. The idea of including nanomaterials as the sensing material within resistive-type chemical sensor platforms was to increase the sensitivity (as shown for room temperature applications). Unfortunately, nanomaterials are not stable at high temperatures due to sintering and coarsening processes that are driven by their high surface to volume ratio. Therefore, new hydrogen and sulfur selective nanomaterial systems with high selectivity and stability properties in the proposed harsh environment were investigated. Different nano-morphologies of zirconate, molybdate, and tungstate compounds were investigated. The fabrication of the microsensors consisted of the deposition of the selective nanomaterial systems over metal based interconnects on an inert substrate. This work utilized the chemi-resistive (resistive- type) microsensor architecture where the chemically and structurally stable, high temperature compatible electrodes were sputtered onto a ceramic substrate. The nanomaterial sensing systems were deposited over the electrodes using a lost mold method patterned by conventional optical lithography. The microsensor configuration with optimized nanomaterial system was tested and compared to a millimeter-size sensor e outcomes of this research will contribute to the economical application of sensor arrays for simultaneous sensing of H 2, H 2S, and SO 2.« less
Song, Haryong; Park, Yunjong; Kim, Hyungseup; Cho, Dong-Il Dan; Ko, Hyoungho
2015-10-14
Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL) for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR) logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS) process with an active area of 1.76 mm². The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of -250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms.
Song, Haryong; Park, Yunjong; Kim, Hyungseup; Cho, Dong-il Dan; Ko, Hyoungho
2015-01-01
Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL) for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR) logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS) process with an active area of 1.76 mm2. The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of −250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms. PMID:26473877
Munteanu, Raluca-Elena; Stǎnicǎ, Luciana; Gheorghiu, Mihaela; Gáspár, Szilveszter
2018-05-15
There are only a few tools suitable for measuring the extracellular pH of adherently growing mammalian cells with high spatial resolution, and none of them is widely used in laboratories around the world. Cell biologists very often limit themselves to measuring the intracellular pH with commercially available fluorescent probes. Therefore, we built a voltammetric pH microsensor and investigated its suitability for monitoring the extracellular pH of adherently growing mammalian cells. The voltammetric pH microsensor consisted of a 37 μm diameter carbon fiber microelectrode modified with reduced graphene oxide and syringaldazine. While graphene oxide was used to increase the electrochemically active surface area of our sensor, syringaldazine facilitated pH sensing through its pH-dependent electrochemical oxidation and reduction. The good sensitivity (60 ± 2.5 mV/pH unit), reproducibility (coefficient of variation ≤3% for the same pH measured with 5 different microsensors), and stability (pH drift around 0.05 units in 3 h) of the built voltammetric pH sensors were successfully used to investigate the acidification of the extracellular space of both cancer cells and normal cells. The results indicate that the developed pH microsensor and the perfected experimental protocol based on scanning electrochemical microscopy can reveal details of the pH regulation of cells not attainable with pH sensors lacking spatial resolution or which cannot be reproducibly positioned in the extracellular space.
Aquatic Eddy Correlation: Quantifying the Artificial Flux Caused by Stirring-Sensitive O2 Sensors
Holtappels, Moritz; Noss, Christian; Hancke, Kasper; Cathalot, Cecile; McGinnis, Daniel F.; Lorke, Andreas; Glud, Ronnie N.
2015-01-01
In the last decade, the aquatic eddy correlation (EC) technique has proven to be a powerful approach for non-invasive measurements of oxygen fluxes across the sediment water interface. Fundamental to the EC approach is the correlation of turbulent velocity and oxygen concentration fluctuations measured with high frequencies in the same sampling volume. Oxygen concentrations are commonly measured with fast responding electrochemical microsensors. However, due to their own oxygen consumption, electrochemical microsensors are sensitive to changes of the diffusive boundary layer surrounding the probe and thus to changes in the ambient flow velocity. The so-called stirring sensitivity of microsensors constitutes an inherent correlation of flow velocity and oxygen sensing and thus an artificial flux which can confound the benthic flux determination. To assess the artificial flux we measured the correlation between the turbulent flow velocity and the signal of oxygen microsensors in a sealed annular flume without any oxygen sinks and sources. Experiments revealed significant correlations, even for sensors designed to have low stirring sensitivities of ~0.7%. The artificial fluxes depended on ambient flow conditions and, counter intuitively, increased at higher velocities because of the nonlinear contribution of turbulent velocity fluctuations. The measured artificial fluxes ranged from 2 - 70 mmol m-2 d-1 for weak and very strong turbulent flow, respectively. Further, the stirring sensitivity depended on the sensor orientation towards the flow. For a sensor orientation typically used in field studies, the artificial flux could be predicted using a simplified mathematical model. Optical microsensors (optodes) that should not exhibit a stirring sensitivity were tested in parallel and did not show any significant correlation between O2 signals and turbulent flow. In conclusion, EC data obtained with electrochemical sensors can be affected by artificial flux and we recommend using optical microsensors in future EC-studies. PMID:25635679
Fiber optic microsensor hydrogen leak detection system on Delta IV launch vehicle
NASA Astrophysics Data System (ADS)
Kazemi, Alex A.; Goepp, John W.; Larson, David B.; Wuestling, Mark E.
2008-04-01
This paper describes the successful development and test of a multipoint fiber optic hydrogen microsensors system during the static firing of an Evolved Expandable Launch Vehicle (EELV)/Delta's common booster core (CBC) rocket engine at NASA's Stennis Space Center. The hydrogen sensitive chemistry is fully reversible and has demonstrated a response to hydrogen gas in the range of 0% to 10% with a resolution of 0.1% and a response time of <=5 seconds measured at a gas flow rate of 1 cc/min. The system consisted of a reversible chemical interaction causing a change in reflective of a thin film of coated Palladium. The sensor using a passive element consisting of chemically reactive microcoatings deposited on the surface of a glass microlens, which is then bonded to an optical fiber. The system uses a multiplexing technique with a fiber optic driver-receiver consisting of a modulated LED source that is launched into the sensor, and photodiode detector that synchronously measures the reflected signal. The system incorporates a microprocessor to perform the data analysis and storage, as well as trending and set alarm function. The paper illustrates the sensor design and performance data under field deployment conditions.
Force monitoring transducers with more than 100,000 scale intervals
NASA Astrophysics Data System (ADS)
Stavrov, Vladimir; Shulev, Assen; Chakarov, Dimiter; Stavreva, Galina
2015-05-01
This paper presents the results obtained at characterization of novel, high performing force transducers to be employed into monitoring systems with very high accuracy. Each force transducer comprises of a coherently designed mechanical transducer and a position microsensor with very high accuracy. The range of operation for the mechanical transducer has been optimized to fit the 500μm travel range of the position microsensor. Respectively, the flexures' stiffness corresponds to achieve the maximum displacement at 70N load force. The position microsensor is a MEMS device, comprising of two rigid elements: an anchored and an actuated ones connected via one monolithic micro-flexure. Additionally, the micro-flexure comprises of two strain detecting cantilevers having four sidewall embedded piezoresistors connected in a Wheatstone bridge. The particular sensor provides a voltage signal having sensitivity in the range of 240μV/μm at 1V DC voltage supply. The experimental set-up for measurement of the load curve of the force transducer has demonstrated an overall force resolution of about 0.6mN. As a result, more than 100,000 scale intervals have been experimentally assessed. The present work forms development of a common approach for accurate measurement of various physical values, when they are transduced in a multi-D displacement. Due to the demonstrated high accuracy, the force transducers with piezoresistive MEMS sensors remove most of the constraints in force monitoring with ppm-accuracy.
NASA Astrophysics Data System (ADS)
Herbertz, S.; Welk, D.; Heinzel, T.
2018-05-01
Titanium microstripes on silicon dioxide substrates are oxidized locally by applying voltages on-chip to lateral electrodes under ambient conditions. This technique enables profound modifications of the electronic circuit. As an example, we transform Ti films decorated by a sub-monolayer of platinum into hydrogen gas microsensors in an otherwise completed device by a silicon-MOS compatible process.
The potential for microtechnology applications in energy systems: Results of an experts workshop
NASA Astrophysics Data System (ADS)
1995-02-01
Microscale technologies, or microelectromechanical systems (MEMS), are currently under development in the United States and abroad. Examples include microsensors, microactuators (including micromotors), and microscale heat exchangers. Typically, microscale devices have features ranging in size from a few microns to several millimeters, with fabrication methods adapted from those developed for the semiconductor industry. Microtechnologies are already being commercialized; initial markets include the biomedical and transportation industries. Applications are being developed in other industries as well. Researchers at the Pacific Northwest Laboratory (PNL) hypothesize that a significant number of energy applications are possible. These applications range from environmental sensors that support enhanced control of building (or room) temperature and ventilation to microscale heat pumps and microscale heat engines that could collectively provide for kilowatt quantities of energy conversion. If efficient versions of these devices are developed, they could significantly advance the commercialization of distributed energy conversion systems, thereby reducing the energy losses associated with energy distribution. Based upon the potential for energy savings, the U.S. Department of Energy (DOE) Office of Building Technologies (OBT) has proposed a new initiative in energy systems miniaturization. The program would focus on the development of microtechnologies for the manufactured housing sector and would begin in either FY 1997 or FY 1998, ramping up to $5 million per year investment by FY 2001.
Ethanol Microsensors with a Readout Circuit Manufactured Using the CMOS-MEMS Technique
Yang, Ming-Zhi; Dai, Ching-Liang
2015-01-01
The design and fabrication of an ethanol microsensor integrated with a readout circuit on-a-chip using the complementary metal oxide semiconductor (CMOS)-microelectro-mechanical system (MEMS) technique are investigated. The ethanol sensor is made up of a heater, a sensitive film and interdigitated electrodes. The sensitive film is tin dioxide that is prepared by the sol-gel method. The heater is located under the interdigitated electrodes, and the sensitive film is coated on the interdigitated electrodes. The sensitive film needs a working temperature of 220 °C. The heater is employed to provide the working temperature of sensitive film. The sensor generates a change in capacitance when the sensitive film senses ethanol gas. A readout circuit is used to convert the capacitance variation of the sensor into the output frequency. Experiments show that the sensitivity of the ethanol sensor is 0.9 MHz/ppm. PMID:25594598
Integration of Nanostructures into Microsensor Devices on Whole Wafers
NASA Technical Reports Server (NTRS)
Biaggi-Labiosa, Azlin M.; Evans, Laura J.; Berger, Gordon M.; Hunter, Gary W.
2015-01-01
Chemical sensors are used in a wide variety of applications, such as environmental monitoring, fire detection, emission monitoring, and health monitoring. The fabrication of chemical sensors involving nanostructured materials holds the potential for the development of sensor systems with unique properties and improved performance. However, the fabrication and processing of nanostructures for sensor applications currently are limited in the ability to control their location on the sensor, which in turn hinders the progress for batch fabrication. This report discusses the advantages of using nanomaterials in sensor designs, some of the challenges encountered with the integration of nanostructures into microsensor / devices, and then briefly describes different methods attempted by other groups to address this issue. Finally, this report will describe how our approach for the controlled alignment of nanostructures onto a sensor platform was applied to demonstrate an approach for the mass production of sensors with nanostructures.
Ethanol microsensors with a readout circuit manufactured using the CMOS-MEMS technique.
Yang, Ming-Zhi; Dai, Ching-Liang
2015-01-14
The design and fabrication of an ethanol microsensor integrated with a readout circuit on-a-chip using the complementary metal oxide semiconductor (CMOS)-microelectro -mechanical system (MEMS) technique are investigated. The ethanol sensor is made up of a heater, a sensitive film and interdigitated electrodes. The sensitive film is tin dioxide that is prepared by the sol-gel method. The heater is located under the interdigitated electrodes, and the sensitive film is coated on the interdigitated electrodes. The sensitive film needs a working temperature of 220 °C. The heater is employed to provide the working temperature of sensitive film. The sensor generates a change in capacitance when the sensitive film senses ethanol gas. A readout circuit is used to convert the capacitance variation of the sensor into the output frequency. Experiments show that the sensitivity of the ethanol sensor is 0.9 MHz/ppm.
Wygladacz, Katarzyna; Radu, Aleksandar; Xu, Chao; Qin, Yu; Bakker, Eric
2005-08-01
An optical microsensor array is described for the rapid analysis of silver ions at low parts per trillion levels. Because the ionophore o-xylylenebis(N,N-diisobutyldithiocarbamate) (Cu-I) was reevaluated and shown to exhibit excellent selectivity for silver ions, ion-selective electrode (ISE) membranes were optimized and found to exhibit the lowest reported detection limit so far (3 x 10(-10) M). A corresponding Ag+-selective fluorescent optical microsensor array for the rapid sensing of trace level Ag+ was then developed. It was fabricated using plasticized PVC-based micrometer-scale fluorescent microspheres that were produced via a sonic particle casting device. They contained 156 mmol/kg Cu-I, 10 mmol/kg 9-(diethylamino)-5-[4-(15-butyl-1,13-dioxo-2,14-dioxanodecyl) phenylimino]benzo[a]phenoxazine (chromoionophore VII, ETH 5418), 2.3 mmol/kg 1,1' '-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (internal reference dye), and 14 mmol/kg sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate and were deposited onto the etched distal end of a 3200-microm-diameter optical fiber bundle. The microarray was characterized by fluorescence spectroscopy in samples containing 10(-12)-10(-8) M AgNO3 at pH 7.4, with selectivity characteristics comparable to the corresponding ISEs. The response time of the microsensor array was found to be less than 15 min for 10(-9) M AgNO3, which is drastically shorter than earlier data on optode films (8 h) and corresponding ISEs (30 min). A detection limit of 4 x 10(-11) M for Ag+ was observed, lower than any previously reported optode or silver-selective ISE. The microsensor array was applied for measurement of free silver levels in buffered pond water samples.
NASA Astrophysics Data System (ADS)
Bühring, Solveig I.; Kamp, Anja; Wörmer, Lars; Ho, Stephanie; Hinrichs, Kai-Uwe
2014-01-01
Hidden for the untrained eye through a thin layer of sand, laminated microbial sediments occur in supratidal beaches along the North Sea coast. The inhabiting microbial communities organize themselves in response to vertical gradients of light, oxygen or sulfur compounds. We performed a fine-scale investigation on the vertical zonation of the microbial communities using a lipid biomarker approach, and assessed the biogeochemical processes using a combination of microsensor measurements and a 13C-labeling experiment. Lipid biomarker fingerprinting showed the overarching importance of cyanobacteria and diatoms in these systems, and heterocyst glycolipids revealed the presence of diazotrophic cyanobacteria even in 9 to 20 mm depth. High abundance of ornithine lipids (OL) throughout the system may derive from sulfate reducing bacteria, while a characteristic OL profile between 5 and 8 mm may indicate presence of purple non-sulfur bacteria. The fate of 13C-labeled bicarbonate was followed by experimentally investigating the uptake into microbial lipids, revealing an overarching importance of cyanobacteria for carbon fixation. However, in deeper layers, uptake into purple sulfur bacteria was evident, and a close microbial coupling could be shown by uptake of label into lipids of sulfate reducing bacteria in the deepest layer. Microsensor measurements in sediment cores collected at a later time point revealed the same general pattern as the biomarker analysis and the labeling experiments. Oxygen and pH-microsensor profiles showed active photosynthesis in the top layer. The sulfide that diffuses from deeper down and decreases just below the layer of active oxygenic photosynthesis indicates the presence of sulfur bacteria, like anoxygenic phototrophs that use sulfide instead of water for photosynthesis.
Polymer Electrolyte-Based Ambient Temperature Oxygen Microsensors for Environmental Monitoring
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Xu, Jennifer C.; Liu, Chung-Chiun
2011-01-01
An ambient temperature oxygen microsensor, based on a Nafion polymer electrolyte, has been developed and was microfabricated using thin-film technologies. A challenge in the operation of Nafion-based sensor systems is that the conductivity of Nafion film depends on the humidity in the film. Nafion film loses conductivity when the moisture content in the film is too low, which can affect sensor operation. The advancement here is the identification of a method to retain the operation of the Nafion films in lower humidity environments. Certain salts can hold water molecules in the Nafion film structure at room temperature. By mixing salts with the Nafion solution, water molecules can be homogeneously distributed in the Nafion film increasing the film s hydration to prevent Nafion film from being dried out in low-humidity environment. The presence of organics provides extra sites in the Nafion film to promote proton (H+) mobility and thus improving Nafion film conductivity and sensor performance. The fabrication of ambient temperature oxygen microsensors includes depositing basic electrodes using noble metals, and metal oxides layer on one of the electrode as a reference electrode. The use of noble metals for electrodes is due to their strong catalytic properties for oxygen reduction. A conducting polymer Nafion, doped with water-retaining components and extra sites facilitating proton movement, was used as the electrolyte material, making the design adequate for low humidity environment applications. The Nafion solution was coated on the electrodes and air-dried. The sensor operates at room temperature in potentiometric mode, which measures voltage differences between working and reference electrodes in different gases. Repeat able responses to 21-percent oxygen in nitrogen were achieved using nitrogen as a baseline gas. Detection of oxygen from 7 to 21 percent has also been demonstrated. The room-temperature oxygen micro sensor developed has extremely low power consumption (no heating for operation, no voltage applied to the sensor, only a voltmeter is needed to measure the output), is small in size, is simple to batch-fabricate, and is high in sensor yield. It is applicable in a wide humidity range, with improved operation in low humidity after the additives were added to the Nafion film. Through further improvement and development, the sensor can be used for aerospace applications such as fuel leak detection, fire detection, and environmental monitoring.
Use of microelectrodes for electrochemical measurement of nitric oxide in natural seawater
NASA Astrophysics Data System (ADS)
Zhang, Zhengbin; Xing, Lei; Cai, Weijun; Ren, Chunyan; Jiang, Liqing
2004-12-01
In this paper, the application of a homemade Nafion and Co(Salen) modified platinum microelectrode and an ISO-NOPMC microsensor (World Precision Instruments, USA) to measure nitric oxide in natural seawater is reported. These two microelectrodes are suitable for the measurement. In natural seawater, the sensitivity and stability of the ISO-NOPMC microsensor are higher than that of the homemade Nafion and Co(Salen) modified platinum microelectrode.
Chemical Microsensors For Detection Of Explosives And Chemical Warfare Agents
Yang, Xiaoguang; Swanson, Basil I.
2001-11-13
An article of manufacture is provided including a substrate having an oxide surface layer and a layer of a cyclodextrin derivative chemically bonded to said substrate, said layer of a cyclodextrin derivative adapted for the inclusion of selected compounds, e.g., nitro-containing organic compounds, therewith. Such an article can be a chemical microsensor capable of detecting a resultant mass change from inclusion of the nitro-containing organic compound.
A novel integrated multifunction micro-sensor for three-dimensional micro-force measurements.
Wang, Weizhong; Zhao, Yulong; Qin, Yafei
2012-01-01
An integrated multifunction micro-sensor for three-dimensional micro-force precision measurement under different pressure and temperature conditions is introduced in this paper. The integrated sensor consists of three kinds of sensors: a three-dimensional micro-force sensor, an absolute pressure sensor and a temperature sensor. The integrated multifunction micro-sensor is fabricated on silicon wafers by micromachining technology. Different doping doses of boron ion, placement and structure of resistors are tested for the force sensor, pressure sensor and temperature sensor to minimize the cross interference and optimize the properties. A glass optical fiber, with a ladder structure and sharp tip etched by buffer oxide etch solution, is glued on the micro-force sensor chip as the tactile probe. Experimental results show that the minimum force that can be detected by the force sensor is 300 nN; the lateral sensitivity of the force sensor is 0.4582 mV/μN; the probe length is linearly proportional to sensitivity of the micro-force sensor in lateral; the sensitivity of the pressure sensor is 0.11 mv/KPa; the sensitivity of the temperature sensor is 5.836 × 10(-3) KΩ/°C. Thus it is a cost-effective method to fabricate integrated multifunction micro-sensors with different measurement ranges that could be used in many fields.
Performance Characteristics of a New Generation Pressure Microsensor for Physiologic Applications
Cottler, Patrick S.; Karpen, Whitney R.; Morrow, Duane A.; Kaufman, Kenton R.
2009-01-01
A next generation fiber-optic microsensor based on the extrinsic Fabry–Perot interferometric (EFPI) technique has been developed for pressure measurements. The basic physics governing the operation of these sensors makes them relatively tolerant or immune to the effects of high-temperature, high-EMI, and highly-corrosive environments. This pressure microsensor represents a significant improvement in size and performance over previous generation sensors. To achieve the desired overall size and sensitivity, numerical modeling of diaphragm deflection was incorporated in the design, with the desired dimensions and calculated material properties. With an outer diameter of approximately 250 µm, a dynamic operating range of over 250 mmHg, and a sampling frequency of 960 Hz, this sensor is ideal for the minimally invasive measurement of physiologic pressures and incorporation in catheter-based instrumentation. Nine individual sensors were calibrated and characterized by comparing the output to a U.S. National Institute of Standards and Technology (NIST) Traceable reference pressure over the range of 0–250 mmHg. The microsensor performance demonstrated accuracy of better than 2% full-scale output, and repeatability, and hysteresis of better than 1% full-scale output. Additionally, fatigue effects on five additional sensors were 0.25% full-scale output after over 10,000 pressure cycles. PMID:19495983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Kuan-Chung; Chu, Chia-Ho; Hsu, Chen-Pin
In this study, a cost-effective and highly sensitive cholesterol microsensor, which is consisted of cholesterol oxidase (ChOx), horseradish peroxidase (HRP), and polyaniline (PANI), was developed based on the enzyme-induced conductivity change of PANI with fast response. Hydrogen peroxide is produced via the reaction between cholesterol and ChOx, which was immobilized in a dialysis membrane. The produced hydrogen peroxide can oxidize HRP, which can be reduced by oxidizing PANI, thus resulting in decreased conductivity of the polyaniline thin film. The reduced HRP can be oxidized again by hydrogen peroxide and the cycle of the oxidation/reduction continues until all hydrogen peroxide aremore » reacted, leading to the high sensitivity of the sensor due to the signal contributed from all hydrogen peroxide molecules. Cholesterol was detected near the physiological concentrations ranging from 100 mg/dl to 400 mg/dl with the cholesterol microsensors. The results show linear relation between cholesterol concentration and the conductivity change of the PANI. The microsensor showed no response to cholesterol when the PANI was standalone without cholesterol oxidase immobilized, indicating that the enzymatic reaction is required for cholesterol detection. The simple process of the sensor fabrication allows the sensor to be cost-effective and disposable usage. This electronic cholesterol microsensor is promising for point-of-care health monitoring in cholesterol level with low cost and fast response.« less
Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake
Deutzmann, Joerg S.; Stief, Peter; Brandes, Josephin; Schink, Bernhard
2014-01-01
Anaerobic methane oxidation coupled to denitrification, also known as “nitrate/nitrite-dependent anaerobic methane oxidation” (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular techniques in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral sediment) and were very abundant at deep-water sites (profundal sediment). In profundal sediment, the vertical distribution of M. oxyfera-like bacteria showed a distinct peak in anoxic layers that coincided with the zone of methane oxidation and nitrate consumption, a strong indication for n-damo carried out by M. oxyfera-like bacteria. Both potential n-damo rates calculated from cell densities (660–4,890 µmol CH4⋅m−2⋅d−1) and actual rates calculated from microsensor profiles (31–437 µmol CH4⋅m−2⋅d−1) were sufficiently high to prevent methane release from profundal sediment solely by this process. Additionally, when nitrate was added to sediment cores exposed to anoxic conditions, the n-damo zone reestablished well below the sediment surface, completely preventing methane release from the sediment. We conclude that the previously overlooked n-damo process can be the major methane sink in stable freshwater environments if nitrate is available in anoxic zones. PMID:25472842
Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake.
Deutzmann, Joerg S; Stief, Peter; Brandes, Josephin; Schink, Bernhard
2014-12-23
Anaerobic methane oxidation coupled to denitrification, also known as "nitrate/nitrite-dependent anaerobic methane oxidation" (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular techniques in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral sediment) and were very abundant at deep-water sites (profundal sediment). In profundal sediment, the vertical distribution of M. oxyfera-like bacteria showed a distinct peak in anoxic layers that coincided with the zone of methane oxidation and nitrate consumption, a strong indication for n-damo carried out by M. oxyfera-like bacteria. Both potential n-damo rates calculated from cell densities (660-4,890 µmol CH4⋅m(-2)⋅d(-1)) and actual rates calculated from microsensor profiles (31-437 µmol CH4⋅m(-2)⋅d(-1)) were sufficiently high to prevent methane release from profundal sediment solely by this process. Additionally, when nitrate was added to sediment cores exposed to anoxic conditions, the n-damo zone reestablished well below the sediment surface, completely preventing methane release from the sediment. We conclude that the previously overlooked n-damo process can be the major methane sink in stable freshwater environments if nitrate is available in anoxic zones.
Flexible surface acoustic wave respiration sensor for monitoring obstructive sleep apnea syndrome
NASA Astrophysics Data System (ADS)
Jin, Hao; Tao, Xiang; Dong, Shurong; Qin, Yiheng; Yu, Liyang; Luo, Jikui; Deen, M. Jamal
2017-11-01
Obstructive sleep apnea syndrome (OSAS) has received much attention in recent years due to its significant harm to human health and high morbidity rate. A respiration monitoring system is needed to detect OSAS, so that the patient can receive treatment in a timely manner. Wired and wireless OSAS monitoring systems have been developed, but they require a wire connection and batteries to operate, and they are bulky, heavy and not user-friendly. In this paper, we propose the use of a flexible surface acoustic wave (SAW) microsensor to detect and monitor OSAS by measuring the humidity change associated with the respiration of a person. SAW sensors on rigid 128° YX LiNbO3 substrate are also characterized for this application. Results show both types of SAW sensors are suitable for OSAS monitoring with good sensitivity, repeatability and reliability, and the response time and recovery time for the flexible SAW sensors are 1.125 and 0.75 s, respectively. Our work demonstrates the potential for an innovative flexible microsensor for the detection and monitoring of OSAS.
Yang, Ming-Zhi; Dai, Ching-Liang; Shih, Po-Jen
2014-07-17
This study investigates the fabrication and characterization of an acetone microsensor with a ring oscillator circuit using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The acetone microsensor contains a sensitive material, interdigitated electrodes and a polysilicon heater. The sensitive material is α-Fe2O3 synthesized by the hydrothermal method. The sensor requires a post-process to remove the sacrificial oxide layer between the interdigitated electrodes and to coat the α-Fe2O3 on the electrodes. When the sensitive material adsorbs acetone vapor, the sensor produces a change in capacitance. The ring oscillator circuit converts the capacitance of the sensor into the oscillation frequency output. The experimental results show that the output frequency of the acetone sensor changes from 128 to 100 MHz as the acetone concentration increases 1 to 70 ppm.
Yang, Ming-Zhi; Dai, Ching-Liang; Shih, Po-Jen
2014-01-01
This study investigates the fabrication and characterization of an acetone microsensor with a ring oscillator circuit using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The acetone microsensor contains a sensitive material, interdigitated electrodes and a polysilicon heater. The sensitive material is α-Fe2O3 synthesized by the hydrothermal method. The sensor requires a post-process to remove the sacrificial oxide layer between the interdigitated electrodes and to coat the α-Fe2O3 on the electrodes. When the sensitive material adsorbs acetone vapor, the sensor produces a change in capacitance. The ring oscillator circuit converts the capacitance of the sensor into the oscillation frequency output. The experimental results show that the output frequency of the acetone sensor changes from 128 to 100 MHz as the acetone concentration increases 1 to 70 ppm. PMID:25036331
A temperature microsensor for measuring laser-induced heating in gold nanorods.
Pacardo, Dennis B; Neupane, Bhanu; Wang, Gufeng; Gu, Zhen; Walker, Glenn M; Ligler, Frances S
2015-01-01
Measuring temperature is an extensively explored field of analysis, but measuring a temperature change in a nanoparticle is a new challenge. Here, a microsensor is configured to measure temperature changes in gold nanorods in solution upon laser irradiation. The device consists of a silicon wafer coated with silicon nitride in which a microfabricated resistance temperature detector was embedded and attached to a digital multimeter. A polydimethylsiloxane mold served as a microcontainer for the sample attached on top of the silicon membrane. This enables laser irradiation of the gold nanorods and subsequent measurement of temperature changes. The results showed a temperature increase of 8 to 10 °C and good correlation with theoretical calculations and bulk sample direct temperature measurements. These results demonstrate the suitability of this simple temperature microsensor for determining laser-induced heating profiles of metallic nanomaterials; such measurements will be essential for optimizing therapeutic and catalytic applications.
Motor Impairment Evaluation for Upper Limb in Stroke Patients on the Basis of a Microsensor
ERIC Educational Resources Information Center
Huang, Shuai; Luo, Chun; Ye, Shiwei; Liu, Fei; Xie, Bin; Wang, Caifeng; Yang, Li; Huang, Zhen; Wu, Jiankang
2012-01-01
There has been an urgent need for an effective and efficient upper limb rehabilitation method for poststroke patients. We present a Micro-Sensor-based Upper Limb rehabilitation System for poststroke patients. The wearable motion capture units are attached to upper limb segments embedded in the fabric of garments. The body segment orientation…
In-situ Monitoring of Internal Local Temperature and Voltage of Proton Exchange Membrane Fuel Cells
Lee, Chi-Yuan; Fan, Wei-Yuan; Hsieh, Wei-Jung
2010-01-01
The distribution of temperature and voltage of a fuel cell are key factors that influence performance. Conventional sensors are normally large, and are also useful only for making external measurements of fuel cells. Centimeter-scale sensors for making invasive measurements are frequently unable to accurately measure the interior changes of a fuel cell. This work focuses mainly on fabricating flexible multi-functional microsensors (for temperature and voltage) to measure variations in the local temperature and voltage of proton exchange membrane fuel cells (PEMFC) that are based on micro-electro-mechanical systems (MEMS). The power density at 0.5 V without a sensor is 450 mW/cm2, and that with a sensor is 426 mW/cm2. Since the reaction area of a fuel cell with a sensor is approximately 12% smaller than that without a sensor, but the performance of the former is only 5% worse. PMID:22163556
In-situ monitoring of internal local temperature and voltage of proton exchange membrane fuel cells.
Lee, Chi-Yuan; Fan, Wei-Yuan; Hsieh, Wei-Jung
2010-01-01
The distribution of temperature and voltage of a fuel cell are key factors that influence performance. Conventional sensors are normally large, and are also useful only for making external measurements of fuel cells. Centimeter-scale sensors for making invasive measurements are frequently unable to accurately measure the interior changes of a fuel cell. This work focuses mainly on fabricating flexible multi-functional microsensors (for temperature and voltage) to measure variations in the local temperature and voltage of proton exchange membrane fuel cells (PEMFC) that are based on micro-electro-mechanical systems (MEMS). The power density at 0.5 V without a sensor is 450 mW/cm(2), and that with a sensor is 426 mW/cm(2). Since the reaction area of a fuel cell with a sensor is approximately 12% smaller than that without a sensor, but the performance of the former is only 5% worse.
Continuous glucose monitoring microsensor with a nanoscale conducting matrix and redox mediator
NASA Astrophysics Data System (ADS)
Pesantez, Daniel
The major limiting factor in kidney clinical transplantation is the shortage of transplantable organs. The current inability to distinguish viability from non-viability on a prospective basis represents a major obstacle in any attempt to expand organ donor criteria. Consequently, a way to measure and monitor a relevant analyte to assess kidney viability is needed. For the first time, the initial development and characterization of a metabolic microsensor to assess kidney viability is presented. The rate of glucose consumption appears to serve as an indicator of kidney metabolism that may distinguish reversible from irreversible kidney damage. The proposed MetaSense (Metabolic Sensor) microdevice would replace periodic laboratory diagnosis tests with a continuous monitor that provides real-time data on organ viability. Amperometry, a technique that correlates an electrical signal with analyte concentration, is used as a method to detect glucose concentrations. A novel two-electrode electrochemical sensing cell design is presented. It uses a modified metallic working electrode (WE) and a bare metallic reference electrode (RE) that acts as a pseudo-reference/counter electrode as well. The proposed microsensor has the potential to be used as a minimally invasive sensor for its reduced number of probes and very small dimensions achieved by micromachining and lithography. In order to improve selectivity of the microdevice, two electron transfer mechanisms or generations were explored. A first generation microsensor uses molecular oxygen as the electron acceptor in the enzymatic reaction and oxidizes hydrogen peroxide (H2O2) to get the electrical signal. The microsensor's modified WE with conductive polymer polypyrrole (PPy) and corresponding enzyme glucose oxidase (GOx) immobilized into its matrix, constitutes the electrochemical detection mechanism. Photoluminescence spectroscopic analysis confirmed and quantified enzyme immobilized concentrations within the matrix. In vitro testing for glucose shows increasing current with increasing analyte concentration. Testing the glucose microsensor with known concentrations of glucose over a period of 48 hours demonstrated both the potential durability and sensitivity of the device. Unknown/blind in vitro glucose experiments showed the reproducibility and accuracy of the microsensor to detect various glucose levels. Thinner polymer matrix films lead to better sensing performance during in vitro tests (0.6nA/mM lower limit sensitivity and 0.2nA/mM upper limit sensitivity). In vitro experiments using electroactive ascorbic acid (AA) and uric acid (UA) showed the selectivity of the sensor for glucose. In an effort to reduce the sensor's oxidation potential (0.7V) and noise, a second generation electron transfer approach was developed by incorporating into a modified Platinum WE with a nanoscale PPy and GOx matrix, a redox mediator. Ferrocene (Fc) was selected as the artificial electron carrier, substituting molecular oxygen in the enzymatic reaction. The incorporation of Fc into the polymer matrix is done by a simple electrochemical synthesis. Modifications in the microsensor design, materials and fabrication process are presented. Experiments with the new sensor generation resulted in higher sensitivity values (22.8nA/mM lower limit sensitivity and 12.5nA/mM upper limit sensitivity) for glucose and noise was further eliminated by operating the sensor at a lower oxidation potential (0.3V). The final experimental work consisted of preliminary ex vivo tests with the MetaSense microdevice on bovine kidney samples, which showed a qualitatively correlation between glucose consumption trend profile during preservation and viability histology outcome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert G. Baca; Edwin J. Heller; Gregory C. Frye-Mason
High sensitivity acoustic wave chemical microsensors are being developed on GaAs substrates. These devices take advantage of the piezoelectric properties of GaAs as well as its mature microelectronics fabrication technology and nascent micromachining technology. The design, fabrication, and response of GaAs SAW chemical microsensors are reported. Functional integrated GaAs SAW oscillators, suitable for chemical sensing, have been produced. The integrated oscillator requires 20 mA at 3 VK, operates at frequencies up to 500 MHz, and occupies approximately 2 mmz. Discrete GaAs sensor components, including IC amplifiers, SAW delay lines, and IC phase comparators have been fabricated and tested. A temperaturemore » compensation scheme has been developed that overcomes the large temperature dependence of GaAs acoustic wave devices. Packaging issues related to bonding miniature flow channels directly to the GaAs substrates have been resolved. Micromachining techniques for fabricating FPW and TSM microsensors on thin GaAs membranes are presented and GaAs FPW delay line performance is described. These devices have potentially higher sensitivity than existing GaAs and quartz SAW sensors.« less
Fabrication and Characterization of CMOS-MEMS Magnetic Microsensors
Hsieh, Chen-Hsuan; Dai, Ching-Liang; Yang, Ming-Zhi
2013-01-01
This study investigates the design and fabrication of magnetic microsensors using the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process. The magnetic sensor is composed of springs and interdigitated electrodes, and it is actuated by the Lorentz force. The finite element method (FEM) software CoventorWare is adopted to simulate the displacement and capacitance of the magnetic sensor. A post-CMOS process is utilized to release the suspended structure. The post-process uses an anisotropic dry etching to etch the silicon dioxide layer and an isotropic dry etching to remove the silicon substrate. When a magnetic field is applied to the magnetic sensor, it generates a change in capacitance. A sensing circuit is employed to convert the capacitance variation of the sensor into the output voltage. The experimental results show that the output voltage of the magnetic microsensor varies from 0.05 to 1.94 V in the magnetic field range of 5–200 mT. PMID:24172287
The NASA Smart Probe Project for real-time multiple microsensor tissue recognition
NASA Technical Reports Server (NTRS)
Andrews, Russell J.; Mah, Robert W.
2003-01-01
BACKGROUND: Remote surgery requires automated sensors, effectors and sensor-effector communication. The NASA Smart Probe Project has focused on the sensor aspect. METHODS: The NASA Smart Probe uses neural networks and data from multiple microsensors for a unique tissue signature in real time. Animal and human trials use several probe configurations: (1) 8-microsensor probe (2.5 mm in diameter) for rodent studies (normal and subcutaneous mammary tumor tissues), and (2) 21-gauge needle probe with 3 spectroscopic fibers and an impedance microelectrode for breast cancer diagnosis in humans. Multisensor data are collected in real time (update 100 times/s) using PCs. RESULTS: Human data (collected by NASA licensee BioLuminate) from 15 women undergoing breast biopsy distinguished normal tissue from both benign tumors and breast carcinoma. Tumor margins and necrosis are rapidly detected. CONCLUSION: Real-time tissue identification is achievable. Potential applications, including probes incorporating nanoelectrode arrays, are presented. Copyright 2003 S. Karger AG, Basel.
Portable Electronic Tongue Based on Microsensors for the Analysis of Cava Wines.
Giménez-Gómez, Pablo; Escudé-Pujol, Roger; Capdevila, Fina; Puig-Pujol, Anna; Jiménez-Jorquera, Cecilia; Gutiérrez-Capitán, Manuel
2016-10-27
Cava is a quality sparkling wine produced in Spain. As a product with a designation of origin, Cava wine has to meet certain quality requirements throughout its production process; therefore, the analysis of several parameters is of great interest. In this work, a portable electronic tongue for the analysis of Cava wine is described. The system is comprised of compact and low-power-consumption electronic equipment and an array of microsensors formed by six ion-selective field effect transistors sensitive to pH, Na⁺, K⁺, Ca 2+ , Cl - , and CO₃ 2- , one conductivity sensor, one redox potential sensor, and two amperometric gold microelectrodes. This system, combined with chemometric tools, has been applied to the analysis of 78 Cava wine samples. Results demonstrate that the electronic tongue is able to classify the samples according to the aging time, with a percentage of correct prediction between 80% and 96%, by using linear discriminant analysis, as well as to quantify the total acidity, pH, volumetric alcoholic degree, potassium, conductivity, glycerol, and methanol parameters, with mean relative errors between 2.3% and 6.0%, by using partial least squares regressions.
Portable Electronic Tongue Based on Microsensors for the Analysis of Cava Wines
Giménez-Gómez, Pablo; Escudé-Pujol, Roger; Capdevila, Fina; Puig-Pujol, Anna; Jiménez-Jorquera, Cecilia; Gutiérrez-Capitán, Manuel
2016-01-01
Cava is a quality sparkling wine produced in Spain. As a product with a designation of origin, Cava wine has to meet certain quality requirements throughout its production process; therefore, the analysis of several parameters is of great interest. In this work, a portable electronic tongue for the analysis of Cava wine is described. The system is comprised of compact and low-power-consumption electronic equipment and an array of microsensors formed by six ion-selective field effect transistors sensitive to pH, Na+, K+, Ca2+, Cl−, and CO32−, one conductivity sensor, one redox potential sensor, and two amperometric gold microelectrodes. This system, combined with chemometric tools, has been applied to the analysis of 78 Cava wine samples. Results demonstrate that the electronic tongue is able to classify the samples according to the aging time, with a percentage of correct prediction between 80% and 96%, by using linear discriminant analysis, as well as to quantify the total acidity, pH, volumetric alcoholic degree, potassium, conductivity, glycerol, and methanol parameters, with mean relative errors between 2.3% and 6.0%, by using partial least squares regressions. PMID:27801796
MicroSensors Systems: detection of a dismounted threat
NASA Astrophysics Data System (ADS)
Davis, Bill; Berglund, Victor; Falkofske, Dwight; Krantz, Brian
2005-05-01
The Micro Sensor System (MSS) is a layered sensor network with the goal of detecting dismounted threats approaching high value assets. A low power unattended ground sensor network is dependant on a network protocol for efficiency in order to minimize data transmissions after network establishment. The reduction of network 'chattiness' is a primary driver for minimizing power consumption and is a factor in establishing a low probability of detection and interception. The MSS has developed a unique protocol to meet these challenges. Unattended ground sensor systems are most likely dependant on batteries for power which due to size determines the ability of the sensor to be concealed after placement. To minimize power requirements, overcome size limitations, and maintain a low system cost the MSS utilizes advanced manufacturing processes know as Fluidic Self-Assembly and Chip Scale Packaging. The type of sensing element and the ability to sense various phenomenologies (particularly magnetic) at ranges greater than a few meters limits the effectiveness of a system. The MicroSensor System will overcome these limitations by deploying large numbers of low cost sensors, which is made possible by the advanced manufacturing process used in production of the sensors. The MSS program will provide unprecedented levels of real-time battlefield information which greatly enhances combat situational awareness when integrated with the existing Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR) infrastructure. This system will provide an important boost to realizing the information dominant, network-centric objective of Joint Vision 2020.
Development of Wireless Subsurface Microsensors for Health Monitoring of Thermal Protection Systems
NASA Technical Reports Server (NTRS)
Pallix, Joan; Milos, Frank; Arnold, James O. (Technical Monitor)
2000-01-01
Low cost access to space is a primary goal for both NASA and the U.S. aerospace industry. Integrated subsystem health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles (RLVS) in order to reduce life cycle costs, increase safety margins and improve mission reliability. A number of efforts are underway to use existing and emerging technologies to establish new methods for vehicle health monitoring on operational vehicles as well as X-vehicles. This paper summarizes a joint effort between several NASA centers and industry partners to develop rapid wireless diagnostic tools for failure management and long-term TPS performance monitoring of thermal protection systems (TPS) on future RLVS. An embedded wireless microsensor suite is being designed to allow rapid subsurface TPS health monitoring and damage assessment. This sensor suite will consist of both passive overlimit sensors and sensors for continuous parameter monitoring in flight. The on-board diagnostic system can be used to radio in maintenance requirements before landing and the data could also be used to assist in design validation for X-vehicles. For a 3rd generation vehicle, wireless diagnostics should be at a stage of technical development that will allow use for intelligent feedback systems for guidance and navigation control applications and can also serve as feedback for TPS that can intelligently adapt to its environment.
Distributed optical microsensors for hydrogen leak detection and related applications
NASA Astrophysics Data System (ADS)
Hunter, Scott R.; Patton, James F.; Sepaniak, Michael J.; Datskos, Panos G.; Smith, D. Barton
2010-04-01
Significant advances have recently been made to develop optically interrogated microsensor based chemical sensors with specific application to hydrogen vapor sensing and leak detection in the hydrogen economy. We have developed functionalized polymer-film and palladium/silver alloy coated microcantilever arrays with nanomechanical sensing for this application. The uniqueness of this approach is in the use of independent component analysis (ICA) and the classification techniques of neural networks to analyze the signals produced by an array of microcantilever sensors. This analysis identifies and quantifies the amount of hydrogen and other trace gases physisorbed on the arrays. Selectivity is achieved by using arrays of functionalized sensors with a moderate distribution of specificity among the sensing elements. The device consists of an array of beam-shaped transducers with molecular recognition phases (MRPs) applied to one surface of the transducers. Bending moments on the individual transducers can be detected by illuminating them with a laser or an LED and then reading the reflected light with an optical position sensitive detector (PSD) such as a CCD. Judicious selection of MRPs for the array provides multiple isolated interaction surfaces for sensing the environment. When a particular chemical agent binds to a transducer, the effective surface stresses of its modified and uncoated sides change unequally and the transducer begins to bend. The extent of bending depends upon the specific interactions between the microcantilever's MRP and the analyte. Thus, the readout of a multi-MRP array is a complex multidimensional signal that can be analyzed to deconvolve a multicomponent gas mixture. The use of this sensing and analysis technique in unattended networked arrays of sensors for various monitoring and surveillance applications is discussed.
Gabbett, Tim J
2013-08-01
The physical demands of rugby league, rugby union, and American football are significantly increased through the large number of collisions players are required to perform during match play. Because of the labor-intensive nature of coding collisions from video recordings, manufacturers of wearable microsensor (e.g., global positioning system [GPS]) units have refined the technology to automatically detect collisions, with several sport scientists attempting to use these microsensors to quantify the physical demands of collision sports. However, a question remains over the validity of these microtechnology units to quantify the contact demands of collision sports. Indeed, recent evidence has shown significant differences in the number of "impacts" recorded by microtechnology units (GPSports) and the actual number of collisions coded from video. However, a separate study investigated the validity of a different microtechnology unit (minimaxX; Catapult Sports) that included GPS and triaxial accelerometers, and also a gyroscope and magnetometer, to quantify collisions. Collisions detected by the minimaxX unit were compared with video-based coding of the actual events. No significant differences were detected in the number of mild, moderate, and heavy collisions detected via the minimaxX units and those coded from video recordings of the actual event. Furthermore, a strong correlation (r = 0.96, p < 0.01) was observed between collisions recorded via the minimaxX units and those coded from video recordings of the event. These findings demonstrate that only one commercially available and wearable microtechnology unit (minimaxX) can be considered capable of offering a valid method of quantifying the contact loads that typically occur in collision sports. Until such validation research is completed, sport scientists should be circumspect of the ability of other units to perform similar functions.
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2007-01-01
The aerospace industry requires the development of a range of chemical sensor technologies for such applications as leak detection, emission monitoring, fuel leak detection, environmental monitoring, and fire detection. A range of chemical sensors are being developed based on micromachining and microfabrication technology to fabricate microsensors with minimal size, weight, and power consumption; and the use of nanomaterials and structures to develop sensors with improved stability combined with higher sensitivity, However, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. These technologies and technical approaches have direct relevance to breath monitoring for clinical applications. This presentation gives an overview of developing cutting-edge sensor technology and possible barriers to new technology implementation. This includes lessons learned from previous microsensor development, recent work in development of a breath monitoring system, and future directions in the implementation of cutting edge sensor technology.
NASA Technical Reports Server (NTRS)
1994-01-01
A heat flux microsensor developed under a NASP Small Business Innovation Research (SBIR) has a wide range of potential commercial applications. Vatell Corporation originally designed microsensors for use in very high temperatures. The company then used the technology to develop heat flux sensors to measure the rate of heat energy flowing in and out of a surface as well as readings on the surface temperature. Additional major advantages include response to heat flux in less than 10 microseconds and the ability to withstand temperatures up to 1,200 degrees centigrade. Commercial applications are used in high speed aerodynamics, supersonic combustion, blade cooling, and mass flow measurements, etc.
Photopolymerization-based fabrication of chemical sensing films
Yang, Xiaoguang; Swanson, Basil I.; Du, Xian-Xian
2003-12-30
A photopolymerization method is disclosed for attaching a chemical microsensor film to an oxide surface including the steps of pretreating the oxide surface to form a functionalized surface, coating the functionalized surface with a prepolymer solution, and polymerizing the prepolymer solution with ultraviolet light to form the chemical microsensor film. The method also allows the formation of molecular imprinted films by photopolymerization. Formation of multilayer sensing films and patterned films is allowed by the use of photomasking techniques to allow patterning of multiple regions of a selected sensing film, or creating a sensor surface containing several films designed to detect different compounds.
Comprehensive and Critical Literature Review on Insitu Micro-Sensors for Application in Tribology
1994-04-01
Electroosmotic flow provides a pumping method that is convenient for small capillaries. Electrophoretic separation is shown to be useful. On the left hand...analysis systems on glass chips (1 centimeter by 2 centimeters or larger) that utilize electroosmotic pumping to drive fluid flow and electrophoretic...elucidate the interaction mechanism. Additionally, using two types of sensors in a mixed array increases selectivity by providing different information
Lee, Chi-Yuan; Li, Shih-Chun; Chen, Chia-Hung; Huang, Yen-Ting; Wang, Yu-Syuan
2018-03-15
Looking for alternative energy sources has been an inevitable trend since the oil crisis, and close attentioned has been paid to hydrogen energy. The proton exchange membrane (PEM) water electrolyzer is characterized by high energy efficiency, high yield, simple system and low operating temperature. The electrolyzer generates hydrogen from water free of any carbon sources (provided the electrons come from renewable sources such as solar and wind), so it is very clean and completely satisfies the environmental requirement. However, in long-term operation of the PEM water electrolyzer, the membrane material durability, catalyst corrosion and nonuniformity of local flow, voltage and current in the electrolyzer can influence the overall performance. It is difficult to measure the internal physical parameters of the PEM water electrolyzer, and the physical parameters are interrelated. Therefore, this study uses micro-electro-mechanical systems (MEMS) technology to develop a flexible integrated microsensor; internal multiple physical information is extracted to determine the optimal working parameters for the PEM water electrolyzer. The real operational data of local flow, voltage and current in the PEM water electrolyzer are measured simultaneously by the flexible integrated microsensor, so as to enhance the performance of the PEM water electrolyzer and to prolong the service life.
Gold nanospikes based microsensor as a highly accurate mercury emission monitoring system
NASA Astrophysics Data System (ADS)
Sabri, Ylias M.; Ippolito, Samuel J.; Tardio, James; Bansal, Vipul; O'Mullane, Anthony P.; Bhargava, Suresh K.
2014-10-01
Anthropogenic elemental mercury (Hg0) emission is a serious worldwide environmental problem due to the extreme toxicity of the heavy metal to humans, plants and wildlife. Development of an accurate and cheap microsensor based online monitoring system which can be integrated as part of Hg0 removal and control processes in industry is still a major challenge. Here, we demonstrate that forming Au nanospike structures directly onto the electrodes of a quartz crystal microbalance (QCM) using a novel electrochemical route results in a self-regenerating, highly robust, stable, sensitive and selective Hg0 vapor sensor. The data from a 127 day continuous test performed in the presence of volatile organic compounds and high humidity levels, showed that the sensor with an electrodeposted sensitive layer had 260% higher response magnitude, 3.4 times lower detection limit (~22 μg/m3 or ~2.46 ppbv) and higher accuracy (98% Vs 35%) over a Au control based QCM (unmodified) when exposed to a Hg0 vapor concentration of 10.55 mg/m3 at 101°C. Statistical analysis of the long term data showed that the nano-engineered Hg0 sorption sites on the developed Au nanospikes sensitive layer play a critical role in the enhanced sensitivity and selectivity of the developed sensor towards Hg0 vapor.
Lee, Chi-Yuan; Li, Shih-Chun; Chen, Chia-Hung; Huang, Yen-Ting; Wang, Yu-Syuan
2018-01-01
Looking for alternative energy sources has been an inevitable trend since the oil crisis, and close attentioned has been paid to hydrogen energy. The proton exchange membrane (PEM) water electrolyzer is characterized by high energy efficiency, high yield, simple system and low operating temperature. The electrolyzer generates hydrogen from water free of any carbon sources (provided the electrons come from renewable sources such as solar and wind), so it is very clean and completely satisfies the environmental requirement. However, in long-term operation of the PEM water electrolyzer, the membrane material durability, catalyst corrosion and nonuniformity of local flow, voltage and current in the electrolyzer can influence the overall performance. It is difficult to measure the internal physical parameters of the PEM water electrolyzer, and the physical parameters are interrelated. Therefore, this study uses micro-electro-mechanical systems (MEMS) technology to develop a flexible integrated microsensor; internal multiple physical information is extracted to determine the optimal working parameters for the PEM water electrolyzer. The real operational data of local flow, voltage and current in the PEM water electrolyzer are measured simultaneously by the flexible integrated microsensor, so as to enhance the performance of the PEM water electrolyzer and to prolong the service life. PMID:29543734
An Overview of Data Routing Approaches for Wireless Sensor Networks
Anisi, Mohammad Hossein; Abdullah, Abdul Hanan; Razak, Shukor Abd; Ngadi, Md. Asri
2012-01-01
Recent years have witnessed a growing interest in deploying large populations of microsensors that collaborate in a distributed manner to gather and process sensory data and deliver them to a sink node through wireless communications systems. Currently, there is a lot of interest in data routing for Wireless Sensor Networks (WSNs) due to their unique challenges compared to conventional routing in wired networks. In WSNs, each data routing approach follows a specific goal (goals) according to the application. Although the general goal of every data routing approach in WSNs is to extend the network lifetime and every approach should be aware of the energy level of the nodes, data routing approaches may focus on one (or some) specific goal(s) depending on the application. Thus, existing approaches can be categorized according to their routing goals. In this paper, the main goals of data routing approaches in sensor networks are described. Then, the best known and most recent data routing approaches in WSNs are classified and studied according to their specific goals. PMID:23443040
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chien, C; Elgorriaga, I; McConaghy, C
2001-07-03
Emerging CMOS and MEMS technologies enable the implementation of a large number of wireless distributed microsensors that can be easily and rapidly deployed to form highly redundant, self-configuring, and ad hoc sensor networks. To facilitate ease of deployment, these sensors should operate on battery for extended periods of time. A particular challenge in maintaining extended battery lifetime lies in achieving communications with low power. This paper presents a direct-sequence spread-spectrum modem architecture that provides robust communications for wireless sensor networks while dissipating very low power. The modem architecture has been verified in an FPGA implementation that dissipates only 33 mWmore » for both transmission and reception. The implementation can be easily mapped to an ASIC technology, with an estimated power performance of less than 1 mW.« less
NASA Technical Reports Server (NTRS)
1983-01-01
A miniature gas chromatograph, a system which separates a gaseous mixture into its components and measures the concentration of the individual gases, was designed for the Viking Lander. The technology was further developed under National Institute for Occupational Safety and Health (NIOSH) and funded by Ames Research Center/Stanford as a toxic gas leak detection device. Three researchers on the project later formed Microsensor Technology, Inc. to commercialize the product. It is a battery-powered system consisting of a sensing wand connected to a computerized analyzer. Marketed as the Michromonitor 500, it has a wide range of applications.
Health Monitoring Technology for Thermal Protection Systems on Reusable Hypersonic Vehicles
NASA Technical Reports Server (NTRS)
Milos, Frank S.; Watters, D. G.; Heinemann, J. M.; Karunaratne, K. S.; Arnold, Jim (Technical Monitor)
2001-01-01
Integrated subsystem health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles (RLVs) in order to reduce life cycle costs, to increase safety margins, and to improve mission reliability. This talk summarizes a joint effort between NASA Ames and industry partners to develop rapid non-contact diagnostic tools for health and performance monitoring of thermal protection systems (TPS) on future RLVs. The specific goals for TPS health monitoring are to increase the speed and reliability of TPS inspections for improved operability at lower cost. The technology being developed includes a 3-D laser scanner for examining the exterior surface of the TPS, and a subsurface microsensor suite for monitoring the health and performance of the TPS. The sensor suite consists of passive overlimit sensors and sensors for continuous parameter monitoring in flight. The sensors are integrated with radio-frequency identification (RFID) microchips to enable wireless communication of-the sensor data to an external reader that may be a hand-held scanner or a large portal. Prototypes of the laser system and both types of subsurface sensors have been developed. The laser scanner was tested on Shuttle Orbiter Columbia and was able to dimension surface chips and holes on a variety of TPS materials. The temperature-overlimit microsensor has a diameter under 0.05 inch (suitable for placement in gaps between ceramic TPS tiles) and can withstand 700 F for 15 minutes.
Robust Functionalization of Large Microelectrode Arrays by Using Pulsed Potentiostatic Deposition
Rothe, Joerg; Frey, Olivier; Madangopal, Rajtarun; Rickus, Jenna; Hierlemann, Andreas
2016-01-01
Surface modification of microelectrodes is a central step in the development of microsensors and microsensor arrays. Here, we present an electrodeposition scheme based on voltage pulses. Key features of this method are uniformity in the deposited electrode coatings, flexibility in the overall deposition area, i.e., the sizes and number of the electrodes to be coated, and precise control of the surface texture. Deposition and characterization of four different materials are demonstrated, including layers of high-surface-area platinum, gold, conducting polymer poly(ethylenedioxythiophene), also known as PEDOT, and the non-conducting polymer poly(phenylenediamine), also known as PPD. The depositions were conducted using a fully integrated complementary metal-oxide-semiconductor (CMOS) chip with an array of 1024 microelectrodes. The pulsed potentiostatic deposition scheme is particularly suitable for functionalization of individual electrodes or electrode subsets of large integrated microelectrode arrays: the required deposition waveforms are readily available in an integrated system, the same deposition parameters can be used to functionalize the surface of either single electrodes or large arrays of thousands of electrodes, and the deposition method proved to be robust and reproducible for all materials tested. PMID:28025569
Hunter, Gary W; Dweik, Raed A
2010-01-01
The aerospace industry requires the development of a range of chemical sensor technologies for such applications as leak detection, emission monitoring, fuel leak detection, environmental monitoring, and fire detection. A family of chemical sensors are being developed based on micromachining and microfabrication technology to fabricate microsensors with minimal size, weight, and power consumption, and the use of nanomaterials and structures to develop sensors with improved stability combined with higher sensitivity. However, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. These technologies and technical approaches have direct relevance to breath monitoring for clinical applications. This paper gives an overview of developing cutting-edge sensor technology and possible barriers to new technology implementation. This includes lessons learned from previous microsensor development, recent work in development of a breath monitoring system, and future directions in the implementation of cutting edge sensor technology. Clinical applications and the potential impact to the biomedical field of miniaturized smart gas sensor technology are discussed. PMID:20622933
Piezoelectric and Electrostrictive Materials for Transducers Applications. Volume 4
1992-01-31
Micromotors ." IEEE. 109-113 (1991). 41. Anita M. Flynn. Lee S. Tavrow. Stephen F. Bart. Rodney A. Brooks. Daniel J. Ehrlich. K. R. Udayakumar and L. Eric...Cross. "Piezoelectric Micromotors for Microrobots." J. Microelectromechanical Systems 1 (1) 47-50 (1992). 4 APPENDIX 35 A STUDY OF YI Ba2 Cti30 7.y...to produce miniature pumps. valves. microsensors and micromotors . This paper reports on the fabrication of thin films that are capable of producing
Porter; Eastman; Pace; Bradley
2000-09-01
Polymer-based materials can be incorporated as the active sensing elements in chemiresistor devices. Most of these devices take advantage of the fact that certain polymers will swell when exposed to gaseous analytes. To measure this response, a conducting material such as carbon black is incorporated within the nonconducting polymer matrix. In response to analytes, polymer swelling results in a measurable change in the conductivity of the polymer/carbon composite material. Arrays of these sensors may be used in conjunction with pattern recognition techniques for purposes of analyte recognition and quantification. We have used the technique of scanning force microscopy (SFM) to investigate microstructural changes in carbon-polymer composites formed from the polymers poly (isobutylene) (PIB), poly (vinyl alcohol) (PVA), and poly (ethylene-vinyl acetate) (PEVA) when exposed to the analytes hexane, toluene, water, ethanol, and acetone. Using phase-contrast imaging (PI), changes in the carbon nanoparticle distribution on the surface of the polymer matrix are measured as the polymers are exposed to the analytes in vapor phase. In some but not all cases, the changes were reversible (at the scale of the SFM measurements) upon removal of the analyte vapor. In this paper, we also describe a new type of microsensor based on piezoresistive microcantilever technology. With these new devices, polymeric volume changes accompanying exposure to analyte vapor are measured directly by a piezoresistive microcantilever in direct contact with the polymer. These devices may offer a number of advantages over standard chemiresistor-based sensors.
Gold nanospikes based microsensor as a highly accurate mercury emission monitoring system
Sabri, Ylias M.; Ippolito, Samuel J.; Tardio, James; Bansal, Vipul; O'Mullane, Anthony P.; Bhargava, Suresh K.
2014-01-01
Anthropogenic elemental mercury (Hg0) emission is a serious worldwide environmental problem due to the extreme toxicity of the heavy metal to humans, plants and wildlife. Development of an accurate and cheap microsensor based online monitoring system which can be integrated as part of Hg0 removal and control processes in industry is still a major challenge. Here, we demonstrate that forming Au nanospike structures directly onto the electrodes of a quartz crystal microbalance (QCM) using a novel electrochemical route results in a self-regenerating, highly robust, stable, sensitive and selective Hg0 vapor sensor. The data from a 127 day continuous test performed in the presence of volatile organic compounds and high humidity levels, showed that the sensor with an electrodeposted sensitive layer had 260% higher response magnitude, 3.4 times lower detection limit (~22 μg/m3 or ~2.46 ppbv) and higher accuracy (98% Vs 35%) over a Au control based QCM (unmodified) when exposed to a Hg0 vapor concentration of 10.55 mg/m3 at 101°C. Statistical analysis of the long term data showed that the nano-engineered Hg0 sorption sites on the developed Au nanospikes sensitive layer play a critical role in the enhanced sensitivity and selectivity of the developed sensor towards Hg0 vapor. PMID:25338965
Micro-Power Sources Enabling Robotic Outpost Based Deep Space Exploration
NASA Technical Reports Server (NTRS)
West, W. C.; Whitacre, J. F.; Ratnakumar, B. V.; Brandon, E. J.; Studor, G. F.
2001-01-01
Robotic outpost based exploration represents a fundamental shift in mission design from conventional, single spacecraft missions towards a distributed risk approach with many miniaturized semi-autonomous robots and sensors. This approach can facilitate wide-area sampling and exploration, and may consist of a web of orbiters, landers, or penetrators. To meet the mass and volume constraints of deep space missions such as the Europa Ocean Science Station, the distributed units must be fully miniaturized to fully leverage the wide-area exploration approach. However, presently there is a dearth of available options for powering these miniaturized sensors and robots. This group is currently examining miniaturized, solid state batteries as candidates to meet the demand of applications requiring low power, mass, and volume micro-power sources. These applications may include powering microsensors, battery-backing rad-hard CMOS memory and providing momentary chip back-up power. Additional information is contained in the original extended abstract.
SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 6: Controls and guidance
NASA Technical Reports Server (NTRS)
1991-01-01
Viewgraphs of briefings from the Space Systems and Technology Advisory Committee (SSTAC)/ARTS review of the draft Integrated Technology Plan (ITP) on controls and guidance are included. Topics covered include: strategic avionics technology planning and bridging programs; avionics technology plan; vehicle health management; spacecraft guidance research; autonomous rendezvous and docking; autonomous landing; computational control; fiberoptic rotation sensors; precision instrument and telescope pointing; microsensors and microinstruments; micro guidance and control initiative; and earth-orbiting platforms controls-structures interaction.
Development of a high-sensitivity strain measurement system based on a SH SAW sensor
NASA Astrophysics Data System (ADS)
Oh, Haekwan; Lee, Keekeun; Eun, Kyoungtae; Choa, Sung-Hoon; Yang, Sang Sik
2012-02-01
A strain measurement system based on a shear horizontal surface acoustic wave (SH SAW) was developed. The developed system is composed of a SAW microsensor, a printed circuit board (PCB), an adhesive and a strain gauge. When a compression force is applied to the PCB by the strain gauge, the PCB is bent so that external strain energy can be evenly delivered to the microsensor without any detachment of the sensor from the board. When a stretching force is applied to the PCB under the condition that one side of the PCB is fixed and the other side is modulated, the actual length of the SAW delay line between the two interdigital transducers (IDTs) is increased. The increase in the delay line length causes a change in the time for the propagating SAW to reach the output IDT. If strain energy is applied to the piezoelectric substrate, the substrate density is changed, which then changes the propagation velocity of the SAW. Coupling-of-modes modeling was conducted prior to fabrication to determine the optimal device parameters. Depending on the strain, the frequency difference was linearly modulated. The obtained sensitivity for stretching was 17.3 kHz/% for the SH wave mode and split electrode. And the obtained sensitivity for bending was 46.1 kHz/% for the SH wave mode and split electrode. The SH wave showed about 15% higher sensitivity than the Rayleigh wave, and the dog-bone PCB showed about 8% higher sensitivity than the rectangular PCB. The obtained sensitivity was about five times higher than that of existing SAW-based strain sensors.
Development of Ultra-Low Power Metal Oxide Sensors and Arrays for Embedded Applications
NASA Astrophysics Data System (ADS)
Lutz, Brent; Wind, Rikard; Kostelecky, Clayton; Routkevitch, Dmitri; Deininger, Debra
2011-09-01
Metal oxide semiconductor sensors are widely used as individual sensors and in arrays, and a variety of designs for low power microhotplates have been demonstrated.1 Synkera Technologies has developed an embeddable chemical microsensor platform, based on a unique ceramic MEMS technology, for practical implementation in cell phones and other mobile electronic devices. Key features of this microsensor platform are (1) small size, (2) ultra-low power consumption, (3) high chemical sensitivity, (4) accurate response to a wide-range of threats, and (5) low cost. The sensor platform is enabled by a combination of advances in ceramic micromachining, and precision deposition of sensing films inside the high aspect ratio pores of anodic aluminum oxide (AAO).
Tapered GRIN fiber microsensor.
Beltrán-Mejía, Felipe; Biazoli, Claudecir R; Cordeiro, Cristiano M B
2014-12-15
The sensitivity of an optical fiber microsensor based on inter-modal interference can be considerably improved by tapering a short extension of the multimode fiber. In the case of Graded Index fibers with a parabolic refractive index profile, a meridional ray exhibits a sinusoidal path. When these fibers are tapered, the period of the propagated beam decrease down-taper and increase up-taper. We take advantage of this modulation -along with the enhanced overlap between the evanescent field and the external medium- to substantially increase the sensitivity of these devices by tuning the sensor's maximum sensitivity wavelength. Moreover, the extension of this device is reduced by one order of magnitude, making it more propitious for reduced space applications. Numerical and experimental results demonstrate the success and feasibility of this approach.
NASA Astrophysics Data System (ADS)
Mellal, Idir; Laghrouche, Mourad; Bui, Hung Tien
2017-04-01
This paper describes a non-invasive system for respiratory monitoring using a Micro Electro Mechanical Systems (MEMS) flow sensor and an IMU (Inertial Measurement Unit) accelerometer. The designed system is intended to be wearable and used in a hospital or at home to assist people with respiratory disorders. To ensure the accuracy of our system, we proposed a calibration method based on ANN (Artificial Neural Network) to compensate the temperature drift of the silicon flow sensor. The sigmoid activation functions used in the ANN model were computed with the CORDIC (COordinate Rotation DIgital Computer) algorithm. This algorithm was also used to estimate the tilt angle in body position. The design was implemented on reconfigurable platform FPGA.
Lee, Chi-Yuan; Chen, Chia-Hung; Tsai, Chao-Hsuan; Wang, Yu-Syuan
2018-01-01
To prolong the operating time of unmanned aerial vehicles which use proton exchange membrane fuel cells (PEMFC), the performance of PEMFC is the key. However, a long-term operation can make the Pt particles of the catalyst layer and the pollutants in the feedstock gas bond together (e.g., CO), so that the catalyst loses reaction activity. The performance decay and aging of PEMFC will be influenced by operating conditions, temperature, flow and CO concentration. Therefore, this study proposes the development of an internal real-time wireless diagnostic tool for PEMFC, and uses micro-electro-mechanical systems (MEMS) technology to develop a wireless and thin (<50 μm) flexible integrated (temperature, flow and CO) microsensor. The technical advantages are (1) compactness and three wireless measurement functions; (2) elastic measurement position and accurate embedding; (3) high accuracy and sensitivity and quick response; (4) real-time wireless monitoring of dynamic performance of PEMFC; (5) customized design and development. The flexible integrated microsensor is embedded in the PEMFC, three important physical quantities in the PEMFC, which are the temperature, flow and CO, can be measured simultaneously and instantly, so as to obtain the authentic and complete reaction in the PEMFC to enhance the performance of PEMFC and to prolong the service life. PMID:29342832
Lee, Chi-Yuan; Chen, Chia-Hung; Tsai, Chao-Hsuan; Wang, Yu-Syuan
2018-01-13
To prolong the operating time of unmanned aerial vehicles which use proton exchange membrane fuel cells (PEMFC), the performance of PEMFC is the key. However, a long-term operation can make the Pt particles of the catalyst layer and the pollutants in the feedstock gas bond together (e.g., CO), so that the catalyst loses reaction activity. The performance decay and aging of PEMFC will be influenced by operating conditions, temperature, flow and CO concentration. Therefore, this study proposes the development of an internal real-time wireless diagnostic tool for PEMFC, and uses micro-electro-mechanical systems (MEMS) technology to develop a wireless and thin (<50 μm) flexible integrated (temperature, flow and CO) microsensor. The technical advantages are (1) compactness and three wireless measurement functions; (2) elastic measurement position and accurate embedding; (3) high accuracy and sensitivity and quick response; (4) real-time wireless monitoring of dynamic performance of PEMFC; (5) customized design and development. The flexible integrated microsensor is embedded in the PEMFC, three important physical quantities in the PEMFC, which are the temperature, flow and CO, can be measured simultaneously and instantly, so as to obtain the authentic and complete reaction in the PEMFC to enhance the performance of PEMFC and to prolong the service life.
REVIEW ARTICLE: Medical implants based on microsystems
NASA Astrophysics Data System (ADS)
Mokwa, W.
2007-05-01
The fast development of CMOS technologies to smaller dimensions led to very high integration densities with complex circuitry on very small chip areas. In 2006 Intel fabricated the first products in a 65 nm technology. The cointegration of microsensors or actuators together with the very low power consumption of the CMOS circuitry is very well suited for use in implanted systems. Applications like intracranial or intraocular pressure measurements have become possible. This review presents an overview over actual applications and developments of sensor/actuator-based microsystems for medical implants. It concentrates on the technical part of these investigations. It will mainly review work on systems measuring pressure in blood vessels and on systems for ophthalmic applications.
NASA Technical Reports Server (NTRS)
Milos, Frank S.; Watters, David G.; Pallix, Joan B.; Bahr, Alfred J.; Huestis, David L.; Arnold, Jim (Technical Monitor)
2001-01-01
Health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles in order to reduce life cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to develop inspection and health management technologies for thermal protection systems. This paper summarizes a joint project between NASA Ames and SRI International to develop 'SensorTags,' radio frequency identification devices coupled with event-recording sensors, that can be embedded in the thermal protection system to monitor temperature or other quantities of interest. Two prototype SensorTag designs containing thermal fuses to indicate a temperature overlimit are presented and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Chad Edward; Thomas, Michael Loren; Wright, Jerome L.
2004-09-01
Waste characterization is probably the most costly part of radioactive waste management. An important part of this characterization is the measurements of headspace gas in waste containers in order to demonstrate the compliance with Resource Conservation and Recovery Act (RCRA) or transportation requirements. The traditional chemical analysis methods, which include all steps of gas sampling, sample shipment and laboratory analysis, are expensive and time-consuming as well as increasing worker's exposure to hazardous environments. Therefore, an alternative technique that can provide quick, in-situ, and real-time detections of headspace gas compositions is highly desirable. This report summarizes the results obtained from amore » Laboratory Directed Research & Development (LDRD) project entitled 'Potential Application of Microsensor Technology in Radioactive Waste Management with Emphasis on Headspace Gas Detection'. The objective of this project is to bridge the technical gap between the current status of microsensor development and the intended applications of these sensors in nuclear waste management. The major results are summarized below: {sm_bullet} A literature review was conducted on the regulatory requirements for headspace gas sampling/analysis in waste characterization and monitoring. The most relevant gaseous species and the related physiochemical environments were identified. It was found that preconcentrators might be needed in order for chemiresistor sensors to meet desired detection {sm_bullet} A long-term stability test was conducted for a polymer-based chemresistor sensor array. Significant drifts were observed over the time duration of one month. Such drifts should be taken into account for long-term in-situ monitoring. {sm_bullet} Several techniques were explored to improve the performance of sensor polymers. It has been demonstrated that freeze deposition of black carbon (CB)-polymer composite can effectively eliminate the so-called 'coffee ring' effect and lead to a desirable uniform distribution of CB particles in sensing polymer films. The optimal ratio of CB/polymer has been determined. UV irradiation has been shown to improve sensor sensitivity. {sm_bullet} From a large set of commercially available polymers, five polymers were selected to form a sensor array that was able to provide optimal responses to six target-volatile organic compounds (VOCs). A series of tests on the response of sensor array to various VOC concentrations have been performed. Linear sensor responses have been observed over the tested concentration ranges, although the responses over a whole concentration range are generally nonlinear. {sm_bullet} Inverse models have been developed for identifying individual VOCs based on sensor array responses. A linear solvation energy model is particularly promising for identifying an unknown VOC in a single-component system. It has been demonstrated that a sensor array as such we developed is able to discriminate waste containers for their total VOC concentrations and therefore can be used as screening tool for reducing the existing headspace gas sampling rate. {sm_bullet} Various VOC preconcentrators have been fabricated using Carboxen 1000 as an absorbent. Extensive tests have been conducted in order to obtain optimal configurations and parameter ranges for preconcentrator performance. It has been shown that use of preconcentrators can reduce the detection limits of chemiresistors by two orders of magnitude. The life span of preconcentrators under various physiochemical conditions has also been evaluated. {sm_bullet} The performance of Pd film-based H2 sensors in the presence of VOCs has been evaluated. The interference of sensor readings by VOC has been observed, which can be attributed to the interference of VOC with the H2-O2 reaction on the Pd alloy surface. This interference can be eliminated by coating a layer of silicon dioxide on sensing film surface. Our work has demonstrated a wide range of applications of gas microsensors in radioactive waste management. Such applications can potentially lead to a significant cost saving and risk reduction for waste characterization.« less
A zinc oxide nanorod ammonia microsensor integrated with a readout circuit on-a-chip.
Yang, Ming-Zhi; Dai, Ching-Liang; Wu, Chyan-Chyi
2011-01-01
A zinc oxide nanorod ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process was investigated. The structure of the ammonia sensor is composed of a sensitive film and polysilicon electrodes. The ammonia sensor requires a post-process to etch the sacrificial layer, and to coat the sensitive film on the polysilicon electrodes. The sensitive film that is prepared by a hydrothermal method is made of zinc oxide. The sensor resistance changes when the sensitive film adsorbs or desorbs ammonia gas. The readout circuit is used to convert the sensor resistance into the voltage output. Experiments show that the ammonia sensor has a sensitivity of about 1.5 mV/ppm at room temperature.
Heat flux microsensor measurements
NASA Technical Reports Server (NTRS)
Terrell, J. P.; Hager, J. M.; Onishi, S.; Diller, T. E.
1992-01-01
A thin-film heat flux sensor has been fabricated on a stainless steel substrate. The thermocouple elements of the heat flux sensor were nickel and nichrome, and the temperature resistance sensor was platinum. The completed heat flux microsensor was calibrated at the AEDC radiation facility. The gage output was linear with heat flux with no apparent temperature effect on sensitivity. The gage was used for heat flux measurements at the NASA Langley Vitiated Air Test Facility. Vitiated air was expanded to Mach 3.0 and hydrogen fuel was injected. Measurements were made on the wall of a diverging duct downstream of the injector during all stages of the hydrogen combustion tests. Because the wall and the gage were not actively cooled, the wall temperature reached over 1000 C (1900 F) during the most severe test.
Dolega, M E; Delarue, M; Ingremeau, F; Prost, J; Delon, A; Cappello, G
2017-01-27
The surrounding microenvironment limits tumour expansion, imposing a compressive stress on the tumour, but little is known how pressure propagates inside the tumour. Here we present non-destructive cell-like microsensors to locally quantify mechanical stress distribution in three-dimensional tissue. Our sensors are polyacrylamide microbeads of well-defined elasticity, size and surface coating to enable internalization within the cellular environment. By isotropically compressing multicellular spheroids (MCS), which are spherical aggregates of cells mimicking a tumour, we show that the pressure is transmitted in a non-trivial manner inside the MCS, with a pressure rise towards the core. This observed pressure profile is explained by the anisotropic arrangement of cells and our results suggest that such anisotropy alone is sufficient to explain the pressure rise inside MCS composed of a single cell type. Furthermore, such pressure distribution suggests a direct link between increased mechanical stress and previously observed lack of proliferation within the spheroids core.
Micro-Optical Distributed Sensors for Aero Propulsion Applications
NASA Astrophysics Data System (ADS)
Arnold, S.; Otugen, V.
2003-01-01
The objective of this research is to develop micro-opto-mechanical system (MOMS)-based sensors for time- and space-resolved measurements of flow properties in aerodynamics applications. The measurement technique we propose uses optical resonances in dielectric micro-spheres that can be excited by radiation tunneling from optical fibers. It exploits the tunneling-induced and morphology-dependent shifts in the resonant frequencies. The shift in the resonant frequency is dependent on the size, shape, and index of refraction of the micro-sphere. A physical change in the environment surrounding a micro-bead can change one or more of these properties of the sphere thereby causing a shift in frequency of resonance. The change of the resonance frequency can be detected with high resolution by scanning a frequency-tunable laser that is coupled into the fiber and observing the transmission spectrum at the output of the fiber. It is expected that, in the future, the measurement concept will lead to a system of distributed micro-sensors providing spatial data resolved in time and space. The present project focuses on the development and demonstration of temperature sensors using the morphology-dependent optical resonances although in the latter part of the work, we will also develop a pressure sensor. During the period covered in this report, the optical and electronic equipment necessary for the experimental work was assembled and the experimental setup was designed for the single sensor temperature measurements. Software was developed for real-time tracking of the optical resonance shifts. Some preliminary experiments were also carried out to detect temperature using a single bead in a water bath.
Micro-optical Distributed Sensors for Aero Propulsion Applications
NASA Technical Reports Server (NTRS)
Arnold, S.; Otugen, V.; Seasholtz, Richard G. (Technical Monitor)
2003-01-01
The objective of this research is to develop micro-opto-mechanical system (MOMS)-based sensors for time- and space-resolved measurements of flow properties in aerodynamics applications. The measurement technique we propose uses optical resonances in dielectric micro-spheres that can be excited by radiation tunneling from optical fibers. It exploits the tunneling-induced and morphology-dependent shifts in the resonant frequencies. The shift in the resonant frequency is dependent on the size, shape, and index of refraction of the micro-sphere. A physical change in the environment surrounding a micro-bead can change one or more of these properties of the sphere thereby causing a shift in frequency of resonance. The change of the resonance frequency can be detected with high resolution by scanning a frequency-tunable laser that is coupled into the fiber and observing the transmission spectrum at the output of the fiber. It is expected that, in the future, the measurement concept will lead to a system of distributed micro-sensors providing spatial data resolved in time and space. The present project focuses on the development and demonstration of temperature sensors using the morphology-dependent optical resonances although in the latter part of the work, we will also develop a pressure sensor. During the period covered in this report, the optical and electronic equipment necessary for the experimental work was assembled and the experimental setup was designed for the single sensor temperature measurements. Software was developed for real-time tracking of the optical resonance shifts. Some preliminary experiments were also carried out to detect temperature using a single bead in a water bath.
Subsurface Microsensors for Assisted Recertification of TPS (SmarTPS)
NASA Technical Reports Server (NTRS)
Pallix, Joan B.; Milos, Frank S.; Huestis, Dave; Arnold, James O. (Technical Monitor)
1999-01-01
Commercialization of a competitive reusable launch vehicle (RLV) is a primary goal for both NASA and the U.S. aerospace industry. To expedite achievement of this goal, the Bantam-X Technology Program is funding development of innovative technologies to lower costs for access to space. Ground operations is one area where significant cost reduction is required. For the Shuttle fleet, ground operations account for over 80% of the life cycle costs, and TPS recertification accounts for 27% of the operation costs ($4.5M per flight). Bantam Task TPS-7, Subsurface Microsensors for Assisted Recertification of TPS (SmarTPS), is a joint effort between NASA centers and industry partners to develop rapid remote detection and scanning technology for inspection of TPS and detection of subsurface defects. This short paper will provide a general overview of the SmarTPS concept.
Stief, Peter; Eller, Gundula
2006-09-01
We devised a set-up in which microsensors can be used for characterising the gut microenvironment of aquatic macrofauna. In a small flow cell, we measured microscale gradients through dissected guts (O(2), pH, redox potential [E ( h )]), in the haemolymph (O(2)), and towards the body surface (O(2)) of Chironomus plumosus larvae. The gut microenvironment was compared with the chemical conditions in the lake sediment in which the animals reside and feed. When the dissected guts were incubated at the same nominal O(2) concentration as in haemolymph, the gut content was completely anoxic and had pH and E ( h ) values slightly lower than in the ambient sediment. When the dissected guts were artificially oxygenated, the volumetric O(2)-consumption rates of the gut content were at least 10x higher than in the sediment. Using these potential O(2)-consumption rates in a cylindrical diffusion-reaction model, it was predicted that diffusion of O(2) from the haemolymph to the gut could not oxygenate the gut content under in vivo conditions. Additionally, the potential O(2)-consumption rates were so high that the intake of dissolved O(2) along with feeding could be ruled out to oxygenate the gut content. We conclude that microorganisms present in the gut of C. plumosus cannot exhibit an aerobic metabolism. The presented microsensor technique and the data analysis are applicable to guts of other macrofauna species with cutaneous respiration.
Migheli, Rossana; Puggioni, Giulia; Dedola, Sonia; Rocchitta, Gaia; Calia, Giammario; Bazzu, Gianfranco; Esposito, Giovanni; Lowry, John P; O'Neill, Robert D; Desole, M S; Miele, Egidio; Serra, Pier A
2008-09-15
A novel dual channel in vitro apparatus, derived from a previously described design, has been coupled with dopamine (DA) microsensors for the flow-through detection of DA secreted from PC12 cells. The device, including two independent microdialysis capillaries, was loaded with a solution containing PC12 cells while a constant phosphate-buffered saline (PBS) medium perfusion was carried out using a dual channel miniaturized peristaltic pump. One capillary was perfused with normal PBS, whereas extracellular calcium was removed from extracellular fluid of the second capillary. After a first period of stabilization and DA baseline recording, KCl (75 mM) was added to the perfusion fluid of both capillaries. In this manner, a simultaneous "treatment-control" experimental design was performed to detect K+-evoked calcium-dependent DA secretion. For this purpose, self-referencing DA microsensors were developed, and procedures for making, testing, and calibrating them are described in detail. The electronic circuitry was derived from previously published schematics and optimized for dual sensor constant potential amperometry applications. The microdialysis system was tested and validated in vitro under different experimental conditions, and DA secretion was confirmed by high-performance liquid chromatography with electrochemical detection (HPLC-EC). PC12 cell viability was quantified before and after each experiment. The proposed apparatus serves as a reliable model for studying the effects of different drugs on DA secretion through the direct comparison of extracellular DA increase in treatment-control experiments performed on the same initial PC12 cell population.
Thin Film Li Ion Microbatteries for NASA Applications
NASA Technical Reports Server (NTRS)
West, W. C.; Ratnakumar, B. V.; Brandon, E.; Blosiu, J. O.; Surampudi, S.
1999-01-01
Rechargeable thin film microbatteries have recently become the topic of widespread research for use in low power applications such as battery-backed CMOS memory, miniaturized implantable medical devices and smart cards. In particular, the Center for Integrated Space Microsystems (CISM) at NASA's Jet Propulsion Laboratory has interest in applying this technology for secondary power systems in miniaturized satellites, microsensors, microactuators and other remote MEMS applications. The general requirements of the microbatteries for these applications are high specific energy, wide range of temperature stability. low self-discharge rate, and flexibility of cell design. The thin film Li ion materials system using LiCoO2(LiPO(x)N(1-x))SnO is expected to fulfill these requirements.
Kloock, Joachim P.; Mourzina, Youlia G.; Ermolenko, Yuri; Doll, Theodor; Schubert, Jürgen; Schöning, Michael J.
2004-01-01
Chalcogenide glasses offer an excellent “challenge” for their use and implementation in sensor arrays due to their good sensor-specific advantages in comparison to their crystalline counterparts. This paper will give an introduction on the preparation of chalcogenide glasses in the thin-film state. First, single microsensors have been prepared with the methods of semiconductor technology. In a next step, three microsensors are implemented onto one single silicon substrate to an “one chip” sensor array. Different ionselective chalcogenide glass membranes (PbSAgIAs2S3, CdSAgIAs2S3, CuAgAsSeTe and TlAgAsIS) were prepared by means of the pulsed laser deposition (PLD) process. The different sensor membranes and structures have been physically characterized by means of Rutherford backscattering spectrometry, scanning electron microscopy and video microscopy. The electrochemical behavior has been investigated by potentiometric measurements.
Lin, Guan-Ming; Dai, Ching-Liang; Yang, Ming-Zhi
2013-03-15
The study presents an ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The integrated sensor chip consists of a heater, an ammonia sensor and a readout circuit. The ammonia sensor is constructed by a sensitive film and the interdigitated electrodes. The sensitive film is zirconium dioxide that is coated on the interdigitated electrodes. The heater is used to provide a working temperature to the sensitive film. A post-process is employed to remove the sacrificial layer and to coat zirconium dioxide on the sensor. When the sensitive film adsorbs or desorbs ammonia gas, the sensor produces a change in resistance. The readout circuit converts the resistance variation of the sensor into the output voltage. The experiments show that the integrated ammonia sensor has a sensitivity of 4.1 mV/ppm.
Ahmadi, Mahdi; Rajamani, Rajesh; Sezen, Serdar
2017-10-01
Capacitive micro-sensors such as accelerometers, gyroscopes and pressure sensors are increasingly used in the modern electronic world. However, the in vivo use of capacitive sensing for measurement of pressure or other variables inside a human body suffers from significant errors due to stray capacitance. This paper proposes a solution consisting of a transparent thin flexible Faraday cage that surrounds the sensor. By supplying the active sensing voltage simultaneously to the deformable electrode of the capacitive sensor and to the Faraday cage, the stray capacitance during in vivo measurements can be largely eliminated. Due to the transparency of the Faraday cage, the top and bottom portions of a capacitive sensor can be accurately aligned and assembled together. Experimental results presented in the paper show that stray capacitance is reduced by a factor of 10 by the Faraday cage, when the sensor is subjected to a full immersion in water.
NASA Astrophysics Data System (ADS)
Orellana, Guillermo; Muñoz, Elias; Gil-Herrera, Luz K.; Muñoz, Pablo; Lopez-Gejo, Juan; Palacio, Carlos
2012-09-01
Development of PCB-integrateable microsensors for monitoring chemical species is a goal in areas such as lab-on-a-chip analytical devices, diagnostics medicine and electronics for hand-held instruments where the device size is a major issue. Cellular phones have pervaded the world inhabitants and their usefulness has dramatically increased with the introduction of smartphones due to a combination of amazing processing power in a confined space, geolocalization and manifold telecommunication features. Therefore, a number of physical and chemical sensors that add value to the terminal for health monitoring, personal safety (at home, at work) and, eventually, national security have started to be developed, capitalizing also on the huge number of circulating cell phones. The chemical sensor-enabled "super" smartphone provides a unique (bio)sensing platform for monitoring airborne or waterborne hazardous chemicals or microorganisms for both single user and crowdsourcing security applications. Some of the latest ones are illustrated by a few examples. Moreover, we have recently achieved for the first time (covalent) functionalization of p- and n-GaN semiconductor surfaces with tuneable luminescent indicator dyes of the Ru-polypyridyl family, as a key step in the development of innovative microsensors for smartphone applications. Chemical "sensoring" of GaN-based blue LED chips with those indicators has also been achieved by plasma treatment of their surface, and the micrometer-sized devices have been tested to monitor O2 in the gas phase to show their full functionality. Novel strategies to enhance the sensor sensitivity such as changing the length and nature of the siloxane buffer layer are discussed in this paper.
Optical microsensor for continuous glucose measurements in interstitial fluid
NASA Astrophysics Data System (ADS)
Olesberg, Jonathon T.; Cao, Chuanshun; Yager, Jeffrey R.; Prineas, John P.; Coretsopoulos, Chris; Arnold, Mark A.; Olafsen, Linda J.; Santilli, Michael
2006-02-01
Tight control of blood glucose levels has been shown to dramatically reduce the long-term complications of diabetes. Current invasive technology for monitoring glucose levels is effective but underutilized by people with diabetes because of the pain of repeated finger-sticks, the inconvenience of handling samples of blood, and the cost of reagent strips. A continuous glucose sensor coupled with an insulin delivery system could provide closed-loop glucose control without the need for discrete sampling or user intervention. We describe an optical glucose microsensor based on absorption spectroscopy in interstitial fluid that can potentially be implanted to provide continuous glucose readings. Light from a GaInAsSb LED in the 2.2-2.4 μm wavelength range is passed through a sample of interstitial fluid and a linear variable filter before being detected by an uncooled, 32-element GaInAsSb detector array. Spectral resolution is provided by the linear variable filter, which has a 10 nm band pass and a center wavelength that varies from 2.18-2.38 μm (4600-4200 cm -1) over the length of the detector array. The sensor assembly is a monolithic design requiring no coupling optics. In the present system, the LED running with 100 mA of drive current delivers 20 nW of power to each of the detector pixels, which have a noise-equivalent-power of 3 pW/Hz 1/2. This is sufficient to provide a signal-to-noise ratio of 4500 Hz 1/2 under detector-noise limited conditions. This signal-to-noise ratio corresponds to a spectral noise level less than 10 μAU for a five minute integration, which should be sufficient for sub-millimolar glucose detection.
Optical Properties of Bound Antigen Monolayers for Biomolecular Microsensors
2004-02-01
Agency or the U.S. Government. AIR FORCE RESEARCH LABORATORY INFORMATION DIRECTORATE ROME RESEARCH SITE ROME, NEW YORK STINFO......REPORT NUMBER N/A 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Defense Advanced Research Projects Agency AFRL /IFTC 3701
Anaerobic soil volume as a major controlling factor for soil denitrification and respiration
NASA Astrophysics Data System (ADS)
Reent Köster, Jan; Tong, Bingxin; Grosz, Balázs; Burkart, Stefan; Ruoss, Nicolas; Well, Reinhard
2017-04-01
Gas diffusion in soil is a key variable to control denitrification and its N2O to N2 product ratio since it affects two major proximal denitrification factors, i.e. the concentrations of O2 and of N2O. Gas diffusivity is governed by the structure and the state of water saturation of the pore system. At a given O2 consumption rate decreasing diffusivity causes an enhanced anaerobic soil volume where denitrification can occur. Gas diffusivity is generally quantified as bulk diffusion coefficients that represent the lineal diffusive gas flux through the soil matrix. However, the spatial distribution of respiratory O2 consumption and denitrification - and hence the local concentration of O2 and N2O - is highly non-homogeneous. Knowledge of the anaerobic soil volume fraction (ansvf) has been proposed as a key control on denitrification, and has subsequently been used in many denitrification models. The ansvf has previously been quantified by direct measurement of O2 distribution in individual soil aggregates using microsensors. The measured ansvf corresponded to modelled values based on measured aggregate diffusivity and respiration, but was not yet correlated with measured denitrification rates. In the present ongoing study, we are incubating soil cores amended with nitrate and organic litter in an automated mesocosm system under aerobic as well as anaerobic conditions. An N2 depleted incubation atmosphere and the 15N labeled soil nitrate pool facilitate quantification of the N2 production in the soil by IRMS, and fluxes of N2O and CO2 are monitored via gas chromatography. The ansvf and the measured denitrification and respiration rates will then be used for model validation. During the session we will present first results of this study.
A chip-scale integrated cavity-electro-optomechanics platform.
Winger, M; Blasius, T D; Mayer Alegre, T P; Safavi-Naeini, A H; Meenehan, S; Cohen, J; Stobbe, S; Painter, O
2011-12-05
We present an integrated optomechanical and electromechanical nanocavity, in which a common mechanical degree of freedom is coupled to an ultrahigh-Q photonic crystal defect cavity and an electrical circuit. The system allows for wide-range, fast electrical tuning of the optical nanocavity resonances, and for electrical control of optical radiation pressure back-action effects such as mechanical amplification (phonon lasing), cooling, and stiffening. These sort of integrated devices offer a new means to efficiently interconvert weak microwave and optical signals, and are expected to pave the way for a new class of micro-sensors utilizing optomechanical back-action for thermal noise reduction and low-noise optical read-out.
Luo, Zhenyu; Chen, Deyong; Wang, Junbo; Li, Yinan; Chen, Jian
2014-01-01
This paper presents a high-Q resonant pressure microsensor with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging. An approach to maintaining high-vacuum conditions by integrating the MEMS fabrication process with getter material preparation is presented in this paper. In this device, the pressure under measurement causes a deflection of a pressure-sensitive silicon square diaphragm, which is further translated to stress build up in “H” type doubly-clamped micro resonant beams, leading to a resonance frequency shift. The device geometries were optimized using FEM simulation and a 4-inch SOI wafer was used for device fabrication, which required only three photolithographic steps. In the device fabrication, a non-evaporable metal thin film as the getter material was sputtered on a Pyrex 7740 glass wafer, which was then anodically bonded to the patterned SOI wafer for vacuum packaging. Through-glass via holes predefined in the glass wafer functioned as the electrical interconnections between the patterned SOI wafer and the surrounding electrical components. Experimental results recorded that the Q-factor of the resonant beam was beyond 22,000, with a differential sensitivity of 89.86 Hz/kPa, a device resolution of 10 Pa and a nonlinearity of 0.02% F.S with the pressure varying from 50 kPa to 100 kPa. In addition, the temperature drift coefficient was less than −0.01% F.S/°C in the range of −40 °C to 70 °C, the long-term stability error was quantified as 0.01% F.S over a 5-month period and the accuracy of the microsensor was better than 0.01% F.S. PMID:25521385
Luo, Zhenyu; Chen, Deyong; Wang, Junbo; Li, Yinan; Chen, Jian
2014-12-16
This paper presents a high-Q resonant pressure microsensor with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging. An approach to maintaining high-vacuum conditions by integrating the MEMS fabrication process with getter material preparation is presented in this paper. In this device, the pressure under measurement causes a deflection of a pressure-sensitive silicon square diaphragm, which is further translated to stress build up in "H" type doubly-clamped micro resonant beams, leading to a resonance frequency shift. The device geometries were optimized using FEM simulation and a 4-inch SOI wafer was used for device fabrication, which required only three photolithographic steps. In the device fabrication, a non-evaporable metal thin film as the getter material was sputtered on a Pyrex 7740 glass wafer, which was then anodically bonded to the patterned SOI wafer for vacuum packaging. Through-glass via holes predefined in the glass wafer functioned as the electrical interconnections between the patterned SOI wafer and the surrounding electrical components. Experimental results recorded that the Q-factor of the resonant beam was beyond 22,000, with a differential sensitivity of 89.86 Hz/kPa, a device resolution of 10 Pa and a nonlinearity of 0.02% F.S with the pressure varying from 50 kPa to 100 kPa. In addition, the temperature drift coefficient was less than -0.01% F.S/°C in the range of -40 °C to 70 °C, the long-term stability error was quantified as 0.01% F.S over a 5-month period and the accuracy of the microsensor was better than 0.01% F.S.
Measuring wearing times of glasses and ocular patches using a thermosensor device from orthodontics.
Januschowski, Kai; Bechtold, Till E; Schott, Timm C; Huelber-Januschowski, Maren S; Blumenstock, Gunnar; Bartz-Schmidt, Karl-Ulrich; Besch, Dorothea; Schramm, Charlotte
2013-12-01
Amblyopia is one of the most common visual disorders in children. The risk of severe visual impairment on the healthy eye is doubled in patients with amblyopia. If detected early enough, the chances of visual rehabilitation are good. Treatment consists of refractive correction and occlusion of the dominant eye. Patient compliance is an important factor and can be monitored using thermosensors. It was the goal of our study to give proof of the principle that the wearing times of glasses and patches can be measured using a comparatively small and commercially available microsensor. Agreement between wearing times protocols of ocular patching/refractive correction and temperature measurements of thermosensors attached to the patches or glasses of three individuals were analysed using the Bland-Altman method. It was also analysed whether blinded persons could distinguish between temperature curves of patches and glasses, or temperature curves of an incubator or while worn in a pocket. The temperatures picked up by the microsensors indicate the beginning and the end wearing times of either glasses or ocular patches through steep temperature difference and a distinct temperature curve during measurements. Although blinded test persons were able to cleary distinguish between temperature profiles from incubator/pocket measurements compared to glasses/patching, glasses and patching curves could be discriminated correctly in only 50%. Differences between wearing time protocols and temperature measurements were within the limits of agreement as stated by the Bland-Altman plots. The TheraMon(®) microsensor can reliably measure wearing times of glasses and ocular patches without making the wearer uncomfortable, although the data are not unquestionable, especially in higher surrounding temperatures. Further studies on a larger number of individuals with different wearing profiles are needed. © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Accessing 3D microtissue metabolism: Lactate and oxygen monitoring in hepatocyte spheroids.
Weltin, Andreas; Hammer, Steffen; Noor, Fozia; Kaminski, Yeda; Kieninger, Jochen; Urban, Gerald A
2017-01-15
3D hepatic microtissues, unlike 2D cell cultures, retain many of the in-vivo-like functionalities even after long-term cultivation. Such 3D cultures are increasingly applied to investigate liver damage due to drug exposure in toxicology. However, there is a need for thorough metabolic characterization of these microtissues for mechanistic understanding of effects on culture behaviour. We measured metabolic parameters from single human HepaRG hepatocyte spheroids online and continuously with electrochemical microsensors. A microsensor platform for lactate and oxygen was integrated in a standard 96-well plate. Electrochemical microsensors for lactate and oxygen allow fast, precise and continuous long-term measurement of metabolic parameters directly in the microwell. The demonstrated capability to precisely detect small concentration changes by single spheroids is the key to access their metabolism. Lactate levels in the culture medium starting from 50µM with production rates of 5µMh -1 were monitored and precisely quantified over three days. Parallel long-term oxygen measurements showed no oxygen depletion or hypoxic conditions in the microwell. Increased lactate production by spheroids upon suppression of the aerobic metabolism was observed. The dose-dependent decrease in lactate production caused by the addition of the hepatotoxic drug Bosentan was determined. We showed that in a toxicological application, metabolic monitoring yields quantitative, online information on cell viability, which complements and supports other methods such as microscopy. The demonstrated continuous access to 3D cell culture metabolism within a standard setup improves in vitro toxicology models in replacement strategies of animal experiments. Controlling the microenvironment of such organotypic cultures has impact in tissue engineering, cancer therapy and personalized medicine. Copyright © 2016 Elsevier B.V. All rights reserved.
Wireless microsensor network solutions for neurological implantable devices
NASA Astrophysics Data System (ADS)
Abraham, Jose K.; Whitchurch, Ashwin; Varadan, Vijay K.
2005-05-01
The design and development of wireless mocrosensor network systems for the treatment of many degenerative as well as traumatic neurological disorders is presented in this paper. Due to the advances in micro and nano sensors and wireless systems, the biomedical sensors have the potential to revolutionize many areas in healthcare systems. The integration of nanodevices with neurons that are in communication with smart microsensor systems has great potential in the treatment of many neurodegenerative brain disorders. It is well established that patients suffering from either Parkinson"s disease (PD) or Epilepsy have benefited from the advantages of implantable devices in the neural pathways of the brain to alter the undesired signals thus restoring proper function. In addition, implantable devices have successfully blocked pain signals and controlled various pelvic muscles in patients with urinary and fecal incontinence. Even though the existing technology has made a tremendous impact on controlling the deleterious effects of disease, it is still in its infancy. This paper presents solutions of many problems of today's implantable and neural-electronic interface devices by combining nanowires and microelectronics with BioMEMS and applying them at cellular level for the development of a total wireless feedback control system. The only device that will actually be implanted in this research is the electrodes. All necessary controllers will be housed in accessories that are outside the body that communicate with the implanted electrodes through tiny inductively-coupled antennas. A Parkinson disease patient can just wear a hat-system close to the implantable neural probe so that the patient is free to move around, while the sensors continually monitor, record, transmit all vital information to health care specialist. In the event of a problem, the system provides an early warning to the patient while they are still mobile thus providing them the opportunity to react and trigger the feed back system or contact a point-of-care office that can remotely control the implantable system. The remote monitoring technology can be adaptable to EEG monitoring of children with epilepsy, implantable cardioverters/defibrillators, pacemakers, chronic pain management systems, treatment for sleep disorders, patients with implantable devices for diabetes. In addition, the development of a wireless neural electronics interface to detect, transmit and analyze neural signals could help patients with spinal injuries to regain some semblance of mobile activity.
Detecting Biological Warfare Agents
Song, Linan; Ahn, Soohyoun
2005-01-01
We developed a fiber-optic, microsphere-based, high-density array composed of 18 species-specific probe microsensors to identify biological warfare agents. We simultaneously identified multiple biological warfare agents in environmental samples by looking at specific probe responses after hybridization and response patterns of the multiplexed array. PMID:16318712
Multimodality stereotactic brain tissue identification: the NASA smart probe project
NASA Technical Reports Server (NTRS)
Andrews, R.; Mah, R.; Aghevli, A.; Freitas, K.; Galvagni, A.; Guerrero, M.; Papsin, R.; Reed, C.; Stassinopoulos, D.
1999-01-01
Real-time tissue identification can benefit procedures such as stereotactic brain biopsy, functional neurosurgery and brain tumor excision. Optical scattering spectroscopy has been shown to be effective at discriminating cancer from noncancerous conditions in the colon, bladder and breast. The NASA Smart Probe extends the concept of 'optical biopsy' by using neural network techniques to combine the output from 3 microsensors contained within a cannula 2. 7 mm in diameter (i.e. the diameter of a stereotactic brain biopsy needle). Experimental data from 5 rats show the clear differentiation between tissues such as brain, nerve, fat, artery and muscle that can be achieved with optical scattering spectroscopy alone. These data and previous findings with other modalities such as (1) analysis of the image from a fiberoptic neuroendoscope and (2) the output from a microstrain gauge suggest the Smart Probe multiple microsensor technique shows promise for real-time tissue identification in neurosurgical procedures. Copyright 2000 S. Karger AG, Basel.
Detection of unburned fuel as contaminant in engine oil by a gas microsensor array
NASA Astrophysics Data System (ADS)
Capone, Simonetta; Zuppa, Marzia; Presicce, Dominique S.; Epifani, Mauro; Francioso, Luca; Siciliano, Pietro; Distante, C.
2007-05-01
We developed a novel method to detect the presence of unburned diesel fuel in used diesel fuel engine oil. The method is based on the use of an array of different gas microsensors based on metal oxide thin films deposited by sol-gel technique on Si substrates. The sensor array, exposed to the volatile chemical species of different diesel fuel engine oil samples contaminated in different percentages by diesel fuel, resulted to be appreciable sensitive to them. Principal Component Analysis (PCA) and Self-Organizing Map (SOM) applied to the sensor response data-set gave a first proof of the sensor array ability to discriminate among the different diesel fuel diluted lubricating oils. Moreover, in order to get information about the headspace composition of the diesel fuel-contaminated engine oils used for gas-sensing tests, we analyzed the engine oil samples by Static Headspace Solid Phase Micro Extraction/Gas Chromatograph/Mass Spectrometer (SHS-SPME/ GC/MS).
Lin, Guan-Ming; Dai, Ching-Liang; Yang, Ming-Zhi
2013-01-01
The study presents an ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The integrated sensor chip consists of a heater, an ammonia sensor and a readout circuit. The ammonia sensor is constructed by a sensitive film and the interdigitated electrodes. The sensitive film is zirconium dioxide that is coated on the interdigitated electrodes. The heater is used to provide a working temperature to the sensitive film. A post-process is employed to remove the sacrificial layer and to coat zirconium dioxide on the sensor. When the sensitive film adsorbs or desorbs ammonia gas, the sensor produces a change in resistance. The readout circuit converts the resistance variation of the sensor into the output voltage. The experiments show that the integrated ammonia sensor has a sensitivity of 4.1 mV/ppm. PMID:23503294
Design of a microfluidic sensor for high-sensitivity Copper (II) sensing applications
NASA Astrophysics Data System (ADS)
Gibson, Ceri; Byrne, Patrick; Gray, David; MacCraith, Brian D.; Paull, Brett; Tyrrell, Eadaoin
2003-03-01
An all-plastic micro-sensor system for remote measurement of copper (II) ions in the aqueous environment has been developed. The sensing structure was designed for ease of milling and fabricated in poly (methyl methacrylate) (PMMA) using a hot-embossing technique. Issues of sealing the structure were studied extensively and an efficient protocol has been established. The detection system comprises a compact photo-multiplier tube and integrated photon counting system. This method has advantages of low sample volume, (creating a minimal volume of waste), low exposure to contaminants due to the closed system, no moving parts and employs a robust polymer material which is resistant to the environment of intended use. The sensor operates on the principle of flow injection analysis and has been tested using a chemiluminescence (FIA-CL) reaction arising from the complexation of copper with 1,10-phenanthroline and subsequent oxidation by hydrogen peroxide.
Advanced Opto-Electronics (LIDAR and Microsensor Development)
NASA Technical Reports Server (NTRS)
Vanderbilt, Vern C. (Technical Monitor); Spangler, Lee H.
2005-01-01
Our overall intent in this aspect of the project were to establish a collaborative effort between several departments at Montana State University for developing advanced optoelectronic technology for advancing the state-of-the-art in optical remote sensing of the environment. Our particular focus was on development of small systems that can eventually be used in a wide variety of applications that might include ground-, air-, and space deployments, possibly in sensor networks. Specific objectives were to: 1) Build a field-deployable direct-detection lidar system for use in measurements of clouds, aerosols, fish, and vegetation; 2) Develop a breadboard prototype water vapor differential absorption lidar (DIAL) system based on highly stable, tunable diode laser technology developed previously at MSU. We accomplished both primary objectives of this project, in developing a field-deployable direct-detection lidar and a breadboard prototype of a water vapor DIAL system. Paper summarizes each of these accomplishments.
Electrochemical quantification of serotonin in the live embryonic zebrafish intestine
Njagi, John; Ball, Michael; Best, Marc; Wallace, Kenneth N.; Andreescu, Silvana
2010-01-01
We monitored real-time in vivo levels of serotonin release in the digestive system of intact zebrafish embryos during early development (5 dpf) using differential pulse voltammetry with implanted carbon fiber microelectrodes modified with carbon nanotubes dispersed in nafion. A detection limit of 1 nM, a linear range between 5 to 200 nM and a sensitivity of 83.65 nA·μM−1 were recorded. The microelectrodes were implanted at various locations in the intestine of zebrafish embryos. Serotonin levels of up to 29.9(±1.13) nM were measured in vivo in normal physiological conditions. Measurements were performed in intact live embryos without additional perturbation beyond electrode insertion. The sensor was able to quantify pharmacological alterations in serotonin release and provide the longitudinal distribution of this neurotransmitter along the intestine with high spatial resolution. In the presence of fluvoxamine, a selective serotonin reuptake inhibitor (SSRI), concentrations of 54.1(±1.05) nM were recorded while in the presence of p-chloro-phenylalanine (PCPA), a tryptophan hydroxylase inhibitor, the serotonin levels decreased to 7.2(±0.45) nM. The variation of serotonin levels was correlated with immunohistochemical analysis. We have demonstrated the first use of electrochemical microsensors for in vivo monitoring of intestinal serotonin levels in intact zebrafish embryos. PMID:20148518
Wireless Sensors and Networks for Advanced Energy Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardy, J.E.
Numerous national studies and working groups have identified low-cost, very low-power wireless sensors and networks as a critical enabling technology for increasing energy efficiency, reducing waste, and optimizing processes. Research areas for developing such sensor and network platforms include microsensor arrays, ultra-low power electronics and signal conditioning, data/control transceivers, and robust wireless networks. A review of some of the research in the following areas will be discussed: (1) Low-cost, flexible multi-sensor array platforms (CO{sub 2}, NO{sub x}, CO, humidity, NH{sub 3}, O{sub 2}, occupancy, etc.) that enable energy and emission reductions in applications such as buildings and manufacturing; (2) Modelingmore » investments (energy usage and savings to drive capital investment decisions) and estimated uptime improvements through pervasive gathering of equipment and process health data and its effects on energy; (3) Robust, self-configuring wireless sensor networks for energy management; and (4) Quality-of-service for secure and reliable data transmission from widely distributed sensors. Wireless communications is poised to support technical innovations in the industrial community, with widespread use of wireless sensors forecasted to improve manufacturing production and energy efficiency and reduce emissions. Progress being made in wireless system components, as described in this paper, is helping bring these projected improvements to reality.« less
Response of Microbial Soil Carbon Mineralization Rates to Oxygen Limitations
NASA Astrophysics Data System (ADS)
Keiluweit, M.; Denney, A.; Nico, P. S.; Fendorf, S. E.
2014-12-01
The rate of soil organic matter (SOM) mineralization is known to be controlled by climatic factors as well as molecular structure, mineral-organic associations, and physical protection. What remains elusive is to what extent oxygen (O2) limitations impact overall rates of microbial SOM mineralization (oxidation) in soils. Even within upland soils that are aerobic in bulk, factors limiting O2 diffusion such as texture and soil moisture can result in an abundance of anaerobic microsites in the interior of soil aggregates. Variation in ensuing anaerobic respiration pathways can further impact SOM mineralization rates. Using a combination of (first) aggregate model systems and (second) manipulations of intact field samples, we show how limitations on diffusion and carbon bioavailability interact to impose anaerobic conditions and associated respiration constraints on SOM mineralization rates. In model aggregates, we examined how particle size (soil texture) and amount of dissolved organic carbon (bioavailable carbon) affect O2 availability and distribution. Monitoring electron acceptor profiles (O2, NO3-, Mn and Fe) and SOM transformations (dissolved, particulate, mineral-associated pools) across the resulting redox gradients, we then determined the distribution of operative microbial metabolisms and their cumulative impact on SOM mineralization rates. Our results show that anaerobic conditions decrease SOM mineralization rates overall, but those are partially offset by the concurrent increases in SOM bioavailability due to transformations of protective mineral phases. In intact soil aggregates collected from soils varying in texture and SOM content, we mapped the spatial distribution of anaerobic microsites. Optode imaging, microsensor profiling and 3D tomography revealed that soil texture regulates overall O2 availability in aggregate interiors, while particulate SOM in biopores appears to control the fine-scale distribution of anaerobic microsites. Collectively, our results suggest that texture and particulate organic matter content are useful predictors for the impact of O2 limitations on SOM mineralization rates.
Fiber optic temperature sensor
NASA Technical Reports Server (NTRS)
Quick, William H. (Inventor); August, Rudolf R. (Inventor); James, Kenneth A. (Inventor); Strahan, Jr., Virgil H. (Inventor); Nichols, Donald K. (Inventor)
1980-01-01
An inexpensive, lightweight fiber optic micro-sensor that is suitable for applications which may require remote temperature sensing. The disclosed temperature sensor includes a phosphor material that, after receiving incident light stimulation, is adapted to emit phosphorescent radiation output signals, the amplitude decay rate and wavelength of which are functions of the sensed temperature.
Teaching Classical Mechanics Using Smartphones
ERIC Educational Resources Information Center
Chevrier, Joel; Madani, Laya; Ledenmat, Simon; Bsiesy, Ahmad
2013-01-01
A number of articles published in this column have dealt with topics in classical mechanics. This note describes some additional examples employing a smartphone and the new software iMecaProf. Steve Jobs presented the iPhone as "perfect for gaming." Thanks to its microsensors connected in real time to the numerical world, physics…
Sundfeld, Daniel; Pavani, Caio Cesar; Schott, Timm Cornelius; Machado, Lucas Silveira; Pini, Núbia Inocêncya Pavesi; Bertoz, André Pinheiro de Magalhães; Sundfeld, Renato Herman
2018-04-20
The present dental bleaching case report describes a new method that precisely quantifies the daily wearing-times of the bleaching product by inserting a microsensor in the acetate custom tray. The bleaching efficacy was also discussed since the patient was previously submitted to enamel microabrasion. The patient was submitted to enamel microabrasion in 1987, and bleaching treatment was performed in 2005. In 2017, re-bleaching was executed using 10% peroxide carbamide. The electronic microsensor, TheraMon (TheraMon® microelectronic system; Sales Agency Gschladt, Hargelsberg, Austria), was embedded in the labial region of the upper and lower acetate trays to evaluate the wearing-times of the acetate trays/bleaching product. The patient was instructed to wear the tray for 6 to 8 h/day while sleeping. After 24 days of bleaching treatment, the data obtained from the TheraMon electronic devices was collected and interpreted. The patient did not entirely follow the bleaching treatment as recommended, as there was no evidence of use of the upper and lower trays for some days; additionally, the bleaching product was used for shorter and longer periods than was instructed. The TheraMon microeletronic device precisely measured the wearing-times of the acetate tray/bleaching product during the bleaching treatment. Teeth submitted to enamel microabrasion presented with a healthy clinical appearance after 30 years. Measuring the length and frequency of use of an acetate tray/bleaching product can be important to clinicians and patients for obtaining a controlled and adequate bleaching treatment.
Perspectives on MEMS in bioengineering: a novel capacitive position microsensor.
Pedrocchi, A; Hoen, S; Ferrigno, G; Pedotti, A
2000-01-01
We describe a novel capacitive position sensor using micromachining to achieve high sensitivity and large range of motion. These sensors require a new theoretical framework to describe and optimize their performance. Employing a complete description of the electrical fields, the sensor should deviate from the standard geometries used for capacitive sensors. By this optimization, the sensor gains a twofold increase in sensitivity. Results on a PC board 10x model imply that the micromachined sensor should achieve a sensitivity of less than 10 nm over 500-micron range of travel. Some bioengineering applications are addressed, including positioning of micromirrors for laser surgery and dose control for implantable drug delivery systems.
Sensors Applications, Volume 3, Sensors in Medicine and Health Care
NASA Astrophysics Data System (ADS)
Öberg, P. Åke; Togawa, Tatsuo; Spelman, Francis A.
2004-08-01
Taken as a whole, this series covers all major fields of application for commercial sensors, as well as their manufacturing techniques and major types. As such the series does not treat bulk sensors, but rather places strong emphasis on microsensors, microsystems and integrated electronic sensor packages. Each of the individual volumes is tailored to the needs and queries of readers from the relevant branch of industry. A review of applications for point-of-care diagnostics, their integration into portable systems and the comfortable, easy-to-use sensors that allow patients to monitor themselves at home. The book covers such advanced topics as minimal invasive surgery, implantable sensors and prostheses, as well as biocompatible sensing.
Test results of smart aircraft fastener for KC-135 structural integrity
NASA Astrophysics Data System (ADS)
Schoess, Jeffrey N.; Seifert, Greg
1998-07-01
Hidden and inaccessible corrosion in aircraft structures is the number one logistics problem for the US Air Force, with an estimated maintenance cost in excess of $LR 1.0B per year in 1990-equivalent dollars. The Smart Aircraft Fastener Evaluation (SAFE) system was developed to provide early warning detection of corrosion-related symptoms in hidden locations of aircraft structures. The SAFE system incorporates an in situ measurement approach that measures and autonomously records several environmental conditions within a Hi-Lok aircraft fastener that could cause corrosion. The SAFE system integrates a miniature electrochemical microsensor array and a time-of-wetness sensor with an ultra low power 8-bit microcontroller and 4- Mbyte solid-state FLASH archival memory to measure evidence of active corrosion. A summary of the technical approach and a detailed analysis of the KC-135 lap joint test coupon results are presented.
Smart fastener for KC-135 structural integrity monitoring
NASA Astrophysics Data System (ADS)
Schoess, Jeffrey N.; Seifert, Greg
1997-06-01
Hidden and inaccessible corrosion in aircraft structures is the number-one logistics problem for the U.S. Air Force, with an estimated maintenance cost in excess of $DOL1.0 billion per year in 1990-equivalent dollars. The Smart Aircraft Fastener Evaluation (SAFE) system is being developed to provide early warning detection of corrosion- related symptoms in hidden locations of aircraft structures. The SAFE incorporates an in situ measurement approach that measures and autonomously records several environmental conditions (i.e., pH, temperature, chloride, free potential, time-of-wetness) within a Hi-Lok aircraft fastener that could cause corrosion to occur. The SAFE system integrates a miniature electrochemical microsensor array and a time-of- wetness sensor with an ultra-low-power 8-bit microcontroller and 5-Mbyte solid-state FLASH archival memory to measure the evidence of active corrosion. A summary of the technical approach, system design definition, software architecture, and future field test plans will be presented.
NASA Astrophysics Data System (ADS)
Schoess, Jeffrey N.; Seifert, Greg; Paul, Clare A.
1996-05-01
The smart aircraft fastener evaluation (SAFE) system is an advanced structural health monitoring effort to detect and characterize corrosion in hidden and inaccessible locations of aircraft structures. Hidden corrosion is the number one logistics problem for the U.S. Air Force, with an estimated maintenance cost of $700M per year in 1990 dollars. The SAFE system incorporates a solid-state electrochemical microsensor and smart sensor electronics in the body of a Hi-Lok aircraft fastener to process and autonomously report corrosion status to aircraft maintenance personnel. The long-term payoff for using SAFE technology will be in predictive maintenance for aging aircraft and rotorcraft systems, fugitive emissions applications such as control valves, chemical pipeline vessels, and industrial boilers. Predictive maintenance capability, service, and repair will replace the current practice of scheduled maintenance to substantially reduce operational costs. A summary of the SAFE concept, laboratory test results, and future field test plans is presented.
Sensor Access to the Cellular Microenvironment Using the Sensing Cell Culture Flask.
Kieninger, Jochen; Tamari, Yaara; Enderle, Barbara; Jobst, Gerhard; Sandvik, Joe A; Pettersen, Erik O; Urban, Gerald A
2018-04-26
The Sensing Cell Culture Flask (SCCF) is a cell culture monitoring system accessing the cellular microenvironment in 2D cell culture using electrochemical microsensors. The system is based on microfabricated sensor chips embedded in standard cell culture flasks. Ideally, the sensor chips could be equipped with any electrochemical sensor. Its transparency allows optical inspection of the cells during measurement. The surface of the sensor chip is in-plane with the flask surface allowing undisturbed cell growth on the sensor chip. A custom developed rack system allows easy usage of multiple flasks in parallel within an incubator. The presented data demonstrates the application of the SCCF with brain tumor (T98G) and breast cancer (T-47D) cells. Amperometric oxygen sensors were used to monitor cellular respiration with different incubation conditions. Cellular acidification was accessed with potentiometric pH sensors using electrodeposited iridium oxide films. The system itself provides the foundation for electrochemical monitoring systems in 3D cell culture.
Ultrahigh Temperature Capacitive Pressure Sensor
NASA Technical Reports Server (NTRS)
Harsh, Kevin
2014-01-01
Robust, miniaturized sensing systems are needed to improve performance, increase efficiency, and track system health status and failure modes of advanced propulsion systems. Because microsensors must operate in extremely harsh environments, there are many technical challenges involved in developing reliable systems. In addition to high temperatures and pressures, sensing systems are exposed to oxidation, corrosion, thermal shock, fatigue, fouling, and abrasive wear. In these harsh conditions, sensors must be able to withstand high flow rates, vibration, jet fuel, and exhaust. In order for existing and future aeropropulsion turbine engines to improve safety and reduce cost and emissions while controlling engine instabilities, more accurate and complete sensor information is necessary. High-temperature (300 to 1,350 C) capacitive pressure sensors are of particular interest due to their high measurement bandwidth and inherent suitability for wireless readout schemes. The objective of this project is to develop a capacitive pressure sensor based on silicon carbon nitride (SiCN), a new class of high-temperature ceramic materials, which possesses excellent mechanical and electric properties at temperatures up to 1,600 C.
A Comparison of Training and Competition Demands in Semiprofessional Male Basketball Players
ERIC Educational Resources Information Center
Fox, Jordan L.; Stanton, Robert; Scanlan, Aaron T.
2018-01-01
Purpose: The purpose of this study was to quantify and compare training and competition demands in basketball. Methods: Fifteen semiprofessional male basketball players wore microsensors during physical conditioning training (PCT), games-based training (GBT), and competition to measure absolute and relative (·min[superscript -1]) PlayerLoad™ (PL)…
Market-Based Resource Allocation in a Wirelessly Integrated Naval Engineering Plant
2009-12-01
conflicts, and the fourth term summing lower diagonal conflicts. Each combination of squares q,j and qu returns 1 if there is a queen conflict and 0 if...S. J., Hill, J., Szewczyk, R. and Woo, A. (2002). " MICA - The Commercialization of Microsensor Motes," Sensor Magazine, Advanstar Communications Inc
Micro optical fiber light source and sensor and method of fabrication thereof
Kopelman, Raoul; Tan, Weihong; Shi, Zhong-You
1997-01-01
This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor (50). An optical fiber micro-light source (50) is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors (22) in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material (60). This process allows significant control of the size of the micro light source (50). Furthermore, photo-chemically attaching an optically active material (60) enables the implementation of the micro-light source in a variety of sensor applications.
Micro optical fiber light source and sensor and method of fabrication thereof
Kopelman, Raoul; Tan, Weihong; Shi, Zhong-You
1994-01-01
This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications.
Micro optical fiber light source and sensor and method of fabrication thereof
Kopelman, R.; Tan, W.; Shi, Z.Y.
1997-05-06
This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 10 figs.
Micro optical fiber light source and sensor and method of fabrication thereof
Kopelman, R.; Tan, W.; Shi, Z.Y.
1994-11-01
This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 4 figs.
NASA Astrophysics Data System (ADS)
Wolf, Bernhard; Kraus, Michael
Acidic microenvironmental conditions combined with large hypoxic areas are ubiquitous hallmarks of most solid tumors. They result from a poorly organized vascularization and a deviant energy metabolism. There is convincing evidence supporting the hypothesis that such physico-chemical conditions promote the microevolution of malignant cells, inhibit the cellular immune response, and favor tumor cell invasion. In agreement with published data, our cell biological analyses and computer simulations indicate that treatment schemes which restore a tumor microenvironment reflecting that one found in normal tissues might improve the efficiency of immunotherapies and classical methods for cancer treatment. We suggest that the tumor microenvironment could be effectively monitored and manipulated by means of silicon-based feedback bioactuators which are controlled by integrated microsensors. In principle, miniaturized bioactuators can be implanted directly at the sites of inoperable tumors and metastases where they function as a "pH clamp" and thereby can reconstitute normal physico-chemical conditions. Drug application could be precisely controlled by an integrated microprocessor. Our paper summarizes the current state of development of microsensor-based feedback bioactuators and outlines possible applications in biophysical cancer treatment.
Determination of solvents permeating through chemical protective clothing with a microsensor array.
Park, J; Zellers, E T
2000-08-01
The performance of a novel prototype instrument in determining solvents and solvent mixtures permeating through samples of chemical protective clothing (CPC) materials was evaluated. The instrument contains a mini-preconcentrator and an array of three polymer-coated surface-acoustic-wave (SAW) microsensors whose collective response patterns are used to discriminate among multiple permeants. Permeation tests were performed with a 2.54 cm diameter test cell in an open-loop configuration on samples of common glove materials challenged with four individual solvents, three binary mixtures, and two ternary mixtures. Breakthrough times, defined as the times required for the permeation rate to reach a value of 1 microg cm(-2) min(-1), determined by the instrument were within 3 min of those determined in parallel by manual sampling and gas chromatographic analysis. Permeating solvents were recognized (identified) from their response patterns in 59 out of 64 measurements (92%) and their vapor concentrations were quantified to an accuracy of +/- 31% (typically +/- 10%). These results demonstrate the potential for such instrumentation to provide semi-automated field or bench-top screening of CPC permeation resistance.
Using Temperature-Dependent Phenomena at Oxide Surfaces for Species Recognition in Chemical Sensing.
NASA Astrophysics Data System (ADS)
Semancik, Steve; Meier, Douglas; Evju, Jon; Benkstein, Kurt; Boger, Zvi; Montgomery, Chip
2006-03-01
Nanostructured films of SnO2 and TiO2 have been deposited on elements in MEMS arrays to fabricate solid state conductometric gas microsensors. The multilevel platforms within an array, called microhotplates, are individually addressable for localized temperature control and measurement of sensing film electrical conductance. Temperature variations of the microhotplates are employed in thermally-activated CVD oxide film growth, and for rapid temperature-programmed operation of the microsensors. Analytical information on environmental gas phase composition is produced temporally as purposeful thermal fluctuations provide energetic and kinetic control of surface reaction and adsorption/desorption phenomena. Resulting modulations of oxide adsorbate populations cause changing charge transfer behavior and measurable conductance responses. Rich data streams from different sensing films in the arrays have been analyzed by Artificial Neural Networks (ANN) to successfully recognize low concentration species in mixed gases. We illustrate capabilities of the approach and technology in the homeland security area, where dangerous chemicals (TICs, CWSs and CWAs) have been detected at 10-100 ppb levels in interference-spiked air backgrounds.
Intangible pointlike tracers for liquid-crystal-based microsensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brasselet, Etienne; Juodkazis, Saulius
2010-12-15
We propose an optical detection technique for liquid-crystal-based sensors that is based on polarization-resolved tracking of optical singularities and does not rely on standard observation of light-intensity changes caused by modifications of the liquid crystal orientational ordering. It uses a natural two-dimensional network of polarization singularities embedded in the transverse cross section of a probe beam that passes through a liquid crystal sample, in our case, a nematic droplet held in laser tweezers. The identification and spatial evolution of such a topological fingerprint is retrieved from subwavelength polarization-resolved imaging, and the mechanical constraint exerted on the molecular ordering by themore » trapping beam itself is chosen as the control parameter. By restricting our analysis to one type of point singularity, C points, which correspond to location in space where the polarization azimuth is undefined, we show that polarization singularities appear as intangible pointlike tracers for liquid-crystal-based three-dimensional microsensors. The method has a superresolution potential and can be used to visualize changes at the nanoscale.« less
Indium Tin Oxide Resistor-Based Nitric Oxide Microsensors
NASA Technical Reports Server (NTRS)
Xu, Jennifer C.; Hunter, Gary W.; Gonzalez, Jose M., III; Liu, Chung-Chiun
2012-01-01
A sensitive resistor-based NO microsensor, with a wide detection range and a low detection limit, has been developed. Semiconductor microfabrication techniques were used to create a sensor that has a simple, robust structure with a sensing area of 1.10 0.99 mm. A Pt interdigitated structure was used for the electrodes to maximize the sensor signal output. N-type semiconductor indium tin oxide (ITO) thin film was sputter-deposited as a sensing material on the electrode surface, and between the electrode fingers. Alumina substrate (250 m in thickness) was sequentially used for sensor fabrication. The resulting sensor was tested by applying a voltage across the two electrodes and measuring the resulting current. The sensor was tested at different concentrations of NO-containing gas at a range of temperatures. Preliminary results showed that the sensor had a relatively high sensitivity to NO at 450 C and 1 V. NO concentrations from ppm to ppb ranges were detected with the low limit of near 159 ppb. Lower NO concentrations are being tested. Two sensing mechanisms were involved in the NO gas detection at ppm level: adsorption and oxidation reactions, whereas at ppb level of NO, only one sensing mechanism of adsorption was involved. The NO microsensor has the advantages of high sensitivity, small size, simple batch fabrication, high sensor yield, low cost, and low power consumption due to its microsize. The resistor-based thin-film sensor is meant for detection of low concentrations of NO gas, mainly in the ppb or lower range, and is being developed concurrently with other sensor technology for multispecies detection. This development demonstrates that ITO is a sensitive sensing material for NO detection. It also provides crucial information for future selection of nanostructured and nanosized NO sensing materials, which are expected to be more sensitive and to consume less power.
Application of an e-tongue to the analysis of monovarietal and blends of white wines.
Gutiérrez, Manuel; Llobera, Andreu; Ipatov, Andrey; Vila-Planas, Jordi; Mínguez, Santiago; Demming, Stefanie; Büttgenbach, Stephanus; Capdevila, Fina; Domingo, Carme; Jiménez-Jorquera, Cecilia
2011-01-01
This work presents a multiparametric system capable of characterizing and classifying white wines according to the grape variety and geographical origin. Besides, it quantifies specific parameters of interest for quality control in wine. The system, known as a hybrid electronic tongue, consists of an array of electrochemical microsensors-six ISFET based sensors, a conductivity sensor, a redox potential sensor and two amperometric electrodes, a gold microelectrode and a microelectrode for sensing electrochemical oxygen demand--and a miniaturized optofluidic system. The test sample set comprised eighteen Catalan monovarietal white wines from four different grape varieties, two Croatian monovarietal white wines and seven bi- and trivarietal mixtures prepared from the Catalan varieties. Different chemometric tools were used to characterize (i.e., Principal Component Analysis), classify (i.e., Soft Independent Modeling Class Analogy) and quantify (i.e., Partial-Least Squares) some parameters of interest. The results demonstrate the usefulness of the multisensor system for analysis of wine.
Saturated CO2 inhibits microbial processes in CO2-vented deep-sea sediments
NASA Astrophysics Data System (ADS)
de Beer, D.; Haeckel, M.; Neumann, J.; Wegener, G.; Inagaki, F.; Boetius, A.
2013-02-01
This study focused on biogeochemical processes and microbial activity in sediments of a natural deep-sea CO2 seepage area (Yonaguni Knoll IV hydrothermal system, Japan). The aim was to assess the influence of the geochemical conditions occurring in highly acidic and CO2 saturated sediments on sulphate reduction (SR) and anaerobic methane oxidation (AOM). Porewater chemistry was investigated from retrieved sediment cores and in situ by microsensor profiling. The sites sampled around a sediment-hosted hydrothermal CO2 vent were very heterogeneous in porewater chemistry, indicating a complex leakage pattern. Near the vents, droplets of liquid CO2 were observed to emanate from the sediments, and the pH reached approximately 4.5 in a sediment depth >6 cm, as determined in situ by microsensors. Methane and sulphate co-occurred in most sediment samples from the vicinity of the vents down to a depth of at least 3 m. However, SR and AOM were restricted to the upper 7-15 cm below seafloor, although neither temperature, low pH, nor the availability of methane and sulphate could be limiting microbial activity. We argue that the extremely high subsurface concentrations of dissolved CO2 (1000-1700 mM), through the ensuing high H2CO3 levels (approx. 1-2 mM) uncouples the proton-motive-force (PMF) and thus inhibits biological energy conservation by ATPase-driven phosphorylation. This limits life to the surface sediment horizons above the liquid CO2 phase, where less extreme conditions prevail. Our results may have to be taken into consideration in assessing the consequences of deep-sea CO2 sequestration on benthic element cycling and on the local ecosystem state.
López-Gejo, Juan; Navarro-Tobar, Álvaro; Arranz, Antonio; Palacio, Carlos; Muñoz, Elías; Orellana, Guillermo
2011-10-01
Two new methods for covalent functionalization of GaN based on plasma activation of its surface are presented. Both of them allow attachment of sulfonated luminescent ruthenium(II) indicator dyes to the p- and n-type semiconductor as well as to the surface of nonencapsulated chips of GaN light-emitting diodes (blue LEDs). X-ray photoelectron spectroscopy analysis of the functionalized semiconductor confirms the formation of covalent bonds between the GaN surface and the dye. Confocal fluorescence microscopy with single-photon-timing (SPT) detection has been used for characterization of the functionalized surfaces and LED chips. While the ruthenium complex attached to p-GaN under an oxygen-free atmosphere gives significantly long mean emission lifetimes for the indicator dye (ca. 2000 ns), the n-GaN-functionalized surfaces display surprisingly low values (600 ns), suggesting the occurrence of a quenching process. A photoinduced electron injection from the dye to the semiconductor conduction band, followed by a fast back electron transfer, is proposed to be responsible for the excited ruthenium dye deactivation. This process invalidates the use of the n-GaN/dye system for sensing applications. However, for p-GaN/dye materials, the luminescence decay accelerates in the presence of O(2). The moderate sensitivity is attributed to the fact that only a monolayer of indicator dye is anchored to the semiconductor surface but serves as a demonstrator device. Moreover, the luminescence decays of the functionalized LED chip measured with excitation of either an external (laser) source or the underlying LED emission (from p-GaN/InGaN quantum wells) yield the same mean luminescence lifetime. These results pave the way for using advanced LEDs to develop integrateable optochemical microsensors for gas analysis. © 2011 American Chemical Society
Phang, Isaac; Mada, Marius; Kolias, Angelos G; Newcombe, Virginia F J; Trivedi, Rikin A; Carpenter, Adrian; Hawkes, Rob C; Papadopoulos, Marios C
2016-05-01
Laboratory and human study. To test the Codman Microsensor Transducer (CMT) in a cervical gel phantom. To test the CMT inserted to monitor intraspinal pressure in a patient with spinal cord injury. We recently introduced the technique of intraspinal pressure monitoring using the CMT to guide management of traumatic spinal cord injury [Werndle et al. Crit Care Med 2014;42:646]. This is analogous to intracranial pressure monitoring to guide management of patients with traumatic brain injury. It is unclear whether magnetic resonance imaging (MRI) of patients with spinal cord injury is safe with the intraspinal pressure CMT in situ. We measured the heating produced by the CMT placed in a gel phantom in various configurations. A 3-T MRI system was used with the body transmit coil and the spine array receive coil. A CMT was then inserted subdurally at the injury site in a patient who had traumatic spinal cord injury and MRI was performed at 1.5 T. In the gel phantom, heating of up to 5°C occurred with the transducer wire placed straight through the magnet bore. The heating was abolished when the CMT wire was coiled and passed away from the bore. We then tested the CMT in a patient with an American Spinal Injuries Association grade C cervical cord injury. The CMT wire was placed in the configuration that abolished heating in the gel phantom. Good-quality T1 and T2 images of the cord were obtained without neurological deterioration. The transducer remained functional after the MRI. Our data suggest that the CMT is MR conditional when used in the spinal configuration in humans. Data from a large patient group are required to confirm these findings. N/A.
Diffusion and related transport mechanisms in brain tissue
NASA Astrophysics Data System (ADS)
Nicholson, Charles
2001-07-01
Diffusion plays a crucial role in brain function. The spaces between cells can be likened to the water phase of a foam and many substances move within this complicated region. Diffusion in this interstitial space can be accurately modelled with appropriate modifications of classical equations and quantified from measurements based on novel micro-techniques. Besides delivering glucose and oxygen from the vascular system to brain cells, diffusion also moves informational substances between cells, a process known as volume transmission. Deviations from expected results reveal how local uptake, degradation or bulk flow may modify the transport of molecules. Diffusion is also essential to many therapies that deliver drugs to the brain. The diffusion-generated concentration distributions of well-chosen molecules also reveal the structure of brain tissue. This structure is represented by the volume fraction (void space) and the tortuosity (hindrance to diffusion imposed by local boundaries or local viscosity). Analysis of these parameters also reveals how the local geometry of the brain changes with time or under pathological conditions. Theoretical and experimental approaches borrow from classical diffusion theory and from porous media concepts. Earlier studies were based on radiotracers but the recent methods use a point-source paradigm coupled with micro-sensors or optical imaging of macromolecules labelled with fluorescent tags. These concepts and methods are likely to be applicable elsewhere to measure diffusion properties in very small volumes of highly structured but delicate material.
Ruggiero, Anthony J.
2005-05-03
An integrated optical capillary electrophoresis system for analyzing an analyte. A modulated optical pump beam impinges on an capillary containing the analyte/buffer solution which is separated by electrophoresis. The thermally-induced change in the index of refraction of light in said electrophoresis capillary is monitored using an integrated micro-interferometer. The interferometer includes a first interferometer arm intersecting the electrophoresis capillary proximate the excitation beam and a second, reference interferometer arm. Changes in index of refraction in the analyte measured by interrogating the interferometer state using white light interferometry and a phase-generated carrier demodulation technique. Background thermo-optical activity in the buffer solution is cancelled by splitting the pump beam and exciting pure buffer solution in a second section of capillary where it crosses the reference arm of the interferometer.
A wireless passive pressure microsensor fabricated in HTCC MEMS technology for harsh environments.
Tan, Qiulin; Kang, Hao; Xiong, Jijun; Qin, Li; Zhang, Wendong; Li, Chen; Ding, Liqiong; Zhang, Xiansheng; Yang, Mingliang
2013-08-02
A wireless passive high-temperature pressure sensor without evacuation channel fabricated in high-temperature co-fired ceramics (HTCC) technology is proposed. The properties of the HTCC material ensure the sensor can be applied in harsh environments. The sensor without evacuation channel can be completely gastight. The wireless data is obtained with a reader antenna by mutual inductance coupling. Experimental systems are designed to obtain the frequency-pressure characteristic, frequency-temperature characteristic and coupling distance. Experimental results show that the sensor can be coupled with an antenna at 600 °C and max distance of 2.8 cm at room temperature. The senor sensitivity is about 860 Hz/bar and hysteresis error and repeatability error are quite low.
Polymeric Packaging for Fully Implantable Wireless Neural Microsensors
Aceros, Juan; Yin, Ming; Borton, David A.; Patterson, William R.; Bull, Christopher; Nurmikko, Arto V.
2014-01-01
We present polymeric packaging methods used for subcutaneous, fully implantable, broadband, and wireless neurosensors. A new tool for accelerated testing and characterization of biocompatible polymeric packaging materials and processes is described along with specialized test units to simulate our fully implantable neurosensor components, materials and fabrication processes. A brief description of the implantable systems is presented along with their current encapsulation methods based on polydimethylsiloxane (PDMS). Results from in-vivo testing of multiple implanted neurosensors in swine and non-human primates are presented. Finally, a novel augmenting polymer thin film material to complement the currently employed PDMS is introduced. This thin layer coating material is based on the Plasma Enhanced Chemical Vapor Deposition (PECVD) process of Hexamethyldisiloxane (HMDSO) and Oxygen (O2). PMID:23365999
Applications of the discrete Enskog-Boltzmann approach
NASA Astrophysics Data System (ADS)
Chu, Kwang-Hua Rainer
1998-08-01
The continuous progress of micromachining technology has led to a growing interest in MicroElectroMechanical System (MEMS) for applications ranging from simple microsensors and microactuators to sophisticated microsystems. The characteristic length scale of these microdevices will be of the order of sub-microns so that the gas flow in this environment is within the rarified gas (RG) regime. In this PhD work, the mass/momentum/energy transport of the monatomic gases along the microchannel and the dispersion/attenuation of 1-D ultrasound propagation (plane wave) of RG are investigated by using the Discrete Enskog-Boltzmann approaches. We applied the 4-velocity coplanar model to plane Poiseuille flow of RG in microchannels. Firstly we reported a steady-state solution for this flow with a final-stage uniform density distribution. Then, we modified the model by introducing a density ratio to accomodate the density variations along the microchannel and to include the grazing-collision effects. We also borrowed thee idea from the Extended Irreversible/Reversible Thermodynamics to derive the pressure-gradient for the dimensional velocity field. Our results show the Knudsen minimum of the non- dimensional volume flow rate for Knudsen number (Kn) around 1.5. Using the macroscopic velocity fields, with Cercignani's comments for the 'Kinetic Temperature', we can calculate the related temperature distribution across the microchannel. We also checked the thermodynamic or equilibrium properties of 4-, 6-, and 8-velocity models, by calculating the dispersion relation of 1-D plane ultrasound wave propagation in the RG regime which has large Kn of O(1). The results (after comparison with the measurements) confirmed that the 4-velocity model is the most suitable model for our applications.
Yan, Tianhong; Xu, Xinsheng; Han, Jianqiang; Lin, Rongming; Ju, Bingfeng; Li, Qing
2011-01-01
In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT) actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin’s discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations. PMID:22163788
Yan, Tianhong; Xu, Xinsheng; Han, Jianqiang; Lin, Rongming; Ju, Bingfeng; Li, Qing
2011-01-01
In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT) actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin's discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations.
Smart electronics and microengineering: the Australian focus
NASA Astrophysics Data System (ADS)
Hariz, Alex
1998-04-01
Integrated MEMS together with signal-conditioning electronics on the same chip appears to be the ultimate solution to realizing smart computer devices integratable into larger systems. This in principle will lead to systems with decentralized intelligence leading to applications in numerous fields. It is conceived that such devices would be the product of merging two mature technologies, that of microsensors and that of IC manufacture which is enjoying a well established success. Using common and suitable materials it is reasonable to expect a high degree of compatibility with little modification to standard processes. The various aspects of this co-integration will be analyzed and factors critical to the viability of the process, that go beyond mere technical feasibility will be highlighted. Australian research in this area is strong and continues to grow. We will pinpoint opportunities and constraints to the promising prospect of smart electronics and MEMS.
NASA Astrophysics Data System (ADS)
Staden, Raluca-Ioana Stefan-Van; Gugoaşă, Livia Alexandra; Calenic, Bogdan; Legler, Juliette
2014-07-01
Stochastic microsensors based on diamond paste and three types of electroactive materials (maltodextrin (MD), α-cyclodextrin (α-CD) and 5,10,15,20-tetraphenyl-21H,23H porphyrin (P)) were developed for the assay of estradiol (E2), testosterone (T2) and dihydrotestosterone (DHT) in children's saliva. The main advantage of utilization of such tools is the possibility to identify and quantify all three hormones within minutes in small volumes of childen's saliva. The limits of quantification obtained for DHT, T2, and E2 (1 fmol/L for DHT, 1 pmol/L for T2, and 66 fmol/L for E2) determined using the proposed tools allows the utilization of these new methods with high reliability for the screening of saliva samples from children. This new method proposed for the assay of the three hormones overcomes the limitations (regarding limits of determination) of ELISA method which is the standard method used in clinical laboratories for the assay of DHT, T2, and E2 in saliva samples. The main feature of its utilization for children's saliva is to identify earlier problems related to early puberty and obesity.
Oxygenic and anoxygenic photosynthesis in a microbial mat from an anoxic and sulfidic spring.
de Beer, Dirk; Weber, Miriam; Chennu, Arjun; Hamilton, Trinity; Lott, Christian; Macalady, Jennifer; M Klatt, Judith
2017-03-01
Oxygenic and anoxygenic photosynthesis were studied with microsensors in microbial mats found at 9-10 m depth in anoxic and sulfidic water in Little Salt Spring (Florida, USA). The lake sediments were covered with a 1-2 mm thick red mat dominated by filamentous Cyanobacteria, below which Green Sulfur Bacteria (GSB, Chlorobiaceae) were highly abundant. Within 4 mm inside the mats, the incident radiation was attenuated to undetectable levels. In situ microsensor data showed both oxygenic photosynthesis in the red surface layer and light-induced sulfide dynamics up to 1 cm depth. Anoxygenic photosynthesis occurred during all daylight hours, with complete sulfide depletion around midday. Oxygenic photosynthesis was limited to 4 h per day, due to sulfide inhibition in the early morning and late afternoon. Laboratory measurements on retrieved samples showed that oxygenic photosynthesis was fully but reversibly inhibited by sulfide. In patches Fe(III) alleviated the inhibition of oxygenic photosynthesis by sulfide. GSB were resistant to oxygen and showed a low affinity to sulfide. Their light response showed saturation at very low intensities. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Sensitive thermal microsensor with pn junction for heat measurement of a single cell
NASA Astrophysics Data System (ADS)
Yamada, Taito; Inomata, Naoki; Ono, Takahito
2016-02-01
A sensitive thermal microsensor based on a pn junction diode for heat measurements of biological single cells is developed and evaluated. Using a fabricated device, we demonstrated the heat measurement of a single brown fat cell. The principle of the sensor relies on the temperature dependence of the pn junction diode resistance. This method has a capability of the highly thermal sensitivity by downsizing and the advantage of a simple experimental setup using electrical circuits without any special equipment. To achieve highly sensitive heat measurement of single cells, downsizing of the sensor is necessary to reduce the heat capacity of the sensor itself. The sensor with the pn junction diode can be downsized by microfabrication. A bridge beam structure with the pn junction diode as a thermal sensor is placed in vacuum using a microfludic chip to decrease the heat loss to the surroundings. A temperature coefficient of resistance of 1.4%/K was achieved. The temperature and thermal resolutions of the fabricated device are 1.1 mK and 73.6 nW, respectively. The heat measurements of norepinephrine stimulated and nonstimulated single brown fat cells were demonstrated, and different behaviors in heat generation were observed.
Ubiquitous human upper-limb motion estimation using wearable sensors.
Zhang, Zhi-Qiang; Wong, Wai-Choong; Wu, Jian-Kang
2011-07-01
Human motion capture technologies have been widely used in a wide spectrum of applications, including interactive game and learning, animation, film special effects, health care, navigation, and so on. The existing human motion capture techniques, which use structured multiple high-resolution cameras in a dedicated studio, are complicated and expensive. With the rapid development of microsensors-on-chip, human motion capture using wearable microsensors has become an active research topic. Because of the agility in movement, upper-limb motion estimation has been regarded as the most difficult problem in human motion capture. In this paper, we take the upper limb as our research subject and propose a novel ubiquitous upper-limb motion estimation algorithm, which concentrates on modeling the relationship between upper-arm movement and forearm movement. A link structure with 5 degrees of freedom (DOF) is proposed to model the human upper-limb skeleton structure. Parameters are defined according to Denavit-Hartenberg convention, forward kinematics equations are derived, and an unscented Kalman filter is deployed to estimate the defined parameters. The experimental results have shown that the proposed upper-limb motion capture and analysis algorithm outperforms other fusion methods and provides accurate results in comparison to the BTS optical motion tracker.
Dispersible oxygen microsensors map oxygen gradients in three-dimensional cell cultures.
Lesher-Pérez, Sasha Cai; Kim, Ge-Ah; Kuo, Chuan-Hsien; Leung, Brendan M; Mong, Sanda; Kojima, Taisuke; Moraes, Christopher; Thouless, M D; Luker, Gary D; Takayama, Shuichi
2017-09-26
Phase fluorimetry, unlike the more commonly used intensity-based measurement, is not affected by differences in light paths from culture vessels or by optical attenuation through dense 3D cell cultures and hydrogels thereby minimizing dependence on signal intensity for accurate measurements. This work describes the use of phase fluorimetry on oxygen-sensor microbeads to perform oxygen measurements in different microtissue culture environments. In one example, cell spheroids were observed to deplete oxygen from the cell-culture medium filling the bottom of conventional microwells within minutes, whereas oxygen concentrations remained close to ambient levels for several days in hanging-drop cultures. By dispersing multiple oxygen microsensors in cell-laden hydrogels, we also mapped cell-generated oxygen gradients. The spatial oxygen mapping was sufficiently precise to enable the use of computational models of oxygen diffusion and uptake to give estimates of the cellular oxygen uptake rate and the half-saturation constant. The results show the importance of integrated design and analysis of 3D cell cultures from both biomaterial and oxygen supply aspects. While this paper specifically tests spheroids and cell-laden gel cultures, the described methods should be useful for measuring pericellular oxygen concentrations in a variety of biomaterials and culture formats.
Cyclodextrin-based microsensor for volatile organic compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, B.I.; Li, D.Q.
1996-12-31
The direct covalent attachment of modified {alpha}- and {beta}-cyclodextrin on oxide surfaces has been studied for application in chemical sensors. First, oxide surfaces were treated with a silane coupling layer followed by the addition of cyclodextrin to form a self-assembled monolayer (SAM) of host receptors. Second, the oxide surfaces were reacted with a sol-gel (SG) precursor based on cyclodextrin structure to form a thick film with defined hydrophobic cyclodextrin cavities. The sensing properties of both films (SAM and SG) were examined with surface acoustic wave (SAW) measurement platform. Molecular interactions between an organic guest and a host thin-film on amore » 200 MHZ SAW resonator are being studied as a method of tracking and recognizing the presence of volatile organics. Surface acoustic wave sensors based on the inclusion chemistry of the bucket-type (cyclodextrin) molecules, were capable of detecting volatile organic compounds (VOCs) down to ppb levels. Because the nature of the interactions is moderate but noncovalent, detection of these VOCs was possible using a reversible real-time mode. Pattern recognition with an array of complementary microsensors appears to be a viable approach for identifying and quantifying VOCs. Recent results using optical waveguides for sensor transduction will also be discussed.« less
Rapid changes in local extracellular rat brain glucose observed with an in vivo glucose sensor.
Hu, Y; Wilson, G S
1997-04-01
A needle-type electrochemically based microsensor for glucose (110 microns o.d.) is described. This sensor, designed for monitoring transient glucose content changes in response to neural stimuli, has a response time of approximately 5 s and has been shown to be free of interference from endogenous electroactive species such as ascorbate, urate, and various neurotransmitters. It exhibits linear response to glucose up to 10 mM. The usefulness of the sensor has been demonstrated by examining the time-dependent interstitial glucose concentration in the rat hippocampus in response to KCl depolarization and by stimulation of glutamate neurons through a perforant pathway. Simultaneous monitoring of oxygen is also carried out and demonstrates that for both oxygen and glucose there is substantial local depletion of both species and that their pools are replenished by increased regional cerebral blood flow. The transient initial rapid (10-13 s) decrease up to 20-34%, observed on a time scale comparable to that for neurotransmitter release, may be involved in a recently suggested astrocytic uptake for glutamate-stimulated aerobic glycolysis possibly needed to meet energy homeostasis in brain. These studies demonstrate the importance of microsensors in monitoring transient events linked to neuronal stimulation.
SHINE Virtual Machine Model for In-flight Updates of Critical Mission Software
NASA Technical Reports Server (NTRS)
Plesea, Lucian
2008-01-01
This software is a new target for the Spacecraft Health Inference Engine (SHINE) knowledge base that compiles a knowledge base to a language called Tiny C - an interpreted version of C that can be embedded on flight processors. This new target allows portions of a running SHINE knowledge base to be updated on a "live" system without needing to halt and restart the containing SHINE application. This enhancement will directly provide this capability without the risk of software validation problems and can also enable complete integration of BEAM and SHINE into a single application. This innovation enables SHINE deployment in domains where autonomy is used during flight-critical applications that require updates. This capability eliminates the need for halting the application and performing potentially serious total system uploads before resuming the application with the loss of system integrity. This software enables additional applications at JPL (microsensors, embedded mission hardware) and increases the marketability of these applications outside of JPL.
Goodarzy, Farhad; Skafidas, Efstratios Stan; Gambini, Simone
2015-01-01
In this review, biomedical-related wireless miniature devices such as implantable medical devices, neural prostheses, embedded neural systems, and body area network systems are investigated and categorized. The two main subsystems of such designs, the RF subsystem and the energy source subsystem, are studied in detail. Different application classes are considered separately, focusing on their specific data rate and size characteristics. Also, the energy consumption of state-of-the-art communication practices is compared to the energy that can be generated by current energy scavenging devices, highlighting gaps and opportunities. The RF subsystem is classified, and the suitable architecture for each category of applications is highlighted. Finally, a new figure of merit suitable for wireless biomedical applications is introduced to measure the performance of these devices and assist the designer in selecting the proper system for the required application. This figure of merit can effectively fill the gap of a much required method for comparing different techniques in simulation stage before a final design is chosen for implementation.
Cooperative Mission Concepts Using Biomorphic Explorers
NASA Technical Reports Server (NTRS)
Thakoor, S.; Miralles, C.; Martin, T.; Kahn, R.; Zurek, R.
2000-01-01
Inspired by the immense variety of naturally curious explorers (insects, animals, and birds), their wellintegrated biological sensor-processor suites, efficiently packaged in compact but highly dexterous forms, and their complex, intriguing, cooperative behavior, this paper focuses on "Biomorphic Explorers", their defination/classification, their designs, and presents planetary exploration scenarios based on the designs. Judicious blend of bio-inspired concepts and recent advances in micro-air vehicles, microsensors, microinstruments, MEMS, and microprocessors clearly suggests that the time of small, dedicated, low cost explorers that capture some of the key features of biological systems has arrived. Just as even small insects like ants, termites, honey bees etc working cooperatively in colonies can achieve big tasks, the biomorphic explorers hold the potential for obtaining science in-accessible by current large singular exploration platforms.
Bluetooth-based sensor networks for remotely monitoring the physiological signals of a patient.
Zhang, Ying; Xiao, Hannan
2009-11-01
Integrating intelligent medical microsensors into a wireless communication network makes it possible to remotely collect physiological signals of a patient, release the patient from being tethered to monitoring medical instrumentations, and facilitate the patient's early hospital discharge. This can further improve life quality by providing continuous observation without the need of disrupting the patient's normal life, thus reducing the risk of infection significantly, and decreasing the cost of the hospital and the patient. This paper discusses the implementation issues, and describes the overall system architecture of our developed Bluetooth sensor network for patient monitoring and the corresponding heart activity sensors. It also presents our approach to developing the intelligent physiological sensor nodes involving integration of Bluetooth radio technology, hardware and software organization, and our solutions for onboard signal processing.
Atomic force microscope based on vertical silicon probes
NASA Astrophysics Data System (ADS)
Walter, Benjamin; Mairiaux, Estelle; Faucher, Marc
2017-06-01
A family of silicon micro-sensors for Atomic Force Microscope (AFM) is presented that allows to operate with integrated transducers from medium to high frequencies together with moderate stiffness constants. The sensors are based on Micro-Electro-Mechanical-Systems technology. The vertical design specifically enables a long tip to oscillate perpendicularly to the surface to be imaged. The tip is part of a resonator including quasi-flexural composite beams, and symmetrical transducers that can be used as piezoresistive detector and/or electro-thermal actuator. Two vertical probes (Vprobes) were operated up to 4.3 MHz with stiffness constants 150 N/m to 500 N/m and the capability to oscillate from 10 pm to 90 nm. AFM images of several samples both in amplitude modulation (tapping-mode) and in frequency modulation were obtained.
2007-04-01
target molecules, we are interested in incorporating the existing, liquid AChE sensor chemistry into a multiphase microreactor . The multiphase... microreactor will play a critical role in combining microsensor technology with analytical biochemistry and increase reaction time, sensitivity and... microreactor with a micro-scale gas- liquid interface, 2) to adapt AChE biochemistry into the microreactor in order to develop an electrochemical biosensor for
Kagawa, Yuki; Miyahara, Hirotaka; Ota, Yuri; Tsuneda, Satoshi
2016-01-01
Estimating the oxygen consumption rates (OCRs) of mammalian cells in hypoxic environments is essential for designing and developing a three-dimensional (3-D) cell culture system. However, OCR measurements under hypoxic conditions are infrequently reported in the literature. Here, we developed a system for measuring OCRs at low oxygen levels. The system injects nitrogen gas into the environment and measures the oxygen concentration by an optical oxygen microsensor that consumes no oxygen. The developed system was applied to HepG2 cells in static culture. Specifically, we measured the spatial profiles of the local dissolved oxygen concentration in the medium, then estimated the OCRs of the cells. The OCRs, and also the pericellular oxygen concentrations, decreased nonlinearly as the oxygen partial pressure in the environment decreased from 19% to 1%. The OCRs also depended on the culture period and the matrix used for coating the dish surface. Using this system, we can precisely estimate the OCRs of various cell types under environments that mimic 3-D culture conditions, contributing crucial data for an efficient 3-D culture system design. © 2015 American Institute of Chemical Engineers.
Linking Water Table Dynamics to Carbon Cycling in Artificial Soil Column Incubations
NASA Astrophysics Data System (ADS)
Geertje, Pronk; Adrian, Mellage; Tatjana, Milojevic; Fereidoun, Rezanezhad; Cappellen Philippe, Van
2016-04-01
The biogeochemistry of wetlands soils is closely tied to their hydrology. Water table fluctuations that cause flooding and drying of these systems may lead to enhanced degradation of organic matter and release of greenhouse gasses (e.g. CO2, CH4) to the atmosphere. However, predicting the influence of water table fluctuations on the biogeochemical functioning of soils requires an understanding of the interactions of soil hydrology with biogeochemical and microbial processes. To determine the effects of water table dynamics on carbon cycling, we are carrying out state-of-the-art automated soil column experiments with fully integrated monitoring of hydro-bio-geophysical process variables under both constant and oscillating water table conditions. An artificial, homogeneous mixture consisting of minerals and organic matter is used to provide a well-defined starting material. The artificial soils are composed of quartz sand, montmorillonite, goethite and humus from a forested riparian zone, from which we also extracted the microbial inoculum added to the soil mixture. The artificial soils are packed into 60 cm high, 7.5 cm wide columns. In the currently ongoing experiment, three replicate columns are incubated while keeping the water table constant water at mid-depth, while another three columns alternate between drained and saturated conditions. Micro-sensors installed at different depths below the soil surface record time-series redox potentials (Eh) varying between oxidizing (~+700 mV) and reducing (~-200 mV) conditions. Continuous O2 levels throughout the soil columns are monitored using high-resolution, luminescence-based, Multi Fiber Optode (MuFO) microsensors. Pore waters are collected periodically with MicroRhizon samplers from different depths, and analyzed for pH, EC, dissolved inorganic and organic carbon and ion/cation compositions. These measurements allow us to track the changes in pore water geochemistry and relate them to differences in carbon cycling between the contrasting water table regimes. Particular attention is given to the mobilization and redistribution of iron from the initially homogeneously distributed goethite. In addition, small solid-phase samples are collected monthly from the saturated and unsaturated zones of the soil columns to characterize the microbial communities and changes in soil microstructure and organo-mineral associations. Headspace gas measurements are used to derive the effluxes of CO2 and CH4 during the experiment. Together, the experimental data will provide a comprehensive picture of the early development of the soil and the accompanying establishment of biogeochemical gradients under dynamic hydrological conditions. They will allow us to relate the degradation of soil organic matter and greenhouse gas emissions to the saturation conditions and redox chemistry under controlled conditions. The experiment is in progress with an expected total duration of 6 months.
Li, DeQuan; Swanson, Basil I.
1995-01-01
An article of manufacture is provided including a substrate having an oxide surface layer and a selective thin film of a cyclodextrin derivative chemically bound upon said substrate, said film is adapted for the inclusion of a selected organic compound therewith. Such an article can be either a chemical sensor capable of detecting a resultant mass change from inclusion of the selected organic compound or a chemical separator capable of reversibly selectively separating a selected organic compound.
NASA Astrophysics Data System (ADS)
Duan, G.; Zhao, X.; Seren, H. R.; Chen, C.; Li, A.; Zhang, X.
2016-12-01
A double layer spiral antenna with side length of 380 μm was fabricated by a multi-step electroplating process, and integrated with a commercialized passive RFID chip to realize the RF power harvesting and communication functions of a microsensor. To power up and communicate with the microchips, a single layer spiral reader antenna was fabricated on top of a glass substrate with side length of 1 mm. The microchips and the reader antenna were both optimized at the frequency of 915 MHz. Due to the small size of the reader antenna, the strength of the magnetic field decreased dramatically along the axial direction of the reader antenna, which limited the working distance to within 1 mm. To enclose the microchips within the reading range, a three-layer microfluidic channel was designed and fabricated. The channel and cover layers were fabricated by laser cutting of acrylic sheets, and bonded with the glass substrate to form the channel. To operate multiple microchips simultaneously, separation and focusing function units were also designed. Low loss pump oil was used to transport the microchips flowing inside the channel. Within the reading area, the microchips were powered up, and their ID information was retrieved and displayed on the computer interface successfully.
A SERS-based pH sensor utilizing 3-amino-5-mercapto-1,2,4-triazole functionalized Ag nanoparticles.
Piotrowski, Piotr; Wrzosek, Beata; Królikowska, Agata; Bukowska, Jolanta
2014-03-07
We report the first use of 3-amino-5-mercapto-1,2,4-triazole (AMT) to construct a surface-enhanced Raman scattering (SERS) based pH nano- and microsensor, utilizing silver nanoparticles. We optimize the procedure of homogenous attachment of colloidal silver to micrometer-sized silica beads via an aminosilane linker. Such micro-carriers are potential optically trappable SERS microprobes. It is demonstrated that the SERS spectrum of AMT is strongly dependent on the pH of the surroundings, as the transformation between two different adsorption modes, upright (A form) and lying flat (B form) orientation, is provoked by pH variation. The possibility of tuning the nanosensor working range by changing the concentration of AMT in the surrounding solution is demonstrated. A strong correlation between the pH response of the nanosensor and the AMT concentration in solution is found to be controlled by the interactions between the surface and solution molecules. In the absence of the AMT monomer, the performance of both the nano- and microsensor is shifted substantially to the strongly acidic pH range, from 1.5 to 2.5 and from 1.0 to 2.0, respectively, which is quite unique even for SERS-based sensors.
Herrmann, M; Gieschke, P; Ruther, P; Paul, O
2011-12-01
We present a torsional bridge setup for the electro-mechanical characterization of devices integrated in the surface of silicon beams under mechanical in-plane shear stress. It is based on the application of a torsional moment to the longitudinal axis of the silicon beams, which results in a homogeneous in-plane shear stress in the beam surface. The safely applicable shear stresses span the range of ±50 MPa. Thanks to a specially designed clamping mechanism, the unintended normal stress typically stays below 2.5% of the applied shear stress. An analytical model is presented to compute the induced shear stress. Numerical computations verify the analytical results and show that the homogeneity of the shear stress is very high on the beam surface in the region of interest. Measurements with piezoresistive microsensors fabricated using a complementary metal-oxide-semiconductor process show an excellent agreement with both the computational results and comparative measurements performed on a four-point bending bridge. The electrical connection to the silicon beam is performed with standard bond wires. This ensures that minimal forces are applied to the beam by the electrical interconnection to the external instrumentation and that devices with arbitrary bond pad layout can be inserted into the setup.
Tackle and impact detection in elite Australian football using wearable microsensor technology.
Gastin, Paul B; McLean, Owen C; Breed, Ray V P; Spittle, Michael
2014-01-01
The effectiveness of a wearable microsensor device (MinimaxX(TM) S4, Catapult Innovations, Melbourne, VIC, Australia) to automatically detect tackles and impact events in elite Australian football (AF) was assessed during four matches. Video observation was used as the criterion measure. A total of 352 tackles were observed, with 78% correctly detected as tackles by the manufacturer's software. Tackles against (i.e. tackled by an opponent) were more accurately detected than tackles made (90% v 66%). Of the 77 tackles that were not detected at all, the majority (74%) were categorised as low-intensity. In contrast, a total of 1510 "tackle" events were detected, with only 18% of these verified as tackles. A further 57% were from contested ball situations involving player contact. The remaining 25% were in general play where no contact was evident; these were significantly lower in peak Player Load™ than those involving player contact (P < 0.01). The tackle detection algorithm, developed primarily for rugby, was not suitable for tackle detection in AF. The underlying sensor data may have the potential to detect a range of events within contact sports such as AF, yet to do so is a complex task and requires sophisticated sport and event-specific algorithms.
Solid-State Power Generating Microdevices for Distributed Space System Architectures
NASA Technical Reports Server (NTRS)
Fleurial, J.-P.; Patel, J.; Snyder, G. J.; Huang, C.-K.; Averback, R.; Hill, C.; Chen, G.
2001-01-01
Deep space missions have a strong need for compact, high power density, reliable and long life electrical power generation and storage under extreme temperature conditions. Conventional power generating devices become inefficient at very low temperatures (temperatures lower than 200 K encountered during Mars missions for example) and rechargeable energy storage devices cannot be operated thereby limiting mission duration. At elevated temperatures (for example for planned solar probe or Venus lander missions), thin film interdiffusion destroys electronic devices used for generating and storing power. Solar power generation strongly depends upon the light intensity, which falls rapidly in deep interplanetary missions (beyond 5 AU), and in planetary missions in the sun shadow or in dusty environments (Mars, for example). Radioisotope thermoelectric generators (RTGs) have been successfully used for a number of deep space missions RTGs. However, their energy conversion efficiency and specific power characteristics are quite low, and this technology has been limited to relatively large systems (more than 100 W). The National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory (JPL) have been planning the use of much smaller spacecrafts that will incorporate a variety of microdevices and miniature vehicles such as microdetectors, microsensors, and microrovers. Except for electrochemical batteries and solar cells, there are currently no available miniaturized power sources. Novel technologies that will function reliably over a long duration mission (ten years and over), in harsh environments (temperature, pressure, and atmosphere) must be developed to enable the success of future space missions. It is also expected that such micropower sources could have a wide range of terrestrial applications, in particular when the limited lifetime and environmental limitations of batteries are key factors. Additional information is contained in the original extended abstract.
Smart integration of silicon nanowire arrays in all-silicon thermoelectric micro-nanogenerators
NASA Astrophysics Data System (ADS)
Fonseca, Luis; Santos, Jose-Domingo; Roncaglia, Alberto; Narducci, Dario; Calaza, Carlos; Salleras, Marc; Donmez, Inci; Tarancon, Albert; Morata, Alex; Gadea, Gerard; Belsito, Luca; Zulian, Laura
2016-08-01
Micro and nanotechnologies are called to play a key role in the fabrication of small and low cost sensors with excellent performance enabling new continuous monitoring scenarios and distributed intelligence paradigms (Internet of Things, Trillion Sensors). Harvesting devices providing energy autonomy to those large numbers of microsensors will be essential. In those scenarios where waste heat sources are present, thermoelectricity will be the obvious choice. However, miniaturization of state of the art thermoelectric modules is not easy with the current technologies used for their fabrication. Micro and nanotechnologies offer an interesting alternative considering that silicon in nanowire form is a material with a promising thermoelectric figure of merit. This paper presents two approaches for the integration of large numbers of silicon nanowires in a cost-effective and practical way using only micromachining and thin-film processes compatible with silicon technologies. Both approaches lead to automated physical and electrical integration of medium-high density stacked arrays of crystalline or polycrystalline silicon nanowires with arbitrary length (tens to hundreds microns) and diameters below 100 nm.
Canadian Semiconductor Technology Conference, 6th, Ottawa, Canada, Aug. 11-13, 1992, Proceedings
NASA Astrophysics Data System (ADS)
Baribeau, Jean-Marc
1992-11-01
This volume contains papers on the growth efficiency and distribution coefficient of GaInP-InP epilayers and heterostructures, X-ray photoelectron spectroscopy studies of Ge epilayers on Si(100), and mechanical properties of silicon carbide films for X-ray lithography application. Attention is also given to fine structure in Raman spectroscopy and X-ray reflectometry and its uses for the characterization of superlattices, phase formation in Fe-Si thin-film diffusion couples, process optimization for a micromachined silicon nonreverse valve, and a numerical study of heat transport in thermally isolated flow-rate microsensors. Particular consideration is given to a versatile 2D model for InGaAsP quantum-well semiconductor lasers, gallium arsenide electronics in the marketplace, and optical channel grading in p-type Si/SiGe MOSFETs. Other papers are on ultrafast electron tunneling in a reverse-biased high-efficiency quantum well laser structure, excess currents as a result of trap-assisted tunneling in double-barrier resonant tunneling diodes, and carrier lifetimes in strained InGaAsP multiple quantum-well laser structures.
Kelley, Shana O.; Mirkin, Chad A.; Walt, David R.; Ismagilov, Rustem F.; Toner, Mehmet; Sargent, Edward H.
2015-01-01
Rapid progress in identifying disease biomarkers has increased the importance of creating high-performance detection technologies. Over the last decade, the design of many detection platforms has focused on either the nano or micro length scale. Here, we review recent strategies that combine nano- and microscale materials and devices to produce large improvements in detection sensitivity, speed and accuracy, allowing previously undetectable biomarkers to be identified in clinical samples. Microsensors that incorporate nanoscale features can now rapidly detect disease-related nucleic acids expressed in patient samples. New microdevices that separate large clinical samples into nanocompartments allow precise quantitation of analytes, and microfluidic systems that utilize nanoscale binding events can detect rare cancer cells in the bloodstream more accurately than before. These advances will lead to faster and more reliable clinical diagnostic devices. PMID:25466541
NASA Astrophysics Data System (ADS)
Kelley, Shana O.; Mirkin, Chad A.; Walt, David R.; Ismagilov, Rustem F.; Toner, Mehmet; Sargent, Edward H.
2014-12-01
Rapid progress in identifying disease biomarkers has increased the importance of creating high-performance detection technologies. Over the last decade, the design of many detection platforms has focused on either the nano or micro length scale. Here, we review recent strategies that combine nano- and microscale materials and devices to produce large improvements in detection sensitivity, speed and accuracy, allowing previously undetectable biomarkers to be identified in clinical samples. Microsensors that incorporate nanoscale features can now rapidly detect disease-related nucleic acids expressed in patient samples. New microdevices that separate large clinical samples into nanocompartments allow precise quantitation of analytes, and microfluidic systems that utilize nanoscale binding events can detect rare cancer cells in the bloodstream more accurately than before. These advances will lead to faster and more reliable clinical diagnostic devices.
Microelectromechanical Systems for Aerodynamics Applications
NASA Technical Reports Server (NTRS)
Mehregany, Mehran; DeAnna, Russell G.; Reshotko, Eli
1996-01-01
Microelectromechanical systems (MEMS) embody the integration of sensors, actuators, and electronics on a single substrate using integrated circuit fabrication techniques and compatible micromachining processes. Silicon and its derivatives form the material base for the MEMS technology. MEMS devices, including micro-sensors and micro-actuators, are attractive because they can be made small (characteristic dimension about microns), be produced in large numbers with uniform performance, include electronics for high performance and sophisticated functionality, and be inexpensive. MEMS pressure sensors, wall-shear-stress sensors, and micromachined hot-wires are nearing application in aeronautics. MEMS actuators face a tougher challenge since they have to be scaled (up) to the physical phenomena that are being controlled. MEMS actuators are proposed, for example, for controlling the small structures in a turbulent boundary layer, for aircraft control, for cooling, and for mixing enhancement. Data acquisition or control logistics require integration of electronics along with the transducer elements with appropriate consideration of analog-to-digital conversion, multiplexing, and telemetry. Altogether, MEMS technology offers exciting opportunities for aerodynamics applications both in wind tunnels and in flight
Magnetic microfluidic system for isolation of single cells
NASA Astrophysics Data System (ADS)
Mitterboeck, Richard; Kokkinis, Georgios; Berris, Theocharis; Keplinger, Franz; Giouroudi, Ioanna
2015-06-01
This paper presents the design and realization of a compact, portable and cost effective microfluidic system for isolation and detection of rare circulating tumor cells (CTCs) in suspension. The innovative aspect of the proposed isolation method is that it utilizes superparamagnetic particles (SMPs) to label CTCs and then isolate those using microtraps with integrated current carrying microconductors. The magnetically labeled and trapped CTCs can then be detected by integrated magnetic microsensors e.g. giant magnetoresistive (GMR) or giant magnetoimpedance (GMI) sensors. The channel and trap dimensions are optimized to protect the cells from shear stress and achieve high trapping efficiency. These intact single CTCs can then be used for additional analysis, testing and patient specific drug screening. Being able to analyze the CTCs metastasis-driving capabilities on the single cell level is considered of great importance for developing patient specific therapies. Experiments showed that it is possible to capture single labeled cells in multiple microtraps and hold them there without permanent electric current and magnetic field.
Childs, Charmaine; Wang, Li; Neoh, Boon Kwee; Goh, Hok Liok; Zu, Mya Myint; Aung, Phyo Wai; Yeo, Tseng Tsai
2014-10-01
The objective was to investigate sensor measurement uncertainty for intracerebral probes inserted during neurosurgery and remaining in situ during neurocritical care. This describes a prospective observational study of two sensor types and including performance of the complete sensor-bedside monitoring and readout system. Sensors from 16 patients with severe traumatic brain injury (TBI) were obtained at the time of removal from the brain. When tested, 40% of sensors achieved the manufacturer temperature specification of 0.1 °C. Pressure sensors calibration differed from the manufacturers at all test pressures in 8/20 sensors. The largest pressure measurement error was in the intraparenchymal triple sensor. Measurement uncertainty is not influenced by duration in situ. User experiences reveal problems with sensor 'handling', alarms and firmware. Rigorous investigation of the performance of intracerebral sensors in the laboratory and at the bedside has established measurement uncertainty in the 'real world' setting of neurocritical care.
Micro-electromechanical sensors in the analytical field.
Zougagh, Mohammed; Ríos, Angel
2009-07-01
Micro- and nano-electromechanical systems (MEMS and NEMS) for use as sensors represent one of the most exciting new fields in analytical chemistry today. These systems are advantageous over currently available non-miniaturized sensors, such as quartz crystal microbalances, thickness shear mode resonators, and flexural plate wave oscillators, because of their high sensitivity, low cost and easy integration into automated systems. In this article, we present and discuss the evolution in the use of MEMS and NEMS, which are basically cantilever-type sensors, as good analytical tools for a wide variety of applications. We discuss the analytical features and the practical potential of micro(nano)-cantilever sensors, which combine the synergetic advantages of selectivity, provided by their functionalization, and the high sensitivity, which is attributed largely to the extremely small size of the sensing element. An insight is given into the different types of functionalization and detection strategies and a critical discussion is presented on the existing state of the art concerning the applications reported for mechanical microsensors. New developments and the possibilities for routine work in the near future are also covered.
Initial in vitro and in vivo evaluation of a self-monitoring prosthetic bypass graft.
Neville, Richard F; Gupta, Samit K; Kuraguntla, David J
2017-06-01
Prosthetic grafts used for lower extremity revascularization and dialysis access fail because of hyperplastic stenosis and thrombosis. Graft surveillance is advocated to monitor function; however, graft failure can occur between episodic examinations. An innovative sensor with wireless, microchip technology allows automated surveillance with assessment of graft function using a "cloud"-based algorithm. We performed proof-of-concept experiments with in vitro and in vivo models to assess the feasibility such a real-time graft surveillance system. A self-monitoring graft system was evaluated consisting of a prosthetic conduit of expanded polytetrafluoroethylene and a sensor unit, and a microsensor, microelectronics, battery, and remote processor with a monitor. The sensor unit was integrated on the extraluminal surface of expanded polytetrafluoroethylene grafts without compromise to the lumen of the conduit. The grafts were tested in vitro in a pulsatile, recirculating flow system under physiologic flow parameters. The hemodynamic parameters were varied to assess the ability to obtain wireless signal acquisition reflecting real-time flow properties in vitro. Segments of custom tubing with reduced diameters were inserted into the model to mimic stenosis proximal and distal to the grafts. After characterization of the initial data, the self-monitoring grafts were implanted in an ovine carotid model to assess proof of concept in vivo with 30-day follow-up of signal acquisition as well as arteriographic and histologic analysis. In vitro flow data demonstrated the device was able to determine factors related to prosthetic graft function under varied hemodynamic flow conditions. Wireless signal acquisition using Bluetooth technology (Bluetooth SIG, Inc, Kirkland, Wash) allowed remote data analysis reflecting graft flow parameters through changes in microsensor voltage and frequency. Waveform analysis was applied to construct an algorithm using proprietary software and determine a parameter for graft flow characteristics. This algorithm allowed determination of the degree of stenosis and location of stenosis location (proximal or distal) for display on a remote monitor in real time. Subsequent in vivo experiments confirmed the ability of the system to generate signal acquisition through skin and soft tissue under biologic conditions with no arteriographic stenosis and a favorable healing response at 30-day harvest. Initial in vitro and in vivo experiments demonstrate the ability for a self-monitoring graft system to remotely monitor hemodynamic parameters reflecting graft function using wireless data transmission. This automated system shows promise to deliver real-time data that can be analyzed by cloud-based algorithms alerting the clinician of a change in graft function or development of stenosis for further diagnostic study or intervention before graft failure. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Ali, Muhammad; Rathnayake, Rathnayake M L D; Zhang, Lei; Ishii, Satoshi; Kindaichi, Tomonori; Satoh, Hisashi; Toyoda, Sakae; Yoshida, Naohiro; Okabe, Satoshi
2016-10-01
Nitrous oxide (N2O) production pathway in a signal-stage nitritation-anammox sequencing batch reactor (SBR) was investigated based on a multilateral approach including real-time N2O monitoring, N2O isotopic composition analysis, and in-situ analyses of spatial distribution of N2O production rate and microbial populations in granular biomass. N2O emission rate was high in the initial phase of the operation cycle and gradually decreased with decreasing NH4(+) concentration. The average emission of N2O was 0.98 ± 0.42% and 1.35 ± 0.72% of the incoming nitrogen load and removed nitrogen, respectively. The N2O isotopic composition analysis revealed that N2O was produced via NH2OH oxidation and NO2(-) reduction pathways equally, although there is an unknown influence from N2O reduction and/or anammox N2O production. However, the N2O isotopomer analysis could not discriminate the relative contribution of nitrifier denitrification and heterotrophic denitrification in the NO2(-) reduction pathway. Various in-situ techniques (e.g. microsensor measurements and FISH (fluorescent in-situ hybridization) analysis) were therefore applied to further identify N2O producers. Microsensor measurements revealed that approximately 70% of N2O was produced in the oxic surface zone, where nitrifiers were predominantly localized. Thus, NH2OH oxidation and NO2 reduction by nitrifiers (nitrifier-denitrification) could be responsible for the N2O production in the oxic zone. The rest of N2O (ca. 30%) was produced in the anammox bacteria-dominated anoxic zone, probably suggesting that NO2(-) reduction by coexisting putative heterotrophic denitrifiers and some other unknown pathway(s) including the possibility of anammox process account for the anaerobic N2O production. Further study is required to identify the anaerobic N2O production pathways. Our multilateral approach can be useful to quantitatively examine the relative contributions of N2O production pathways. Good understanding of the key N2O production pathways is essential to establish a strategy to mitigate N2O emission from biological nitrogen removal processes. Copyright © 2016 Elsevier Ltd. All rights reserved.
2001-05-01
types and total #) Ø Control of Sensors ( Scheduling ) Ø Coverage (Time & Area) Uncontrollable Inputs ØWeather Ø Atmospheric Effects Ø Equipment...are widely scattered and used to cue or wakeup other higher-level sensors. Trip line sensors consist of some combination of acoustic, seismic and...Employ a mix if different sensor types in order to increase detection probability 4.4.4.2 Minimize Battery Power • Set schedule turn on and off
Dejous, Corinne; Hallil, Hamida; Raimbault, Vincent; Lachaud, Jean-Luc; Plano, Bernard; Delépée, Raphaël; Favetta, Patrick; Agrofoglio, Luigi; Rebière, Dominique
2016-01-01
Cancer is a leading cause of death worldwide and actual analytical techniques are restrictive in detecting it. Thus, there is still a challenge, as well as a need, for the development of quantitative non-invasive tools for the diagnosis of cancers and the follow-up care of patients. We introduce first the overall interest of electronic nose or tongue for such application of microsensors arrays with data processing in complex media, either gas (e.g., Volatile Organic Compounds or VOCs as biomarkers in breath) or liquid (e.g., modified nucleosides as urinary biomarkers). Then this is illustrated with a versatile acoustic wave transducer, functionalized with molecularly-imprinted polymers (MIP) synthesized for adenosine-5′-monophosphate (AMP) as a model for nucleosides. The device including the thin film coating is described, then static measurements with scanning electron microscopy (SEM) and electrical characterization after each step of the sensitive MIP process (deposit, removal of AMP template, capture of AMP target) demonstrate the thin film functionality. Dynamic measurements with a microfluidic setup and four targets are presented afterwards. They show a sensitivity of 5 Hz·ppm−1 of the non-optimized microsensor for AMP detection, with a specificity of three times compared to PMPA, and almost nil sensitivity to 3′AMP and CMP, in accordance with previously published results on bulk MIP. PMID:27331814
Microenvironments and microscale productivity of cyanobacterial desert crusts
Garcia-Pichel, F.; Belnap, Jayne
1996-01-01
We used microsensors to characterize physicochemical microenvironments and photosynthesis occurring immediately after water saturation in two desert soil crusts from southeastern Utah, which were formed by the cyanobacteria Microcoleus vaginatus Gomont, Nostoc spp., and Scytonema sp. The light fields within the crusts presented steep vertical gradients in magnitude and spectral composition. Near-surface light-trapping zones were formed due to the scattering nature of the sand particles, but strong light attenuation resulted in euphotic zones only ca. 1 mm deep, which were progressively enriched in longer wavelengths with depth. Rates of gross photosynthesis (3.4a??9.4 mmol O2A?ma??2A?ha??1) and dark respiration (0.81a??3.1 mmol Oa??2A?ma??2A?ha??1) occurring within 1 to several mm from the surface were high enough to drive the formation of marked oxygen microenvironments that ranged from oxygen supersaturation to anoxia. The photosynthetic activity also resulted in localized pH values in excess of 10, 2a??3 units above the soil pH. Differences in metabolic parameters and community structure between two types of crusts were consistent with a successional pattern, which could be partially explained on the basis of the microenvironments. We discuss the significance of high metabolic rates and the formation of microenvironments for the ecology of desert crusts, as well as the advantages and limitations of microsensor-based methods for crust investigation.
Dejous, Corinne; Hallil, Hamida; Raimbault, Vincent; Lachaud, Jean-Luc; Plano, Bernard; Delépée, Raphaël; Favetta, Patrick; Agrofoglio, Luigi; Rebière, Dominique
2016-06-20
Cancer is a leading cause of death worldwide and actual analytical techniques are restrictive in detecting it. Thus, there is still a challenge, as well as a need, for the development of quantitative non-invasive tools for the diagnosis of cancers and the follow-up care of patients. We introduce first the overall interest of electronic nose or tongue for such application of microsensors arrays with data processing in complex media, either gas (e.g., Volatile Organic Compounds or VOCs as biomarkers in breath) or liquid (e.g., modified nucleosides as urinary biomarkers). Then this is illustrated with a versatile acoustic wave transducer, functionalized with molecularly-imprinted polymers (MIP) synthesized for adenosine-5'-monophosphate (AMP) as a model for nucleosides. The device including the thin film coating is described, then static measurements with scanning electron microscopy (SEM) and electrical characterization after each step of the sensitive MIP process (deposit, removal of AMP template, capture of AMP target) demonstrate the thin film functionality. Dynamic measurements with a microfluidic setup and four targets are presented afterwards. They show a sensitivity of 5 Hz·ppm(-1) of the non-optimized microsensor for AMP detection, with a specificity of three times compared to PMPA, and almost nil sensitivity to 3'AMP and CMP, in accordance with previously published results on bulk MIP.
Reconfigurable engineered motile semiconductor microparticles.
Ohiri, Ugonna; Shields, C Wyatt; Han, Koohee; Tyler, Talmage; Velev, Orlin D; Jokerst, Nan
2018-05-03
Locally energized particles form the basis for emerging classes of active matter. The design of active particles has led to their controlled locomotion and assembly. The next generation of particles should demonstrate robust control over their active assembly, disassembly, and reconfiguration. Here we introduce a class of semiconductor microparticles that can be comprehensively designed (in size, shape, electric polarizability, and patterned coatings) using standard microfabrication tools. These custom silicon particles draw energy from external electric fields to actively propel, while interacting hydrodynamically, and sequentially assemble and disassemble on demand. We show that a number of electrokinetic effects, such as dielectrophoresis, induced charge electrophoresis, and diode propulsion, can selectively power the microparticle motions and interactions. The ability to achieve on-demand locomotion, tractable fluid flows, synchronized motility, and reversible assembly using engineered silicon microparticles may enable advanced applications that include remotely powered microsensors, artificial muscles, reconfigurable neural networks and computational systems.
Fabrication and Characterization of a Micro Methanol Sensor Using the CMOS-MEMS Technique.
Fong, Chien-Fu; Dai, Ching-Liang; Wu, Chyan-Chyi
2015-10-23
A methanol microsensor integrated with a micro heater manufactured using the complementary metal oxide semiconductor (CMOS)-microelectromechanical system (MEMS) technique was presented. The sensor has a capability of detecting low concentration methanol gas. Structure of the sensor is composed of interdigitated electrodes, a sensitive film and a heater. The heater located under the interdigitated electrodes is utilized to provide a working temperature to the sensitive film. The sensitive film prepared by the sol-gel method is tin dioxide doped cadmium sulfide, which is deposited on the interdigitated electrodes. To obtain the suspended structure and deposit the sensitive film, the sensor needs a post-CMOS process to etch the sacrificial silicon dioxide layer and silicon substrate. The methanol senor is a resistive type. A readout circuit converts the resistance variation of the sensor into the output voltage. The experimental results show that the methanol sensor has a sensitivity of 0.18 V/ppm.
Fabrication and Characterization of a Micro Methanol Sensor Using the CMOS-MEMS Technique
Fong, Chien-Fu; Dai, Ching-Liang; Wu, Chyan-Chyi
2015-01-01
A methanol microsensor integrated with a micro heater manufactured using the complementary metal oxide semiconductor (CMOS)-microelectromechanical system (MEMS) technique was presented. The sensor has a capability of detecting low concentration methanol gas. Structure of the sensor is composed of interdigitated electrodes, a sensitive film and a heater. The heater located under the interdigitated electrodes is utilized to provide a working temperature to the sensitive film. The sensitive film prepared by the sol-gel method is tin dioxide doped cadmium sulfide, which is deposited on the interdigitated electrodes. To obtain the suspended structure and deposit the sensitive film, the sensor needs a post-CMOS process to etch the sacrificial silicon dioxide layer and silicon substrate. The methanol senor is a resistive type. A readout circuit converts the resistance variation of the sensor into the output voltage. The experimental results show that the methanol sensor has a sensitivity of 0.18 V/ppm. PMID:26512671
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-01-01
The present conference on flight testing encompasses avionics, flight-testing programs, technologies for flight-test predictions and measurements, testing tools, analysis methods, targeting techniques, and flightline testing. Specific issues addressed include flight testing of a digital terrain-following system, a digital Doppler rate-of-descent indicator, a high-technology testbed, a low-altitude air-refueling flight-test program, techniques for in-flight frequency-response testing for helicopters, limit-cycle oscillation and flight-flutter testing, and the research flight test of a scaled unmanned air vehicle. Also addressed are AV-8B V/STOL performance analysis, incorporating pilot-response time in failure-case testing, the development of pitot static flightline testing, targeting techniques for ground-based hover testing, a low-profilemore » microsensor for aerodynamic pressure measurement, and the use of a variable-capacitance accelerometer for flight-test measurements.« less
NASA Technical Reports Server (NTRS)
1997-01-01
Under a Small Business Innovation Research (SBIR) contract from Kennedy Space Center (KSC), Femtometrics, Inc. developed the Real-Time Non-Volatile Residue (NVR) monitor. Criteria established by KSC called for a technology that could regulate the accumulation of nonvolatile residues in cleanroom environments. The company accommodated the Center's need with an advanced, highly sensitive surface acoustic wave (SAW) microsensor capable of detecting sub-monolayer deposition in cleanrooms where aerospace systems are assembled. Years earlier, Femtometrics responded to and received SBIR contracts from Langley Research Center for highly sensitive aerosol detectors for environmental researchers. Stimulated by the SBIR wins, the company set about to develop the SAW resonator technology. A new type of sensor has evolved from the research, one that has the ability to measure a range of chemical vapors by applying chemical-specific coating on the sensing surface. Commercial applications of the Real-Time NVR include Class 1 cleanrooms at semiconductor and hard-disk manufacturing plants.
The Development of Metal Oxide Chemical Sensing Nanostructures
NASA Technical Reports Server (NTRS)
Hunter, G. W.; VanderWal,R. L.; Xu, J. C.; Evans, L. J.; Berger, G. M.; Kulis, M. J.
2008-01-01
This paper discusses sensor development based on metal oxide nanostructures and microsystems technology. While nanostructures such as nanowires show significant potential as enabling materials for chemical sensors, a number of significant technical challenges remain. This paper discusses development to address each of these technical barriers: 1) Improved contact and integration of the nanostructured materials with microsystems in a sensor structure; 2) Control of nanostructure crystallinity to allow control of the detection mechanism; and 3) Widening the range of gases that can be detected by fabricating multiple nanostructured materials. A sensor structure composed of three nanostructured oxides aligned on a single microsensor has been fabricated and tested. Results of this testing are discussed and future development approaches are suggested. It is concluded that while this work lays the foundation for further development, these are the beginning steps towards realization of repeatable, controlled sensor systems using oxide based nanostructures.
NASA Astrophysics Data System (ADS)
Nafis, Christopher; Jensen, Vern; von Jako, Ron
2008-03-01
Electromagnetic (EM) tracking systems have been successfully used for Surgical Navigation in ENT, cranial, and spine applications for several years. Catheter sized micro EM sensors have also been used in tightly controlled cardiac mapping and pulmonary applications. EM systems have the benefit over optical navigation systems of not requiring a line-of-sight between devices. Ferrous metals or conductive materials that are transient within the EM working volume may impact tracking performance. Effective methods for detecting and reporting EM field distortions are generally well known. Distortion compensation can be achieved for objects that have a static spatial relationship to a tracking sensor. New commercially available micro EM tracking systems offer opportunities for expanded image-guided navigation procedures. It is important to know and understand how well these systems perform with different surgical tables and ancillary equipment. By their design and intended use, micro EM sensors will be located at the distal tip of tracked devices and therefore be in closer proximity to the tables. Our goal was to define a simple and portable process that could be used to estimate the EM tracker accuracy, and to vet a large number of popular general surgery and imaging tables that are used in the United States and abroad.
Satoh, Hisashi; Odagiri, Mitsunori; Ito, Tsukasa; Okabe, Satoshi
2009-10-01
Microbially induced concrete corrosion (MICC) caused by sulfuric acid attack in sewer systems has been a serious problem for a long time. A better understanding of microbial community structures of sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) and their in situ activities is essential for the efficient control of MICC. In this study, the microbial community structures and the in situ hydrogen sulfide production and consumption rates within biofilms and corroded materials developed on mortar specimens placed in a corroded manhole was investigated by culture-independent 16S rRNA gene-based molecular techniques and microsensors for hydrogen sulfide, oxygen, pH and the oxidation-reduction potential. The dark-gray gel-like biofilm was developed in the bottom (from the bottom to 4 cm) and the middle (4-20 cm from the bottom of the manhole) parts of the mortar specimens. White filamentous biofilms covered the gel-like biofilm in the middle part. The mortar specimens placed in the upper part (30 cm above the bottom of the manhole) were corroded. The 16S rRNA gene-cloning analysis revealed that one clone retrieved from the bottom biofilm sample was related to an SRB, 12 clones and 6 clones retrieved from the middle biofilm and the corroded material samples, respectively, were related to SOB. In situ hybridization results showed that the SRB were detected throughout the bottom biofilm and filamentous SOB cells were mainly detected in the upper oxic layer of the middle biofilm. Microsensor measurements demonstrated that hydrogen sulfide was produced in and diffused out of the bottom biofilms. In contrast, in the middle biofilm the hydrogen sulfide produced in the deeper parts of the biofilm was oxidized in the upper filamentous biofilm. pH was around 3 in the corroded materials developed in the upper part of the mortar specimens. Therefore, it can be concluded that hydrogen sulfide provided from the bottom biofilms and the sludge settling tank was emitted to the sewer atmosphere, then oxidized to corrosive compounds in the upper and middle parts of the manhole, and only the upper part of the mortar specimens were corroded, because in the middle part of the manhole the generated corrosive compounds (e.g., sulfuric acid) was reduced in the deeper parts of the biofilm.
A new active solder for joining electronic components
DOE Office of Scientific and Technical Information (OSTI.GOV)
SMITH,RONALD W.; VIANCO,PAUL T.; HERNANDEZ,CYNTHIA L.
Electronic components and micro-sensors utilize ceramic substrates, copper and aluminum interconnect and silicon. The joining of these combinations require pre-metallization such that solders with fluxes can wet such combinations of metals and ceramics. The paper will present a new solder alloy that can bond metals, ceramics and composites. The alloy directly wets and bonds in air without the use flux or premetallized layers. The paper will present typical processing steps and joint microstructures in copper, aluminum, aluminum oxide, aluminum nitride, and silicon joints.
1998-03-01
8217real time’ monitoring van biologische strijdmiddelen en aanverwante verbindingen. TNO- PML onderzoekt de mogelijkheden van een immunoreactie op een...toxine, dat voedselvergiftiging veroorzaakt, behoort tot de biologische strijdmid- delen. SEB werd door PG33 gekozen als teststof om de diverse...onderzoek zieh richten op de detectie van grote antigenen die tot de biologische strijdmiddelen behoren, zoals sommige virussen en bacteri- en. De
Microsensors and Microinstruments for Space Science and Exploration
NASA Technical Reports Server (NTRS)
Kukkonen, C. A.; Venneri, S.
1997-01-01
Most future NASA spacecraft will be small, low cost, highly integrated vehicles using advanced technology. This will also be true of planetary rovers. In order to maintain a high scientific value to these missions, the instruments, sensors and subsystems must be dramatically miniaturized without compromising their measurement capabilities. A rover must be designed to deliver its science package. In fact, the rover should be considered as the arms, legs and/or wheels that are needed to enable a mobile integrated scientific payload.
Fiber Optic Microsensor for Receptor-Based Assays
1988-09-01
MONITORING ORGANIZATION ORDInc.(if applicable ) 6c. ADDRESS (CWty Sta~te, and ZIP code) 7b. ADDRESS (City, State, an~d ZIP=Cd) Nahant, MA 019081 Sa, NAME OF...yield B-PE B-phycoerythrin 545 575 2,410,000 0.98 R-PE R-phycoerythrin 565 578 11960,000 0.68 CPC C- phycocyanine 620 650 1,690,000 0.51 A-PC...efficient transfer occurred for unit magnification. Figure 3 shows the optical design. Evaluation of the instrument was done with both A- phycocyanine
Probing the luminal microenvironment of reconstituted epithelial microtissues
Cerchiari, Alec E.; Samy, Karen E.; Todhunter, Michael E.; Schlesinger, Erica; Henise, Jeff; Rieken, Christopher; Gartner, Zev J.; Desai, Tejal A.
2016-01-01
Polymeric microparticles can serve as carriers or sensors to instruct or characterize tissue biology. However, incorporating microparticles into tissues for in vitro assays remains a challenge. We exploit three-dimensional cell-patterning technologies and directed epithelial self-organization to deliver microparticles to the lumen of reconstituted human intestinal microtissues. We also develop a novel pH-sensitive microsensor that can measure the luminal pH of reconstituted epithelial microtissues. These studies offer a novel approach for investigating luminal microenvironments and drug-delivery across epithelial barriers. PMID:27619235
An Implantable RFID Sensor Tag toward Continuous Glucose Monitoring.
Xiao, Zhibin; Tan, Xi; Chen, Xianliang; Chen, Sizheng; Zhang, Zijian; Zhang, Hualei; Wang, Junyu; Huang, Yue; Zhang, Peng; Zheng, Lirong; Min, Hao
2015-05-01
This paper presents a wirelessly powered implantable electrochemical sensor tag for continuous blood glucose monitoring. The system is remotely powered by a 13.56-MHz inductive link and utilizes an ISO 15693 radio frequency identification (RFID) standard for communication. This paper provides reliable and accurate measurement for changing glucose level. The sensor tag employs a long-term glucose sensor, a winding ferrite antenna, an RFID front-end, a potentiostat, a 10-bit sigma-delta analog to digital converter, an on-chip temperature sensor, and a digital baseband for protocol processing and control. A high-frequency external reader is used to power, command, and configure the sensor tag. The only off-chip support circuitry required is a tuned antenna and a glucose microsensor. The integrated chip fabricated in SMIC 0.13-μm CMOS process occupies an area of 1.2 mm ×2 mm and consumes 50 μW. The power sensitivity of the whole system is -4 dBm. The sensor tag achieves a measured glucose range of 0-30 mM with a sensitivity of 0.75 nA/mM.
Modeling of viscous damping of perforated planar microstructures. Applications in acoustics
NASA Astrophysics Data System (ADS)
Homentcovschi, Dorel; Miles, Ronald N.
2004-11-01
The paper contains an analysis of the viscous damping in perforated planar microstructures that often serve as backplates or protecting surfaces in capacitive microsensors. The focus of this work is on planar surfaces containing an offset system of periodic oval holes or its limit cases: a system of circular holes or of slits. The viscous damping is calculated as the sum of squeeze film and the holes' resistances. The optimum number of holes is determined which minimizes the total viscous damping for a given percentage of open area. Graphs and formulas are provided for designing these devices. In the case the open area is higher than 15% the numerical results show that the influence of the holes' geometry (circular or oval) has a slight influence on viscous damping. As the planar structures containing oval holes assure a better protection against dust particles and water drops, they should be preferred in designing protective surfaces for microphones working in a natural environment. The obtained results also can be applied in designing other MEMS devices that use capacitive sensing such as accelerometers, micromechanical switches, resonators, and tunable microoptical interferometers. .
NASA Astrophysics Data System (ADS)
Gazis, A.; Katsiri, E.
2017-09-01
This paper presents a Wireless Sensor Network (WSN) system which was created as a project about protecting wildlife using sensor networks following the assistance of the department of Electrical and Computer Engineering of the Democritus University of Thrace. An automated process was implemented, regarding the recognition of a passenger (ie human, wolf, bear, etc.) traversing a box-shaped underground passage, such as the ones located along main highways fusing Width, Height and Weight values. These were measured using low-cost distance (beam) and weight (S-type load) micro-sensors and stored in a central repository. Moreover, the information provided by the WSN was analyzed, via a variety of methods including a neural pattern recognition network as well as clustering algorithms, which were able to recognize the kind of passenger, with certainty scores over 90%. The main concern, regarding the future, is the evaluation of these passages in respect to their effectiveness, i.e. whether they are frequently utilized by animals. This information was further analysed by appropriate information systems, in order to provide insights about the effectiveness of such mitigation structures.
NASA Astrophysics Data System (ADS)
Kopsaftopoulos, Fotios; Nardari, Raphael; Li, Yu-Hung; Wang, Pengchuan; Chang, Fu-Kuo
2016-04-01
In this work, the system design, integration, and wind tunnel experimental evaluation are presented for a bioinspired self-sensing intelligent composite unmanned aerial vehicle (UAV) wing. A total of 148 micro-sensors, including piezoelectric, strain, and temperature sensors, in the form of stretchable sensor networks are embedded in the layup of a composite wing in order to enable its self-sensing capabilities. Novel stochastic system identification techniques based on time series models and statistical parameter estimation are employed in order to accurately interpret the sensing data and extract real-time information on the coupled air flow-structural dynamics. Special emphasis is given to the wind tunnel experimental assessment under various flight conditions defined by multiple airspeeds and angles of attack. A novel modeling approach based on the recently introduced Vector-dependent Functionally Pooled (VFP) model structure is employed for the stochastic identification of the "global" coupled airflow-structural dynamics of the wing and their correlation with dynamic utter and stall. The obtained results demonstrate the successful system-level integration and effectiveness of the stochastic identification approach, thus opening new perspectives for the state sensing and awareness capabilities of the next generation of "fly-by-fee" UAVs.
Kim, Donghwan; Lee, Hyunsuk; Bae, Joohyeon; Jeong, Hyomin; Choi, Byeongkeun; Nam, Taehyun; Noh, Jungpil
2018-09-01
Ti-Ni shape memory alloy (SMA) thin films are very attractive material for industrial and medical applications such as micro-actuator, micro-sensors, and stents for blood vessels. An important property besides shape memory effect in the application of SMA thin films is the adhesion between the film and the substrate. When using thin films as micro-actuators or micro-sensors in MEMS, the film must be strongly adhered to the substrate. On the other hand, when using SMA thin films in medical devices such as stents, the deposited alloy thin film must be easily separable from the substrate for efficient processing. In this study, we investigated the effect of substrate roughness on the adhesion of Ti-Ni SMA thin films, as well as the structural properties and phase-transformation behavior of the fabricated films. Ti-Ni SMA thin films were deposited onto etched glass substrates with magnetron sputtering. Radio frequency plasma was used for etching the substrate. The adhesion properties were investigated through progressive scratch test. Structural properties of the films were determined via Feld emission scanning electron microscopy, X-ray diffraction measurements (XRD) and Energy-dispersive X-ray spectroscopy analysis. Phase transformation behaviors were observed with differential scanning calorimetry and low temperature-XRD. Ti-Ni SMA thin film deposited onto rough substrate provides higher adhesive strength than smooth substrate. However the roughness of the substrate has no influence on the growth and crystallization of the Ti-Ni SMA thin films.
Micro-sensors for in-situ meteorological measurements
NASA Technical Reports Server (NTRS)
Crisp, David; Kaiser, William J.; Vanzandt, Thomas R.; Tillman, James E.
1993-01-01
Improved in-situ meteorological measurements are needed for monitoring the weather and climate of the terrestrial and Martian atmospheres. We have initiated a program to assess the feasibility and utility of micro-sensors for precise in-situ meteorological measurements in these environments. Sensors are being developed for measuring pressure, temperature, wind velocity, humidity, and aerosol amounts. Silicon micro-machining and large scale integration technologies are being used to make sensors that are small, rugged, lightweight, and require very little power. Our long-term goal is to develop very accurate miniaturized sensors that can be incorporated into complete instrument packages or 'micro weather stations,' and deployed on a variety of platforms. If conventional commercially available silicon production techniques can be used to fabricate these sensor packages, it will eventually be possible to mass-produce them at low cost. For studies of the Earth's troposphere and stratosphere, they could be deployed on aircraft, dropsondes, radiosondes, or autonomous surface stations at remote sites. Improved sensor accuracy and reduced sensor cost are the primary challenges for these applications. For studies of the Martian atmosphere, these sensor packages could be incorporated into the small entry probes and surface landers that are being planned for the Mars Environmental SURvey (MESUR) Mission. That decade-long program will deploy a global network of small stations on the Martian surface for monitoring meteorological and geological processes. Low mass, low power, durability, large dynamic range and calibration stability are the principal challenges for this application. Our progress on each of these sensor types is presented.
NASA Astrophysics Data System (ADS)
Glud, Ronnie Nøhr; Jensen, Kim; Revsbech, Niels Peter
1995-01-01
Diffusional characteristics of two biologically active surface sediments were determined by use of a combined N 2O-O 2 microsensor. By analyzing changes in the N2O-gradients in these sediments, it was possible to determine the product ( φDs) for this species with submillimetre depth resolution, where φ is the porosity and Ds the substrate diffusion coefficient. The ( φDs)-value for O 2 could be calculated then from ( φDs)-value for N 2O, because the diffusivity of the two molecules were modified in the same way within the sediment. Both sediments exhibited fine-scale horizontal and vertical variability in diffusion characteristics, and this must be accounted for when analyzing microprofile data. The average ( φDs)-value for N 2O at 20°C for an estuarine surface sediment was 0.93 × 10 -5 cm2 s -1 (at 0-4 mm depth), while the value for the upper 2 mm of a stream sediment covered by a microbial mat was 1.42 × 10 -5 cm 2 s -1. Biological inactivation and oxidation by exposure to an O 2 atmosphere had no effect on the measured ( φDs) for the estuarine sediment; however, the value for the sediment covered by a microbial mat, with dense populations of meiofauna, decreased by 20%. The method presented is ideal for measurements of diffusivity at a high spatial resolution in surficial sediments and densely packed microbial communities.
Regulation of Microbial Herbicide Transformation by Coupled Moisture and Oxygen Dynamics in Soil
NASA Astrophysics Data System (ADS)
Marschmann, G.; Pagel, H.; Uksa, M.; Streck, T.; Milojevic, T.; Rezanezhad, F.; Van Cappellen, P.
2017-12-01
The key processes of herbicide fate in agricultural soils are well-characterized. However, most of these studies are from batch experiments that were conducted under optimal aerobic conditions. In order to delineate the processes controlling herbicide (i.e., phenoxy herbicide 2-methyl-4-chlorophenoxyacetic acid, MCPA) turnover in soil under variable moisture conditions, we conducted a state-of-the-art soil column experiment, with a highly instrumented automated soil column system, under constant and oscillating water table regimes. In this system, the position of the water table was imposed using a computer-controlled, multi-channel pump connected to a hydrostatic equilibrium reservoir and a water storage reservoir. The soil samples were collected from a fertilized, arable and carbon-limited agricultural field site in Germany. The efflux of CO2 was determined from headspace gas measurements as an integrated signal of microbial respiration activity. Moisture and oxygen profiles along the soil column were monitored continuously using high-resolution moisture content probes and luminescence-based Multi Fiber Optode (MuFO) microsensors, respectively. Pore water and solid-phase samples were collected periodically at 8 depths and analyzed for MCPA, dissolved inorganic and organic carbon concentrations as well as the abundance of specific MCPA-degrading bacteria. The results indicated a clear effect of the water table fluctuations on CO2 fluxes, with lower fluxes during imbibition periods and enhanced CO2 fluxes after drainage. In this presentation, we focus on the results of temporal changes in the vertical distribution of herbicide, specific herbicide degraders, organic carbon concentration, moisture content and oxygen. We expect that the high spatial and temporal resolution of measurements from this experiment will allow robust calibration of a reactive transport model for the soil columns, with subsequent identification and quantification of rate limiting processes of MCPA turnover. This will ultimately improve our overall understanding of herbicide fate processes as a function of soil water regime.
Bulychev, Alexander A.; Foissner, Ilse
2017-01-01
ABSTRACT Proton flows across the plant cell membranes play a major role in electrogenesis and regulation of photosynthesis and ion balance. The profiles of external pH along the illuminated internodal cells of characean algae consist of alternating high- and low-pH zones that are spatially coordinated with the distribution of photosynthetic activity of chloroplasts underlying these zones. The results based on confocal laser scanning fluorescence microscopy, pH microsensors, and pulse-amplitude-modulated chlorophyll microfluorometry revealed that the coordination of H+ transport and photosynthesis is disrupted by the 2 different environmental cues (low light and wounding) and by a chemical, wortmannin interfering with the inositol phospholipid metabolism. On the one hand, the transition from moderate to low irradiance diminished the peaks in the profiles of photosystem II (PSII) quantum efficiency but did not remove the pH bands. On the other hand, the microwounding of the internode with a glass micropipette, impacting primarily the cell wall, resulted in a rapid local alkalinization of the external medium (by 2–2.5 pH units) near the cell surface, thus mimicking the appearance of natural pH bands. Despite their seeming similarity, the alkaline bands of intact cells were eliminated by wortmannin, whereas the wound-induced alkalinization was insensitive to this drug. Furthermore, the attenuation of natural pH bands in wortmannin-treated cells was accompanied by the enhancement in spatial heterogeneity of PSII efficiency and electron transport rates, which indicates the complexity of chloroplast–plasma membrane interactions. The results suggest that the light- and wound-induced alkaline areas on the cell surface are associated with different ion-transport systems. PMID:28805493
NASA Astrophysics Data System (ADS)
Raman, Barani; Meier, Douglas; Shenoy, Rupa; Benkstein, Kurt; Semancik, Steve
2011-09-01
We describe progress on an array-based microsensor approach employed for detecting trace levels of toxic industrial chemicals (TICs) in air-based backgrounds with varied levels of humidity, and with occasional introduction of aggressive interferents. Our MEMS microhotplate arrays are populated with multiple chemiresistive sensing materials, and all elements are programmed to go through extensive temperature cycling over repetitive cycles with lengths of approximately 20 s. Under such operation, analytically-rich data streams are produced containing the required information for target recognition.
Langasite as a piezoelectric material for near-field microscopy resonant cantilevers.
Douchet, Gabrielle; Sthal, Fabrice; Leblois, Thérèse; Bigler, Emmanuel
2010-11-01
Quartz length-extension resonators have already been used to obtain atomically-resolved images by frequency-modulation atomic force microscopy. Other piezoelectric materials such as gallium orthophosphate (GaPO(4)), langatate (LGT), and langasite (LGS) could be appropriate for this application. In this paper, the advantages of langasite crystal are presented and the fabrication of similar microsensors in langasite temperature-compensated cuts by chemical etching is proved. A monolithic length extension resonator, with a tip at its end, is obtained which constitutes a real advantage in regard to the existing quartz devices.
Low power interface IC's for electrostatic energy harvesting applications
NASA Astrophysics Data System (ADS)
Kempitiya, Asantha
The application of wireless distributed micro-sensor systems ranges from equipment diagnostic and control to real time structural and biomedical monitoring. A major obstacle in developing autonomous micro-sensor networks is the need for local electric power supply, since using a battery is often not a viable solution. This void has sparked significant interest in micro-scale power generators based on electrostatic, piezoelectric and electromagnetic energy conversion that can scavenge ambient energy from the environment. In comparison to existing energy harvesting techniques, electrostatic-based power generation is attractive as it can be integrated using mainstream silicon technologies while providing higher power densities through miniaturization. However the power output of reported electrostatic micro-generators to date does not meet the communication and computation requirements of wireless sensor nodes. The objective of this thesis is to investigate novel CMOS-based energy harvesting circuit (EHC) architectures to increase the level of harvested mechanical energy in electrostatic converters. The electronic circuits that facilitate mechanical to electrical energy conversion employing variable capacitors can either have synchronous or asynchronous architectures. The later does not require synchronization of electrical events with mechanical motion, which eliminates difficulties in gate clocking and the power consumption associated with complex control circuitry. However, the implementation of the EHC with the converter can be detrimental to system performance when done without concurrent optimization of both elements, an aspect mainly overlooked in the literature. System level analysis is performed to show that there is an optimum value for either the storage capacitor or cycle number for maximum scavenging of ambient energy. The analysis also shows that maximum power is extracted when the system approaches synchronous operation. However, there is a region of interest where the storage capacitor can be optimized to produce almost 70% of the ideal power taken as the power harvested with synchronous converters when neglecting the power consumption associated with synchronizing control circuitry. Theoretical predictions are confirmed by measurements on an asynchronous EHC implemented with a macro-scale electrostatic converter prototype. Based on the preceding analysis, the design of a novel ultra low power electrostatic integrated energy harvesting circuit is proposed for efficient harvesting of mechanical energy. The fundamental challenges of designing reliable low power sensing circuits for charge constrained electrostatic energy harvesters with capacity to self power its controller and driver stages are addressed. Experimental results are presented for a controller design implemented in AMI 0.7muM high voltage CMOS process using a macro-scale electrostatic converter prototype. The EHC produces 1.126muW for a power investment of 417nW with combined conduction and controller losses of 450nW which is a 20-30% improvement compared to prior art on electrostatic EHCs operating under charge constrain. Inherently dual plate variable capacitors harvest energy only during half of the mechanical cycle with the other half unutilized for energy conversion. To harvest mechanical energy over the complete mechanical vibration cycle, a low power energy harvesting circuit (EHC) that performs charge constrained synchronous energy conversion on a tri-plate variable capacitor for maximizing energy conversion is proposed. The tri-plate macro electrostatic generator with capacitor variation of 405pF to 1.15nF and 405pF to 1.07nF on two complementary adjacent capacitors is fabricated and used in the characterization of the designed EHC. The integrated circuit fabricated in AMI 0.7muM high voltage CMOS process, produces a total output power of 497nW to a 10muF reservoir capacitor from a 98Hz vibration signal. In summary, the thesis lays out the theoretical and experimental foundation for overcoming the main challenges associated with the design of charge constrained synchronous EHC's, making electrostatic converters a possible candidate for powering emerging communication transceivers and portable electronics.
NASA Astrophysics Data System (ADS)
Lebental, Bérengère; Angelescu, Dan; Bourouina, Tarik; Bourquin, Frédéric; Cojocaru, Costel-Sorin; Derkx, François; Dumoulin, Jean; Ha, Thi-Lan; Robine, Enric; Van Damme, Henri
2013-04-01
While today's galloping urbanization weighs heavily on both People and Environment, the massive instrumentation of urban spaces appears a landmark toward sustainability. Collecting massively distributed information requires the use of high-performance communication systems as well as sensors with very small ecological footprint. Because of their high sensitivity, the wide range of their observables, their energetic self-sufficiency and their low cost, micro- and nano- sensors are particularly well suited to urban metrology. A 8 years, 9 M€ equipment project funded by the French "Programme d'Investissement d'Avenir" starting in 2012, the Sense-City project will offer a suite of high-quality facilities for the design, prototyping and performance assessment of micro- and nanosensors devoted to sustainable urbanization. The scientific program of Sense-City is built around four programs, environmental monitoring, structural health monitoring, energy performances monitoring and people health and exposure monitoring. We present the activities of the consortium partners, IFSTTAR, ESIEE-Paris, CSTB, LPICM, and the prospects brought by Sense-City equipment in terms of sensor prototyping, benchmarking and operation validation. We discuss how the various sensors developed by LPICM and ESIEE (for instance conformable chemical and gas microsensors using nanomaterials at LPICM, miniaturized gas chromatographs or microfluidic lab-on-chip for particles analysis at ESIEE-Paris) can be integrated by IFSTTAR into sensors networks tested by IFSTTAR and CSTB in both lab and urban settings. The massively distributed data are interpreted using advanced physical models and inverse methods in order to monitor water, air or soil quality, infrastructure and network safety, building energy performances as well as people health and exposure. We discuss the shortcomings of evaluating the performances of sensors only in lab conditions or directly in real, urban conditions. As a solution, Sense-City will provide an environment of intermediate complexity for the testing of environmental sensors, a realistic urban test space in climatic conditions, both far more complex than clean rooms and far more controllable than actual cities. References: [1] Joblin Y et al., International Biodeterioration & Biodegradation 2010, 64, 210-217 [2] Lee C S et al., Nanotechnology 2012, accepted [3] Nachef K et al., IEEE/ASME Journal of Microelectromechanical Systems 2102, 21
An Overview of 2014 SBIR Phase 1 and Phase 2 Communications Technology and Development
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.
2015-01-01
NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights eight of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Communication Technology and Development. The technologies cover a wide spectrum of applications such as X-ray navigation, microsensor instrument for unmanned aerial vehicle airborne atmospheric measurements, 16-element graphene-based phased array antenna system, interferometric star tracker, ultralow power fast-response sensor, and integrated spacecraft navigation and communication. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.
Structural bases for neurophysiological investigations of amygdaloid complex of the brain
NASA Astrophysics Data System (ADS)
Kalimullina, Liliya B.; Kalkamanov, Kh. A.; Akhmadeev, Azat V.; Zakharov, Vadim P.; Sharafullin, Ildus F.
2015-11-01
Amygdala (Am) as a part of limbic system of the brain defines such important functions as adaptive behavior of animals, formation of emotions and memory, regulation of endocrine and visceral functions. We worked out, with the help of mathematic modelling of the pattern recognition theory, principles for organization of neurophysiological and neuromorphological studies of Am nuclei, which take into account the existing heterogeneity of its formations and optimize, to a great extent, the protocol for carrying out of such investigations. The given scheme of studies of Am’s structural-functional organization at its highly-informative sections can be used as a guide for precise placement of electrodes’, cannulae’s and microsensors into particular Am nucleus in the brain with the registration not only the nucleus itself, but also its extensions. This information is also important for defining the number of slices covering specific Am nuclei which must be investigated to reveal the physiological role of a particular part of amygdaloid complex.
Controlled microfluidic interfaces for microsensors
NASA Astrophysics Data System (ADS)
Jiang, H.
2009-02-01
Lab on a chip has found many applications in biological and chemical analysis, including pathogen detections. Because these labs on chips involve handling of fluids at the microscale, surface tension profoundly affects the behavior and performance of these systems. Through careful engineering, controlled liquid-liquid or liquid-gas interfaces at the microscale can be formed and used in many interesting applications. In this talk, I will present our work on applying such interfaces to microsensing. These interfaces are created at hydrophobic-hydrophilic boundaries formed within microfluidic channels and pinned by surface tension. We have designed and fabricated a few microsensing techniques including chemical and biological sensing using dissolvable micromembranes in microchannels, chemical and biological sensing at liquid crystals interfacing either air or aqueous solutions, and collection of gaseous samples and aerosols through air-liquid microfludic interfaces. I will next introduce on-chip microlenses and microlens arrays for optical detection, including smart and adaptive liquid microlenses actuated by stimuli-responsive hydrogels, and liquid microlenses in situ formed within microfluidic channels via pneumatic control of droplets.
Robotic Lunar Rover Technologies and SEI Supporting Technologies at Sandia National Laboratories
NASA Technical Reports Server (NTRS)
Klarer, Paul R.
1992-01-01
Existing robotic rover technologies at Sandia National Laboratories (SNL) can be applied toward the realization of a robotic lunar rover mission in the near term. Recent activities at the SNL-RVR have demonstrated the utility of existing rover technologies for performing remote field geology tasks similar to those envisioned on a robotic lunar rover mission. Specific technologies demonstrated include low-data-rate teleoperation, multivehicle control, remote site and sample inspection, standard bandwidth stereo vision, and autonomous path following based on both internal dead reckoning and an external position location update system. These activities serve to support the use of robotic rovers for an early return to the lunar surface by demonstrating capabilities that are attainable with off-the-shelf technology and existing control techniques. The breadth of technical activities at SNL provides many supporting technology areas for robotic rover development. These range from core competency areas and microsensor fabrication facilities, to actual space qualification of flight components that are designed and fabricated in-house.
Cellular Oxygen and Nutrient Sensing in Microgravity Using Time-Resolved Fluorescence Microscopy
NASA Technical Reports Server (NTRS)
Szmacinski, Henryk
2003-01-01
Oxygen and nutrient sensing is fundamental to the understanding of cell growth and metabolism. This requires identification of optical probes and suitable detection technology without complex calibration procedures. Under this project Microcosm developed an experimental technique that allows for simultaneous imaging of intra- and inter-cellular events. The technique consists of frequency-domain Fluorescence Lifetime Imaging Microscopy (FLIM), a set of identified oxygen and pH probes, and methods for fabrication of microsensors. Specifications for electronic and optical components of FLIM instrumentation are provided. Hardware and software were developed for data acquisition and analysis. Principles, procedures, and representative images are demonstrated. Suitable lifetime sensitive oxygen, pH, and glucose probes for intra- and extra-cellular measurements of analyte concentrations have been identified and tested. Lifetime sensing and imaging have been performed using PBS buffer, culture media, and yeast cells as a model systems. Spectral specifications, calibration curves, and probes availability are also provided in the report.
NASA Technical Reports Server (NTRS)
Lin, Qian; Harb, John N.
2004-01-01
This paper describes the development of a thick-film microcathode for use in Li-ion microbatteries in order to provide increased power and energy per area. These cathodes take advantage of a composite porous electrode structure, utilizing carbon nanotubes (CNT) as the conductive filler. The use of carbon nanotubes was found to significantly reduce the measured resistance of the electrodes, increase active material accessibility, and improve electrode performance. In particular, the cycling and power performance of the thick-film cathodes was significantly improved, and the need for compression was eliminated. Cathode thickness and CNT content were optimized to maximize capacity and power performance. Power capability of >50 mW/sq cm (17 mA/sq cm) with discharge capacity of >0.17 mAh/sq cm was demonstrated. The feasibility of fabricating thick-film microcathodes capable of providing the power and capacity needed for use in autonomous microsensor systems was also demonstrated.
Fiber optic oxygen sensor leak detection system for space applications
NASA Astrophysics Data System (ADS)
Kazemi, Alex A.; Goswami, Kish; Mendoza, Edgar A.; Kempen, Lothar U.
2007-09-01
This paper describes the successful test of a multi-point fiber optic oxygen sensor system during the static firing of an Evolved Expandable Launch Vehicle (EELV)/Delta IV common booster core (CBC) rocket engine at NASA's Stennis Flight Center. The system consisted of microsensors (optrodes) using an oxygen gas sensitive indicator incorporated onto an optically transparent porous substrate. The modular optoelectronics and multiplexing network system was designed and assembled utilizing a multi-channel opto-electronic sensor readout unit that monitored the oxygen and temperature response of the individual optrodes in real-time and communicated this information via a serial communication port to a remote laptop computer. The sensor packaging for oxygen consisted of two optrodes - one doped with an indicator sensitive to oxygen, and the other doped with an indicator sensitive to temperature. The multichannel oxygen sensor system is fully reversible. It has demonstrated a dynamic response to oxygen gas in the range of 0% to 100% with 0.1% resolution and a response time of <=10 seconds. The sensor package was attached to a custom fiber optic ribbon cable, which was then connected to a fiber optic trunk communications cable (standard telecommunications-grade fiber) that connected to the optoelectronics module. Each board in the expandable module included light sources, photo-detectors, and associated electronics required for detecting oxygen and temperature. The paper illustrates the sensor design and performance data under field deployment conditions.
Schramm, Andreas; Santegoeds, Cecilia M.; Nielsen, Helle K.; Ploug, Helle; Wagner, Michael; Pribyl, Milan; Wanner, Jiri; Amann, Rudolf; de Beer, Dirk
1999-01-01
A combination of different methods was applied to investigate the occurrence of anaerobic processes in aerated activated sludge. Microsensor measurements (O2, NO2−, NO3−, and H2S) were performed on single sludge flocs to detect anoxic niches, nitrate reduction, or sulfate reduction on a microscale. Incubations of activated sludge with 15NO3− and 35SO42− were used to determine denitrification and sulfate reduction rates on a batch scale. In four of six investigated sludges, no anoxic zones developed during aeration, and consequently denitrification rates were very low. However, in two sludges anoxia in flocs coincided with significant denitrification rates. Sulfate reduction could not be detected in any sludge in either the microsensor or the batch investigation, not even under short-term anoxic conditions. In contrast, the presence of sulfate-reducing bacteria was shown by fluorescence in situ hybridization with 16S rRNA-targeted oligonucleotide probes and by PCR-based detection of genes coding for the dissimilatory sulfite reductase. A possible explanation for the absence of anoxia even in most of the larger flocs might be that oxygen transport is not only diffusional but enhanced by advection, i.e., facilitated by flow through pores and channels. This possibility is suggested by the irregularity of some oxygen profiles and by confocal laser scanning microscopy of the three-dimensional floc structures, which showed that flocs from the two sludges in which anoxic zones were found were apparently denser than flocs from the other sludges. PMID:10473433
Metabolism of Nitrogen Oxides in Ammonia-Oxidizing Bacteria
NASA Astrophysics Data System (ADS)
Kozlowski, J.; Stein, L. Y.
2014-12-01
Ammonia-oxidizing bacteria (AOB) are key microorganisms in the transformation of nitrogen intermediates in most all environments. Until recently there was very little work done to elucidate the physiology of ammonia-oxidizing bacteria cultivated from variable trophic state environments. With a greater variety of ammonia-oxidizers now in pure culture the importance of comparative physiological and genomic analysis is crucial. Nearly all known physiology of ammonia-oxidizing bacteria lies within the Nitrosomonas genus with Nitrosomonas europaea strain ATCC 19718 as the model. To more broadly characterize and understand the nature of obligate ammonia chemolithotrophy and the contribution of AOB to production of nitrogen oxides, Nitrosomonas spp. and Nitrosospira spp. isolated from variable trophic states and with sequenced genomes, were utilized. Instantaneous ammonia- and hydroxylamine-oxidation kinetics as a function of oxygen and substrate concentration were measured using an oxygen micro-sensor. The pathway intermediates nitric oxide and nitrous oxide were measured in real time using substrate-specific micro-sensors to elucidate whether production of these molecules is stoichiometric with rates of substrate oxidation. Genomic inventory was compared among the strains to identify specific pathways and modules to explain physiological differences in kinetic rates and production of N-oxide intermediates as a condition of their adaptation to different ammonium concentrations. This work provides knowledge of how nitrogen metabolism is differentially controlled in AOB that are adapted to different concentrations of ammonium. Overall, this work will provide further insight into the control of ammonia oxidizing chemolithotrophy across representatives of the Nitrosomonas and Nitrosospira genus, which can then be applied to examine additional genome-sequenced AOB isolates.
Brodersen, Kasper E; Hammer, Kathrine J; Schrameyer, Verena; Floytrup, Anja; Rasheed, Michael A; Ralph, Peter J; Kühl, Michael; Pedersen, Ole
2017-01-01
HIGHLIGHTS: Sedimentation of fine sediment particles onto seagrass leaves severely hampers the plants' performance in both light and darkness, due to inadequate internal plant aeration and intrusion of phytotoxic H 2 S. Anthropogenic activities leading to sediment re-suspension can have adverse effects on adjacent seagrass meadows, owing to reduced light availability and the settling of suspended particles onto seagrass leaves potentially impeding gas exchange with the surrounding water. We used microsensors to determine O 2 fluxes and diffusive boundary layer (DBL) thickness on leaves of the seagrass Zostera muelleri with and without fine sediment particles, and combined these laboratory measurements with in situ microsensor measurements of tissue O 2 and H 2 S concentrations. Net photosynthesis rates in leaves with fine sediment particles were down to ~20% of controls without particles, and the compensation photon irradiance increased from a span of 20-53 to 109-145 μmol photons m -2 s -1 . An ~2.5-fold thicker DBL around leaves with fine sediment particles impeded O 2 influx into the leaves during darkness. In situ leaf meristematic O 2 concentrations of plants exposed to fine sediment particles were lower than in control plants and exhibited long time periods of complete meristematic anoxia during night-time. Insufficient internal aeration resulted in H 2 S intrusion into the leaf meristematic tissues when exposed to sediment resuspension even at relatively high night-time water-column O 2 concentrations. Fine sediment particles that settle on seagrass leaves thus negatively affect internal tissue aeration and thereby the plants' resilience against H 2 S intrusion.
Development of thermal models of footwear using finite element analysis.
Covill, D; Guan, Z W; Bailey, M; Raval, H
2011-03-01
Thermal comfort is increasingly becoming a crucial factor to be considered in footwear design. The climate inside a shoe is controlled by thermal and moisture conditions and is crucial to attain comfort. Research undertaken has shown that thermal conditions play a dominant role in shoe climate. Development of thermal models that are capable of predicting in-shoe temperature distributions is an effective way forward to undertake extensive parametric studies to assist optimized design. In this paper, two-dimensional and three-dimensional thermal models of in-shoe climate were developed using finite element analysis through commercial code Abaqus. The thermal material properties of the upper shoe, sole, and air were considered. Dry heat flux from the foot was calculated on the basis of typical blood flow in the arteries on the foot. Using the thermal models developed, in-shoe temperatures were predicted to cover various locations for controlled ambient temperatures of 15, 25, and 35 degrees C respectively. The predicted temperatures were compared with multipoint measured temperatures through microsensor technology. Reasonably good correlation was obtained, with averaged errors of 6, 2, and 1.5 per cent, based on the averaged in-shoe temperature for the above three ambient temperatures. The models can be further used to help design shoes with optimized thermal comfort.
On-line classification of pollutants in water using wireless portable electronic noses.
Herrero, José Luis; Lozano, Jesús; Santos, José Pedro; Suárez, José Ignacio
2016-06-01
A portable electronic nose with database connection for on-line classification of pollutants in water is presented in this paper. It is a hand-held, lightweight and powered instrument with wireless communications capable of standalone operation. A network of similar devices can be configured for distributed measurements. It uses four resistive microsensors and headspace as sampling method for extracting the volatile compounds from glass vials. The measurement and control program has been developed in LabVIEW using the database connection toolkit to send the sensors data to a server for training and classification with Artificial Neural Networks (ANNs). The use of a server instead of the microprocessor of the e-nose increases the capacity of memory and the computing power of the classifier and allows external users to perform data classification. To address this challenge, this paper also proposes a web-based framework (based on RESTFul web services, Asynchronous JavaScript and XML and JavaScript Object Notation) that allows remote users to train ANNs and request classification values regardless user's location and the type of device used. Results show that the proposed prototype can discriminate the samples measured (Blank water, acetone, toluene, ammonia, formaldehyde, hydrogen peroxide, ethanol, benzene, dichloromethane, acetic acid, xylene and dimethylacetamide) with a 94% classification success rate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dynamic Agent Classification and Tracking Using an Ad Hoc Mobile Acoustic Sensor Network
NASA Astrophysics Data System (ADS)
Friedlander, David; Griffin, Christopher; Jacobson, Noah; Phoha, Shashi; Brooks, Richard R.
2003-12-01
Autonomous networks of sensor platforms can be designed to interact in dynamic and noisy environments to determine the occurrence of specified transient events that define the dynamic process of interest. For example, a sensor network may be used for battlefield surveillance with the purpose of detecting, identifying, and tracking enemy activity. When the number of nodes is large, human oversight and control of low-level operations is not feasible. Coordination and self-organization of multiple autonomous nodes is necessary to maintain connectivity and sensor coverage and to combine information for better understanding the dynamics of the environment. Resource conservation requires adaptive clustering in the vicinity of the event. This paper presents methods for dynamic distributed signal processing using an ad hoc mobile network of microsensors to detect, identify, and track targets in noisy environments. They seamlessly integrate data from fixed and mobile platforms and dynamically organize platforms into clusters to process local data along the trajectory of the targets. Local analysis of sensor data is used to determine a set of target attribute values and classify the target. Sensor data from a field test in the Marine base at Twentynine Palms, Calif, was analyzed using the techniques described in this paper. The results were compared to "ground truth" data obtained from GPS receivers on the vehicles.
Performance Evaluation Modeling of Network Sensors
NASA Technical Reports Server (NTRS)
Clare, Loren P.; Jennings, Esther H.; Gao, Jay L.
2003-01-01
Substantial benefits are promised by operating many spatially separated sensors collectively. Such systems are envisioned to consist of sensor nodes that are connected by a communications network. A simulation tool is being developed to evaluate the performance of networked sensor systems, incorporating such metrics as target detection probabilities, false alarms rates, and classification confusion probabilities. The tool will be used to determine configuration impacts associated with such aspects as spatial laydown, and mixture of different types of sensors (acoustic, seismic, imaging, magnetic, RF, etc.), and fusion architecture. The QualNet discrete-event simulation environment serves as the underlying basis for model development and execution. This platform is recognized for its capabilities in efficiently simulating networking among mobile entities that communicate via wireless media. We are extending QualNet's communications modeling constructs to capture the sensing aspects of multi-target sensing (analogous to multiple access communications), unimodal multi-sensing (broadcast), and multi-modal sensing (multiple channels and correlated transmissions). Methods are also being developed for modeling the sensor signal sources (transmitters), signal propagation through the media, and sensors (receivers) that are consistent with the discrete event paradigm needed for performance determination of sensor network systems. This work is supported under the Microsensors Technical Area of the Army Research Laboratory (ARL) Advanced Sensors Collaborative Technology Alliance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grulke, Eric; Stencel, John
2011-09-13
The KY DOE EPSCoR Program supports two research clusters. The Materials Cluster uses unique equipment and computational methods that involve research expertise at the University of Kentucky and University of Louisville. This team determines the physical, chemical and mechanical properties of nanostructured materials and examines the dominant mechanisms involved in the formation of new self-assembled nanostructures. State-of-the-art parallel computational methods and algorithms are used to overcome current limitations of processing that otherwise are restricted to small system sizes and short times. The team also focuses on developing and applying advanced microtechnology fabrication techniques and the application of microelectrornechanical systems (MEMS)more » for creating new materials, novel microdevices, and integrated microsensors. The second research cluster concentrates on High Energy and Nuclear Physics. lt connects research and educational activities at the University of Kentucky, Eastern Kentucky University and national DOE research laboratories. Its vision is to establish world-class research status dedicated to experimental and theoretical investigations in strong interaction physics. The research provides a forum, facilities, and support for scientists to interact and collaborate in subatomic physics research. The program enables increased student involvement in fundamental physics research through the establishment of graduate fellowships and collaborative work.« less
Latest advances in the manufacturing of 3D rechargeable lithium microbatteries
NASA Astrophysics Data System (ADS)
Ferrari, Stefania; Loveridge, Melanie; Beattie, Shane D.; Jahn, Marcus; Dashwood, Richard J.; Bhagat, Rohit
2015-07-01
Recent advances in micro- and nano-electromechanical systems (MEMS/NEMS) technology have led to a niche industry of diverse small-scale devices that include microsensors, micromachines and drug-delivery systems. For these devices, there is an urgent need to develop Micro Lithium Ion Batteries (MLIBs) with dimensions on the scale 1-10 mm3 enabling on-board power delivery. Unfortunately, power limitations are inherent in planar 2D cells and only the advent of 3D designs and microarchitectures will lead to a real breakthrough in the microbattery technology. During the last few years, many efforts to optimise MLIBs were discussed in literature, both in the planar and 3D configurations. This review highlights the importance of 3D microarchitectured electrodes to fabricate batteries that can be device-integrated with exceptionally high specific power density coupled with exquisite miniaturisation. A wide literature overview is provided and recent advances in manufacturing routes to 3D-MLIBs comprising materials synthesis, device formulation, device testing are herein discussed. The advent of simple, economic and easily scalable fabrication processes such as 3D printing will have a decisive role in the growing field of micropower sources and microdevices.
Encapsulants for protecting MEMS devices during post-packaging release etch
Peterson, Kenneth A.
2005-10-18
The present invention relates to methods to protect a MEMS or microsensor device through one or more release or activation steps in a "package first, release later" manufacturing scheme: This method of fabrication permits wirebonds, other interconnects, packaging materials, lines, bond pads, and other structures on the die to be protected from physical, chemical, or electrical damage during the release etch(es) or other packaging steps. Metallic structures (e.g., gold, aluminum, copper) on the device are also protected from galvanic attack because they are protected from contact with HF or HCL-bearing solutions.
1991-12-01
Susan, and my children , Abigail and Benjamin. Their love, patience, and support made the sacrifices bearable. ii Table of Contents Acknowledgements...63 e -72 -81 10 100 1000 10000 100000 1000000 Frequency (log scale) *Purge 01 a Challenge 02 (105 Porn Boron Trifluoride) ePurge #2 Figure C-85. Phase... porn Ammonia) * Purge #2 Figure D-85.Gatin versus Frequency Response of IGEFET Microsensor for it Series of Room Air Purges and Challenge Gas Exposures
Methods for detection of GMOs in food and feed.
Marmiroli, Nelson; Maestri, Elena; Gullì, Mariolina; Malcevschi, Alessio; Peano, Clelia; Bordoni, Roberta; De Bellis, Gianluca
2008-10-01
This paper reviews aspects relevant to detection and quantification of genetically modified (GM) material within the feed/food chain. The GM crop regulatory framework at the international level is evaluated with reference to traceability and labelling. Current analytical methods for the detection, identification, and quantification of transgenic DNA in food and feed are reviewed. These methods include quantitative real-time PCR, multiplex PCR, and multiplex real-time PCR. Particular attention is paid to methods able to identify multiple GM events in a single reaction and to the development of microdevices and microsensors, though they have not been fully validated for application.
Measurement of a surface heat flux and temperature
NASA Astrophysics Data System (ADS)
Davis, R. M.; Antoine, G. J.; Diller, T. E.; Wicks, A. L.
1994-04-01
The Heat Flux Microsensor is a new sensor which was recently patented by Virginia Tech and is just starting to be marketed by Vatell Corp. The sensor is made using the thin-film microfabrication techniques directly on the material that is to be measured. It consists of several thin-film layers forming a differential thermopile across a thermal resistance layer. The measured heat flux q is proportional to the temperature difference across the resistance layer q= k(sub g)/delta(sub g) x (t(sub 1) - T(sub 2)), where k(sub g) is the thermal conductivity and delta (sub g) is the thickness of the thermal resistance layer. Because the gages are sputter coated directly onto the surface, their total thickness is less than 2 micrometers, which is two orders of magnitude thinner than previous gages. The resulting temperature difference across the thermal resistance layer (delta is less than 1 micrometer) is very small even at high heat fluxes. To generate a measurable signal many thermocouple pairs are put in series to form a differential thermopile. The combination of series thermocouple junctions and thin-film design creates a gage with very attractive characteristics. It is not only physically non-intrusive to the flow, but also causes minimal disruption of the surface temperature. Because it is so thin, the response time is less than 20 microsec. Consequently, the frequency response is flat from 0 to over 50 kHz. Moreover, the signal of the Heat Flux Microsensor is directly proportional to the heat flux. Therefore, it can easily be used in both steady and transient flows, and it measures both the steady and unsteady components of the surface heat flux. A version of the Heat Flux Microsensor has been developed to meet the harsh demands of combustion environments. These gages use platinum and platinum-10 percent rhodium as the thermoelectric materials. The thermal resistance layer is silicon monoxide and a protective coating of Al2O3 is deposited on top of the sensor. The superimposed thin-film pattern of all six layers is presented. The large pads are for connection with pins used to bring the signal out the back of the ceramic.
Measurement of a surface heat flux and temperature
NASA Technical Reports Server (NTRS)
Davis, R. M.; Antoine, G. J.; Diller, T. E.; Wicks, A. L.
1994-01-01
The Heat Flux Microsensor is a new sensor which was recently patented by Virginia Tech and is just starting to be marketed by Vatell Corp. The sensor is made using the thin-film microfabrication techniques directly on the material that is to be measured. It consists of several thin-film layers forming a differential thermopile across a thermal resistance layer. The measured heat flux q is proportional to the temperature difference across the resistance layer q= k(sub g)/delta(sub g) x (t(sub 1) - T(sub 2)), where k(sub g) is the thermal conductivity and delta (sub g) is the thickness of the thermal resistance layer. Because the gages are sputter coated directly onto the surface, their total thickness is less than 2 micrometers, which is two orders of magnitude thinner than previous gages. The resulting temperature difference across the thermal resistance layer (delta is less than 1 micrometer) is very small even at high heat fluxes. To generate a measurable signal many thermocouple pairs are put in series to form a differential thermopile. The combination of series thermocouple junctions and thin-film design creates a gage with very attractive characteristics. It is not only physically non-intrusive to the flow, but also causes minimal disruption of the surface temperature. Because it is so thin, the response time is less than 20 microsec. Consequently, the frequency response is flat from 0 to over 50 kHz. Moreover, the signal of the Heat Flux Microsensor is directly proportional to the heat flux. Therefore, it can easily be used in both steady and transient flows, and it measures both the steady and unsteady components of the surface heat flux. A version of the Heat Flux Microsensor has been developed to meet the harsh demands of combustion environments. These gages use platinum and platinum-10 percent rhodium as the thermoelectric materials. The thermal resistance layer is silicon monoxide and a protective coating of Al2O3 is deposited on top of the sensor. The superimposed thin-film pattern of all six layers is presented. The large pads are for connection with pins used to bring the signal out the back of the ceramic. In addition to the heat flux measurement, the surface temperature is measured with a platinum resistance layer (RTS). The resistance of this layer increases with increasing temperature. Therefore, these gages simultaneously measure the surface temperature and heat flux. The demonstrated applications include rocket nozzles, SCRAM jet engines, gas turbine engines, boiling heat transfer, flame experiments, basic fluid heat transfer, hypersonic flight, and shock tube testing. The laboratory involves using one of these sensors in a small combustion flame. The sensor is made on a 2.5 cm diameter piece of aluminum nitride ceramic.
Marques, Ricardo; Oehmen, Adrian; Pijuan, Maite
2014-11-04
Clark-type nitrous oxide (N2O) microelectrodes are commonly used for measuring dissolved N2O levels, but have not previously been tested for gas-phase applications, where the N2O emitted from wastewater systems can be directly quantified. In this study, N2O microelectrodes were tested and validated for online gas measurements, and assessed with respect to their temperature, gas flow, composition dependence, gas pressure, and humidity. An exponential correlation between temperature and sensor signal was found, whereas gas flow, composition, pressure, and humidity did not have any influence on the signal. Two of the sensors were tested at different N2O concentration ranges (0-422.3, 0-50, 0-10, and 0-2 ppmv N2O) and exhibited a linear response over each range. The N2O emission dynamics from two laboratory scale sequencing batch reactors performing ammonia or nitrite oxidation were also monitored using one of the microsensors and results were compared with two other analytical methods. Results show that N2O emissions were accurately described with these microelectrodes and support their application for assessing gaseous N2O emissions from wastewater treatment systems. Advantages of the sensors as compared to conventional measurement techniques include a wider quantification range of N2O fluxes, and a single measurement system that can assess both liquid and gas-phase N2O dynamics.
Microfluidic Biosensing Systems Using Magnetic Nanoparticles
Giouroudi, Ioanna; Keplinger, Franz
2013-01-01
In recent years, there has been rapidly growing interest in developing hand held, sensitive and cost-effective on-chip biosensing systems that directly translate the presence of certain bioanalytes (e.g., biomolecules, cells and viruses) into an electronic signal. The impressive and rapid progress in micro- and nanotechnology as well as in biotechnology enables the integration of a variety of analytical functions in a single chip. All necessary sample handling and analysis steps are then performed within the chip. Microfluidic systems for biomedical analysis usually consist of a set of units, which guarantees the manipulation, detection and recognition of bioanalytes in a reliable and flexible manner. Additionally, the use of magnetic fields for performing the aforementioned tasks has been steadily gaining interest. This is because magnetic fields can be well tuned and applied either externally or from a directly integrated solution in the biosensing system. In combination with these applied magnetic fields, magnetic nanoparticles are utilized. Some of the merits of magnetic nanoparticles are the possibility of manipulating them inside microfluidic channels by utilizing high gradient magnetic fields, their detection by integrated magnetic microsensors, and their flexibility due to functionalization by means of surface modification and specific binding. Their multi-functionality is what makes them ideal candidates as the active component in miniaturized on-chip biosensing systems. In this review, focus will be given to the type of biosening systems that use microfluidics in combination with magnetoresistive sensors and detect the presence of bioanalyte tagged with magnetic nanoparticles. PMID:24022689
Micro- and nano-NDE systems for aircraft: great things in small packages
NASA Astrophysics Data System (ADS)
Malas, James C.; Kropas-Hughes, Claudia V.; Blackshire, James L.; Moran, Thomas; Peeler, Deborah; Frazier, W. G.; Parker, Danny
2003-07-01
Recent advancements in small, microscopic NDE sensor technologies will revolutionize how aircraft maintenance is done, and will significantly improve the reliability and airworthiness of current and future aircraft systems. A variety of micro/nano systems and concepts are being developed that will enable whole new capabilities for detecting and tracking structural integrity damage. For aging aircraft systems, the impact of micro-NDE sensor technologies will be felt immediately, with dramatic reductions in labor for maintenance, and extended useable life of critical components being two of the primary benefits. For the fleet management of future aircraft systems, a comprehensive evaluation and tracking of vehicle health throughout its entire life cycle will be needed. Indeed, micro/nano NDE systems will be instrumental in realizing this futuristic vision. Several major challenges will need to be addressed, however, before micro- and nano-NDE systems can effectively be implemented, and this will require interdisciplinary research approaches, and a systematic engineering integration of the new technologies into real systems. Future research will need to emphasize systems engineering approaches for designing materials and structures with in-situ inspection and prognostic capabilities. Recent advances in 1) embedded / add-on micro-sensors, 2) computer modeling of nondestructive evaluation responses, and 3) wireless communications are important steps toward this goal, and will ultimately provide previously unimagined opportunities for realizing whole new integrated vehicle health monitoring capabilities. The future use of micro/nano NDE technologies as vehicle health monitoring tools will have profound implications, and will provide a revolutionary way of doing NDE in the near and distant future.
Hofmann, Laurie C; Fink, Artur; Bischof, Kai; de Beer, Dirk
2015-12-01
Low seawater pH can be harmful to many calcifying marine organisms, but the calcifying macroalgae Padina spp. flourish at natural submarine carbon dioxide seeps where seawater pH is low. We show that the microenvironment created by the rolled thallus margin of Padina australis facilitates supersaturation of CaCO3 and calcifi-cation via photosynthesis-induced elevated pH. Using microsensors to investigate oxygen and pH dynamics in the microenvironment of P. australis at a shallow CO2 seep, we found that, under saturating light, the pH inside the microenvironment (pHME ) was higher than the external seawater (pHSW ) at all pHSW levels investigated, and the difference (i.e., pHME - pHSW ) increased with decreasing pHSW (0.9 units at pHSW 7.0). Gross photosynthesis (Pg ) inside the microenvironment increased with decreasing pHSW , but algae from the control site reached a threshold at pH 6.5. Seep algae showed no pH threshold with respect to Pg within the pHSW range investigated. The external carbonic anhydrase (CA) inhibitor, acetazolamide, strongly inhibited Pg of P. australis at pHSW 8.2, but the effect was diminished under low pHSW (6.4-7.5), suggesting a greater dependence on membrane-bound CA for the dehydration of HCO3 (-) ions during dissolved inorganic carbon uptake at the higher pHSW . In comparison, a calcifying green alga, Halimeda cuneata f. digitata, was not inhibited by AZ, suggesting efficient bicarbonate transport. The ability of P. australis to elevate pHME at the site of calcification and its strong dependence on CA may explain why it can thrive at low pHSW . © 2015 Phycological Society of America.
A Review of Player Monitoring Approaches in Basketball: Current Trends and Future Directions.
Fox, Jordan L; Scanlan, Aaron T; Stanton, Robert
2017-07-01
Fox, JL, Scanlan, AT, and Stanton, R. A review of player monitoring approaches in basketball: current trends and future directions. J Strength Cond Res 31(7): 2021-2029, 2017-Effective monitoring of players in team sports such as basketball requires an understanding of the external demands and internal responses, as they relate to training phases and competition. Monitoring of external demands and internal responses allows coaching staff to determine the dose-response associated with the imposed training load (TL), and subsequently, if players are adequately prepared for competition. This review discusses measures reported in the literature for monitoring the external demands and internal responses of basketball players during training and competition. The external demands of training and competition were primarily monitored using time-motion analysis, with limited use of microtechnology being reported. Internal responses during training were typically measured using hematological markers, heart rate, various TL models, and perceptual responses such as rating of perceived exertion (RPE). Heart rate was the most commonly reported indicator of internal responses during competition with limited reporting of hematological markers or RPE. These findings show a large discrepancy between the reporting of external and internal measures and training and competition demands. Microsensors, however, may be a practical and convenient method of player monitoring in basketball to overcome the limitations associated with current approaches while allowing for external demands and internal responses to be recorded simultaneously. The triaxial accelerometers of microsensors seem well suited for basketball and warrant validation to definitively determine their place in the monitoring of basketball players. Coaching staff should make use of this technology by tracking individual player responses across the annual plan and using real-time monitoring to minimize factors such as fatigue and injury risk.
Brodersen, Kasper E.; Hammer, Kathrine J.; Schrameyer, Verena; Floytrup, Anja; Rasheed, Michael A.; Ralph, Peter J.; Kühl, Michael; Pedersen, Ole
2017-01-01
HIGHLIGHTS: Sedimentation of fine sediment particles onto seagrass leaves severely hampers the plants' performance in both light and darkness, due to inadequate internal plant aeration and intrusion of phytotoxic H2S. Anthropogenic activities leading to sediment re-suspension can have adverse effects on adjacent seagrass meadows, owing to reduced light availability and the settling of suspended particles onto seagrass leaves potentially impeding gas exchange with the surrounding water. We used microsensors to determine O2 fluxes and diffusive boundary layer (DBL) thickness on leaves of the seagrass Zostera muelleri with and without fine sediment particles, and combined these laboratory measurements with in situ microsensor measurements of tissue O2 and H2S concentrations. Net photosynthesis rates in leaves with fine sediment particles were down to ~20% of controls without particles, and the compensation photon irradiance increased from a span of 20–53 to 109–145 μmol photons m−2 s−1. An ~2.5-fold thicker DBL around leaves with fine sediment particles impeded O2 influx into the leaves during darkness. In situ leaf meristematic O2 concentrations of plants exposed to fine sediment particles were lower than in control plants and exhibited long time periods of complete meristematic anoxia during night-time. Insufficient internal aeration resulted in H2S intrusion into the leaf meristematic tissues when exposed to sediment resuspension even at relatively high night-time water-column O2 concentrations. Fine sediment particles that settle on seagrass leaves thus negatively affect internal tissue aeration and thereby the plants' resilience against H2S intrusion. PMID:28536583
Multi-Parameter Aerosol Scattering Sensor
NASA Technical Reports Server (NTRS)
Greenberg, Paul S.; Fischer, David G.
2011-01-01
This work relates to the development of sensors that measure specific aerosol properties. These properties are in the form of integrated moment distributions, i.e., total surface area, total mass, etc., or mathematical combinations of these moment distributions. Specifically, the innovation involves two fundamental features: a computational tool to design and optimize such sensors and the embodiment of these sensors in actual practice. The measurement of aerosol properties is a problem of general interest. Applications include, but are not limited to, environmental monitoring, assessment of human respiratory health, fire detection, emission characterization and control, and pollutant monitoring. The objectives for sensor development include increased accuracy and/or dynamic range, the inclusion in a single sensor of the ability to measure multiple aerosol properties, and developing an overall physical package that is rugged, compact, and low in power consumption, so as to enable deployment in harsh or confined field applications, and as distributed sensor networks. Existing instruments for this purpose include scattering photometers, direct-reading mass instruments, Beta absorption devices, differential mobility analyzers, and gravitational samplers. The family of sensors reported here is predicated on the interaction of light and matter; specifically, the scattering of light from distributions of aerosol particles. The particular arrangement of the sensor, e.g. the wavelength(s) of incident radiation, the number and location of optical detectors, etc., can be derived so as to optimize the sensor response to aerosol properties of practical interest. A key feature of the design is the potential embodiment as an extremely compact, integrated microsensor package. This is of fundamental importance, as it enables numerous previously inaccessible applications. The embodiment of these sensors is inherently low maintenance and high reliability by design. The novel and unique features include the underlying computational underpinning that allows the optimization for specific applications, and the physical embodiment that affords the construction of a compact, durable, and reliable integrated package. The advantage appears in the form of increased accuracy relative to existing instruments, and the applications enabled by the physical attributes of the resulting configuration
Influence of polymer coating morphology on microsensor response
NASA Astrophysics Data System (ADS)
Levit, Natalia; Pestov, Dmitry; Tepper, Gary C.
2004-03-01
Nanoscale polymeric coatings are used in a variety of sensor systems. The influence of polymer coating morphology on sensor response was investigated and it was determined that coating morphology plays a particularly important role in transducers based on optical or acoustic resonance such as surface acoustic wave (SAW) or surface plasmon resonance (SPR) devices. Nanoscale polymeric coatings were deposited onto a number of miniature devices using a "solvent-free" deposition technique known as Rapid Expansion of Supercritical Solutions (RESS). In RESS, the supercritical solvent goes into the vapor phase upon fast depressurization and separates from the polymer. Therefore, dry polymer particles are deposited from the gas phase. The average diameter of RESS precipitates is about two orders of magnitude smaller than the minimum droplet size achievable by the air-brush method. For rubbery polymers, such as PIB and PDMS, the nanoscale solute droplets produced by RESS agglomerate on the surface forming a highly-uniform continuous nanoscale film. For glassy and crstalline polymers, the RESS droplets produce uniform particulate coatings exhibiting high surface-to-volume ratio. The coating morphology can be changed by controlling the RESS processing conditions.
Measuring Physical Properties of Neuronal and Glial Cells with Resonant Microsensors
2015-01-01
Microelectromechanical systems (MEMS) resonant sensors provide a high degree of accuracy for measuring the physical properties of chemical and biological samples. These sensors enable the investigation of cellular mass and growth, though previous sensor designs have been limited to the study of homogeneous cell populations. Population heterogeneity, as is generally encountered in primary cultures, reduces measurement yield and limits the efficacy of sensor mass measurements. This paper presents a MEMS resonant pedestal sensor array fabricated over through-wafer pores compatible with vertical flow fields to increase measurement versatility (e.g., fluidic manipulation and throughput) and allow for the measurement of heterogeneous cell populations. Overall, the improved sensor increases capture by 100% at a flow rate of 2 μL/min, as characterized through microbead experiments, while maintaining measurement accuracy. Cell mass measurements of primary mouse hippocampal neurons in vitro, in the range of 0.1–0.9 ng, demonstrate the ability to investigate neuronal mass and changes in mass over time. Using an independent measurement of cell volume, we find cell density to be approximately 1.15 g/mL. PMID:24734874
Nanomechanical recognition of prognostic biomarker suPAR with DVD-ROM optical technology.
Bache, Michael; Bosco, Filippo G; Brøgger, Anna L; Frøhling, Kasper B; Alstrøm, Tommy Sonne; Hwu, En-Te; Chen, Ching-Hsiu; Eugen-Olsen, Jesper; Hwang, Ing-Shouh; Boisen, Anja
2013-11-08
In this work the use of a high-throughput nanomechanical detection system based on a DVD-ROM optical drive and cantilever sensors is presented for the detection of urokinase plasminogen activator receptor inflammatory biomarker (uPAR). Several large scale studies have linked elevated levels of soluble uPAR (suPAR) to infectious diseases, such as HIV, and certain types of cancer. Using hundreds of cantilevers and a DVD-based platform, cantilever deflection response from antibody-antigen recognition is investigated as a function of suPAR concentration. The goal is to provide a cheap and portable detection platform which can carry valuable prognostic information. In order to optimize the cantilever response the antibody immobilization and unspecific binding are initially characterized using quartz crystal microbalance technology. Also, the choice of antibody is explored in order to generate the largest surface stress on the cantilevers, thus increasing the signal. Using optimized experimental conditions the lowest detectable suPAR concentration is currently around 5 nM. The results reveal promising research strategies for the implementation of specific biochemical assays in a portable and high-throughput microsensor-based detection platform.
Unconditionally stable finite-difference time-domain methods for modeling the Sagnac effect
NASA Astrophysics Data System (ADS)
Novitski, Roman; Scheuer, Jacob; Steinberg, Ben Z.
2013-02-01
We present two unconditionally stable finite-difference time-domain (FDTD) methods for modeling the Sagnac effect in rotating optical microsensors. The methods are based on the implicit Crank-Nicolson scheme, adapted to hold in the rotating system reference frame—the rotating Crank-Nicolson (RCN) methods. The first method (RCN-2) is second order accurate in space whereas the second method (RCN-4) is fourth order accurate. Both methods are second order accurate in time. We show that the RCN-4 scheme is more accurate and has better dispersion isotropy. The numerical results show good correspondence with the expression for the classical Sagnac resonant frequency splitting when using group refractive indices of the resonant modes of a microresonator. Also we show that the numerical results are consistent with the perturbation theory for the rotating degenerate microcavities. We apply our method to simulate the effect of rotation on an entire Coupled Resonator Optical Waveguide (CROW) consisting of a set of coupled microresonators. Preliminary results validate the formation of a rotation-induced gap at the center of a transfer function of a CROW.
NASA Astrophysics Data System (ADS)
Xia, Xiaoyuan; Zhang, Zhixiang; Li, Xinxin
2008-03-01
Second torsion-mode resonance is proposed for microcantilever biosensors for ultra-high mass-weighing sensitivity and resolution. By increasing both the resonant frequency and Q-factor, the higher mode torsional resonance is favorable for improving the mass-sensing performance. For the first time, a Latin-cross-shaped second-mode resonant cantilever is constructed and optimally designed for both signal-readout and resonance-exciting elements. The cantilever sensor is fabricated by using silicon micromachining techniques. The transverse piezoresistive sensing element and the specific-shaped resonance-exciting loop are successfully integrated in the cantilever. Alpha-fetoprotein (AFP) antibody-antigen specific binding is implemented for the sensing experiment. The proposed cantilever sensor is designed with significantly superior sensitivity to the previously reported first torsion-mode one. After analysis with an Allan variance algorithm, which can be easily embedded in the sensing system, the Latin-cross-shaped second torsion-mode resonant cantilever is evaluated with ultra-high mass resolution. Therefore, the high-performance integrated micro-sensor is promising for on-the-spot bio-molecule detection.
Lens-free imaging-based low-cost microsensor for in-line wear debris detection in lube oils
NASA Astrophysics Data System (ADS)
Mabe, Jon; Zubia, Joseba; Gorritxategi, Eneko
2017-02-01
The current paper describes the application of lens-free imaging principles for the detection and classification of wear debris in lubricant oils. The potential benefits brought by the lens-free microscopy techniques in terms of resolution, deep of field and active areas have been tailored to develop a micro sensor for the in-line monitoring of wear debris in oils used in lubricated or hydraulic machines as gearboxes, actuators, engines, etc. The current work presents a laboratory test-bench used for evaluating the optical performance of the lens-free approach applied to the wear particle detection in oil samples. Additionally, the current prototype sensor is presented, which integrates a LED light source, CMOS imager, embedded CPU, the measurement cell and the appropriate optical components for setting up the lens-free system. The imaging performance is quantified using micro structured samples, as well as by imaging real used lubricant oils. Probing a large volume with a decent 2D spatial resolution, this lens-free micro sensor can provide a powerful tool at very low cost for inline wear debris monitoring.
An automated perfusion bioreactor for the streamlined production of engineered osteogenic grafts.
Ding, Ming; Henriksen, Susan S; Wendt, David; Overgaard, Søren
2016-04-01
A computer-controlled perfusion bioreactor was developed for the streamlined production of engineered osteogenic grafts. This system automated the required bioprocesses, from the initial filling of the system through the phases of cell seeding and prolonged cell/tissue culture. Flow through chemo-optic micro-sensors allowed to non-invasively monitor the levels of oxygen and pH in the perfused culture medium throughout the culture period. To validate its performance, freshly isolated ovine bone marrow stromal cells were directly seeded on porous scaffold granules (hydroxyapatite/β-tricalcium-phosphate/poly-lactic acid), bypassing the phase of monolayer cell expansion in flasks. Either 10 or 20 days after culture, engineered cell-granule grafts were implanted in an ectopic mouse model to quantify new bone formation. After four weeks of implantation, histomorphometry showed more bone in bioreactor-generated grafts than cell-free granule controls, while bone formation did not show significant differences between 10 days and 20 days of incubation. The implanted granules without cells had no bone formation. This novel perfusion bioreactor has revealed the capability of activation larger viable bone graft material, even after shorter incubation time of graft material. This study has demonstrated the feasibility of engineering osteogenic grafts in an automated bioreactor system, laying the foundation for a safe, regulatory-compliant, and cost-effective manufacturing process. © 2015 Wiley Periodicals, Inc.
Fiber optics in composite materials: materials with nerves of glass
NASA Astrophysics Data System (ADS)
Measures, Raymond M.
1990-08-01
A Fiber Optic BasedSmart Structure wiipossess a structurally integrated optical microsensor system for determining its state. This built-in sensor system should, in real-time, be able to: evaluate the strain or deformation of a structure, monitor if its vibrating or subject to excessive loads, check its temperature and warn of the appearance of any hot spots. In addition a Smart Structure should maintain a vigilant survelliance over its structural integrity. The successful development of Smart StructureTechnolgy could lead to: aircraft that are safer, lighter, more efficient, easier to maintain and to service; pipelines, pressure vessels and storage tanks that constantly monitor their structuralintegrity and immediately issue an alert ifany problem is detected; space platforms that check forpressure leaks, unwanted vibration, excess thermal buildup, and deviation from some preassigned shape.This technology is particularly appropriate for composite materials where internal damage generated by: impacts, manufacturing flaws, excessive loading or fatigue could be detected and assessed. In service monitoring of structural loads, especially in regions like wing roots of aircraft, could be ofconsiderable benefit in helping to avoid structural overdesign and reduce weight. Structurally imbedded optical fibers sensors might also serve to monitor the cure state of composite thermosets during their fabrication and thereby contribute to improved quality control of these products.
A review: flexible, stretchable multifunctional sensors and actuators for heart arrhythmia therapy
NASA Astrophysics Data System (ADS)
Kang, Seung-Jo; Pak, James Jungho
2017-12-01
Cardiovascular disease is a very serious disease which results in about 30% of all global mortality. Atrial fibrillation (AF) causes rapid and irregular contractions resulting in stroke and cardiac arrest. AF is caused by abnormality of the heartbeat controlling electrical signal. Catheter ablation (CA) is often used to treat and remove the abnormal electrical source from the heart but it has limitations in sensing capability and spatial coverage. To overcome the limitations of the CA, new devices for improving the spatial capability have been reported. One of the most impressive methods is wrapping the heart surface with a flexible/stretchable film with an array of high-density multifunctional micro-sensors and actuators. With this technique, the overall heart surface may be diagnosed in real time and the AF may be treated much more effectively. The data acquisition from the array of multifunctional sensors is also very important for making the new devices useful. To operate the implanted device system, a battery is mostly used and it should be avoided to replace the battery by surgery. Therefore, various energy harvesting techniques or wireless energy transfer techniques to continuously feed the power to the system are under investigation. The development of these technologies was reviewed, and the current level of technology was reviewed and summarized.
Smart single-chip gas sensor microsystem
NASA Astrophysics Data System (ADS)
Hagleitner, C.; Hierlemann, A.; Lange, D.; Kummer, A.; Kerness, N.; Brand, O.; Baltes, H.
2001-11-01
Research activity in chemical gas sensing is currently directed towards the search for highly selective (bio)chemical layer materials, and to the design of arrays consisting of different partially selective sensors that permit subsequent pattern recognition and multi-component analysis. Simultaneous use of various transduction platforms has been demonstrated, and the rapid development of integrated-circuit technology has facilitated the fabrication of planar chemical sensors and sensors based on three-dimensional microelectromechanical systems. Complementary metal-oxide silicon processes have previously been used to develop gas sensors based on metal oxides and acoustic-wave-based sensor devices. Here we combine several of these developments to fabricate a smart single-chip chemical microsensor system that incorporates three different transducers (mass-sensitive, capacitive and calorimetric), all of which rely on sensitive polymeric layers to detect airborne volatile organic compounds. Full integration of the microelectronic and micromechanical components on one chip permits control and monitoring of the sensor functions, and enables on-chip signal amplification and conditioning that notably improves the overall sensor performance. The circuitry also includes analog-to-digital converters, and an on-chip interface to transmit the data to off-chip recording units. We expect that our approach will provide a basis for the further development and optimization of gas microsystems.
An electrochemical albumin-sensing system utilizing microfluidic technology
NASA Astrophysics Data System (ADS)
Huang, Chao-June; Lu, Chiu-Chun; Lin, Thong-Yueh; Chou, Tse-Chuan; Lee, Gwo-Bin
2007-04-01
This paper reports an integrated microfluidic chip capable of detecting the concentration of albumin in urine by using an electrochemical method in an automatic format. The integrated microfluidic chip was fabricated by using microelectromechanical system techniques. The albumin detection was conducted by using the electrochemical sensing method, in which the albumin in urine was detected by measuring the difference of peak currents between a bare reference electrode and an albumin-adsorption electrode. To perform the detection of the albumin in an automatic format, pneumatic microvalves and micropumps were integrated onto the microfluidic chip. The albumin sample and interference mixture solutions such as homovanillic acid, dopamine, norepinephrine and epinephrine were first stored in one of the three reservoirs. Then the solution comprising the albumin sample and interference solutions was transported to pass through the detection zone utilizing the pneumatic micropump. Experimental data showed that the developed system can successfully detect the concentration of the albumin in the existence of interference materials. When compared with the traditional albumin-sensing method, smaller amounts of samples were required to perform faster detection by using the integrated microfluidic chip. Additionally, the microfluidic chip integrated with pneumatic micropumps and microvalves facilitates the transportation of the samples in an automatic mode with lesser human intervention. The development of the integrated microfluidic albumin-sensing system may be promising for biomedical applications. Preliminary results of the current paper were presented at the 2nd International Meeting on Microsensors and Microsystems 2006 (National Cheng Kung University, Tainan, Taiwan, 15-18 January).
Denomme, Ryan C; Lu, Zhao; Martel, Sylvain
2007-01-01
The proposed Magnetotactic Bacteria (MTB) based bio-carrier has the potential to greatly improve pathogenic bacteria detection time, specificity, and sensitivity. Microbeads are attached to the MTB and are modified with a coating of an antibody or phage that is specific to the target pathogenic bacteria. Using magnetic fields, the modified MTB are swept through a solution and the target bacteria present become attached to the microbeads (due to the coating). Then, the MTB are brought to the detection region and the number of pathogenic bacteria is determined. The high swimming speed and controllability of the MTB make this method ideal for the fast detection of small concentrations of specific bacteria. This paper focuses on an impedimetric detection system that will be used to identify if a target bacterium is attached to the microbead. The proposed detection system measures changes in electrical impedance as objects (MTB, microbeads, and pathogenic bacteria) pass through a set of microelectrodes embedded in a microfluidic device. FEM simulation is used to acquire the optimized parameters for the design of such a system. Specifically, factors such as electrode/detection channel geometry, object size and position, which have direct effects on the detection sensitivity for a single bacterium or microparticle, are investigated. Polymer microbeads and the MTB system with an E. coli bacterium are considered to investigate their impedance variations. Furthermore, preliminary experimental data using a microfabricated microfluidic device connected to an impedance analyzer are presented.
NASA Astrophysics Data System (ADS)
Chowdhry, Bhawani Shankar; White, Neil M.; Jeswani, Jai Kumar; Dayo, Khalil; Rathi, Manorma
2009-07-01
Disasters affecting infrastructure, such as the 2001 earthquakes in India, 2005 in Pakistan, 2008 in China and the 2004 tsunami in Asia, provide a common need for intelligent buildings and smart civil structures. Now, imagine massive reductions in time to get the infrastructure working again, realtime information on damage to buildings, massive reductions in cost and time to certify that structures are undamaged and can still be operated, reductions in the number of structures to be rebuilt (if they are known not to be damaged). Achieving these ideas would lead to huge, quantifiable, long-term savings to government and industry. Wireless sensor networks (WSNs) can be deployed in buildings to make any civil structure both smart and intelligent. WSNs have recently gained much attention in both public and research communities because they are expected to bring a new paradigm to the interaction between humans, environment, and machines. This paper presents the deployment of WSN nodes in the Top Quality Centralized Instrumentation Centre (TQCIC). We created an ad hoc networking application to collect real-time data sensed from the nodes that were randomly distributed throughout the building. If the sensors are relocated, then the application automatically reconfigures itself in the light of the new routing topology. WSNs are event-based systems that rely on the collective effort of several micro-sensor nodes, which are continuously observing a physical phenomenon. WSN applications require spatially dense sensor deployment in order to achieve satisfactory coverage. The degree of spatial correlation increases with the decreasing inter-node separation. Energy consumption is reduced dramatically by having only those sensor nodes with unique readings transmit their data. We report on an algorithm based on a spatial correlation technique that assures high QoS (in terms of SNR) of the network as well as proper utilization of energy, by suppressing redundant data transmission. The visualization and analysis of WSN data are presented in a Windows-based user interface.
Lichtenberg, Mads; Brodersen, Kasper E.; Kühl, Michael
2017-01-01
We investigated the radiative energy budgets of a heterogeneous photosynthetic coral reef sediment and a compact uniform cyanobacterial biofilm on top of coastal sediment. By combining electrochemical, thermocouple and fiber-optic microsensor measurements of O2, temperature and light, we could calculate the proportion of the absorbed light energy that was either dissipated as heat or conserved by photosynthesis. We show, across a range of different incident light regimes, that such radiative energy budgets are highly dominated by heat dissipation constituting up to 99.5% of the absorbed light energy. Highest photosynthetic energy conservation efficiency was found in the coral sediment under low light conditions and amounted to 18.1% of the absorbed light energy. Additionally, the effect of light directionality, i.e., diffuse or collimated light, on energy conversion efficiency was tested on the two surface-associated systems. The effects of light directionality on the radiative energy budgets of these phototrophic communities were not unanimous but, resulted in local spatial differences in heat-transfer, gross photosynthesis, and light distribution. The light acclimation index, Ek, i.e., the irradiance at the onset of saturation of photosynthesis, was >2 times higher in the coral sediment compared to the biofilm and changed the pattern of photosynthetic energy conservation under light-limiting conditions. At moderate to high incident irradiances, the photosynthetic conservation of absorbed energy was highest in collimated light; a tendency that changed in the biofilm under sub-saturating incident irradiances, where higher photosynthetic efficiencies were observed under diffuse light. The aim was to investigate how the physical structure and light propagation affected energy budgets and light utilization efficiencies in loosely organized vs. compact phototrophic sediment under diffuse and collimated light. Our results suggest that the optical properties and the structural organization of phytoelements are important traits affecting the photosynthetic efficiency of biofilms and sediments. PMID:28400749
Lichtenberg, Mads; Brodersen, Kasper E; Kühl, Michael
2017-01-01
We investigated the radiative energy budgets of a heterogeneous photosynthetic coral reef sediment and a compact uniform cyanobacterial biofilm on top of coastal sediment. By combining electrochemical, thermocouple and fiber-optic microsensor measurements of O 2 , temperature and light, we could calculate the proportion of the absorbed light energy that was either dissipated as heat or conserved by photosynthesis. We show, across a range of different incident light regimes, that such radiative energy budgets are highly dominated by heat dissipation constituting up to 99.5% of the absorbed light energy. Highest photosynthetic energy conservation efficiency was found in the coral sediment under low light conditions and amounted to 18.1% of the absorbed light energy. Additionally, the effect of light directionality, i.e., diffuse or collimated light, on energy conversion efficiency was tested on the two surface-associated systems. The effects of light directionality on the radiative energy budgets of these phototrophic communities were not unanimous but, resulted in local spatial differences in heat-transfer, gross photosynthesis, and light distribution. The light acclimation index, E k , i.e., the irradiance at the onset of saturation of photosynthesis, was >2 times higher in the coral sediment compared to the biofilm and changed the pattern of photosynthetic energy conservation under light-limiting conditions. At moderate to high incident irradiances, the photosynthetic conservation of absorbed energy was highest in collimated light; a tendency that changed in the biofilm under sub-saturating incident irradiances, where higher photosynthetic efficiencies were observed under diffuse light. The aim was to investigate how the physical structure and light propagation affected energy budgets and light utilization efficiencies in loosely organized vs. compact phototrophic sediment under diffuse and collimated light. Our results suggest that the optical properties and the structural organization of phytoelements are important traits affecting the photosynthetic efficiency of biofilms and sediments.
The study and application of four kinds of organic ion-selective microsensors
NASA Astrophysics Data System (ADS)
Yu, Bi; Zheng, Xiao; Feng, Chu; Hong, Wen-Bing; Liu, Jun-Tao; Wang, Ru-Jiang
1991-09-01
Four kinds of organic ion-selective microelectrodes (two barrels, tip diameter 0.1-0.5 micron) have been developed for the measurement of acetylcholine, histamine, serotonin, and bile acid. Physiological and pathological models on the cellular or sub-cellular level have been established for the purpose of basic and clinical pharmacological research, treatment or diagnosis of certain diseases. The acetylcholine sensitive microelectrode has been applied to the study of acetylcholine activity in single erythrocytes of normal human subjects and patients suffering from manic depressive disorders. The bile acid selective microelectrode has been used for the direct measurement of intracellular bile acid activities both in colorectal cancer and colorectal mucosa in living condition.
NASA Technical Reports Server (NTRS)
2012-01-01
Topics include: Computational Ghost Imaging for Remote Sensing; Digital Architecture for a Trace Gas Sensor Platform; Dispersed Fringe Sensing Analysis - DFSA; Indium Tin Oxide Resistor-Based Nitric Oxide Microsensors; Gas Composition Sensing Using Carbon Nanotube Arrays; Sensor for Boundary Shear Stress in Fluid Flow; Model-Based Method for Sensor Validation; Qualification of Engineering Camera for Long-Duration Deep Space Missions; Remotely Powered Reconfigurable Receiver for Extreme Environment Sensing Platforms; Bump Bonding Using Metal-Coated Carbon Nanotubes; In Situ Mosaic Brightness Correction; Simplex GPS and InSAR Inversion Software; Virtual Machine Language 2.1; Multi-Scale Three-Dimensional Variational Data Assimilation System for Coastal Ocean Prediction; Pandora Operation and Analysis Software; Fabrication of a Cryogenic Bias Filter for Ultrasensitive Focal Plane; Processing of Nanosensors Using a Sacrificial Template Approach; High-Temperature Shape Memory Polymers; Modular Flooring System; Non-Toxic, Low-Freezing, Drop-In Replacement Heat Transfer Fluids; Materials That Enhance Efficiency and Radiation Resistance of Solar Cells; Low-Cost, Rugged High-Vacuum System; Static Gas-Charging Plug; Floating Oil-Spill Containment Device; Stemless Ball Valve; Improving Balance Function Using Low Levels of Electrical Stimulation of the Balance Organs; Oxygen-Methane Thruster; Lunar Navigation Determination System - LaNDS; Launch Method for Kites in Low-Wind or No-Wind Conditions; Supercritical CO2 Cleaning System for Planetary Protection and Contamination Control Applications; Design and Performance of a Wideband Radio Telescope; Finite Element Models for Electron Beam Freeform Fabrication Process Autonomous Information Unit for Fine-Grain Data Access Control and Information Protection in a Net-Centric System; Vehicle Detection for RCTA/ANS (Autonomous Navigation System); Image Mapping and Visual Attention on the Sensory Ego-Sphere; HyDE Framework for Stochastic and Hybrid Model-Based Diagnosis; and IMAGESEER - IMAGEs for Education and Research.
James, Garth A; Ge Zhao, Alice; Usui, Marcia; Underwood, Robert A; Nguyen, Hung; Beyenal, Haluk; deLancey Pulcini, Elinor; Agostinho Hunt, Alessandra; Bernstein, Hans C; Fleckman, Philip; Olerud, John; Williamson, Kerry S; Franklin, Michael J; Stewart, Philip S
2016-03-01
Biofilms have been implicated in delayed wound healing, although the mechanisms by which biofilms impair wound healing are poorly understood. Many species of bacteria produce exotoxins and exoenzymes that may inhibit healing. In addition, oxygen consumption by biofilms and by the responding leukocytes, may impede wound healing by depleting the oxygen that is required for healing. In this study, oxygen microsensors to measure oxygen transects through in vitro cultured biofilms, biofilms formed in vivo within scabs from a diabetic (db/db) mouse wound model, and ex vivo human chronic wound specimens was used. The results showed that oxygen levels within mouse scabs had steep gradients that reached minima ranging from 17 to 72 mmHg on live mice and from 6.4 to 1.1 mmHg on euthanized mice. The oxygen gradients in the mouse scabs were similar to those observed for clinical isolates cultured in vitro and for human ex vivo specimens. To characterize the metabolic activities of the bacteria in the mouse scabs, transcriptomics analyses of Pseudomonas aeruginosa biofilms associated with the db/db mice wounds was performed. The results demonstrated that the bacteria expressed genes for metabolic activities associated with cell growth. Interestingly, the transcriptome results also indicated that the bacteria within the wounds experienced oxygen-limitation stress. Among the bacterial genes that were expressed in vivo were genes associated with the Anr-mediated hypoxia-stress response. Other bacterial stress response genes highly expressed in vivo were genes associated with stationary-phase growth, osmotic stress, and RpoH-mediated heat shock stress. Overall, the results supported the hypothesis that bacterial biofilms in chronic wounds promote chronicity by contributing to the maintenance of localized low oxygen tensions, through their metabolic activities and through their recruitment of cells that consume oxygen for host defensive processes. © 2016 by the Wound Healing Society.
Schulz, Volker; Guenther, Margarita; Gerlach, Gerald; Magda, Jules J.; Tathireddy, Prashant; Rieth, Loren; Solzbacher, Florian
2010-01-01
Environmental responsive or smart hydrogels show a volume phase transition due to changes of external stimuli such as pH or ionic strength of an ambient solution. Thus, they are able to convert reversibly chemical energy into mechanical energy and therefore they are suitable as sensitive material for integration in biochemical microsensors and MEMS devices. In this work, micro-fabricated silicon pressure sensor chips with integrated piezoresistors were used as transducers for the conversion of mechanical work into an appropriate electrical output signal due to the deflection of a thin silicon bending plate. Within this work two different sensor designs have been studied. The biocompatible poly(hydroxypropyl methacrylate-N,N-dimethylaminoethyl methacrylate-tetra-ethyleneglycol dimethacrylate) (HPMA-DMA-TEGDMA) was used as an environmental sensitive element in piezoresistive biochemical sensors. This polyelectrolytic hydrogel shows a very sharp volume phase transition at pH values below about 7.4 which is in the range of the physiological pH. The sensor's characteristic response was measured in-vitro for changes in pH of PBS buffer solution at fixed ionic strength. The experimental data was applied to the Hill equation and the sensor sensitivity as a function of pH was calculated out of it. The time-dependent sensor response was measured for small changes in pH, whereas different time constants have been observed. The same sensor principal was used for sensing of ionic strength. The time-dependent electrical sensor signal of both sensors was measured for variations in ionic strength at fixed pH value using PBS buffer solution. Both sensor types showed an asymmetric swelling behavior between the swelling and the deswelling cycle as well as different time constants, which was attributed to the different nature of mechanical hydrogel-confinement inside the sensor. PMID:21152365
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Garth A.; Ge Zhao, Alice; Usui, Marcia
Polymicrobial biofilms have been implicated in delayed wound healing, although the mechanisms by which biofilms impair wound healing are poorly understood. Many species of bacteria produce exotoxins and exoenzymes that may inhibit healing. In addition, oxygen consumption by biofilms may impede wound healing. In this study, we used oxygen microsensors to measure oxygen transects through in vitro-cultured biofilms, biofilms formed in vivo in a diabetic (db/db) mouse model, and ex vivo human chronic wound specimens. The results show that oxygen levels within both euthanized and live mouse wounds had steep gradients that reached minima ranging from 19 to 61% oxygenmore » partial pressure, compared to atmospheric oxygen levels. The oxygen gradients in the mouse wounds were similar to those observed for clinical isolates cultured in vitro and for human ex vivo scabs. No oxygen gradients were observed for heat-killed scabs, suggesting that active metabolism by the viable bacteria contributed to the reduced oxygen partial pressure of the wounds. To characterize the metabolic activities of the bacteria in the mouse wounds, we performed transcriptomics analyses of Pseudomonas aeruginosa biofilms associated with the db/db mice wounds using Affymetrix microarrays. The results demonstrated that the bacteria expressed genes for metabolic activities associated with cell growth. Interestingly, the transcriptome results indicated that the bacteria within the wounds also experienced oxygen-limitation stress. Among the bacterial genes that were expressed in vivo were genes associated with the Anr-mediated hypoxia-stress response. Other bacterial stress response genes highly expressed in vivo were genes associated with stationary-phase growth, osmotic stress, and RpoH-mediated heat shock stress. Overall, the results support the hypothesis that the metabolic activities of bacteria in biofilms act as oxygen sinks in chronic wounds and that the depletion of oxygen contributes to the detrimental impact of biofilms on wound healing.« less
Guimerà, Xavier; Dorado, Antonio David; Bonsfills, Anna; Gabriel, Gemma; Gabriel, David; Gamisans, Xavier
2016-10-01
Knowledge of mass transport mechanisms in biofilm-based technologies such as biofilters is essential to improve bioreactors performance by preventing mass transport limitation. External and internal mass transport in biofilms was characterized in heterotrophic biofilms grown on a flat plate bioreactor. Mass transport resistance through the liquid-biofilm interphase and diffusion within biofilms were quantified by in situ measurements using microsensors with a high spatial resolution (<50 μm). Experimental conditions were selected using a mathematical procedure based on the Fisher Information Matrix to increase the reliability of experimental data and minimize confidence intervals of estimated mass transport coefficients. The sensitivity of external and internal mass transport resistances to flow conditions within the range of typical fluid velocities over biofilms (Reynolds numbers between 0.5 and 7) was assessed. Estimated external mass transfer coefficients at different liquid phase flow velocities showed discrepancies with studies considering laminar conditions in the diffusive boundary layer near the liquid-biofilm interphase. The correlation of effective diffusivity with flow velocities showed that the heterogeneous structure of biofilms defines the transport mechanisms inside biofilms. Internal mass transport was driven by diffusion through cell clusters and aggregates at Re below 2.8. Conversely, mass transport was driven by advection within pores, voids and water channels at Re above 5.6. Between both flow velocities, mass transport occurred by a combination of advection and diffusion. Effective diffusivities estimated at different biofilm densities showed a linear increase of mass transport resistance due to a porosity decrease up to biofilm densities of 50 g VSS·L(-1). Mass transport was strongly limited at higher biofilm densities. Internal mass transport results were used to propose an empirical correlation to assess the effective diffusivity within biofilms considering the influence of hydrodynamics and biofilm density. Copyright © 2016 Elsevier Ltd. All rights reserved.
Processing of Nanosensors Using a Sacrificial Template Approach
NASA Technical Reports Server (NTRS)
Biaggi-Labiosa, Azlin M.; Hunter, Gary W.
2012-01-01
A new microsensor fabrication approach has been demonstrated based upon the use of nanostructures as templates. The fundamental idea is that existing nanostructures, such as carbon nano tubes or biological structures, have a material structure that can be used advantageously in order to provide new sensor systems but lack the advantages of some materials to, for example, operate at high temperatures. The approach is to start with a template using nanostructures such as a carbon nanotube. This template can then be coated by an oxide material with higher temperature capabilities. Upon heating in air, the carbon nanotube template is burned off, leaving only the metal oxide nanostructure. The resulting structure has a combination of the crystal structure and surface morphology of the carbon nanotube, combined with the material durability and hightemperature- sensing properties of the metal oxide. Further, since the metal oxide nanocrystals are deposited on the carbon nanotube, after burn-off what is left is a metal oxide porous nanostructure. This makes both the interior and the exterior of this nano structured sensor available for gas species detection. This, in effect, increases the surface area available for sensing, which has been shown in the past to significantly increase sensor performance.
Metabolic Prosthesis for Oxygenation of Ischemic Tissue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenbaum, Elias
2009-01-01
This communication discloses new ideas and preliminary results on the development of a "metabolic prosthesis" for local oxygenation of ischemic tissue under physiological neutral conditions. We report for the first time the selective electrolysis of physiological saline by repetitively pulsed charge-limited electrolysis for the production of oxygen and suppression of free chlorine. For example, using 800 A amplitude current pulses and <200 sec pulse durations, we demonstrated prompt oxygen production and delayed chlorine production at the surface of a shiny 0.85 mm diameter spherical platinum electrode. The data, interpreted in terms of the ionic structure of the electric double layer,more » suggest a strategy for in situ production of metabolic oxygen via a new class of "smart" prosthetic implants for dealing with ischemic disease such as diabetic retinopathy. We also present data indicating that drift of the local pH of the oxygenated environment can be held constant using a feedback-controlled three electrode electrolysis system that chooses anode and cathode pair based on pH data provided by local microsensors. The work is discussed in the context of diabetic retinopathy since surgical techniques for multielectrode prosthetic implants aimed at retinal degenerative diseases have been developed.« less
Why a mosquito leg possesses superior load-bearing capacity on water: Experimentals
NASA Astrophysics Data System (ADS)
Kong, Xiang-Qing; Liu, Jian-Lin; Wu, Cheng-Wei
2016-04-01
Mosquitoes possess the striking ability to walk on water because each of their legs has a huge water supporting force (WSF) that is 23 times their body weight. Aiming at a full understanding of the origins of this extremely large force, in this study, we concentrate on two aspects of it: the intrinsic properties of the leg surface and the active control of the initial stepping angle of the whole leg. Using a measurement system that we developed ourselves, the WSFs for the original leg samples are compared with those whose surface wax and microstructures have been removed and with those of a different stiffness. The results show that leg flexibility plays a dominant role over surface wax and microstructures on the leg surface in creating the supporting force. Moreover, we discuss the dependence relationship between the maximum WSF and the initial stepping angle, which indicates that the mosquito can regulate this angle to increase or decrease the WSF during landing or takeoff. These findings are helpful for uncovering the locomotion mechanism of aquatic insects and for providing inspiration for the design of microfluids, miniature boats, biomimetic robots, and microsensors.
NASA Astrophysics Data System (ADS)
Epting, William K.; Litster, Shawn
2016-02-01
Although polymer electrolyte fuel cells (PEFCs) offer promise as efficient, low emission power sources, the large amount of platinum catalyst used for the cathode's oxygen reduction (ORR) results in high costs. One approach to using less Pt is to increase the oxygen concentration at the catalyst by reducing the oxygen transport resistances. An important resistance is that of the diffusion media (DM). The DM are highly heterogeneous porous carbon fiber substrates with a graded composition of additives across their thickness. In this work we use an oxygen microsensor with a micro-positioning system to measure the oxygen concentration and presence of liquid water in the pores at discrete points across the thickness of a commercial carbon felt DM in operating PEFCs. Under conditions with no liquid water, the DM accounts for 60% of the oxygen depletion, with 60-70% of that depletion being due to the thin microporous layer (MPL) on the catalyst layer (CL) side. Using concentration gradient data, we quantify the non-uniform local transport resistance across the DM and relate it to high resolution 3D X-ray computed tomography of the same DM.
A General Self-Organized Tree-Based Energy-Balance Routing Protocol for Wireless Sensor Network
NASA Astrophysics Data System (ADS)
Han, Zhao; Wu, Jie; Zhang, Jie; Liu, Liefeng; Tian, Kaiyun
2014-04-01
Wireless sensor network (WSN) is a system composed of a large number of low-cost micro-sensors. This network is used to collect and send various kinds of messages to a base station (BS). WSN consists of low-cost nodes with limited battery power, and the battery replacement is not easy for WSN with thousands of physically embedded nodes, which means energy efficient routing protocol should be employed to offer a long-life work time. To achieve the aim, we need not only to minimize total energy consumption but also to balance WSN load. Researchers have proposed many protocols such as LEACH, HEED, PEGASIS, TBC and PEDAP. In this paper, we propose a General Self-Organized Tree-Based Energy-Balance routing protocol (GSTEB) which builds a routing tree using a process where, for each round, BS assigns a root node and broadcasts this selection to all sensor nodes. Subsequently, each node selects its parent by considering only itself and its neighbors' information, thus making GSTEB a dynamic protocol. Simulation results show that GSTEB has a better performance than other protocols in balancing energy consumption, thus prolonging the lifetime of WSN.
A Conductometric Indium Oxide Semiconducting Nanoparticle Enzymatic Biosensor Array
Lee, Dongjin; Ondrake, Janet; Cui, Tianhong
2011-01-01
We report a conductometric nanoparticle biosensor array to address the significant variation of electrical property in nanomaterial biosensors due to the random network nature of nanoparticle thin-film. Indium oxide and silica nanoparticles (SNP) are assembled selectively on the multi-site channel area of the resistors using layer-by-layer self-assembly. To demonstrate enzymatic biosensing capability, glucose oxidase is immobilized on the SNP layer for glucose detection. The packaged sensor chip onto a ceramic pin grid array is tested using syringe pump driven feed and multi-channel I–V measurement system. It is successfully demonstrated that glucose is detected in many different sensing sites within a chip, leading to concentration dependent currents. The sensitivity has been found to be dependent on the channel length of the resistor, 4–12 nA/mM for channel lengths of 5–20 μm, while the apparent Michaelis-Menten constant is 20 mM. By using sensor array, analytical data could be obtained with a single step of sample solution feeding. This work sheds light on the applicability of the developed nanoparticle microsensor array to multi-analyte sensors, novel bioassay platforms, and sensing components in a lab-on-a-chip. PMID:22163696
NASA Astrophysics Data System (ADS)
Arnhardt, Christian; Fernández-Steeger, Tomas; Azzam, Rafig
2010-05-01
Monitoring systems in landslide areas are important elements of effective Early Warning structures. Data acquisition and retrieval allows the detection of movement processes and thus is essential to generate warnings in time. Apart from the precise measurement, the reliability of data is fundamental, because outliers can trigger false alarms and leads to the loss of acceptance of such systems. For the monitoring of mass movements and their risk it is important to know, if there is movement, how fast it is and how trustworthy is the information. The joint project "Sensorbased landslide early warning system" (SLEWS) deals with these questions, and tries to improve data quality and to reduce false alarm rates, due to the combination of sensor date (sensor fusion). The project concentrates on the development of a prototypic Alarm- and Early Warning system (EWS) for different types of landslides by using various low-cost sensors, integrated in a wireless sensor network (WSN). The network consists of numerous connection points (nodes) that transfer data directly or over other nodes (Multi-Hop) in real-time to a data collection point (gateway). From there all the data packages are transmitted to a spatial data infrastructure (SDI) for further processing, analyzing and visualizing with respect to end-user specifications. The ad-hoc characteristic of the network allows the autonomous crosslinking of the nodes according to existing connections and communication strength. Due to the independent finding of new or more stable connections (self healing) a breakdown of the whole system is avoided. The bidirectional data stream enables the receiving of data from the network but also allows the transfer of commands and pointed requests into the WSN. For the detection of surface deformations in landslide areas small low-cost Micro-Electro-Mechanical-Systems (MEMS) and positionsensors from the automobile industries, different industrial applications and from other measurement technologies were chosen. The MEMS-Sensors are acceleration-, tilt- and barometric pressure sensors. The positionsensors are draw wire and linear displacement transducers. In first laboratory tests the accuracy and resolution were investigated. The tests showed good results for all sensors. For example tilt-movements can be monitored with an accuracy of +/- 0,06° and a resolution of 0,1°. With the displacement transducer change in length of >0,1mm is possible. Apart from laboratory tests, field tests in South France and Germany were done to prove data stability and movement detection under real conditions. The results obtained were very satisfying, too. In the next step the combination of numerous sensors (sensor fusion) of the same type (redundancy) or different types (complementary) was researched. Different experiments showed that there is a high concordance between identical sensor-types. According to different sensor parameters (sensitivity, accuracy, resolution) some sensor-types can identify changes earlier. Taking this into consideration, good correlations between different kinds of sensors were achieved, too. Thus the experiments showed that combination of sensors is possible and this could improve the detection of movement and movement rate but also outliers. Based on this results various algorithms were setup that include different statistical methods (outlier tests, testing of hypotheses) and procedures from decision theories (Hurwicz-criteria). These calculation formulas will be implemented in the spatial data infrastructure (SDI) for the further data processing and validation. In comparison with today existing mainly punctually working monitoring systems, the application of wireless sensor networks in combination with low-cost, but precise micro-sensors provides an inexpensive and easy to set up monitoring system also in large areas. The correlation of same but also different sensor-types permits a good data control. Thus the sensor fusion is a promising tool to detect movement more reliable and thus contributes essential to the improvement of Early Warning Systems.
NASA Astrophysics Data System (ADS)
Walpersdorf, E.; Werner, U.; Bird, P.; de Beer, D.
2003-04-01
We investigated the variability of O_2, pH, and H_2S in intertidal sediments to assess the time- and spatial scales of changes in environmental conditions and their effects on bacterial activities. Measurements were performed over the tidal cycle and at different seasons by the use of microsensors attached to an autonomous in-situ measuring device. This study was carried out at a sand- and a mixed flat in the backbarrier area of Spiekeroog (Germany) within the frame of the DFG research group "Biogeochemistry of the Wadden Sea". Results showed that O_2 variability was not pronounced in the coastal mixed flat, where only extreme weather conditions could increase O_2 penetration. In contrast, strong dynamics in O_2 availability, pH and maximum penetration depths of several cm were found at the sandflat. In these highly permeable sediments, we directly observed tidal pumping: at high tide O_2-rich water was forced into the plate and at low tide anoxic porewater drained off the sediment. From the lower part of the plate where organic rich clayey layers were embedded in the sediment anoxic water containing H_2S leaked out during low tide. Thus advective processes, driven by the tidal pump, waves and currents, control O_2 penetration and depth distribution of H_2S and pH. The effects of the resulting porewater exchange on mineralization rates and microbial activities will be discussed.
Heisterkamp, Ines M; Schramm, Andreas; Larsen, Lone H; Svenningsen, Nanna B; Lavik, Gaute; de Beer, Dirk; Stief, Peter
2013-07-01
Emission of the greenhouse gas nitrous oxide (N2 O) from freshwater and terrestrial invertebrates has exclusively been ascribed to N2 O production by ingested denitrifying bacteria in the anoxic gut of the animals. Our study of marine molluscs now shows that also microbial biofilms on shell surfaces are important sites of N2 O production. The shell biofilms of Mytilus edulis, Littorina littorea and Hinia reticulata contributed 18-94% to the total animal-associated N2 O emission. Nitrification and denitrification were equally important sources of N2 O in shell biofilms as revealed by (15) N-stable isotope experiments with dissected shells. Microsensor measurements confirmed that both nitrification and denitrification can occur in shell biofilms due to a heterogeneous oxygen distribution. Accordingly, ammonium, nitrite and nitrate were important drivers of N2 O production in the shell biofilm of the three mollusc species. Ammonium excretion by the animals was found to be sufficient to sustain N2 O production in the shell biofilm. Apparently, the animals provide a nutrient-enriched microenvironment that stimulates growth and N2 O production of the shell biofilm. This animal-induced stimulation was demonstrated in a long-term microcosm experiment with the snail H. reticulata, where shell biofilms exhibited the highest N2 O emission rates when the animal was still living inside the shell. © 2012 John Wiley & Sons Ltd and Society for Applied Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Robert Clark
2003-12-01
Present methods of air sampling for low concentrations of chemicals like explosives and bioagents involve noisy and power hungry collectors with mechanical parts for moving large volumes of air. However there are biological systems that are capable of detecting very low concentrations of molecules with no mechanical moving parts. An example is the silkworm moth antenna which is a highly branched structure where each of 100 branches contains about 200 sensory 'hairs' which have dimensions of 2 microns wide by 100 microns long. The hairs contain about 3000 pores which is where the gas phase molecules enter the aqueous (lymph)more » phase for detection. Simulations of diffusion of molecules indicate that this 'forest' of hairs is 'designed' to maximize the extraction of the vapor phase molecules. Since typical molecules lose about 4 decades in diffusion constant upon entering the liquid phase, it is important to allow air diffusion to bring the molecule as close to the 'sensor' as possible. The moth acts on concentrations as low as 1000 molecules per cubic cm. (one part in 1e16). A 3-D collection system of these dimensions could be fabricated by micromachining techniques available at Sandia. This LDRD addresses the issues involved with extracting molecules from air onto micromachined structures and then delivering those molecules to microsensors for detection.« less
Micromachined magnetohydrodynamic actuators and sensors
Lee, Abraham P.; Lemoff, Asuncion V.
2000-01-01
A magnetohydrodynamic (MHD) micropump and microsensor which utilizes micromachining to integrate the electrodes with microchannels and includes a magnet for producing magnetic fields perpendicular to both the electrical current direction and the fluid flow direction. The magnet can also be micromachined and integrated with the micropump using existing technology. The MHD micropump, for example, can generate continuous, reversible flow, with readily controllable flow rates. The flow can be reversed by either reversing the electrical current flow or reversing the magnetic field. By mismatching the electrodes, a swirling vortex flow can be generated for potential mixing applications. No moving parts are necessary and the dead volume is minimal. The micropumps can be placed at any position in a fluidic circuit and a combination of micropumps can generate fluidic plugs and valves.
NASA Technical Reports Server (NTRS)
1989-01-01
The M200 originated in the 1970's under an Ames Research Center/Stanford University contract to develop a small, lightweight gas analyzer for Viking Landers. Although the unit was not used on the spacecraft, it was further developed by The National Institute for Occupational Safety and Health (NIOSH). Three researchers from the project later formed Microsensor Technology, Inc. (MTI) to commercialize the analyzer. The original version (Micromonitor 500) was introduced in 1982, and the M200 in 1988. The M200, a more advanced version, features dual gas chromatograph which separate a gaseous mixture into components and measure concentrations of each gas. It is useful for monitoring gas leaks, chemical spills, etc. Many analyses are completed in less than 30 seconds, and a wide range of mixtures can be analyzed.
Deep-brain stimulator and control of Parkinson's disease
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.; Harbaugh, Robert; Abraham, Jose K.
2004-07-01
The design of a novel feedback sensor system with wireless implantable polymer MEMS sensors for detecting and wirelessly transmitting physiological data that can be used for the diagnosis and treatment of various neurological disorders, such as Parkinson's disease, epilepsy, head injury, stroke, hydrocephalus, changes in pressure, patient movements, and tremors is presented in this paper. The sensor system includes MEMS gyroscopes, accelerometers, and pressure sensors. This feedback sensor system focuses on the development and integration of implantable systems with various wireless sensors for medical applications, particularly for the Parkinson's disease. It is easy to integrate and modify the sensor network feed back system for other neurological disorders mentioned above. The monitoring and control of tremor in Parkinson's disease can be simulated on a skeleton via wireless telemetry system communicating with electroactive polymer actuator, and microsensors attached to the skeleton hand and legs. Upon sensing any abnormal motor activity which represent the characteristic rhythmic motion of a typical Parkinson's (PD) patient, these sensors will generate necessary control pulses which will be transmitted to a hat sensor system on the skeleton head. Tiny inductively coupled antennas attached to the hat sensor system can receive these control pulses, demodulate and deliver it to actuate the parts of the skeleton to control the abnormal motor activity. This feedback sensor system can further monitor and control depending on the amplitude of the abnormal motor activity. This microsystem offers cost effective means of monitoring and controlling of neurological disorders in real PD patients. Also, this network system offers a remote monitoring of the patients conditions without visiting doctors office or hospitals. The data can be monitored using PDA and can be accessed using internet (or cell phone). Cellular phone technology will allow a health care worker to be automatically notified if monitoring indicates an emergency situation. The main advantage of such system is that it can effectively monitor large number of patients at the same time, which helps to compensate the present shortage of health care workers.
Koren, Klaus; Brodersen, Kasper E; Jakobsen, Sofie L; Kühl, Michael
2015-02-17
Seagrass communities provide important ecosystems services in coastal environments but are threatened by anthropogenic impacts. Especially the ability of seagrasses to aerate their below-ground tissue and immediate rhizosphere to prevent sulfide intrusion from the surrounding sediment is critical for their resilience to environmental disturbance. There is a need for chemical techniques that can map the O2 distribution and dynamics in the seagrass rhizosphere upon environmental changes and thereby identify critical stress thresholds of e.g. water flow, turbidity, and O2 conditions in the water phase. In a novel experimental approach, we incorporated optical O2 sensor nanoparticles into a transparent artificial sediment matrix consisting of pH-buffered deoxygenated sulfidic agar. Seagrass growth and photosynthesis was not inhibited in the experimental setup when the below-ground biomass was immobilized in the artificial sulfidic sediment with nanoparticles and showed root growth rates (∼ 5 mm day(-1)) and photosynthetic quantum yields (∼ 0.7) comparable to healthy seagrasses in their natural habitat. We mapped the real-time below ground O2 distribution and dynamics in the whole seagrass rhizosphere during experimental manipulation of light exposure and O2 content in the overlaying water. Those manipulations showed that oxygen release from the belowground tissue is much higher in light as compared to darkness and that water column hypoxia leads to diminished oxygen levels around the rhizome/roots. Oxygen release was visualized and analyzed on a whole rhizosphere level, which is a substantial improvement to existing methods relying on point measurements with O2 microsensors or partial mapping of the rhizosphere in close contact with a planar O2 optode. The combined use of optical nanoparticle-based sensors with artificial sediments enables imaging of chemical microenvironments in the rhizosphere of aquatic plants at high spatiotemporal resolution with a relatively simple experimental setup and thus represents a significant methodological advancement for studies of environmental impacts on aquatic plant ecophysiology.
Keppel, Gunnar; Anderson, Sharolyn; Williams, Craig; Kleindorfer, Sonia; O'Connell, Christopher
2017-01-01
Extreme heat events will become more frequent under anthropogenic climate change, especially in Mediterranean ecosystems. Microhabitats can considerably moderate (buffer) the effects of extreme weather events and hence facilitate the persistence of some components of the biodiversity. We investigate the microclimatic moderation provided by two important microhabitats (cavities formed by the leaves of the grass-tree Xanthorrhoea semiplana F.Muell., Xanthorrhoeaceae; and inside the leaf-litter) during the summer of 2015/16 on the Fleurieu Peninsula of South Australia. We placed microsensors inside and outside these microhabitats, as well as above the ground below the forest canopy. Grass-tree and leaf-litter microhabitats significantly buffered against high temperatures and low relative humidity, compared to ground-below-canopy sensors. There was no significant difference between grass-tree and leaf-litter temperatures: in both microhabitats, daily temperature variation was reduced, day temperatures were 1-5°C cooler, night temperatures were 0.5-3°C warmer, and maximum temperatures were up to 14.4°C lower, compared to ground-below-canopy sensors. Grass-tree and leaf-litter microhabitats moderated heat increase at an average rate of 0.24°C temperature per 1°C increase of ambient temperature in the ground-below-canopy microhabitat. The average daily variation in temperature was determined by the type (grass-tree and leaf-litter versus ground-below-canopy) of microhabitat (explaining 67%), the amount of canopy cover and the area of the vegetation fragment (together explaining almost 10% of the variation). Greater canopy cover increased the amount of microclimatic moderation provided, especially in the leaf-litter. Our study highlights the importance of microhabitats in moderating macroclimatic conditions. However, this moderating effect is currently not considered in species distribution modelling under anthropogenic climate change nor in the management of vegetation. This shortcoming will have to be addressed to obtain realistic forecasts of future species distributions and to achieve effective management of biodiversity.
The Fate of Colloidal Swarms in Fractures
NASA Astrophysics Data System (ADS)
Pyrak-Nolte, L. J.; Olander, M. K.
2009-12-01
In the next 10-20 years, nano- and micro-sensor engineering will advance to the stage where sensor swarms could be deployed in the subsurface to probe rock formations and the fluids contained in them. Sensor swarms are groups of nano- or micro- sensors that are maintained as a coherent group to enable either sensor-to-sensor communication and/or coherent transmission of information as a group. The ability to maintain a swarm of sensors depends on the complexity of the flow paths in the rock, on the size and shape of the sensors and on the chemical interaction among the sensors, fluids, and rock surfaces. In this study, we investigate the effect of fracture aperture and fluid currents on the formation, evolution and break-up of colloidal swarms under gravity. Transparent cubic samples (100 mm x 100 mm x 100 mm) containing synthetic fractures with uniform and non-uniform aperture distributions were used to quantify the effect of aperture on swarm formation, swarm velocity, and swarm geometry using optical imaging. A fracture with a uniform aperture distribution was fabricated from two polished rectangular prisms of acrylic. A fracture with a non-uniform aperture distribution was created with a polished rectangular acrylic prism and an acrylic replica of an induced fracture surface from a carbonate rock. A series of experiments were performed to determine how swarm movement and geometry are affected as the walls of the fracture are brought closer together from 50 mm to 1 mm. During the experiments, the fracture was fully saturated with water. We created the swarms using two different particle sizes in dilute suspension (~ 1.0% by mass) . The particles were 3 micron diameter fluorescent polymer beads and 25 micron diameter soda-lime glass beads. The swarm behavior was imaged using an optical fluorescent imaging system composed of a CCD camera illuminated by a 100 mW diode-pumped doubled YAG laser. A swam was created when approximately 0.01 g drop of the suspension was released under gravity into the water. The swarm density is slightly greater than water and falls faster than the terminal velocity of an individual particle in water. The cohesiveness of the swarm was maintained over 50 mm to 95 mm even in the presence of fluid currents. The swarm velocity decreased with decreasing fracture aperture. When the apertures are small, swarms break-up and reform as they pass through a variable aperture fracture. Acknowledgment: The authors wish to acknowledge support of this work by the Geosciences Research Program, Office of Basic Energy Sciences US Department of Energy (DE-FG02-09ER16022) and the Summer Undergraduate Research Fellowship program at Purdue University.
Reitinger, Stephan; Wissenwasser, Jürgen; Kapferer, Werner; Heer, Rudolf; Lepperdinger, Günter
2012-04-15
Biosensor systems which enable impedance measurements on adherent cell layers under label-free conditions are considered powerful tools for monitoring specific biological characteristics. A radio frequency identification-based sensor platform was adopted to characterize cultivation and differentiation of human bone marrow-derived multipotent stem cells (bmMSC) over periods of up to several days and weeks. Electric cell-substrate impedance sensing was achieved through fabrication of sensitive elements onto glass substrates which comprised two comb-shaped interdigitated gold electrodes covering an area of 1.8 mm×2 mm. The sensing systems were placed into the wells of a 6-well tissue culture plate, stacked onto a reader unit and could thus be handled and operated under sterile conditions. Continuous measurements were carried out with a sinusoidal voltage of 35 mV at a frequency of 10 kHz. After seeding of human bmMSC, this sensor was able to trace significant impedance changes contingent upon cell spreading and adhesion. The re-usable system was further proven suitable for live examination of cell-substrate attachment or continuous cell monitoring up to several weeks. Induction of either osteogenic or adipogenic differentiation could be validated in bmMSC cultures within a few days, in contrast to state-of-the-art protocols, which require several weeks of cultivation time. In the context of medical cell production in a GMP-compliant process, the here presented interdigitated electric microsensor technology allows the documentation of MSC quality in a fast, efficient and reliable fashion. Copyright © 2012 Elsevier B.V. All rights reserved.
Neuroprotection trek--the next generation: the measurement is the message.
Andrews, Russell J
2005-08-01
Animal trials of many pharmacological neuroprotective agents have been quite successful, whereas trials in humans have been uniformly disappointing. A major difference between laboratory research in animals and clinical research in humans is the amount and/or quality of data obtained. The goal of this presentation is to argue that when clinical studies consist of more valid, objective data--that is, as our measurement capabilities in clinical research become as robust as they are in laboratory research--we are likely to gain new insights into both (1) injury to the nervous system and (2) neuroprotective treatment strategies. Technological advances (in data acquisition and analysis)--often novel even in the laboratory--will be the "scale" that will enable progress in measurement. As examples of such technological advances, two projects initiated at NASA Ames Research Center are cited. The NASA Smart Probe Project, with the goal of combining multiple microsensors and neural networks for real-time tissue identification (e.g., for tumor detection), has recently moved into the clinical realm, with a prototype being used to diagnose breast cancer in women "on the spot". The NASA Nanoelectrode Array Project has fabricated nanoscale devices that can simultaneously monitor electrical activity and neurotransmitter concentrations, while providing electrical stimulation focally and precisely (and potentially in a closed-loop fashion based on the input from the nanosensors). The large amounts of data that such techniques can acquire and analyze--separated spatially and temporally throughout the nervous system, if necessary--will provide insights not only into neuroprotective strategies, but also into the workings of the nervous system itself.
Surface enhanced Raman gene probe and methods thereof
Vo-Dinh, T.
1998-09-29
The subject invention disclosed herein is a new gene probe biosensor and methods based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed thereon. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means supporting the SERS active substrate includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays. 18 figs.
Surface enhanced Raman gene probe and methods thereof
Vo-Dinh, Tuan
1998-01-01
The subject invention disclosed herein is a new gene probe biosensor and methods thereof based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed thereon. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means supporting the SERS active substrate includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays.
Surface enhanced Raman gene probe and methods thereof
Vo-Dinh, T.
1998-02-24
The subject invention disclosed is a new gene probe biosensor and methods based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed thereon. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays. 18 figs.
Optofluidic Approaches for Enhanced Microsensor Performances
Testa, Genni; Persichetti, Gianluca; Bernini, Romeo
2015-01-01
Optofluidics is a relatively young research field able to create a tight synergy between optics and micro/nano-fluidics. The high level of integration between fluidic and optical elements achievable by means of optofluidic approaches makes it possible to realize an innovative class of sensors, which have been demonstrated to have an improved sensitivity, adaptability and compactness. Many developments in this field have been made in the last years thanks to the availability of a new class of low cost materials and new technologies. This review describes the Italian state of art on optofluidic devices for sensing applications and offers a perspective for further future advances. We introduce the optofluidic concept and describe the advantages of merging photonic and fluidic elements, focusing on sensor developments for both environmental and biomedical monitoring. PMID:25558989
Heat flux microsensor measurements and calibrations
NASA Technical Reports Server (NTRS)
Terrell, James P.; Hager, Jon M.; Onishi, Shinzo; Diller, Thomas E.
1992-01-01
A new thin-film heat flux gage has been fabricated specifically for severe high temperature operation using platinum and platinum-10 percent rhodium for the thermocouple elements. Radiation calibrations of this gage were performed at the AEDC facility over the available heat flux range (approx. 1.0 - 1,000 W/cu cm). The gage output was linear with heat flux with a slight increase in sensitivity with increasing surface temperature. Survivability of gages was demonstrated in quench tests from 500 C into liquid nitrogen. Successful operation of gages to surface temperatures of 750 C has been achieved. No additional cooling of the gages is required because the gages are always at the same temperature as the substrate material. A video of oxyacetylene flame tests with real-time heat flux and temperature output is available.
Surface enhanced Raman gene probe and methods thereof
Vo-Dinh, T.
1998-07-21
The subject invention disclosed is a new gene probe biosensor and methods based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means supporting the SERS active substrate includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays. 18 figs.
Wachter, Eric A.; Thundat, Thomas G.
1995-01-01
A mass microsensor is fabricated with a microcantilever oscillated by a piezoelectric transducer. A chemical coating having absorptive or adsorptive affinity for a specifically targeted chemical or compound is applied to the microcantilever for oscillation in the monitored atmosphere. Molecules of the targeted chemical attach to the microcantilever coating resulting in an oscillating mass increase which influences the resonant frequency of the microcantilever oscillation. The rate at which the coated microcantilever accumulates the target chemical is functional of the target chemical concentration. Consequently, the extent of microcantilever oscillation frequency change is related to the concentration of the target chemical within the monitored atmosphere. Such oscillation frequency changes are detected by a center-crossing photodiode which responds to a laser diode beam reflected from the microcantilever surface resulting in an output frequency from the photodiode that is synchronous with the microcantilever frequency.
Microsensors and wireless system for monitoring epilepsy
NASA Astrophysics Data System (ADS)
Whitchurch, Ashwin K.; Ashok, B. H.; Kumaar, Raman V.; Sarukesi, K.; Jose, K. A.; Varadan, Vijay K.
2003-07-01
Epilepsy is a form of brain disorder caused by abnormal discharges of neurons. The most common manifestations of epilepsy are seizures which could affect visual, aural and motor abilities of a person. Absence epilepsy is a form of epilepsy common mostly in children. The most common manifestations of absence epilepsy are staring and transient loss of responsiveness. Also, subtle motor activities may occur. Due to the subtle nature of these symptoms, episodes of absence epilepsy may often go unrecognized for long periods of time or be mistakenly attributed to attention deficit disorder or daydreaming. Spells of absence epilepsy may last about 10 seconds and occur hundreds of times each day. Patients have no recollections of the events occurred during those seizures and will resume normal activity without any postictal symptoms. The EEG during such episodes of Absence epilepsy shows intermittent activity of 3 Hz generalized spike and wave complexes. As EEG is the only way of detecting such symptoms, it is required to monitor the EEG of the patient for a long time, usually the whole day. This requires that the patient be connected to the EEG recorder all the time and thus remain only in the bed. So, effectively the EEG is being monitored only when the patient is stationary. The wireless monitoring system described in this paper aims at eliminating this constraint and enables the physician to monitor the EEG when the patient resumes his normal activities. This approach could even help the doctor identify possible triggers of absence epilepsy.
Chemicapacitive microsensors for detection of explosives and TICs
NASA Astrophysics Data System (ADS)
Patel, Sanjay V.; Hobson, Stephen T.; Cemalovic, Sabina; Mlsna, Todd E.
2005-10-01
Seacoast Science develops chemical sensors that use polymer-coated micromachined capacitors to measure the dielectric permittivity of an array of selectively absorbing materials. We present recent results demonstrating the sensor technology's capability to detect components in explosives and toxic industrial chemicals. These target chemicals are detected with functionalized polymers or network materials, chosen for their ability to adsorb chemicals. When exposed to vapors or gases, the permittivity of these sorbent materials changes depending on the strength of the vapor-sorbent interaction. Sensor arrays made of ten microcapacitors on a single chip have been previously shown to detect vapors of organic compounds (chemical warfare agents, industrial solvents, fuels) and inorganic gases (SO2, CO2, NO2). Two silicon microcapacitor structures were used, one with parallel electrode plates and the other with interdigitated "finger-like" electrodes. The parallel-plates were approximately 300 μm wide and separated by 750 nm. The interdigitated electrodes were approximately 400 μm long and were elevated above the substrate to provide faster vapor access. Eight to sixteen of these capacitors are fabricated on chips that are 5 x 2 mm and are packaged in less than 50 cm3 with supporting electronics and batteries, all weighing less than 500 grams. The capacitors can be individually coated with different materials creating a small electronic nose that produces different selectivity patterns in response to different chemicals. The resulting system's compact size, low-power consumption and low manufacturing costs make the technology ideal for integration into various systems for numerous applications.
Scalable fabrication of carbon-based MEMS/NEMS and their applications: a review
NASA Astrophysics Data System (ADS)
Jiang, Shulan; Shi, Tielin; Zhan, Xiaobin; Xi, Shuang; Long, Hu; Gong, Bo; Li, Junjie; Cheng, Siyi; Huang, Yuanyuan; Tang, Zirong
2015-11-01
The carbon-based micro/nano electromechanical system (MEMS/NEMS) technique provides a powerful approach to large-scale manufacture of high-aspect-ratio carbon structures for wafer-level processing. The fabricated three-dimensional (3D) carbon structures have the advantages of excellent electrical and electrochemical properties, and superior biocompatibility. In order to improve their performance for applications in micro energy storage devices and microsensors, an increase in the footprint surface area is of great importance. Various approaches have been proposed for fabricating large surface area carbon-based structures, including the integration of nanostructures such as carbon nanotubes (CNTs), graphene, nanowires, nanofilms and nanowrinkles onto 3D structures, which has been proved to be effective and productive. Moreover, by etching the 3D photoresist microstructures through oxygen plasma or modifying the photoresist with specific materials which can be etched in the following pyrolysis process, micro/nano hierarchical carbon structures have been fabricated. These improved structures show excellent performance in various applications, especially in the fields of biological sensors, surface-enhanced Raman scattering, and energy storage devices such as micro-supercapacitors and fuel cells. With the rapid development of microelectronic devices, the carbon-based MEMS/NEMS technique could make more aggressive moves into microelectronics, sensors, miniaturized power systems, etc. In this review, the recent advances in the fabrication of micro/nano hierarchical carbon-based structures are introduced and the technical challenges and future outlook of the carbon-based MEMS/NEMS techniques are also analyzed.
Hierarchical information fusion for global displacement estimation in microsensor motion capture.
Meng, Xiaoli; Zhang, Zhi-Qiang; Wu, Jian-Kang; Wong, Wai-Choong
2013-07-01
This paper presents a novel hierarchical information fusion algorithm to obtain human global displacement for different gait patterns, including walking, running, and hopping based on seven body-worn inertial and magnetic measurement units. In the first-level sensor fusion, the orientation for each segment is achieved by a complementary Kalman filter (CKF) which compensates for the orientation error of the inertial navigation system solution through its error state vector. For each foot segment, the displacement is also estimated by the CKF, and zero velocity update is included for the drift reduction in foot displacement estimation. Based on the segment orientations and left/right foot locations, two global displacement estimates can be acquired from left/right lower limb separately using a linked biomechanical model. In the second-level geometric fusion, another Kalman filter is deployed to compensate for the difference between the two estimates from the sensor fusion and get more accurate overall global displacement estimation. The updated global displacement will be transmitted to left/right foot based on the human lower biomechanical model to restrict the drifts in both feet displacements. The experimental results have shown that our proposed method can accurately estimate human locomotion for the three different gait patterns with regard to the optical motion tracker.
Micro-Electromechanical Affinity Sensor for the Monitoring of Glucose in Bioprocess Media
Theuer, Lorenz; Lehmann, Micha; Junne, Stefan; Neubauer, Peter; Birkholz, Mario
2017-01-01
An affinity-viscometry-based micro-sensor probe for continuous glucose monitoring was investigated with respect to its suitability for bioprocesses. The sensor operates with glucose and dextran competing as binding partner for concanavalin A, while the viscosity of the assay scales with glucose concentration. Changes in viscosity are determined with a micro-electromechanical system (MEMS) in the measurement cavity of the sensor probe. The study aimed to elucidate the interactions between the assay and a typical phosphate buffered bacterial cultivation medium. It turned out that contact with the medium resulted in a significant long-lasting drift of the assay’s viscosity at zero glucose concentration. Adding glucose to the medium lowers the drift by a factor of eight. The cglc values measured off-line with the glucose sensor for monitoring of a bacterial cultivation were similar to the measurements with an enzymatic assay with a difference of less than ±0.15 g·L−1. We propose that lectin agglomeration, the electro-viscous effect, and constitutional changes of concanavalin A due to exchanges of the incorporated metal ions may account for the observed viscosity increase. The study has demonstrated the potential of the MEMS sensor to determine sensitive viscosity changes within very small sample volumes, which could be of interest for various biotechnological applications. PMID:28594350
Carbon Nanotube Thread Electrochemical Cell: Detection of Heavy Metals.
Zhao, Daoli; Siebold, David; Alvarez, Noe T; Shanov, Vesselin N; Heineman, William R
2017-09-19
In this work, all three electrodes in an electrochemical cell were fabricated based on carbon nanotube (CNT) thread. CNT thread partially insulated with a thin polystyrene coating to define the microelectrode area was used as the working electrode; bare CNT thread was used as the auxiliary electrode; and a micro quasi-reference electrode was fabricated by electroplating CNT thread with Ag and then anodizing it in chloride solution to form a layer of AgCl. The Ag|AgCl coated CNT thread electrode provided a stable potential comparable to the conventional liquid-junction type Ag|AgCl reference electrode. The CNT thread auxiliary electrode provided a stable current, which is comparable to a Pt wire auxiliary electrode. This all-CNT thread three electrode cell has been evaluated as a microsensor for the simultaneous determination of trace levels of heavy metal ions by anodic stripping voltammetry (ASV). Hg 2+ , Cu 2+ , and Pb 2+ were used as a representative system for this study. The calculated detection limits (based on the 3σ method) with a 120 s deposition time are 1.05, 0.53, and 0.57 nM for Hg 2+ , Cu 2+ , and Pb 2+ , respectively. These electrodes significantly reduce the dimensions of the conventional three electrode electrochemical cell to the microscale.
NASA Astrophysics Data System (ADS)
Kopsaftopoulos, Fotis; Nardari, Raphael; Li, Yu-Hung; Chang, Fu-Kuo
2018-01-01
In this work, a novel data-based stochastic "global" identification framework is introduced for aerospace structures operating under varying flight states and uncertainty. In this context, the term "global" refers to the identification of a model that is capable of representing the structure under any admissible flight state based on data recorded from a sample of these states. The proposed framework is based on stochastic time-series models for representing the structural dynamics and aeroelastic response under multiple flight states, with each state characterized by several variables, such as the airspeed, angle of attack, altitude and temperature, forming a flight state vector. The method's cornerstone lies in the new class of Vector-dependent Functionally Pooled (VFP) models which allow the explicit analytical inclusion of the flight state vector into the model parameters and, hence, system dynamics. This is achieved via the use of functional data pooling techniques for optimally treating - as a single entity - the data records corresponding to the various flight states. In this proof-of-concept study the flight state vector is defined by two variables, namely the airspeed and angle of attack of the vehicle. The experimental evaluation and assessment is based on a prototype bio-inspired self-sensing composite wing that is subjected to a series of wind tunnel experiments under multiple flight states. Distributed micro-sensors in the form of stretchable sensor networks are embedded in the composite layup of the wing in order to provide the sensing capabilities. Experimental data collected from piezoelectric sensors are employed for the identification of a stochastic global VFP model via appropriate parameter estimation and model structure selection methods. The estimated VFP model parameters constitute two-dimensional functions of the flight state vector defined by the airspeed and angle of attack. The identified model is able to successfully represent the wing's aeroelastic response under the admissible flight states via a minimum number of estimated parameters compared to standard identification approaches. The obtained results demonstrate the high accuracy and effectiveness of the proposed global identification framework, thus constituting a first step towards the next generation of "fly-by-feel" aerospace vehicles with state awareness capabilities.
Ha, Yejin; Myung, Dongshin; Shim, Jun Ho; Kim, Myung Hwa; Lee, Youngmi
2013-09-21
In this study, a dual microsensing electrochemical probe for measuring oxygen (O2) and pH levels was developed based on a dual recessed Pt disk electrode (each disk diameter, 10 μm) with the use of two Ag/AgCl reference electrodes (one for each disk of the dual electrode). One of the recessed Pt disks of the dual electrode was electrodeposited with a porous Pt layer and then coated with a hydrophobic photocured polymer (partially fluorinated epoxy diacrylate, abbreviated as FED). The Pt-FED covered disk was used as an amperometric O2 sensor and exhibited a linear current increase that was proportional to the PO2 level (partial O2 pressure) with high sensitivity (168.4 ± 33.8 pA mmHg(-1)) and fast response time (t90% = 0.17 ± 0.05 s). The other recessed Pt disk was electrodeposited with an IrO2 layer. The potential between the IrO2 deposited electrode and the Ag/AgCl reference electrode produced a reliable Nernstian response to pH changes (58.3 ± 1.5 mV pH(-1)) with a t90% of 0.43 ± 0.09 s. The sensor displayed high stability in the in vitro organ tissue measurements for at least 2.5 h. By using the developed dual O2/pH microsensor as a probe tip for scanning electrochemical microscopy, the two-dimensional images of the location-dependent PO2 and pH levels were simultaneously acquired and could be used to assess the surface of a rat kidney tissue slice. When compared to the corresponding medullary levels, both PO2 and pH were observed to be higher in the cortex area, while the modest level gradient was observed near the cortex-medulla border. This finding suggests that there is a direct relationship between the tissue O2 supply/consumption and pH, which is mainly determined by metabolite, such as CO2, production.
NASA Astrophysics Data System (ADS)
Dalola, Simone; Ferrari, Vittorio; Marioli, Daniele
2012-03-01
In this paper a dual-chip system for inclination measurement is presented. It consists of a MEMS (microelectromechanical system) piezoresistive accelerometer manufactured in silicon bulk micromachining and a CMOS (complementary metal oxide semiconductor) ASIC (application specific integrated circuit) interface designed for resistive-bridge sensors. The sensor is composed of a seismic mass symmetrically suspended by means of four flexure beams that integrate two piezoresistors each to detect the applied static acceleration, which is related to inclination with respect to the gravity vector. The ASIC interface is based on a relaxation oscillator where the frequency and the duty cycle of a rectangular-wave output signal are related to the fractional bridge imbalance and the overall bridge resistance of the sensor, respectively. The latter is a function of temperature; therefore the sensing element itself can be advantageously used to derive information for its own thermal compensation. DC current excitation of the sensor makes the configuration unaffected by wire resistances and parasitic capacitances. Therefore, a modular system results where the sensor can be placed remotely from the electronics without suffering accuracy degradation. The inclination measurement system has been characterized as a function of the applied inclination angle at different temperatures. At room temperature, the experimental sensitivity of the system results in about 148 Hz/g, which corresponds to an angular sensitivity around zero inclination angle of about 2.58 Hz deg-1. This is in agreement with finite element method simulations. The measured output fluctuations at constant temperature determine an equivalent resolution of about 0.1° at midrange. In the temperature range of 25-65 °C the system sensitivity decreases by about 10%, which is less than the variation due to the microsensor alone thanks to thermal compensation provided by the current excitation of the bridge and the positive temperature coefficient of resistance of the piezoresistors.
Microelectromechanical dual-mass resonator structure
Dyck, Christopher W.; Allen, James J.; Huber, Robert J.
2002-01-01
A dual-mass microelectromechanical (MEM) resonator structure is disclosed in which a first mass is suspended above a substrate and driven to move along a linear or curved path by a parallel-plate electrostatic actuator. A second mass, which is also suspended and coupled to the first mass by a plurality of springs is driven by motion of the first mass. Various modes of operation of the MEM structure are possible, including resonant and antiresonant modes, and a contacting mode. In each mode of operation, the motion induced in the second mass can be in the range of several microns up to more than 50 .mu.m while the first mass has a much smaller displacement on the order of one micron or less. The MEM structure has applications for forming microsensors that detect strain, acceleration, rotation or movement.
MEMS sensing and control: an aerospace perspective
NASA Astrophysics Data System (ADS)
Schoess, Jeffrey N.; Arch, David K.; Yang, Wei; Cabuz, Cleopatra; Hocker, Ben; Johnson, Burgess R.; Wilson, Mark L.
2000-06-01
Future advanced fixed- and rotary-wing aircraft, launch vehicles, and spacecraft will incorporate smart microsensors to monitor flight integrity and provide flight control inputs. This paper provides an overview of Honeywell's MEMS technologies for aerospace applications of sensing and control. A unique second-generation polysilicon resonant microbeam sensor design is described. It incorporates a micron-level vacuum-encapsulated microbeam to optically sense aerodynamic parameters and to optically excite the sensor pick off: optically excited self-resonant microbeams form the basis for a new class of versatile, high- performance, low-cost MEMS sensors that uniquely combine silicon microfabrication technology with optoelectronic technology that can sense dynamic pressure, acceleration forces, acoustic emission, and many other aerospace parameters of interest. Honeywell's recent work in MEMS tuning fork gyros for inertial sensing and a MEMS free- piston engine are also described.
A Quad-Cantilevered Plate micro-sensor for intracranial pressure measurement.
Lalkov, Vasko; Qasaimeh, Mohammad A
2017-07-01
This paper proposes a new design for pressure-sensing micro-plate platform to bring higher sensitivity to a pressure sensor based on piezoresistive MEMS sensing mechanism. The proposed design is composed of a suspended plate having four stepped cantilever beams connected to its corners, and thus defined as Quad-Cantilevered Plate (QCP). Finite element analysis was performed to determine the optimal design for sensitivity and structural stability under a range of applied forces. Furthermore, a piezoresistive analysis was performed to calculate sensor sensitivity. Both the maximum stress and the change in resistance of the piezoresistor associated with the QCP were found to be higher compared to previously published designs, and linearly related to the applied pressure as desired. Therefore, the QCP demonstrates greater sensitivity, and could be potentially used as an efficient pressure sensor for intracranial pressure measurement.
A comparative study of wireless sensor networks and their routing protocols.
Bhattacharyya, Debnath; Kim, Tai-hoon; Pal, Subhajit
2010-01-01
Recent developments in the area of micro-sensor devices have accelerated advances in the sensor networks field leading to many new protocols specifically designed for wireless sensor networks (WSNs). Wireless sensor networks with hundreds to thousands of sensor nodes can gather information from an unattended location and transmit the gathered data to a particular user, depending on the application. These sensor nodes have some constraints due to their limited energy, storage capacity and computing power. Data are routed from one node to other using different routing protocols. There are a number of routing protocols for wireless sensor networks. In this review article, we discuss the architecture of wireless sensor networks. Further, we categorize the routing protocols according to some key factors and summarize their mode of operation. Finally, we provide a comparative study on these various protocols.
Electro-Immobilization of Acetylcholinesterase Using Polydopamine for Carbaryl Microsensor
NASA Astrophysics Data System (ADS)
Ha, Trung B.; Le, Huyen T.; Cao, Ha H.; Binh, Nguyen Thanh; Nguyen, Huy L.; Dang, Le Hai; Do, Quan P.; Nguyen, Dzung T.; Lam, Tran Dai; Nguyen, Vân-Anh
2018-02-01
A simple and sensitive electrochemical acetylcholinesterase (AChE) biosensor for determination of carbaryl, one of the most commonly used carbamate pesticides, is described. The AChE enzyme was successfully entrapped by a polydopamine-graphene composite on polypyrrole nanowires that modified interdigitated planar platinum-film microelectrodes . The influence of different parameters on the operation of the biosensor was also studied. The selected parameters for the biosensor performance in detecting carbaryl were as follows: applied potential + 0.7 V, pH 7.4 at 25°C. The inhibition of carbaryl was proportional to its concentrations ranging from 0.05 to 1.5 μg/mL with the detection limit of 0.008 μg/mL using chronoamperometry. This study provides a promising approach in fabrication of sensitive biosensors for the analysis of carbamate pesticides as well as other hazardous compounds.
Chang, Chih-Yuan
2017-05-08
Incidents of injuries caused by tiles falling from building exterior walls are frequently reported in Taiwan. Humidity is an influential factor in tile deterioration but it is more difficult to measure the humidity inside a building structure than the humidity in an indoor environment. Therefore, a separable microsensor was developed in this study to measure the humidity of the cement mortar layer with a thickness of 1.5-2 cm inside the external wall of a building. 3D printing technology is used to produce an encapsulation box that can protect the sensor from damage caused by the concrete and cement mortar. The sensor is proven in this study to be capable of measuring temperature and humidity simultaneously and the measurement results are then used to analyze the influence of humidity on external wall tile deterioration.
Li, Guanglei; Wang, Junbo; Chen, Deyong; Chen, Lianhong; Xu, Chao
2017-01-01
Electrochemical seismic sensors are key components in monitoring ground vibration, which are featured with high performances in the low-frequency domain. However, conventional electrochemical seismic sensors suffer from low repeatability due to limitations in fabrication and limited bandwidth. This paper presents a micro-fabricated electrochemical seismic sensor with a force-balanced negative feedback system, mainly composed of a sensing unit including porous sensing micro electrodes immersed in an electrolyte solution and a feedback unit including a feedback circuit and a feedback magnet. In this study, devices were designed, fabricated, and characterized, producing comparable performances among individual devices. In addition, bandwidths and total harmonic distortions of the proposed devices with and without a negative feedback system were quantified and compared as 0.005–20 (feedback) Hz vs. 0.3–7 Hz (without feedback), 4.34 ± 0.38% (without feedback) vs. 1.81 ± 0.31% (feedback)@1 Hz@1 mm/s and 3.21 ± 0.25% (without feedback) vs. 1.13 ± 0.19% (feedback)@5 Hz@1 mm/s (ndevice = 6, n represents the number of the tested devices), respectively. In addition, the performances of the proposed MEMS electrochemical seismometers with feedback were compared to a commercial electrochemical seismic sensor (CME 6011), producing higher bandwidth (0.005–20 Hz vs. 0.016–30 Hz) and lower self-noise levels (−165.1 ± 6.1 dB vs. −137.7 dB at 0.1 Hz, −151.9 ± 7.5 dB vs. −117.8 dB at 0.02 Hz (ndevice = 6)) in the low-frequency domain. Thus, the proposed device may function as an enabling electrochemical seismometer in the fields requesting seismic monitoring at the ultra-low frequency domain. PMID:28902150
Nanotechnology research and development for military and industrial applications
NASA Astrophysics Data System (ADS)
Ruffin, Paul B.; Brantley, Christina L.; Edwards, Eugene; Roberts, J. Keith; Chew, William; Warren, Larry C.; Ashley, Paul R.; Everitt, Henry O.; Webster, Eric; Foreman, John V.; Sanghadasa, Mohan; Crutcher, Sihon H.; Temmen, Mark G.; Varadan, Vijay; Hayduke, Devlin; Wu, Pae C.; Khoury, Christopher G.; Yang, Yang; Kim, Tong-Ho; Vo-Dinh, Tuan; Brown, April S.; Callahan, John
2011-04-01
Researchers at the Army Aviation and Missile Research, Development, and Engineering Center (AMRDEC) have initiated multidiscipline efforts to develop nano-based structures and components for insertion into advanced missile, aviation, and autonomous air and ground systems. The objective of the research is to exploit unique phenomena for the development of novel technology to enhance warfighter capabilities and produce precision weapons. The key technology areas that the authors are exploring include nano-based microsensors, nano-energetics, nano-batteries, nano-composites, and nano-plasmonics. By integrating nano-based devices, structures, and materials into weaponry, the Army can revolutionize existing (and future) missile systems by significantly reducing the size, weight and cost. The major research thrust areas include the development of chemical sensors to detect rocket motor off-gassing and toxic industrial chemicals; the development of highly sensitive/selective, self-powered miniaturized acoustic sensors for battlefield surveillance and reconnaissance; the development of a minimum signature solid propellant with increased ballistic and physical properties that meet insensitive munitions requirements; the development of nano-structured material for higher voltage thermal batteries and higher energy density storage; the development of advanced composite materials that provide high frequency damping for inertial measurement units' packaging; and the development of metallic nanostructures for ultraviolet surface enhanced Raman spectroscopy. The current status of the overall AMRDEC Nanotechnology research efforts is disclosed in this paper. Critical technical challenges, for the various technologies, are presented. The authors' approach for overcoming technical barriers and achieving required performance is also discussed. Finally, the roadmap for each technology, as well as the overall program, is presented.
Phosphorus dynamics in lake sediments: Insights from field study and reactive-transport modeling
NASA Astrophysics Data System (ADS)
Dittrich, Maria; Markovic, Stefan; Cadena, Sandra; Doan, Phuong T. K.; Watson, Sue; Mugalingam, Shan
2016-04-01
Phosphorus is an indispensable nutrient for organisms in aquatic systems and its availability often controls primary productivity. At the sediment-water interface, intensive microbiological, geochemical and physical processes determine the fraction of organic matter, nutrients and pollutants released into the overlying water. Therefore, detailed understanding of the processes occurring in the top centimeters of the sediment is essential for the assessment of water quality and the management of surface waters. In cases where measurements are impossible or expensive, diagenetic modelling is required to investigate the interplay among the processes, verify concepts and predict potential system behavior. The main aims of this study are to identify and predict the dynamics of phosphorus (P) in sediments and gain insight into the mechanism of P release from sediments under varying environmental conditions. We measured redox, O2 and pH profiles with micro-sensors at the sediment-water interface; analyzed phosphate and metals (Fe, Mn, Al, Ca) content in pore waters collected using in situ samplers, so called "peepers"; determined P binding forms using sequential extraction and analyzed metals associated with each fraction. Following the sediment analysis, P binding forms were divided in five groups: inert, carbonate-bound, organic, redox-sensitive, and labile P. Using the flux of organic and inorganic matter as dynamic boundary conditions, the diagenetic model simulates P internal loading and predicts P retention. This presentation will discuss the results of two years studies on P dynamics at the sediment-water interface in three different lakes ranging from heavy-polluted Hamilton Harbor and Bay of Quinte to pristine Georgian Bay in Ontario, Canada.
Chemiresistor microsensors for in-situ monitoring of volatile organic compounds : final LDRD report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Michael Loren; Hughes, Robert Clark; Kooser, Ara S.
2003-09-01
This report provides a summary of the three-year LDRD (Laboratory Directed Research and Development) project aimed at developing microchemical sensors for continuous, in-situ monitoring of volatile organic compounds. A chemiresistor sensor array was integrated with a unique, waterproof housing that allows the sensors to be operated in a variety of media including air, soil, and water. Numerous tests were performed to evaluate and improve the sensitivity, stability, and discriminatory capabilities of the chemiresistors. Field tests were conducted in California, Nevada, and New Mexico to further test and develop the sensors in actual environments within integrated monitoring systems. The field testsmore » addressed issues regarding data acquisition, telemetry, power requirements, data processing, and other engineering requirements. Significant advances were made in the areas of polymer optimization, packaging, data analysis, discrimination, design, and information dissemination (e.g., real-time web posting of data; see www.sandia.gov/sensor). This project has stimulated significant interest among commercial and academic institutions. A CRADA (Cooperative Research and Development Agreement) was initiated in FY03 to investigate manufacturing methods, and a Work for Others contract was established between Sandia and Edwards Air Force Base for FY02-FY04. Funding was also obtained from DOE as part of their Advanced Monitoring Systems Initiative program from FY01 to FY03, and a DOE EMSP contract was awarded jointly to Sandia and INEEL for FY04-FY06. Contracts were also established for collaborative research with Brigham Young University to further evaluate, understand, and improve the performance of the chemiresistor sensors.« less
Quantifying Fenton reaction pathways driven by self-generated H2O2 on pyrite surfaces
NASA Astrophysics Data System (ADS)
Gil-Lozano, C.; Davila, A. F.; Losa-Adams, E.; Fairén, A. G.; Gago-Duport, L.
2017-03-01
Oxidation of pyrite (FeS2) plays a significant role in the redox cycling of iron and sulfur on Earth and is the primary cause of acid mine drainage (AMD). It has been established that this process involves multi-step electron-transfer reactions between surface defects and adsorbed O2 and H2O, releasing sulfoxy species (e.g., S2O32-, SO42-) and ferrous iron (Fe2+) to the solution and also producing intermediate by-products, such as hydrogen peroxide (H2O2) and other reactive oxygen species (ROS), however, our understanding of the kinetics of these transient species is still limited. We investigated the kinetics of H2O2 formation in aqueous suspensions of FeS2 microparticles by monitoring, in real time, the H2O2 and dissolved O2 concentration under oxic and anoxic conditions using amperometric microsensors. Additional spectroscopic and structural analyses were done to track the dependencies between the process of FeS2 dissolution and the degradation of H2O2 through the Fenton reaction. Based on our experimental results, we built a kinetic model which explains the observed trend of H2O2, showing that FeS2 dissolution can act as a natural Fenton reagent, influencing the oxidation of third-party species during the long term evolution of geochemical systems, even in oxygen-limited environments.
Biosensing in a microelectrofluidic system using optical whispering-gallery mode spectroscopy
Huang, Lei; Guo, Zhixiong
2011-01-01
Label-free detection of biomolecules using an optical whispering-gallery mode sensor in a microelectrofluidic channel is simulated. Negatively charged bovine serum albumin is considered as the model protein analyte. The analyte transport in aqueous solution is controlled by an externally applied electrical field. The finite element method is employed for solving the equations of the charged species transport, the Poisson equation of electric potential, the equations of conservation of momentum and energy, and the Helmholtz equations of electromagnetic waves. The adsorption process of the protein molecules on the microsensor head surface is monitored by the resonance frequency shifts. Frequency shift caused by temperature variation due to Joule heating is analyzed and found to be negligible. The induced shifts behave in a manner similar to Langmuir-like adsorption kinetics; but the time constant increases due to the presence of the external electrical field. A correlation of the frequency shift, the analyte feed concentration in the solution, and the applied voltage gradient is obtained, in which an excellent linear relationship between the frequency shift and the analyte concentration is revealed. The applied voltage gradient enhances significantly the analyte concentration in the vicinity of the sensor surface; thus, the sensor sensitivity which has a power function of the voltage gradient with exponent 2.85 in the controlled voltage range. Simulated detection of extremely low protein concentration to the pico-molar level is carried out. PMID:22662041
Seeberg, Trine M.; Tjønnås, Johannes; Haugnes, Pål; Sandbakk, Øyvind
2017-01-01
The automatic classification of sub-techniques in classical cross-country skiing provides unique possibilities for analyzing the biomechanical aspects of outdoor skiing. This is currently possible due to the miniaturization and flexibility of wearable inertial measurement units (IMUs) that allow researchers to bring the laboratory to the field. In this study, we aimed to optimize the accuracy of the automatic classification of classical cross-country skiing sub-techniques by using two IMUs attached to the skier’s arm and chest together with a machine learning algorithm. The novelty of our approach is the reliable detection of individual cycles using a gyroscope on the skier’s arm, while a neural network machine learning algorithm robustly classifies each cycle to a sub-technique using sensor data from an accelerometer on the chest. In this study, 24 datasets from 10 different participants were separated into the categories training-, validation- and test-data. Overall, we achieved a classification accuracy of 93.9% on the test-data. Furthermore, we illustrate how an accurate classification of sub-techniques can be combined with data from standard sports equipment including position, altitude, speed and heart rate measuring systems. Combining this information has the potential to provide novel insight into physiological and biomechanical aspects valuable to coaches, athletes and researchers. PMID:29283421
Microfabrication: LIGA-X and applications
NASA Astrophysics Data System (ADS)
Kupka, R. K.; Bouamrane, F.; Cremers, C.; Megtert, S.
2000-09-01
X-ray LIGA (Lithography, Electrogrowth, Moulding) is one of today's key technologies in microfabrication and upcoming modern (meso)-(nano) fabrication, already used and anticipated for micromechanics (micromotors, microsensors, spinnerets, etc.), micro-optics, micro-hydrodynamics (fluidic devices), microbiology, in medicine, in biology, and in chemistry for microchemical reactors. It compares to micro-electromechanical systems (MEMS) technology, offering a larger, non-silicon choice of materials and better inherent precision. X-ray LIGA relies on synchrotron radiation to obtain necessary X-ray fluxes and uses X-ray proximity printing. Inherent advantages are its extreme precision, depth of field and very low intrinsic surface roughness. However, the quality of fabricated structures often depends on secondary effects during exposure and effects like resist adhesion. UV-LIGA, relying on thick UV resists is an alternative for projects requiring less precision. Modulating the spectral properties of synchrotron radiation, different regimes of X-ray lithography lead to (a) the mass-fabrication of classical nanostructures, (b) the fabrication of high aspect ratio nanostructures (HARNST), (c) the fabrication of high aspect ratio microstructures (HARMST), and (d) the fabrication of high aspect ratio centimeter structures (HARCST). Reviewing very recent activities around X-ray LIGA, we show the versatility of the method, obviously finding its region of application there, where it is best and other competing microtechnologies are less advantageous. An example of surface-based X-ray and particle lenses (orthogonal reflection optics (ORO)) made by X-ray LIGA is given.
Energy harvesting from arterial blood pressure for powering embedded brain sensors
NASA Astrophysics Data System (ADS)
Nanda, Aditya; Karami, M. Amin
2016-04-01
This paper investigates energy harvesting from arterial blood pressure via the piezoelectric effect by using a novel streaked cylinder geometry for the purpose of powering embedded micro-sensors in the brain. Initially, we look at the energy harvested by a piezoelectric cylinder placed inside an artery acted upon by blood pressure. Such an arrangement would be tantamount to constructing a stent out of piezoelectric materials. A stent is a cylinder placed in veins and arteries to prevent obstruction in blood flow. The governing equations of a conductor coated piezoelectric cylinder are obtained using Hamilton's principle. Pressure acting in arteries is radially directed and this is used to simplify the modal analysis and obtain the transfer function relating pressure to the induced voltage across the surface of the harvester. The power harvested by the cylindrical harvester is obtained for different shunt resistances. Radially directed pressure occurs elsewhere and we also look at harvesting energy from oil flow in pipelines. Although the energy harvested by the cylindrical energy harvester is significant at resonance, the natural frequency of the system is found to be very high. To decrease the natural frequency, we propose a novel streaked stent design by cutting it along the length, transforming it to a curved plate and decreasing the natural frequency. The governing equations corresponding to the new geometry are derived using Hamilton's principle and modal analysis is used to obtain the transfer function.
High Sensitivity MEMS Strain Sensor: Design and Simulation
Mohammed, Ahmed A. S.; Moussa, Walied A.; Lou, Edmond
2008-01-01
In this article, we report on the new design of a miniaturized strain microsensor. The proposed sensor utilizes the piezoresistive properties of doped single crystal silicon. Employing the Micro Electro Mechanical Systems (MEMS) technology, high sensor sensitivities and resolutions have been achieved. The current sensor design employs different levels of signal amplifications. These amplifications include geometric, material and electronic levels. The sensor and the electronic circuits can be integrated on a single chip, and packaged as a small functional unit. The sensor converts input strain to resistance change, which can be transformed to bridge imbalance voltage. An analog output that demonstrates high sensitivity (0.03mV/με), high absolute resolution (1με) and low power consumption (100μA) with a maximum range of ±4000με has been reported. These performance characteristics have been achieved with high signal stability over a wide temperature range (±50°C), which introduces the proposed MEMS strain sensor as a strong candidate for wireless strain sensing applications under harsh environmental conditions. Moreover, this sensor has been designed, verified and can be easily modified to measure other values such as force, torque…etc. In this work, the sensor design is achieved using Finite Element Method (FEM) with the application of the piezoresistivity theory. This design process and the microfabrication process flow to prototype the design have been presented. PMID:27879841
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricco, A.J.; Butler, M.A.; Grunthaner, F.J.
The authors have designed and built the prototype of an instrument that will use fiber optic micromirror-based chemical sensors to investigate the surprising reactivity of martian soil reported by several Viking Lander Experiments in the mid 1970s. The MOx (Mars Oxidant Experiment) Instrument, which will probe the reactivity of the near-surface martian atmosphere as well as soil, utilizes an array of chemically sensitive thin films including metals, organometallics, and organic dyes to produce a pattern of reflectivity changes characteristic of the species interacting with these sensing layers. The 850-g system includes LED light sources, optical fiber light guides, silicon micromachinedmore » fixtures, a line-array CCD detector, control-and-measurement electronics, microprocessor, memory, interface, batteries, and housing. This instrument monitors real-time reflectivities from an array of {approximately}200 separate micromirrors. The unmanned Russian Mars 96 mission is slated to carry the MOx Instrument along with experiments from several other nations. The principles of the chemically sensitive micromirror upon which this instrument is based will be described and preliminary data for reactions of micromirrors with oxidant materials believed to be similar to those on Mars will be presented. The general design of the instrument, including Si micromachined components, as well as the range of coatings and the rationale for their selection, will be discussed as well.« less
Electro-Microfluidic Packaging
NASA Astrophysics Data System (ADS)
Benavides, G. L.; Galambos, P. C.
2002-06-01
There are many examples of electro-microfluidic products that require cost effective packaging solutions. Industry has responded to a demand for products such as drop ejectors, chemical sensors, and biological sensors. Drop ejectors have consumer applications such as ink jet printing and scientific applications such as patterning self-assembled monolayers or ejecting picoliters of expensive analytes/reagents for chemical analysis. Drop ejectors can be used to perform chemical analysis, combinatorial chemistry, drug manufacture, drug discovery, drug delivery, and DNA sequencing. Chemical and biological micro-sensors can sniff the ambient environment for traces of dangerous materials such as explosives, toxins, or pathogens. Other biological sensors can be used to improve world health by providing timely diagnostics and applying corrective measures to the human body. Electro-microfluidic packaging can easily represent over fifty percent of the product cost and, as with Integrated Circuits (IC), the industry should evolve to standard packaging solutions. Standard packaging schemes will minimize cost and bring products to market sooner.
Sol-gel zinc oxide humidity sensors integrated with a ring oscillator circuit on-a-chip.
Yang, Ming-Zhi; Dai, Ching-Liang; Wu, Chyan-Chyi
2014-10-28
The study develops an integrated humidity microsensor fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The integrated humidity sensor consists of a humidity sensor and a ring oscillator circuit on-a-chip. The humidity sensor is composed of a sensitive film and branch interdigitated electrodes. The sensitive film is zinc oxide prepared by sol-gel method. After completion of the CMOS process, the sensor requires a post-process to remove the sacrificial oxide layer and to coat the zinc oxide film on the interdigitated electrodes. The capacitance of the sensor changes when the sensitive film adsorbs water vapor. The circuit is used to convert the capacitance of the humidity sensor into the oscillation frequency output. Experimental results show that the output frequency of the sensor changes from 84.3 to 73.4 MHz at 30 °C as the humidity increases 40 to 90%RH.
Photocatalytically Renewable Micro-electrochemical Sensor for Real-Time Monitoring of Cells.
Xu, Jia-Quan; Liu, Yan-Ling; Wang, Qian; Duo, Huan-Huan; Zhang, Xin-Wei; Li, Yu-Tao; Huang, Wei-Hua
2015-11-23
Electrode fouling and passivation is a substantial and inevitable limitation in electrochemical biosensing, and it is a great challenge to efficiently remove the contaminant without changing the surface structure and electrochemical performance. Herein, we propose a versatile and efficient strategy based on photocatalytic cleaning to construct renewable electrochemical sensors for cell analysis. This kind of sensor was fabricated by controllable assembly of reduced graphene oxide (RGO) and TiO2 to form a sandwiching RGO@TiO2 structure, followed by deposition of Au nanoparticles (NPs) onto the RGO shell. The Au NPs-RGO composite shell provides high electrochemical performance. Meanwhile, the encapsulated TiO2 ensures an excellent photocatalytic cleaning property. Application of this renewable microsensor for detection of nitric oxide (NO) release from cells demonstrates the great potential of this strategy in electrode regeneration and biosensing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Bai, Shi; Zhang, Shigang; Zhou, Weiping; Ma, Delong; Ma, Ying; Joshi, Pooran; Hu, Anming
2017-10-01
Stretchable electronic sensing devices are defining the path toward wearable electronics. High-performance flexible strain sensors attached on clothing or human skin are required for potential applications in the entertainment, health monitoring, and medical care sectors. In this work, conducting copper electrodes were fabricated on polydimethylsiloxane as sensitive stretchable microsensors by integrating laser direct writing and transfer printing approaches. The copper electrode was reduced from copper salt using laser writing rather than the general approach of printing with pre-synthesized copper or copper oxide nanoparticles. An electrical resistivity of 96 μΩ cm was achieved on 40-μm-thick Cu electrodes on flexible substrates. The motion sensing functionality successfully demonstrated a high sensitivity and mechanical robustness. This in situ fabrication method leads to a path toward electronic devices on flexible substrates.[Figure not available: see fulltext.
Chen, Luzhuo; Liu, Changhong; Liu, Ke; Meng, Chuizhou; Hu, Chunhua; Wang, Jiaping; Fan, Shoushan
2011-03-22
In this work, we show that embedding super-aligned carbon nanotube sheets into a polymer matrix (polydimethylsiloxane) can remarkably reduce the coefficient of thermal expansion of the polymer matrix by two orders of magnitude. Based on this unique phenomenon, we fabricated a new kind of bending actuator through a two-step method. The actuator is easily operable and can generate an exceptionally large bending actuation with controllable motion at very low driving DC voltages (<700 V/m). Furthermore, the actuator can be operated without electrolytes in the air, which is superior to conventional carbon nanotube actuators. Proposed electrothermal mechanism was discussed and confirmed by our experimental results. The exceptional bending actuation performance together with easy fabrication, low-voltage, and controllable motion demonstrates the potential ability of using this kind of actuator in various applicable areas, such as artificial muscles, microrobotics, microsensors, microtransducers, micromanipulation, microcantilever for medical applications, and so on.
High-Sensitivity GaN Microchemical Sensors
NASA Technical Reports Server (NTRS)
Son, Kyung-ah; Yang, Baohua; Liao, Anna; Moon, Jeongsun; Prokopuk, Nicholas
2009-01-01
Systematic studies have been performed on the sensitivity of GaN HEMT (high electron mobility transistor) sensors using various gate electrode designs and operational parameters. The results here show that a higher sensitivity can be achieved with a larger W/L ratio (W = gate width, L = gate length) at a given D (D = source-drain distance), and multi-finger gate electrodes offer a higher sensitivity than a one-finger gate electrode. In terms of operating conditions, sensor sensitivity is strongly dependent on transconductance of the sensor. The highest sensitivity can be achieved at the gate voltage where the slope of the transconductance curve is the largest. This work provides critical information about how the gate electrode of a GaN HEMT, which has been identified as the most sensitive among GaN microsensors, needs to be designed, and what operation parameters should be used for high sensitivity detection.
Fabrication of por-Si/SnO{sub x} nanocomposite layers for gas microsensors and nanosensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolotov, V. V., E-mail: bolotov@obisp.oscsbras.ru; Korusenko, P. M.; Nesov, S. N.
2011-05-15
Two-phase nanocomposite layers based on porous silicon and nonstoichiometric tin oxide were fabricated by various methods. The structure, as well as elemental and phase composition, of the obtained nanocomposites were studied using transmission and scanning electron microscopy, Raman spectroscopy, Auger electron spectroscopy, and X-ray photoelectron spectroscopy. The results obtained confirm the formation of nanocomposite layers with a thickness as large as 2 {mu}m thick and SnO{sub x} stoichiometry coefficients x = 1.0-2.0. Significant tin diffusion into the porous silicon matrix with D{sub eff} Almost-Equal-To 10{sup -14} cm{sup 2} s{sup -1} was observed upon annealing at 770 K. Test sensor structuresmore » based on por-Si/SnO{sub x} nanocomposite layers grown by magnetron deposition showed fairly high stability of properties and sensitivity to NO{sub 2}.« less
Functionalized core-shell hydrogel microsprings by anisotropic gelation with bevel-tip capillary
Yoshida, Koki; Onoe, Hiroaki
2017-01-01
This study describes a novel microfluidic-based method for the synthesis of hydrogel microsprings that are capable of encapsulating various functional materials. A continuous flow of alginate pre-gel solution can spontaneously form a hydrogel microspring by anisotropic gelation around the bevel-tip of the capillary. This technique allows fabrication of hydrogel microsprings using only simple capillaries and syringe pumps, while their complex compartmentalization characterized by a laminar flow inside the capillary can contribute to the optimization of the microspring internal structure and functionality. Encapsulation of several functional materials including magnetic-responsive nanoparticles or cell dispersed collagen for tissue scaffold was demonstrated to functionalize the microsprings. Our core-shell hydrogel microsprings have immense potential for application in a number of fields, including biological/chemical microsensors, biocompatible soft robots/microactuators, drug release, self-assembly of 3D structures and tissue engineering. PMID:28378803
Luminescent sensing and imaging of oxygen: Fierce competition to the Clark electrode
2015-01-01
Luminescence‐based sensing schemes for oxygen have experienced a fast growth and are in the process of replacing the Clark electrode in many fields. Unlike electrodes, sensing is not limited to point measurements via fiber optic microsensors, but includes additional features such as planar sensing, imaging, and intracellular assays using nanosized sensor particles. In this essay, I review and discuss the essentials of (i) common solid‐state sensor approaches based on the use of luminescent indicator dyes and host polymers; (ii) fiber optic and planar sensing schemes; (iii) nanoparticle‐based intracellular sensing; and (iv) common spectroscopies. Optical sensors are also capable of multiple simultaneous sensing (such as O2 and temperature). Sensors for O2 are produced nowadays in large quantities in industry. Fields of application include sensing of O2 in plant and animal physiology, in clinical chemistry, in marine sciences, in the chemical industry and in process biotechnology. PMID:26113255
NASA Astrophysics Data System (ADS)
Zhang, Tian-Yu; Wang, Qian; Deng, Ning-Qin; Zhao, Hai-Ming; Wang, Dan-Yang; Yang, Zhen; Liu, Ying; Yang, Yi; Ren, Tian-Ling
2017-09-01
In this paper, we have developed a high-performance graphene electrothermal actuator (ETA). The fabrication method is easy, fast, environmentally friendly, and suitable for preparing both large-size and miniature graphene ETAs. When applied with the driving voltage of 65 V, the graphene ETA achieves a large bending angle of 270° with a fast response of 8 s and the recovery process costs 19 s. The large bending deformation is reversible and can be precisely controlled by the driving voltage. A simple robotic hand prepared by using a single graphene ETA can hold the object, which is more than ten times the weight of itself. By virtue of its large-strain, fast response, and easy-to-manufacture, we believe that the graphene ETA has tremendous potential in extensive applications involving biomimetic robotics, artificial muscles, switches, and microsensors in both macroscopic and microscopic fields.
Chang, Chih-Yuan
2017-01-01
Incidents of injuries caused by tiles falling from building exterior walls are frequently reported in Taiwan. Humidity is an influential factor in tile deterioration but it is more difficult to measure the humidity inside a building structure than the humidity in an indoor environment. Therefore, a separable microsensor was developed in this study to measure the humidity of the cement mortar layer with a thickness of 1.5–2 cm inside the external wall of a building. 3D printing technology is used to produce an encapsulation box that can protect the sensor from damage caused by the concrete and cement mortar. The sensor is proven in this study to be capable of measuring temperature and humidity simultaneously and the measurement results are then used to analyze the influence of humidity on external wall tile deterioration. PMID:28481300
Solution-based circuits enable rapid and multiplexed pathogen detection.
Lam, Brian; Das, Jagotamoy; Holmes, Richard D; Live, Ludovic; Sage, Andrew; Sargent, Edward H; Kelley, Shana O
2013-01-01
Electronic readout of markers of disease provides compelling simplicity, sensitivity and specificity in the detection of small panels of biomarkers in clinical samples; however, the most important emerging tests for disease, such as infectious disease speciation and antibiotic-resistance profiling, will need to interrogate samples for many dozens of biomarkers. Electronic readout of large panels of markers has been hampered by the difficulty of addressing large arrays of electrode-based sensors on inexpensive platforms. Here we report a new concept--solution-based circuits formed on chip--that makes highly multiplexed electrochemical sensing feasible on passive chips. The solution-based circuits switch the information-carrying signal readout channels and eliminate all measurable crosstalk from adjacent, biomolecule-specific microsensors. We build chips that feature this advance and prove that they analyse unpurified samples successfully, and accurately classify pathogens at clinically relevant concentrations. We also show that signature molecules can be accurately read 2 minutes after sample introduction.
Heat convection in a micro impinging jet system
NASA Astrophysics Data System (ADS)
Mai, John Dzung Hoang
2000-10-01
This thesis covers the development of an efficient micro impinging jet heat exchanger, using MEMS technology, to provide localized cooling for present and next generation microelectronic computer chips. Before designing an efficient localized heat exchanger, it is necessary to investigate fluid dynamics and heat transfer in the micro scale. MEMS technology has been used in this project because it is the only tool currently available that can provide a large array of batch-fabricated, micro-scale nozzles for localized cooling. Our investigation of potential MEMS heat exchanger designs begins with experiments that measure the pressure drops and temperature changes in a micro scale tubing system that will be necessary to carry fluid to the impingement point. Our basic MEMS model is a freestanding micro channel with integrated temperature microsensors. The temperature distribution along the channel in a vacuum is measured. The measured flow rates are compared with an analytical model developed for capillary flow that accounts for 2-D, slip and compressibility effects. The work is focused on obtaining correlations in the form of the Nussult number, the Reynolds number and a H/d geometric factor. A set of single MEMS nozzles have been designed to test heat transfer effectiveness as a function of nozzle diameter, ranging from 1.0 mm to 250 um. In addition, nozzle and slot array MEMS devices have been fabricated. In order to obtain quantitative measurements from these micron scale devices, a series of target temperature sensor chips were custom made and characterized for these experiments. The heat transfer characteristics of various MEMS nozzle configurations operating at various steady inlet pressures, at different heights above the heated substrate, have been characterized. These steady results showed that the average heat transfer coefficient, averaged over a 1 cm2 test area, was usually less than 0.035 W/cm 2K for any situation. However, the local heat transfer coefficient, as measured by a single 4mum x 4mum temperature sensor, was as high as 0.5 W/cm2K. Using a mechanical valve and piezo actuator to perturb the flow at frequencies from 10 Hz to 1 kHz, we identify that enhanced heat transfer can occur in an unsteady forced jet. The functional dependence of the enhanced heat transfer on the mean jet speed, perturbation level and perturbing frequency has been established. The expected trend that increased heat transfer at higher values of St number was noticed. In addition the effect of a confined and free jet geometry on an unsteady flow was observed.
Lipsewers, Yvonne A.; Vasquez-Cardenas, Diana; Seitaj, Dorina; Schauer, Regina; Hidalgo-Martinez, Silvia; Meysman, Filip J. R.
2017-01-01
ABSTRACT Seasonal hypoxia in coastal systems drastically changes the availability of electron acceptors in bottom water, which alters the sedimentary reoxidation of reduced compounds. However, the effect of seasonal hypoxia on the chemolithoautotrophic community that catalyzes these reoxidation reactions is rarely studied. Here, we examine the changes in activity and structure of the sedimentary chemolithoautotrophic bacterial community of a seasonally hypoxic saline basin under oxic (spring) and hypoxic (summer) conditions. Combined 16S rRNA gene amplicon sequencing and analysis of phospholipid-derived fatty acids indicated a major temporal shift in community structure. Aerobic sulfur-oxidizing Gammaproteobacteria (Thiotrichales) and Epsilonproteobacteria (Campylobacterales) were prevalent during spring, whereas Deltaproteobacteria (Desulfobacterales) related to sulfate-reducing bacteria prevailed during summer hypoxia. Chemolithoautotrophy rates in the surface sediment were three times higher in spring than in summer. The depth distribution of chemolithoautotrophy was linked to the distinct sulfur oxidation mechanisms identified through microsensor profiling, i.e., canonical sulfur oxidation, electrogenic sulfur oxidation by cable bacteria, and sulfide oxidation coupled to nitrate reduction by Beggiatoaceae. The metabolic diversity of the sulfur-oxidizing bacterial community suggests a complex niche partitioning within the sediment, probably driven by the availability of reduced sulfur compounds (H2S, S0, and S2O32−) and electron acceptors (O2 and NO3−) regulated by seasonal hypoxia. IMPORTANCE Chemolithoautotrophic microbes in the seafloor are dependent on electron acceptors, like oxygen and nitrate, that diffuse from the overlying water. Seasonal hypoxia, however, drastically changes the availability of these electron acceptors in the bottom water; hence, one expects a strong impact of seasonal hypoxia on sedimentary chemolithoautotrophy. A multidisciplinary investigation of the sediments in a seasonally hypoxic coastal basin confirms this hypothesis. Our data show that bacterial community structure and chemolithoautotrophic activity varied with the seasonal depletion of oxygen. Unexpectedly, the dark carbon fixation was also dependent on the dominant microbial pathway of sulfur oxidation occurring in the sediment (i.e., canonical sulfur oxidation, electrogenic sulfur oxidation by cable bacteria, and sulfide oxidation coupled to nitrate reduction by Beggiatoaceae). These results suggest that a complex niche partitioning within the sulfur-oxidizing bacterial community additionally affects the chemolithoautotrophic community of seasonally hypoxic sediments. PMID:28314724
Lipsewers, Yvonne A; Vasquez-Cardenas, Diana; Seitaj, Dorina; Schauer, Regina; Hidalgo-Martinez, Silvia; Sinninghe Damsté, Jaap S; Meysman, Filip J R; Villanueva, Laura; Boschker, Henricus T S
2017-05-15
Seasonal hypoxia in coastal systems drastically changes the availability of electron acceptors in bottom water, which alters the sedimentary reoxidation of reduced compounds. However, the effect of seasonal hypoxia on the chemolithoautotrophic community that catalyzes these reoxidation reactions is rarely studied. Here, we examine the changes in activity and structure of the sedimentary chemolithoautotrophic bacterial community of a seasonally hypoxic saline basin under oxic (spring) and hypoxic (summer) conditions. Combined 16S rRNA gene amplicon sequencing and analysis of phospholipid-derived fatty acids indicated a major temporal shift in community structure. Aerobic sulfur-oxidizing Gammaproteobacteria ( Thiotrichales ) and Epsilonproteobacteria ( Campylobacterales ) were prevalent during spring, whereas Deltaproteobacteria ( Desulfobacterales ) related to sulfate-reducing bacteria prevailed during summer hypoxia. Chemolithoautotrophy rates in the surface sediment were three times higher in spring than in summer. The depth distribution of chemolithoautotrophy was linked to the distinct sulfur oxidation mechanisms identified through microsensor profiling, i.e., canonical sulfur oxidation, electrogenic sulfur oxidation by cable bacteria, and sulfide oxidation coupled to nitrate reduction by Beggiatoaceae The metabolic diversity of the sulfur-oxidizing bacterial community suggests a complex niche partitioning within the sediment, probably driven by the availability of reduced sulfur compounds (H 2 S, S 0 , and S 2 O 3 2- ) and electron acceptors (O 2 and NO 3 - ) regulated by seasonal hypoxia. IMPORTANCE Chemolithoautotrophic microbes in the seafloor are dependent on electron acceptors, like oxygen and nitrate, that diffuse from the overlying water. Seasonal hypoxia, however, drastically changes the availability of these electron acceptors in the bottom water; hence, one expects a strong impact of seasonal hypoxia on sedimentary chemolithoautotrophy. A multidisciplinary investigation of the sediments in a seasonally hypoxic coastal basin confirms this hypothesis. Our data show that bacterial community structure and chemolithoautotrophic activity varied with the seasonal depletion of oxygen. Unexpectedly, the dark carbon fixation was also dependent on the dominant microbial pathway of sulfur oxidation occurring in the sediment (i.e., canonical sulfur oxidation, electrogenic sulfur oxidation by cable bacteria, and sulfide oxidation coupled to nitrate reduction by Beggiatoaceae ). These results suggest that a complex niche partitioning within the sulfur-oxidizing bacterial community additionally affects the chemolithoautotrophic community of seasonally hypoxic sediments. Copyright © 2017 American Society for Microbiology.
NASA Technical Reports Server (NTRS)
2011-01-01
Topics covered include: Amperometric Solid Electrolyte Oxygen Microsensors with Easy Batch Fabrication; Two-Axis Direct Fluid Shear Stress Sensor for Aerodynamic Applications; Target Assembly to Check Boresight Alignment of Active Sensors; Virtual Sensor Test Instrumentation; Evaluation of the Reflection Coefficient of Microstrip Elements for Reflectarray Antennas; Miniaturized Ka-Band Dual-Channel Radar; Continuous-Integration Laser Energy Lidar Monitor; Miniaturized Airborne Imaging Central Server System; Radiation-Tolerant, SpaceWire-Compatible Switching Fabric; Small Microprocessor for ASIC or FPGA Implementation; Source-Coupled, N-Channel, JFET-Based Digital Logic Gate Structure Using Resistive Level Shifters; High-Voltage-Input Level Translator Using Standard CMOS; Monitoring Digital Closed-Loop Feedback Systems; MASCOT - MATLAB Stability and Control Toolbox; MIRO Continuum Calibration for Asteroid Mode; GOATS Image Projection Component; Coded Modulation in C and MATLAB; Low-Dead-Volume Inlet for Vacuum Chamber; Thermal Control Method for High-Current Wire Bundles by Injecting a Thermally Conductive Filler; Method for Selective Cleaning of Mold Release from Composite Honeycomb Surfaces; Infrared-Bolometer Arrays with Reflective Backshorts; Commercialization of LARC (trade mark) -SI Polyimide Technology; Novel Low-Density Ablators Containing Hyperbranched Poly(azomethine)s; Carbon Nanotubes on Titanium Substrates for Stray Light Suppression; Monolithic, High-Speed Fiber-Optic Switching Array for Lidar; Grid-Tied Photovoltaic Power System; Spectroelectrochemical Instrument Measures TOC; A Miniaturized Video System for Monitoring Drosophila Behavior; Hydrofocusing Bioreactor Produces Anti-Cancer Alkaloids; Creep Measurement Video Extensometer; Radius of Curvature Measurement of Large Optics Using Interferometry and Laser Tracker n-B-pi-p Superlattice Infrared Detector; Safe Onboard Guidance and Control Under Probabilistic Uncertainty; General Tool for Evaluating High-Contrast Coronagraphic Telescope Performance Error Budgets; Hidden Statistics of Schroedinger Equation; Optimal Padding for the Two-Dimensional Fast Fourier Transform; Spatial Query for Planetary Data; Higher Order Mode Coupling in Feed Waveguide of a Planar Slot Array Antenna; Evolutionary Computational Methods for Identifying Emergent Behavior in Autonomous Systems; Sampling Theorem in Terms of the Bandwidth and Sampling Interval; Meteoroid/Orbital Debris Shield Engineering Development Practice and Procedure; Self-Balancing, Optical-Center-Pivot, Fast-Steering Mirror; Wireless Orbiter Hang-Angle Inclinometer System; and Internal Electrostatic Discharge Monitor - IESDM.
Innovative smart micro sensors for Army weaponry applications
NASA Astrophysics Data System (ADS)
Ruffin, Paul B.; Brantley, Christina; Edwards, Eugene
2008-03-01
Micro sensors offer the potential solution to cost, size, and weight issues associated with smart networked sensor systems designed for environmental/missile health monitoring and rocket out-gassing/fuel leak detection, as well as situational awareness on the battlefield. In collaboration with the University of Arkansas (Fayetteville), University of Alabama (Tuscaloosa and Birmingham), Alabama A&M University (Normal), and Streamline Automation (Huntsville, AL), scientists and engineers at the Army Aviation & Missile Research, Development, and Engineering Center (AMRDEC) are investigating several nano-based technologies to solve the problem of sensing extremely small levels of toxic gases associated with both chemical warfare agents (in air and liquids) and potential rocket motor leaks. Innovative techniques are being devised to adapt voltammetry, which is a well established technique for the detection and quantification of substances dissolved in liquids, to low-cost micro sensors for detecting airborne chemical agents and potential missile propellant leakages. In addition, a surface enhanced Raman scattering (SERS) technique, which enhances Raman scattered light by excitation of surface plasmons on nanoporous metal surfaces (nanospheres), is being investigated to develop novel smart sensors for the detection of chemical agents (including rocket motor out-gassing) and potential detection of home-made explosive devices. In this paper, results are delineated that are associated with experimental studies, which are conducted for the aforementioned cases and for several other nano-based technology approaches. The design challenges of each micro sensor technology approach are discussed. Finally, a comparative analysis of the various innovative micro-sensor techniques is provided.
Shear horizontal surface acoustic wave microsensor for Class A viral and bacterial detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branch, Darren W.; Huber, Dale L.; Brozik, Susan Marie
The rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms is critical to human health and safety. To achieve a high level of sensitivity for fluidic detection applications, we have developed a 330 MHz Love wave acoustic biosensor on 36{sup o} YX Lithium Tantalate (LTO). Each die has four delay-line detection channels, permitting simultaneous measurement of multiple analytes or for parallel detection of single analyte containing samples. Crucial to our biosensor was the development of a transducer that excites the shear horizontal (SH) mode, through optimization of the transducer, minimizing propagation losses and reducing undesirable modes. Detectionmore » was achieved by comparing the reference phase of an input signal to the phase shift from the biosensor using an integrated electronic multi-readout system connected to a laptop computer or PDA. The Love wave acoustic arrays were centered at 330 MHz, shifting to 325-328 MHz after application of the silicon dioxide waveguides. The insertion loss was -6 dB with an out-of-band rejection of 35 dB. The amplitude and phase ripple were 2.5 dB p-p and 2-3{sup o} p-p, respectively. Time-domain gating confirmed propagation of the SH mode while showing suppression of the triple transit. Antigen capture and mass detection experiments demonstrate a sensitivity of 7.19 {+-} 0.74{sup o} mm{sup 2}/ng with a detection limit of 6.7 {+-} 0.40 pg/mm{sup 2} for each channel.« less
Quantifying Fenton reaction pathways driven by self-generated H2O2 on pyrite surfaces.
Gil-Lozano, C; Davila, A F; Losa-Adams, E; Fairén, A G; Gago-Duport, L
2017-03-06
Oxidation of pyrite (FeS 2 ) plays a significant role in the redox cycling of iron and sulfur on Earth and is the primary cause of acid mine drainage (AMD). It has been established that this process involves multi-step electron-transfer reactions between surface defects and adsorbed O 2 and H 2 O, releasing sulfoxy species (e.g., S 2 O 3 2- , SO 4 2- ) and ferrous iron (Fe 2+ ) to the solution and also producing intermediate by-products, such as hydrogen peroxide (H 2 O 2 ) and other reactive oxygen species (ROS), however, our understanding of the kinetics of these transient species is still limited. We investigated the kinetics of H 2 O 2 formation in aqueous suspensions of FeS 2 microparticles by monitoring, in real time, the H 2 O 2 and dissolved O 2 concentration under oxic and anoxic conditions using amperometric microsensors. Additional spectroscopic and structural analyses were done to track the dependencies between the process of FeS 2 dissolution and the degradation of H 2 O 2 through the Fenton reaction. Based on our experimental results, we built a kinetic model which explains the observed trend of H 2 O 2 , showing that FeS 2 dissolution can act as a natural Fenton reagent, influencing the oxidation of third-party species during the long term evolution of geochemical systems, even in oxygen-limited environments.
Monitoring nitric oxide (NO) in rat locus coeruleus: differential effects of NO synthase inhibitors.
Desvignes, C; Robert, F; Vachette, C; Chouvet, G; Cespuglio, R; Renaud, B; Lambás-Señas, L
1997-04-14
A porphyrinic microsensor combined with in vivo voltammetry was used to monitor extracellular nitric oxide (NO) in the locus coeruleus (LC) of anaesthetized rats. Administration of N omega-nitro-L-arginine p-nitro-anilide (100 mg/kg, i.p) or 7-nitro indazole (30 mg/kg, i.p.), which both inhibit preferentially neuronal NO synthase (NOS), induced a marked decrease in the NO oxidation peak height. On the other hand, N omega-nitro-L-arginine methyl ester (L-NAME) (200 mg/kg, i.p.), a less selective NOS inhibitor, failed to decrease the NO signal. Moreover, intra LC administration of NMDA, known to activate LC noradrenergic neurones, increased the NO signal. This study demonstrates the usefulness of in vivo voltammetry to monitor basal levels of NO and their changes in the LC. Differential effects of NOS inhibitors show that their central activity need to be assessed through in situ measurement of NO before using these inhibitors as neuropharmacological tools.
Micro Ethanol Sensors with a Heater Fabricated Using the Commercial 0.18 μm CMOS Process
Liao, Wei-Zhen; Dai, Ching-Liang; Yang, Ming-Zhi
2013-01-01
The study investigates the fabrication and characterization of an ethanol microsensor equipped with a heater. The ethanol sensor is manufactured using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The sensor consists of a sensitive film, a heater and interdigitated electrodes. The sensitive film is zinc oxide prepared by the sol-gel method, and it is coated on the interdigitated electrodes. The heater is located under the interdigitated electrodes, and it is used to supply a working temperature to the sensitive film. The sensor needs a post-processing step to remove the sacrificial oxide layer, and to coat zinc oxide on the interdigitated electrodes. When the sensitive film senses ethanol gas, the resistance of the sensor generates a change. An inverting amplifier circuit is utilized to convert the resistance variation of the sensor into the output voltage. Experiments show that the sensitivity of the ethanol sensor is 0.35 mV/ppm. PMID:24072022
Microfabricated Gas Sensors Demonstrated in Fire and Emission Applications
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2003-01-01
A range of microfabricated chemical sensors are being developed to meet the needs of fire detection and emission monitoring in aerospace applications. These sensors have the advantages over traditional technology of minimal size, weight, and power consumption as well as the ability to be placed closer to where the measurements need to be made. Sensor arrays are being developed to address detection needs in environments where multiple species need to be measured. For example, the monitoring of chemical species such as carbon monoxide (CO), carbon dioxide (CO2), hydrocarbons, and other species is important in the detection of fires on airplanes and spacecraft. In contrast, different sensors are necessary for characterizing some aircraft engine designs where the monitoring of nitrogen oxides (NO(x)) and CO is of high interest. Demonstration of both fire and emission microsensor technology was achieved this year in a collaborative effort undertaken by the NASA Glenn Research Center, Case Western Reserve University, and Makel Engineering, Inc.
NASA Astrophysics Data System (ADS)
Rendina, Ivo; Bellucci, Marco; Cocorullo, Giuseppe; Della Corte, Francesco G.; Iodice, Mario
2000-03-01
A new type of non-perturbing electromagnetic power sensor for microwaves and millimeter-waves, based on the thermo- optical effect in a silicon interferometric etalon cavity is presented. The incident field power is partially dissipated into the all-silicon metal-less etalon, constituting the sensing element of the detector, so causing its temperature increase. This, in turn, induces the intensity modulation of a probe laser beam reflected by the cavity after a multiple beam interference process. The sensing element is directly connected to an optical fiber for remote interrogation, so avoiding the use of perturbing coaxial cables. The performances of such a new class of non-perturbing and wideband probes, in terms of sensitivity and resolution are discussed in detail. The experimental results concerning the characterization of a preliminary prototype sensor are presented and compared with theoretical data. The dependence of the sensor response on the electromagnetic frequency and on the sensing element characteristics is finally discussed.
Micro ethanol sensors with a heater fabricated using the commercial 0.18 μm CMOS process.
Liao, Wei-Zhen; Dai, Ching-Liang; Yang, Ming-Zhi
2013-09-25
The study investigates the fabrication and characterization of an ethanol microsensor equipped with a heater. The ethanol sensor is manufactured using the commercial 0.18 µm complementary metal oxide semiconductor (CMOS) process. The sensor consists of a sensitive film, a heater and interdigitated electrodes. The sensitive film is zinc oxide prepared by the sol-gel method, and it is coated on the interdigitated electrodes. The heater is located under the interdigitated electrodes, and it is used to supply a working temperature to the sensitive film. The sensor needs a post-processing step to remove the sacrificial oxide layer, and to coat zinc oxide on the interdigitated electrodes. When the sensitive film senses ethanol gas, the resistance of the sensor generates a change. An inverting amplifier circuit is utilized to convert the resistance variation of the sensor into the output voltage. Experiments show that the sensitivity of the ethanol sensor is 0.35 mV/ppm.
Luminescent sensing and imaging of oxygen: fierce competition to the Clark electrode.
Wolfbeis, Otto S
2015-08-01
Luminescence-based sensing schemes for oxygen have experienced a fast growth and are in the process of replacing the Clark electrode in many fields. Unlike electrodes, sensing is not limited to point measurements via fiber optic microsensors, but includes additional features such as planar sensing, imaging, and intracellular assays using nanosized sensor particles. In this essay, I review and discuss the essentials of (i) common solid-state sensor approaches based on the use of luminescent indicator dyes and host polymers; (ii) fiber optic and planar sensing schemes; (iii) nanoparticle-based intracellular sensing; and (iv) common spectroscopies. Optical sensors are also capable of multiple simultaneous sensing (such as O2 and temperature). Sensors for O2 are produced nowadays in large quantities in industry. Fields of application include sensing of O2 in plant and animal physiology, in clinical chemistry, in marine sciences, in the chemical industry and in process biotechnology. © 2015 The Author. Bioessays published by WILEY Periodicals, Inc.
Teaching classical mechanics using smartphones
NASA Astrophysics Data System (ADS)
Chevrier, Joel; Madani, Laya; Ledenmat, Simon; Bsiesy, Ahmad
2013-09-01
A number of articles published in this column have dealt with topics in classical mechanics. This note describes some additional examples employing a smartphone and the new software iMecaProf.4 Steve Jobs presented the iPhone as "perfect for gaming."5 Thanks to its microsensors connected in real time to the numerical world, physics teachers could add that smartphones are "perfect for teaching science." The software iMecaProf displays in real time the measured data on a screen. The visual representation is built upon the formalism of classical mechanics. iMecaProf receives data 100 times a second from iPhone sensors through a Wi-Fi connection using the application Sensor Data.6 Data are the three components of the acceleration vector in the smartphone frame and smartphone's orientation through three angles (yaw, pitch, and roll). For circular motion (uniform or not), iMecaProf uses independent measurements of the rotation angle θ, the angular speed dθ/dt, and the angular acceleration d2θ/dt2.
Sun, Qi-Jun; Zhuang, Jiaqing; Venkatesh, Shishir; Zhou, Ye; Han, Su-Ting; Wu, Wei; Kong, Ka-Wai; Li, Wen-Jung; Chen, Xianfeng; Li, Robert K Y; Roy, Vellaisamy A L
2018-01-31
Piezoresistive microsensors are considered to be essential components of the future wearable electronic devices. However, the expensive cost, complex fabrication technology, poor stability, and low yield have limited their developments for practical applications. Here, we present a cost-effective, relatively simple, and high-yield fabrication approach to construct highly sensitive and ultrastable piezoresistive sensors using a bioinspired hierarchically structured graphite/polydimethylsiloxane composite as the active layer. In this fabrication, a commercially available sandpaper is employed as the mold to develop the hierarchical structure. Our devices exhibit fascinating performance including an ultrahigh sensitivity (64.3 kPa -1 ), fast response time (<8 ms), low limit of detection of 0.9 Pa, long-term durability (>100 000 cycles), and high ambient stability (>1 year). The applications of these devices in sensing radial artery pulses, acoustic vibrations, and human body motion are demonstrated, exhibiting their enormous potential use in real-time healthcare monitoring and robotic tactile sensing.
In vivo Monitoring of Serotonin by Nanomaterial Functionalized Acupuncture Needle
NASA Astrophysics Data System (ADS)
Li, Yu-Tao; Tang, Li-Na; Ning, Yong; Shu, Qing; Liang, Feng-Xia; Wang, Hua; Zhang, Guo-Jun
2016-06-01
Acupuncture treatment is amazing but controversial. Up to now, the mechanism of treating diseases by acupuncture and moxibustion is still unclear, especially the occurrence of the molecular events in local acupoints. Herein, we report an extremely stable microsensor by modifying carbon nanotube (CNT) to the tip surface of acupuncture needle and applying this CNT-modified acupuncture needle for real time monitoring of serotonin (5-HT) in vivo. To stabilize CNT modification on the needle tip surface, poly(3,4-ethylenedioxythiophene)(PEDOT) was employed as glue water to stick CNT on the needle. The detection limit of the CNT-modified needle was found to be approximately 50 nM and 78 nM in the PBS and the cell medium, respectively. In addition, the needle showed good selectivity to some inflammatory mediators and some electroactive molecules. For the first time, the CNT-modified needle could be directly probed into rat body for real time monitoring of 5-HT in vivo, showing a great potential for better understanding the mechanism of acupuncture treatment.
Sol-Gel Zinc Oxide Humidity Sensors Integrated with a Ring Oscillator Circuit On-a-Chip
Yang, Ming-Zhi; Dai, Ching-Liang; Wu, Chyan-Chyi
2014-01-01
The study develops an integrated humidity microsensor fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The integrated humidity sensor consists of a humidity sensor and a ring oscillator circuit on-a-chip. The humidity sensor is composed of a sensitive film and branch interdigitated electrodes. The sensitive film is zinc oxide prepared by sol-gel method. After completion of the CMOS process, the sensor requires a post-process to remove the sacrificial oxide layer and to coat the zinc oxide film on the interdigitated electrodes. The capacitance of the sensor changes when the sensitive film adsorbs water vapor. The circuit is used to convert the capacitance of the humidity sensor into the oscillation frequency output. Experimental results show that the output frequency of the sensor changes from 84.3 to 73.4 MHz at 30 °C as the humidity increases 40 to 90 %RH. PMID:25353984
Bioinspired Methodology for Artificial Olfaction
Raman, Baranidharan; Hertz, Joshua L.; Benkstein, Kurt D.; Semancik, Steve
2008-01-01
Artificial olfaction is a potential tool for noninvasive chemical monitoring. Application of “electronic noses” typically involves recognition of “pretrained” chemicals, while long-term operation and generalization of training to allow chemical classification of “unknown” analytes remain challenges. The latter analytical capability is critically important, as it is unfeasible to pre-expose the sensor to every analyte it might encounter. Here, we demonstrate a biologically inspired approach where the recognition and generalization problems are decoupled and resolved in a hierarchical fashion. Analyte composition is refined in a progression from general (e.g., target is a hydrocarbon) to precise (e.g., target is ethane), using highly optimized response features for each step. We validate this approach using a MEMS-based chemiresistive microsensor array. We show that this approach, a unique departure from existing methodologies in artificial olfaction, allows the recognition module to better mitigate sensor-aging effects and to better classify unknowns, enhancing the utility of chemical sensors for real-world applications. PMID:18855409
Lin, Jia-De; Chen, Che-Pei; Chen, Lin-Jer; Chuang, Yu-Chou; Huang, Shuan-Yu; Lee, Chia-Rong
2016-02-08
This study systematically investigates the morphological appearance of azo-chiral dye-doped cholesteric liquid crystal (DDCLC)/polymer coaxial microfibers obtained through the coaxial electrospinning technique and examines, for the first time, their photocontrollable reflection characteristics. Experimental results show that the quasi-continuous electrospun microfibers can be successfully fabricated at a high polymer concentration of 17.5 wt% and an optimum ratio of 2 for the feeding rates of sheath to core materials at 25 °C and a high humidity of 50% ± 2% in the spinning chamber. Furthermore, the optical controllability of the reflective features for the electrospun fibers is studied in detail by changing the concentration of the azo-chiral dopant in the core material, the UV irradiation intensity, and the core diameter of the fibers. Relevant mechanisms are addressed to explain the optical-control behaviors of the DDCLC coaxial fibers. Considering the results, optically controllable DDCLC coaxial microfibers present potential applications in UV microsensors and wearable smart textiles or swabs.
A Survey of Geosensor Networks: Advances in Dynamic Environmental Monitoring
Nittel, Silvia
2009-01-01
In the recent decade, several technology trends have influenced the field of geosciences in significant ways. The first trend is the more readily available technology of ubiquitous wireless communication networks and progress in the development of low-power, short-range radio-based communication networks, the miniaturization of computing and storage platforms as well as the development of novel microsensors and sensor materials. All three trends have changed the type of dynamic environmental phenomena that can be detected, monitored and reacted to. Another important aspect is the real-time data delivery of novel platforms today. In this paper, I will survey the field of geosensor networks, and mainly focus on the technology of small-scale geosensor networks, example applications and their feasibility and lessons learnt as well as the current research questions posed by using this technology today. Furthermore, my objective is to investigate how this technology can be embedded in the current landscape of intelligent sensor platforms in the geosciences and identify its place and purpose. PMID:22346721
Study of development and utilization of a multipurpose atmospheric corrosion sensor
NASA Technical Reports Server (NTRS)
Diwan, Ravinder M.; Raman, A.; Bhattacharya, P. K.
1994-01-01
There has been a critical need for analyzing various aspects of atmospheric corrosion and for the development of atmospheric corrosion microsensors. The project work has involved the following activities: (1) making of multielectrode corrosion monitors on dielectric substrates; (2) testing them in the laboratory for functional characteristics; (3) preparing a report on the state of the art of atmospheric corrosion sensor development around the world; and (4) corrosion testing of electrochemical changes of sensor specimens and related fog testing. The study included work on the subject of development and utilization of a multipurpose atmospheric corrosion sensor and this report is the annual report on work carried out on this research project. This has included studies on the development of sensors of two designs, stage 1 and stage 2, and with glass and alumina substrate, experimentation and development and characterization of the coating uniformity, aspects of corrosion monitoring, literature search on the corrosion sensors and their development. A state of the art report on atmospheric corrosion sensor development was prepared and submitted.
Vallejos, Stella; Selina, Soultana; Annanouch, Fatima Ezahra; Gràcia, Isabel; Llobet, Eduard; Blackman, Chris
2016-01-01
Tin oxide nanorods (NRs) are vapour synthesised at relatively lower temperatures than previously reported and without the need for substrate pre-treatment, via a vapour-solid mechanism enabled using an aerosol-assisted chemical vapour deposition method. Results demonstrate that the growth of SnO2 NRs is promoted by a compression of the nucleation rate parallel to the substrate and a decrease of the energy barrier for growth perpendicular to the substrate, which are controlled via the deposition conditions. This method provides both single-step formation of the SnO2 NRs and their integration with silicon micromachined platforms, but also allows for in-situ functionalization of the NRs with gold nanoparticles via co-deposition with a gold precursor. The functional properties are demonstrated for gas sensing, with microsensors using functionalised NRs demonstrating enhanced sensing properties towards H2 compared to those based on non-functionalised NRs. PMID:27334232
High resolution microprofiling, fractionation and speciation at sediment water interfaces
NASA Astrophysics Data System (ADS)
Fabricius, Anne-Lena; Duester, Lars; Ecker, Dennis; Ternes, Thomas A.
2016-04-01
Within aquatic environments, the exchange between the sediment and the overlaying water is often driven by steep gradients of, e.g., the oxygen concentration, the redox potential or the pH value at the sediment water interface (SWI). Important transport processes at the SWI are sedimentation and resuspension of particulate matter and diffusional fluxes of dissolved substances. To gain a better understanding of the key factors and processes determining the fate of substances at the SWI, methods with a spatial high resolution are required that enable the investigation of several sediment parameters in parallel to different analytes of interest in the sediment pore water. Moreover, beside the total content, questions concerning the speciation and fractionation are of concern in studying the different (transport) processes. Due to the availability of numerous micro-sensors and -electrodes (e.g., O2, redox potential, pH value, H2S, N2O) and the development of methods for pore water sampling [1], the toolbox to study the heterogeneous and often dynamic conditions at the SWI at a sub-millimetre scale were considerably improved. Nevertheless, the methods available for pore water sampling often require the installation of the sampling devices at the sampling site and/or intensive preparation procedures that may influence the conditions at the area studied and/or the characteristics of the samples taken. By combination of a micro profiling system with a new micro filtration probe head connected to a pump and a fraction collector, a micro profiling and micro sampling system ("missy") was developed that enables for the first time a direct, automate and low invasive sampling of small volumes (<500 μL) at a spatial high resolution of a few millimetres to sub-millimetres [2]. Via the application of different sample preparation procedures followed by inductively plasma-mass spectrometry analyses, it was possible to address not only the total content of metal(loid)s, but also their fractionation (size dependent and micelle mediated) or speciation related distributions along sediment depth profiles in parallel to different sediment parameters (O2, redox and pH). Together with the results of missy-experiments, the results of different experimental approaches will be given and discussed, especially with regard to their potentials and limitations. Based on application examples it will be demonstrated how a variety of parameters can be studied in parallel with the aim to get a more holistic understanding of natural and anthropogenic caused processes that govern the fate of substances at the SWI. 1. Stockdale, A., W. Davison, and H. Zhang, Micro-scale biogeochemical heterogeneity in sediments: A review of available technology and observed evidence. Earth-Science Reviews, 2009. 92(1-2): p. 81-97. 2. Fabricius, A.-L., et al., New Microprofiling and Micro Sampling System for Water Saturated Environmental Boundary Layers. Environmental Science & Technology, 2014.
An electrostatic CMOS/BiCMOS Lithium ion vibration-based harvester-charger IC
NASA Astrophysics Data System (ADS)
Torres, Erick Omar
Self-powered microsystems, such as wireless transceiver microsensors, appeal to an expanding application space in monitoring, control, and diagnosis for commercial, industrial, military, space, and biomedical products. As these devices continue to shrink, their microscale dimensions allow them to be unobtrusive and economical, with the potential to operate from typically unreachable environments and, in wireless network applications, deploy numerous distributed sensing nodes simultaneously. Extended operational life, however, is difficult to achieve since their limited volume space constrains the stored energy available, even with state-of-the-art technologies, such as thin-film lithium-ion batteries (Li Ion) and micro-fuel cells. Harvesting ambient energy overcomes this deficit by continually replenishing the energy reservoir and, as a result, indefinitely extending system lifetime. In this work, an electrostatic harvester that harnesses ambient kinetic energy from vibrations to charge an energy-storage device (e.g., a battery) is investigated, developed, and evaluated. The proposed harvester charges and holds the voltage across a vibration-sensitive variable capacitor so that vibrations can induce it to generate current into the battery when capacitance decreases (as its plates separate). The challenge is that energy is harnessed at relatively slow rates, producing low output power, and the electronics required to transfer it to charge a battery can easily demand more than the power produced. To this end, the system reduces losses by time-managing and biasing its circuits to operate only when needed and with just enough energy while charging the capacitor through an efficient quasi-lossless inductor-based precharger. As result, the proposed energy harvester stores a net energy gain in the battery during every vibration cycle. Two energy-harvesting integrated circuits (IC) were analyzed, designed, developed, and validated using a 0.7-im BiCMOS process and a 30-Hz mechanical variable capacitor. The precharger, harvester, monitoring, and control microelectronics of the first prototype draw sufficient power to operate and at the same time produce experimentally 1.27, 2.14, and 2.87 nJ per vibration cycle for battery voltages at 2.7, 3.5, and 4.2 V, which with 30-Hz vibrations produce 38.1, 64.2, and 86.1 nW. By incorporating into the system a self-tuning loop that adapts optimally the inductor-based precharger to varying battery voltages, the second prototype harnessed and gained 1.93, 2.43, and 3.89 nJ per vibration cycle at battery voltages 2.7, 3.5, and 4.2 V, generating 57.89, 73.02, and 116.55 nW at 30 Hz. The harvester ultimately charges from 2.7 to 4.2 V a 1-muF capacitor (which emulates a small thin-film Li Ion) in approximately 69 s, harnessing in the same length of time 47.9% more energy than with a non-adapting harvester.
Li, Tong; Piltz, Bastian; Podola, Björn; Dron, Anthony; de Beer, Dirk; Melkonian, Michael
2016-05-01
In the present study depth profiles of light, oxygen, pH and photosynthetic performance in an artificial biofilm of the green alga Halochlorella rubescens in a porous substrate photobioreactor (PSBR) were recorded with microsensors. Biofilms were exposed to different light intensities (50-1,000 μmol photons m(-2) s(-1) ) and CO2 levels (0.04-5% v/v in air). The distribution of photosynthetically active radiation showed almost identical trends for different surface irradiances, namely: a relatively fast drop to a depth of about 250 µm, (to 5% of the incident), followed by a slower decrease. Light penetrated into the biofilm deeper than the Lambert-Beer Law predicted, which may be attributed to forward scattering of light, thus improving the overall light availability. Oxygen concentration profiles showed maxima at a depth between 50 and 150 μm, depending on the incident light intensity. A very fast gas exchange was observed at the biofilm surface. The highest oxygen concentration of 3.2 mM was measured with 1,000 μmol photons m(-2) s(-1) and 5% supplementary CO2. Photosynthetic productivity increased with light intensity and/or CO2 concentration and was always highest at the biofilm surface; the stimulating effect of elevated CO2 concentration in the gas phase on photosynthesis was enhanced by higher light intensities. The dissolved inorganic carbon concentration profiles suggest that the availability of the dissolved free CO2 has the strongest impact on photosynthetic productivity. The results suggest that dark respiration could explain previously observed decrease in growth rate over cultivation time in this type of PSBR. Our results represent a basis for understanding the complex dynamics of environmental variables and metabolic processes in artificial phototrophic biofilms exposed to a gas phase and can be used to improve the design and operational parameters of PSBRs. © 2015 Wiley Periodicals, Inc.
Schneider, Philipp; Castell, Nuria; Vogt, Matthias; Dauge, Franck R; Lahoz, William A; Bartonova, Alena
2017-09-01
The recent emergence of low-cost microsensors measuring various air pollutants has significant potential for carrying out high-resolution mapping of air quality in the urban environment. However, the data obtained by such sensors are generally less reliable than that from standard equipment and they are subject to significant data gaps in both space and time. In order to overcome this issue, we present here a data fusion method based on geostatistics that allows for merging observations of air quality from a network of low-cost sensors with spatial information from an urban-scale air quality model. The performance of the methodology is evaluated for nitrogen dioxide in Oslo, Norway, using both simulated datasets and real-world measurements from a low-cost sensor network for January 2016. The results indicate that the method is capable of producing realistic hourly concentration fields of urban nitrogen dioxide that inherit the spatial patterns from the model and adjust the prior values using the information from the sensor network. The accuracy of the data fusion method is dependent on various factors including the total number of observations, their spatial distribution, their uncertainty (both in terms of systematic biases and random errors), as well as the ability of the model to provide realistic spatial patterns of urban air pollution. A validation against official data from air quality monitoring stations equipped with reference instrumentation indicates that the data fusion method is capable of reproducing city-wide averaged official values with an R 2 of 0.89 and a root mean squared error of 14.3 μg m -3 . It is further capable of reproducing the typical daily cycles of nitrogen dioxide. Overall, the results indicate that the method provides a robust way of extracting useful information from uncertain sensor data using only a time-invariant model dataset and the knowledge contained within an entire sensor network. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Sputtered highly oriented PZT thin films for MEMS applications
NASA Astrophysics Data System (ADS)
Kalpat, Sriram S.
Recently there has been an explosion of interest in the field of micro-electro-mechanical systems (MEMS). MEMS device technology has become critical in the growth of various fields like medical, automotive, chemical, and space technology. Among the many applications of ferroelectric thin films in MEMS devices, microfluidics is a field that has drawn considerable amount of research from bio-technology industries as well as chemical and semiconductor manufacturing industries. PZT thin films have been identified as best suited materials for micro-actuators and micro-sensors used in MEMS devices. A promising application for piezoelectric thin film based MEMS devices is disposable drug delivery systems that are capable of sensing biological parameters, mixing and delivering minute and precise amounts of drugs using micro-pumps or micro mixers. These devices call for low driving voltages, so that they can be battery operated. Improving the performance of the actuator material is critical in achieving battery operated disposal drug delivery systems. The device geometry and power consumption in MEMS devices largely depends upon the piezoelectric constant of the films, since they are most commonly used to convert electrical energy into a mechanical response of a membrane or cantilever and vice versa. Phenomenological calculation on the crystal orientation dependence of piezoelectric coefficients for PZT single crystal have reported a significant enhancement of the piezoelectric d33 constant by more than 3 times along [001] in the rhombohedral phase as compared to the conventionally used orientation PZT(111) since [111] is the along the spontaneous polarization direction. This could mean considerable improvement in the MEMS device performance and help drive the operating voltages lower. The motivation of this study is to investigate the crystal orientation dependence of both dielectric and piezoelectric coefficients of PZT thin films in order to select the appropriate orientation that could improve the MEMS device performance. Potential application of these devices is as battery operated disposable drug delivery systems. This work will also investigate the fabrication of a flexural plate wave based microfluidic device using the PZT thin film of appropriate orientation that would enhance the device performance. (Abstract shortened by UMI.)
Sensing magnetic flux density of artificial neurons with a MEMS device.
Tapia, Jesus A; Herrera-May, Agustin L; García-Ramírez, Pedro J; Martinez-Castillo, Jaime; Figueras, Eduard; Flores, Amira; Manjarrez, Elías
2011-04-01
We describe a simple procedure to characterize a magnetic field sensor based on microelectromechanical systems (MEMS) technology, which exploits the Lorentz force principle. This sensor is designed to detect, in future applications, the spiking activity of neurons or muscle cells. This procedure is based on the well-known capability that a magnetic MEMS device can be used to sense a small magnetic flux density. In this work, an electronic neuron (FitzHugh-Nagumo) is used to generate controlled spike-like magnetic fields. We show that the magnetic flux density generated by the hardware of this neuron can be detected with a new MEMS magnetic field sensor. This microdevice has a compact resonant structure (700 × 600 × 5 μm) integrated by an array of silicon beams and p-type piezoresistive sensing elements, which need an easy fabrication process. The proposed microsensor has a resolution of 80 nT, a sensitivity of 1.2 V.T(-1), a resonant frequency of 13.87 kHz, low power consumption (2.05 mW), quality factor of 93 at atmospheric pressure, and requires a simple signal processing circuit. The importance of our study is twofold. First, because the artificial neuron can generate well-controlled magnetic flux density, we suggest it could be used to analyze the resolution and performance of different magnetic field sensors intended for neurobiological applications. Second, the introduced MEMS magnetic field sensor may be used as a prototype to develop new high-resolution biomedical microdevices to sense magnetic fields from cardiac tissue, nerves, spinal cord, or the brain.
Ultrasonic friction power during Al wire wedge-wedge bonding
NASA Astrophysics Data System (ADS)
Shah, A.; Gaul, H.; Schneider-Ramelow, M.; Reichl, H.; Mayer, M.; Zhou, Y.
2009-07-01
Al wire bonding, also called ultrasonic wedge-wedge bonding, is a microwelding process used extensively in the microelectronics industry for interconnections to integrated circuits. The bonding wire used is a 25μm diameter AlSi1 wire. A friction power model is used to derive the ultrasonic friction power during Al wire bonding. Auxiliary measurements include the current delivered to the ultrasonic transducer, the vibration amplitude of the bonding tool tip in free air, and the ultrasonic force acting on the bonding pad during the bond process. The ultrasonic force measurement is like a signature of the bond as it allows for a detailed insight into mechanisms during various phases of the process. It is measured using piezoresistive force microsensors integrated close to the Al bonding pad (Al-Al process) on a custom made test chip. A clear break-off in the force signal is observed, which is followed by a relatively constant force for a short duration. A large second harmonic content is observed, describing a nonsymmetric deviation of the signal wave form from the sinusoidal shape. This deviation might be due to the reduced geometrical symmetry of the wedge tool. For bonds made with typical process parameters, several characteristic values used in the friction power model are determined. The ultrasonic compliance of the bonding system is 2.66μm/N. A typical maximum value of the relative interfacial amplitude of ultrasonic friction is at least 222nm. The maximum interfacial friction power is at least 11.5mW, which is only about 4.8% of the total electrical power delivered to the ultrasonic generator.
High-Q whispering-gallery mode sensor in liquids
NASA Astrophysics Data System (ADS)
Nadeau, Jay L.; Ilchenko, Vladimir S.; Kossakovski, Dmitri; Bearman, Gregory H.; Maleki, Lute
2002-06-01
Optical sensing of biomolecules on microfabricated glass surfaces requires surface coatings that minimize nonspecific binding while preserving the optical properties of the sensor. Microspheres with whispering-gallery (WG) modes can achieve quality factor (Q) levels many orders of magnitude greater than those of other WG-based microsensors: greater than 1010 in air, and greater than 109 in a variety of solvents, including methanol, H2O and phosphate buffered saline (PBS). The presence of dyes that absorb in the wavelength of the WG excitation in the evanescent zone can cause this Q value to drop by almost 3 orders of magnitude. Silanization of the surface with mercapto-terminal silanes is compatible with high Q (>109), but chemical cross-linking of streptavidin reduces the Q to 105-106 due to build-up of a thick, irregular layer of protein. However, linkage of biotin to the silane terminus preserves the Q at a ~2x107 and yields a reactive surface sensitive to avidin-containing ligands in a concentration-dependent manner. Improvements in the reliability of the surface chemistry show promise for construction of an ultrasensitive biosensor.
Periodic silicon nanostructures for spectroscopic microsensors
NASA Astrophysics Data System (ADS)
Wehrspohn, Ralf B.; Gesemann, Benjamin; Pergande, Daniel; Geppert, Torsten M.; Schweizer, Stefan L.; Moretton, Susanne; Lambrecht, Armin
2011-09-01
Periodic silicon nanostructures can be used for different kinds of gas sensors depending on the analyte concentration. First we present an optical gas sensor based on the classical non-dispersive infrared technique for ppm-concentration using ultra-compact photonic crystal gas cells. It is conceptually based on low group velocities inside a photonic crystal gas cell and anti-reflection layers coupling light into the device. Experimentally, an enhancement of the CO2 infrared absorption by a factor of 2.6 to 3.5 as compared to an empty cell, due to slow light inside a 2D silicon photonic crystal gas cell, was observed; this is in excellent agreement with numerical simulations. In addition we report on silicon nanotip arrays, suitable for gas ionization in ion mobility microspectrometers (micro-IMS) having detection ranges in principle down to the ppt-range. Such instruments allow the detection of explosives, chemical warfare agents, and illicit drugs, e.g., at airports. We describe the fabrication process of large-scale-ordered nanotips with different tip shapes. Both silicon microstructures have been fabricated by photoelectrochemical etching of silicon.
Bissett, Andrew; Neu, Thomas R.; de Beer, Dirk
2011-01-01
We investigated the ability of bacterial communities to colonize and dissolve two biogenic carbonates (Foraminifera and oyster shells). Bacterial carbonate dissolution in the upper water column is postulated to be driven by metabolic activity of bacteria directly colonising carbonate surfaces and the subsequent development of acidic microenvironments. We employed a combination of microsensor measurements, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and image analysis and molecular documentation of colonising bacteria to monitor microbial processes and document changes in shell surface topography. Bacterial communities rapidly colonised shell surfaces, forming dense biofilms with extracellular polymeric substance (EPS) deposits. Despite this, we found no evidence of bacterially mediated carbonate dissolution. Dissolution was not indicated by Ca2+ microprofiles, nor was changes in shell surface structure related to the presence of colonizing bacteria. Given the short time (days) settling carbonate material is actually in the twilight zone (500–1000 m), it is highly unlikely that microbial metabolic activity on directly colonised shells plays a significant role in dissolving settling carbonates in the shallow ocean. PMID:22102861
Bissett, Andrew; Neu, Thomas R; Beer, Dirk de
2011-01-01
We investigated the ability of bacterial communities to colonize and dissolve two biogenic carbonates (Foraminifera and oyster shells). Bacterial carbonate dissolution in the upper water column is postulated to be driven by metabolic activity of bacteria directly colonising carbonate surfaces and the subsequent development of acidic microenvironments. We employed a combination of microsensor measurements, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and image analysis and molecular documentation of colonising bacteria to monitor microbial processes and document changes in shell surface topography. Bacterial communities rapidly colonised shell surfaces, forming dense biofilms with extracellular polymeric substance (EPS) deposits. Despite this, we found no evidence of bacterially mediated carbonate dissolution. Dissolution was not indicated by Ca²⁺ microprofiles, nor was changes in shell surface structure related to the presence of colonizing bacteria. Given the short time (days) settling carbonate material is actually in the twilight zone (500-1000 m), it is highly unlikely that microbial metabolic activity on directly colonised shells plays a significant role in dissolving settling carbonates in the shallow ocean.
Choi, Andrew; Seo, Kyoung Duck; Kim, Do Wan; Kim, Bum Chang; Kim, Dong Sung
2017-02-14
Complex microparticles (MPs) bearing unique characteristics such as well-tailored sizes, various morphologies, and multi-compartments have been attempted to be produced by many researchers in the past decades. However, a conventionally used method of fabricating MPs, emulsion polymerization, has a limitation in achieving the aforementioned characteristics and several approaches such as the microfluidics-assisted (droplet-based microfluidics and flow lithography-based microfluidics), electrohydrodynamics (EHD)-based, centrifugation-based, and template-based methods have been recently suggested to overcome this limitation. The outstanding features of complex MPs engineered through these suggested methods have provided new opportunities for MPs to be applied in a wider range of applications including cell carriers, drug delivery agents, active pigments for display, microsensors, interface stabilizers, and catalyst substrates. Overall, the engineered MPs expose their potential particularly in the field of biomedical engineering as the increased complexity in the engineered MPs fulfills well the requirements of the high-end applications. This review outlines the current trends of newly developed techniques used for engineered MPs fabrication and focuses on the current state of engineered MPs in biomedical applications.
A local sensor for joint temperature and velocity measurements in turbulent flows
NASA Astrophysics Data System (ADS)
Salort, Julien; Rusaouën, Éléonore; Robert, Laurent; du Puits, Ronald; Loesch, Alice; Pirotte, Olivier; Roche, Philippe-E.; Castaing, Bernard; Chillà, Francesca
2018-01-01
We present the principle for a micro-sensor aimed at measuring local correlations of turbulent velocity and temperature. The operating principle is versatile and can be adapted for various types of flow. It is based on a micro-machined cantilever, on the tip of which a platinum resistor is patterned. The deflection of the cantilever yields an estimate for the local velocity, and the impedance of the platinum yields an estimate for the local temperature. The velocity measurement is tested in two turbulent jets: one with air at room temperature which allows us to compare with well-known calibrated reference anemometers, and another one in the GReC jet at CERN with cryogenic gaseous helium which allows a much larger range of resolved turbulent scales. The recording of temperature fluctuations is tested in the Barrel of Ilmenau which provides a controlled turbulent thermal flow in air. Measurements in the wake of a heated or cooled cylinder demonstrate the capability of the sensor to display the cross correlation between temperature and velocity correctly.
Freeze-Thaw Cycles and Soil Biogeochemistry: Implications for Greenhouse Gas emission
NASA Astrophysics Data System (ADS)
Rezanezhad, F.; Milojevic, T.; Oh, D. H.; Parsons, C. T.; Smeaton, C. M.; Van Cappellen, P.
2016-12-01
Freeze-thaw cycles represent a major natural climate forcing acting on soils at middle and high latitudes. Repeated freezing and thawing of soils changes their physical properties, geochemistry, and microbial community structure, which together govern the biogeochemical cycling of carbon and nutrients. In this presentation, we focus on how freeze-thaw cycles regulate carbon and nitrogen cycling and how these transformations influence greenhouse gas (GHG) fluxes. We present a novel approach, which combines the acquisition of physical and chemical data in a newly developed experimental soil column system. This system simulates realistic soil temperature profiles during freeze-thaw cycles. A high-resolution, Multi-Fiber Optode (MuFO) microsensor technique was used to detect oxygen (O2) continuously in the column at multiple depths. Surface and subsurface changes to gas and aqueous phase chemistry were measured to delineate the pathways and quantify soil respiration rates during freeze-thaw cycles. The results indicate that the time-dependent release of GHG from the soil surface is influenced by a combination of two key factors. Firstly, fluctuations in temperature and O2 availability affect soil biogeochemical activity and GHG production. Secondly, the recurrent development of a physical ice barrier prevents exchange of gaseous compounds between the soil and atmosphere during freezing conditions; removal of this barrier during thaw conditions increases GHG fluxes. During freezing, O2 levels in the unsaturated zone decreased due to restricted gas exchange with the atmosphere. As the soil thawed, O2 penetrated deeper into the soil enhancing the aerobic mineralization of organic carbon and nitrogen. Additionally, with the onset of thawing a pulse of gas flux occurred, which is attributed to the build-up of respiratory gases in the pore space during freezing. The latter implies enhanced anaerobic respiration as O2 supply ceases when the upper soil layer freezes.
A Newton-Euler Description for Sediment Movement.
NASA Astrophysics Data System (ADS)
Maniatis, G.; Hoey, T.; Drysdale, T.; Hodge, R. A.; Valyrakis, M.
2015-12-01
We present progress from the development of a purpose specific sensing system for sediment transport (Maniatis et al. 2013). This system utilises the capabilities of contemporary inertial micro-sensors (strap-down accelerometers and gyroscopes) to record fluvial transport from the moving body-frame of artificial pebbles modelled precisely to represent the motion of real, coarse sediment grains (D90=100 mm class). This type of measurements can be useful in the context of sediment transport only if the existing mathematical understanding of the process is updated. We test a new mathematical model which defines specifically how the data recorded in the body frame of the sensor (Lagrangian frame of reference) can be generalised to the reference frame of the flow (channel, Eulerian frame of reference). Given the association of the two most widely used models for sediment transport with those frames of reference (Shields' to Eulerian frame and HA. Einstein's to Lagrangian frame), this description builds the basis for the definition of explicit incipient motion criteria (Maniatis et al. 2015) and for the upscaling from point-grain scale measurements to averaged, cross-sectional, stream related metrics. Flume experiments where conducted in the Hydraulics laboratory of the University of Glasgow where a spherical sensor of 800 mm diameter and capable of recoding inertial dynamics at 80Hz frequency was tested under fluvial transport conditions. We managed to measure the dynamical response of the unit during pre-entrainment/entrainment transitions, on scaled and non-scaled to the sensor's diameter bed and for a range of hydrodynamic conditions (slope up to 0.02 and flow increase rate up to 0.05m3.s-1. Preliminary results from field deployment on a mixed bedrock-alluvial channel are also presented. Maniatis et. al 2013 J. Sens. Actuator Netw. 2013, 2(4), 761-779; Maniatis et. al 2015: "CALCULATION OF EXPLICIT PROBABILITY OF ENTRAINMENT BASED ON INERTIAL ACCELERATION MEASUREMENTS" J. Hydraulic Engineering, Under review.
Multisensor Instrument for Real-Time Biological Monitoring
NASA Technical Reports Server (NTRS)
Zhang, Sean (Zhanxiang); Xu, Guoda; Qiu, Wei; Lin, Freddie
2004-01-01
The figure schematically depicts an instrumentation system, called a fiber optic-based integration system (FOBIS), that is undergoing development to enable real-time monitoring of fluid cell cultures, bioprocess flows, and the like. The FOBIS design combines a micro flow cytometer (MFC), a microphotometer (MP), and a fluorescence-spectrum- or binding-force-measuring micro-sensor (MS) in a single instrument that is capable of measuring multiple biological parameters simultaneously or sequentially. The fiber-optic-based integration system is so named because the MFC, the MP, and the MS are integrated into a single optical system that is coupled to light sources and photometric equipment via optical fibers. The optical coupling components also include a wavelength-division multiplexer and diffractive optical elements. The FOBIS includes a laserdiode- and fiber-optic-based optical trapping subsystem (optical tweezers ) with microphotometric and micro-sensing capabilities for noninvasive confinement and optical measurement of relevant parameters of a single cell or other particle. Some of the measurement techniques implemented together by the FOBIS have long been used separately to obtain basic understanding of the optical properties of individual cells and other organisms, the optical properties of populations of organisms, and the interrelationships among these properties, physiology of the organisms, and physical processes that govern the media that surround the organisms. For example, flow cytometry yields information on numerical concentrations, cross-sectional areas, and types of cells or other particles. Micro-sensing can be used to measure pH and concentrations of oxygen, carbon dioxide, glucose, metabolites, calcium, and antigens in a cell-culture fluid, thereby providing feedback that can be helpful in improving control over a bioprocess. Microphotometry (including measurements of scattering and fluorescence) can yield further information about optically trapped individual particles. In addition to the multifunctionality not previously available in a single biological monitoring system, the FOBIS offers advantages of low mass, sensitivity, accuracy, portability, low cost, compactness (the overall dimensions of the fully developed FOBIS sensor head are expected to be less than 1 by 1 by 2 cm), and immunity to electromagnetic interference at suboptical frequencies. FOBIS could be useful in a variety of laboratory and field settings in such diverse endeavors as medical, veterinary, and general biological research; medical and veterinary diagnosis monitoring of industrial bioprocesses; and analysis of biological contaminants in air, water, and food.
Microscale Particulate Classifiers (MiPAC) Being Developed
NASA Technical Reports Server (NTRS)
Greenberg, Paul S.
2001-01-01
The NASA Glenn Research Center is developing microscale sensors to characterize atmospheric-borne particulates. The devices are fabricated using MEMS (microelectromechanical systems) technologies. These technologies are derived from those originally developed in support of the semiconductor processing industry. The resulting microsensors can characterize a wide range of particles and are, therefore, suitable to a broad range of applications. This project is supported under a collaborative program called the Glennan Microsystems Initiative. The initiative comprises members of NASA Glenn Research Center, various university affiliates from the State of Ohio, and a number of participating industrial partners. Funding is jointly provided by NASA, the State of Ohio, and industrial members. The work described here is a collaborative arrangement between researchers at Glenn, the University of Minnesota, The National Institute of Standards and Technology (NIST), and the Cleveland State University. Actual device fabrication is conducted at Glenn and at the laboratories of Case Western Reserve University. Case Western is also located in Cleveland, Ohio, and is a participating member of the initiative. The principal investigator for this project is Paul S. Greenberg of Glenn. Two basic types of devices are being developed, and target different ranges of particle sizes. The first class of devices, which is used to measure nanoparticles (i.e., particles in the range of 0.002 to 1 mm), is based on the technique of Electrical Mobility Classification. This technique also affords the valuable ability of measuring the electrical charge state of the particles. Such information is important in the understanding of agglomeration mechanisms and is useful in the development of methods for particle repulsion. The second type of device being developed, which utilizes optical scattering, is suitable for particles larger than 1 mm. This technique also provides information on particle shape and composition. Applications for these sensors include fundamental planetary climatology, monitoring and filtration in spacecraft, human habitation modules and related systems, characterization of particulate emissions from propulsion and power systems, and as early warning sensors for both space-based and ter-restrial fire detection. These devices are also suitable for characterizing biological compounds such as allergens, infectious agents, and biotoxic agents.
The mini climatic city a dedicated space for technological innovations devoted to Sustainable City
NASA Astrophysics Data System (ADS)
Derkx, François; Lebental, Bérengère; Merliot, Erick; Dumoulin, Jean; Bourquin, Frédéric
2015-04-01
Our cities, from megalopolis to rural commune, are systems of an extraordinary technological and human complexity. Their balance is threatened by the growing population and rarefaction of resources. Massive urbanization endanges the environment, while global climate change, through natural hazards generated (climatic, hydrological and geological), threats people and goods. Connect the city, that is to say, design and spread systems able to route, between multiple actors, a very large amount of heterogeneous information natures and analyzed for various purposes, is at the heart of the hopes to make our cities more sustainable: climate-resilient, energy efficient and actresses of the energy transition, attractive to individuals and companies, health and environment friendly. If multiple players are already aware of this need, progress is slow because, beyond the only connectivity, it is the urban intelligence that will create the sustainable city, through coordinated capabilities of Perception, Decision and Action: to measure phenomena; to analyze their impact on urban sustainability in order to define strategies for improvement; to effectively act on the cause of the phenomenon. In this very active context with a strong societal impact, the Sense-City project aims to accelerate research and innovation in the field of sustainable city, particularly in the field of micro and nanosensors. The project is centered around a "mini climatic City", a unique mobile environmental chamber in Europe of 400m² that can accommodate realistic models of city main components, namely buildings, infrastructures, distribution networks or basements. This R&D test place, available in draft form from January 2015 and in finalized version in 2016, will allow to validate, in realistic conditions, innovative technologies performances for the sustainable city, especially micro- and nano-sensors, at the end of their development laboratory and upstream of industrialization. R & D platform located in the heart of the Cité Descartes in Paris Est and open to both academic as industrial and communities, Sense-City participates in the positioning of the Cité Descartes as a flagship tertiary center for the city of the future. The areas of interest cover the energy performance of buildings and neighborhoods, the sanitary quality of the frame (indoor air pollution), the quality and sustainability of urban networks (transport, fluid), the quality of outdoor air, soil and water, control of waste storage areas, sustainability and infrastructure security. In the framework of this project, a first outdoor test bed was designed and built in 2014. Various sensing capacity have been implemented and first experimentations started in 2015. The project partners, IFSTTAR, ESIEE-CCIP LPICM (UMR CNRS Ecole Polytechnique), CSTB, INRIA and UPEM, controls the entire value chain for the development of innovative products for the sustainable city, nano or prototyping microsensors up to validation in real conditions, not to mention the steps of integration, packaging and deployment of the sensors or the processing steps, modeling and representation of information.
3D packaging of a microfluidic system with sensory applications
NASA Astrophysics Data System (ADS)
Morrissey, Anthony; Kelly, Gerard; Alderman, John C.
1997-09-01
Among the main benefits of microsystem technology are its contributions to cost reductio, reliability and improved performance. however, the packaging of microsystems, and particularly microsensor, has proven to be one of the biggest limitations to their commercialization and the packaging of silicon sensor devices can be the most costly part of their fabrication. This paper describes the integration of 3D packaging of a microsystem. Central to the operation of the 3D demonstrator is a micromachined silicon membrane pump to supply fluids to a sensing chamber constructed about the active area of a sensor chip. This chip carries ISFET based chemical sensors, pressure sensors and thermal sensors. The electronics required for controlling and regulating the activity of the various sensors ar also available on this chip and as other chips in the 3D assembly. The demonstrator also contains a power supply module with optical fiber interconnections. All of these modules are integrated into a single plastic- encapsulated 3D vertical multichip module. The reliability of such a structure, initially proposed by Val was demonstrated by Barrett et al. An additional module available for inclusion in some of our assemblies is a test chip capable of measuring the packaging-induced stress experienced during and after assembly. The packaging process described produces a module with very high density and utilizes standard off-the-shelf components to minimize costs. As the sensor chip and micropump include micromachined silicon membranes and microvalves, the packaging of such structures has to allow consideration for the minimization of the packaging-induced stresses. With this in mind, low stress techniques, including the use of soft glob-top materials, were employed.
Energy harvesting from arterial blood pressure for powering embedded micro sensors in human brain
NASA Astrophysics Data System (ADS)
Nanda, Aditya; Karami, M. Amin
2017-03-01
This manuscript investigates energy harvesting from arterial blood pressure via the piezoelectric effect for the purpose of powering embedded micro-sensors in the human brain. One of the major hurdles in recording and measuring electrical data in the human nervous system is the lack of implantable and long term interfaces that record neural activity for extended periods of time. Recently, some authors have proposed micro sensors implanted deep in the brain that measure local electrical and physiological data which are then communicated to an external interrogator. This paper proposes a way of powering such interfaces. The geometry of the proposed harvester consists of a piezoelectric, circular, curved bimorph that fits into the blood vessel (specifically, the Carotid artery) and undergoes bending motion because of blood pressure variation. In addition, the harvester thickness is constrained such that it does not modify arterial wall dynamics. This transforms the problem into a known strain problem and the integral form of Gauss's law is used to obtain an equation relating arterial wall motion to the induced voltage. The theoretical model is validated by means of a Multiphysics 3D-FEA simulation comparing the harvested power at different load resistances. The peak harvested power achieved for the Carotid artery (proximal to Brain), with PZT-5H, was 11.7 μW. The peak power for the Aorta was 203.4 μW. Further, the variation of harvested power with variation in the harvester width and thickness, arterial contractility, and pulse rate is investigated. Moreover, potential application of the harvester as a chronic, implantable and real-time Blood pressure sensor is considered. Energy harvested via this mechanism will also have applications in long-term, implantable Brain Micro-stimulation.
Schwermer, Carsten U.; Lavik, Gaute; Abed, Raeid M. M.; Dunsmore, Braden; Ferdelman, Timothy G.; Stoodley, Paul; Gieseke, Armin; de Beer, Dirk
2008-01-01
We studied the impact of NO3− on the bacterial community composition, diversity, and function in in situ industrial, anaerobic biofilms by combining microsensor profiling, 15N and 35S labeling, and 16S rRNA gene-based fingerprinting. Biofilms were grown on carbon steel coupons within a system designed to treat seawater for injection into an oil field for pressurized oil recovery. NO3− was added to the seawater in an attempt to prevent bacterial H2S generation and microbially influenced corrosion in the field. Microprofiling of nitrogen compounds and redox potential inside the biofilms showed that the zone of highest metabolic activity was located close to the metal surface, correlating with a high bacterial abundance in this zone. Upon addition, NO3− was mainly reduced to NO2−. In biofilms grown in the absence of NO3−, redox potentials of <−450 mV at the metal surface suggested the release of Fe2+. NO3− addition to previously untreated biofilms induced a decline (65%) in bacterial species richness, with Methylophaga- and Colwellia-related sequences having the highest number of obtained clones in the clone library. In contrast, no changes in community composition and potential NO3− reduction occurred upon subsequent withdrawal of NO3−. Active sulfate reduction was below detection levels in all biofilms, but S isotope fractionation analysis of sulfide deposits suggested that it must have occurred either at low rates or episodically. Scanning electron microscopy revealed that pitting corrosion occurred on all coupons, independent of the treatment. However, uniform corrosion was clearly mitigated by NO3− addition. PMID:18344353
Neuroprotective "agents" in surgery. Secret "agent" man, or common "agent" machine?
NASA Technical Reports Server (NTRS)
Andrews, R. J.
1999-01-01
The search for clinically-effective neuroprotective agents has received enormous support in recent years--an estimated $200 million by pharmaceutical companies on clinical trials for traumatic brain injury alone. At the same time, the pathophysiology of brain injury has proved increasingly complex, rendering the likelihood of a single agent "magic bullet" even more remote. On the other hand, great progress continues with technology that makes surgery less invasive and less risky. One example is the application of endovascular techniques to treat coronary artery stenosis, where both the invasiveness of sternotomy and the significant neurological complication rate (due to microemboli showering the cerebral vasculature) can be eliminated. In this paper we review aspects of intraoperative neuroprotection both present and future. Explanations for the slow progress on pharmacologic neuroprotection during surgery are presented. Examples of technical advances that have had great impact on neuroprotection during surgery are given both from coronary artery stenosis surgery and from surgery for Parkinson's disease. To date, the progress in neuroprotection resulting from such technical advances is an order of magnitude greater than that resulting from pharmacologic agents used during surgery. The progress over the last 20 years in guidance during surgery (CT and MRI image-guidance) and in surgical access (endoscopic and endovascular techniques) will soon be complemented by advances in our ability to evaluate biological tissue intraoperatively in real-time. As an example of such technology, the NASA Smart Probe project is considered. In the long run (i.e., in 10 years or more), pharmacologic "agents" aimed at the complex pathophysiology of nervous system injury in man will be the key to true intraoperative neuroprotection. In the near term, however, it is more likely that mundane "agents" based on computers, microsensors, and microeffectors will be the major impetus to improved intraoperative neuroprotection.
NASA Astrophysics Data System (ADS)
Dinzi, R.; Hamonangan, TS; Fahmi, F.
2018-02-01
In the current distribution system, a large-capacity distribution transformer supplies loads to remote locations. The use of 220/380 V network is nowadays less common compared to 20 kV network. This results in losses due to the non-optimal distribution transformer, which neglected the load location, poor consumer profile, and large power losses along the carrier. This paper discusses how high voltage distribution systems (HVDS) can be a better system used in distribution networks than the currently used distribution system (Low Voltage Distribution System, LVDS). The proposed change of the system into the new configuration is done by replacing a large-capacity distribution transformer with some smaller-capacity distribution transformers and installed them in positions that closest to the load. The use of high voltage distribution systems will result in better voltage profiles and fewer power losses. From the non-technical side, the annual savings and payback periods on high voltage distribution systems will also be the advantage.
Energy Management of Smart Distribution Systems
NASA Astrophysics Data System (ADS)
Ansari, Bananeh
Electric power distribution systems interface the end-users of electricity with the power grid. Traditional distribution systems are operated in a centralized fashion with the distribution system owner or operator being the only decision maker. The management and control architecture of distribution systems needs to gradually transform to accommodate the emerging smart grid technologies, distributed energy resources, and active electricity end-users or prosumers. The content of this document concerns with developing multi-task multi-objective energy management schemes for: 1) commercial/large residential prosumers, and 2) distribution system operator of a smart distribution system. The first part of this document describes a method of distributed energy management of multiple commercial/ large residential prosumers. These prosumers not only consume electricity, but also generate electricity using their roof-top solar photovoltaics systems. When photovoltaics generation is larger than local consumption, excess electricity will be fed into the distribution system, creating a voltage rise along the feeder. Distribution system operator cannot tolerate a significant voltage rise. ES can help the prosumers manage their electricity exchanges with the distribution system such that minimal voltage fluctuation occurs. The proposed distributed energy management scheme sizes and schedules each prosumer's ES to reduce the electricity bill and mitigate voltage rise along the feeder. The second part of this document focuses on emergency energy management and resilience assessment of a distribution system. The developed emergency energy management system uses available resources and redundancy to restore the distribution system's functionality fully or partially. The success of the restoration maneuver depends on how resilient the distribution system is. Engineering resilience terminology is used to evaluate the resilience of distribution system. The proposed emergency energy management scheme together with resilience assessment increases the distribution system operator's preparedness for emergency events.
Insect-Inspired Flight Control for Unmanned Aerial Vehicles
NASA Technical Reports Server (NTRS)
Thakoor, Sarita; Stange, G.; Srinivasan, M.; Chahl, Javaan; Hine, Butler; Zornetzer, Steven
2005-01-01
Flight-control and navigation systems inspired by the structure and function of the visual system and brain of insects have been proposed for a class of developmental miniature robotic aircraft called "biomorphic flyers" described earlier in "Development of Biomorphic Flyers" (NPO-30554), NASA Tech Briefs, Vol. 28, No. 11 (November 2004), page 54. These form a subset of biomorphic explorers, which, as reported in several articles in past issues of NASA Tech Briefs ["Biomorphic Explorers" (NPO-20142), Vol. 22, No. 9 (September 1998), page 71; "Bio-Inspired Engineering of Exploration Systems" (NPO-21142), Vol. 27, No. 5 (May 2003), page 54; and "Cooperative Lander-Surface/Aerial Microflyer Missions for Mars Exploration" (NPO-30286), Vol. 28, No. 5 (May 2004), page 36], are proposed small robots, equipped with microsensors and communication systems, that would incorporate crucial functions of mobility, adaptability, and even cooperative behavior. These functions are inherent to biological organisms but are challenging frontiers for technical systems. Biomorphic flyers could be used on Earth or remote planets to explore otherwise difficult or impossible to reach sites. An example of an exploratory task of search/surveillance functions currently being tested is to obtain high-resolution aerial imagery, using a variety of miniaturized electronic cameras. The control functions to be implemented by the systems in development include holding altitude, avoiding hazards, following terrain, navigation by reference to recognizable terrain features, stabilization of flight, and smooth landing. Flying insects perform these and other functions remarkably well, even though insect brains contains fewer than 10(exp -4) as many neurons as does the human brain. Although most insects have immobile, fixed-focus eyes and lack stereoscopy (and hence cannot perceive depth directly), they utilize a number of ingenious strategies for perceiving, and navigating in, three dimensions. Despite their lack of stereoscopy, insects infer distances to potential obstacles and other objects from image motion cues that result from their own motions in the environment. The concept of motion of texture in images as a source of motion cues is denoted generally as the concept of optic or optical flow. Computationally, a strategy based on optical flow is simpler than is stereoscopy for avoiding hazards and following terrain. Hence, this strategy offers the potential to design vision-based control computing subsystems that would be more compact, would weigh less, and would demand less power than would subsystems of equivalent capability based on a conventional stereoscopic approach.
Rathnayake, R M L D; Song, Y; Tumendelger, A; Oshiki, M; Ishii, S; Satoh, H; Toyoda, S; Yoshida, N; Okabe, S
2013-12-01
Emission of nitrous oxide (N2O) during biological wastewater treatment is of growing concern since N2O is a major stratospheric ozone-depleting substance and an important greenhouse gas. The emission of N2O from a lab-scale granular sequencing batch reactor (SBR) for partial nitrification (PN) treating synthetic wastewater without organic carbon was therefore determined in this study, because PN process is known to produce more N2O than conventional nitrification processes. The average N2O emission rate from the SBR was 0.32 ± 0.17 mg-N L(-1) h(-1), corresponding to the average emission of N2O of 0.8 ± 0.4% of the incoming nitrogen load (1.5 ± 0.8% of the converted NH4(+)). Analysis of dynamic concentration profiles during one cycle of the SBR operation demonstrated that N2O concentration in off-gas was the highest just after starting aeration whereas N2O concentration in effluent was gradually increased in the initial 40 min of the aeration period and was decreased thereafter. Isotopomer analysis was conducted to identify the main N2O production pathway in the reactor during one cycle. The hydroxylamine (NH2OH) oxidation pathway accounted for 65% of the total N2O production in the initial phase during one cycle, whereas contribution of the NO2(-) reduction pathway to N2O production was comparable with that of the NH2OH oxidation pathway in the latter phase. In addition, spatial distributions of bacteria and their activities in single microbial granules taken from the reactor were determined with microsensors and by in situ hybridization. Partial nitrification occurred mainly in the oxic surface layer of the granules and ammonia-oxidizing bacteria were abundant in this layer. N2O production was also found mainly in the oxic surface layer. Based on these results, although N2O was produced mainly via NH2OH oxidation pathway in the autotrophic partial nitrification reactor, N2O production mechanisms were complex and could involve multiple N2O production pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.
Methods and tools for profiling and control of distributed systems
NASA Astrophysics Data System (ADS)
Sukharev, R.; Lukyanchikov, O.; Nikulchev, E.; Biryukov, D.; Ryadchikov, I.
2018-02-01
This article is devoted to the topic of profiling and control of distributed systems. Distributed systems have a complex architecture, applications are distributed among various computing nodes, and many network operations are performed. Therefore, today it is important to develop methods and tools for profiling distributed systems. The article analyzes and standardizes methods for profiling distributed systems that focus on simulation to conduct experiments and build a graph model of the system. The theory of queueing networks is used for simulation modeling of distributed systems, receiving and processing user requests. To automate the above method of profiling distributed systems the software application was developed with a modular structure and similar to a SCADA-system.
Thermal Distribution System | Energy Systems Integration Facility | NREL
Thermal Distribution System Thermal Distribution System The Energy Systems Integration Facility's integrated thermal distribution system consists of a thermal water loop connected to a research boiler and . Photo of the roof of the Energy Systems Integration Facility. The thermal distribution bus allows
Evidence for water-mediated mechanisms in coral–algal interactions
Jorissen, Hendrikje; Skinner, Christina; Osinga, Ronald; de Beer, Dirk
2016-01-01
Although many coral reefs have shifted from coral-to-algal dominance, the consequence of such a transition for coral–algal interactions and their underlying mechanisms remain poorly understood. At the microscale, it is unclear how diffusive boundary layers (DBLs) and surface oxygen concentrations at the coral–algal interface vary with algal competitors and competitiveness. Using field observations and microsensor measurements in a flow chamber, we show that coral (massive Porites) interfaces with thick turf algae, macroalgae, and cyanobacteria, which are successful competitors against coral in the field, are characterized by a thick DBL and hypoxia at night. In contrast, coral interfaces with crustose coralline algae, conspecifics, and thin turf algae, which are poorer competitors, have a thin DBL and low hypoxia at night. Furthermore, DBL thickness and hypoxia at the interface with turf decreased with increasing flow speed, but not when thick turf was upstream. Our results support the importance of water-mediated transport mechanisms in coral–algal interactions. Shifts towards algal dominance, particularly dense assemblages, may lead to thicker DBLs, higher hypoxia, and higher concentrations of harmful metabolites and pathogens along coral borders, which in turn may facilitate algal overgrowth of live corals. These effects may be mediated by flow speed and orientation. PMID:27512146
Internal and External Temperature Monitoring of a Li-Ion Battery with Fiber Bragg Grating Sensors
Novais, Susana; Nascimento, Micael; Grande, Lorenzo; Domingues, Maria Fátima; Antunes, Paulo; Alberto, Nélia; Leitão, Cátia; Oliveira, Ricardo; Koch, Stephan; Kim, Guk Tae; Passerini, Stefano; Pinto, João
2016-01-01
The integration of fiber Bragg grating (FBG) sensors in lithium-ion cells for in-situ and in-operando temperature monitoring is presented herein. The measuring of internal and external temperature variations was performed through four FBG sensors during galvanostatic cycling at C-rates ranging from 1C to 8C. The FBG sensors were placed both outside and inside the cell, located in the center of the electrochemically active area and at the tab-electrode connection. The internal sensors recorded temperature variations of 4.0 ± 0.1 °C at 5C and 4.7 ± 0.1 °C at 8C at the center of the active area, and 3.9 ± 0.1 °C at 5C and 4.0 ± 0.1 °C at 8C at the tab-electrode connection, respectively. This study is intended to contribute to detection of a temperature gradient in real time inside a cell, which can determine possible damage in the battery performance when it operates under normal and abnormal operating conditions, as well as to demonstrate the technical feasibility of the integration of in-operando microsensors inside Li-ion cells. PMID:27589749
Analysis of Deflection Enhancement Using Epsilon Assembly Microcantilevers Based Sensors
Khaled, Abdul-Rahim A.; Vafai, Kambiz
2011-01-01
The present work analyzes theoretically and verifies the advantage of utilizing ɛ-microcantilever assemblies in microsensing applications. The deflection profile of these innovative ɛ-assembly microcantilevers is compared with that of the rectangular microcantilever and modified triangular microcantlever. Various force-loading conditions are considered. The theorem of linear elasticity for thin beams is used to obtain the deflections. The obtained defections are validated against an accurate numerical solution utilizing finite element method with maximum deviation less than 10 percent. It is found that the ɛ-assembly produces larger deflections than the rectangular microcantilever under the same base surface stress and same extension length. In addition, the ɛ-microcantilever assembly is found to produce larger deflection than the modified triangular microcantilever. This deflection enhancement is found to increase as the ɛ-assembly’s free length decreases for various types of force loading conditions. Consequently, the ɛ-microcantilever is shown to be superior in microsensing applications as it provides favorable high detection capability with a reduced susceptibility to external noises. Finally, this work paves a way for experimentally testing the ɛ-assembly to show whether detective potential of microsensors can be increased. PMID:22163694
Hou, Jianwen; Cui, Lele; Chen, Runhai; Xu, Xiaodong; Chen, Jiayue; Yin, Ligang; Liu, Jingchuan; Shi, Qiang; Yin, Jinghua
2018-03-01
A versatile platform allowing capture and detection of normal and dysfunctional cells on the same patterned surface is important for accessing the cellular mechanism, developing diagnostic assays, and implementing therapy. Here, an original and effective method for fabricating binary polymer brushes pattern is developed for controlled cell adhesion. The binary polymer brushes pattern, composed of poly(N-isopropylacrylamide) (PNIPAAm) and poly[poly(ethylene glycol) methyl ether methacrylate] (POEGMA) chains, is simply obtained via a combination of surface-initiated photopolymerization and surface-activated free radical polymerization. This method is unique in that it does not utilize any protecting groups or procedures of backfilling with immobilized initiator. It is demonstrated that the precise and well-defined binary polymer patterns with high resolution are fabricated using this facile method. PNIPAAm chains capture and release cells by thermoresponsiveness, while POEGMA chains possess high capability to capture dysfunctional cells specifically, inducing a switch of normal red blood cells (RBCs) arrays to hemolytic RBCs arrays on the pattern with temperature. This novel platform composed of binary polymer brush pattern is smart and versatile, which opens up pathways to potential applications as microsensors, biochips, and bioassays. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Baur, Jeffery W.; Slinker, Keith; Kondash, Corey
2017-04-01
Understanding the shear strain, viscoelastic response, and onset of damage within bonded composites is critical to their design, processing, and reliability. This presentation will discuss the multidisciplinary research conducted which led to the conception, development, and demonstration of two methods for measuring the shear within a bonded joint - dualplane digital image correlation (DIC) and a micro-cantilever shear sensor. The dual plane DIC method was developed to measure the strain field on opposing sides of a transparent single-lap joint in order to spatially quantify the joint shear strain. The sensor consists of a single glass fiber cantilever beam with a radially-grown forest of carbon nanotubes (CNTs) within a capillary pore. When the fiber is deflected, the internal radial CNT array is compressed against an electrode within the pore and the corresponding decrease in electrical resistance is correlated with the external loading. When this small, simple, and low-cost sensor was integrated within a composite bonded joint and cycled in tension, the onset of damage prior to joint failure was observed. In a second sample configuration, both the dual plane DIC and the hair sensor detected viscoplastic changes in the strain of the sample in response to continued loading.
Electrochemical Microsensors for the Detection of Cadmium(II) and Lead(II) Ions in Plants
Krystofova, Olga; Trnkova, Libuse; Adam, Vojtech; Zehnalek, Josef; Hubalek, Jaromir; Babula, Petr; Kizek, Rene
2010-01-01
Routine determination of trace metals in complex media is still a difficult task for many analytical instruments. The aim of this work was to compare three electro-chemical instruments [a standard potentiostat (Autolab), a commercially available miniaturized potentiostat (PalmSens) and a homemade micropotentiostat] for easy-to-use and sensitive determination of cadmium(II) and lead(II) ions. The lowest detection limits (hundreds of pM) for both metals was achieved by using of the standard potentiostat, followed by the miniaturized potentiostat (tens of nM) and the homemade instrument (hundreds of nM). Nevertheless, all potentiostats were sensitive enough to evaluate contamination of the environment, because the environmental limits for both metals are higher than detection limits of the instruments. Further, we tested all used potentiostats and working electrodes on analysis of environmental samples (rainwater, flour and plant extract) with artificially added cadmium(II) and lead(II). Based on the similar results obtained for all potentiostats we choose a homemade instrument with a carbon tip working electrode for our subsequent environmental experiments, in which we analyzed maize and sunflower seedlings and rainwater obtained from various sites in the Czech Republic. PMID:22219663
An aptamer nanopore-enabled microsensor for detection of theophylline.
Feng, Silu; Chen, Changtian; Wang, Wei; Que, Long
2018-05-15
This paper reports an aptamer-based nanopore thin film sensor for detecting theophylline in the buffer solution and complex fluids including plant extracts and serum samples. Compared to antibody-based detection, aptamer-based detection offers many advantages such as low cost and high stability at elevated temperatures. Experiments found that this type of sensor can readily detect theophylline at a concentration as low as 0.05µM, which is much lower than the detection limit of current lab-based equipment such as liquid chromatography (LC). Experiments also found that the aptamer-based sensor has good specificity, selectivity, and reasonable reusability with a significantly improved dynamic detection range. By using the same nanopore thin film sensors as the reference sensors to further mitigate the non-specific binding effect, the theophylline in plant extracts and serum has been detected. Only a small amount (~1μL) of plant extracts or serum samples is required to measure theophylline. Its low cost and ease-of-operation make this type of sensor suitable for point-of-care application to monitor the theophylline level of patients in real time. Copyright © 2018 Elsevier B.V. All rights reserved.
The physical characteristics of match-play in English schoolboy and academy rugby union.
Read, Dale B; Jones, Ben; Phibbs, Padraic J; Roe, Gregory A B; Darrall-Jones, Joshua; Weakley, Jonathon J S; Till, Kevin
2018-03-01
The aim was to compare the physical characteristics of under-18 academy and schoolboy rugby union competition by position (forwards and backs). Using a microsensor unit, match characteristics were recorded in 66 players. Locomotor characteristics were assessed by maximum sprint speed (MSS) and total, walking, jogging, striding and sprinting distances. The slow component (<2 m · s -1 ) of PlayerLoad TM (PL slow ), which is the accumulated accelerations from the three axes of movement, was analysed as a measure of low-speed activity (e.g., rucking). A linear mixed-model was assessed with magnitude-based inferences. Academy forwards and backs almost certainly and very likely covered greater total distance than school forwards and backs. Academy players from both positions were also very likely to cover greater jogging distances. Academy backs were very likely to accumulate greater PL slow and the academy forwards a likely greater sprinting distance than school players in their respective positions. The MSS, total, walking and sprinting distances were greater in backs (likely-almost certainly), while forwards accumulated greater PL slow (almost certainly) and jogging distance (very likely). The results suggest that academy-standard rugby better prepares players to progress to senior competition compared to schoolboy rugby.
Comprehensive and critical literature review on insitu micro-sensors for application in tribology
NASA Astrophysics Data System (ADS)
Ling, Frederick F.; Wang, Ning; Murray, S. F.
1994-04-01
Two filters have been invoked in this survey of literature on sensors: (1) only those which might have relevance, direct or potential, to machinery condition sensing are included; (2) only those which might lend themselves to, presently or potentially, fiber-optical mode of information transmission are included. 190 records were selected to review from the 28,000 found using the University of Texas at Austin's U-Search and the Engineering Index, augmented by several commercial data bases, under LITERATURE ON SENSORS. Throughout, a sensor or transducer is understood to be a device that provides a usable output in response to a specific measurand; it is understood that such devices are called different names in different fields. This project has a highly restricted scope. The goal of the project concerns chemical as well as physical sensors of micro-dimension pertaining to lubricated contacts as to abrasive wear, friction, corrosive wear, cracks, micro-partile analysis, identification of surface film formation, load, miro-particle detection, position, speed, surface damage, and temperature. A research need analysis was proposed in anticipation of the aforementioned fact that few sensors in this context would be in-situ, let alone being of micro-dimension.
From computers to ubiquitous computing by 2010: health care.
Aziz, Omer; Lo, Benny; Pansiot, Julien; Atallah, Louis; Yang, Guang-Zhong; Darzi, Ara
2008-10-28
Over the past decade, miniaturization and cost reduction in semiconductors have led to computers smaller in size than a pinhead with powerful processing abilities that are affordable enough to be disposable. Similar advances in wireless communication, sensor design and energy storage have meant that the concept of a truly pervasive 'wireless sensor network', used to monitor environments and objects within them, has become a reality. The need for a wireless sensor network designed specifically for human body monitoring has led to the development of wireless 'body sensor network' (BSN) platforms composed of tiny integrated microsensors with on-board processing and wireless data transfer capability. The ubiquitous computing abilities of BSNs offer the prospect of continuous monitoring of human health in any environment, be it home, hospital, outdoors or the workplace. This pervasive technology comes at a time when Western world health care costs have sharply risen, reflected by increasing expenditure on health care as a proportion of gross domestic product over the last 20 years. Drivers of this rise include an ageing post 'baby boom' population, higher incidence of chronic disease and the need for earlier diagnosis. This paper outlines the role of pervasive health care technologies in providing more efficient health care.
NASA Astrophysics Data System (ADS)
Kim, Onnuri; Park, Moon Jeong
2015-03-01
Electroactive polymer (EAP) actuators that show reversible deformation under external electric stimulus have attracted great attention toward a range of biomimetic applications such as microsensors and artificial muscles. Key challenges to advance the technologies can be placed on the achievement of fast response time, low driving voltage, and durable operation in air. In present study, we are motivated to solve these issues by employing self-assembled block copolymers containing ionic liquids (ILs) as polymer layers in the actuator based on knowledge of factors affecting electromechanical properties of actuators. By controlling the block architecture and molecular weight of block copolymers, bending strain and durability were controlled in a straightforward manner. It has also been revealed that the type of IL makes impact on the EAP actuator performance by determining ion migration dynamics. Our actuators demonstrated large bending strains (up to 4%) under low voltages of 1-3V, which far exceeds the best performance of other EAP actuators reported in the literature. To underpin the molecular-level understanding of actuation mechanisms underlying the improved performance, we carried out in situ spectroscopy and in situ scattering experiments under actuation.
A wire-based dual-analyte sensor for glucose and lactate: in vitro and in vivo evaluation.
Ward, W Kenneth; House, Jody L; Birck, Jonathan; Anderson, Ellen M; Jansen, Lawrence B
2004-06-01
Continuous measurement of lactate is potentially useful for detecting physical exhaustion and for monitoring critical care conditions characterized by hypoperfusion, such as heart failure. In some conditions, it may be desirable to monitor more than one metabolic parameter concurrently. For this reason, we designed and fabricated twisted wire-based microelectrodes that can measure both lactate and glucose. These dual-analyte sensors were characterized in vitro by measuring their response to the analyte of interest and to assess whether they were susceptible to interference from the other analyte. When measured in stirred aqueous buffer, lactate sensors detected a very small amount of crosstalk from glucose in vitro, although this signal was less than 3% of the response to lactate. Glucose sensors did not detect crosstalk from lactate. Sensors were implanted subcutaneously in rats and tested during infusions of lactate and glucose. Each sensing electrode responded rapidly to changes in its analyte concentration, and there was no evidence of in vivo crosstalk. This study constitutes proof of the concept that oxidase-based, amperometric wire microsensors can detect changes in glucose and lactate during subcutaneous implantation in rats.
Simulating Operation of a Complex Sensor Network
NASA Technical Reports Server (NTRS)
Jennings, Esther; Clare, Loren; Woo, Simon
2008-01-01
Simulation Tool for ASCTA Microsensor Network Architecture (STAMiNA) ["ASCTA" denotes the Advanced Sensors Collaborative Technology Alliance.] is a computer program for evaluating conceptual sensor networks deployed over terrain to provide military situational awareness. This or a similar program is needed because of the complexity of interactions among such diverse phenomena as sensing and communication portions of a network, deployment of sensor nodes, effects of terrain, data-fusion algorithms, and threat characteristics. STAMiNA is built upon a commercial network-simulator engine, with extensions to include both sensing and communication models in a discrete-event simulation environment. Users can define (1) a mission environment, including terrain features; (2) objects to be sensed; (3) placements and modalities of sensors, abilities of sensors to sense objects of various types, and sensor false alarm rates; (4) trajectories of threatening objects; (5) means of dissemination and fusion of data; and (6) various network configurations. By use of STAMiNA, one can simulate detection of targets through sensing, dissemination of information by various wireless communication subsystems under various scenarios, and fusion of information, incorporating such metrics as target-detection probabilities, false-alarm rates, and communication loads, and capturing effects of terrain and threat.
Riya, Shohei; Takeuchi, Yuki; Zhou, Sheng; Terada, Akihiko; Hosomi, Masaaki
2017-06-01
A pulse of nitrous oxide (N 2 O) emission has been observed following the disappearance of floodwater by drainage. However, its mechanism is not well understood. We conducted a column study to clarify the mechanism for N 2 O production during floodwater disappearance by using a microsensor and determining the bacterial gene expression. An increase in N 2 O flux was observed following floodwater disappearance after the addition of NH 4 + , with a corresponding increase in the concentrations of NO 3 - and dissolved N 2 O in the oxic and anoxic soil layers, respectively. The transcription level of the bacterial amoA mRNA did not change, while that of nirK mRNA increased sharply after an hour of floodwater disappearance. An additional anoxic soil slurry experiment demonstrated that the addition of NO 3 - induced the expression of nirK gene and caused a concomitant increase in N 2 O production. These findings suggest that NO 3 - production in the oxic layers is important as it provides a substrate and induces the synthesis of denitrification enzymes in the anoxic layer during N 2 O production.
Proceedings of the 8th International Symposium on Applications of Ferroelectrics
NASA Astrophysics Data System (ADS)
Liu, M.; Safari, A.; Kingon, A.; Haertling, G.
1993-02-01
The eighth International Symposium on the Applications of Ferroelectrics was held in Greenville, SC, on August 30 to Sept 2, 1992. It was attended by approximately 260 scientists and engineers who presented nearly 200 oral and poster papers. The three plenary presentations covered ferroelectric materials which are currently moving into commercial exploitation or have strong potential to do so. These were (1) pyroelectric imaging, (2) ferroelectric materials integrated with silicon for use as micromotors and microsensors and (3) research activity in Japan on high permittivity materials for DRAM's. Invited papers covered such subjects as pyroelectric and electrooptic properties of thin films, photorefractive effects, ferroelectric polymers, piezoelectric transducers, processing of ferroelectrics, domain switching in ferroelectrics, thin film memories, thin film vacuum deposition techniques and the fabrication of chemically prepared PZT and PLZT thin films. The papers continued to reflect the large interest in ferroelectric thin films. It was encouraging that there have been substantial strides made in both the processing and understanding of the films in the last two years. It was equally clear, however, that much still remains to be done before reliable thin film devices will be available in the marketplace.
Spatio-temporal dynamics of perfusion and oximetry during ictal discharges in the rat neocortex
Zhao, Mingrui; Ma, Hongtao; Suh, Minah; Schwartz, Theodore H.
2009-01-01
Epileptic events elicit a large focal increase in cerebral blood flow (CBF) to perfuse metabolically active neurons in the focus. Conflicting data exists, however, on whether hemoglobin saturation increases or decreases in the focus and surrounding cortex, and whether CBF increases globally or is decreased in adjacent areas. How these hemodynamic events correlate with actual changes in tissue oxygenation is also not known. Using laser Doppler flowmetry, oxygen microsensors and intrinsic optical imaging spectroscopy, we demonstrate that the dip in hemoglobin in the focus correlates with a profound but temporary decrease in tissue oxygenation in spite of a large increase in cerebral blood flow (CBF). Furthermore, CBF simultaneously decreases in the cortex immediately adjacent to the focus. These events are then replaced with a longer duration, less focal increase in CBF, CBV and hyperoxygenation, the duration of which correlates with the duration of the seizure. These findings raise the question of whether transient focal hypoxia and vascular steal might contribute to progressive deleterious effects of chronic epilepsy on the adult and developing brain. Possible mechanisms based on recent astrocyte-based models of neurovascular coupling are discussed. Implications for functional magnetic resonance imaging of epileptic events are discussed. PMID:19261877
Enhanced Raman spectroscopy of 2,4,6-TNT in anatase and rutile titania nanocrystals
NASA Astrophysics Data System (ADS)
De La Cruz-Montoya, Edwin; Jeréz, Jaqueline I.; Balaguera-Gelves, Marcia; Luna-Pineda, Tatiana; Castro, Miguel E.; Hernández-Rivera, Samuel P.
2006-05-01
The majority of explosives found in antipersonnel and antitank landmines contain 2,4,6-trinitrotoluene (TNT). Chemical sensing of landmines and Improvised Explosive Devices (IED) requires detecting the chemical signatures of the explosive components in these devices. Nanotechnology is ideally suited to needs in microsensors development by providing new materials and methods that can be employed for trace explosive detection. This work is focused on modification of nano-scaled colloids of titanium dioxide (Titania: anatase, rutile and brookite) and thin layer of the oxides as substrates for use in Enhanced Raman Scattering (ERS) spectroscopy. Ultrafine particles have been generated by hydrothermally treating the sol-gel derived hydrous oxides. ERS spectra of nanocrystalline anatase Titania samples prepared with different average sizes: 38 nm (without acid), 24 nm (without acid) and 7 nm (with HCl). Bulk phase (commercial) and KBr were also used to prepare mixtures with TNT to look for Enhanced Raman Effect of the nitroaromatic explosive on the test surfaces. The studies clearly indicated that the anatase crystal size affects the enhancement of the TNT Raman signal. This enhancement was highest for the samples with Titania average crystal size of 7 nm.
Micromechanical die attachment surcharge
Filter, William F.; Hohimer, John P.
2002-01-01
An attachment structure is disclosed for attaching a die to a supporting substrate without the use of adhesives or solder. The attachment structure, which can be formed by micromachining, functions purely mechanically in utilizing a plurality of shaped pillars (e.g. round, square or polygonal and solid, hollow or slotted) that are formed on one of the die or supporting substrate and which can be urged into contact with various types of mating structures including other pillars, a deformable layer or a plurality of receptacles that are formed on the other of the die or supporting substrate, thereby forming a friction bond that holds the die to the supporting substrate. The attachment structure can further include an alignment structure for precise positioning of the die and supporting substrate to facilitate mounting the die to the supporting substrate. The attachment structure has applications for mounting semiconductor die containing a microelectromechanical (MEM) device, a microsensor or an integrated circuit (IC), and can be used to form a multichip module. The attachment structure is particularly useful for mounting die containing released MEM devices since these devices are fragile and can otherwise be damaged or degraded by adhesive or solder mounting.
A micro oxygen sensor based on a nano sol-gel TiO2 thin film.
Wang, Hairong; Chen, Lei; Wang, Jiaxin; Sun, Quantao; Zhao, Yulong
2014-09-03
An oxygen gas microsensor based on nanostructured sol-gel TiO2 thin films with a buried Pd layer was developed on a silicon substrate. The nanostructured titania thin films for O2 sensors were prepared by the sol-gel process and became anatase after heat treatment. A sandwich TiO2 square board with an area of 350 μm × 350 μm was defined by both wet etching and dry etching processes and the wet one was applied in the final process due to its advantages of easy control for the final structure. A pair of 150 nm Pt micro interdigitated electrodes with 50 nm Ti buffer layer was fabricated on the board by a lift-off process. The sensor chip was tested in a furnace with changing the O2 concentration from 1.0% to 20% by monitoring its electrical resistance. Results showed that after several testing cycles the sensor's output becomes stable, and its sensitivity is 0.054 with deviation 2.65 × 10(-4) and hysteresis is 8.5%. Due to its simple fabrication process, the sensor has potential for application in environmental monitoring, where lower power consumption and small size are required.
Planning Systems for Distributed Operations
NASA Technical Reports Server (NTRS)
Maxwell, Theresa G.
2002-01-01
This viewgraph representation presents an overview of the mission planning process involving distributed operations (such as the International Space Station (ISS)) and the computer hardware and software systems needed to support such an effort. Topics considered include: evolution of distributed planning systems, ISS distributed planning, the Payload Planning System (PPS), future developments in distributed planning systems, Request Oriented Scheduling Engine (ROSE) and Next Generation distributed planning systems.
14 CFR 29.1355 - Distribution system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Distribution system. 29.1355 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 29.1355 Distribution system. (a) The distribution system includes the distribution busses, their associated feeders...
14 CFR 25.1355 - Distribution system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Distribution system. 25.1355 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Electrical Systems and Equipment § 25.1355 Distribution system. (a) The distribution system includes the distribution busses, their associated feeders...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mather, Barry A; Boemer, Jens C.; Vittal, Eknath
The response of low voltage networks with high penetration of PV systems to transmission network faults will, in the future, determine the overall power system performance during certain hours of the year. The WECC distributed PV system model (PVD1) is designed to represent small-scale distribution-connected systems. Although default values are provided by WECC for the model parameters, tuning of those parameters seems to become important in order to accurately estimate the partial loss of distributed PV systems for bulk system studies. The objective of this paper is to describe a new methodology to determine the WECC distributed PV system (PVD1)more » model parameters and to derive parameter sets obtained for six distribution circuits of a Californian investor-owned utility with large amounts of distributed PV systems. The results indicate that the parameters for the partial loss of distributed PV systems may differ significantly from the default values provided by WECC.« less
Distribution Management System Volt/VAR Evaluation | Grid Modernization |
NREL Distribution Management System Volt/VAR Evaluation Distribution Management System Volt/VAR Evaluation This project involves building a prototype distribution management system testbed that links a GE Grid Solutions distribution management system to power hardware-in-the-loop testing. This setup is
Fuel Distribution Systems | Energy Systems Integration Facility | NREL
Fuel Distribution Systems Fuel Distribution Systems The Energy Systems Integration Facility's integrated fuel distribution systems provide natural gas, hydrogen, and diesel throughout its laboratories in two laboratories: the Power Systems Integration Laboratory and the Energy Storage Laboratory. Each
1990-11-01
Intelligence Systems," in Distributed Artifcial Intelligence , vol. II, L. Gasser and M. Huhns (eds), Pitman, London, 1989, pp. 413-430. Shaw, M. Harrow, B...IDTIC FILE COPY A Distributed Problem-Solving Approach to Rule Induction: Learning in Distributed Artificial Intelligence Systems N Michael I. Shaw...SUBTITLE 5. FUNDING NUMBERS A Distributed Problem-Solving Approach to Rule Induction: Learning in Distributed Artificial Intelligence Systems 6
Load flow and state estimation algorithms for three-phase unbalanced power distribution systems
NASA Astrophysics Data System (ADS)
Madvesh, Chiranjeevi
Distribution load flow and state estimation are two important functions in distribution energy management systems (DEMS) and advanced distribution automation (ADA) systems. Distribution load flow analysis is a tool which helps to analyze the status of a power distribution system under steady-state operating conditions. In this research, an effective and comprehensive load flow algorithm is developed to extensively incorporate the distribution system components. Distribution system state estimation is a mathematical procedure which aims to estimate the operating states of a power distribution system by utilizing the information collected from available measurement devices in real-time. An efficient and computationally effective state estimation algorithm adapting the weighted-least-squares (WLS) method has been developed in this research. Both the developed algorithms are tested on different IEEE test-feeders and the results obtained are justified.
A Metrics-Based Approach to Intrusion Detection System Evaluation for Distributed Real-Time Systems
2002-04-01
Based Approach to Intrusion Detection System Evaluation for Distributed Real - Time Systems Authors: G. A. Fink, B. L. Chappell, T. G. Turner, and...Distributed, Security. 1 Introduction Processing and cost requirements are driving future naval combat platforms to use distributed, real - time systems of...distributed, real - time systems . As these systems grow more complex, the timing requirements do not diminish; indeed, they may become more constrained
Organization of the secure distributed computing based on multi-agent system
NASA Astrophysics Data System (ADS)
Khovanskov, Sergey; Rumyantsev, Konstantin; Khovanskova, Vera
2018-04-01
Nowadays developing methods for distributed computing is received much attention. One of the methods of distributed computing is using of multi-agent systems. The organization of distributed computing based on the conventional network computers can experience security threats performed by computational processes. Authors have developed the unified agent algorithm of control system of computing network nodes operation. Network PCs is used as computing nodes. The proposed multi-agent control system for the implementation of distributed computing allows in a short time to organize using of the processing power of computers any existing network to solve large-task by creating a distributed computing. Agents based on a computer network can: configure a distributed computing system; to distribute the computational load among computers operated agents; perform optimization distributed computing system according to the computing power of computers on the network. The number of computers connected to the network can be increased by connecting computers to the new computer system, which leads to an increase in overall processing power. Adding multi-agent system in the central agent increases the security of distributed computing. This organization of the distributed computing system reduces the problem solving time and increase fault tolerance (vitality) of computing processes in a changing computing environment (dynamic change of the number of computers on the network). Developed a multi-agent system detects cases of falsification of the results of a distributed system, which may lead to wrong decisions. In addition, the system checks and corrects wrong results.
Advanced Distribution Management Systems | Grid Modernization | NREL
Advanced Distribution Management Systems Advanced Distribution Management Systems Electric utilities are investing in updated grid technologies such as advanced distribution management systems to management testbed for cyber security in power systems. The "advanced" elements of advanced
Analyzing Distributed Functions in an Integrated Hazard Analysis
NASA Technical Reports Server (NTRS)
Morris, A. Terry; Massie, Michael J.
2010-01-01
Large scale integration of today's aerospace systems is achievable through the use of distributed systems. Validating the safety of distributed systems is significantly more difficult as compared to centralized systems because of the complexity of the interactions between simultaneously active components. Integrated hazard analysis (IHA), a process used to identify unacceptable risks and to provide a means of controlling them, can be applied to either centralized or distributed systems. IHA, though, must be tailored to fit the particular system being analyzed. Distributed systems, for instance, must be analyzed for hazards in terms of the functions that rely on them. This paper will describe systems-oriented IHA techniques (as opposed to traditional failure-event or reliability techniques) that should be employed for distributed systems in aerospace environments. Special considerations will be addressed when dealing with specific distributed systems such as active thermal control, electrical power, command and data handling, and software systems (including the interaction with fault management systems). Because of the significance of second-order effects in large scale distributed systems, the paper will also describe how to analyze secondary functions to secondary functions through the use of channelization.
NASA Technical Reports Server (NTRS)
2011-01-01
Topics covered include: 1) Collaborative Clustering for Sensor Networks; 2) Teleoperated Marsupial Mobile Sensor Platform Pair for Telepresence Insertion Into Challenging Structures; 3) Automated Verification of Spatial Resolution in Remotely Sensed Imagery; 4) Electrical Connector Mechanical Seating Sensor; 5) In Situ Aerosol Detector; 6) Multi-Parameter Aerosol Scattering Sensor; 7) MOSFET Switching Circuit Protects Shape Memory Alloy Actuators; 8) Optimized FPGA Implementation of Multi-Rate FIR Filters Through Thread Decomposition; 9) Circuit for Communication Over Power Lines; 10) High-Efficiency Ka-Band Waveguide Two-Way Asymmetric Power Combiner; 11) 10-100 Gbps Offload NIC for WAN, NLR, and Grid Computing; 12) Pulsed Laser System to Simulate Effects of Cosmic Rays in Semiconductor Devices; 13) Flight Planning in the Cloud; 14) MPS Editor; 15) Object-Oriented Multi Disciplinary Design, Analysis, and Optimization Tool; 16) Cryogenic-Compatible Winchester Connector Mount and Retaining System for Composite Tubes; 17) Development of Position-Sensitive Magnetic Calorimeters for X-Ray Astronomy; 18) Planar Rotary Piezoelectric Motor Using Ultrasonic Horns; 19) Self-Rupturing Hermetic Valve; 20) Explosive Bolt Dual-Initiated from One Side; 21) Dampers for Stationary Labyrinth Seals; 22) Two-Arm Flexible Thermal Strap; 23) Carbon Dioxide Removal via Passive Thermal Approaches; 24) Polymer Electrolyte-Based Ambient Temperature Oxygen Microsensors for Environmental Monitoring; 25) Pressure Shell Approach to Integrated Environmental Protection; 26) Image Quality Indicator for Infrared Inspections; 27) Micro-Slit Collimators for X-Ray/Gamma-Ray Imaging; 28) Scatterometer-Calibrated Stability Verification Method; 29) Test Port for Fiber-Optic-Coupled Laser Altimeter; 30) Phase Retrieval System for Assessing Diamond Turning and Optical Surface Defects; 31) Laser Oscillator Incorporating a Wedged Polarization Rotator and a Porro Prism as Cavity Mirror; 32) Generic, Extensible, Configurable Push-Pull Framework for Large-Scale Science Missions; 33) Dynamic Loads Generation for Multi-Point Vibration Excitation Problems; 34) Optimal Control via Self-Generated Stochasticity; 35) Space-Time Localization of Plasma Turbulence Using Multiple Spacecraft Radio Links; 36) Surface Contact Model for Comets and Asteroids; 37) Dust Mitigation Vehicle; 38) Optical Coating Performance for Heat Reflectors of the JWST-ISIM Electronic Component; 39) SpaceCube Demonstration Platform; 40) Aperture Mask for Unambiguous Parity Determination in Long Wavelength Imagers; 41) Spaceflight Ka-Band High-Rate Radiation-Hard Modulator; 42) Enabling Disabled Persons to Gain Access to Digital Media; 43) Cytometer on a Chip; 44) Principles, Techniques, and Applications of Tissue Microfluidics; and 45) Two-Stage Winch for Kites and Tethered Balloons or Blimps.
Systems of frequency distributions for water and environmental engineering
NASA Astrophysics Data System (ADS)
Singh, Vijay P.
2018-09-01
A wide spectrum of frequency distributions are used in hydrologic, hydraulic, environmental and water resources engineering. These distributions may have different origins, are based on different hypotheses, and belong to different generating systems. Review of literature suggests that different systems of frequency distributions employed in science and engineering in general and environmental and water engineering in particular have been derived using different approaches which include (1) differential equations, (2) distribution elasticity, (3) genetic theory, (4) generating functions, (5) transformations, (6) Bessel function, (7) expansions, and (8) entropy maximization. This paper revisits these systems of distributions and discusses the hypotheses that are used for deriving these systems. It also proposes, based on empirical evidence, another general system of distributions and derives a number of distributions from this general system that are used in environmental and water engineering.
Stability Analysis of Distributed Order Fractional Chen System
Aminikhah, H.; Refahi Sheikhani, A.; Rezazadeh, H.
2013-01-01
We first investigate sufficient and necessary conditions of stability of nonlinear distributed order fractional system and then we generalize the integer-order Chen system into the distributed order fractional domain. Based on the asymptotic stability theory of nonlinear distributed order fractional systems, the stability of distributed order fractional Chen system is discussed. In addition, we have found that chaos exists in the double fractional order Chen system. Numerical solutions are used to verify the analytical results. PMID:24489508
47 CFR 73.626 - DTV distributed transmission systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false DTV distributed transmission systems. 73.626... RADIO BROADCAST SERVICES Television Broadcast Stations § 73.626 DTV distributed transmission systems. (a... distributed transmission system (DTS). Except as expressly provided in this section, DTV stations operating a...
NASA Astrophysics Data System (ADS)
Rajalakshmi, N.; Padma Subramanian, D.; Thamizhavel, K.
2015-03-01
The extent of real power loss and voltage deviation associated with overloaded feeders in radial distribution system can be reduced by reconfiguration. Reconfiguration is normally achieved by changing the open/closed state of tie/sectionalizing switches. Finding optimal switch combination is a complicated problem as there are many switching combinations possible in a distribution system. Hence optimization techniques are finding greater importance in reducing the complexity of reconfiguration problem. This paper presents the application of firefly algorithm (FA) for optimal reconfiguration of radial distribution system with distributed generators (DG). The algorithm is tested on IEEE 33 bus system installed with DGs and the results are compared with binary genetic algorithm. It is found that binary FA is more effective than binary genetic algorithm in achieving real power loss reduction and improving voltage profile and hence enhancing the performance of radial distribution system. Results are found to be optimum when DGs are added to the test system, which proved the impact of DGs on distribution system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Rui; Zhang, Yingchen
2016-08-01
Distributed energy resources (DERs) and smart loads have the potential to provide flexibility to the distribution system operation. A coordinated optimization approach is proposed in this paper to actively manage DERs and smart loads in distribution systems to achieve the optimal operation status. A three-phase unbalanced Optimal Power Flow (OPF) problem is developed to determine the output from DERs and smart loads with respect to the system operator's control objective. This paper focuses on coordinating PV systems and smart loads to improve the overall voltage profile in distribution systems. Simulations have been carried out in a 12-bus distribution feeder andmore » results illustrate the superior control performance of the proposed approach.« less
Coordinated Optimization of Distributed Energy Resources and Smart Loads in Distribution Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Rui; Zhang, Yingchen
2016-11-14
Distributed energy resources (DERs) and smart loads have the potential to provide flexibility to the distribution system operation. A coordinated optimization approach is proposed in this paper to actively manage DERs and smart loads in distribution systems to achieve the optimal operation status. A three-phase unbalanced Optimal Power Flow (OPF) problem is developed to determine the output from DERs and smart loads with respect to the system operator's control objective. This paper focuses on coordinating PV systems and smart loads to improve the overall voltage profile in distribution systems. Simulations have been carried out in a 12-bus distribution feeder andmore » results illustrate the superior control performance of the proposed approach.« less
Comprehensive evaluation index system of total supply capability in distribution network
NASA Astrophysics Data System (ADS)
Zhang, Linyao; Wu, Guilian; Yang, Jingyuan; Jia, Shuangrui; Zhang, Wei; Sun, Weiqing
2018-01-01
Aiming at the lack of a comprehensive evaluation of the distribution network, based on the existing distribution network evaluation index system, combined with the basic principles of constructing the evaluation index, put forward a new evaluation index system of distribution network capacity. This paper is mainly based on the total supply capability of the distribution network, combining single index and various factors, into a multi-evaluation index of the distribution network, thus forming a reasonable index system, and various indicators of rational quantification make the evaluation results more intuitive. In order to have a comprehensive judgment of distribution network, this paper uses weights to analyse the importance of each index, verify the rationality of the index system through the example, it is proved that the rationality of the index system, so as to guide the direction of distribution network planning.
49 CFR 192.723 - Distribution systems: Leakage surveys.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Distribution systems: Leakage surveys. 192.723... Distribution systems: Leakage surveys. (a) Each operator of a distribution system shall conduct periodic leakage surveys in accordance with this section. (b) The type and scope of the leakage control program...
49 CFR 192.723 - Distribution systems: Leakage surveys.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Distribution systems: Leakage surveys. 192.723... Distribution systems: Leakage surveys. (a) Each operator of a distribution system shall conduct periodic leakage surveys in accordance with this section. (b) The type and scope of the leakage control program...
49 CFR 192.723 - Distribution systems: Leakage surveys.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Distribution systems: Leakage surveys. 192.723... Distribution systems: Leakage surveys. (a) Each operator of a distribution system shall conduct periodic leakage surveys in accordance with this section. (b) The type and scope of the leakage control program...
49 CFR 192.723 - Distribution systems: Leakage surveys.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Distribution systems: Leakage surveys. 192.723... Distribution systems: Leakage surveys. (a) Each operator of a distribution system shall conduct periodic leakage surveys in accordance with this section. (b) The type and scope of the leakage control program...
49 CFR 192.723 - Distribution systems: Leakage surveys.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Distribution systems: Leakage surveys. 192.723... Distribution systems: Leakage surveys. (a) Each operator of a distribution system shall conduct periodic leakage surveys in accordance with this section. (b) The type and scope of the leakage control program...
Advanced Grid Control Technologies Workshop Series | Energy Systems
on advanced distribution management systems (ADMS) and microgrid controls. The workshops were held at . July 7, 2015: Advanced Distribution Management Systems (ADMS) Welcome and NREL Overview Dr. Murali Keynote: Next-Generation Distribution Management Systems and Distributed Resource Energy Management
Laser beam distribution system for the HiLASE Center
NASA Astrophysics Data System (ADS)
Macúchová, Karolina; Heřmánek, Jan; Kaufman, Jan; Muresan, Mihai-George; Růžička, Jan; Řeháková, Martina; Divoký, Martin; Švandrlík, Luděk.; Mocek, Tomáś
2017-12-01
We report recent progress in design and testing of a distribution system for high-power laser beam delivery developed within the HiLASE project of the IOP in the Czech Republic. Laser beam distribution system is a technical system allowing safe and precise distribution of different laser beams from laboratories to several experimental stations. The unique nature of HiLASE lasers requires new approach, which makes design of the distribution system a state-of-the-art challenge.
Assessment of distributed photovoltair electric-power systems
NASA Astrophysics Data System (ADS)
Neal, R. W.; Deduck, P. F.; Marshall, R. N.
1982-10-01
The development of a methodology to assess the potential impacts of distributed photovoltaic (PV) systems on electric utility systems, including subtransmission and distribution networks, and to apply that methodology to several illustrative examples was developed. The investigations focused upon five specific utilities. Impacts upon utility system operations and generation mix were assessed using accepted utility planning methods in combination with models that simulate PV system performance and life cycle economics. Impacts on the utility subtransmission and distribution systems were also investigated. The economic potential of distributed PV systems was investigated for ownership by the utility as well as by the individual utility customer.
Building a generalized distributed system model
NASA Technical Reports Server (NTRS)
Mukkamala, Ravi
1991-01-01
A number of topics related to building a generalized distributed system model are discussed. The effects of distributed database modeling on evaluation of transaction rollbacks, the measurement of effects of distributed database models on transaction availability measures, and a performance analysis of static locking in replicated distributed database systems are covered.
Jiang, Yazhou; Liu, Chen -Ching; Xu, Yin
2016-04-19
The increasing importance of system reliability and resilience is changing the way distribution systems are planned and operated. To achieve a distribution system self-healing against power outages, emerging technologies and devices, such as remote-controlled switches (RCSs) and smart meters, are being deployed. The higher level of automation is transforming traditional distribution systems into the smart distribution systems (SDSs) of the future. The availability of data and remote control capability in SDSs provides distribution operators with an opportunity to optimize system operation and control. In this paper, the development of SDSs and resulting benefits of enhanced system capabilities are discussed. Amore » comprehensive survey is conducted on the state-of-the-art applications of RCSs and smart meters in SDSs. Specifically, a new method, called Temporal Causal Diagram (TCD), is used to incorporate outage notifications from smart meters for enhanced outage management. To fully utilize the fast operation of RCSs, the spanning tree search algorithm is used to develop service restoration strategies. Optimal placement of RCSs and the resulting enhancement of system reliability are discussed. Distribution system resilience with respect to extreme events is presented. Furthermore, test cases are used to demonstrate the benefit of SDSs. Active management of distributed generators (DGs) is introduced. Future research in a smart distribution environment is proposed.« less
Prevention of Unintentional Islands in Power Systems with Distributed
Islands in Power Systems with Distributed Resources Webinar Prevention of Unintentional Islands in Power Systems with Distributed Resources Webinar Learn about unintentional islanding in a webinar from NREL and following the presentation. Types of islands in power systems with distributed resources Issues with
Fractional System Identification: An Approach Using Continuous Order-Distributions
NASA Technical Reports Server (NTRS)
Hartley, Tom T.; Lorenzo, Carl F.
1999-01-01
This paper discusses the identification of fractional- and integer-order systems using the concept of continuous order-distribution. Based on the ability to define systems using continuous order-distributions, it is shown that frequency domain system identification can be performed using least squares techniques after discretizing the order-distribution.
46 CFR 183.376 - Grounded distribution systems (neutral grounded).
Code of Federal Regulations, 2013 CFR
2013-10-01
... VESSELS (UNDER 100 GROSS TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.376... propulsion, power, lighting, or distribution system having a neutral bus or conductor must have the neutral... 46 Shipping 7 2013-10-01 2013-10-01 false Grounded distribution systems (neutral grounded). 183...
46 CFR 28.855 - Electrical distribution systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Electrical distribution systems. 28.855 Section 28.855... FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.855 Electrical distribution systems. (a) Each electrical distribution system which has a neutral bus or conductor must have the neutral bus or conductor...
46 CFR 28.360 - Electrical distribution systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Electrical distribution systems. 28.360 Section 28.360... Operate With More Than 16 Individuals on Board § 28.360 Electrical distribution systems. (a) Each electrical distribution system which has a neutral bus or conductor must have the neutral bus or conductor...
46 CFR 28.360 - Electrical distribution systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Electrical distribution systems. 28.360 Section 28.360... Operate With More Than 16 Individuals on Board § 28.360 Electrical distribution systems. (a) Each electrical distribution system which has a neutral bus or conductor must have the neutral bus or conductor...
46 CFR 28.360 - Electrical distribution systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Electrical distribution systems. 28.360 Section 28.360... Operate With More Than 16 Individuals on Board § 28.360 Electrical distribution systems. (a) Each electrical distribution system which has a neutral bus or conductor must have the neutral bus or conductor...
46 CFR 28.855 - Electrical distribution systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Electrical distribution systems. 28.855 Section 28.855... FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.855 Electrical distribution systems. (a) Each electrical distribution system which has a neutral bus or conductor must have the neutral bus or conductor...
46 CFR 28.360 - Electrical distribution systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Electrical distribution systems. 28.360 Section 28.360... Operate With More Than 16 Individuals on Board § 28.360 Electrical distribution systems. (a) Each electrical distribution system which has a neutral bus or conductor must have the neutral bus or conductor...
46 CFR 28.855 - Electrical distribution systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Electrical distribution systems. 28.855 Section 28.855... FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.855 Electrical distribution systems. (a) Each electrical distribution system which has a neutral bus or conductor must have the neutral bus or conductor...
46 CFR 28.855 - Electrical distribution systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Electrical distribution systems. 28.855 Section 28.855... FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.855 Electrical distribution systems. (a) Each electrical distribution system which has a neutral bus or conductor must have the neutral bus or conductor...
A Distribution-class Locational Marginal Price (DLMP) Index for Enhanced Distribution Systems
NASA Astrophysics Data System (ADS)
Akinbode, Oluwaseyi Wemimo
The smart grid initiative is the impetus behind changes that are expected to culminate into an enhanced distribution system with the communication and control infrastructure to support advanced distribution system applications and resources such as distributed generation, energy storage systems, and price responsive loads. This research proposes a distribution-class analog of the transmission LMP (DLMP) as an enabler of the advanced applications of the enhanced distribution system. The DLMP is envisioned as a control signal that can incentivize distribution system resources to behave optimally in a manner that benefits economic efficiency and system reliability and that can optimally couple the transmission and the distribution systems. The DLMP is calculated from a two-stage optimization problem; a transmission system OPF and a distribution system OPF. An iterative framework that ensures accurate representation of the distribution system's price sensitive resources for the transmission system problem and vice versa is developed and its convergence problem is discussed. As part of the DLMP calculation framework, a DCOPF formulation that endogenously captures the effect of real power losses is discussed. The formulation uses piecewise linear functions to approximate losses. This thesis explores, with theoretical proofs, the breakdown of the loss approximation technique when non-positive DLMPs/LMPs occur and discusses a mixed integer linear programming formulation that corrects the breakdown. The DLMP is numerically illustrated in traditional and enhanced distribution systems and its superiority to contemporary pricing mechanisms is demonstrated using price responsive loads. Results show that the impact of the inaccuracy of contemporary pricing schemes becomes significant as flexible resources increase. At high elasticity, aggregate load consumption deviated from the optimal consumption by up to about 45 percent when using a flat or time-of-use rate. Individual load consumption deviated by up to 25 percent when using a real-time price. The superiority of the DLMP is more pronounced when important distribution network conditions are not reflected by contemporary prices. The individual load consumption incentivized by the real-time price deviated by up to 90 percent from the optimal consumption in a congested distribution network. While the DLMP internalizes congestion management, the consumption incentivized by the real-time price caused overloads.
Recommendation System Based On Association Rules For Distributed E-Learning Management Systems
NASA Astrophysics Data System (ADS)
Mihai, Gabroveanu
2015-09-01
Traditional Learning Management Systems are installed on a single server where learning materials and user data are kept. To increase its performance, the Learning Management System can be installed on multiple servers; learning materials and user data could be distributed across these servers obtaining a Distributed Learning Management System. In this paper is proposed the prototype of a recommendation system based on association rules for Distributed Learning Management System. Information from LMS databases is analyzed using distributed data mining algorithms in order to extract the association rules. Then the extracted rules are used as inference rules to provide personalized recommendations. The quality of provided recommendations is improved because the rules used to make the inferences are more accurate, since these rules aggregate knowledge from all e-Learning systems included in Distributed Learning Management System.
Development of metal oxide gas sensors for very low concentration (ppb) of BTEX vapors
NASA Astrophysics Data System (ADS)
Favard, A.; Aguir, K.; Contaret, T.; Caris, L.; Bendahan, M.
2017-12-01
The control and analysis of air quality have become a major preoccupation of the last twenty years. In 2008, the European Union has introduced a Directive (2008/50/EC) to impose measurement obligations and thresholds to not exceed for some pollutants, including BTEX gases, in view of their adverse effects on the health. In this paper, we show the ability to detect very low concentrations of BTEX using a gas microsensor based on metal oxide thin-film. A test bench able to generate very low vapors concentrations has been achieved and fully automated. Thin metal oxides layers have been realized by reactive magnetron sputtering. The sensitive layers are functionalized with gold nanoparticles by thermal evaporation technique. Our sensors have been tested on a wide range of concentrations of BTEX (5 - 500 ppb) and have been able to detect concentrations of a few ppb for operating temperatures below 593 K. These results are very promising for detection of very low BTEX concentration for indoor as well as outdoor application. We showed that the addition of gold nanoparticles on the sensitive layers decreases the sensors operating temperature and increases the response to BTEX gas. The best results are obtained with a sensitive layer based on ZnO.
Morgalla, M H; Mettenleiter, H; Katzenberger, T
1999-01-01
Intracranial pressure (ICP) monitoring has become the mainstay of multimodal neuromonitoring of comatous patients after head injury. In the presence of rising ICP and faced with pressures, difficult to control, aggressive measures, such as hypothermia may be used. The ICP readings should not be influenced by temperature changes. A laboratory test was designed to simulate temperature variations between 20 degrees C and 45 degrees C at different pressure levels under physiological conditions. Five types of transducers were examined: Epidyn Braun Melsungen, ICT/B-Titan Gaeltec, Camino-OLM-110-4B, Codman MicroSensor ICP-Transducer, Neurovent ICP transducer Rehau Ag+Co. Tests were performed at 6 different pressure levels between 0 mmHg and 50 mmHg. The results show very low drifts of less than 0.15 mmHg degree C-1 for Codman, Epidyn and Neurovent. Gaeltec and Camino exhibited higher drifts of 0.18 mmHg and 0.2 mmHg degree C-1 respectively. Within the temperature range from 35 degrees C to 42 degrees C all probes tested show insignificant temperature drift. Whether these results also apply to other types of transducers needs further evaluation. Problems and requirements related to the design of a laboratory test for the in vitro assessment of ICP transducers are discussed in detail.
Membrane-aerated biofilm proton and oxygen flux during chemical toxin exposure.
McLamore, E S; Zhang, W; Porterfield, D M; Banks, M K
2010-09-15
Bioreactors containing sessile bacteria (biofilms) grown on hollow fiber membranes have been used for treatment of many wastestreams. Real time operational control of bioreactor performance requires detailed knowledge of the relationship between bulk liquid water quality and physiological transport at the biofilm-liquid interface. Although large data sets exist describing membrane-aerated bioreactor effluent quality, very little real time data is available characterizing boundary layer transport under physiological conditions. A noninvasive, microsensor technique was used to quantify real time (≈1.5 s) changes in oxygen and proton flux for mature Nitrosomonas europaea and Pseudomonas aeruginosa biofilms in membrane-aerated bioreactors following exposure to environmental toxins. Stress response was characterized during exposure to toxins with known mode of action (chlorocarbonyl cyanide phenyl-hydrazone and potassium cyanide), and four environmental toxins (rotenone, 2,4-dinitrophenol, cadmium chloride, and pentachlorophenol). Exposure to sublethal concentrations of all environmental toxins caused significant increases in O(2) and/or H(+) flux (depending on the mode of action). These real time microscale signatures (i.e., fingerprints) of O(2) and H(+) flux can be coupled with bulk liquid analysis to improve our understanding of physiology in counter-diffusion biofilms found within membrane aerated bioreactors; leading to enhanced monitoring/modeling strategies for bioreactor control.
Pacheco, M; Jurado-Sánchez, B; Escarpa, A
2018-02-20
Food poisoning caused by bacteria is a major cause of disease and death worldwide. Herein we describe the use of Janus micromotors as mobile sensors for the detection of toxins released by enterobacteria as indicators of food contamination. The micromotors are prepared by a Pickering emulsion approach and rely on the simultaneous encapsulation of platinum nanoparticles for enhanced bubble-propulsion and receptor-functionalized quantum dots (QDs) for selective binding with the 3-deoxy-d-manno-oct-2-ulosonic acid target in the endotoxin molecule. Lipopolysaccharides (LPS) from Salmonella enterica were used as target endotoxins, which upon interaction with the QDs induce a rapid quenching of the native fluorescence of the micromotors in a concentration-dependent manner. The micromotor assay can readily detect concentrations as low as 0.07 ng mL -1 of endotoxin, which is far below the level considered toxic to humans (275 μg mL -1 ). Micromotors have been successfully applied for the detection of Salmonella toxin in food samples in 15 min compared with several hours required by the existing Gold Standard method. Such ultrafast and reliable approach holds considerable promise for food contamination screening while awaiting the results of bacterial cultures in a myriad of food safety and security defense applications.
Probiotic Lactobacillus reuteri has antifungal effects on oral Candida species in vitro
Jørgensen, Mette Rose; Kragelund, Camilla; Jensen, Peter Østrup; Keller, Mette Kirstine; Twetman, Svante
2017-01-01
ABSTRACT Background: An alternative approach for managing Candida infections in the oral cavity by modulating the oral microbiota with probiotic bacteria has been proposed. Objective: The aim was to investigate the antifungal potential of the probiotic bacterium Lactobacillus reuteri (DSM 17938 and ATCC PTA 5289) against six oral Candida species (C. albicans, C. glabrata, C. krusei, C. tropicalis, C. dubliniensis, and C. parapsilosis). Design: The lactobacilli were tested for their ability to co-aggregate with and inhibit the growth of the yeasts assessed by spectrophotometry and the agar overlay inhibition assay. Additionally, the pH was evaluated with microsensors, and the production of hydrogen peroxide (H2O2) by the lactobacilli was verified. Results: Both L. reuteri strains showed co-aggregation abilities with the yeasts. The lactobacilli almost completely inhibited the growth of C. albicans and C. parapsilosis, but did not affect C. krusei. Statistically significant differences in co-aggregation and growth inhibition capacities between the two L. reuteri strains were observed (p<0.001). The pH measurements suggested that C. krusei can resist the acids produced by the lactobacilli. Conclusions: L. reuteri exhibited antifungal properties against five of the six most common oral Candida species. Further, the results reconfirms that the probiotic capacity of L. reuteri is strain specific. PMID:28326154
Agostini, Sylvain; Fujimura, Hiroyuki; Higuchi, Tomihiko; Yuyama, Ikuko; Casareto, Beatriz E; Suzuki, Yoshimi; Nakano, Yoshikatsu
2013-08-01
The effects of elevated temperature and high pCO2 on the metabolism of Galaxea fascicularis were studied with oxygen and pH microsensors. Photosynthesis and respiration rates were evaluated from the oxygen fluxes from and to the coral polyps. High-temperature alone lowered both photosynthetic and respiration rates. High pCO2 alone did not significantly affect either photosynthesis or respiration rates. Under a combination of high-temperature and high-CO2, the photosynthetic rate increased to values close to those of the controls. The same pH in the diffusion boundary layer was observed under light in both (400 and 750 ppm) CO2 treatments, but decreased significantly in the dark as a result of increased CO2. The ATP contents decreased with increasing temperature. The effects of temperature on the metabolism of corals were stronger than the effects of increased CO2. The effects of acidification were minimal without combined temperature stress. However, acidification combined with higher temperature may affect coral metabolism due to the amplification of diel variations in the microenvironment surrounding the coral and the decrease in ATP contents. Copyright © 2013 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Evaluation of Relative Sensitivity of SAW and Flexural Plate Wave Devices for Atmospheric Sensing
NASA Technical Reports Server (NTRS)
White, Richard M.; Black, Justin; Chen, Bryan
1998-01-01
The objective of this project is to evaluate the suitability of the ultrasonic flexural plate wave (FPW) device as the detector in a gas chromatograph (GC). Of particular interest is the detection of nitrous oxide (N2O). From experimental results we conclude analyte detection is achieved through two mechanisms: changes in gas density, and mass loading of the device membrane due to the sorption of gas molecules. Reducing the dead volume of the FPW chamber increased the FPW response. A comparison of the FPW response to that of the surface acoustic wave (SAW) detector provided with the GC (made by MSI, Microsensor Technologies, Inc.), shows that for unseparated N2O in N2, the FPW exhibits a sensitivity that is at least 550 times greater than that of the SAW device. A Porapak Q column was found to separate N2O from its carrier gas, N2 or He. With the Porapak Q column, a coated FPW detected 1 ppm N2O in N2 or He, with a response magnitude of 7 Hz. A coated SAW exhibited a response of 25 Hz to pure N2O. The minimal detectable N2O concentrations of the sensors were not evaluated.
Fang, Yuxin; Wang, Shenjun; Liu, Yangyang; Xu, Zhifang; Zhang, Kuo; Guo, Yi
2018-07-01
A minimally invasive glucose microbiosensor based the flexibly integrated electrode for continuous monitoring glucose in vivo has been developed in this study. This was achieved by coating needle-type microelectrode with Cu nanoflowers, nafion, glucose oxidase (GOD) and polyurethane (PU) membranes, successfully prepared with layer-by-layer deposition. The Cu nanomaterials provided a large specific surface area and electrocatalytic activity for glucose detection. The PU layers as mass-transport limiting membranes significantly enhanced the linearity and stability of sensors. The resulting biosensor exhibited a wide linear range of 0-20 mM, with a good sensitivity of 42.38 nA mM -1 (correlation coefficient r 2 was 0.99) and a fast response time of less than 15 s. In vivo implantable experiments using anesthetized rats showed excellent real-time response to the variation of blood glucose concentration. And the variation tendency of sensor output was consistent with that using the glucose meter. Overall, the results supported the suitability of this microsensor for measuring rapid changes of glucose in vivo. This work offers a promising approach in implantable device applications related to diabetes management as well as other medical diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.
Evidence for water-mediated mechanisms in coral-algal interactions.
Jorissen, Hendrikje; Skinner, Christina; Osinga, Ronald; de Beer, Dirk; Nugues, Maggy M
2016-08-17
Although many coral reefs have shifted from coral-to-algal dominance, the consequence of such a transition for coral-algal interactions and their underlying mechanisms remain poorly understood. At the microscale, it is unclear how diffusive boundary layers (DBLs) and surface oxygen concentrations at the coral-algal interface vary with algal competitors and competitiveness. Using field observations and microsensor measurements in a flow chamber, we show that coral (massive Porites) interfaces with thick turf algae, macroalgae, and cyanobacteria, which are successful competitors against coral in the field, are characterized by a thick DBL and hypoxia at night. In contrast, coral interfaces with crustose coralline algae, conspecifics, and thin turf algae, which are poorer competitors, have a thin DBL and low hypoxia at night. Furthermore, DBL thickness and hypoxia at the interface with turf decreased with increasing flow speed, but not when thick turf was upstream. Our results support the importance of water-mediated transport mechanisms in coral-algal interactions. Shifts towards algal dominance, particularly dense assemblages, may lead to thicker DBLs, higher hypoxia, and higher concentrations of harmful metabolites and pathogens along coral borders, which in turn may facilitate algal overgrowth of live corals. These effects may be mediated by flow speed and orientation. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Zhao, Chunjiang; Wu, Huarui
2017-03-01
Density functional theory calculations are carried out to study the adsorption of mercury and arsenic on Pdn (n = 1-6) supported on pyridine-like nitrogen doped graphene (PNG). Owing to the promising sensitivity in trace amounts of atoms or molecules, PNG can be acted as micro-sensor for sensing heavy metals in agriculture soils. Through the analyses of structural and electronic properties of pristine PNG and Pd atom decorated PNG, we find that the most favorable adsorption site for Pd atom is the vacancy site. The analyses of structural and electronic properties reveal that the Pd atom or clusters can enhance the reactivity for Hg and AsH3 adsorption on PNG. The adsorption ability of Hg on Pdn decorated PNG is found to be related to the d-band center (εd) of the Pdn, in which the closer εd of Pdn to the Fermi level, the higher adsorption strength for Hg on Pdn decorated PNG. Moreover, the charge transfer between Pdn and arsenic may constitute arsenic adsorption on Pdn decorated PNG. Further design of highly efficient carbon based sorbents for heavy metals removal should be focused on tailoring εd of adsorbed metals.
Photonic Low Cost Micro-Sensor for in-Line Wear Particle Detection in Flowing Lube Oils.
Mabe, Jon; Zubia, Joseba; Gorritxategi, Eneko
2017-03-14
The presence of microscopic particles in suspension in industrial fluids is often an early warning of latent or imminent failures in the equipment or processes where they are being used. This manuscript describes work undertaken to integrate different photonic principles with a micro- mechanical fluidic structure and an embedded processor to develop a fully autonomous wear debris sensor for in-line monitoring of industrial fluids. Lens-less microscopy, stroboscopic illumination, a CMOS imager and embedded machine vision technologies have been merged to develop a sensor solution that is able to detect and quantify the number and size of micrometric particles suspended in a continuous flow of a fluid. A laboratory test-bench has been arranged for setting up the configuration of the optical components targeting a static oil sample and then a sensor prototype has been developed for migrating the measurement principles to real conditions in terms of operating pressure and flow rate of the oil. Imaging performance is quantified using micro calibrated samples, as well as by measuring real used lubricated oils. Sampling a large fluid volume with a decent 2D spatial resolution, this photonic micro sensor offers a powerful tool at very low cost and compacted size for in-line wear debris monitoring.
Heat generation and light scattering of green fluorescent protein-like pigments in coral tissue
NASA Astrophysics Data System (ADS)
Lyndby, Niclas H.; Kühl, Michael; Wangpraseurt, Daniel
2016-05-01
Green fluorescent protein (GFP)-like pigments have been proposed to have beneficial effects on coral photobiology. Here, we investigated the relationships between green fluorescence, coral heating and tissue optics for the massive coral Dipsastraea sp. (previously Favia sp.). We used microsensors to measure tissue scalar irradiance and temperature along with hyperspectral imaging and combined imaging of variable chlorophyll fluorescence and green fluorescence. Green fluorescence correlated positively with coral heating and scalar irradiance enhancement at the tissue surface. Coral tissue heating saturated for maximal levels of green fluorescence. The action spectrum of coral surface heating revealed that heating was highest under red (peaking at 680 nm) irradiance. Scalar irradiance enhancement in coral tissue was highest when illuminated with blue light, but up to 62% (for the case of highest green fluorescence) of this photon enhancement was due to green fluorescence emission. We suggest that GFP-like pigments scatter the incident radiation, which enhances light absorption and heating of the coral. However, heating saturates, because intense light scattering reduces the vertical penetration depth through the tissue eventually leading to reduced light absorption at high fluorescent pigment density. We conclude that fluorescent pigments can have a central role in modulating coral light absorption and heating.
A Micro Oxygen Sensor Based on a Nano Sol-Gel TiO2 Thin Film
Wang, Hairong; Chen, Lei; Wang, Jiaxin; Sun, Quantao; Zhao, Yulong
2014-01-01
An oxygen gas microsensor based on nanostructured sol-gel TiO2 thin films with a buried Pd layer was developed on a silicon substrate. The nanostructured titania thin films for O2 sensors were prepared by the sol-gel process and became anatase after heat treatment. A sandwich TiO2 square board with an area of 350 μm × 350 μm was defined by both wet etching and dry etching processes and the wet one was applied in the final process due to its advantages of easy control for the final structure. A pair of 150 nm Pt micro interdigitated electrodes with 50 nm Ti buffer layer was fabricated on the board by a lift-off process. The sensor chip was tested in a furnace with changing the O2 concentration from 1.0% to 20% by monitoring its electrical resistance. Results showed that after several testing cycles the sensor's output becomes stable, and its sensitivity is 0.054 with deviation 2.65 × 10−4 and hysteresis is 8.5%. Due to its simple fabrication process, the sensor has potential for application in environmental monitoring, where lower power consumption and small size are required. PMID:25192312
Photonic Low Cost Micro-Sensor for in-Line Wear Particle Detection in Flowing Lube Oils
Mabe, Jon; Zubia, Joseba; Gorritxategi, Eneko
2017-01-01
The presence of microscopic particles in suspension in industrial fluids is often an early warning of latent or imminent failures in the equipment or processes where they are being used. This manuscript describes work undertaken to integrate different photonic principles with a micro- mechanical fluidic structure and an embedded processor to develop a fully autonomous wear debris sensor for in-line monitoring of industrial fluids. Lens-less microscopy, stroboscopic illumination, a CMOS imager and embedded machine vision technologies have been merged to develop a sensor solution that is able to detect and quantify the number and size of micrometric particles suspended in a continuous flow of a fluid. A laboratory test-bench has been arranged for setting up the configuration of the optical components targeting a static oil sample and then a sensor prototype has been developed for migrating the measurement principles to real conditions in terms of operating pressure and flow rate of the oil. Imaging performance is quantified using micro calibrated samples, as well as by measuring real used lubricated oils. Sampling a large fluid volume with a decent 2D spatial resolution, this photonic micro sensor offers a powerful tool at very low cost and compacted size for in-line wear debris monitoring. PMID:28335436
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gatsonis, Nikolaos A.; Spirkin, Anton
2009-06-01
The mathematical formulation and computational implementation of a three-dimensional particle-in-cell methodology on unstructured Delaunay-Voronoi tetrahedral grids is presented. The method allows simulation of plasmas in complex domains and incorporates the duality of the Delaunay-Voronoi in all aspects of the particle-in-cell cycle. Charge assignment and field interpolation weighting schemes of zero- and first-order are formulated based on the theory of long-range constraints. Electric potential and fields are derived from a finite-volume formulation of Gauss' law using the Voronoi-Delaunay dual. Boundary conditions and the algorithms for injection, particle loading, particle motion, and particle tracking are implemented for unstructured Delaunay grids. Error andmore » sensitivity analysis examines the effects of particles/cell, grid scaling, and timestep on the numerical heating, the slowing-down time, and the deflection times. The problem of current collection by cylindrical Langmuir probes in collisionless plasmas is used for validation. Numerical results compare favorably with previous numerical and analytical solutions for a wide range of probe radius to Debye length ratios, probe potentials, and electron to ion temperature ratios. The versatility of the methodology is demonstrated with the simulation of a complex plasma microsensor, a directional micro-retarding potential analyzer that includes a low transparency micro-grid.« less
Wearable medical devices using textile and flexible technologies for ambulatory monitoring.
Dittmar, Andre; Meffre, Richard; De Oliveira, Fabrice; Gehin, Claudine; Delhomme, Georges
2005-01-01
Health smart clothes are in contact with almost all the surface of the skin offer large possibilities for the location of sensors for non invasive measurements. Head band, collar, tee-shirt, socks, shoes, belts for chest, arm, wrist, legs ... provide localization with specific purpose taking into account their proximity of an organ or a source of biosignal, and also its ergonomic possibility (user friendly) to fix a sensor, and the associated instrumentations (batteries, amplifiers, signal processing, telecom, alarm, display ...). Progress in science and technology offers, for the first time, intelligence, speed, miniaturization, sophistication and new materials at low cost. In this new landscape, microtechnologies, information technologies and telecommunications are a key factor. Microsensors : Microtechnologies offer the possibility of small size, but also intelligent, active device, working with low energy, wireless and non invasive or mini invasive. These sensors have to be thin, flexible and compatible with textile, or made using textile technologies, new fibers with specific properties: mechanical, electrical, optical ... The field of applications is very large, e.g. continuous monitoring on elderly population, professional and military activities, athlete's performance and condition, and people with disabilities. The research are oriented toward two complementary directions: Improving the relevancy of each sensor and increasing the number of sensors for having a more global synthetic and robust information.
Minet, L; Gehr, R; Hatzopoulou, M
2017-11-01
The development of reliable measures of exposure to traffic-related air pollution is crucial for the evaluation of the health effects of transportation. Land-use regression (LUR) techniques have been widely used for the development of exposure surfaces, however these surfaces are often highly sensitive to the data collected. With the rise of inexpensive air pollution sensors paired with GPS devices, we witness the emergence of mobile data collection protocols. For the same urban area, can we achieve a 'universal' model irrespective of the number of locations and sampling visits? Can we trade the temporal representation of fixed-point sampling for a larger spatial extent afforded by mobile monitoring? This study highlights the challenges of short-term mobile sampling campaigns in terms of the resulting exposure surfaces. A mobile monitoring campaign was conducted in 2015 in Montreal; nitrogen dioxide (NO 2 ) levels at 1395 road segments were measured under repeated visits. We developed LUR models based on sub-segments, categorized in terms of the number of visits per road segment. We observe that LUR models were highly sensitive to the number of road segments and to the number of visits per road segment. The associated exposure surfaces were also highly dissimilar. Copyright © 2017 Elsevier Ltd. All rights reserved.
Design of an Air Pollution Monitoring Campaign in Beijing for Application to Cohort Health Studies.
Vedal, Sverre; Han, Bin; Xu, Jia; Szpiro, Adam; Bai, Zhipeng
2017-12-15
No cohort studies in China on the health effects of long-term air pollution exposure have employed exposure estimates at the fine spatial scales desirable for cohort studies with individual-level health outcome data. Here we assess an array of modern air pollution exposure estimation approaches for assigning within-city exposure estimates in Beijing for individual pollutants and pollutant sources to individual members of a cohort. Issues considered in selecting specific monitoring data or new monitoring campaigns include: needed spatial resolution, exposure measurement error and its impact on health effect estimates, spatial alignment and compatibility with the cohort, and feasibility and expense. Sources of existing data largely include administrative monitoring data, predictions from air dispersion or chemical transport models and remote sensing (specifically satellite) data. New air monitoring campaigns include additional fixed site monitoring, snapshot monitoring, passive badge or micro-sensor saturation monitoring and mobile monitoring, as well as combinations of these. Each of these has relative advantages and disadvantages. It is concluded that a campaign in Beijing that at least includes a mobile monitoring component, when coupled with currently available spatio-temporal modeling methods, should be strongly considered. Such a campaign is economical and capable of providing the desired fine-scale spatial resolution for pollutants and sources.
Design of an Air Pollution Monitoring Campaign in Beijing for Application to Cohort Health Studies
Vedal, Sverre; Han, Bin; Szpiro, Adam; Bai, Zhipeng
2017-01-01
No cohort studies in China on the health effects of long-term air pollution exposure have employed exposure estimates at the fine spatial scales desirable for cohort studies with individual-level health outcome data. Here we assess an array of modern air pollution exposure estimation approaches for assigning within-city exposure estimates in Beijing for individual pollutants and pollutant sources to individual members of a cohort. Issues considered in selecting specific monitoring data or new monitoring campaigns include: needed spatial resolution, exposure measurement error and its impact on health effect estimates, spatial alignment and compatibility with the cohort, and feasibility and expense. Sources of existing data largely include administrative monitoring data, predictions from air dispersion or chemical transport models and remote sensing (specifically satellite) data. New air monitoring campaigns include additional fixed site monitoring, snapshot monitoring, passive badge or micro-sensor saturation monitoring and mobile monitoring, as well as combinations of these. Each of these has relative advantages and disadvantages. It is concluded that a campaign in Beijing that at least includes a mobile monitoring component, when coupled with currently available spatio-temporal modeling methods, should be strongly considered. Such a campaign is economical and capable of providing the desired fine-scale spatial resolution for pollutants and sources. PMID:29244738