Distributed Optimization of Multi-Agent Systems: Framework, Local Optimizer, and Applications
NASA Astrophysics Data System (ADS)
Zu, Yue
Convex optimization problem can be solved in a centralized or distributed manner. Compared with centralized methods based on single-agent system, distributed algorithms rely on multi-agent systems with information exchanging among connected neighbors, which leads to great improvement on the system fault tolerance. Thus, a task within multi-agent system can be completed with presence of partial agent failures. By problem decomposition, a large-scale problem can be divided into a set of small-scale sub-problems that can be solved in sequence/parallel. Hence, the computational complexity is greatly reduced by distributed algorithm in multi-agent system. Moreover, distributed algorithm allows data collected and stored in a distributed fashion, which successfully overcomes the drawbacks of using multicast due to the bandwidth limitation. Distributed algorithm has been applied in solving a variety of real-world problems. Our research focuses on the framework and local optimizer design in practical engineering applications. In the first one, we propose a multi-sensor and multi-agent scheme for spatial motion estimation of a rigid body. Estimation performance is improved in terms of accuracy and convergence speed. Second, we develop a cyber-physical system and implement distributed computation devices to optimize the in-building evacuation path when hazard occurs. The proposed Bellman-Ford Dual-Subgradient path planning method relieves the congestion in corridor and the exit areas. At last, highway traffic flow is managed by adjusting speed limits to minimize the fuel consumption and travel time in the third project. Optimal control strategy is designed through both centralized and distributed algorithm based on convex problem formulation. Moreover, a hybrid control scheme is presented for highway network travel time minimization. Compared with no controlled case or conventional highway traffic control strategy, the proposed hybrid control strategy greatly reduces total travel time on test highway network.
Adaptive Multi-Agent Systems for Constrained Optimization
NASA Technical Reports Server (NTRS)
Macready, William; Bieniawski, Stefan; Wolpert, David H.
2004-01-01
Product Distribution (PD) theory is a new framework for analyzing and controlling distributed systems. Here we demonstrate its use for distributed stochastic optimization. First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (probability distribution of) the joint state of the agents. When the game in question is a team game with constraints, that equilibrium optimizes the expected value of the team game utility, subject to those constraints. The updating of the Lagrange parameters in the Lagrangian can be viewed as a form of automated annealing, that focuses the MAS more and more on the optimal pure strategy. This provides a simple way to map the solution of any constrained optimization problem onto the equilibrium of a Multi-Agent System (MAS). We present computer experiments involving both the Queen s problem and K-SAT validating the predictions of PD theory and its use for off-the-shelf distributed adaptive optimization.
A Scalable and Robust Multi-Agent Approach to Distributed Optimization
NASA Technical Reports Server (NTRS)
Tumer, Kagan
2005-01-01
Modularizing a large optimization problem so that the solutions to the subproblems provide a good overall solution is a challenging problem. In this paper we present a multi-agent approach to this problem based on aligning the agent objectives with the system objectives, obviating the need to impose external mechanisms to achieve collaboration among the agents. This approach naturally addresses scaling and robustness issues by ensuring that the agents do not rely on the reliable operation of other agents We test this approach in the difficult distributed optimization problem of imperfect device subset selection [Challet and Johnson, 2002]. In this problem, there are n devices, each of which has a "distortion", and the task is to find the subset of those n devices that minimizes the average distortion. Our results show that in large systems (1000 agents) the proposed approach provides improvements of over an order of magnitude over both traditional optimization methods and traditional multi-agent methods. Furthermore, the results show that even in extreme cases of agent failures (i.e., half the agents fail midway through the simulation) the system remains coordinated and still outperforms a failure-free and centralized optimization algorithm.
NASA Astrophysics Data System (ADS)
Luy, N. T.
2018-04-01
The design of distributed cooperative H∞ optimal controllers for multi-agent systems is a major challenge when the agents' models are uncertain multi-input and multi-output nonlinear systems in strict-feedback form in the presence of external disturbances. In this paper, first, the distributed cooperative H∞ optimal tracking problem is transformed into controlling the cooperative tracking error dynamics in affine form. Second, control schemes and online algorithms are proposed via adaptive dynamic programming (ADP) and the theory of zero-sum differential graphical games. The schemes use only one neural network (NN) for each agent instead of three from ADP to reduce computational complexity as well as avoid choosing initial NN weights for stabilising controllers. It is shown that despite not using knowledge of cooperative internal dynamics, the proposed algorithms not only approximate values to Nash equilibrium but also guarantee all signals, such as the NN weight approximation errors and the cooperative tracking errors in the closed-loop system, to be uniformly ultimately bounded. Finally, the effectiveness of the proposed method is shown by simulation results of an application to wheeled mobile multi-robot systems.
Distributed optimization system and method
Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.
2003-06-10
A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.
Distributed Optimization System
Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.
2004-11-30
A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.
Adaptive, Distributed Control of Constrained Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Bieniawski, Stefan; Wolpert, David H.
2004-01-01
Product Distribution (PO) theory was recently developed as a broad framework for analyzing and optimizing distributed systems. Here we demonstrate its use for adaptive distributed control of Multi-Agent Systems (MASS), i.e., for distributed stochastic optimization using MAS s. First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (Probability dist&&on on the joint state of the agents. When the game in question is a team game with constraints, that equilibrium optimizes the expected value of the team game utility, subject to those constraints. One common way to find that equilibrium is to have each agent run a Reinforcement Learning (E) algorithm. PD theory reveals this to be a particular type of search algorithm for minimizing the Lagrangian. Typically that algorithm i s quite inefficient. A more principled alternative is to use a variant of Newton's method to minimize the Lagrangian. Here we compare this alternative to RL-based search in three sets of computer experiments. These are the N Queen s problem and bin-packing problem from the optimization literature, and the Bar problem from the distributed RL literature. Our results confirm that the PD-theory-based approach outperforms the RL-based scheme in all three domains.
Organization of the secure distributed computing based on multi-agent system
NASA Astrophysics Data System (ADS)
Khovanskov, Sergey; Rumyantsev, Konstantin; Khovanskova, Vera
2018-04-01
Nowadays developing methods for distributed computing is received much attention. One of the methods of distributed computing is using of multi-agent systems. The organization of distributed computing based on the conventional network computers can experience security threats performed by computational processes. Authors have developed the unified agent algorithm of control system of computing network nodes operation. Network PCs is used as computing nodes. The proposed multi-agent control system for the implementation of distributed computing allows in a short time to organize using of the processing power of computers any existing network to solve large-task by creating a distributed computing. Agents based on a computer network can: configure a distributed computing system; to distribute the computational load among computers operated agents; perform optimization distributed computing system according to the computing power of computers on the network. The number of computers connected to the network can be increased by connecting computers to the new computer system, which leads to an increase in overall processing power. Adding multi-agent system in the central agent increases the security of distributed computing. This organization of the distributed computing system reduces the problem solving time and increase fault tolerance (vitality) of computing processes in a changing computing environment (dynamic change of the number of computers on the network). Developed a multi-agent system detects cases of falsification of the results of a distributed system, which may lead to wrong decisions. In addition, the system checks and corrects wrong results.
NASA Technical Reports Server (NTRS)
Macready, William; Wolpert, David
2005-01-01
We demonstrate a new framework for analyzing and controlling distributed systems, by solving constrained optimization problems with an algorithm based on that framework. The framework is ar. information-theoretic extension of conventional full-rationality game theory to allow bounded rational agents. The associated optimization algorithm is a game in which agents control the variables of the optimization problem. They do this by jointly minimizing a Lagrangian of (the probability distribution of) their joint state. The updating of the Lagrange parameters in that Lagrangian is a form of automated annealing, one that focuses the multi-agent system on the optimal pure strategy. We present computer experiments for the k-sat constraint satisfaction problem and for unconstrained minimization of NK functions.
Product Distribution Theory for Control of Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Lee, Chia Fan; Wolpert, David H.
2004-01-01
Product Distribution (PD) theory is a new framework for controlling Multi-Agent Systems (MAS's). First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (probability distribution of) the joint stare of the agents. Accordingly we can consider a team game in which the shared utility is a performance measure of the behavior of the MAS. For such a scenario the game is at equilibrium - the Lagrangian is optimized - when the joint distribution of the agents optimizes the system's expected performance. One common way to find that equilibrium is to have each agent run a reinforcement learning algorithm. Here we investigate the alternative of exploiting PD theory to run gradient descent on the Lagrangian. We present computer experiments validating some of the predictions of PD theory for how best to do that gradient descent. We also demonstrate how PD theory can improve performance even when we are not allowed to rerun the MAS from different initial conditions, a requirement implicit in some previous work.
A problem of optimal control and observation for distributed homogeneous multi-agent system
NASA Astrophysics Data System (ADS)
Kruglikov, Sergey V.
2017-12-01
The paper considers the implementation of a algorithm for controlling a distributed complex of several mobile multi-robots. The concept of a unified information space of the controlling system is applied. The presented information and mathematical models of participants and obstacles, as real agents, and goals and scenarios, as virtual agents, create the base forming the algorithmic and software background for computer decision support system. The controlling scheme assumes the indirect management of the robotic team on the basis of optimal control and observation problem predicting intellectual behavior in a dynamic, hostile environment. A basic content problem is a compound cargo transportation by a group of participants in the case of a distributed control scheme in the terrain with multiple obstacles.
Multi-objective optimization of radiotherapy: distributed Q-learning and agent-based simulation
NASA Astrophysics Data System (ADS)
Jalalimanesh, Ammar; Haghighi, Hamidreza Shahabi; Ahmadi, Abbas; Hejazian, Hossein; Soltani, Madjid
2017-09-01
Radiotherapy (RT) is among the regular techniques for the treatment of cancerous tumours. Many of cancer patients are treated by this manner. Treatment planning is the most important phase in RT and it plays a key role in therapy quality achievement. As the goal of RT is to irradiate the tumour with adequately high levels of radiation while sparing neighbouring healthy tissues as much as possible, it is a multi-objective problem naturally. In this study, we propose an agent-based model of vascular tumour growth and also effects of RT. Next, we use multi-objective distributed Q-learning algorithm to find Pareto-optimal solutions for calculating RT dynamic dose. We consider multiple objectives and each group of optimizer agents attempt to optimise one of them, iteratively. At the end of each iteration, agents compromise the solutions to shape the Pareto-front of multi-objective problem. We propose a new approach by defining three schemes of treatment planning created based on different combinations of our objectives namely invasive, conservative and moderate. In invasive scheme, we enforce killing cancer cells and pay less attention about irradiation effects on normal cells. In conservative scheme, we take more care of normal cells and try to destroy cancer cells in a less stressed manner. The moderate scheme stands in between. For implementation, each of these schemes is handled by one agent in MDQ-learning algorithm and the Pareto optimal solutions are discovered by the collaboration of agents. By applying this methodology, we could reach Pareto treatment plans through building different scenarios of tumour growth and RT. The proposed multi-objective optimisation algorithm generates robust solutions and finds the best treatment plan for different conditions.
Adaptive behaviors in multi-agent source localization using passive sensing.
Shaukat, Mansoor; Chitre, Mandar
2016-12-01
In this paper, the role of adaptive group cohesion in a cooperative multi-agent source localization problem is investigated. A distributed source localization algorithm is presented for a homogeneous team of simple agents. An agent uses a single sensor to sense the gradient and two sensors to sense its neighbors. The algorithm is a set of individualistic and social behaviors where the individualistic behavior is as simple as an agent keeping its previous heading and is not self-sufficient in localizing the source. Source localization is achieved as an emergent property through agent's adaptive interactions with the neighbors and the environment. Given a single agent is incapable of localizing the source, maintaining team connectivity at all times is crucial. Two simple temporal sampling behaviors, intensity-based-adaptation and connectivity-based-adaptation, ensure an efficient localization strategy with minimal agent breakaways. The agent behaviors are simultaneously optimized using a two phase evolutionary optimization process. The optimized behaviors are estimated with analytical models and the resulting collective behavior is validated against the agent's sensor and actuator noise, strong multi-path interference due to environment variability, initialization distance sensitivity and loss of source signal.
Collectives for Multiple Resource Job Scheduling Across Heterogeneous Servers
NASA Technical Reports Server (NTRS)
Tumer, K.; Lawson, J.
2003-01-01
Efficient management of large-scale, distributed data storage and processing systems is a major challenge for many computational applications. Many of these systems are characterized by multi-resource tasks processed across a heterogeneous network. Conventional approaches, such as load balancing, work well for centralized, single resource problems, but breakdown in the more general case. In addition, most approaches are often based on heuristics which do not directly attempt to optimize the world utility. In this paper, we propose an agent based control system using the theory of collectives. We configure the servers of our network with agents who make local job scheduling decisions. These decisions are based on local goals which are constructed to be aligned with the objective of optimizing the overall efficiency of the system. We demonstrate that multi-agent systems in which all the agents attempt to optimize the same global utility function (team game) only marginally outperform conventional load balancing. On the other hand, agents configured using collectives outperform both team games and load balancing (by up to four times for the latter), despite their distributed nature and their limited access to information.
Multi-objective optimal dispatch of distributed energy resources
NASA Astrophysics Data System (ADS)
Longe, Ayomide
This thesis is composed of two papers which investigate the optimal dispatch for distributed energy resources. In the first paper, an economic dispatch problem for a community microgrid is studied. In this microgrid, each agent pursues an economic dispatch for its personal resources. In addition, each agent is capable of trading electricity with other agents through a local energy market. In this paper, a simple market structure is introduced as a framework for energy trades in a small community microgrid such as the Solar Village. It was found that both sellers and buyers benefited by participating in this market. In the second paper, Semidefinite Programming (SDP) for convex relaxation of power flow equations is used for optimal active and reactive dispatch for Distributed Energy Resources (DER). Various objective functions including voltage regulation, reduced transmission line power losses, and minimized reactive power charges for a microgrid are introduced. Combinations of these goals are attained by solving a multiobjective optimization for the proposed ORPD problem. Also, both centralized and distributed versions of this optimal dispatch are investigated. It was found that SDP made the optimal dispatch faster and distributed solution allowed for scalability.
A Comparative Study of Probability Collectives Based Multi-agent Systems and Genetic Algorithms
NASA Technical Reports Server (NTRS)
Huang, Chien-Feng; Wolpert, David H.; Bieniawski, Stefan; Strauss, Charles E. M.
2005-01-01
We compare Genetic Algorithms (GA's) with Probability Collectives (PC), a new framework for distributed optimization and control. In contrast to GA's, PC-based methods do not update populations of solutions. Instead they update an explicitly parameterized probability distribution p over the space of solutions. That updating of p arises as the optimization of a functional of p. The functional is chosen so that any p that optimizes it should be p peaked about good solutions. The PC approach works in both continuous and discrete problems. It does not suffer from the resolution limitation of the finite bit length encoding of parameters into GA alleles. It also has deep connections with both game theory and statistical physics. We review the PC approach using its motivation as the information theoretic formulation of bounded rationality for multi-agent systems. It is then compared with GA's on a diverse set of problems. To handle high dimensional surfaces, in the PC method investigated here p is restricted to a product distribution. Each distribution in that product is controlled by a separate agent. The test functions were selected for their difficulty using either traditional gradient descent or genetic algorithms. On those functions the PC-based approach significantly outperforms traditional GA's in both rate of descent, trapping in false minima, and long term optimization.
Learning Multirobot Hose Transportation and Deployment by Distributed Round-Robin Q-Learning.
Fernandez-Gauna, Borja; Etxeberria-Agiriano, Ismael; Graña, Manuel
2015-01-01
Multi-Agent Reinforcement Learning (MARL) algorithms face two main difficulties: the curse of dimensionality, and environment non-stationarity due to the independent learning processes carried out by the agents concurrently. In this paper we formalize and prove the convergence of a Distributed Round Robin Q-learning (D-RR-QL) algorithm for cooperative systems. The computational complexity of this algorithm increases linearly with the number of agents. Moreover, it eliminates environment non sta tionarity by carrying a round-robin scheduling of the action selection and execution. That this learning scheme allows the implementation of Modular State-Action Vetoes (MSAV) in cooperative multi-agent systems, which speeds up learning convergence in over-constrained systems by vetoing state-action pairs which lead to undesired termination states (UTS) in the relevant state-action subspace. Each agent's local state-action value function learning is an independent process, including the MSAV policies. Coordination of locally optimal policies to obtain the global optimal joint policy is achieved by a greedy selection procedure using message passing. We show that D-RR-QL improves over state-of-the-art approaches, such as Distributed Q-Learning, Team Q-Learning and Coordinated Reinforcement Learning in a paradigmatic Linked Multi-Component Robotic System (L-MCRS) control problem: the hose transportation task. L-MCRS are over-constrained systems with many UTS induced by the interaction of the passive linking element and the active mobile robots.
Stability of distributed MPC in an intersection scenario
NASA Astrophysics Data System (ADS)
Sprodowski, T.; Pannek, J.
2015-11-01
The research topic of autonomous cars and the communication among them has attained much attention in the last years and is developing quickly. Among others, this research area spans fields such as image recognition, mathematical control theory, communication networks, and sensor fusion. We consider an intersection scenario where we divide the shared road space in different cells. These cells form a grid. The cars are modelled as an autonomous multi-agent system based on the Distributed Model Predictive Control algorithm (DMPC). We prove that the overall system reaches stability using Optimal Control for each multi-agent and demonstrate that by numerical results.
Multi-Agent Architecture with Support to Quality of Service and Quality of Control
NASA Astrophysics Data System (ADS)
Poza-Luján, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, Jose-Enrique
Multi Agent Systems (MAS) are one of the most suitable frameworks for the implementation of intelligent distributed control system. Agents provide suitable flexibility to give support to implied heterogeneity in cyber-physical systems. Quality of Service (QoS) and Quality of Control (QoC) parameters are commonly utilized to evaluate the efficiency of the communications and the control loop. Agents can use the quality measures to take a wide range of decisions, like suitable placement on the control node or to change the workload to save energy. This article describes the architecture of a multi agent system that provides support to QoS and QoC parameters to optimize de system. The architecture uses a Publish-Subscriber model, based on Data Distribution Service (DDS) to send the control messages. Due to the nature of the Publish-Subscribe model, the architecture is suitable to implement event-based control (EBC) systems. The architecture has been called FSACtrl.
Multi-agent robotic systems and applications for satellite missions
NASA Astrophysics Data System (ADS)
Nunes, Miguel A.
A revolution in the space sector is happening. It is expected that in the next decade there will be more satellites launched than in the previous sixty years of space exploration. Major challenges are associated with this growth of space assets such as the autonomy and management of large groups of satellites, in particular with small satellites. There are two main objectives for this work. First, a flexible and distributed software architecture is presented to expand the possibilities of spacecraft autonomy and in particular autonomous motion in attitude and position. The approach taken is based on the concept of distributed software agents, also referred to as multi-agent robotic system. Agents are defined as software programs that are social, reactive and proactive to autonomously maximize the chances of achieving the set goals. Part of the work is to demonstrate that a multi-agent robotic system is a feasible approach for different problems of autonomy such as satellite attitude determination and control and autonomous rendezvous and docking. The second main objective is to develop a method to optimize multi-satellite configurations in space, also known as satellite constellations. This automated method generates new optimal mega-constellations designs for Earth observations and fast revisit times on large ground areas. The optimal satellite constellation can be used by researchers as the baseline for new missions. The first contribution of this work is the development of a new multi-agent robotic system for distributing the attitude determination and control subsystem for HiakaSat. The multi-agent robotic system is implemented and tested on the satellite hardware-in-the-loop testbed that simulates a representative space environment. The results show that the newly proposed system for this particular case achieves an equivalent control performance when compared to the monolithic implementation. In terms on computational efficiency it is found that the multi-agent robotic system has a consistent lower CPU load of 0.29 +/- 0.03 compared to 0.35 +/- 0.04 for the monolithic implementation, a 17.1 % reduction. The second contribution of this work is the development of a multi-agent robotic system for the autonomous rendezvous and docking of multiple spacecraft. To compute the maneuvers guidance, navigation and control algorithms are implemented as part of the multi-agent robotic system. The navigation and control functions are implemented using existing algorithms, but one important contribution of this section is the introduction of a new six degrees of freedom guidance method which is part of the guidance, navigation and control architecture. This new method is an explicit solution to the guidance problem, and is particularly useful for real time guidance for attitude and position, as opposed to typical guidance methods which are based on numerical solutions, and therefore are computationally intensive. A simulation scenario is run for docking four CubeSats deployed radially from a launch vehicle. Considering fully actuated CubeSats, the simulations show docking maneuvers that are successfully completed within 25 minutes which is approximately 30% of a full orbital period in low earth orbit. The final section investigates the problem of optimization of satellite constellations for fast revisit time, and introduces a new method to generate different constellation configurations that are evaluated with a genetic algorithm. Two case studies are presented. The first is the optimization of a constellation for rapid coverage of the oceans of the globe in 24 hours or less. Results show that for an 80 km sensor swath width 50 satellites are required to cover the oceans with a 24 hour revisit time. The second constellation configuration study focuses on the optimization for the rapid coverage of the North Atlantic Tracks for air traffic monitoring in 3 hours or less. The results show that for a fixed swath width of 160 km and for a 3 hour revisit time 52 satellites are required.
NASA Astrophysics Data System (ADS)
Lu, Yanrong; Liao, Fucheng; Deng, Jiamei; Liu, Huiyang
2017-09-01
This paper investigates the cooperative global optimal preview tracking problem of linear multi-agent systems under the assumption that the output of a leader is a previewable periodic signal and the topology graph contains a directed spanning tree. First, a type of distributed internal model is introduced, and the cooperative preview tracking problem is converted to a global optimal regulation problem of an augmented system. Second, an optimal controller, which can guarantee the asymptotic stability of the augmented system, is obtained by means of the standard linear quadratic optimal preview control theory. Third, on the basis of proving the existence conditions of the controller, sufficient conditions are given for the original problem to be solvable, meanwhile a cooperative global optimal controller with error integral and preview compensation is derived. Finally, the validity of theoretical results is demonstrated by a numerical simulation.
Multi Sensor Fusion Using Fitness Adaptive Differential Evolution
NASA Astrophysics Data System (ADS)
Giri, Ritwik; Ghosh, Arnob; Chowdhury, Aritra; Das, Swagatam
The rising popularity of multi-source, multi-sensor networks supports real-life applications calls for an efficient and intelligent approach to information fusion. Traditional optimization techniques often fail to meet the demands. The evolutionary approach provides a valuable alternative due to its inherent parallel nature and its ability to deal with difficult problems. We present a new evolutionary approach based on a modified version of Differential Evolution (DE), called Fitness Adaptive Differential Evolution (FiADE). FiADE treats sensors in the network as distributed intelligent agents with various degrees of autonomy. Existing approaches based on intelligent agents cannot completely answer the question of how their agents could coordinate their decisions in a complex environment. The proposed approach is formulated to produce good result for the problems that are high-dimensional, highly nonlinear, and random. The proposed approach gives better result in case of optimal allocation of sensors. The performance of the proposed approach is compared with an evolutionary algorithm coordination generalized particle model (C-GPM).
Swarm Intelligence Optimization and Its Applications
NASA Astrophysics Data System (ADS)
Ding, Caichang; Lu, Lu; Liu, Yuanchao; Peng, Wenxiu
Swarm Intelligence is a computational and behavioral metaphor for solving distributed problems inspired from biological examples provided by social insects such as ants, termites, bees, and wasps and by swarm, herd, flock, and shoal phenomena in vertebrates such as fish shoals and bird flocks. An example of successful research direction in Swarm Intelligence is ant colony optimization (ACO), which focuses on combinatorial optimization problems. Ant algorithms can be viewed as multi-agent systems (ant colony), where agents (individual ants) solve required tasks through cooperation in the same way that ants create complex social behavior from the combined efforts of individuals.
2016-09-07
been demonstrated on maximum power point tracking for photovoltaic arrays and for wind turbines . 3. ES has recently been implemented on the Mars...high-dimensional optimization problems . Extensions and applications of these techniques were developed during the realization of the project. 15...studied problems of dynamic average consensus and a class of unconstrained continuous-time optimization algorithms for the coordination of multiple
Optimal consensus algorithm integrated with obstacle avoidance
NASA Astrophysics Data System (ADS)
Wang, Jianan; Xin, Ming
2013-01-01
This article proposes a new consensus algorithm for the networked single-integrator systems in an obstacle-laden environment. A novel optimal control approach is utilised to achieve not only multi-agent consensus but also obstacle avoidance capability with minimised control efforts. Three cost functional components are defined to fulfil the respective tasks. In particular, an innovative nonquadratic obstacle avoidance cost function is constructed from an inverse optimal control perspective. The other two components are designed to ensure consensus and constrain the control effort. The asymptotic stability and optimality are proven. In addition, the distributed and analytical optimal control law only requires local information based on the communication topology to guarantee the proposed behaviours, rather than all agents' information. The consensus and obstacle avoidance are validated through simulations.
Sampled-Data Consensus of Linear Multi-agent Systems With Packet Losses.
Zhang, Wenbing; Tang, Yang; Huang, Tingwen; Kurths, Jurgen
In this paper, the consensus problem is studied for a class of multi-agent systems with sampled data and packet losses, where random and deterministic packet losses are considered, respectively. For random packet losses, a Bernoulli-distributed white sequence is used to describe packet dropouts among agents in a stochastic way. For deterministic packet losses, a switched system with stable and unstable subsystems is employed to model packet dropouts in a deterministic way. The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus. By means of the Lyapunov function approach and the decomposition method, the design problem of a distributed controller is solved in terms of convex optimization. The interplay among the allowable bound of the sampling interval, the probability of random packet losses, and the rate of deterministic packet losses are explicitly derived to characterize consensus conditions. The obtained criteria are closely related to the maximum eigenvalue of the Laplacian matrix versus the second minimum eigenvalue of the Laplacian matrix, which reveals the intrinsic effect of communication topologies on consensus performance. Finally, simulations are given to show the effectiveness of the proposed results.In this paper, the consensus problem is studied for a class of multi-agent systems with sampled data and packet losses, where random and deterministic packet losses are considered, respectively. For random packet losses, a Bernoulli-distributed white sequence is used to describe packet dropouts among agents in a stochastic way. For deterministic packet losses, a switched system with stable and unstable subsystems is employed to model packet dropouts in a deterministic way. The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus. By means of the Lyapunov function approach and the decomposition method, the design problem of a distributed controller is solved in terms of convex optimization. The interplay among the allowable bound of the sampling interval, the probability of random packet losses, and the rate of deterministic packet losses are explicitly derived to characterize consensus conditions. The obtained criteria are closely related to the maximum eigenvalue of the Laplacian matrix versus the second minimum eigenvalue of the Laplacian matrix, which reveals the intrinsic effect of communication topologies on consensus performance. Finally, simulations are given to show the effectiveness of the proposed results.
A Distributed Ambient Intelligence Based Multi-Agent System for Alzheimer Health Care
NASA Astrophysics Data System (ADS)
Tapia, Dante I.; RodríGuez, Sara; Corchado, Juan M.
This chapter presents ALZ-MAS (Alzheimer multi-agent system), an ambient intelligence (AmI)-based multi-agent system aimed at enhancing the assistance and health care for Alzheimer patients. The system makes use of several context-aware technologies that allow it to automatically obtain information from users and the environment in an evenly distributed way, focusing on the characteristics of ubiquity, awareness, intelligence, mobility, etc., all of which are concepts defined by AmI. ALZ-MAS makes use of a services oriented multi-agent architecture, called flexible user and services oriented multi-agent architecture, to distribute resources and enhance its performance. It is demonstrated that a SOA approach is adequate to build distributed and highly dynamic AmI-based multi-agent systems.
Multi-agent coordination algorithms for control of distributed energy resources in smart grids
NASA Astrophysics Data System (ADS)
Cortes, Andres
Sustainable energy is a top-priority for researchers these days, since electricity and transportation are pillars of modern society. Integration of clean energy technologies such as wind, solar, and plug-in electric vehicles (PEVs), is a major engineering challenge in operation and management of power systems. This is due to the uncertain nature of renewable energy technologies and the large amount of extra load that PEVs would add to the power grid. Given the networked structure of a power system, multi-agent control and optimization strategies are natural approaches to address the various problems of interest for the safe and reliable operation of the power grid. The distributed computation in multi-agent algorithms addresses three problems at the same time: i) it allows for the handling of problems with millions of variables that a single processor cannot compute, ii) it allows certain independence and privacy to electricity customers by not requiring any usage information, and iii) it is robust to localized failures in the communication network, being able to solve problems by simply neglecting the failing section of the system. We propose various algorithms to coordinate storage, generation, and demand resources in a power grid using multi-agent computation and decentralized decision making. First, we introduce a hierarchical vehicle-one-grid (V1G) algorithm for coordination of PEVs under usage constraints, where energy only flows from the grid in to the batteries of PEVs. We then present a hierarchical vehicle-to-grid (V2G) algorithm for PEV coordination that takes into consideration line capacity constraints in the distribution grid, and where energy flows both ways, from the grid in to the batteries, and from the batteries to the grid. Next, we develop a greedy-like hierarchical algorithm for management of demand response events with on/off loads. Finally, we introduce distributed algorithms for the optimal control of distributed energy resources, i.e., generation and storage in a microgrid. The algorithms we present are provably correct and tested in simulation. Each algorithm is assumed to work on a particular network topology, and simulation studies are carried out in order to demonstrate their convergence properties to a desired solution.
Model-free learning on robot kinematic chains using a nested multi-agent topology
NASA Astrophysics Data System (ADS)
Karigiannis, John N.; Tzafestas, Costas S.
2016-11-01
This paper proposes a model-free learning scheme for the developmental acquisition of robot kinematic control and dexterous manipulation skills. The approach is based on a nested-hierarchical multi-agent architecture that intuitively encapsulates the topology of robot kinematic chains, where the activity of each independent degree-of-freedom (DOF) is finally mapped onto a distinct agent. Each one of those agents progressively evolves a local kinematic control strategy in a game-theoretic sense, that is, based on a partial (local) view of the whole system topology, which is incrementally updated through a recursive communication process according to the nested-hierarchical topology. Learning is thus approached not through demonstration and training but through an autonomous self-exploration process. A fuzzy reinforcement learning scheme is employed within each agent to enable efficient exploration in a continuous state-action domain. This paper constitutes in fact a proof of concept, demonstrating that global dexterous manipulation skills can indeed evolve through such a distributed iterative learning of local agent sensorimotor mappings. The main motivation behind the development of such an incremental multi-agent topology is to enhance system modularity, to facilitate extensibility to more complex problem domains and to improve robustness with respect to structural variations including unpredictable internal failures. These attributes of the proposed system are assessed in this paper through numerical experiments in different robot manipulation task scenarios, involving both single and multi-robot kinematic chains. The generalisation capacity of the learning scheme is experimentally assessed and robustness properties of the multi-agent system are also evaluated with respect to unpredictable variations in the kinematic topology. Furthermore, these numerical experiments demonstrate the scalability properties of the proposed nested-hierarchical architecture, where new agents can be recursively added in the hierarchy to encapsulate individual active DOFs. The results presented in this paper demonstrate the feasibility of such a distributed multi-agent control framework, showing that the solutions which emerge are plausible and near-optimal. Numerical efficiency and computational cost issues are also discussed.
Multi-Agent Cooperative Target Search
Hu, Jinwen; Xie, Lihua; Xu, Jun; Xu, Zhao
2014-01-01
This paper addresses a vision-based cooperative search for multiple mobile ground targets by a group of unmanned aerial vehicles (UAVs) with limited sensing and communication capabilities. The airborne camera on each UAV has a limited field of view and its target discriminability varies as a function of altitude. First, by dividing the whole surveillance region into cells, a probability map can be formed for each UAV indicating the probability of target existence within each cell. Then, we propose a distributed probability map updating model which includes the fusion of measurement information, information sharing among neighboring agents, information decay and transmission due to environmental changes such as the target movement. Furthermore, we formulate the target search problem as a multi-agent cooperative coverage control problem by optimizing the collective coverage area and the detection performance. The proposed map updating model and the cooperative control scheme are distributed, i.e., assuming that each agent only communicates with its neighbors within its communication range. Finally, the effectiveness of the proposed algorithms is illustrated by simulation. PMID:24865884
Learning in engineered multi-agent systems
NASA Astrophysics Data System (ADS)
Menon, Anup
Consider the problem of maximizing the total power produced by a wind farm. Due to aerodynamic interactions between wind turbines, each turbine maximizing its individual power---as is the case in present-day wind farms---does not lead to optimal farm-level power capture. Further, there are no good models to capture the said aerodynamic interactions, rendering model based optimization techniques ineffective. Thus, model-free distributed algorithms are needed that help turbines adapt their power production on-line so as to maximize farm-level power capture. Motivated by such problems, the main focus of this dissertation is a distributed model-free optimization problem in the context of multi-agent systems. The set-up comprises of a fixed number of agents, each of which can pick an action and observe the value of its individual utility function. An individual's utility function may depend on the collective action taken by all agents. The exact functional form (or model) of the agent utility functions, however, are unknown; an agent can only measure the numeric value of its utility. The objective of the multi-agent system is to optimize the welfare function (i.e. sum of the individual utility functions). Such a collaborative task requires communications between agents and we allow for the possibility of such inter-agent communications. We also pay attention to the role played by the pattern of such information exchange on certain aspects of performance. We develop two algorithms to solve this problem. The first one, engineered Interactive Trial and Error Learning (eITEL) algorithm, is based on a line of work in the Learning in Games literature and applies when agent actions are drawn from finite sets. While in a model-free setting, we introduce a novel qualitative graph-theoretic framework to encode known directed interactions of the form "which agents' action affect which others' payoff" (interaction graph). We encode explicit inter-agent communications in a directed graph (communication graph) and, under certain conditions, prove convergence of agent joint action (under eITEL) to the welfare optimizing set. The main condition requires that the union of interaction and communication graphs be strongly connected; thus the algorithm combines an implicit form of communication (via interactions through utility functions) with explicit inter-agent communications to achieve the given collaborative goal. This work has kinship with certain evolutionary computation techniques such as Simulated Annealing; the algorithm steps are carefully designed such that it describes an ergodic Markov chain with a stationary distribution that has support over states where agent joint actions optimize the welfare function. The main analysis tool is perturbed Markov chains and results of broader interest regarding these are derived as well. The other algorithm, Collaborative Extremum Seeking (CES), uses techniques from extremum seeking control to solve the problem when agent actions are drawn from the set of real numbers. In this case, under the assumption of existence of a local minimizer for the welfare function and a connected undirected communication graph between agents, a result regarding convergence of joint action to a small neighborhood of a local optimizer of the welfare function is proved. Since extremum seeking control uses a simultaneous gradient estimation-descent scheme, gradient information available in the continuous action space formulation is exploited by the CES algorithm to yield improved convergence speeds. The effectiveness of this algorithm for the wind farm power maximization problem is evaluated via simulations. Lastly, we turn to a different question regarding role of the information exchange pattern on performance of distributed control systems by means of a case study for the vehicle platooning problem. In the vehicle platoon control problem, the objective is to design distributed control laws for individual vehicles in a platoon (or a road-train) that regulate inter-vehicle distances at a specified safe value while the entire platoon follows a leader-vehicle. While most of the literature on the problem deals with some inadequacy in control performance when the information exchange is of the nearest neighbor-type, we consider an arbitrary graph serving as information exchange pattern and derive a relationship between how a certain indicator of control performance is related to the information pattern. Such analysis helps in understanding qualitative features of the `right' information pattern for this problem.
Watson, Richard A; Mills, Rob; Buckley, C L
2011-01-01
In some circumstances complex adaptive systems composed of numerous self-interested agents can self-organize into structures that enhance global adaptation, efficiency, or function. However, the general conditions for such an outcome are poorly understood and present a fundamental open question for domains as varied as ecology, sociology, economics, organismic biology, and technological infrastructure design. In contrast, sufficient conditions for artificial neural networks to form structures that perform collective computational processes such as associative memory/recall, classification, generalization, and optimization are well understood. Such global functions within a single agent or organism are not wholly surprising, since the mechanisms (e.g., Hebbian learning) that create these neural organizations may be selected for this purpose; but agents in a multi-agent system have no obvious reason to adhere to such a structuring protocol or produce such global behaviors when acting from individual self-interest. However, Hebbian learning is actually a very simple and fully distributed habituation or positive feedback principle. Here we show that when self-interested agents can modify how they are affected by other agents (e.g., when they can influence which other agents they interact with), then, in adapting these inter-agent relationships to maximize their own utility, they will necessarily alter them in a manner homologous with Hebbian learning. Multi-agent systems with adaptable relationships will thereby exhibit the same system-level behaviors as neural networks under Hebbian learning. For example, improved global efficiency in multi-agent systems can be explained by the inherent ability of associative memory to generalize by idealizing stored patterns and/or creating new combinations of subpatterns. Thus distributed multi-agent systems can spontaneously exhibit adaptive global behaviors in the same sense, and by the same mechanism, as with the organizational principles familiar in connectionist models of organismic learning.
Investigating accident causation through information network modelling.
Griffin, T G C; Young, M S; Stanton, N A
2010-02-01
Management of risk in complex domains such as aviation relies heavily on post-event investigations, requiring complex approaches to fully understand the integration of multi-causal, multi-agent and multi-linear accident sequences. The Event Analysis of Systemic Teamwork methodology (EAST; Stanton et al. 2008) offers such an approach based on network models. In this paper, we apply EAST to a well-known aviation accident case study, highlighting communication between agents as a central theme and investigating the potential for finding agents who were key to the accident. Ultimately, this work aims to develop a new model based on distributed situation awareness (DSA) to demonstrate that the risk inherent in a complex system is dependent on the information flowing within it. By identifying key agents and information elements, we can propose proactive design strategies to optimize the flow of information and help work towards avoiding aviation accidents. Statement of Relevance: This paper introduces a novel application of an holistic methodology for understanding aviation accidents. Furthermore, it introduces an ongoing project developing a nonlinear and prospective method that centralises distributed situation awareness and communication as themes. The relevance of findings are discussed in the context of current ergonomic and aviation issues of design, training and human-system interaction.
DOT National Transportation Integrated Search
2017-07-04
This paper presents a stochastic multi-agent optimization model that supports energy infrastruc- : ture planning under uncertainty. The interdependence between dierent decision entities in the : system is captured in an energy supply chain network, w...
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Saptarshi
Multi-agent systems are widely used for constructing a desired formation shape, exploring an area, surveillance, coverage, and other cooperative tasks. This dissertation introduces novel algorithms in the three main areas of shape formation, distributed estimation, and attitude control of large-scale multi-agent systems. In the first part of this dissertation, we address the problem of shape formation for thousands to millions of agents. Here, we present two novel algorithms for guiding a large-scale swarm of robotic systems into a desired formation shape in a distributed and scalable manner. These probabilistic swarm guidance algorithms adopt an Eulerian framework, where the physical space is partitioned into bins and the swarm's density distribution over each bin is controlled using tunable Markov chains. In the first algorithm - Probabilistic Swarm Guidance using Inhomogeneous Markov Chains (PSG-IMC) - each agent determines its bin transition probabilities using a time-inhomogeneous Markov chain that is constructed in real-time using feedback from the current swarm distribution. This PSG-IMC algorithm minimizes the expected cost of the transitions required to achieve and maintain the desired formation shape, even when agents are added to or removed from the swarm. The algorithm scales well with a large number of agents and complex formation shapes, and can also be adapted for area exploration applications. In the second algorithm - Probabilistic Swarm Guidance using Optimal Transport (PSG-OT) - each agent determines its bin transition probabilities by solving an optimal transport problem, which is recast as a linear program. In the presence of perfect feedback of the current swarm distribution, this algorithm minimizes the given cost function, guarantees faster convergence, reduces the number of transitions for achieving the desired formation, and is robust to disturbances or damages to the formation. We demonstrate the effectiveness of these two proposed swarm guidance algorithms using results from numerical simulations and closed-loop hardware experiments on multiple quadrotors. In the second part of this dissertation, we present two novel discrete-time algorithms for distributed estimation, which track a single target using a network of heterogeneous sensing agents. The Distributed Bayesian Filtering (DBF) algorithm, the sensing agents combine their normalized likelihood functions using the logarithmic opinion pool and the discrete-time dynamic average consensus algorithm. Each agent's estimated likelihood function converges to an error ball centered on the joint likelihood function of the centralized multi-sensor Bayesian filtering algorithm. Using a new proof technique, the convergence, stability, and robustness properties of the DBF algorithm are rigorously characterized. The explicit bounds on the time step of the robust DBF algorithm are shown to depend on the time-scale of the target dynamics. Furthermore, the DBF algorithm for linear-Gaussian models can be cast into a modified form of the Kalman information filter. In the Bayesian Consensus Filtering (BCF) algorithm, the agents combine their estimated posterior pdfs multiple times within each time step using the logarithmic opinion pool scheme. Thus, each agent's consensual pdf minimizes the sum of Kullback-Leibler divergences with the local posterior pdfs. The performance and robust properties of these algorithms are validated using numerical simulations. In the third part of this dissertation, we present an attitude control strategy and a new nonlinear tracking controller for a spacecraft carrying a large object, such as an asteroid or a boulder. If the captured object is larger or comparable in size to the spacecraft and has significant modeling uncertainties, conventional nonlinear control laws that use exact feed-forward cancellation are not suitable because they exhibit a large resultant disturbance torque. The proposed nonlinear tracking control law guarantees global exponential convergence of tracking errors with finite-gain Lp stability in the presence of modeling uncertainties and disturbances, and reduces the resultant disturbance torque. Further, this control law permits the use of any attitude representation and its integral control formulation eliminates any constant disturbance. Under small uncertainties, the best strategy for stabilizing the combined system is to track a fuel-optimal reference trajectory using this nonlinear control law, because it consumes the least amount of fuel. In the presence of large uncertainties, the most effective strategy is to track the derivative plus proportional-derivative based reference trajectory, because it reduces the resultant disturbance torque. The effectiveness of the proposed attitude control law is demonstrated by using results of numerical simulation based on an Asteroid Redirect Mission concept. The new algorithms proposed in this dissertation will facilitate the development of versatile autonomous multi-agent systems that are capable of performing a variety of complex tasks in a robust and scalable manner.
Principled negotiation and distributed optimization for advanced air traffic management
NASA Astrophysics Data System (ADS)
Wangermann, John Paul
Today's aircraft/airspace system faces complex challenges. Congestion and delays are widespread as air traffic continues to grow. Airlines want to better optimize their operations, and general aviation wants easier access to the system. Additionally, the accident rate must decline just to keep the number of accidents each year constant. New technology provides an opportunity to rethink the air traffic management process. Faster computers, new sensors, and high-bandwidth communications can be used to create new operating models. The choice is no longer between "inflexible" strategic separation assurance and "flexible" tactical conflict resolution. With suitable operating procedures, it is possible to have strategic, four-dimensional separation assurance that is flexible and allows system users maximum freedom to optimize operations. This thesis describes an operating model based on principled negotiation between agents. Many multi-agent systems have agents that have different, competing interests but have a shared interest in coordinating their actions. Principled negotiation is a method of finding agreement between agents with different interests. By focusing on fundamental interests and searching for options for mutual gain, agents with different interests reach agreements that provide benefits for both sides. Using principled negotiation, distributed optimization by each agent can be coordinated leading to iterative optimization of the system. Principled negotiation is well-suited to aircraft/airspace systems. It allows aircraft and operators to propose changes to air traffic control. Air traffic managers check the proposal maintains required aircraft separation. If it does, the proposal is either accepted or passed to agents whose trajectories change as part of the proposal for approval. Aircraft and operators can use all the data at hand to develop proposals that optimize their operations, while traffic managers can focus on their primary duty of ensuring aircraft safety. This thesis describes how an aircraft/airspace system using principled negotiation operates, and reports simulation results on the concept. The results show safety is maintained while aircraft have freedom to optimize their operations.
Intercell scheduling: A negotiation approach using multi-agent coalitions
NASA Astrophysics Data System (ADS)
Tian, Yunna; Li, Dongni; Zheng, Dan; Jia, Yunde
2016-10-01
Intercell scheduling problems arise as a result of intercell transfers in cellular manufacturing systems. Flexible intercell routes are considered in this article, and a coalition-based scheduling (CBS) approach using distributed multi-agent negotiation is developed. Taking advantage of the extended vision of the coalition agents, the global optimization is improved and the communication cost is reduced. The objective of the addressed problem is to minimize mean tardiness. Computational results show that, compared with the widely used combinatorial rules, CBS provides better performance not only in minimizing the objective, i.e. mean tardiness, but also in minimizing auxiliary measures such as maximum completion time, mean flow time and the ratio of tardy parts. Moreover, CBS is better than the existing intercell scheduling approach for the same problem with respect to the solution quality and computational costs.
NASA Astrophysics Data System (ADS)
Pan, Tianheng
2018-01-01
In recent years, the combination of workflow management system and Multi-agent technology is a hot research field. The problem of lack of flexibility in workflow management system can be improved by introducing multi-agent collaborative management. The workflow management system adopts distributed structure. It solves the problem that the traditional centralized workflow structure is fragile. In this paper, the agent of Distributed workflow management system is divided according to its function. The execution process of each type of agent is analyzed. The key technologies such as process execution and resource management are analyzed.
Health Care Decision Support System for the Pediatric Emeregency Department Management.
Ben Othman, Sarah; Hammadi, Slim; Quilliot, Alain; Martinot, Alain; Renard, Jean-Marie
2015-01-01
Health organization management is facing a high amount of complexity due to the inherent dynamics of the processes and the distributed organization of hospitals. It is therefore necessary for health care institutions to focus on this issue in order to deal with patients' requirements and satisfy their needs. The main objective of this study is to develop and implement a Decision Support System which can help physicians to better manage their organization, to anticipate the overcrowding feature, and to establish avoidance proposals for it. This work is a part of HOST project (Hospital: Optimization, Simulation, and Crowding Avoidance) of the French National Research Agency (ANR). It aims to optimize the functioning of the Pediatric Emergency Department characterized by stochastic arrivals of patients which leads to its overcrowding and services overload. Our study is a set of tools to smooth out patient flows, enhance care quality and minimize long waiting times and costs due to resources allocation. So we defined a decision aided tool based on Multi-agent Systems where actors negotiate and cooperate under some constraints in a dynamic environment. These entities which can be either physical agents representing real actors in the health care institution or software agents allowing the implementation of optimizing tools, cooperate to satisfy the demands of patients while respecting emergency degrees. This paper is concerned with agents' negotiation. It proposes a new approach for multi-skill tasks scheduling based on interactions between agents.
NASA Astrophysics Data System (ADS)
Tsuji, Takao; Hara, Ryoichi; Oyama, Tsutomu; Yasuda, Keiichiro
A super distributed energy system is a future energy system in which the large part of its demand is fed by a huge number of distributed generators. At one time some nodes in the super distributed energy system behave as load, however, at other times they behave as generator - the characteristic of each node depends on the customers' decision. In such situation, it is very difficult to regulate voltage profile over the system due to the complexity of power flows. This paper proposes a novel control method of distributed generators that can achieve the autonomous decentralized voltage profile regulation by using multi-agent technology. The proposed multi-agent system employs two types of agent; a control agent and a mobile agent. Control agents generate or consume reactive power to regulate the voltage profile of neighboring nodes and mobile agents transmit the information necessary for VQ-control among the control agents. The proposed control method is tested through numerical simulations.
Distributed Market-Based Algorithms for Multi-Agent Planning with Shared Resources
2013-02-01
1 Introduction 1 2 Distributed Market-Based Multi-Agent Planning 5 2.1 Problem Formulation...over the deterministic planner, on the “test set” of scenarios with changing economies. . . 50 xi xii Chapter 1 Introduction Multi-agent planning is...representation of the objective (4.2.1). For example, for the supply chain mangement problem, we assumed a sequence of Bernoulli coin flips, which seems
Multi-Agent Information Classification Using Dynamic Acquaintance Lists.
ERIC Educational Resources Information Center
Mukhopadhyay, Snehasis; Peng, Shengquan; Raje, Rajeev; Palakal, Mathew; Mostafa, Javed
2003-01-01
Discussion of automated information services focuses on information classification and collaborative agents, i.e. intelligent computer programs. Highlights include multi-agent systems; distributed artificial intelligence; thesauri; document representation and classification; agent modeling; acquaintances, or remote agents discovered through…
Multi-agent systems and their applications
Xie, Jing; Liu, Chen-Ching
2017-07-14
The number of distributed energy components and devices continues to increase globally. As a result, distributed control schemes are desirable for managing and utilizing these devices, together with the large amount of data. In recent years, agent-based technology becomes a powerful tool for engineering applications. As a computational paradigm, multi agent systems (MASs) provide a good solution for distributed control. Here in this paper, MASs and applications are discussed. A state-of-the-art literature survey is conducted on the system architecture, consensus algorithm, and multi-agent platform, framework, and simulator. In addition, a distributed under-frequency load shedding (UFLS) scheme is proposed using themore » MAS. Simulation results for a case study are presented. The future of MASs is discussed in the conclusion.« less
Multi-agent systems and their applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Jing; Liu, Chen-Ching
The number of distributed energy components and devices continues to increase globally. As a result, distributed control schemes are desirable for managing and utilizing these devices, together with the large amount of data. In recent years, agent-based technology becomes a powerful tool for engineering applications. As a computational paradigm, multi agent systems (MASs) provide a good solution for distributed control. Here in this paper, MASs and applications are discussed. A state-of-the-art literature survey is conducted on the system architecture, consensus algorithm, and multi-agent platform, framework, and simulator. In addition, a distributed under-frequency load shedding (UFLS) scheme is proposed using themore » MAS. Simulation results for a case study are presented. The future of MASs is discussed in the conclusion.« less
Distributed optimisation problem with communication delay and external disturbance
NASA Astrophysics Data System (ADS)
Tran, Ngoc-Tu; Xiao, Jiang-Wen; Wang, Yan-Wu; Yang, Wu
2017-12-01
This paper investigates the distributed optimisation problem for the multi-agent systems (MASs) with the simultaneous presence of external disturbance and the communication delay. To solve this problem, a two-step design scheme is introduced. In the first step, based on the internal model principle, the internal model term is constructed to compensate the disturbance asymptotically. In the second step, a distributed optimisation algorithm is designed to solve the distributed optimisation problem based on the MASs with the simultaneous presence of disturbance and communication delay. Moreover, in the proposed algorithm, each agent interacts with its neighbours through the connected topology and the delay occurs during the information exchange. By utilising Lyapunov-Krasovskii functional, the delay-dependent conditions are derived for both slowly and fast time-varying delay, respectively, to ensure the convergence of the algorithm to the optimal solution of the optimisation problem. Several numerical simulation examples are provided to illustrate the effectiveness of the theoretical results.
Consensus-based distributed estimation in multi-agent systems with time delay
NASA Astrophysics Data System (ADS)
Abdelmawgoud, Ahmed
During the last years, research in the field of cooperative control of swarm of robots, especially Unmanned Aerial Vehicles (UAV); have been improved due to the increase of UAV applications. The ability to track targets using UAVs has a wide range of applications not only civilian but also military as well. For civilian applications, UAVs can perform tasks including, but not limited to: map an unknown area, weather forecasting, land survey, and search and rescue missions. On the other hand, for military personnel, UAV can track and locate a variety of objects, including the movement of enemy vehicles. Consensus problems arise in a number of applications including coordination of UAVs, information processing in wireless sensor networks, and distributed multi-agent optimization. We consider a widely studied consensus algorithms for processing sensed data by different sensors in wireless sensor networks of dynamic agents. Every agent involved in the network forms a weighted average of its own estimated value of some state with the values received from its neighboring agents. We introduced a novelty of consensus-based distributed estimation algorithms. We propose a new algorithm to reach a consensus given time delay constraints. The proposed algorithm performance was observed in a scenario where a swarm of UAVs measuring the location of a ground maneuvering target. We assume that each UAV computes its state prediction and shares it with its neighbors only. However, the shared information applied to different agents with variant time delays. The entire group of UAVs must reach a consensus on target state. Different scenarios were also simulated to examine the effectiveness and performance in terms of overall estimation error, disagreement between delayed and non-delayed agents, and time to reach a consensus for each parameter contributing on the proposed algorithm.
Privacy Preservation in Distributed Subgradient Optimization Algorithms.
Lou, Youcheng; Yu, Lean; Wang, Shouyang; Yi, Peng
2017-07-31
In this paper, some privacy-preserving features for distributed subgradient optimization algorithms are considered. Most of the existing distributed algorithms focus mainly on the algorithm design and convergence analysis, but not the protection of agents' privacy. Privacy is becoming an increasingly important issue in applications involving sensitive information. In this paper, we first show that the distributed subgradient synchronous homogeneous-stepsize algorithm is not privacy preserving in the sense that the malicious agent can asymptotically discover other agents' subgradients by transmitting untrue estimates to its neighbors. Then a distributed subgradient asynchronous heterogeneous-stepsize projection algorithm is proposed and accordingly its convergence and optimality is established. In contrast to the synchronous homogeneous-stepsize algorithm, in the new algorithm agents make their optimization updates asynchronously with heterogeneous stepsizes. The introduced two mechanisms of projection operation and asynchronous heterogeneous-stepsize optimization can guarantee that agents' privacy can be effectively protected.
An Innovative Multi-Agent Search-and-Rescue Path Planning Approach
2015-03-09
search problems from search theory and artificial intelligence /distributed robotic control, and pursuit-evasion problem perspectives may be found in...Dissanayake, “Probabilistic search for a moving target in an indoor environment”, In Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2006, pp...3393-3398. [7] H. Lau, and G. Dissanayake, “Optimal search for multiple targets in a built environment”, In Proc. IEEE/RSJ Int. Conf. Intelligent
Robust Feedback Control of Reconfigurable Multi-Agent Systems in Uncertain Adversarial Environments
2015-07-09
R. G., Optimal Lunar Landing and Retargeting using a Hybrid Control Strategy. Proceedings of the 2013 AAS/AIAA Space Flight Mechanics Meeting (AAS...Furfaro, R. & Sanfelice, R. G., Switching System Model for Pinpoint Lunar Landing Guidance Using a Hybrid Control Strategy. Proceedings of the AIAA...methods in distributed settings and the design of numerical methods to properly compute their trajectories . We have generate results showing that
Ochi, Kento; Kamiura, Moto
2015-09-01
A multi-armed bandit problem is a search problem on which a learning agent must select the optimal arm among multiple slot machines generating random rewards. UCB algorithm is one of the most popular methods to solve multi-armed bandit problems. It achieves logarithmic regret performance by coordinating balance between exploration and exploitation. Since UCB algorithms, researchers have empirically known that optimistic value functions exhibit good performance in multi-armed bandit problems. The terms optimistic or optimism might suggest that the value function is sufficiently larger than the sample mean of rewards. The first definition of UCB algorithm is focused on the optimization of regret, and it is not directly based on the optimism of a value function. We need to think the reason why the optimism derives good performance in multi-armed bandit problems. In the present article, we propose a new method, which is called Overtaking method, to solve multi-armed bandit problems. The value function of the proposed method is defined as an upper bound of a confidence interval with respect to an estimator of expected value of reward: the value function asymptotically approaches to the expected value of reward from the upper bound. If the value function is larger than the expected value under the asymptote, then the learning agent is almost sure to be able to obtain the optimal arm. This structure is called sand-sifter mechanism, which has no regrowth of value function of suboptimal arms. It means that the learning agent can play only the current best arm in each time step. Consequently the proposed method achieves high accuracy rate and low regret and some value functions of it can outperform UCB algorithms. This study suggests the advantage of optimism of agents in uncertain environment by one of the simplest frameworks. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Riegels, N.; Siegfried, T.; Pereira Cardenal, S. J.; Jensen, R. A.; Bauer-Gottwein, P.
2008-12-01
In most economics--driven approaches to optimizing water use at the river basin scale, the system is modelled deterministically with the goal of maximizing overall benefits. However, actual operation and allocation decisions must be made under hydrologic and economic uncertainty. In addition, river basins often cross political boundaries, and different states may not be motivated to cooperate so as to maximize basin- scale benefits. Even within states, competing agents such as irrigation districts, municipal water agencies, and large industrial users may not have incentives to cooperate to realize efficiency gains identified in basin- level studies. More traditional simulation--optimization approaches assume pre-commitment by individual agents and stakeholders and unconditional compliance on each side. While this can help determine attainable gains and tradeoffs from efficient management, such hardwired policies do not account for dynamic feedback between agents themselves or between agents and their environments (e.g. due to climate change etc.). In reality however, we are dealing with an out-of-equilibrium multi-agent system, where there is neither global knowledge nor global control, but rather continuous strategic interaction between decision making agents. Based on the theory of stochastic games, we present a computational framework that allows for studying the dynamic feedback between decision--making agents themselves and an inherently uncertain environment in a spatially and temporally distributed manner. Agents with decision-making control over water allocation such as countries, irrigation districts, and municipalities are represented by reinforcement learning agents and coupled to a detailed hydrologic--economic model. This approach emphasizes learning by agents from their continuous interaction with other agents and the environment. It provides a convenient framework for the solution of the problem of dynamic decision-making in a mixed cooperative / non-cooperative environment with which different institutional setups and incentive systems can be studied so to identify reasonable ways to reach desirable, Pareto--optimal allocation outcomes. Preliminary results from an application to the Syr Darya river basin in Central Asia will be presented and discussed. The Syr Darya River is a classic example of a transboundary river basin in which basin-wide efficiency gains identified in optimization studies have not been sufficient to induce cooperative management of the river by the riparian states.
Coordination of fractional-order nonlinear multi-agent systems via distributed impulsive control
NASA Astrophysics Data System (ADS)
Ma, Tiedong; Li, Teng; Cui, Bing
2018-01-01
The coordination of fractional-order nonlinear multi-agent systems via distributed impulsive control method is studied in this paper. Based on the theory of impulsive differential equations, algebraic graph theory, Lyapunov stability theory and Mittag-Leffler function, two novel sufficient conditions for achieving the cooperative control of a class of fractional-order nonlinear multi-agent systems are derived. Finally, two numerical simulations are verified to illustrate the effectiveness and feasibility of the proposed method.
Distributed Constrained Optimization with Semicoordinate Transformations
NASA Technical Reports Server (NTRS)
Macready, William; Wolpert, David
2006-01-01
Recent work has shown how information theory extends conventional full-rationality game theory to allow bounded rational agents. The associated mathematical framework can be used to solve constrained optimization problems. This is done by translating the problem into an iterated game, where each agent controls a different variable of the problem, so that the joint probability distribution across the agents moves gives an expected value of the objective function. The dynamics of the agents is designed to minimize a Lagrangian function of that joint distribution. Here we illustrate how the updating of the Lagrange parameters in the Lagrangian is a form of automated annealing, which focuses the joint distribution more and more tightly about the joint moves that optimize the objective function. We then investigate the use of "semicoordinate" variable transformations. These separate the joint state of the agents from the variables of the optimization problem, with the two connected by an onto mapping. We present experiments illustrating the ability of such transformations to facilitate optimization. We focus on the special kind of transformation in which the statistically independent states of the agents induces a mixture distribution over the optimization variables. Computer experiment illustrate this for &sat constraint satisfaction problems and for unconstrained minimization of NK functions.
NASA Astrophysics Data System (ADS)
Cui, Bing; Zhao, Chunhui; Ma, Tiedong; Feng, Chi
2017-02-01
In this paper, the cooperative adaptive consensus tracking problem for heterogeneous nonlinear multi-agent systems on directed graph is addressed. Each follower is modelled as a general nonlinear system with the unknown and nonidentical nonlinear dynamics, disturbances and actuator failures. Cooperative fault tolerant neural network tracking controllers with online adaptive learning features are proposed to guarantee that all agents synchronise to the trajectory of one leader with bounded adjustable synchronisation errors. With the help of linear quadratic regulator-based optimal design, a graph-dependent Lyapunov proof provides error bounds that depend on the graph topology, one virtual matrix and some design parameters. Of particular interest is that if the control gain is selected appropriately, the proposed control scheme can be implemented in a unified framework no matter whether there are faults or not. Furthermore, the fault detection and isolation are not needed to implement. Finally, a simulation is given to verify the effectiveness of the proposed method.
Model of interaction in Smart Grid on the basis of multi-agent system
NASA Astrophysics Data System (ADS)
Engel, E. A.; Kovalev, I. V.; Engel, N. E.
2016-11-01
This paper presents model of interaction in Smart Grid on the basis of multi-agent system. The use of travelling waves in the multi-agent system describes the behavior of the Smart Grid from the local point, which is being the complement of the conventional approach. The simulation results show that the absorption of the wave in the distributed multi-agent systems is effectively simulated the interaction in Smart Grid.
NASA Astrophysics Data System (ADS)
Mulla, Ameer K.; Patil, Deepak U.; Chakraborty, Debraj
2018-02-01
N identical agents with bounded inputs aim to reach a common target state (consensus) in the minimum possible time. Algorithms for computing this time-optimal consensus point, the control law to be used by each agent and the time taken for the consensus to occur, are proposed. Two types of multi-agent systems are considered, namely (1) coupled single-integrator agents on a plane and, (2) double-integrator agents on a line. At the initial time instant, each agent is assumed to have access to the state information of all the other agents. An algorithm, using convexity of attainable sets and Helly's theorem, is proposed, to compute the final consensus target state and the minimum time to achieve this consensus. Further, parts of the computation are parallelised amongst the agents such that each agent has to perform computations of O(N2) run time complexity. Finally, local feedback time-optimal control laws are synthesised to drive each agent to the target point in minimum time. During this part of the operation, the controller for each agent uses measurements of only its own states and does not need to communicate with any neighbouring agents.
Distributed Consensus of Stochastic Delayed Multi-agent Systems Under Asynchronous Switching.
Wu, Xiaotai; Tang, Yang; Cao, Jinde; Zhang, Wenbing
2016-08-01
In this paper, the distributed exponential consensus of stochastic delayed multi-agent systems with nonlinear dynamics is investigated under asynchronous switching. The asynchronous switching considered here is to account for the time of identifying the active modes of multi-agent systems. After receipt of confirmation of mode's switching, the matched controller can be applied, which means that the switching time of the matched controller in each node usually lags behind that of system switching. In order to handle the coexistence of switched signals and stochastic disturbances, a comparison principle of stochastic switched delayed systems is first proved. By means of this extended comparison principle, several easy to verified conditions for the existence of an asynchronously switched distributed controller are derived such that stochastic delayed multi-agent systems with asynchronous switching and nonlinear dynamics can achieve global exponential consensus. Two examples are given to illustrate the effectiveness of the proposed method.
Multi-Agent Framework for Virtual Learning Spaces.
ERIC Educational Resources Information Center
Sheremetov, Leonid; Nunez, Gustavo
1999-01-01
Discussion of computer-supported collaborative learning, distributed artificial intelligence, and intelligent tutoring systems focuses on the concept of agents, and describes a virtual learning environment that has a multi-agent system. Describes a model of interactions in collaborative learning and discusses agents for Web-based virtual…
Distributed Cooperation Solution Method of Complex System Based on MAS
NASA Astrophysics Data System (ADS)
Weijin, Jiang; Yuhui, Xu
To adapt the model in reconfiguring fault diagnosing to dynamic environment and the needs of solving the tasks of complex system fully, the paper introduced multi-Agent and related technology to the complicated fault diagnosis, an integrated intelligent control system is studied in this paper. Based on the thought of the structure of diagnostic decision and hierarchy in modeling, based on multi-layer decomposition strategy of diagnosis task, a multi-agent synchronous diagnosis federation integrated different knowledge expression modes and inference mechanisms are presented, the functions of management agent, diagnosis agent and decision agent are analyzed, the organization and evolution of agents in the system are proposed, and the corresponding conflict resolution algorithm in given, Layered structure of abstract agent with public attributes is build. System architecture is realized based on MAS distributed layered blackboard. The real world application shows that the proposed control structure successfully solves the fault diagnose problem of the complex plant, and the special advantage in the distributed domain.
Concurrent Learning of Control in Multi agent Sequential Decision Tasks
2018-04-17
Concurrent Learning of Control in Multi-agent Sequential Decision Tasks The overall objective of this project was to develop multi-agent reinforcement...learning (MARL) approaches for intelligent agents to autonomously learn distributed control policies in decentral- ized partially observable...shall be subject to any oenalty for failing to comply with a collection of information if it does not display a currently valid OMB control number
2006-12-01
NAVIGATION SOFTWARE ARCHITECTURE DESIGN FOR THE AUTONOMOUS MULTI-AGENT PHYSICALLY INTERACTING SPACECRAFT (AMPHIS) TEST BED by Blake D. Eikenberry...Engineer Degree 4. TITLE AND SUBTITLE Guidance and Navigation Software Architecture Design for the Autonomous Multi- Agent Physically Interacting...iii Approved for public release; distribution is unlimited GUIDANCE AND NAVIGATION SOFTWARE ARCHITECTURE DESIGN FOR THE AUTONOMOUS MULTI
Distributed Information Fusion through Advanced Multi-Agent Control
2016-10-17
AFRL-AFOSR-JP-TR-2016-0080 Distributed Information Fusion through Advanced Multi-Agent Control Adrian Bishop NATIONAL ICT AUSTRALIA LIMITED Final...TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) NATIONAL ICT AUSTRALIA LIMITED L 5 13 GARDEN ST EVELEIGH, 2015
Distributed Information Fusion through Advanced Multi-Agent Control
2016-09-09
AFRL-AFOSR-JP-TR-2016-0080 Distributed Information Fusion through Advanced Multi-Agent Control Adrian Bishop NATIONAL ICT AUSTRALIA LIMITED Final...TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) NATIONAL ICT AUSTRALIA LIMITED L 5 13 GARDEN ST EVELEIGH, 2015
NASA Astrophysics Data System (ADS)
Yoon, J.; Klassert, C. J. A.; Lachaut, T.; Selby, P. D.; Knox, S.; Gorelick, S.; Rajsekhar, D.; Tilmant, A.; Avisse, N.; Harou, J. J.; Gawel, E.; Klauer, B.; Mustafa, D.; Talozi, S.; Sigel, K.
2015-12-01
Our work focuses on development of a multi-agent, hydroeconomic model for purposes of water policy evaluation in Jordan. The model adopts a modular approach, integrating biophysical modules that simulate natural and engineered phenomena with human modules that represent behavior at multiple levels of decision making. The hydrologic modules are developed using spatially-distributed groundwater and surface water models, which are translated into compact simulators for efficient integration into the multi-agent model. For the groundwater model, we adopt a response matrix method approach in which a 3-dimensional MODFLOW model of a complex regional groundwater system is converted into a linear simulator of groundwater response by pre-processing drawdown results from several hundred numerical simulation runs. Surface water models for each major surface water basin in the country are developed in SWAT and similarly translated into simple rainfall-runoff functions for integration with the multi-agent model. The approach balances physically-based, spatially-explicit representation of hydrologic systems with the efficiency required for integration into a complex multi-agent model that is computationally amenable to robust scenario analysis. For the multi-agent model, we explicitly represent human agency at multiple levels of decision making, with agents representing riparian, management, supplier, and water user groups. The agents' decision making models incorporate both rule-based heuristics as well as economic optimization. The model is programmed in Python using Pynsim, a generalizable, open-source object-oriented code framework for modeling network-based water resource systems. The Jordan model is one of the first applications of Pynsim to a real-world water management case study. Preliminary results from a tanker market scenario run through year 2050 are presented in which several salient features of the water system are investigated: competition between urban and private farmer agents, the emergence of a private tanker market, disparities in economic wellbeing to different user groups caused by unique supply conditions, and response of the complex system to various policy interventions.
NASA Astrophysics Data System (ADS)
Fink, Wolfgang; George, Thomas; Tarbell, Mark A.
2007-04-01
Robotic reconnaissance operations are called for in extreme environments, not only those such as space, including planetary atmospheres, surfaces, and subsurfaces, but also in potentially hazardous or inaccessible operational areas on Earth, such as mine fields, battlefield environments, enemy occupied territories, terrorist infiltrated environments, or areas that have been exposed to biochemical agents or radiation. Real time reconnaissance enables the identification and characterization of transient events. A fundamentally new mission concept for tier-scalable reconnaissance of operational areas, originated by Fink et al., is aimed at replacing the engineering and safety constrained mission designs of the past. The tier-scalable paradigm integrates multi-tier (orbit atmosphere surface/subsurface) and multi-agent (satellite UAV/blimp surface/subsurface sensing platforms) hierarchical mission architectures, introducing not only mission redundancy and safety, but also enabling and optimizing intelligent, less constrained, and distributed reconnaissance in real time. Given the mass, size, and power constraints faced by such a multi-platform approach, this is an ideal application scenario for a diverse set of MEMS sensors. To support such mission architectures, a high degree of operational autonomy is required. Essential elements of such operational autonomy are: (1) automatic mapping of an operational area from different vantage points (including vehicle health monitoring); (2) automatic feature extraction and target/region-of-interest identification within the mapped operational area; and (3) automatic target prioritization for close-up examination. These requirements imply the optimal deployment of MEMS sensors and sensor platforms, sensor fusion, and sensor interoperability.
Application of free energy minimization to the design of adaptive multi-agent teams
NASA Astrophysics Data System (ADS)
Levchuk, Georgiy; Pattipati, Krishna; Fouse, Adam; Serfaty, Daniel
2017-05-01
Many novel DoD missions, from disaster relief to cyber reconnaissance, require teams of humans and machines with diverse capabilities. Current solutions do not account for heterogeneity of agent capabilities, uncertainty of team knowledge, and dynamics of and dependencies between tasks and agent roles, resulting in brittle teams. Most importantly, the state-of-the-art team design solutions are either centralized, imposing role and relation assignment onto agents, or completely distributed, suitable for only homogeneous organizations such as swarms. Centralized design models can't provide insights for team's self-organization, i.e. adapting team structure over time in distributed collaborative manner by team members with diverse expertise and responsibilities. In this paper we present an information-theoretic formalization of team composition and structure adaptation using a minimization of variational free energy. The structure adaptation is obtained in an iterative distributed and collaborative manner without the need for centralized control. We show that our model is lightweight, predictive, and produces team structures that theoretically approximate an optimal policy for team adaptation. Our model also provides a unique coupling between the structure and action policy, and captures three essential processes of learning, perception, and control.
Optimal Reward Functions in Distributed Reinforcement Learning
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Tumer, Kagan
2000-01-01
We consider the design of multi-agent systems so as to optimize an overall world utility function when (1) those systems lack centralized communication and control, and (2) each agents runs a distinct Reinforcement Learning (RL) algorithm. A crucial issue in such design problems is to initialize/update each agent's private utility function, so as to induce best possible world utility. Traditional 'team game' solutions to this problem sidestep this issue and simply assign to each agent the world utility as its private utility function. In previous work we used the 'Collective Intelligence' framework to derive a better choice of private utility functions, one that results in world utility performance up to orders of magnitude superior to that ensuing from use of the team game utility. In this paper we extend these results. We derive the general class of private utility functions that both are easy for the individual agents to learn and that, if learned well, result in high world utility. We demonstrate experimentally that using these new utility functions can result in significantly improved performance over that of our previously proposed utility, over and above that previous utility's superiority to the conventional team game utility.
Bosse, Stefan
2015-01-01
Multi-agent systems (MAS) can be used for decentralized and self-organizing data processing in a distributed system, like a resource-constrained sensor network, enabling distributed information extraction, for example, based on pattern recognition and self-organization, by decomposing complex tasks in simpler cooperative agents. Reliable MAS-based data processing approaches can aid the material-integration of structural-monitoring applications, with agent processing platforms scaled to the microchip level. The agent behavior, based on a dynamic activity-transition graph (ATG) model, is implemented with program code storing the control and the data state of an agent, which is novel. The program code can be modified by the agent itself using code morphing techniques and is capable of migrating in the network between nodes. The program code is a self-contained unit (a container) and embeds the agent data, the initialization instructions and the ATG behavior implementation. The microchip agent processing platform used for the execution of the agent code is a standalone multi-core stack machine with a zero-operand instruction format, leading to a small-sized agent program code, low system complexity and high system performance. The agent processing is token-queue-based, similar to Petri-nets. The agent platform can be implemented in software, too, offering compatibility at the operational and code level, supporting agent processing in strong heterogeneous networks. In this work, the agent platform embedded in a large-scale distributed sensor network is simulated at the architectural level by using agent-based simulation techniques. PMID:25690550
Bosse, Stefan
2015-02-16
Multi-agent systems (MAS) can be used for decentralized and self-organizing data processing in a distributed system, like a resource-constrained sensor network, enabling distributed information extraction, for example, based on pattern recognition and self-organization, by decomposing complex tasks in simpler cooperative agents. Reliable MAS-based data processing approaches can aid the material-integration of structural-monitoring applications, with agent processing platforms scaled to the microchip level. The agent behavior, based on a dynamic activity-transition graph (ATG) model, is implemented with program code storing the control and the data state of an agent, which is novel. The program code can be modified by the agent itself using code morphing techniques and is capable of migrating in the network between nodes. The program code is a self-contained unit (a container) and embeds the agent data, the initialization instructions and the ATG behavior implementation. The microchip agent processing platform used for the execution of the agent code is a standalone multi-core stack machine with a zero-operand instruction format, leading to a small-sized agent program code, low system complexity and high system performance. The agent processing is token-queue-based, similar to Petri-nets. The agent platform can be implemented in software, too, offering compatibility at the operational and code level, supporting agent processing in strong heterogeneous networks. In this work, the agent platform embedded in a large-scale distributed sensor network is simulated at the architectural level by using agent-based simulation techniques.
Optimal Wonderful Life Utility Functions in Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Tumer, Kagan; Swanson, Keith (Technical Monitor)
2000-01-01
The mathematics of Collective Intelligence (COINs) is concerned with the design of multi-agent systems so as to optimize an overall global utility function when those systems lack centralized communication and control. Typically in COINs each agent runs a distinct Reinforcement Learning (RL) algorithm, so that much of the design problem reduces to how best to initialize/update each agent's private utility function, as far as the ensuing value of the global utility is concerned. Traditional team game solutions to this problem assign to each agent the global utility as its private utility function. In previous work we used the COIN framework to derive the alternative Wonderful Life Utility (WLU), and experimentally established that having the agents use it induces global utility performance up to orders of magnitude superior to that induced by use of the team game utility. The WLU has a free parameter (the clamping parameter) which we simply set to zero in that previous work. Here we derive the optimal value of the clamping parameter, and demonstrate experimentally that using that optimal value can result in significantly improved performance over that of clamping to zero, over and above the improvement beyond traditional approaches.
Coordination of heterogeneous nonlinear multi-agent systems with prescribed behaviours
NASA Astrophysics Data System (ADS)
Tang, Yutao
2017-10-01
In this paper, we consider a coordination problem for a class of heterogeneous nonlinear multi-agent systems with a prescribed input-output behaviour which was represented by another input-driven system. In contrast to most existing multi-agent coordination results with an autonomous (virtual) leader, this formulation takes possible control inputs of the leader into consideration. First, the coordination was achieved by utilising a group of distributed observers based on conventional assumptions of model matching problem. Then, a fully distributed adaptive extension was proposed without using the input of this input-output behaviour. An example was given to verify their effectiveness.
Optimization of Multiple Related Negotiation through Multi-Negotiation Network
NASA Astrophysics Data System (ADS)
Ren, Fenghui; Zhang, Minjie; Miao, Chunyan; Shen, Zhiqi
In this paper, a Multi-Negotiation Network (MNN) and a Multi- Negotiation Influence Diagram (MNID) are proposed to optimally handle Multiple Related Negotiations (MRN) in a multi-agent system. Most popular, state-of-the-art approaches perform MRN sequentially. However, a sequential procedure may not optimally execute MRN in terms of maximizing the global outcome, and may even lead to unnecessary losses in some situations. The motivation of this research is to use a MNN to handle MRN concurrently so as to maximize the expected utility of MRN. Firstly, both the joint success rate and the joint utility by considering all related negotiations are dynamically calculated based on a MNN. Secondly, by employing a MNID, an agent's possible decision on each related negotiation is reflected by the value of expected utility. Lastly, through comparing expected utilities between all possible policies to conduct MRN, an optimal policy is generated to optimize the global outcome of MRN. The experimental results indicate that the proposed approach can improve the global outcome of MRN in a successful end scenario, and avoid unnecessary losses in an unsuccessful end scenario.
NASA Astrophysics Data System (ADS)
Patil, Riya Raghuvir
Networks of communicating agents require distributed algorithms for a variety of tasks in the field of network analysis and control. For applications such as swarms of autonomous vehicles, ad hoc and wireless sensor networks, and such military and civilian applications as exploring and patrolling a robust autonomous system that uses a distributed algorithm for selfpartitioning can be significantly helpful. A single team of autonomous vehicles in a field may need to self-dissemble into multiple teams, conducive to completing multiple control tasks. Moreover, because communicating agents are subject to changes, namely, addition or failure of an agent or link, a distributed or decentralized algorithm is favorable over having a central agent. A framework to help with the study of self-partitioning of such multi agent systems that have most basic mobility model not only saves our time in conception but also gives us a cost effective prototype without negotiating the physical realization of the proposed idea. In this thesis I present my work on the implementation of a flexible and distributed stochastic partitioning algorithm on the LegoRTM Mindstorms' NXT on a graphical programming platform using National Instruments' LabVIEW(TM) forming a team of communicating agents via NXT-Bee radio module. We single out mobility, communication and self-partition as the core elements of the work. The goal is to randomly explore a precinct for reference sites. Agents who have discovered the reference sites announce their target acquisition to form a network formed based upon the distance of each agent with the other wherein the self-partitioning begins to find an optimal partition. Further, to illustrate the work, an experimental test-bench of five Lego NXT robots is presented.
Adaptive tracking control of leader-following linear multi-agent systems with external disturbances
NASA Astrophysics Data System (ADS)
Lin, Hanquan; Wei, Qinglai; Liu, Derong; Ma, Hongwen
2016-10-01
In this paper, the consensus problem for leader-following linear multi-agent systems with external disturbances is investigated. Brownian motions are used to describe exogenous disturbances. A distributed tracking controller based on Riccati inequalities with an adaptive law for adjusting coupling weights between neighbouring agents is designed for leader-following multi-agent systems under fixed and switching topologies. In traditional distributed static controllers, the coupling weights depend on the communication graph. However, coupling weights associated with the feedback gain matrix in our method are updated by state errors between neighbouring agents. We further present the stability analysis of leader-following multi-agent systems with stochastic disturbances under switching topology. Most traditional literature requires the graph to be connected all the time, while the communication graph is only assumed to be jointly connected in this paper. The design technique is based on Riccati inequalities and algebraic graph theory. Finally, simulations are given to show the validity of our method.
NASA Astrophysics Data System (ADS)
Zhang, Zhong
In this work, motivated by the need to coordinate transmission maintenance scheduling among a multiplicity of self-interested entities in restructured power industry, a distributed decision support framework based on multiagent negotiation systems (MANS) is developed. An innovative risk-based transmission maintenance optimization procedure is introduced. Several models for linking condition monitoring information to the equipment's instantaneous failure probability are presented, which enable quantitative evaluation of the effectiveness of maintenance activities in terms of system cumulative risk reduction. Methodologies of statistical processing, equipment deterioration evaluation and time-dependent failure probability calculation are also described. A novel framework capable of facilitating distributed decision-making through multiagent negotiation is developed. A multiagent negotiation model is developed and illustrated that accounts for uncertainty and enables social rationality. Some issues of multiagent negotiation convergence and scalability are discussed. The relationships between agent-based negotiation and auction systems are also identified. A four-step MAS design methodology for constructing multiagent systems for power system applications is presented. A generic multiagent negotiation system, capable of inter-agent communication and distributed decision support through inter-agent negotiations, is implemented. A multiagent system framework for facilitating the automated integration of condition monitoring information and maintenance scheduling for power transformers is developed. Simulations of multiagent negotiation-based maintenance scheduling among several independent utilities are provided. It is shown to be a viable alternative solution paradigm to the traditional centralized optimization approach in today's deregulated environment. This multiagent system framework not only facilitates the decision-making among competing power system entities, but also provides a tool to use in studying competitive industry relative to monopolistic industry.
NASA Astrophysics Data System (ADS)
Cui, Guozeng; Xu, Shengyuan; Ma, Qian; Li, Yongmin; Zhang, Zhengqiang
2018-05-01
In this paper, the problem of prescribed performance distributed output consensus for higher-order non-affine nonlinear multi-agent systems with unknown dead-zone input is investigated. Fuzzy logical systems are utilised to identify the unknown nonlinearities. By introducing prescribed performance, the transient and steady performance of synchronisation errors are guaranteed. Based on Lyapunov stability theory and the dynamic surface control technique, a new distributed consensus algorithm for non-affine nonlinear multi-agent systems is proposed, which ensures cooperatively uniformly ultimately boundedness of all signals in the closed-loop systems and enables the output of each follower to synchronise with the leader within predefined bounded error. Finally, simulation examples are provided to demonstrate the effectiveness of the proposed control scheme.
Distributed consensus for discrete-time heterogeneous multi-agent systems
NASA Astrophysics Data System (ADS)
Zhao, Huanyu; Fei, Shumin
2018-06-01
This paper studies the consensus problem for a class of discrete-time heterogeneous multi-agent systems. Two kinds of consensus algorithms will be considered. The heterogeneous multi-agent systems considered are converted into equivalent error systems by a model transformation. Then we analyse the consensus problem of the original systems by analysing the stability problem of the error systems. Some sufficient conditions for consensus of heterogeneous multi-agent systems are obtained by applying algebraic graph theory and matrix theory. Simulation examples are presented to show the usefulness of the results.
Optimization of orthotropic distributed-mode loudspeaker using attached masses and multi-exciters.
Lu, Guochao; Shen, Yong; Liu, Ziyun
2012-02-01
Based on the orthotropic model of the plate, the method to optimize the sound response of the distributed-mode loudspeaker (DML) using the attached masses and the multi-exciters has been investigated. The attached masses method will rebuild the modes distribution of the plate, based on which multi-exciter method will smooth the sound response. The results indicate that the method can be used to optimize the sound response of the DML. © 2012 Acoustical Society of America
Stylianopoulos, Triantafyllos; Economides, Eva-Athena; Baish, James W; Fukumura, Dai; Jain, Rakesh K
2015-09-01
Conventional drug delivery systems for solid tumors are composed of a nano-carrier that releases its therapeutic load. These two-stage nanoparticles utilize the enhanced permeability and retention (EPR) effect to enable preferential delivery to tumor tissue. However, the size-dependency of the EPR, the limited penetration of nanoparticles into the tumor as well as the rapid binding of the particles or the released cytotoxic agents to cancer cells and stromal components inhibit the uniform distribution of the drug and the efficacy of the treatment. Here, we employ mathematical modeling to study the effect of particle size, drug release rate and binding affinity on the distribution and efficacy of nanoparticles to derive optimal design rules. Furthermore, we introduce a new multi-stage delivery system. The system consists of a 20-nm primary nanoparticle, which releases 5-nm secondary particles, which in turn release the chemotherapeutic drug. We found that tuning the drug release kinetics and binding affinities leads to improved delivery of the drug. Our results also indicate that multi-stage nanoparticles are superior over two-stage nano-carriers provided they have a faster drug release rate and for high binding affinity drugs. Furthermore, our results suggest that smaller nanoparticles achieve better treatment outcome.
NASA Astrophysics Data System (ADS)
Selvam, Kayalvizhi; Vinod Kumar, D. M.; Siripuram, Ramakanth
2017-04-01
In this paper, an optimization technique called peer enhanced teaching learning based optimization (PeTLBO) algorithm is used in multi-objective problem domain. The PeTLBO algorithm is parameter less so it reduced the computational burden. The proposed peer enhanced multi-objective based TLBO (PeMOTLBO) algorithm has been utilized to find a set of non-dominated optimal solutions [distributed generation (DG) location and sizing in distribution network]. The objectives considered are: real power loss and the voltage deviation subjected to voltage limits and maximum penetration level of DG in distribution network. Since the DG considered is capable of injecting real and reactive power to the distribution network the power factor is considered as 0.85 lead. The proposed peer enhanced multi-objective optimization technique provides different trade-off solutions in order to find the best compromise solution a fuzzy set theory approach has been used. The effectiveness of this proposed PeMOTLBO is tested on IEEE 33-bus and Indian 85-bus distribution system. The performance is validated with Pareto fronts and two performance metrics (C-metric and S-metric) by comparing with robust multi-objective technique called non-dominated sorting genetic algorithm-II and also with the basic TLBO.
NASA Astrophysics Data System (ADS)
Jie, Cao; Zhi-Hai, Wu; Li, Peng
2016-05-01
This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which is intermittently examined at constant sampling instants. Only partial neighbor information and local measurements are required for event detection. Then the corresponding event-triggered consensus tracking protocol is presented to guarantee second-order multi-agent systems to achieve consensus tracking. Numerical simulations are given to illustrate the effectiveness of the proposed strategy. Project supported by the National Natural Science Foundation of China (Grant Nos. 61203147, 61374047, and 61403168).
Liang, Hongjing; Zhang, Huaguang; Wang, Zhanshan
2015-11-01
This paper considers output synchronization of discrete-time multi-agent systems with directed communication topologies. The directed communication graph contains a spanning tree and the exosystem as its root. Distributed observer-based consensus protocols are proposed, based on the relative outputs of neighboring agents. A multi-step algorithm is presented to construct the observer-based protocols. In light of the discrete-time algebraic Riccati equation and internal model principle, synchronization problem is completed. At last, numerical simulation is provided to verify the effectiveness of the theoretical results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Sampling-Based Motion Planning Algorithms for Replanning and Spatial Load Balancing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boardman, Beth Leigh
The common theme of this dissertation is sampling-based motion planning with the two key contributions being in the area of replanning and spatial load balancing for robotic systems. Here, we begin by recalling two sampling-based motion planners: the asymptotically optimal rapidly-exploring random tree (RRT*), and the asymptotically optimal probabilistic roadmap (PRM*). We also provide a brief background on collision cones and the Distributed Reactive Collision Avoidance (DRCA) algorithm. The next four chapters detail novel contributions for motion replanning in environments with unexpected static obstacles, for multi-agent collision avoidance, and spatial load balancing. First, we show improved performance of the RRT*more » when using the proposed Grandparent-Connection (GP) or Focused-Refinement (FR) algorithms. Next, the Goal Tree algorithm for replanning with unexpected static obstacles is detailed and proven to be asymptotically optimal. A multi-agent collision avoidance problem in obstacle environments is approached via the RRT*, leading to the novel Sampling-Based Collision Avoidance (SBCA) algorithm. The SBCA algorithm is proven to guarantee collision free trajectories for all of the agents, even when subject to uncertainties in the knowledge of the other agents’ positions and velocities. Given that a solution exists, we prove that livelocks and deadlock will lead to the cost to the goal being decreased. We introduce a new deconfliction maneuver that decreases the cost-to-come at each step. This new maneuver removes the possibility of livelocks and allows a result to be formed that proves convergence to the goal configurations. Finally, we present a limited range Graph-based Spatial Load Balancing (GSLB) algorithm which fairly divides a non-convex space among multiple agents that are subject to differential constraints and have a limited travel distance. The GSLB is proven to converge to a solution when maximizing the area covered by the agents. The analysis for each of the above mentioned algorithms is confirmed in simulations.« less
Design of shared unit-dose drug distribution network using multi-level particle swarm optimization.
Chen, Linjie; Monteiro, Thibaud; Wang, Tao; Marcon, Eric
2018-03-01
Unit-dose drug distribution systems provide optimal choices in terms of medication security and efficiency for organizing the drug-use process in large hospitals. As small hospitals have to share such automatic systems for economic reasons, the structure of their logistic organization becomes a very sensitive issue. In the research reported here, we develop a generalized multi-level optimization method - multi-level particle swarm optimization (MLPSO) - to design a shared unit-dose drug distribution network. Structurally, the problem studied can be considered as a type of capacitated location-routing problem (CLRP) with new constraints related to specific production planning. This kind of problem implies that a multi-level optimization should be performed in order to minimize logistic operating costs. Our results show that with the proposed algorithm, a more suitable modeling framework, as well as computational time savings and better optimization performance are obtained than that reported in the literature on this subject.
NASA Astrophysics Data System (ADS)
Bykovsky, A. Yu; Sherbakov, A. A.
2016-08-01
The C-valued Allen-Givone algebra is the attractive tool for modeling of a robotic agent, but it requires the consensus method of minimization for the simplification of logic expressions. This procedure substitutes some undefined states of the function for the maximal truth value, thus extending the initially given truth table. This further creates the problem of different formal representations for the same initially given function. The multi-criteria optimization is proposed for the deliberate choice of undefined states and model formation.
ERIC Educational Resources Information Center
Chadli, Abdelhafid; Bendella, Fatima; Tranvouez, Erwan
2015-01-01
In this paper we present an Agent-based evaluation approach in a context of Multi-agent simulation learning systems. Our evaluation model is based on a two stage assessment approach: (1) a Distributed skill evaluation combining agents and fuzzy sets theory; and (2) a Negotiation based evaluation of students' performance during a training…
Distributed Evaluation Functions for Fault Tolerant Multi-Rover Systems
NASA Technical Reports Server (NTRS)
Agogino, Adrian; Turner, Kagan
2005-01-01
The ability to evolve fault tolerant control strategies for large collections of agents is critical to the successful application of evolutionary strategies to domains where failures are common. Furthermore, while evolutionary algorithms have been highly successful in discovering single-agent control strategies, extending such algorithms to multiagent domains has proven to be difficult. In this paper we present a method for shaping evaluation functions for agents that provide control strategies that both are tolerant to different types of failures and lead to coordinated behavior in a multi-agent setting. This method neither relies of a centralized strategy (susceptible to single point of failures) nor a distributed strategy where each agent uses a system wide evaluation function (severe credit assignment problem). In a multi-rover problem, we show that agents using our agent-specific evaluation perform up to 500% better than agents using the system evaluation. In addition we show that agents are still able to maintain a high level of performance when up to 60% of the agents fail due to actuator, communication or controller faults.
Optimal control in microgrid using multi-agent reinforcement learning.
Li, Fu-Dong; Wu, Min; He, Yong; Chen, Xin
2012-11-01
This paper presents an improved reinforcement learning method to minimize electricity costs on the premise of satisfying the power balance and generation limit of units in a microgrid with grid-connected mode. Firstly, the microgrid control requirements are analyzed and the objective function of optimal control for microgrid is proposed. Then, a state variable "Average Electricity Price Trend" which is used to express the most possible transitions of the system is developed so as to reduce the complexity and randomicity of the microgrid, and a multi-agent architecture including agents, state variables, action variables and reward function is formulated. Furthermore, dynamic hierarchical reinforcement learning, based on change rate of key state variable, is established to carry out optimal policy exploration. The analysis shows that the proposed method is beneficial to handle the problem of "curse of dimensionality" and speed up learning in the unknown large-scale world. Finally, the simulation results under JADE (Java Agent Development Framework) demonstrate the validity of the presented method in optimal control for a microgrid with grid-connected mode. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Multi-issue Agent Negotiation Based on Fairness
NASA Astrophysics Data System (ADS)
Zuo, Baohe; Zheng, Sue; Wu, Hong
Agent-based e-commerce service has become a hotspot now. How to make the agent negotiation process quickly and high-efficiently is the main research direction of this area. In the multi-issue model, MAUT(Multi-attribute Utility Theory) or its derived theory usually consider little about the fairness of both negotiators. This work presents a general model of agent negotiation which considered the satisfaction of both negotiators via autonomous learning. The model can evaluate offers from the opponent agent based on the satisfaction degree, learn online to get the opponent's knowledge from interactive instances of history and negotiation of this time, make concessions dynamically based on fair object. Through building the optimal negotiation model, the bilateral negotiation achieved a higher efficiency and fairer deal.
NASA Astrophysics Data System (ADS)
Zhang, Daili
Increasing societal demand for automation has led to considerable efforts to control large-scale complex systems, especially in the area of autonomous intelligent control methods. The control system of a large-scale complex system needs to satisfy four system level requirements: robustness, flexibility, reusability, and scalability. Corresponding to the four system level requirements, there arise four major challenges. First, it is difficult to get accurate and complete information. Second, the system may be physically highly distributed. Third, the system evolves very quickly. Fourth, emergent global behaviors of the system can be caused by small disturbances at the component level. The Multi-Agent Based Control (MABC) method as an implementation of distributed intelligent control has been the focus of research since the 1970s, in an effort to solve the above-mentioned problems in controlling large-scale complex systems. However, to the author's best knowledge, all MABC systems for large-scale complex systems with significant uncertainties are problem-specific and thus difficult to extend to other domains or larger systems. This situation is partly due to the control architecture of multiple agents being determined by agent to agent coupling and interaction mechanisms. Therefore, the research objective of this dissertation is to develop a comprehensive, generalized framework for the control system design of general large-scale complex systems with significant uncertainties, with the focus on distributed control architecture design and distributed inference engine design. A Hybrid Multi-Agent Based Control (HyMABC) architecture is proposed by combining hierarchical control architecture and module control architecture with logical replication rings. First, it decomposes a complex system hierarchically; second, it combines the components in the same level as a module, and then designs common interfaces for all of the components in the same module; third, replications are made for critical agents and are organized into logical rings. This architecture maintains clear guidelines for complexity decomposition and also increases the robustness of the whole system. Multiple Sectioned Dynamic Bayesian Networks (MSDBNs) as a distributed dynamic probabilistic inference engine, can be embedded into the control architecture to handle uncertainties of general large-scale complex systems. MSDBNs decomposes a large knowledge-based system into many agents. Each agent holds its partial perspective of a large problem domain by representing its knowledge as a Dynamic Bayesian Network (DBN). Each agent accesses local evidence from its corresponding local sensors and communicates with other agents through finite message passing. If the distributed agents can be organized into a tree structure, satisfying the running intersection property and d-sep set requirements, globally consistent inferences are achievable in a distributed way. By using different frequencies for local DBN agent belief updating and global system belief updating, it balances the communication cost with the global consistency of inferences. In this dissertation, a fully factorized Boyen-Koller (BK) approximation algorithm is used for local DBN agent belief updating, and the static Junction Forest Linkage Tree (JFLT) algorithm is used for global system belief updating. MSDBNs assume a static structure and a stable communication network for the whole system. However, for a real system, sub-Bayesian networks as nodes could be lost, and the communication network could be shut down due to partial damage in the system. Therefore, on-line and automatic MSDBNs structure formation is necessary for making robust state estimations and increasing survivability of the whole system. A Distributed Spanning Tree Optimization (DSTO) algorithm, a Distributed D-Sep Set Satisfaction (DDSSS) algorithm, and a Distributed Running Intersection Satisfaction (DRIS) algorithm are proposed in this dissertation. Combining these three distributed algorithms and a Distributed Belief Propagation (DBP) algorithm in MSDBNs makes state estimations robust to partial damage in the whole system. Combining the distributed control architecture design and the distributed inference engine design leads to a process of control system design for a general large-scale complex system. As applications of the proposed methodology, the control system design of a simplified ship chilled water system and a notional ship chilled water system have been demonstrated step by step. Simulation results not only show that the proposed methodology gives a clear guideline for control system design for general large-scale complex systems with dynamic and uncertain environment, but also indicate that the combination of MSDBNs and HyMABC can provide excellent performance for controlling general large-scale complex systems.
Observer-based distributed adaptive iterative learning control for linear multi-agent systems
NASA Astrophysics Data System (ADS)
Li, Jinsha; Liu, Sanyang; Li, Junmin
2017-10-01
This paper investigates the consensus problem for linear multi-agent systems from the viewpoint of two-dimensional systems when the state information of each agent is not available. Observer-based fully distributed adaptive iterative learning protocol is designed in this paper. A local observer is designed for each agent and it is shown that without using any global information about the communication graph, all agents achieve consensus perfectly for all undirected connected communication graph when the number of iterations tends to infinity. The Lyapunov-like energy function is employed to facilitate the learning protocol design and property analysis. Finally, simulation example is given to illustrate the theoretical analysis.
Multi-A Graph Patrolling and Partitioning
NASA Astrophysics Data System (ADS)
Elor, Y.; Bruckstein, A. M.
2012-12-01
We introduce a novel multi agent patrolling algorithm inspired by the behavior of gas filled balloons. Very low capability ant-like agents are considered with the task of patrolling an unknown area modeled as a graph. While executing the proposed algorithm, the agents dynamically partition the graph between them using simple local interactions, every agent assuming the responsibility for patrolling his subgraph. Balanced graph partition is an emergent behavior due to the local interactions between the agents in the swarm. Extensive simulations on various graphs (environments) showed that the average time to reach a balanced partition is linear with the graph size. The simulations yielded a convincing argument for conjecturing that if the graph being patrolled contains a balanced partition, the agents will find it. However, we could not prove this. Nevertheless, we have proved that if a balanced partition is reached, the maximum time lag between two successive visits to any vertex using the proposed strategy is at most twice the optimal so the patrol quality is at least half the optimal. In case of weighted graphs the patrol quality is at least (1)/(2){lmin}/{lmax} of the optimal where lmax (lmin) is the longest (shortest) edge in the graph.
2008-10-01
Agents in the DEEP architecture extend and use the Java Agent Development (JADE) framework. DEEP requires a distributed multi-agent system and a...framework to help simplify the implementation of this system. JADE was chosen because it is fully implemented in Java , and supports these requirements
Multi-Agent Patrolling under Uncertainty and Threats.
Chen, Shaofei; Wu, Feng; Shen, Lincheng; Chen, Jing; Ramchurn, Sarvapali D
2015-01-01
We investigate a multi-agent patrolling problem where information is distributed alongside threats in environments with uncertainties. Specifically, the information and threat at each location are independently modelled as multi-state Markov chains, whose states are not observed until the location is visited by an agent. While agents will obtain information at a location, they may also suffer damage from the threat at that location. Therefore, the goal of the agents is to gather as much information as possible while mitigating the damage incurred. To address this challenge, we formulate the single-agent patrolling problem as a Partially Observable Markov Decision Process (POMDP) and propose a computationally efficient algorithm to solve this model. Building upon this, to compute patrols for multiple agents, the single-agent algorithm is extended for each agent with the aim of maximising its marginal contribution to the team. We empirically evaluate our algorithm on problems of multi-agent patrolling and show that it outperforms a baseline algorithm up to 44% for 10 agents and by 21% for 15 agents in large domains.
Automation of multi-agent control for complex dynamic systems in heterogeneous computational network
NASA Astrophysics Data System (ADS)
Oparin, Gennady; Feoktistov, Alexander; Bogdanova, Vera; Sidorov, Ivan
2017-01-01
The rapid progress of high-performance computing entails new challenges related to solving large scientific problems for various subject domains in a heterogeneous distributed computing environment (e.g., a network, Grid system, or Cloud infrastructure). The specialists in the field of parallel and distributed computing give the special attention to a scalability of applications for problem solving. An effective management of the scalable application in the heterogeneous distributed computing environment is still a non-trivial issue. Control systems that operate in networks, especially relate to this issue. We propose a new approach to the multi-agent management for the scalable applications in the heterogeneous computational network. The fundamentals of our approach are the integrated use of conceptual programming, simulation modeling, network monitoring, multi-agent management, and service-oriented programming. We developed a special framework for an automation of the problem solving. Advantages of the proposed approach are demonstrated on the parametric synthesis example of the static linear regulator for complex dynamic systems. Benefits of the scalable application for solving this problem include automation of the multi-agent control for the systems in a parallel mode with various degrees of its detailed elaboration.
Space/ground systems as cooperating agents
NASA Technical Reports Server (NTRS)
Grant, T. J.
1994-01-01
Within NASA and the European Space Agency (ESA) it is agreed that autonomy is an important goal for the design of future spacecraft and that this requires on-board artificial intelligence. NASA emphasizes deep space and planetary rover missions, while ESA considers on-board autonomy as an enabling technology for missions that must cope with imperfect communications. ESA's attention is on the space/ground system. A major issue is the optimal distribution of intelligent functions within the space/ground system. This paper describes the multi-agent architecture for space/ground systems (MAASGS) which would enable this issue to be investigated. A MAASGS agent may model a complete spacecraft, a spacecraft subsystem or payload, a ground segment, a spacecraft control system, a human operator, or an environment. The MAASGS architecture has evolved through a series of prototypes. The paper recommends that the MAASGS architecture should be implemented in the operational Dutch Utilization Center.
Deducing the multi-trader population driving a financial market
NASA Astrophysics Data System (ADS)
Gupta, Nachi; Hauser, Raphael; Johnson, Neil
2005-12-01
We have previously laid out a basic framework for predicting financial movements and pockets of predictability by tracking the distribution of a multi-trader population playing on an artificial financial market model. This work explores extensions to this basic framework. We allow for more intelligent agents with a richer strategy set, and we no longer constrain the distribution over these agents to a probability space. We then introduce a fusion scheme which accounts for multiple runs of randomly chosen sets of possible agent types. We also discuss a mechanism for bias removal on the estimates.
Silverman, Jeffrey A; Deitcher, Steven R
2013-03-01
Vincristine (VCR) is a mainstay of treatment of hematologic malignancies and solid tumors due to its well-defined mechanism of action, demonstrated anticancer activity and its ability to be combined with other agents. VCR is an M-phase cell cycle-specific anticancer drug with activity that is concentration and exposure duration dependent. The pharmacokinetic profile of standard VCR is described by a bi-exponential elimination pattern with a very fast initial distribution half-life followed by a longer elimination half-life. VCR also has a large volume of distribution, suggesting diffuse distribution and tissue binding. These properties may limit optimal drug exposure and delivery to target tissues as well as clinical utility as a single agent or as an effective component of multi-agent regimens. Vincristine sulfate liposome injection (VSLI), Marqibo(®), is a sphingomyelin and cholesterol-based nanoparticle formulation of VCR that was designed to overcome the dosing and pharmacokinetic limitations of standard VCR. VSLI was developed to increase the circulation time, optimize delivery to target tissues and facilitate dose intensification without increasing toxicity. In xenograft studies in mice, VSLI had a higher maximum tolerated dose, superior antitumor activity and delivered higher amounts of active drug to target tissues compared to standard VCR. VSLI recently received accelerated FDA approval for use in adults with advanced, relapsed and refractory Philadelphia chromosome-negative ALL and is in development for untreated adult ALL, pediatric ALL and untreated aggressive NHL. Here, we summarize the nonclinical data for VSLI that support its continued clinical development and recent approval for use in adult ALL.
Resilient Distributed Estimation Through Adversary Detection
NASA Astrophysics Data System (ADS)
Chen, Yuan; Kar, Soummya; Moura, Jose M. F.
2018-05-01
This paper studies resilient multi-agent distributed estimation of an unknown vector parameter when a subset of the agents is adversarial. We present and analyze a Flag Raising Distributed Estimator ($\\mathcal{FRDE}$) that allows the agents under attack to perform accurate parameter estimation and detect the adversarial agents. The $\\mathcal{FRDE}$ algorithm is a consensus+innovations estimator in which agents combine estimates of neighboring agents (consensus) with local sensing information (innovations). We establish that, under $\\mathcal{FRDE}$, either the uncompromised agents' estimates are almost surely consistent or the uncompromised agents detect compromised agents if and only if the network of uncompromised agents is connected and globally observable. Numerical examples illustrate the performance of $\\mathcal{FRDE}$.
Density Control of Multi-Agent Systems with Safety Constraints: A Markov Chain Approach
NASA Astrophysics Data System (ADS)
Demirer, Nazli
The control of systems with autonomous mobile agents has been a point of interest recently, with many applications like surveillance, coverage, searching over an area with probabilistic target locations or exploring an area. In all of these applications, the main goal of the swarm is to distribute itself over an operational space to achieve mission objectives specified by the density of swarm. This research focuses on the problem of controlling the distribution of multi-agent systems considering a hierarchical control structure where the whole swarm coordination is achieved at the high-level and individual vehicle/agent control is managed at the low-level. High-level coordination algorithms uses macroscopic models that describes the collective behavior of the whole swarm and specify the agent motion commands, whose execution will lead to the desired swarm behavior. The low-level control laws execute the motion to follow these commands at the agent level. The main objective of this research is to develop high-level decision control policies and algorithms to achieve physically realizable commanding of the agents by imposing mission constraints on the distribution. We also make some connections with decentralized low-level motion control. This dissertation proposes a Markov chain based method to control the density distribution of the whole system where the implementation can be achieved in a decentralized manner with no communication between agents since establishing communication with large number of agents is highly challenging. The ultimate goal is to guide the overall density distribution of the system to a prescribed steady-state desired distribution while satisfying desired transition and safety constraints. Here, the desired distribution is determined based on the mission requirements, for example in the application of area search, the desired distribution should match closely with the probabilistic target locations. The proposed method is applicable for both systems with a single agent and systems with large number of agents due to the probabilistic nature, where the probability distribution of each agent's state evolves according to a finite-state and discrete-time Markov chain (MC). Hence, designing proper decision control policies requires numerically tractable solution methods for the synthesis of Markov chains. The synthesis problem has the form of a Linear Matrix Inequality Problem (LMI), with LMI formulation of the constraints. To this end, we propose convex necessary and sufficient conditions for safety constraints in Markov chains, which is a novel result in the Markov chain literature. In addition to LMI-based, offline, Markov matrix synthesis method, we also propose a QP-based, online, method to compute a time-varying Markov matrix based on the real-time density feedback. Both problems are convex optimization problems that can be solved in a reliable and tractable way, utilizing existing tools in the literature. A Low Earth Orbit (LEO) swarm simulations are presented to validate the effectiveness of the proposed algorithms. Another problem tackled as a part of this research is the generalization of the density control problem to autonomous mobile agents with two control modes: ON and OFF. Here, each mode consists of a (possibly overlapping) finite set of actions, that is, there exist a set of actions for the ON mode and another set for the OFF mode. We give formulation for a new Markov chain synthesis problem, with additional measurements for the state transitions, where a policy is designed to ensure desired safety and convergence properties for the underlying Markov chain.
Modelling and multi-parametric control for delivery of anaesthetic agents.
Dua, Pinky; Dua, Vivek; Pistikopoulos, Efstratios N
2010-06-01
This article presents model predictive controllers (MPCs) and multi-parametric model-based controllers for delivery of anaesthetic agents. The MPC can take into account constraints on drug delivery rates and state of the patient but requires solving an optimization problem at regular time intervals. The multi-parametric controller has all the advantages of the MPC and does not require repetitive solution of optimization problem for its implementation. This is achieved by obtaining the optimal drug delivery rates as a set of explicit functions of the state of the patient. The derivation of the controllers relies on using detailed models of the system. A compartmental model for the delivery of three drugs for anaesthesia is developed. The key feature of this model is that mean arterial pressure, cardiac output and unconsciousness of the patient can be simultaneously regulated. This is achieved by using three drugs: dopamine (DP), sodium nitroprusside (SNP) and isoflurane. A number of dynamic simulation experiments are carried out for the validation of the model. The model is then used for the design of model predictive and multi-parametric controllers, and the performance of the controllers is analyzed.
Memoryless cooperative graph search based on the simulated annealing algorithm
NASA Astrophysics Data System (ADS)
Hou, Jian; Yan, Gang-Feng; Fan, Zhen
2011-04-01
We have studied the problem of reaching a globally optimal segment for a graph-like environment with a single or a group of autonomous mobile agents. Firstly, two efficient simulated-annealing-like algorithms are given for a single agent to solve the problem in a partially known environment and an unknown environment, respectively. It shows that under both proposed control strategies, the agent will eventually converge to a globally optimal segment with probability 1. Secondly, we use multi-agent searching to simultaneously reduce the computation complexity and accelerate convergence based on the algorithms we have given for a single agent. By exploiting graph partition, a gossip-consensus method based scheme is presented to update the key parameter—radius of the graph, ensuring that the agents spend much less time finding a globally optimal segment.
A multi-agent approach to intelligent monitoring in smart grids
NASA Astrophysics Data System (ADS)
Vallejo, D.; Albusac, J.; Glez-Morcillo, C.; Castro-Schez, J. J.; Jiménez, L.
2014-04-01
In this paper, we propose a scalable multi-agent architecture to give support to smart grids, paying special attention to the intelligent monitoring of distribution substations. The data gathered by multiple sensors are used by software agents that are responsible for monitoring different aspects or events of interest, such as normal voltage values or unbalanced intensity values that can end up blowing fuses and decreasing the quality of service of end consumers. The knowledge bases of these agents have been built by means of a formal model for normality analysis that has been successfully used in other surveillance domains. The architecture facilitates the integration of new agents and can be easily configured and deployed to monitor different environments. The experiments have been conducted over a power distribution network.
Coordinated single-phase control scheme for voltage unbalance reduction in low voltage network.
Pullaguram, Deepak; Mishra, Sukumar; Senroy, Nilanjan
2017-08-13
Low voltage (LV) distribution systems are typically unbalanced in nature due to unbalanced loading and unsymmetrical line configuration. This situation is further aggravated by single-phase power injections. A coordinated control scheme is proposed for single-phase sources, to reduce voltage unbalance. A consensus-based coordination is achieved using a multi-agent system, where each agent estimates the averaged global voltage and current magnitudes of individual phases in the LV network. These estimated values are used to modify the reference power of individual single-phase sources, to ensure system-wide balanced voltages and proper power sharing among sources connected to the same phase. Further, the high X / R ratio of the filter, used in the inverter of the single-phase source, enables control of reactive power, to minimize voltage unbalance locally. The proposed scheme is validated by simulating a LV distribution network with multiple single-phase sources subjected to various perturbations.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).
Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri
2016-01-01
This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.
Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri
2016-01-01
This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality. PMID:26954783
A Distributed Intelligent E-Learning System
ERIC Educational Resources Information Center
Kristensen, Terje
2016-01-01
An E-learning system based on a multi-agent (MAS) architecture combined with the Dynamic Content Manager (DCM) model of E-learning, is presented. We discuss the benefits of using such a multi-agent architecture. Finally, the MAS architecture is compared with a pure service-oriented architecture (SOA). This MAS architecture may also be used within…
Adaptive consensus of scale-free multi-agent system by randomly selecting links
NASA Astrophysics Data System (ADS)
Mou, Jinping; Ge, Huafeng
2016-06-01
This paper investigates an adaptive consensus problem for distributed scale-free multi-agent systems (SFMASs) by randomly selecting links, where the degree of each node follows a power-law distribution. The randomly selecting links are based on the assumption that every agent decides to select links among its neighbours according to the received data with a certain probability. Accordingly, a novel consensus protocol with the range of the received data is developed, and each node updates its state according to the protocol. By the iterative method and Cauchy inequality, the theoretical analysis shows that all errors among agents converge to zero, and in the meanwhile, several criteria of consensus are obtained. One numerical example shows the reliability of the proposed methods.
Hu, Wenfeng; Liu, Lu; Feng, Gang
2016-09-02
This paper addresses the output consensus problem of heterogeneous linear multi-agent systems. We first propose a novel distributed event-triggered control scheme. It is shown that, with the proposed control scheme, the output consensus problem can be solved if two matrix equations are satisfied. Then, we further propose a novel self-triggered control scheme, with which continuous monitoring is avoided. By introducing a fixed timer into both event- and self-triggered control schemes, Zeno behavior can be ruled out for each agent. The effectiveness of the event- and self-triggered control schemes is illustrated by an example.
Optimal harvesting for a predator-prey agent-based model using difference equations.
Oremland, Matthew; Laubenbacher, Reinhard
2015-03-01
In this paper, a method known as Pareto optimization is applied in the solution of a multi-objective optimization problem. The system in question is an agent-based model (ABM) wherein global dynamics emerge from local interactions. A system of discrete mathematical equations is formulated in order to capture the dynamics of the ABM; while the original model is built up analytically from the rules of the model, the paper shows how minor changes to the ABM rule set can have a substantial effect on model dynamics. To address this issue, we introduce parameters into the equation model that track such changes. The equation model is amenable to mathematical theory—we show how stability analysis can be performed and validated using ABM data. We then reduce the equation model to a simpler version and implement changes to allow controls from the ABM to be tested using the equations. Cohen's weighted κ is proposed as a measure of similarity between the equation model and the ABM, particularly with respect to the optimization problem. The reduced equation model is used to solve a multi-objective optimization problem via a technique known as Pareto optimization, a heuristic evolutionary algorithm. Results show that the equation model is a good fit for ABM data; Pareto optimization provides a suite of solutions to the multi-objective optimization problem that can be implemented directly in the ABM.
Using Ant Colony Optimization for Routing in VLSI Chips
NASA Astrophysics Data System (ADS)
Arora, Tamanna; Moses, Melanie
2009-04-01
Rapid advances in VLSI technology have increased the number of transistors that fit on a single chip to about two billion. A frequent problem in the design of such high performance and high density VLSI layouts is that of routing wires that connect such large numbers of components. Most wire-routing problems are computationally hard. The quality of any routing algorithm is judged by the extent to which it satisfies routing constraints and design objectives. Some of the broader design objectives include minimizing total routed wire length, and minimizing total capacitance induced in the chip, both of which serve to minimize power consumed by the chip. Ant Colony Optimization algorithms (ACO) provide a multi-agent framework for combinatorial optimization by combining memory, stochastic decision and strategies of collective and distributed learning by ant-like agents. This paper applies ACO to the NP-hard problem of finding optimal routes for interconnect routing on VLSI chips. The constraints on interconnect routing are used by ants as heuristics which guide their search process. We found that ACO algorithms were able to successfully incorporate multiple constraints and route interconnects on suite of benchmark chips. On an average, the algorithm routed with total wire length 5.5% less than other established routing algorithms.
Ma, Changxi; Hao, Wei; Pan, Fuquan; Xiang, Wang
2018-01-01
Route optimization of hazardous materials transportation is one of the basic steps in ensuring the safety of hazardous materials transportation. The optimization scheme may be a security risk if road screening is not completed before the distribution route is optimized. For road screening issues of hazardous materials transportation, a road screening algorithm of hazardous materials transportation is built based on genetic algorithm and Levenberg-Marquardt neural network (GA-LM-NN) by analyzing 15 attributes data of each road network section. A multi-objective robust optimization model with adjustable robustness is constructed for the hazardous materials transportation problem of single distribution center to minimize transportation risk and time. A multi-objective genetic algorithm is designed to solve the problem according to the characteristics of the model. The algorithm uses an improved strategy to complete the selection operation, applies partial matching cross shift and single ortho swap methods to complete the crossover and mutation operation, and employs an exclusive method to construct Pareto optimal solutions. Studies show that the sets of hazardous materials transportation road can be found quickly through the proposed road screening algorithm based on GA-LM-NN, whereas the distribution route Pareto solutions with different levels of robustness can be found rapidly through the proposed multi-objective robust optimization model and algorithm.
NASA Astrophysics Data System (ADS)
Sahelgozin, M.; Alimohammadi, A.
2015-12-01
Increasing distances between locations of residence and services leads to a large number of daily commutes in urban areas. Developing subway systems has been taken into consideration of transportation managers as a response to this huge amount of travel demands. In developments of subway infrastructures, representing a temporal schedule for trains is an important task; because an appropriately designed timetable decreases Total passenger travel times, Total Operation Costs and Energy Consumption of trains. Since these variables are not positively correlated, subway scheduling is considered as a multi-criteria optimization problem. Therefore, proposing a proper solution for subway scheduling has been always a controversial issue. On the other hand, research on a phenomenon requires a summarized representation of the real world that is known as Model. In this study, it is attempted to model temporal schedule of urban trains that can be applied in Multi-Criteria Subway Schedule Optimization (MCSSO) problems. At first, a conceptual framework is represented for MCSSO. Then, an agent-based simulation environment is implemented to perform Sensitivity Analysis (SA) that is used to extract the interrelations between the framework components. These interrelations is then taken into account in order to construct the proposed model. In order to evaluate performance of the model in MCSSO problems, Tehran subway line no. 1 is considered as the case study. Results of the study show that the model was able to generate an acceptable distribution of Pareto-optimal solutions which are applicable in the real situations while solving a MCSSO is the goal. Also, the accuracy of the model in representing the operation of subway systems was significant.
Learning from Multiple Collaborating Intelligent Tutors: An Agent-based Approach.
ERIC Educational Resources Information Center
Solomos, Konstantinos; Avouris, Nikolaos
1999-01-01
Describes an open distributed multi-agent tutoring system (MATS) and discusses issues related to learning in such open environments. Topics include modeling a one student-many teachers approach in a computer-based learning context; distributed artificial intelligence; implementation issues; collaboration; and user interaction. (Author/LRW)
Self-adaptive multi-objective harmony search for optimal design of water distribution networks
NASA Astrophysics Data System (ADS)
Choi, Young Hwan; Lee, Ho Min; Yoo, Do Guen; Kim, Joong Hoon
2017-11-01
In multi-objective optimization computing, it is important to assign suitable parameters to each optimization problem to obtain better solutions. In this study, a self-adaptive multi-objective harmony search (SaMOHS) algorithm is developed to apply the parameter-setting-free technique, which is an example of a self-adaptive methodology. The SaMOHS algorithm attempts to remove some of the inconvenience from parameter setting and selects the most adaptive parameters during the iterative solution search process. To verify the proposed algorithm, an optimal least cost water distribution network design problem is applied to three different target networks. The results are compared with other well-known algorithms such as multi-objective harmony search and the non-dominated sorting genetic algorithm-II. The efficiency of the proposed algorithm is quantified by suitable performance indices. The results indicate that SaMOHS can be efficiently applied to the search for Pareto-optimal solutions in a multi-objective solution space.
NASA Astrophysics Data System (ADS)
Yang, Hongyong; Han, Fujun; Zhao, Mei; Zhang, Shuning; Yue, Jun
2017-08-01
Because many networked systems can only be characterized with fractional-order dynamics in complex environments, fractional-order calculus has been studied deeply recently. When diverse individual features are shown in different agents of networked systems, heterogeneous fractional-order dynamics will be used to describe the complex systems. Based on the distinguishing properties of agents, heterogeneous fractional-order multi-agent systems (FOMAS) are presented. With the supposition of multiple leader agents in FOMAS, distributed containment control of FOMAS is studied in directed weighted topologies. By applying Laplace transformation and frequency domain theory of the fractional-order operator, an upper bound of delays is obtained to ensure containment consensus of delayed heterogenous FOMAS. Consensus results of delayed FOMAS in this paper can be extended to systems with integer-order models. Finally, numerical examples are used to verify our results.
Distributed event-triggered consensus strategy for multi-agent systems under limited resources
NASA Astrophysics Data System (ADS)
Noorbakhsh, S. Mohammad; Ghaisari, Jafar
2016-01-01
The paper proposes a distributed structure to address an event-triggered consensus problem for multi-agent systems which aims at concurrent reduction in inter-agent communication, control input actuation and energy consumption. Following the proposed approach, asymptotic convergence of all agents to consensus requires that each agent broadcasts its sampled-state to the neighbours and updates its control input only at its own triggering instants, unlike the existing related works. Obviously, it decreases the network bandwidth usage, sensor energy consumption, computation resources usage and actuator wears. As a result, it facilitates the implementation of the proposed consensus protocol in the real-world applications with limited resources. The stability of the closed-loop system under an event-based protocol is proved analytically. Some numerical results are presented which confirm the analytical discussion on the effectiveness of the proposed design.
Zhang, Rubo; Yang, Yu
2017-01-01
Research on distributed task planning model for multi-autonomous underwater vehicle (MAUV). A scroll time domain quantum artificial bee colony (STDQABC) optimization algorithm is proposed to solve the multi-AUV optimal task planning scheme. In the uncertain marine environment, the rolling time domain control technique is used to realize a numerical optimization in a narrowed time range. Rolling time domain control is one of the better task planning techniques, which can greatly reduce the computational workload and realize the tradeoff between AUV dynamics, environment and cost. Finally, a simulation experiment was performed to evaluate the distributed task planning performance of the scroll time domain quantum bee colony optimization algorithm. The simulation results demonstrate that the STDQABC algorithm converges faster than the QABC and ABC algorithms in terms of both iterations and running time. The STDQABC algorithm can effectively improve MAUV distributed tasking planning performance, complete the task goal and get the approximate optimal solution. PMID:29186166
Li, Jianjun; Zhang, Rubo; Yang, Yu
2017-01-01
Research on distributed task planning model for multi-autonomous underwater vehicle (MAUV). A scroll time domain quantum artificial bee colony (STDQABC) optimization algorithm is proposed to solve the multi-AUV optimal task planning scheme. In the uncertain marine environment, the rolling time domain control technique is used to realize a numerical optimization in a narrowed time range. Rolling time domain control is one of the better task planning techniques, which can greatly reduce the computational workload and realize the tradeoff between AUV dynamics, environment and cost. Finally, a simulation experiment was performed to evaluate the distributed task planning performance of the scroll time domain quantum bee colony optimization algorithm. The simulation results demonstrate that the STDQABC algorithm converges faster than the QABC and ABC algorithms in terms of both iterations and running time. The STDQABC algorithm can effectively improve MAUV distributed tasking planning performance, complete the task goal and get the approximate optimal solution.
A practical approach for active camera coordination based on a fusion-driven multi-agent system
NASA Astrophysics Data System (ADS)
Bustamante, Alvaro Luis; Molina, José M.; Patricio, Miguel A.
2014-04-01
In this paper, we propose a multi-agent system architecture to manage spatially distributed active (or pan-tilt-zoom) cameras. Traditional video surveillance algorithms are of no use for active cameras, and we have to look at different approaches. Such multi-sensor surveillance systems have to be designed to solve two related problems: data fusion and coordinated sensor-task management. Generally, architectures proposed for the coordinated operation of multiple cameras are based on the centralisation of management decisions at the fusion centre. However, the existence of intelligent sensors capable of decision making brings with it the possibility of conceiving alternative decentralised architectures. This problem is approached by means of a MAS, integrating data fusion as an integral part of the architecture for distributed coordination purposes. This paper presents the MAS architecture and system agents.
NASA Astrophysics Data System (ADS)
Roa, Wilson; Xiong, Yeping; Chen, Jie; Yang, Xiaoyan; Song, Kun; Yang, Xiaohong; Kong, Beihua; Wilson, John; Xing, James Z.
2012-09-01
We synthesized a novel, multi-functional, radiosensitizing agent by covalently linking 6-fluoro-6-deoxy-d-glucose (6-FDG) to gold nanoparticles (6-FDG-GNPs) via a thiol functional group. We then assessed the bio-distribution and pharmacokinetic properties of 6-FDG-GNPs in vivo using a murine model. At 2 h, following intravenous injection of 6-FDG-GNPs into the murine model, approximately 30% of the 6-FDG-GNPs were distributed to three major organs: the liver, the spleen and the kidney. PEGylation of the 6-FDG-GNPs was found to significantly improve the bio-distribution of 6-FDG-GNPs by avoiding unintentional uptake into these organs, while simultaneously doubling the cellular uptake of GNPs in implanted breast MCF-7 adenocarcinoma. When combined with radiation, PEG-6-FDG-GNPs were found to increase the apoptosis of the MCF-7 breast adenocarinoma cells by radiation both in vitro and in vivo. Pharmacokinetic data indicate that GNPs reach their maximal concentrations at a time window of two to four hours post-injection, during which optimal radiation efficiency can be achieved. PEG-6-FDG-GNPs are thus novel nanoparticles that preferentially accumulate in targeted cancer cells where they act as potent radiosensitizing agents. Future research will aim to substitute the 18F atom into the 6-FDG molecule so that the PEG-6-FDG-GNPs can also function as radiotracers for use in positron emission tomography scanning to aid cancer diagnosis and image guided radiation therapy planning.
NASA Astrophysics Data System (ADS)
Kodama, Yu; Hamagami, Tomoki
Distributed processing system for restoration of electric power distribution network using two-layered CNP is proposed. The goal of this study is to develop the restoration system which adjusts to the future power network with distributed generators. The state of the art of this study is that the two-layered CNP is applied for the distributed computing environment in practical use. The two-layered CNP has two classes of agents, named field agent and operating agent in the network. In order to avoid conflicts of tasks, operating agent controls privilege for managers to send the task announcement messages in CNP. This technique realizes the coordination between agents which work asynchronously in parallel with others. Moreover, this study implements the distributed processing system using a de-fact standard multi-agent framework, JADE(Java Agent DEvelopment framework). This study conducts the simulation experiments of power distribution network restoration and compares the proposed system with the previous system. We confirmed the results show effectiveness of the proposed system.
A Mission Planning Approach for Precision Farming Systems Based on Multi-Objective Optimization.
Zhai, Zhaoyu; Martínez Ortega, José-Fernán; Lucas Martínez, Néstor; Rodríguez-Molina, Jesús
2018-06-02
As the demand for food grows continuously, intelligent agriculture has drawn much attention due to its capability of producing great quantities of food efficiently. The main purpose of intelligent agriculture is to plan agricultural missions properly and use limited resources reasonably with minor human intervention. This paper proposes a Precision Farming System (PFS) as a Multi-Agent System (MAS). Components of PFS are treated as agents with different functionalities. These agents could form several coalitions to complete the complex agricultural missions cooperatively. In PFS, mission planning should consider several criteria, like expected benefit, energy consumption or equipment loss. Hence, mission planning could be treated as a Multi-objective Optimization Problem (MOP). In order to solve MOP, an improved algorithm, MP-PSOGA, is proposed, taking advantages of the Genetic Algorithms and Particle Swarm Optimization. A simulation, called precise pesticide spraying mission, is performed to verify the feasibility of the proposed approach. Simulation results illustrate that the proposed approach works properly. This approach enables the PFS to plan missions and allocate scarce resources efficiently. The theoretical analysis and simulation is a good foundation for the future study. Once the proposed approach is applied to a real scenario, it is expected to bring significant economic improvement.
Distributed robust finite-time nonlinear consensus protocols for multi-agent systems
NASA Astrophysics Data System (ADS)
Zuo, Zongyu; Tie, Lin
2016-04-01
This paper investigates the robust finite-time consensus problem of multi-agent systems in networks with undirected topology. Global nonlinear consensus protocols augmented with a variable structure are constructed with the aid of Lyapunov functions for each single-integrator agent dynamics in the presence of external disturbances. In particular, it is shown that the finite settling time of the proposed general framework for robust consensus design is upper bounded for any initial condition. This makes it possible for network consensus problems to design and estimate the convergence time offline for a multi-agent team with a given undirected information flow. Finally, simulation results are presented to demonstrate the performance and effectiveness of our finite-time protocols.
A multi-agent intelligent environment for medical knowledge.
Vicari, Rosa M; Flores, Cecilia D; Silvestre, André M; Seixas, Louise J; Ladeira, Marcelo; Coelho, Helder
2003-03-01
AMPLIA is a multi-agent intelligent learning environment designed to support training of diagnostic reasoning and modelling of domains with complex and uncertain knowledge. AMPLIA focuses on the medical area. It is a system that deals with uncertainty under the Bayesian network approach, where learner-modelling tasks will consist of creating a Bayesian network for a problem the system will present. The construction of a network involves qualitative and quantitative aspects. The qualitative part concerns the network topology, that is, causal relations among the domain variables. After it is ready, the quantitative part is specified. It is composed of the distribution of conditional probability of the variables represented. A negotiation process (managed by an intelligent MediatorAgent) will treat the differences of topology and probability distribution between the model the learner built and the one built-in in the system. That negotiation process occurs between the agents that represent the expert knowledge domain (DomainAgent) and the agent that represents the learner knowledge (LearnerAgent).
A risk-based multi-objective model for optimal placement of sensors in water distribution system
NASA Astrophysics Data System (ADS)
Naserizade, Sareh S.; Nikoo, Mohammad Reza; Montaseri, Hossein
2018-02-01
In this study, a new stochastic model based on Conditional Value at Risk (CVaR) and multi-objective optimization methods is developed for optimal placement of sensors in water distribution system (WDS). This model determines minimization of risk which is caused by simultaneous multi-point contamination injection in WDS using CVaR approach. The CVaR considers uncertainties of contamination injection in the form of probability distribution function and calculates low-probability extreme events. In this approach, extreme losses occur at tail of the losses distribution function. Four-objective optimization model based on NSGA-II algorithm is developed to minimize losses of contamination injection (through CVaR of affected population and detection time) and also minimize the two other main criteria of optimal placement of sensors including probability of undetected events and cost. Finally, to determine the best solution, Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE), as a subgroup of Multi Criteria Decision Making (MCDM) approach, is utilized to rank the alternatives on the trade-off curve among objective functions. Also, sensitivity analysis is done to investigate the importance of each criterion on PROMETHEE results considering three relative weighting scenarios. The effectiveness of the proposed methodology is examined through applying it to Lamerd WDS in the southwestern part of Iran. The PROMETHEE suggests 6 sensors with suitable distribution that approximately cover all regions of WDS. Optimal values related to CVaR of affected population and detection time as well as probability of undetected events for the best optimal solution are equal to 17,055 persons, 31 mins and 0.045%, respectively. The obtained results of the proposed methodology in Lamerd WDS show applicability of CVaR-based multi-objective simulation-optimization model for incorporating the main uncertainties of contamination injection in order to evaluate extreme value of losses in WDS.
Market-Based Coordination and Auditing Mechanisms for Self-Interested Multi-Robot Systems
ERIC Educational Resources Information Center
Ham, MyungJoo
2009-01-01
We propose market-based coordinated task allocation mechanisms, which allocate complex tasks that require synchronized and collaborated services of multiple robot agents to robot agents, and an auditing mechanism, which ensures proper behaviors of robot agents by verifying inter-agent activities, for self-interested, fully-distributed, and…
2010-06-01
artificial agents, their limited scope and singular purpose lead us to believe that human-machine trust will be very portable. That is, if one operator... Artificial Intelligence Review 2(2), 1988. [E88] M.R. Endsley. Situation awareness global assessment technique (SAGAT). In Proceedings of the National...1995. [F98] J. Ferber, Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence, Addison- Wesley, 1998. [NP01] I. Niles and A
Agent Reward Shaping for Alleviating Traffic Congestion
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Agogino, Adrian
2006-01-01
Traffic congestion problems provide a unique environment to study how multi-agent systems promote desired system level behavior. What is particularly interesting in this class of problems is that no individual action is intrinsically "bad" for the system but that combinations of actions among agents lead to undesirable outcomes, As a consequence, agents need to learn how to coordinate their actions with those of other agents, rather than learn a particular set of "good" actions. This problem is ubiquitous in various traffic problems, including selecting departure times for commuters, routes for airlines, and paths for data routers. In this paper we present a multi-agent approach to two traffic problems, where far each driver, an agent selects the most suitable action using reinforcement learning. The agent rewards are based on concepts from collectives and aim to provide the agents with rewards that are both easy to learn and that if learned, lead to good system level behavior. In the first problem, we study how agents learn the best departure times of drivers in a daily commuting environment and how following those departure times alleviates congestion. In the second problem, we study how agents learn to select desirable routes to improve traffic flow and minimize delays for. all drivers.. In both sets of experiments,. agents using collective-based rewards produced near optimal performance (93-96% of optimal) whereas agents using system rewards (63-68%) barely outperformed random action selection (62-64%) and agents using local rewards (48-72%) performed worse than random in some instances.
A market-based optimization approach to sensor and resource management
NASA Astrophysics Data System (ADS)
Schrage, Dan; Farnham, Christopher; Gonsalves, Paul G.
2006-05-01
Dynamic resource allocation for sensor management is a problem that demands solutions beyond traditional approaches to optimization. Market-based optimization applies solutions from economic theory, particularly game theory, to the resource allocation problem by creating an artificial market for sensor information and computational resources. Intelligent agents are the buyers and sellers in this market, and they represent all the elements of the sensor network, from sensors to sensor platforms to computational resources. These agents interact based on a negotiation mechanism that determines their bidding strategies. This negotiation mechanism and the agents' bidding strategies are based on game theory, and they are designed so that the aggregate result of the multi-agent negotiation process is a market in competitive equilibrium, which guarantees an optimal allocation of resources throughout the sensor network. This paper makes two contributions to the field of market-based optimization: First, we develop a market protocol to handle heterogeneous goods in a dynamic setting. Second, we develop arbitrage agents to improve the efficiency in the market in light of its dynamic nature.
NASA Astrophysics Data System (ADS)
Madani, Kaveh; Hooshyar, Milad
2014-11-01
Reservoir systems with multiple operators can benefit from coordination of operation policies. To maximize the total benefit of these systems the literature has normally used the social planner's approach. Based on this approach operation decisions are optimized using a multi-objective optimization model with a compound system's objective. While the utility of the system can be increased this way, fair allocation of benefits among the operators remains challenging for the social planner who has to assign controversial weights to the system's beneficiaries and their objectives. Cooperative game theory provides an alternative framework for fair and efficient allocation of the incremental benefits of cooperation. To determine the fair and efficient utility shares of the beneficiaries, cooperative game theory solution methods consider the gains of each party in the status quo (non-cooperation) as well as what can be gained through the grand coalition (social planner's solution or full cooperation) and partial coalitions. Nevertheless, estimation of the benefits of different coalitions can be challenging in complex multi-beneficiary systems. Reinforcement learning can be used to address this challenge and determine the gains of the beneficiaries for different levels of cooperation, i.e., non-cooperation, partial cooperation, and full cooperation, providing the essential input for allocation based on cooperative game theory. This paper develops a game theory-reinforcement learning (GT-RL) method for determining the optimal operation policies in multi-operator multi-reservoir systems with respect to fairness and efficiency criteria. As the first step to underline the utility of the GT-RL method in solving complex multi-agent multi-reservoir problems without a need for developing compound objectives and weight assignment, the proposed method is applied to a hypothetical three-agent three-reservoir system.
Workflow management in large distributed systems
NASA Astrophysics Data System (ADS)
Legrand, I.; Newman, H.; Voicu, R.; Dobre, C.; Grigoras, C.
2011-12-01
The MonALISA (Monitoring Agents using a Large Integrated Services Architecture) framework provides a distributed service system capable of controlling and optimizing large-scale, data-intensive applications. An essential part of managing large-scale, distributed data-processing facilities is a monitoring system for computing facilities, storage, networks, and the very large number of applications running on these systems in near realtime. All this monitoring information gathered for all the subsystems is essential for developing the required higher-level services—the components that provide decision support and some degree of automated decisions—and for maintaining and optimizing workflow in large-scale distributed systems. These management and global optimization functions are performed by higher-level agent-based services. We present several applications of MonALISA's higher-level services including optimized dynamic routing, control, data-transfer scheduling, distributed job scheduling, dynamic allocation of storage resource to running jobs and automated management of remote services among a large set of grid facilities.
Multiagent distributed watershed management
NASA Astrophysics Data System (ADS)
Giuliani, M.; Castelletti, A.; Amigoni, F.; Cai, X.
2012-04-01
Deregulation and democratization of water along with increasing environmental awareness are challenging integrated water resources planning and management worldwide. The traditional centralized approach to water management, as described in much of water resources literature, is often unfeasible in most of the modern social and institutional contexts. Thus it should be reconsidered from a more realistic and distributed perspective, in order to account for the presence of multiple and often independent Decision Makers (DMs) and many conflicting stakeholders. Game theory based approaches are often used to study these situations of conflict (Madani, 2010), but they are limited to a descriptive perspective. Multiagent systems (see Wooldridge, 2009), instead, seem to be a more suitable paradigm because they naturally allow to represent a set of self-interested agents (DMs and/or stakeholders) acting in a distributed decision process at the agent level, resulting in a promising compromise alternative between the ideal centralized solution and the actual uncoordinated practices. Casting a water management problem in a multiagent framework allows to exploit the techniques and methods that are already available in this field for solving distributed optimization problems. In particular, in Distributed Constraint Satisfaction Problems (DCSP, see Yokoo et al., 2000), each agent controls some variables according to his own utility function but has to satisfy inter-agent constraints; while in Distributed Constraint Optimization Problems (DCOP, see Modi et al., 2005), the problem is generalized by introducing a global objective function to be optimized that requires a coordination mechanism between the agents. In this work, we apply a DCSP-DCOP based approach to model a steady state hypothetical watershed management problem (Yang et al., 2009), involving several active human agents (i.e. agents who make decisions) and reactive ecological agents (i.e. agents representing environmental interests). Different scenarios of distributed management are simulated, i.e. a situation where all the agents act independently, a situation in which a global coordination takes place and in-between solutions. The solutions are compared with the ones presented in Yang et al. (2009), aiming to present more general multiagent approaches to solve distributed management problems.
NASA Astrophysics Data System (ADS)
Alexandridis, Konstantinos T.
This dissertation adopts a holistic and detailed approach to modeling spatially explicit agent-based artificial intelligent systems, using the Multi Agent-based Behavioral Economic Landscape (MABEL) model. The research questions that addresses stem from the need to understand and analyze the real-world patterns and dynamics of land use change from a coupled human-environmental systems perspective. Describes the systemic, mathematical, statistical, socio-economic and spatial dynamics of the MABEL modeling framework, and provides a wide array of cross-disciplinary modeling applications within the research, decision-making and policy domains. Establishes the symbolic properties of the MABEL model as a Markov decision process, analyzes the decision-theoretic utility and optimization attributes of agents towards comprising statistically and spatially optimal policies and actions, and explores the probabilogic character of the agents' decision-making and inference mechanisms via the use of Bayesian belief and decision networks. Develops and describes a Monte Carlo methodology for experimental replications of agent's decisions regarding complex spatial parcel acquisition and learning. Recognizes the gap on spatially-explicit accuracy assessment techniques for complex spatial models, and proposes an ensemble of statistical tools designed to address this problem. Advanced information assessment techniques such as the Receiver-Operator Characteristic curve, the impurity entropy and Gini functions, and the Bayesian classification functions are proposed. The theoretical foundation for modular Bayesian inference in spatially-explicit multi-agent artificial intelligent systems, and the ensembles of cognitive and scenario assessment modular tools build for the MABEL model are provided. Emphasizes the modularity and robustness as valuable qualitative modeling attributes, and examines the role of robust intelligent modeling as a tool for improving policy-decisions related to land use change. Finally, the major contributions to the science are presented along with valuable directions for future research.
Yang, Yongliang; Modares, Hamidreza; Wunsch, Donald C; Yin, Yixin
2018-06-01
This paper develops optimal control protocols for the distributed output synchronization problem of leader-follower multiagent systems with an active leader. Agents are assumed to be heterogeneous with different dynamics and dimensions. The desired trajectory is assumed to be preplanned and is generated by the leader. Other follower agents autonomously synchronize to the leader by interacting with each other using a communication network. The leader is assumed to be active in the sense that it has a nonzero control input so that it can act independently and update its control to keep the followers away from possible danger. A distributed observer is first designed to estimate the leader's state and generate the reference signal for each follower. Then, the output synchronization of leader-follower systems with an active leader is formulated as a distributed optimal tracking problem, and inhomogeneous algebraic Riccati equations (AREs) are derived to solve it. The resulting distributed optimal control protocols not only minimize the steady-state error but also optimize the transient response of the agents. An off-policy reinforcement learning algorithm is developed to solve the inhomogeneous AREs online in real time and without requiring any knowledge of the agents' dynamics. Finally, two simulation examples are conducted to illustrate the effectiveness of the proposed algorithm.
Multi Agent Systems with Symbiotic Learning and Evolution using GNP
NASA Astrophysics Data System (ADS)
Eguchi, Toru; Hirasawa, Kotaro; Hu, Jinglu; Murata, Junichi
Recently, various attempts relevant to Multi Agent Systems (MAS) which is one of the most promising systems based on Distributed Artificial Intelligence have been studied to control large and complicated systems efficiently. In these trends of MAS, Multi Agent Systems with Symbiotic Learning and Evolution named Masbiole has been proposed. In Masbiole, symbiotic phenomena among creatures are considered in the process of learning and evolution of MAS. So we can expect more flexible and sophisticated solutions than conventional MAS. In this paper, we apply Masbiole to Iterative Prisoner’s Dilemma Games (IPD Games) using Genetic Network Programming (GNP) which is a newly developed evolutionary computation method for constituting agents. Some characteristics of Masbiole using GNP in IPD Games are clarified.
Resilient Distribution System by Microgrids Formation After Natural Disasters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chen; Wang, Jianhui; Qiu, Feng
2016-03-01
Microgrids with distributed generation provide a resilient solution in the case of major faults in a distribution system due to natural disasters. This paper proposes a novel distribution system operational approach by forming multiple microgrids energized by distributed generation from the radial distribution system in real-time operations, to restore critical loads from the power outage. Specifically, a mixed-integer linear program (MILP) is formulated to maximize the critical loads to be picked up while satisfying the self-adequacy and operation constraints for the microgrids formation problem, by controlling the ON/OFF status of the remotely controlled switch devices and distributed generation. A distributedmore » multi-agent coordination scheme is designed via local communications for the global information discovery as inputs of the optimization, which is suitable for autonomous communication requirements after the disastrous event. The formed microgrids can be further utilized for power quality control and can be connected to a larger microgrid before the restoration of the main grids is complete. Numerical results based on modified IEEE distribution test systems validate the effectiveness of our proposed scheme.« less
Dynamic Task Assignment of Autonomous Distributed AGV in an Intelligent FMS Environment
NASA Astrophysics Data System (ADS)
Fauadi, Muhammad Hafidz Fazli Bin Md; Lin, Hao Wen; Murata, Tomohiro
The need of implementing distributed system is growing significantly as it is proven to be effective for organization to be flexible against a highly demanding market. Nevertheless, there are still large technical gaps need to be addressed to gain significant achievement. We propose a distributed architecture to control Automated Guided Vehicle (AGV) operation based on multi-agent architecture. System architectures and agents' functions have been designed to support distributed control of AGV. Furthermore, enhanced agent communication protocol has been configured to accommodate dynamic attributes of AGV task assignment procedure. Result proved that the technique successfully provides a better solution.
NASA Astrophysics Data System (ADS)
Nagata, Takeshi; Tao, Yasuhiro; Utatani, Masahiro; Sasaki, Hiroshi; Fujita, Hideki
This paper proposes a multi-agent approach to maintenance scheduling in restructured power systems. The restructuring of electric power industry has resulted in market-based approaches for unbundling a multitude of service provided by self-interested entities such as power generating companies (GENCOs), transmission providers (TRANSCOs) and distribution companies (DISCOs). The Independent System Operator (ISO) is responsible for the security of the system operation. The schedule submitted to ISO by GENCOs and TRANSCOs should satisfy security and reliability constraints. The proposed method consists of several GENCO Agents (GAGs), TARNSCO Agents (TAGs) and a ISO Agent(IAG). The IAG’s role in maintenance scheduling is limited to ensuring that the submitted schedules do not cause transmission congestion or endanger the system reliability. From the simulation results, it can be seen the proposed multi-agent approach could coordinate between generation and transmission maintenance schedules.
Robust Architectures for Complex Multi-Agent Heterogeneous Systems
2014-07-23
establish the tradeoff between the control performance and the QoS of the communications network . We also derived the performance bound on the difference...accomplished within this time period leveraged the prior accomplishments in the area of networked multi-agent systems. The past work (prior to 2011...distributed control of uncertain networked systems [3]. Additionally, a preliminary collision avoidance algorithm has been developed for a team of
Modeling of a production system using the multi-agent approach
NASA Astrophysics Data System (ADS)
Gwiazda, A.; Sękala, A.; Banaś, W.
2017-08-01
The method that allows for the analysis of complex systems is a multi-agent simulation. The multi-agent simulation (Agent-based modeling and simulation - ABMS) is modeling of complex systems consisting of independent agents. In the case of the model of the production system agents may be manufactured pieces set apart from other types of agents like machine tools, conveyors or replacements stands. Agents are magazines and buffers. More generally speaking, the agents in the model can be single individuals, but you can also be defined as agents of collective entities. They are allowed hierarchical structures. It means that a single agent could belong to a certain class. Depending on the needs of the agent may also be a natural or physical resource. From a technical point of view, the agent is a bundle of data and rules describing its behavior in different situations. Agents can be autonomous or non-autonomous in making the decision about the types of classes of agents, class sizes and types of connections between elements of the system. Multi-agent modeling is a very flexible technique for modeling and model creating in the convention that could be adapted to any research problem analyzed from different points of views. One of the major problems associated with the organization of production is the spatial organization of the production process. Secondly, it is important to include the optimal scheduling. For this purpose use can approach multi-purposeful. In this regard, the model of the production process will refer to the design and scheduling of production space for four different elements. The program system was developed in the environment NetLogo. It was also used elements of artificial intelligence. The main agent represents the manufactured pieces that, according to previously assumed rules, generate the technological route and allow preprint the schedule of that line. Machine lines, reorientation stands, conveyors and transport devices also represent the other type of agent that are utilized in the described simulation. The article presents the idea of an integrated program approach and shows the resulting production layout as a virtual model. This model was developed in the NetLogo multi-agent program environment.
A new hybrid meta-heuristic algorithm for optimal design of large-scale dome structures
NASA Astrophysics Data System (ADS)
Kaveh, A.; Ilchi Ghazaan, M.
2018-02-01
In this article a hybrid algorithm based on a vibrating particles system (VPS) algorithm, multi-design variable configuration (Multi-DVC) cascade optimization, and an upper bound strategy (UBS) is presented for global optimization of large-scale dome truss structures. The new algorithm is called MDVC-UVPS in which the VPS algorithm acts as the main engine of the algorithm. The VPS algorithm is one of the most recent multi-agent meta-heuristic algorithms mimicking the mechanisms of damped free vibration of single degree of freedom systems. In order to handle a large number of variables, cascade sizing optimization utilizing a series of DVCs is used. Moreover, the UBS is utilized to reduce the computational time. Various dome truss examples are studied to demonstrate the effectiveness and robustness of the proposed method, as compared to some existing structural optimization techniques. The results indicate that the MDVC-UVPS technique is a powerful search and optimization method for optimizing structural engineering problems.
Wang, Xinghu; Hong, Yiguang; Yi, Peng; Ji, Haibo; Kang, Yu
2017-05-24
In this paper, a distributed optimization problem is studied for continuous-time multiagent systems with unknown-frequency disturbances. A distributed gradient-based control is proposed for the agents to achieve the optimal consensus with estimating unknown frequencies and rejecting the bounded disturbance in the semi-global sense. Based on convex optimization analysis and adaptive internal model approach, the exact optimization solution can be obtained for the multiagent system disturbed by exogenous disturbances with uncertain parameters.
2003-06-01
and Multi-Agent Systems 1 no. 1 (1998): 7-38. [23] K. Sycara, A. Pannu , M. Williamson, and D. Zeng, “Distributed Intelligent Agents,” IEEE Expert 11...services that include support for mobility, security, management, persistence, and naming of agents. [i] K. Sycara, A. Pannu , M. Williamson, and D
Seismic signal time-frequency analysis based on multi-directional window using greedy strategy
NASA Astrophysics Data System (ADS)
Chen, Yingpin; Peng, Zhenming; Cheng, Zhuyuan; Tian, Lin
2017-08-01
Wigner-Ville distribution (WVD) is an important time-frequency analysis technology with a high energy distribution in seismic signal processing. However, it is interfered by many cross terms. To suppress the cross terms of the WVD and keep the concentration of its high energy distribution, an adaptive multi-directional filtering window in the ambiguity domain is proposed. This begins with the relationship of the Cohen distribution and the Gabor transform combining the greedy strategy and the rotational invariance property of the fractional Fourier transform in order to propose the multi-directional window, which extends the one-dimensional, one directional, optimal window function of the optimal fractional Gabor transform (OFrGT) to a two-dimensional, multi-directional window in the ambiguity domain. In this way, the multi-directional window matches the main auto terms of the WVD more precisely. Using the greedy strategy, the proposed window takes into account the optimal and other suboptimal directions, which also solves the problem of the OFrGT, called the local concentration phenomenon, when encountering a multi-component signal. Experiments on different types of both the signal models and the real seismic signals reveal that the proposed window can overcome the drawbacks of the WVD and the OFrGT mentioned above. Finally, the proposed method is applied to a seismic signal's spectral decomposition. The results show that the proposed method can explore the space distribution of a reservoir more precisely.
Multi-agent Water Resources Management
NASA Astrophysics Data System (ADS)
Castelletti, A.; Giuliani, M.
2011-12-01
Increasing environmental awareness and emerging trends such as water trading, energy market, deregulation and democratization of water-related services are challenging integrated water resources planning and management worldwide. The traditional approach to water management design based on sector-by-sector optimization has to be reshaped to account for multiple interrelated decision-makers and many stakeholders with increasing decision power. Centralized management, though interesting from a conceptual point of view, is unfeasible in most of the modern social and institutional contexts, and often economically inefficient. Coordinated management, where different actors interact within a full open trust exchange paradigm under some institutional supervision is a promising alternative to the ideal centralized solution and the actual uncoordinated practices. This is a significant issue in most of the Southern Alps regulated lakes, where upstream hydropower reservoirs maximize their benefit independently form downstream users; it becomes even more relevant in the case of transboundary systems, where water management upstream affects water availability downstream (e.g. the River Zambesi flowing through Zambia, Zimbabwe and Mozambique or the Red River flowing from South-Western China through Northern Vietnam. In this study we apply Multi-Agent Systems (MAS) theory to design an optimal management in a decentralized way, considering a set of multiple autonomous agents acting in the same environment and taking into account the pay-off of individual water users, which are inherently distributed along the river and need to coordinate to jointly reach their objectives. In this way each real-world actor, representing the decision-making entity (e.g. the operator of a reservoir or a diversion dam) can be represented one-to-one by a computer agent, defined as a computer system that is situated in some environment and that is capable of autonomous action in this environment in order to meet its design objectives. The proposed approach is numerically tested on a synthetic case study, characterized by two multi-purpose reservoirs in cascade, two diversion dams and four different conflicting water uses: hydropower energy production, drinking supply, flooding prevention along the reservoir shores and irrigation supply. The system is therefore composed by four agents: the two operators of the diversion dams, which are purely reactive agents since they simply respond directly to the environment, and the operators of the two reservoirs, which are more complex agents because they have an internal state and their decisions are taken according to a closed-loop control scheme. In particular, the set of agents can act considering only their own objectives or they can coordinate to jointly reach better compromise solutions. Different interaction scenarios between the two extreme behaviours of centralized management and completely non-cooperation are simulated and analysed.
Research on vehicle routing optimization for the terminal distribution of B2C E-commerce firms
NASA Astrophysics Data System (ADS)
Zhang, Shiyun; Lu, Yapei; Li, Shasha
2018-05-01
In this paper, we established a half open multi-objective optimization model for the vehicle routing problem of B2C (business-to-customer) E-Commerce firms. To minimize the current transport distance as well as the disparity between the excepted shipments and the transport capacity in the next distribution, we applied the concept of dominated solution and Pareto solutions to the standard particle swarm optimization and proposed a MOPSO (multi-objective particle swarm optimization) algorithm to support the model. Besides, we also obtained the optimization solution of MOPSO algorithm based on data randomly generated through the system, which verified the validity of the model.
NASA Astrophysics Data System (ADS)
Fu, Junjie; Wang, Jin-zhi
2017-09-01
In this paper, we study the finite-time consensus problems with globally bounded convergence time also known as fixed-time consensus problems for multi-agent systems subject to directed communication graphs. Two new distributed control strategies are proposed such that leaderless and leader-follower consensus are achieved with convergence time independent on the initial conditions of the agents. Fixed-time formation generation and formation tracking problems are also solved as the generalizations. Simulation examples are provided to demonstrate the performance of the new controllers.
Distributed reconfigurable control strategies for switching topology networked multi-agent systems.
Gallehdari, Z; Meskin, N; Khorasani, K
2017-11-01
In this paper, distributed control reconfiguration strategies for directed switching topology networked multi-agent systems are developed and investigated. The proposed control strategies are invoked when the agents are subject to actuator faults and while the available fault detection and isolation (FDI) modules provide inaccurate and unreliable information on the estimation of faults severities. Our proposed strategies will ensure that the agents reach a consensus while an upper bound on the team performance index is ensured and satisfied. Three types of actuator faults are considered, namely: the loss of effectiveness fault, the outage fault, and the stuck fault. By utilizing quadratic and convex hull (composite) Lyapunov functions, two cooperative and distributed recovery strategies are designed and provided to select the gains of the proposed control laws such that the team objectives are guaranteed. Our proposed reconfigurable control laws are applied to a team of autonomous underwater vehicles (AUVs) under directed switching topologies and subject to simultaneous actuator faults. Simulation results demonstrate the effectiveness of our proposed distributed reconfiguration control laws in compensating for the effects of sudden actuator faults and subject to fault diagnosis module uncertainties and unreliabilities. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
A bio-inspired swarm robot coordination algorithm for multiple target searching
NASA Astrophysics Data System (ADS)
Meng, Yan; Gan, Jing; Desai, Sachi
2008-04-01
The coordination of a multi-robot system searching for multi targets is challenging under dynamic environment since the multi-robot system demands group coherence (agents need to have the incentive to work together faithfully) and group competence (agents need to know how to work together well). In our previous proposed bio-inspired coordination method, Local Interaction through Virtual Stigmergy (LIVS), one problem is the considerable randomness of the robot movement during coordination, which may lead to more power consumption and longer searching time. To address these issues, an adaptive LIVS (ALIVS) method is proposed in this paper, which not only considers the travel cost and target weight, but also predicting the target/robot ratio and potential robot redundancy with respect to the detected targets. Furthermore, a dynamic weight adjustment is also applied to improve the searching performance. This new method a truly distributed method where each robot makes its own decision based on its local sensing information and the information from its neighbors. Basically, each robot only communicates with its neighbors through a virtual stigmergy mechanism and makes its local movement decision based on a Particle Swarm Optimization (PSO) algorithm. The proposed ALIVS algorithm has been implemented on the embodied robot simulator, Player/Stage, in a searching target. The simulation results demonstrate the efficiency and robustness in a power-efficient manner with the real-world constraints.
NASA Astrophysics Data System (ADS)
Wang, L.; Wang, T. G.; Wu, J. H.; Cheng, G. P.
2016-09-01
A novel multi-objective optimization algorithm incorporating evolution strategies and vector mechanisms, referred as VD-MOEA, is proposed and applied in aerodynamic- structural integrated design of wind turbine blade. In the algorithm, a set of uniformly distributed vectors is constructed to guide population in moving forward to the Pareto front rapidly and maintain population diversity with high efficiency. For example, two- and three- objective designs of 1.5MW wind turbine blade are subsequently carried out for the optimization objectives of maximum annual energy production, minimum blade mass, and minimum extreme root thrust. The results show that the Pareto optimal solutions can be obtained in one single simulation run and uniformly distributed in the objective space, maximally maintaining the population diversity. In comparison to conventional evolution algorithms, VD-MOEA displays dramatic improvement of algorithm performance in both convergence and diversity preservation for handling complex problems of multi-variables, multi-objectives and multi-constraints. This provides a reliable high-performance optimization approach for the aerodynamic-structural integrated design of wind turbine blade.
Research on mixed network architecture collaborative application model
NASA Astrophysics Data System (ADS)
Jing, Changfeng; Zhao, Xi'an; Liang, Song
2009-10-01
When facing complex requirements of city development, ever-growing spatial data, rapid development of geographical business and increasing business complexity, collaboration between multiple users and departments is needed urgently, however conventional GIS software (such as Client/Server model or Browser/Server model) are not support this well. Collaborative application is one of the good resolutions. Collaborative application has four main problems to resolve: consistency and co-edit conflict, real-time responsiveness, unconstrained operation, spatial data recoverability. In paper, application model called AMCM is put forward based on agent and multi-level cache. AMCM can be used in mixed network structure and supports distributed collaborative. Agent is an autonomous, interactive, initiative and reactive computing entity in a distributed environment. Agent has been used in many fields such as compute science and automation. Agent brings new methods for cooperation and the access for spatial data. Multi-level cache is a part of full data. It reduces the network load and improves the access and handle of spatial data, especially, in editing the spatial data. With agent technology, we make full use of its characteristics of intelligent for managing the cache and cooperative editing that brings a new method for distributed cooperation and improves the efficiency.
Team Formation in Partially Observable Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Agogino, Adrian K.; Tumer, Kagan
2004-01-01
Sets of multi-agent teams often need to maximize a global utility rating the performance of the entire system where a team cannot fully observe other teams agents. Such limited observability hinders team-members trying to pursue their team utilities to take actions that also help maximize the global utility. In this article, we show how team utilities can be used in partially observable systems. Furthermore, we show how team sizes can be manipulated to provide the best compromise between having easy to learn team utilities and having them aligned with the global utility, The results show that optimally sized teams in a partially observable environments outperform one team in a fully observable environment, by up to 30%.
The Power of Flexibility: Autonomous Agents That Conserve Energy in Commercial Buildings
NASA Astrophysics Data System (ADS)
Kwak, Jun-young
Agent-based systems for energy conservation are now a growing area of research in multiagent systems, with applications ranging from energy management and control on the smart grid, to energy conservation in residential buildings, to energy generation and dynamic negotiations in distributed rural communities. Contributing to this area, my thesis presents new agent-based models and algorithms aiming to conserve energy in commercial buildings. More specifically, my thesis provides three sets of algorithmic contributions. First, I provide online predictive scheduling algorithms to handle massive numbers of meeting/event scheduling requests considering flexibility , which is a novel concept for capturing generic user constraints while optimizing the desired objective. Second, I present a novel BM-MDP ( Bounded-parameter Multi-objective Markov Decision Problem) model and robust algorithms for multi-objective optimization under uncertainty both at the planning and execution time. The BM-MDP model and its robust algorithms are useful in (re)scheduling events to achieve energy efficiency in the presence of uncertainty over user's preferences. Third, when multiple users contribute to energy savings, fair division of credit for such savings to incentivize users for their energy saving activities arises as an important question. I appeal to cooperative game theory and specifically to the concept of Shapley value for this fair division. Unfortunately, scaling up this Shapley value computation is a major hindrance in practice. Therefore, I present novel approximation algorithms to efficiently compute the Shapley value based on sampling and partitions and to speed up the characteristic function computation. These new models have not only advanced the state of the art in multiagent algorithms, but have actually been successfully integrated within agents dedicated to energy efficiency: SAVES, TESLA and THINC. SAVES focuses on the day-to-day energy consumption of individuals and groups in commercial buildings by reactively suggesting energy conserving alternatives. TESLA takes a long-range planning perspective and optimizes overall energy consumption of a large number of group events or meetings together. THINC provides an end-to-end integration within a single agent of energy efficient scheduling, rescheduling and credit allocation. While SAVES, TESLA and THINC thus differ in their scope and applicability, they demonstrate the utility of agent-based systems in actually reducing energy consumption in commercial buildings. I evaluate my algorithms and agents using extensive analysis on data from over 110,000 real meetings/events at multiple educational buildings including the main libraries at the University of Southern California. I also provide results on simulations and real-world experiments, clearly demonstrating the power of agent technology to assist human users in saving energy in commercial buildings.
Multi-objective optimization to predict muscle tensions in a pinch function using genetic algorithm
NASA Astrophysics Data System (ADS)
Bensghaier, Amani; Romdhane, Lotfi; Benouezdou, Fethi
2012-03-01
This work is focused on the determination of the thumb and the index finger muscle tensions in a tip pinch task. A biomechanical model of the musculoskeletal system of the thumb and the index finger is developed. Due to the assumptions made in carrying out the biomechanical model, the formulated force analysis problem is indeterminate leading to an infinite number of solutions. Thus, constrained single and multi-objective optimization methodologies are used in order to explore the muscular redundancy and to predict optimal muscle tension distributions. Various models are investigated using the optimization process. The basic criteria to minimize are the sum of the muscle stresses, the sum of individual muscle tensions and the maximum muscle stress. The multi-objective optimization is solved using a Pareto genetic algorithm to obtain non-dominated solutions, defined as the set of optimal distributions of muscle tensions. The results show the advantage of the multi-objective formulation over the single objective one. The obtained solutions are compared to those available in the literature demonstrating the effectiveness of our approach in the analysis of the fingers musculoskeletal systems when predicting muscle tensions.
NASA Technical Reports Server (NTRS)
Mourou, Pascal; Fade, Bernard
1992-01-01
This article describes a planning method applicable to agents with great perception and decision-making capabilities and the ability to communicate with other agents. Each agent has a task to fulfill allowing for the actions of other agents in its vicinity. Certain simultaneous actions may cause conflicts because they require the same resource. The agent plans each of its actions and simultaneously transmits these to its neighbors. In a similar way, it receives plans from the other agents and must take account of these plans. The planning method allows us to build a distributed scheduling system. Here, these agents are robot vehicles on a highway communicating by radio. In this environment, conflicts between agents concern the allocation of space in time and are connected with the inertia of the vehicles. Each vehicle made a temporal, spatial, and situated reasoning in order to drive without collision. The flexibility and reactivity of the method presented here allows the agent to generate its plan based on assumptions concerning the other agents and then check these assumptions progressively as plans are received from the other agents. A multi-agent execution monitoring of these plans can be done, using data generated during planning and the multi-agent decision-making algorithm described here. A selective backtrack allows us to perform incremental rescheduling.
Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing
NASA Astrophysics Data System (ADS)
Yu, Kun-Fei; Gu, Jun; Hwang, Tzonelih; Gope, Prosanta
2017-08-01
This paper proposes a multi-party semi-quantum secret sharing (MSQSS) protocol which allows a quantum party (manager) to share a secret among several classical parties (agents) based on GHZ-like states. By utilizing the special properties of GHZ-like states, the proposed scheme can easily detect outside eavesdropping attacks and has the highest qubit efficiency among the existing MSQSS protocols. Then, we illustrate an efficient way to convert the proposed MSQSS protocol into a multi-party semi-quantum key distribution (MSQKD) protocol. The proposed approach is even useful to convert all the existing measure-resend type of semi-quantum secret sharing protocols into semi-quantum key distribution protocols.
Zhang, Tao; Zhang, Song; Yang, Feifei; Wang, Lili; Zhu, Sigang; Qiu, Bing; Li, Shunhua; Deng, Zhongliang
2018-01-01
This study aimed to address the insufficiency of traditional meta-analysis and provide improved guidelines for the clinical practice of osteosarcoma treatment. The heterogeneity of the fixed-effect model was calculated, and when necessary, a random-effect model was adopted. Furthermore, the direct and indirect evidence was pooled together and exhibited in the forest plot and slash table. The surface under the cumulative ranking curve (SUCRA) value was also measured to rank each intervention. Finally, heat plot was introduced to demonstrate the contribution of each intervention and the inconsistency between direct and indirect comparisons. This network meta-analysis included 32 trials, involving a total of 5,626 subjects reported by 28 articles. All the treatments were classified into six chemotherapeutic combinations: dual agent with or without ifosfamide (IFO), multi-agent with or without IFO, and dual agent or multi-agent with IFO and etoposide. For the primary outcomes, both overall survival (OS) and event-free survival (EFS) rates were considered. The multi-agent integrated with IFO and etoposide showed an optimal performance for 5-year OS, 10-year OS, 3-year EFS, 5-year EFS, and 10-year EFS when compared with placebo. The SUCRA value of this treatment was also the highest of these six interventions. However, multi-drug with IFO alone had the highest SUCRA value of 0.652 and 0.516 when it came to relapse and lung-metastasis. It was efficient to some extent, but no significant difference was observed in both outcomes. Chemotherapy, applied as induction or adjuvant treatment with radiation therapy or surgery, is able to increase the survival rate of patients, especially by combining multi-drug with IFO and etoposide, which demonstrated the best performance in both OS and EFS. As for relapse and the lung-metastasis, multiple agents with IFO alone seemed to have the optimal efficiency, although no significant difference was observed here. J. Cell. Biochem. 119: 250-259, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ji, Yu; Sheng, Wanxing; Jin, Wei; Wu, Ming; Liu, Haitao; Chen, Feng
2018-02-01
A coordinated optimal control method of active and reactive power of distribution network with distributed PV cluster based on model predictive control is proposed in this paper. The method divides the control process into long-time scale optimal control and short-time scale optimal control with multi-step optimization. The models are transformed into a second-order cone programming problem due to the non-convex and nonlinear of the optimal models which are hard to be solved. An improved IEEE 33-bus distribution network system is used to analyse the feasibility and the effectiveness of the proposed control method
DyHAP: Dynamic Hybrid ANFIS-PSO Approach for Predicting Mobile Malware.
Afifi, Firdaus; Anuar, Nor Badrul; Shamshirband, Shahaboddin; Choo, Kim-Kwang Raymond
2016-01-01
To deal with the large number of malicious mobile applications (e.g. mobile malware), a number of malware detection systems have been proposed in the literature. In this paper, we propose a hybrid method to find the optimum parameters that can be used to facilitate mobile malware identification. We also present a multi agent system architecture comprising three system agents (i.e. sniffer, extraction and selection agent) to capture and manage the pcap file for data preparation phase. In our hybrid approach, we combine an adaptive neuro fuzzy inference system (ANFIS) and particle swarm optimization (PSO). Evaluations using data captured on a real-world Android device and the MalGenome dataset demonstrate the effectiveness of our approach, in comparison to two hybrid optimization methods which are differential evolution (ANFIS-DE) and ant colony optimization (ANFIS-ACO).
DyHAP: Dynamic Hybrid ANFIS-PSO Approach for Predicting Mobile Malware
Afifi, Firdaus; Anuar, Nor Badrul; Shamshirband, Shahaboddin
2016-01-01
To deal with the large number of malicious mobile applications (e.g. mobile malware), a number of malware detection systems have been proposed in the literature. In this paper, we propose a hybrid method to find the optimum parameters that can be used to facilitate mobile malware identification. We also present a multi agent system architecture comprising three system agents (i.e. sniffer, extraction and selection agent) to capture and manage the pcap file for data preparation phase. In our hybrid approach, we combine an adaptive neuro fuzzy inference system (ANFIS) and particle swarm optimization (PSO). Evaluations using data captured on a real-world Android device and the MalGenome dataset demonstrate the effectiveness of our approach, in comparison to two hybrid optimization methods which are differential evolution (ANFIS-DE) and ant colony optimization (ANFIS-ACO). PMID:27611312
NASA Astrophysics Data System (ADS)
Ma, Qian; Xia, Houping; Xu, Qiang; Zhao, Lei
2018-05-01
A new method combining Tikhonov regularization and kernel matrix optimization by multi-wavelength incidence is proposed for retrieving particle size distribution (PSD) in an independent model with improved accuracy and stability. In comparison to individual regularization or multi-wavelength least squares, the proposed method exhibited better anti-noise capability, higher accuracy and stability. While standard regularization typically makes use of the unit matrix, it is not universal for different PSDs, particularly for Junge distributions. Thus, a suitable regularization matrix was chosen by numerical simulation, with the second-order differential matrix found to be appropriate for most PSD types.
Optimized Sensor Network and Multi-Agent Decision Support for Smart Traffic Light Management.
Cruz-Piris, Luis; Rivera, Diego; Fernandez, Susel; Marsa-Maestre, Ivan
2018-02-02
One of the biggest challenges in modern societies is to solve vehicular traffic problems. Sensor networks in traffic environments have contributed to improving the decision-making process of Intelligent Transportation Systems. However, one of the limiting factors for the effectiveness of these systems is in the deployment of sensors to provide accurate information about the traffic. Our proposal is using the centrality measurement of a graph as a base to locate the best locations for sensor installation in a traffic network. After integrating these sensors in a simulation scenario, we define a Multi-Agent Systems composed of three types of agents: traffic light management agents, traffic jam detection agents, and agents that control the traffic lights at an intersection. The ultimate goal of these Multi-Agent Systems is to improve the trip duration for vehicles in the network. To validate our solution, we have developed the needed elements for modelling the sensors and agents in the simulation environment. We have carried out experiments using the Simulation of Urban MObility (SUMO) traffic simulator and the Travel and Activity PAtterns Simulation (TAPAS) Cologne traffic scenario. The obtained results show that our proposal allows to reduce the sensor network while still obtaining relevant information to have a global view of the environment. Finally, regarding the Multi-Agent Systems, we have carried out experiments that show that our proposal is able to improve other existing solutions such as conventional traffic light management systems (static or dynamic) in terms of reduction of vehicle trip duration and reduction of the message exchange overhead in the sensor network.
Optimized Sensor Network and Multi-Agent Decision Support for Smart Traffic Light Management
2018-01-01
One of the biggest challenges in modern societies is to solve vehicular traffic problems. Sensor networks in traffic environments have contributed to improving the decision-making process of Intelligent Transportation Systems. However, one of the limiting factors for the effectiveness of these systems is in the deployment of sensors to provide accurate information about the traffic. Our proposal is using the centrality measurement of a graph as a base to locate the best locations for sensor installation in a traffic network. After integrating these sensors in a simulation scenario, we define a Multi-Agent Systems composed of three types of agents: traffic light management agents, traffic jam detection agents, and agents that control the traffic lights at an intersection. The ultimate goal of these Multi-Agent Systems is to improve the trip duration for vehicles in the network. To validate our solution, we have developed the needed elements for modelling the sensors and agents in the simulation environment. We have carried out experiments using the Simulation of Urban MObility (SUMO) traffic simulator and the Travel and Activity PAtterns Simulation (TAPAS) Cologne traffic scenario. The obtained results show that our proposal allows to reduce the sensor network while still obtaining relevant information to have a global view of the environment. Finally, regarding the Multi-Agent Systems, we have carried out experiments that show that our proposal is able to improve other existing solutions such as conventional traffic light management systems (static or dynamic) in terms of reduction of vehicle trip duration and reduction of the message exchange overhead in the sensor network. PMID:29393884
A Multi-Objective Approach to Tactical Maneuvering Within Real Time Strategy Games
The resulting agent does not require the usage of training or tree searches to optimize, allowing for consist effective performance across all scenarios against a variety of opposing tactical options.
Consensus for multi-agent systems with time-varying input delays
NASA Astrophysics Data System (ADS)
Yuan, Chengzhi; Wu, Fen
2017-10-01
This paper addresses the consensus control problem for linear multi-agent systems subject to uniform time-varying input delays and external disturbance. A novel state-feedback consensus protocol is proposed under the integral quadratic constraint (IQC) framework, which utilises not only the relative state information from neighbouring agents but also the real-time information of delays by means of the dynamic IQC system states for feedback control. Based on this new consensus protocol, the associated IQC-based control synthesis conditions are established and fully characterised as linear matrix inequalities (LMIs), such that the consensus control solution with optimal ? disturbance attenuation performance can be synthesised efficiently via convex optimisation. A numerical example is used to demonstrate the proposed approach.
Research into a distributed fault diagnosis system and its application
NASA Astrophysics Data System (ADS)
Qian, Suxiang; Jiao, Weidong; Lou, Yongjian; Shen, Xiaomei
2005-12-01
CORBA (Common Object Request Broker Architecture) is a solution to distributed computing methods over heterogeneity systems, which establishes a communication protocol between distributed objects. It takes great emphasis on realizing the interoperation between distributed objects. However, only after developing some application approaches and some practical technology in monitoring and diagnosis, can the customers share the monitoring and diagnosis information, so that the purpose of realizing remote multi-expert cooperation diagnosis online can be achieved. This paper aims at building an open fault monitoring and diagnosis platform combining CORBA, Web and agent. Heterogeneity diagnosis object interoperate in independent thread through the CORBA (soft-bus), realizing sharing resource and multi-expert cooperation diagnosis online, solving the disadvantage such as lack of diagnosis knowledge, oneness of diagnosis technique and imperfectness of analysis function, so that more complicated and further diagnosis can be carried on. Take high-speed centrifugal air compressor set for example, we demonstrate a distributed diagnosis based on CORBA. It proves that we can find out more efficient approaches to settle the problems such as real-time monitoring and diagnosis on the net and the break-up of complicated tasks, inosculating CORBA, Web technique and agent frame model to carry on complemental research. In this system, Multi-diagnosis Intelligent Agent helps improve diagnosis efficiency. Besides, this system offers an open circumstances, which is easy for the diagnosis objects to upgrade and for new diagnosis server objects to join in.
Investigation of Simulated Trading — A multi agent based trading system for optimization purposes
NASA Astrophysics Data System (ADS)
Schneider, Johannes J.
2010-07-01
Some years ago, Bachem, Hochstättler, and Malich proposed a heuristic algorithm called Simulated Trading for the optimization of vehicle routing problems. Computational agents place buy-orders and sell-orders for customers to be handled at a virtual financial market, the prices of the orders depending on the costs of inserting the customer in the tour or for his removal. According to a proposed rule set, the financial market creates a buy-and-sell graph for the various orders in the order book, intending to optimize the overall system. Here I present a thorough investigation for the application of this algorithm to the traveling salesman problem.
NASA Astrophysics Data System (ADS)
Ai, Xueshan; Dong, Zuo; Mo, Mingzhu
2017-04-01
The optimal reservoir operation is in generally a multi-objective problem. In real life, most of the reservoir operation optimization problems involve conflicting objectives, for which there is no single optimal solution which can simultaneously gain an optimal result of all the purposes, but rather a set of well distributed non-inferior solutions or Pareto frontier exists. On the other hand, most of the reservoirs operation rules is to gain greater social and economic benefits at the expense of ecological environment, resulting to the destruction of riverine ecology and reduction of aquatic biodiversity. To overcome these drawbacks, this study developed a multi-objective model for the reservoir operating with the conflicting functions of hydroelectric energy generation, irrigation and ecological protection. To solve the model with the objectives of maximize energy production, maximize the water demand satisfaction rate of irrigation and ecology, we proposed a multi-objective optimization method of variable penalty coefficient (VPC), which was based on integrate dynamic programming (DP) with discrete differential dynamic programming (DDDP), to generate a well distributed non-inferior along the Pareto front by changing the penalties coefficient of different objectives. This method was applied to an existing China reservoir named Donggu, through a course of a year, which is a multi-annual storage reservoir with multiple purposes. The case study results showed a good relationship between any two of the objectives and a good Pareto optimal solutions, which provide a reference for the reservoir decision makers.
NASA Astrophysics Data System (ADS)
Moazami Goodarzi, Hamed; Kazemi, Mohammad Hosein
2018-05-01
Microgrid (MG) clustering is regarded as an important driver in improving the robustness of MGs. However, little research has been conducted on providing appropriate MG clustering. This article addresses this shortfall. It proposes a novel multi-objective optimization approach for finding optimal clustering of autonomous MGs by focusing on variables such as distributed generation (DG) droop parameters, the location and capacity of DG units, renewable energy sources, capacitors and powerline transmission. Power losses are minimized and voltage stability is improved while virtual cut-set lines with minimum power transmission for clustering MGs are obtained. A novel chaotic grey wolf optimizer (CGWO) algorithm is applied to solve the proposed multi-objective problem. The performance of the approach is evaluated by utilizing a 69-bus MG in several scenarios.
He, Chenlong; Feng, Zuren; Ren, Zhigang
2018-01-01
In this paper, we propose a connectivity-preserving flocking algorithm for multi-agent systems in which the neighbor set of each agent is determined by the hybrid metric-topological distance so that the interaction topology can be represented as the range-limited Delaunay graph, which combines the properties of the commonly used disk graph and Delaunay graph. As a result, the proposed flocking algorithm has the following advantages over the existing ones. First, range-limited Delaunay graph is sparser than the disk graph so that the information exchange among agents is reduced significantly. Second, some links irrelevant to the connectivity can be dynamically deleted during the evolution of the system. Thus, the proposed flocking algorithm is more flexible than existing algorithms, where links are not allowed to be disconnected once they are created. Finally, the multi-agent system spontaneously generates a regular quasi-lattice formation without imposing the constraint on the ratio of the sensing range of the agent to the desired distance between two adjacent agents. With the interaction topology induced by the hybrid distance, the proposed flocking algorithm can still be implemented in a distributed manner. We prove that the proposed flocking algorithm can steer the multi-agent system to a stable flocking motion, provided the initial interaction topology of multi-agent systems is connected and the hysteresis in link addition is smaller than a derived upper bound. The correctness and effectiveness of the proposed algorithm are verified by extensive numerical simulations, where the flocking algorithms based on the disk and Delaunay graph are compared.
Feng, Zuren; Ren, Zhigang
2018-01-01
In this paper, we propose a connectivity-preserving flocking algorithm for multi-agent systems in which the neighbor set of each agent is determined by the hybrid metric-topological distance so that the interaction topology can be represented as the range-limited Delaunay graph, which combines the properties of the commonly used disk graph and Delaunay graph. As a result, the proposed flocking algorithm has the following advantages over the existing ones. First, range-limited Delaunay graph is sparser than the disk graph so that the information exchange among agents is reduced significantly. Second, some links irrelevant to the connectivity can be dynamically deleted during the evolution of the system. Thus, the proposed flocking algorithm is more flexible than existing algorithms, where links are not allowed to be disconnected once they are created. Finally, the multi-agent system spontaneously generates a regular quasi-lattice formation without imposing the constraint on the ratio of the sensing range of the agent to the desired distance between two adjacent agents. With the interaction topology induced by the hybrid distance, the proposed flocking algorithm can still be implemented in a distributed manner. We prove that the proposed flocking algorithm can steer the multi-agent system to a stable flocking motion, provided the initial interaction topology of multi-agent systems is connected and the hysteresis in link addition is smaller than a derived upper bound. The correctness and effectiveness of the proposed algorithm are verified by extensive numerical simulations, where the flocking algorithms based on the disk and Delaunay graph are compared. PMID:29462217
System design in an evolving system-of-systems architecture and concept of operations
NASA Astrophysics Data System (ADS)
Rovekamp, Roger N., Jr.
Proposals for space exploration architectures have increased in complexity and scope. Constituent systems (e.g., rovers, habitats, in-situ resource utilization facilities, transfer vehicles, etc) must meet the needs of these architectures by performing in multiple operational environments and across multiple phases of the architecture's evolution. This thesis proposes an approach for using system-of-systems engineering principles in conjunction with system design methods (e.g., Multi-objective optimization, genetic algorithms, etc) to create system design options that perform effectively at both the system and system-of-systems levels, across multiple concepts of operations, and over multiple architectural phases. The framework is presented by way of an application problem that investigates the design of power systems within a power sharing architecture for use in a human Lunar Surface Exploration Campaign. A computer model has been developed that uses candidate power grid distribution solutions for a notional lunar base. The agent-based model utilizes virtual control agents to manage the interactions of various exploration and infrastructure agents. The philosophy behind the model is based both on lunar power supply strategies proposed in literature, as well as on the author's own approaches for power distribution strategies of future lunar bases. In addition to proposing a framework for system design, further implications of system-of-systems engineering principles are briefly explored, specifically as they relate to producing more robust cross-cultural system-of-systems architecture solutions.
NASA Technical Reports Server (NTRS)
Abbott, David; Batten, Adam; Carpenter, David; Dunlop, John; Edwards, Graeme; Farmer, Tony; Gaffney, Bruce; Hedley, Mark; Hoschke, Nigel; Isaacs, Peter;
2008-01-01
This report describes the first phase of the implementation of the Concept Demonstrator. The Concept Demonstrator system is a powerful and flexible experimental test-bed platform for developing sensors, communications systems, and multi-agent based algorithms for an intelligent vehicle health monitoring system for deployment in aerospace vehicles. The Concept Demonstrator contains sensors and processing hardware distributed throughout the structure, and uses multi-agent algorithms to characterize impacts and determine an appropriate response to these impacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Xiaohui; Liu, Cheng; Kim, Hoe Kyoung
2011-01-01
The variation of household attributes such as income, travel distance, age, household member, and education for different residential areas may generate different market penetration rates for plug-in hybrid electric vehicle (PHEV). Residential areas with higher PHEV ownership could increase peak electric demand locally and require utilities to upgrade the electric distribution infrastructure even though the capacity of the regional power grid is under-utilized. Estimating the future PHEV ownership distribution at the residential household level can help us understand the impact of PHEV fleet on power line congestion, transformer overload and other unforeseen problems at the local residential distribution network level.more » It can also help utilities manage the timing of recharging demand to maximize load factors and utilization of existing distribution resources. This paper presents a multi agent-based simulation framework for 1) modeling spatial distribution of PHEV ownership at local residential household level, 2) discovering PHEV hot zones where PHEV ownership may quickly increase in the near future, and 3) estimating the impacts of the increasing PHEV ownership on the local electric distribution network with different charging strategies. In this paper, we use Knox County, TN as a case study to show the simulation results of the agent-based model (ABM) framework. However, the framework can be easily applied to other local areas in the US.« less
HURON (HUman and Robotic Optimization Network) Multi-Agent Temporal Activity Planner/Scheduler
NASA Technical Reports Server (NTRS)
Hua, Hook; Mrozinski, Joseph J.; Elfes, Alberto; Adumitroaie, Virgil; Shelton, Kacie E.; Smith, Jeffrey H.; Lincoln, William P.; Weisbin, Charles R.
2012-01-01
HURON solves the problem of how to optimize a plan and schedule for assigning multiple agents to a temporal sequence of actions (e.g., science tasks). Developed as a generic planning and scheduling tool, HURON has been used to optimize space mission surface operations. The tool has also been used to analyze lunar architectures for a variety of surface operational scenarios in order to maximize return on investment and productivity. These scenarios include numerous science activities performed by a diverse set of agents: humans, teleoperated rovers, and autonomous rovers. Once given a set of agents, activities, resources, resource constraints, temporal constraints, and de pendencies, HURON computes an optimal schedule that meets a specified goal (e.g., maximum productivity or minimum time), subject to the constraints. HURON performs planning and scheduling optimization as a graph search in state-space with forward progression. Each node in the graph contains a state instance. Starting with the initial node, a graph is automatically constructed with new successive nodes of each new state to explore. The optimization uses a set of pre-conditions and post-conditions to create the children states. The Python language was adopted to not only enable more agile development, but to also allow the domain experts to easily define their optimization models. A graphical user interface was also developed to facilitate real-time search information feedback and interaction by the operator in the search optimization process. The HURON package has many potential uses in the fields of Operations Research and Management Science where this technology applies to many commercial domains requiring optimization to reduce costs. For example, optimizing a fleet of transportation truck routes, aircraft flight scheduling, and other route-planning scenarios involving multiple agent task optimization would all benefit by using HURON.
HERA: A New Platform for Embedding Agents in Heterogeneous Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Alonso, Ricardo S.; de Paz, Juan F.; García, Óscar; Gil, Óscar; González, Angélica
Ambient Intelligence (AmI) based systems require the development of innovative solutions that integrate distributed intelligent systems with context-aware technologies. In this sense, Multi-Agent Systems (MAS) and Wireless Sensor Networks (WSN) are two key technologies for developing distributed systems based on AmI scenarios. This paper presents the new HERA (Hardware-Embedded Reactive Agents) platform, that allows using dynamic and self-adaptable heterogeneous WSNs on which agents are directly embedded on the wireless nodes This approach facilitates the inclusion of context-aware capabilities in AmI systems to gather data from their surrounding environments, achieving a higher level of ubiquitous and pervasive computing.
Hu, Sixiao; Hsieh, You-Lo
2015-10-20
Lignin has proven to be highly effective "green" multi-functional binding, complexing and reducing agents for silver cations as well as capping agents for the synthesis of silver nanoparticles on ultra-fine cellulose fibrous membranes. Silver nanoparticles could be synthesized in 10min to be densely distributed and stably bound on the cellulose fiber surfaces at up to 2.9% in mass. Silver nanoparticle increased in sizes from 5 to 100nm and became more polydispersed in size distribution on larger fibers and with longer synthesis time. These cellulose fiber bound silver nanoparticles did not agglomerate under elevated temperatures and showed improved thermal stability. The presence of alkali lignin conferred moderate UV absorbing ability in both UV-B and UV-C regions whereas the bound silver nanoparticles exhibited excellent antibacterial activities toward Escherichia coli. Copyright © 2015 Elsevier Ltd. All rights reserved.
Self-organization and phase transition in financial markets with multiple choices
NASA Astrophysics Data System (ADS)
Zhong, Li-Xin; Xu, Wen-Juan; Huang, Ping; Qiu, Tian; He, Yun-Xin; Zhong, Chen-Yang
2014-09-01
Market confidence is essential for successful investing. By incorporating multi-market into the evolutionary minority game, we investigate the effects of investor beliefs on the evolution of collective behaviors and asset prices. It is found that the roles of market confidence are closely related to whether or not there exists another market. When there exists another investment opportunity, different market confidence may lead to the same price fluctuations and the same investment attainment. There are two feedback effects. Being overly optimistic about a particular asset makes an investor become insensitive to losses. A delayed strategy adjustment leads to a decline in wealth and one's runaway from the market. The withdrawal of the agents results in the optimization of the strategy distributions and an increase in wealth. Being overly pessimistic about a particular asset makes an investor over-sensitive to losses. One's too frequent strategy adjustment leads to a decline in wealth. The withdrawal of the agents results in the improvement of the market environment and an increase in wealth.
Mehdizadeh, Hamidreza; Bayrak, Elif S; Lu, Chenlin; Somo, Sami I; Akar, Banu; Brey, Eric M; Cinar, Ali
2015-11-01
A multi-layer agent-based model (ABM) of biomaterial scaffold vascularization is extended to consider the effects of scaffold degradation kinetics on blood vessel formation. A degradation model describing the bulk disintegration of porous hydrogels is incorporated into the ABM. The combined degradation-angiogenesis model is used to investigate growing blood vessel networks in the presence of a degradable scaffold structure. Simulation results indicate that higher porosity, larger mean pore size, and rapid degradation allow faster vascularization when not considering the structural support of the scaffold. However, premature loss of structural support results in failure for the material. A strategy using multi-layer scaffold with different degradation rates in each layer was investigated as a way to address this issue. Vascularization was improved with the multi-layered scaffold model compared to the single-layer model. The ABM developed provides insight into the characteristics that influence the selection of optimal geometric parameters and degradation behavior of scaffolds, and enables easy refinement of the model as new knowledge about the underlying biological phenomena becomes available. This paper proposes a multi-layer agent-based model (ABM) of biomaterial scaffold vascularization integrated with a structural-kinetic model describing bulk degradation of porous hydrogels to consider the effects of scaffold degradation kinetics on blood vessel formation. This enables the assessment of scaffold characteristics and in particular the disintegration characteristics of the scaffold on angiogenesis. Simulation results indicate that higher porosity, larger mean pore size, and rapid degradation allow faster vascularization when not considering the structural support of the scaffold. However, premature loss of structural support by scaffold disintegration results in failure of the material and disruption of angiogenesis. A strategy using multi-layer scaffold with different degradation rates in each layer was investigated as away to address this issue. Vascularization was improved with the multi-layered scaffold model compared to the single-layer model. The ABM developed provides insight into the characteristics that influence the selection of optimal geometric and degradation characteristics of tissue engineering scaffolds. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Evolutionary Agent-based Models to design distributed water management strategies
NASA Astrophysics Data System (ADS)
Giuliani, M.; Castelletti, A.; Reed, P. M.
2012-12-01
There is growing awareness in the scientific community that the traditional centralized approach to water resources management, as described in much of the water resources literature, provides an ideal optimal solution, which is certainly useful to quantify the best physically achievable performance, but is generally inapplicable. Most real world water resources management problems are indeed characterized by the presence of multiple, distributed and institutionally-independent decision-makers. Multi-Agent Systems provide a potentially more realistic alternative framework to model multiple and self-interested decision-makers in a credible context. Each decision-maker can be represented by an agent who, being self-interested, acts according to local objective functions and produces negative externalities on system level objectives. Different levels of coordination can potentially be included in the framework by designing coordination mechanisms to drive the current decision-making structure toward the global system efficiency. Yet, the identification of effective coordination strategies can be particularly complex in modern institutional contexts and current practice is dependent on largely ad-hoc coordination strategies. In this work we propose a novel Evolutionary Agent-based Modeling (EAM) framework that enables a mapping of fully uncoordinated and centrally coordinated solutions into their relative "many-objective" tradeoffs using multiobjective evolutionary algorithms. Then, by analysing the conflicts between local individual agent and global system level objectives it is possible to more fully understand the causes, consequences, and potential solution strategies for coordination failures. Game-theoretic criteria have value for identifying the most interesting alternatives from a policy making point of view as well as the coordination mechanisms that can be applied to obtain these interesting solutions. The proposed approach is numerically tested on a synthetic case study, representing a Y-shaped system composed by two regulated lakes, whose releases merge just upstream of a city. Each reservoir is operated by an agent in order to prevent floods along the lake shores (local objective). However, the optimal operation of the reservoirs with respect to the local objectives is conflicting with the minimization of floods in the city (global objective). The evolution of the Agent-based Model from individualistic management strategies of the reservoirs toward a global compromise that reduces the costs for the city is analysed.
NASA Astrophysics Data System (ADS)
Mansor, S. B.; Pormanafi, S.; Mahmud, A. R. B.; Pirasteh, S.
2012-08-01
In this study, a geospatial model for land use allocation was developed from the view of simulating the biological autonomous adaptability to environment and the infrastructural preference. The model was developed based on multi-agent genetic algorithm. The model was customized to accommodate the constraint set for the study area, namely the resource saving and environmental-friendly. The model was then applied to solve the practical multi-objective spatial optimization allocation problems of land use in the core region of Menderjan Basin in Iran. The first task was to study the dominant crops and economic suitability evaluation of land. Second task was to determine the fitness function for the genetic algorithms. The third objective was to optimize the land use map using economical benefits. The results has indicated that the proposed model has much better performance for solving complex multi-objective spatial optimization allocation problems and it is a promising method for generating land use alternatives for further consideration in spatial decision-making.
Ultra-fast consensus of discrete-time multi-agent systems with multi-step predictive output feedback
NASA Astrophysics Data System (ADS)
Zhang, Wenle; Liu, Jianchang
2016-04-01
This article addresses the ultra-fast consensus problem of high-order discrete-time multi-agent systems based on a unified consensus framework. A novel multi-step predictive output mechanism is proposed under a directed communication topology containing a spanning tree. By predicting the outputs of a network several steps ahead and adding this information into the consensus protocol, it is shown that the asymptotic convergence factor is improved by a power of q + 1 compared to the routine consensus. The difficult problem of selecting the optimal control gain is solved well by introducing a variable called convergence step. In addition, the ultra-fast formation achievement is studied on the basis of this new consensus protocol. Finally, the ultra-fast consensus with respect to a reference model and robust consensus is discussed. Some simulations are performed to illustrate the effectiveness of the theoretical results.
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Macready, William G.
2005-01-01
Recent work on the foundations of optimization has begun to uncover its underlying rich structure. In particular, the "No Free Lunch" (NFL) theorems [WM97] state that any two algorithms are equivalent when their performance is averaged across all possible problems. This highlights the need for exploiting problem-specific knowledge to achieve better than random performance. In this paper we present a general framework covering most search scenarios. In addition to the optimization scenarios addressed in the NFL results, this framework covers multi-armed bandit problems and evolution of multiple co-evolving agents. As a particular instance of the latter, it covers "self-play" problems. In these problems the agents work together to produce a champion, who then engages one or more antagonists in a subsequent multi-player game In contrast to the traditional optimization case where the NFL results hold, we show that in self-play there are free lunches: in coevolution some algorithms have better performance than other algorithms, averaged across all possible problems. However in the typical coevolutionary scenarios encountered in biology, where there is no champion, NFL still holds.
NASA Astrophysics Data System (ADS)
Milani, Armin Ebrahimi; Haghifam, Mahmood Reza
2008-10-01
The reconfiguration is an operation process used for optimization with specific objectives by means of changing the status of switches in a distribution network. In this paper each objectives is normalized with inspiration from fuzzy sets-to cause optimization more flexible- and formulized as a unique multi-objective function. The genetic algorithm is used for solving the suggested model, in which there is no risk of non-liner objective functions and constraints. The effectiveness of the proposed method is demonstrated through the examples.
Distributed robust adaptive control of high order nonlinear multi agent systems.
Hashemi, Mahnaz; Shahgholian, Ghazanfar
2018-03-01
In this paper, a robust adaptive neural network based controller is presented for multi agent high order nonlinear systems with unknown nonlinear functions, unknown control gains and unknown actuator failures. At first, Neural Network (NN) is used to approximate the nonlinear uncertainty terms derived from the controller design procedure for the followers. Then, a novel distributed robust adaptive controller is developed by combining the backstepping method and the Dynamic Surface Control (DSC) approach. The proposed controllers are distributed in the sense that the designed controller for each follower agent only requires relative state information between itself and its neighbors. By using the Young's inequality, only few parameters need to be tuned regardless of NN nodes number. Accordingly, the problems of dimensionality curse and explosion of complexity are counteracted, simultaneously. New adaptive laws are designed by choosing the appropriate Lyapunov-Krasovskii functionals. The proposed approach proves the boundedness of all the closed-loop signals in addition to the convergence of the distributed tracking errors to a small neighborhood of the origin. Simulation results indicate that the proposed controller is effective and robust. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Guaranteeing Spoof-Resilient Multi-Robot Networks
2015-05-12
particularly challenging attack on this assumption is the so-called “Sybil attack.” In a Sybil attack a malicious agent can generate (or spoof) a large...cybersecurity in general multi-node networks (e.g. a wired LAN), the same is not true for multi- robot networks [14, 28], leaving them largely vulnerable...key passing or cryptographic authen- tication is difficult to maintain due to the highly dynamic and distributed nature of multi-robot teams where
Pricing strategy in a dual-channel and remanufacturing supply chain system
NASA Astrophysics Data System (ADS)
Jiang, Chengzhi; Xu, Feng; Sheng, Zhaohan
2010-07-01
This article addresses the pricing strategy problems in a supply chain system where the manufacturer sells original products and remanufactured products via indirect retailer channels and direct Internet channels. Due to the complexity of that system, agent technologies that provide a new way for analysing complex systems are used for modelling. Meanwhile, in order to reduce the computational load of searching procedure for optimal prices and profits, a learning search algorithm is designed and implemented within the multi-agent supply chain model. The simulation results show that the proposed model can find out optimal prices of original products and remanufactured products in both channels, which lead to optimal profits of the manufacturer and the retailer. It is also found that the optimal profits are increased by introducing direct channel and remanufacturing. Furthermore, the effect of customer preference, direct channel cost and remanufactured unit cost on optimal prices and profits are examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, He; Lian, Jianming; Kalsi, Karanjit
The HVAC (Heating, Ventilation, and Air- Conditioning) system of commercial buildings is a complex system with a large number of dynamically interacting components. In particular, the thermal dynamics of each zone are coupled with those of the neighboring zones. In this paper, we study a multi-agent based approach to model and control commercial building HVAC system for providing grid services. In the multi-agent system (MAS), individual zones are modeled as agents that can communicate, interact, and negotiate with one another to achieve a common objective. We first propose a distributed characterization method on the aggregated airflow (and thus fan power)more » flexibility that the HVAC system can provide to the ancillary service market. Then, we propose a Nash-bargaining based airflow allocation strategy to track a dispatch signal (that is within the offered flexibility limit) while respecting the preference and flexibility of individual zones. Moreover, we devise a distributed algorithm to obtain the Nash bargaining solution via dual decomposition and average consensus. Numerical simulations illustrate that the proposed distributed protocols are much more scalable than the centralized approaches especially when the system becomes larger and more complex.« less
NASA Astrophysics Data System (ADS)
Yeung, Chi Ho
In this thesis, we study two interdisciplinary problems in the framework of statistical physics, which show the broad applicability of physics on problems with various origins. The first problem corresponds to an optimization problem in allocating resources on random regular networks. Frustrations arise from competition for resources. When the initial resources are uniform, different regimes with discrete fractions of satisfied nodes are observed, resembling the Devil's staircase. We apply the spin glass theory in analyses and demonstrate how functional recursions are converted to simple recursions of probabilities. Equilibrium properties such as the average energy and the fraction of free nodes are derived. When the initial resources are bimodally distributed, increases in the fraction of rich nodes induce a glassy transition, entering a glassy phase described by the existence of multiple metastable states, in which we employ the replica symmetry breaking ansatz for analysis. The second problem corresponds to the study of multi-agent systems modeling financial markets. Agents in the system trade among themselves, and self-organize to produce macroscopic trading behaviors resembling the real financial markets. These behaviors include the arbitraging activities, the setting up and the following of price trends. A phase diagram of these behaviors is obtained, as a function of the sensitivity of price and the market impact factor. We finally test the applicability of the models with real financial data including the Hang Seng Index, the Nasdaq Composite and the Dow Jones Industrial Average. A substantial fraction of agents gains faster than the inflation rate of the indices, suggesting the possibility of using multi-agent systems as a tool for real trading.
[Optimal solution and analysis of muscular force during standing balance].
Wang, Hongrui; Zheng, Hui; Liu, Kun
2015-02-01
The present study was aimed at the optimal solution of the main muscular force distribution in the lower extremity during standing balance of human. The movement musculoskeletal system of lower extremity was simplified to a physical model with 3 joints and 9 muscles. Then on the basis of this model, an optimum mathematical model was built up to solve the problem of redundant muscle forces. Particle swarm optimization (PSO) algorithm is used to calculate the single objective and multi-objective problem respectively. The numerical results indicated that the multi-objective optimization could be more reasonable to obtain the distribution and variation of the 9 muscular forces. Finally, the coordination of each muscle group during maintaining standing balance under the passive movement was qualitatively analyzed using the simulation results obtained.
Distributed Optimization for a Class of Nonlinear Multiagent Systems With Disturbance Rejection.
Wang, Xinghu; Hong, Yiguang; Ji, Haibo
2016-07-01
The paper studies the distributed optimization problem for a class of nonlinear multiagent systems in the presence of external disturbances. To solve the problem, we need to achieve the optimal multiagent consensus based on local cost function information and neighboring information and meanwhile to reject local disturbance signals modeled by an exogenous system. With convex analysis and the internal model approach, we propose a distributed optimization controller for heterogeneous and nonlinear agents in the form of continuous-time minimum-phase systems with unity relative degree. We prove that the proposed design can solve the exact optimization problem with rejecting disturbances.
Zhou, Yuan; Shi, Tie-Mao; Hu, Yuan-Man; Gao, Chang; Liu, Miao; Song, Lin-Qi
2011-12-01
Based on geographic information system (GIS) technology and multi-objective location-allocation (LA) model, and in considering of four relatively independent objective factors (population density level, air pollution level, urban heat island effect level, and urban land use pattern), an optimized location selection for the urban parks within the Third Ring of Shenyang was conducted, and the selection results were compared with the spatial distribution of existing parks, aimed to evaluate the rationality of the spatial distribution of urban green spaces. In the location selection of urban green spaces in the study area, the factor air pollution was most important, and, compared with single objective factor, the weighted analysis results of multi-objective factors could provide optimized spatial location selection of new urban green spaces. The combination of GIS technology with LA model would be a new approach for the spatial optimizing of urban green spaces.
NASA Astrophysics Data System (ADS)
Zheng, Yan
2015-03-01
Internet of things (IoT), focusing on providing users with information exchange and intelligent control, attracts a lot of attention of researchers from all over the world since the beginning of this century. IoT is consisted of large scale of sensor nodes and data processing units, and the most important features of IoT can be illustrated as energy confinement, efficient communication and high redundancy. With the sensor nodes increment, the communication efficiency and the available communication band width become bottle necks. Many research work is based on the instance which the number of joins is less. However, it is not proper to the increasing multi-join query in whole internet of things. To improve the communication efficiency between parallel units in the distributed sensor network, this paper proposed parallel query optimization algorithm based on distribution attributes cost graph. The storage information relations and the network communication cost are considered in this algorithm, and an optimized information changing rule is established. The experimental result shows that the algorithm has good performance, and it would effectively use the resource of each node in the distributed sensor network. Therefore, executive efficiency of multi-join query between different nodes could be improved.
NASA Astrophysics Data System (ADS)
Hu, K. M.; Li, Hua
2018-07-01
A novel technique for the multi-parameter optimization of distributed piezoelectric actuators is presented in this paper. The proposed method is designed to improve the performance of multi-mode vibration control in cylindrical shells. The optimization parameters of actuator patch configuration include position, size, and tilt angle. The modal control force of tilted orthotropic piezoelectric actuators is derived and the multi-parameter cylindrical shell optimization model is established. The linear quadratic energy index is employed as the optimization criterion. A geometric constraint is proposed to prevent overlap between tilted actuators, which is plugged into a genetic algorithm to search the optimal configuration parameters. A simply-supported closed cylindrical shell with two actuators serves as a case study. The vibration control efficiencies of various parameter sets are evaluated via frequency response and transient response simulations. The results show that the linear quadratic energy indexes of position and size optimization decreased by 14.0% compared to position optimization; those of position and tilt angle optimization decreased by 16.8%; and those of position, size, and tilt angle optimization decreased by 25.9%. It indicates that, adding configuration optimization parameters is an efficient approach to improving the vibration control performance of piezoelectric actuators on shells.
NASA Technical Reports Server (NTRS)
Lindley, Craig A.
1995-01-01
This paper presents an architecture for satellites regarded as intercommunicating agents. The architecture is based upon a postmodern paradigm of artificial intelligence in which represented knowledge is regarded as text, inference procedures are regarded as social discourse and decision making conventions and the semantics of representations are grounded in the situated behaviour and activity of agents. A particular protocol is described for agent participation in distributed search and retrieval operations conducted as joint activities.
Autonomous Agents and Intelligent Assistants for Exploration Operations
NASA Technical Reports Server (NTRS)
Malin, Jane T.
2000-01-01
Human exploration of space will involve remote autonomous crew and systems in long missions. Data to earth will be delayed and limited. Earth control centers will not receive continuous real-time telemetry data, and there will be communication round trips of up to one hour. There will be reduced human monitoring on the planet and earth. When crews are present on the planet, they will be occupied with other activities, and system management will be a low priority task. Earth control centers will use multi-tasking "night shift" and on-call specialists. A new project at Johnson Space Center is developing software to support teamwork between distributed human and software agents in future interplanetary work environments. The Engineering and Mission Operations Directorates at Johnson Space Center (JSC) are combining laboratories and expertise to carry out this project, by establishing a testbed for hWl1an centered design, development and evaluation of intelligent autonomous and assistant systems. Intelligent autonomous systems for managing systems on planetary bases will commuicate their knowledge to support distributed multi-agent mixed-initiative operations. Intelligent assistant agents will respond to events by developing briefings and responses according to instructions from human agents on earth and in space.
Leader–follower fixed-time consensus of multi-agent systems with high-order integrator dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Bailing; Zuo, Zongyu; Wang, Hong
The leader-follower fixed-time consensus of high-order multi-agent systems with external disturbances is investigated in this paper. A novel sliding manifold is designed to ensure that the tracking errors converge to zero in a fixed-time during the sliding motion. Then, a distributed control law is designed based on Lyapunov technique to drive the system states to the sliding manifold in finite-time independent of initial conditions. Finally, the efficiency of the proposed method is illustrated by numerical simulations.
A Biologically Inspired Cooperative Multi-Robot Control Architecture
NASA Technical Reports Server (NTRS)
Howsman, Tom; Craft, Mike; ONeil, Daniel; Howell, Joe T. (Technical Monitor)
2002-01-01
A prototype cooperative multi-robot control architecture suitable for the eventual construction of large space structures has been developed. In nature, there are numerous examples of complex architectures constructed by relatively simple insects, such as termites and wasps, which cooperatively assemble their nests. The prototype control architecture emulates this biological model. Actions of each of the autonomous robotic construction agents are only indirectly coordinated, thus mimicking the distributed construction processes of various social insects. The robotic construction agents perform their primary duties stigmergically i.e., without direct inter-agent communication and without a preprogrammed global blueprint of the final design. Communication and coordination between individual agents occurs indirectly through the sensed modifications that each agent makes to the structure. The global stigmergic building algorithm prototyped during the initial research assumes that the robotic builders only perceive the current state of the structure under construction. Simulation studies have established that an idealized form of the proposed architecture was indeed capable of producing representative large space structures with autonomous robots. This paper will explore the construction simulations in order to illustrate the multi-robot control architecture.
A Stigmergic Cooperative Multi-Robot Control Architecture
NASA Technical Reports Server (NTRS)
Howsman, Thomas G.; O'Neil, Daniel; Craft, Michael A.
2004-01-01
In nature, there are numerous examples of complex architectures constructed by relatively simple insects, such as termites and wasps, which cooperatively assemble their nests. A prototype cooperative multi-robot control architecture which may be suitable for the eventual construction of large space structures has been developed which emulates this biological model. Actions of each of the autonomous robotic construction agents are only indirectly coordinated, thus mimicking the distributed construction processes of various social insects. The robotic construction agents perform their primary duties stigmergically, i.e., without direct inter-agent communication and without a preprogrammed global blueprint of the final design. Communication and coordination between individual agents occurs indirectly through the sensed modifications that each agent makes to the structure. The global stigmergic building algorithm prototyped during the initial research assumes that the robotic builders only perceive the current state of the structure under construction. Simulation studies have established that an idealized form of the proposed architecture was indeed capable of producing representative large space structures with autonomous robots. This paper will explore the construction simulations in order to illustrate the multi-robot control architecture.
Static and dynamic factors in an information-based multi-asset artificial stock market
NASA Astrophysics Data System (ADS)
Ponta, Linda; Pastore, Stefano; Cincotti, Silvano
2018-02-01
An information-based multi-asset artificial stock market characterized by different types of stocks and populated by heterogeneous agents is presented. In the market, agents trade risky assets in exchange for cash. Beside the amount of cash and of stocks owned, each agent is characterized by sentiments and agents share their sentiments by means of interactions that are determined by sparsely connected networks. A central market maker (clearing house mechanism) determines the price processes for each stock at the intersection of the demand and the supply curves. Single stock price processes exhibit volatility clustering and fat-tailed distribution of returns whereas multivariate price process exhibits both static and dynamic stylized facts, i.e., the presence of static factors and common trends. Static factors are studied making reference to the cross-correlation of returns of different stocks. The common trends are investigated considering the variance-covariance matrix of prices. Results point out that the probability distribution of eigenvalues of the cross-correlation matrix of returns shows the presence of sectors, similar to those observed on real empirical data. As regarding the dynamic factors, the variance-covariance matrix of prices point out a limited number of assets prices series that are independent integrated processes, in close agreement with the empirical evidence of asset price time series of real stock markets. These results remarks the crucial dependence of statistical properties of multi-assets stock market on the agents' interaction structure.
NASA Astrophysics Data System (ADS)
Chen, Jiaxi; Li, Junmin
2018-02-01
In this paper, we investigate the perfect consensus problem for second-order linearly parameterised multi-agent systems (MAS) with imprecise communication topology structure. Takagi-Sugeno (T-S) fuzzy models are presented to describe the imprecise communication topology structure of leader-following MAS, and a distributed adaptive iterative learning control protocol is proposed with the dynamic of leader unknown to any of the agent. The proposed protocol guarantees that the follower agents can track the leader perfectly on [0,T] for the consensus problem. Under alignment condition, a sufficient condition of the consensus for closed-loop MAS is given based on Lyapunov stability theory. Finally, a numerical example and a multiple pendulum system are given to illustrate the effectiveness of the proposed algorithm.
Sequential Nonlinear Learning for Distributed Multiagent Systems via Extreme Learning Machines.
Vanli, Nuri Denizcan; Sayin, Muhammed O; Delibalta, Ibrahim; Kozat, Suleyman Serdar
2017-03-01
We study online nonlinear learning over distributed multiagent systems, where each agent employs a single hidden layer feedforward neural network (SLFN) structure to sequentially minimize arbitrary loss functions. In particular, each agent trains its own SLFN using only the data that is revealed to itself. On the other hand, the aim of the multiagent system is to train the SLFN at each agent as well as the optimal centralized batch SLFN that has access to all the data, by exchanging information between neighboring agents. We address this problem by introducing a distributed subgradient-based extreme learning machine algorithm. The proposed algorithm provides guaranteed upper bounds on the performance of the SLFN at each agent and shows that each of these individual SLFNs asymptotically achieves the performance of the optimal centralized batch SLFN. Our performance guarantees explicitly distinguish the effects of data- and network-dependent parameters on the convergence rate of the proposed algorithm. The experimental results illustrate that the proposed algorithm achieves the oracle performance significantly faster than the state-of-the-art methods in the machine learning and signal processing literature. Hence, the proposed method is highly appealing for the applications involving big data.
Multi-Wavelength Photomagnetic Imaging for Oral Cancer
NASA Astrophysics Data System (ADS)
Marks, Michael
In this study, a multi-wavelength Photomagnetic Imaging (PMI) system is developed and evaluated with experimental studies.. PMI measures temperature increases in samples illuminated by near-infrared light sources using magnetic resonance thermometry. A multiphysics solver combining light and heat transfer models the spatiotemporal distribution of the temperature change. The PMI system develop in this work uses three lasers of varying wavelength (785 nm, 808 nm, 860 nm) to heat the sample. By using multiple wavelengths, we enable the PMI system to quantify the relative concentrations of optical contrast in turbid media and monitor their distribution, at a higher resolution than conventional diffuse optical imaging. The data collected from agarose phantoms with multiple embedded contrast agents designed to simulate the optical properties of oxy- and deoxy-hemoglobin is presented. The reconstructed images demonstrate that multi-wavelength PMI can resolve this complex inclusion structure with high resolution and recover the concentration of each contrast agent with high quantitative accuracy. The modified multi-wavelength PMI system operates under the maximum skin exposure limits defined by the American National Standards Institute, to enable future clinical applications.
NASA Astrophysics Data System (ADS)
Maravall, Darío; de Lope, Javier; Domínguez, Raúl
In Multi-agent systems, the study of language and communication is an active field of research. In this paper we present the application of evolutionary strategies to the self-emergence of a common lexicon in a population of agents. By modeling the vocabulary or lexicon of each agent as an association matrix or look-up table that maps the meanings (i.e. the objects encountered by the agents or the states of the environment itself) into symbols or signals we check whether it is possible for the population to converge in an autonomous, decentralized way to a common lexicon, so that the communication efficiency of the entire population is optimal. We have conducted several experiments, from the simplest case of a 2×2 association matrix (i.e. two meanings and two symbols) to a 3×3 lexicon case and in both cases we have attained convergence to the optimal communication system by means of evolutionary strategies. To analyze the convergence of the population of agents we have defined the population's consensus when all the agents (i.e. the 100% of the population) share the same association matrix or lexicon. As a general conclusion we have shown that evolutionary strategies are powerful enough optimizers to guarantee the convergence to lexicon consensus in a population of autonomous agents.
Conflict resolution in air traffic management : a study in multi-agent hybrid systems
DOT National Transportation Integrated Search
1998-04-01
Air Traffic Management (ATM) of the future allows for the possibility of free flight, in which aircraft choose their own optimal routes, altitudes, and velocities. The safe resolution of trajectory conflicts between aircraft is necessary to the succe...
Design and multi-physics optimization of rotary MRF brakes
NASA Astrophysics Data System (ADS)
Topcu, Okan; Taşcıoğlu, Yiğit; Konukseven, Erhan İlhan
2018-03-01
Particle swarm optimization (PSO) is a popular method to solve the optimization problems. However, calculations for each particle will be excessive when the number of particles and complexity of the problem increases. As a result, the execution speed will be too slow to achieve the optimized solution. Thus, this paper proposes an automated design and optimization method for rotary MRF brakes and similar multi-physics problems. A modified PSO algorithm is developed for solving multi-physics engineering optimization problems. The difference between the proposed method and the conventional PSO is to split up the original single population into several subpopulations according to the division of labor. The distribution of tasks and the transfer of information to the next party have been inspired by behaviors of a hunting party. Simulation results show that the proposed modified PSO algorithm can overcome the problem of heavy computational burden of multi-physics problems while improving the accuracy. Wire type, MR fluid type, magnetic core material, and ideal current inputs have been determined by the optimization process. To the best of the authors' knowledge, this multi-physics approach is novel for optimizing rotary MRF brakes and the developed PSO algorithm is capable of solving other multi-physics engineering optimization problems. The proposed method has showed both better performance compared to the conventional PSO and also has provided small, lightweight, high impedance rotary MRF brake designs.
Local operators in kinetic wealth distribution
NASA Astrophysics Data System (ADS)
Andrecut, M.
2016-05-01
The statistical mechanics approach to wealth distribution is based on the conservative kinetic multi-agent model for money exchange, where the local interaction rule between the agents is analogous to the elastic particle scattering process. Here, we discuss the role of a class of conservative local operators, and we show that, depending on the values of their parameters, they can be used to generate all the relevant distributions. We also show numerically that in order to generate the power-law tail, an heterogeneous risk aversion model is required. By changing the parameters of these operators, one can also fine tune the resulting distributions in order to provide support for the emergence of a more egalitarian wealth distribution.
Multi-agent simulation of generation expansion in electricity markets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Botterud, A; Mahalik, M. R.; Veselka, T. D.
2007-06-01
We present a new multi-agent model of generation expansion in electricity markets. The model simulates generation investment decisions of decentralized generating companies (GenCos) interacting in a complex, multidimensional environment. A probabilistic dispatch algorithm calculates prices and profits for new candidate units in different future states of the system. Uncertainties in future load, hydropower conditions, and competitors actions are represented in a scenario tree, and decision analysis is used to identify the optimal expansion decision for each individual GenCo. We test the model using real data for the Korea power system under different assumptions about market design, market concentration, and GenCo'smore » assumed expectations about their competitors investment decisions.« less
Competitive-Cooperative Automated Reasoning from Distributed and Multiple Source of Data
NASA Astrophysics Data System (ADS)
Fard, Amin Milani
Knowledge extraction from distributed database systems, have been investigated during past decade in order to analyze billions of information records. In this work a competitive deduction approach in a heterogeneous data grid environment is proposed using classic data mining and statistical methods. By applying a game theory concept in a multi-agent model, we tried to design a policy for hierarchical knowledge discovery and inference fusion. To show the system run, a sample multi-expert system has also been developed.
Teamwork Reasoning and Multi-Satellite Missions
NASA Technical Reports Server (NTRS)
Marsella, Stacy C.; Plaunt, Christian (Technical Monitor)
2002-01-01
NASA is rapidly moving towards the use of spatially distributed multiple satellites operating in near Earth orbit and Deep Space. Effective operation of such multi-satellite constellations raises many key research issues. In particular, the satellites will be required to cooperate with each other as a team that must achieve common objectives with a high degree of autonomy from ground based operations. The multi-agent research community has made considerable progress in investigating the challenges of realizing such teamwork. In this report, we discuss some of the teamwork issues that will be faced by multi-satellite operations. The basis of the discussion is a particular proposed mission, the Magnetospheric MultiScale mission to explore Earth's magnetosphere. We describe this mission and then consider how multi-agent technologies might be applied in the design and operation of these missions. We consider the potential benefits of these technologies as well as the research challenges that will be raised in applying them to NASA multi-satellite missions. We conclude with some recommendations for future work.
Enhanced risk management by an emerging multi-agent architecture
NASA Astrophysics Data System (ADS)
Lin, Sin-Jin; Hsu, Ming-Fu
2014-07-01
Classification in imbalanced datasets has attracted much attention from researchers in the field of machine learning. Most existing techniques tend not to perform well on minority class instances when the dataset is highly skewed because they focus on minimising the forecasting error without considering the relative distribution of each class. This investigation proposes an emerging multi-agent architecture, grounded on cooperative learning, to solve the class-imbalanced classification problem. Additionally, this study deals further with the obscure nature of the multi-agent architecture and expresses comprehensive rules for auditors. The results from this study indicate that the presented model performs satisfactorily in risk management and is able to tackle a highly class-imbalanced dataset comparatively well. Furthermore, the knowledge visualised process, supported by real examples, can assist both internal and external auditors who must allocate limited detecting resources; they can take the rules as roadmaps to modify the auditing programme.
Multi-Agent Market Modeling of Foreign Exchange Rates
NASA Astrophysics Data System (ADS)
Zimmermann, Georg; Neuneier, Ralph; Grothmann, Ralph
A market mechanism is basically driven by a superposition of decisions of many agents optimizing their profit. The oeconomic price dynamic is a consequence of the cumulated excess demand/supply created on this micro level. The behavior analysis of a small number of agents is well understood through the game theory. In case of a large number of agents one may use the limiting case that an individual agent does not have an influence on the market, which allows the aggregation of agents by statistic methods. In contrast to this restriction, we can omit the assumption of an atomic market structure, if we model the market through a multi-agent approach. The contribution of the mathematical theory of neural networks to the market price formation is mostly seen on the econometric side: neural networks allow the fitting of high dimensional nonlinear dynamic models. Furthermore, in our opinion, there is a close relationship between economics and the modeling ability of neural networks because a neuron can be interpreted as a simple model of decision making. With this in mind, a neural network models the interaction of many decisions and, hence, can be interpreted as the price formation mechanism of a market.
Modeling, Simulation, and Characterization of Distributed Multi-Agent Systems
2012-01-01
capabilities (vision, LIDAR , differential global positioning, ultrasonic proximity sensing, etc.), the agents comprising a MAS tend to have somewhat lesser...on the simultaneous localization and mapping ( SLAM ) problem [19]. SLAM acknowledges that externally-provided localization information is not...continually-updated mapping databases, generates a comprehensive representation of the spatial and spectral environment. Many times though, inherent SLAM
Contract Monitoring in Agent-Based Systems: Case Study
NASA Astrophysics Data System (ADS)
Hodík, Jiří; Vokřínek, Jiří; Jakob, Michal
Monitoring of fulfilment of obligations defined by electronic contracts in distributed domains is presented in this paper. A two-level model of contract-based systems and the types of observations needed for contract monitoring are introduced. The observations (inter-agent communication and agents’ actions) are collected and processed by the contract observation and analysis pipeline. The presented approach has been utilized in a multi-agent system for electronic contracting in a modular certification testing domain.
Data Aggregation in Multi-Agent Systems in the Presence of Hybrid Faults
ERIC Educational Resources Information Center
Srinivasan, Satish Mahadevan
2010-01-01
Data Aggregation (DA) is a set of functions that provide components of a distributed system access to global information for purposes of network management and user services. With the diverse new capabilities that networks can provide, applicability of DA is growing. DA is useful in dealing with multi-value domain information and often requires…
Multi-objective possibilistic model for portfolio selection with transaction cost
NASA Astrophysics Data System (ADS)
Jana, P.; Roy, T. K.; Mazumder, S. K.
2009-06-01
In this paper, we introduce the possibilistic mean value and variance of continuous distribution, rather than probability distributions. We propose a multi-objective Portfolio based model and added another entropy objective function to generate a well diversified asset portfolio within optimal asset allocation. For quantifying any potential return and risk, portfolio liquidity is taken into account and a multi-objective non-linear programming model for portfolio rebalancing with transaction cost is proposed. The models are illustrated with numerical examples.
Combination of Multi-Agent Systems and Wireless Sensor Networks for the Monitoring of Cattle
Barriuso, Alberto L.; De Paz, Juan F.; Lozano, Álvaro
2018-01-01
Precision breeding techniques have been widely used to optimize expenses and increase livestock yields. Notwithstanding, the joint use of heterogeneous sensors and artificial intelligence techniques for the simultaneous analysis or detection of different problems that cattle may present has not been addressed. This study arises from the necessity to obtain a technological tool that faces this state of the art limitation. As novelty, this work presents a multi-agent architecture based on virtual organizations which allows to deploy a new embedded agent model in computationally limited autonomous sensors, making use of the Platform for Automatic coNstruction of orGanizations of intElligent Agents (PANGEA). To validate the proposed platform, different studies have been performed, where parameters specific to each animal are studied, such as physical activity, temperature, estrus cycle state and the moment in which the animal goes into labor. In addition, a set of applications that allow farmers to remotely monitor the livestock have been developed. PMID:29301310
Combination of Multi-Agent Systems and Wireless Sensor Networks for the Monitoring of Cattle.
Barriuso, Alberto L; Villarrubia González, Gabriel; De Paz, Juan F; Lozano, Álvaro; Bajo, Javier
2018-01-02
Precision breeding techniques have been widely used to optimize expenses and increase livestock yields. Notwithstanding, the joint use of heterogeneous sensors and artificial intelligence techniques for the simultaneous analysis or detection of different problems that cattle may present has not been addressed. This study arises from the necessity to obtain a technological tool that faces this state of the art limitation. As novelty, this work presents a multi-agent architecture based on virtual organizations which allows to deploy a new embedded agent model in computationally limited autonomous sensors, making use of the Platform for Automatic coNstruction of orGanizations of intElligent Agents (PANGEA). To validate the proposed platform, different studies have been performed, where parameters specific to each animal are studied, such as physical activity, temperature, estrus cycle state and the moment in which the animal goes into labor. In addition, a set of applications that allow farmers to remotely monitor the livestock have been developed.
Parallel Molecular Distributed Detection With Brownian Motion.
Rogers, Uri; Koh, Min-Sung
2016-12-01
This paper explores the in vivo distributed detection of an undesired biological agent's (BAs) biomarkers by a group of biological sized nanomachines in an aqueous medium under drift. The term distributed, indicates that the system information relative to the BAs presence is dispersed across the collection of nanomachines, where each nanomachine possesses limited communication, computation, and movement capabilities. Using Brownian motion with drift, a probabilistic detection and optimal data fusion framework, coined molecular distributed detection, will be introduced that combines theory from both molecular communication and distributed detection. Using the optimal data fusion framework as a guide, simulation indicates that a sub-optimal fusion method exists, allowing for a significant reduction in implementation complexity while retaining BA detection accuracy.
Fundamental Design based on Current Distribution in Coaxial Multi-Layer Cable-in-Conduit Conductor
NASA Astrophysics Data System (ADS)
Hamajima, Takataro; Tsuda, Makoto; Yagai, Tsuyoshi; Takahata, Kazuya; Imagawa, Shinsaku
An imbalanced current distribution is often observed in cable-in-conduit (CIC) superconductors which are composed of multi-staged, triplet type sub-cables, and hence deteriorates the performance of the coils. Therefore, since it is very important to obtain a homogeneous current distribution in the superconducting strands, we propose a coaxial multi-layer type CIC conductor. We use a circuit model for all layers in the coaxial multi-layer CIC conductor, and derive a generalized formula governing the current distribution as explicit functions of the superconductor construction parameters, such as twist pitch, twist direction, radius of each layer, and number of superconducting (SC) strands and copper (Cu) strands. We apply the formula to design the coaxial multi-layer CIC which has the same number of SC strands and Cu strands of the CIC for Central Solenoid of ITER. We can design three kinds of the coaxial multi-layer CIC depending on distribution of SC and Cu strands on all layers. It is shown that the SC strand volume should be optimized as a function of SC and Cu strand distribution on the layers.
NASA Astrophysics Data System (ADS)
Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji
2002-06-01
This paper is concerned with the design optimization of axial flow hydraulic turbine runner blade geometry. In order to obtain a better design plan with good performance, a new comprehensive performance optimization procedure has been presented by combining a multi-variable multi-objective constrained optimization model with a Q3D inverse computation and a performance prediction procedure. With careful analysis of the inverse design of axial hydraulic turbine runner, the total hydraulic loss and the cavitation coefficient are taken as optimization objectives and a comprehensive objective function is defined using the weight factors. Parameters of a newly proposed blade bound circulation distribution function and parameters describing positions of blade leading and training edges in the meridional flow passage are taken as optimization variables.The optimization procedure has been applied to the design optimization of a Kaplan runner with specific speed of 440 kW. Numerical results show that the performance of designed runner is successfully improved through optimization computation. The optimization model is found to be validated and it has the feature of good convergence. With the multi-objective optimization model, it is possible to control the performance of designed runner by adjusting the value of weight factors defining the comprehensive objective function. Copyright
Exchanging large data object in multi-agent systems
NASA Astrophysics Data System (ADS)
Al-Yaseen, Wathiq Laftah; Othman, Zulaiha Ali; Nazri, Mohd Zakree Ahmad
2016-08-01
One of the Business Intelligent solutions that is currently in use is the Multi-Agent System (MAS). Communication is one of the most important elements in MAS, especially for exchanging large low level data between distributed agents (physically). The Agent Communication Language in JADE has been offered as a secure method for sending data, whereby the data is defined as an object. However, the object cannot be used to send data to another agent in a different location. Therefore, the aim of this paper was to propose a method for the exchange of large low level data as an object by creating a proxy agent known as a Delivery Agent, which temporarily imitates the Receiver Agent. The results showed that the proposed method is able to send large-sized data. The experiments were conducted using 16 datasets ranging from 100,000 to 7 million instances. However, for the proposed method, the RAM and the CPU machine had to be slightly increased for the Receiver Agent, but the latency time was not significantly different compared to the use of the Java Socket method (non-agent and less secure). With such results, it was concluded that the proposed method can be used to securely send large data between agents.
A Decentralized Framework for Multi-Agent Robotic Systems
2018-01-01
Over the past few years, decentralization of multi-agent robotic systems has become an important research area. These systems do not depend on a central control unit, which enables the control and assignment of distributed, asynchronous and robust tasks. However, in some cases, the network communication process between robotic agents is overlooked, and this creates a dependency for each agent to maintain a permanent link with nearby units to be able to fulfill its goals. This article describes a communication framework, where each agent in the system can leave the network or accept new connections, sending its information based on the transfer history of all nodes in the network. To this end, each agent needs to comply with four processes to participate in the system, plus a fifth process for data transfer to the nearest nodes that is based on Received Signal Strength Indicator (RSSI) and data history. To validate this framework, we use differential robotic agents and a monitoring agent to generate a topological map of an environment with the presence of obstacles. PMID:29389849
Multi-material size optimization of a ladder frame chassis
NASA Astrophysics Data System (ADS)
Baker, Michael
The Corporate Average Fuel Economy (CAFE) is an American fuel standard that sets regulations on fuel economy in vehicles. This law ultimately shapes the development and design research for automakers. Reducing the weight of conventional cars offers a way to improve fuel efficiency. This research investigated the optimality of an automobile's ladder frame chassis (LFC) by conducting multi-objective optimization on the LFC in order to reduce the weight of the chassis. The focus of the design and optimization was a ladder frame chassis commonly used for mass production light motor vehicles with an open-top rear cargo area. This thesis is comprised of two major sections. The first looked to perform thickness optimization in the outer walls of the ladder frame. In the second section, many multi-material distributions, including steel and aluminium varieties, were investigated. A simplified model was used to do an initial hand calculation analysis of the problem. This was used to create a baseline validation to compare the theory with the modeling. A CAD model of the LFC was designed. From the CAD model, a finite element model was extracted and joined using weld and bolt connectors. Following this, a linear static analysis was performed to look at displacement and stresses when subjected to loading conditions that simulate harsh driving conditions. The analysis showed significant values of stress and displacement on the ends of the rails, suggesting improvements could be made elsewhere. An optimization scheme was used to find the values of an all steel frame an optimal thickness distribution was found. This provided a 13% weight reduction over the initial model. To advance the analysis a multi-material approach was used to push the weight savings even further. Several material distributions were analyzed and the lightest utilized aluminium in all but the most strenuous subjected components. This enabled a reduction in weight of 15% over the initial model, equivalent to approximately 1 mile per gallon (MPG) in fuel economy.
NASA Astrophysics Data System (ADS)
Sui, Xin; Yang, Yongqing; Xu, Xianyun; Zhang, Shuai; Zhang, Lingzhong
2018-02-01
This paper investigates the consensus of multi-agent systems with probabilistic time-varying delays and packet losses via sampled-data control. On the one hand, a Bernoulli-distributed white sequence is employed to model random packet losses among agents. On the other hand, a switched system is used to describe packet dropouts in a deterministic way. Based on the special property of the Laplacian matrix, the consensus problem can be converted into a stabilization problem of a switched system with lower dimensions. Some mean square consensus criteria are derived in terms of constructing an appropriate Lyapunov function and using linear matrix inequalities (LMIs). Finally, two numerical examples are given to show the effectiveness of the proposed method.
NASA Technical Reports Server (NTRS)
Filho, Aluzio Haendehen; Caminada, Numo; Haeusler, Edward Hermann; vonStaa, Arndt
2004-01-01
To support the development of flexible and reusable MAS, we have built a framework designated MAS-CF. MAS-CF is a component framework that implements a layered architecture based on contextual composition. Interaction rules, controlled by architecture mechanisms, ensure very low coupling, making possible the sharing of distributed services in a transparent, dynamic and independent way. These properties propitiate large-scale reuse, since organizational abstractions can be reused and propagated to all instances created from a framework. The objective is to reduce complexity and development time of multi-agent systems through the reuse of generic organizational abstractions.
Cooperation based dynamic team formation in multi-agent auctions
NASA Astrophysics Data System (ADS)
Pippin, Charles E.; Christensen, Henrik
2012-06-01
Auction based methods are often used to perform distributed task allocation on multi-agent teams. Many existing approaches to auctions assume fully cooperative team members. On in-situ and dynamically formed teams, reciprocal collaboration may not always be a valid assumption. This paper presents an approach for dynamically selecting auction partners based on observed team member performance and shared reputation. In addition, we present the use of a shared reputation authority mechanism. Finally, experiments are performed in simulation on multiple UAV platforms to highlight situations in which it is better to enforce cooperation in auctions using this approach.
NASA Astrophysics Data System (ADS)
Sahraei, S.; Asadzadeh, M.
2017-12-01
Any modern multi-objective global optimization algorithm should be able to archive a well-distributed set of solutions. While the solution diversity in the objective space has been explored extensively in the literature, little attention has been given to the solution diversity in the decision space. Selection metrics such as the hypervolume contribution and crowding distance calculated in the objective space would guide the search toward solutions that are well-distributed across the objective space. In this study, the diversity of solutions in the decision-space is used as the main selection criteria beside the dominance check in multi-objective optimization. To this end, currently archived solutions are clustered in the decision space and the ones in less crowded clusters are given more chance to be selected for generating new solution. The proposed approach is first tested on benchmark mathematical test problems. Second, it is applied to a hydrologic model calibration problem with more than three objective functions. Results show that the chance of finding more sparse set of high-quality solutions increases, and therefore the analyst would receive a well-diverse set of options with maximum amount of information. Pareto Archived-Dynamically Dimensioned Search, which is an efficient and parsimonious multi-objective optimization algorithm for model calibration, is utilized in this study.
A Distributed Multi-Agent System for Collaborative Information Management and Learning
NASA Technical Reports Server (NTRS)
Chen, James R.; Wolfe, Shawn R.; Wragg, Stephen D.; Koga, Dennis (Technical Monitor)
2000-01-01
In this paper, we present DIAMS, a system of distributed, collaborative agents to help users access, manage, share and exchange information. A DIAMS personal agent helps its owner find information most relevant to current needs. It provides tools and utilities for users to manage their information repositories with dynamic organization and virtual views. Flexible hierarchical display is integrated with indexed query search-to support effective information access. Automatic indexing methods are employed to support user queries and communication between agents. Contents of a repository are kept in object-oriented storage to facilitate information sharing. Collaboration between users is aided by easy sharing utilities as well as automated information exchange. Matchmaker agents are designed to establish connections between users with similar interests and expertise. DIAMS agents provide needed services for users to share and learn information from one another on the World Wide Web.
NASA Astrophysics Data System (ADS)
Nourifar, Raheleh; Mahdavi, Iraj; Mahdavi-Amiri, Nezam; Paydar, Mohammad Mahdi
2017-09-01
Decentralized supply chain management is found to be significantly relevant in today's competitive markets. Production and distribution planning is posed as an important optimization problem in supply chain networks. Here, we propose a multi-period decentralized supply chain network model with uncertainty. The imprecision related to uncertain parameters like demand and price of the final product is appropriated with stochastic and fuzzy numbers. We provide mathematical formulation of the problem as a bi-level mixed integer linear programming model. Due to problem's convolution, a structure to solve is developed that incorporates a novel heuristic algorithm based on Kth-best algorithm, fuzzy approach and chance constraint approach. Ultimately, a numerical example is constructed and worked through to demonstrate applicability of the optimization model. A sensitivity analysis is also made.
Surrogate Based Uni/Multi-Objective Optimization and Distribution Estimation Methods
NASA Astrophysics Data System (ADS)
Gong, W.; Duan, Q.; Huo, X.
2017-12-01
Parameter calibration has been demonstrated as an effective way to improve the performance of dynamic models, such as hydrological models, land surface models, weather and climate models etc. Traditional optimization algorithms usually cost a huge number of model evaluations, making dynamic model calibration very difficult, or even computationally prohibitive. With the help of a serious of recently developed adaptive surrogate-modelling based optimization methods: uni-objective optimization method ASMO, multi-objective optimization method MO-ASMO, and probability distribution estimation method ASMO-PODE, the number of model evaluations can be significantly reduced to several hundreds, making it possible to calibrate very expensive dynamic models, such as regional high resolution land surface models, weather forecast models such as WRF, and intermediate complexity earth system models such as LOVECLIM. This presentation provides a brief introduction to the common framework of adaptive surrogate-based optimization algorithms of ASMO, MO-ASMO and ASMO-PODE, a case study of Common Land Model (CoLM) calibration in Heihe river basin in Northwest China, and an outlook of the potential applications of the surrogate-based optimization methods.
Modeling and simulation of dynamic ant colony's labor division for task allocation of UAV swarm
NASA Astrophysics Data System (ADS)
Wu, Husheng; Li, Hao; Xiao, Renbin; Liu, Jie
2018-02-01
The problem of unmanned aerial vehicle (UAV) task allocation not only has the intrinsic attribute of complexity, such as highly nonlinear, dynamic, highly adversarial and multi-modal, but also has a better practicability in various multi-agent systems, which makes it more and more attractive recently. In this paper, based on the classic fixed response threshold model (FRTM), under the idea of "problem centered + evolutionary solution" and by a bottom-up way, the new dynamic environmental stimulus, response threshold and transition probability are designed, and a dynamic ant colony's labor division (DACLD) model is proposed. DACLD allows a swarm of agents with a relatively low-level of intelligence to perform complex tasks, and has the characteristic of distributed framework, multi-tasks with execution order, multi-state, adaptive response threshold and multi-individual response. With the proposed model, numerical simulations are performed to illustrate the effectiveness of the distributed task allocation scheme in two situations of UAV swarm combat (dynamic task allocation with a certain number of enemy targets and task re-allocation due to unexpected threats). Results show that our model can get both the heterogeneous UAVs' real-time positions and states at the same time, and has high degree of self-organization, flexibility and real-time response to dynamic environments.
The distributed agent-based approach in the e-manufacturing environment
NASA Astrophysics Data System (ADS)
Sękala, A.; Kost, G.; Dobrzańska-Danikiewicz, A.; Banaś, W.; Foit, K.
2015-11-01
The deficiency of a coherent flow of information from a production department causes unplanned downtime and failures of machines and their equipment, which in turn results in production planning process based on incorrect and out-of-date information. All of these factors entail, as the consequence, the additional difficulties associated with the process of decision-making. They concern, among other, the coordination of components of a distributed system and providing the access to the required information, thereby generating unnecessary costs. The use of agent technology significantly speeds up the flow of information within the virtual enterprise. This paper includes the proposal of a multi-agent approach for the integration of processes within the virtual enterprise concept. The presented concept was elaborated to investigate the possible solutions of the ways of transmission of information in the production system taking into account the self-organization of constituent components. Thus it implicated the linking of the concept of multi-agent system with the system of managing the production information, based on the idea of e-manufacturing. The paper presents resulting scheme that should be the base for elaborating an informatics model of the target virtual system. The computer system itself is intended to be developed next.
Application of multi-agent coordination methods to the design of space debris mitigation tours
NASA Astrophysics Data System (ADS)
Stuart, Jeffrey; Howell, Kathleen; Wilson, Roby
2016-04-01
The growth in the number of defunct and fragmented objects near to the Earth poses a growing hazard to launch operations as well as existing on-orbit assets. Numerous studies have demonstrated the positive impact of active debris mitigation campaigns upon the growth of debris populations, but comparatively fewer investigations incorporate specific mission scenarios. Furthermore, while many active mitigation methods have been proposed, certain classes of debris objects are amenable to mitigation campaigns employing chaser spacecraft with existing chemical and low-thrust propulsive technologies. This investigation incorporates an ant colony optimization routing algorithm and multi-agent coordination via auctions into a debris mitigation tour scheme suitable for preliminary mission design and analysis as well as spacecraft flight operations.
Analysis of electrical tomography sensitive field based on multi-terminal network and electric field
NASA Astrophysics Data System (ADS)
He, Yongbo; Su, Xingguo; Xu, Meng; Wang, Huaxiang
2010-08-01
Electrical tomography (ET) aims at the study of the conductivity/permittivity distribution of the interested field non-intrusively via the boundary voltage/current. The sensor is usually regarded as an electric field, and finite element method (FEM) is commonly used to calculate the sensitivity matrix and to optimize the sensor architecture. However, only the lumped circuit parameters can be measured by the data acquisition electronics, it's very meaningful to treat the sensor as a multi terminal network. Two types of multi terminal network with common node and common loop topologies are introduced. Getting more independent measurements and making more uniform current distribution are the two main ways to minimize the inherent ill-posed effect. By exploring the relationships of network matrixes, a general formula is proposed for the first time to calculate the number of the independent measurements. Additionally, the sensitivity distribution is analyzed with FEM. As a result, quasi opposite mode, an optimal single source excitation mode, that has the advantages of more uniform sensitivity distribution and more independent measurements, is proposed.
Multiagent pursuit-evasion games: Algorithms and experiments
NASA Astrophysics Data System (ADS)
Kim, Hyounjin
Deployment of intelligent agents has been made possible through advances in control software, microprocessors, sensor/actuator technology, communication technology, and artificial intelligence. Intelligent agents now play important roles in many applications where human operation is too dangerous or inefficient. There is little doubt that the world of the future will be filled with intelligent robotic agents employed to autonomously perform tasks, or embedded in systems all around us, extending our capabilities to perceive, reason and act, and replacing human efforts. There are numerous real-world applications in which a single autonomous agent is not suitable and multiple agents are required. However, after years of active research in multi-agent systems, current technology is still far from achieving many of these real-world applications. Here, we consider the problem of deploying a team of unmanned ground vehicles (UGV) and unmanned aerial vehicles (UAV) to pursue a second team of UGV evaders while concurrently building a map in an unknown environment. This pursuit-evasion game encompasses many of the challenging issues that arise in operations using intelligent multi-agent systems. We cast the problem in a probabilistic game theoretic framework and consider two computationally feasible pursuit policies: greedy and global-max. We also formulate this probabilistic pursuit-evasion game as a partially observable Markov decision process and employ a policy search algorithm to obtain a good pursuit policy from a restricted class of policies. The estimated value of this policy is guaranteed to be uniformly close to the optimal value in the given policy class under mild conditions. To implement this scenario on real UAVs and UGVs, we propose a distributed hierarchical hybrid system architecture which emphasizes the autonomy of each agent yet allows for coordinated team efforts. We then describe our implementation on a fleet of UGVs and UAVs, detailing components such as high level pursuit policy computation, inter-agent communication, navigation, sensing, and regulation. We present both simulation and experimental results on real pursuit-evasion games between our fleet of UAVs and UGVs and evaluate the pursuit policies, relating expected capture times to the speed and intelligence of the evaders and the sensing capabilities of the pursuers. The architecture and algorithmsis described in this dissertation are general enough to be applied to many real-world applications.
An Application of Artificial Intelligence to the Implementation of Electronic Commerce
NASA Astrophysics Data System (ADS)
Srivastava, Anoop Kumar
In this paper, we present an application of Artificial Intelligence (AI) to the implementation of Electronic Commerce. We provide a multi autonomous agent based framework. Our agent based architecture leads to flexible design of a spectrum of multiagent system (MAS) by distributing computation and by providing a unified interface to data and programs. Autonomous agents are intelligent enough and provide autonomy, simplicity of communication, computation, and a well developed semantics. The steps of design and implementation are discussed in depth, structure of Electronic Marketplace, an ontology, the agent model, and interaction pattern between agents is given. We have developed mechanisms for coordination between agents using a language, which is called Virtual Enterprise Modeling Language (VEML). VEML is a integration of Java and Knowledge Query and Manipulation Language (KQML). VEML provides application programmers with potential to globally develop different kinds of MAS based on their requirements and applications. We have implemented a multi autonomous agent based system called VE System. We demonstrate efficacy of our system by discussing experimental results and its salient features.
Darmann, Andreas; Nicosia, Gaia; Pferschy, Ulrich; Schauer, Joachim
2014-03-16
In this work we address a game theoretic variant of the Subset Sum problem, in which two decision makers (agents/players) compete for the usage of a common resource represented by a knapsack capacity. Each agent owns a set of integer weighted items and wants to maximize the total weight of its own items included in the knapsack. The solution is built as follows: Each agent, in turn, selects one of its items (not previously selected) and includes it in the knapsack if there is enough capacity. The process ends when the remaining capacity is too small for including any item left. We look at the problem from a single agent point of view and show that finding an optimal sequence of items to select is an [Formula: see text]-hard problem. Therefore we propose two natural heuristic strategies and analyze their worst-case performance when (1) the opponent is able to play optimally and (2) the opponent adopts a greedy strategy. From a centralized perspective we observe that some known results on the approximation of the classical Subset Sum can be effectively adapted to the multi-agent version of the problem.
Darmann, Andreas; Nicosia, Gaia; Pferschy, Ulrich; Schauer, Joachim
2014-01-01
In this work we address a game theoretic variant of the Subset Sum problem, in which two decision makers (agents/players) compete for the usage of a common resource represented by a knapsack capacity. Each agent owns a set of integer weighted items and wants to maximize the total weight of its own items included in the knapsack. The solution is built as follows: Each agent, in turn, selects one of its items (not previously selected) and includes it in the knapsack if there is enough capacity. The process ends when the remaining capacity is too small for including any item left. We look at the problem from a single agent point of view and show that finding an optimal sequence of items to select is an NP-hard problem. Therefore we propose two natural heuristic strategies and analyze their worst-case performance when (1) the opponent is able to play optimally and (2) the opponent adopts a greedy strategy. From a centralized perspective we observe that some known results on the approximation of the classical Subset Sum can be effectively adapted to the multi-agent version of the problem. PMID:25844012
Implementation of a Web-Based Collaborative Process Planning System
NASA Astrophysics Data System (ADS)
Wang, Huifen; Liu, Tingting; Qiao, Li; Huang, Shuangxi
Under the networked manufacturing environment, all phases of product manufacturing involving design, process planning, machining and assembling may be accomplished collaboratively by different enterprises, even different manufacturing stages of the same part may be finished collaboratively by different enterprises. Based on the self-developed networked manufacturing platform eCWS(e-Cooperative Work System), a multi-agent-based system framework for collaborative process planning is proposed. In accordance with requirements of collaborative process planning, share resources provided by cooperative enterprises in the course of collaboration are classified into seven classes. Then a reconfigurable and extendable resource object model is built. Decision-making strategy is also studied in this paper. Finally a collaborative process planning system e-CAPP is developed and applied. It provides strong support for distributed designers to collaboratively plan and optimize product process though network.
Efficient Evaluation Functions for Multi-Rover Systems
NASA Technical Reports Server (NTRS)
Agogino, Adrian; Tumer, Kagan
2004-01-01
Evolutionary computation can be a powerful tool in cresting a control policy for a single agent receiving local continuous input. This paper extends single-agent evolutionary computation to multi-agent systems, where a collection of agents strives to maximize a global fitness evaluation function that rates the performance of the entire system. This problem is solved in a distributed manner, where each agent evolves its own population of neural networks that are used as the control policies for the agent. Each agent evolves its population using its own agent-specific fitness evaluation function. We propose to create these agent-specific evaluation functions using the theory of collectives to avoid the coordination problem where each agent evolves a population that maximizes its own fitness function, yet the system has a whole achieves low values of the global fitness function. Instead we will ensure that each fitness evaluation function is both "aligned" with the global evaluation function and is "learnable," i.e., the agents can readily see how their behavior affects their evaluation function. We then show how these agent-specific evaluation functions outperform global evaluation methods by up to 600% in a domain where a set of rovers attempt to maximize the amount of information observed while navigating through a simulated environment.
Rationality, irrationality and escalating behavior in lowest unique bid auctions.
Radicchi, Filippo; Baronchelli, Andrea; Amaral, Luís A N
2012-01-01
Information technology has revolutionized the traditional structure of markets. The removal of geographical and time constraints has fostered the growth of online auction markets, which now include millions of economic agents worldwide and annual transaction volumes in the billions of dollars. Here, we analyze bid histories of a little studied type of online auctions--lowest unique bid auctions. Similarly to what has been reported for foraging animals searching for scarce food, we find that agents adopt Lévy flight search strategies in their exploration of "bid space". The Lévy regime, which is characterized by a power-law decaying probability distribution of step lengths, holds over nearly three orders of magnitude. We develop a quantitative model for lowest unique bid online auctions that reveals that agents use nearly optimal bidding strategies. However, agents participating in these auctions do not optimize their financial gain. Indeed, as long as there are many auction participants, a rational profit optimizing agent would choose not to participate in these auction markets.
Rationality, Irrationality and Escalating Behavior in Lowest Unique Bid Auctions
Radicchi, Filippo; Baronchelli, Andrea; Amaral, Luís A. N.
2012-01-01
Information technology has revolutionized the traditional structure of markets. The removal of geographical and time constraints has fostered the growth of online auction markets, which now include millions of economic agents worldwide and annual transaction volumes in the billions of dollars. Here, we analyze bid histories of a little studied type of online auctions – lowest unique bid auctions. Similarly to what has been reported for foraging animals searching for scarce food, we find that agents adopt Lévy flight search strategies in their exploration of “bid space”. The Lévy regime, which is characterized by a power-law decaying probability distribution of step lengths, holds over nearly three orders of magnitude. We develop a quantitative model for lowest unique bid online auctions that reveals that agents use nearly optimal bidding strategies. However, agents participating in these auctions do not optimize their financial gain. Indeed, as long as there are many auction participants, a rational profit optimizing agent would choose not to participate in these auction markets. PMID:22279553
Network placement optimization for large-scale distributed system
NASA Astrophysics Data System (ADS)
Ren, Yu; Liu, Fangfang; Fu, Yunxia; Zhou, Zheng
2018-01-01
The network geometry strongly influences the performance of the distributed system, i.e., the coverage capability, measurement accuracy and overall cost. Therefore the network placement optimization represents an urgent issue in the distributed measurement, even in large-scale metrology. This paper presents an effective computer-assisted network placement optimization procedure for the large-scale distributed system and illustrates it with the example of the multi-tracker system. To get an optimal placement, the coverage capability and the coordinate uncertainty of the network are quantified. Then a placement optimization objective function is developed in terms of coverage capabilities, measurement accuracy and overall cost. And a novel grid-based encoding approach for Genetic algorithm is proposed. So the network placement is optimized by a global rough search and a local detailed search. Its obvious advantage is that there is no need for a specific initial placement. At last, a specific application illustrates this placement optimization procedure can simulate the measurement results of a specific network and design the optimal placement efficiently.
Spiral bacterial foraging optimization method: Algorithm, evaluation and convergence analysis
NASA Astrophysics Data System (ADS)
Kasaiezadeh, Alireza; Khajepour, Amir; Waslander, Steven L.
2014-04-01
A biologically-inspired algorithm called Spiral Bacterial Foraging Optimization (SBFO) is investigated in this article. SBFO, previously proposed by the same authors, is a multi-agent, gradient-based algorithm that minimizes both the main objective function (local cost) and the distance between each agent and a temporary central point (global cost). A random jump is included normal to the connecting line of each agent to the central point, which produces a vortex around the temporary central point. This random jump is also suitable to cope with premature convergence, which is a feature of swarm-based optimization methods. The most important advantages of this algorithm are as follows: First, this algorithm involves a stochastic type of search with a deterministic convergence. Second, as gradient-based methods are employed, faster convergence is demonstrated over GA, DE, BFO, etc. Third, the algorithm can be implemented in a parallel fashion in order to decentralize large-scale computation. Fourth, the algorithm has a limited number of tunable parameters, and finally SBFO has a strong certainty of convergence which is rare in existing global optimization algorithms. A detailed convergence analysis of SBFO for continuously differentiable objective functions has also been investigated in this article.
Tengku Hashim, Tengku Juhana; Mohamed, Azah
2017-01-01
The growing interest in distributed generation (DG) in recent years has led to a number of generators connected to a distribution system. The integration of DGs in a distribution system has resulted in a network known as active distribution network due to the existence of bidirectional power flow in the system. Voltage rise issue is one of the predominantly important technical issues to be addressed when DGs exist in an active distribution network. This paper presents the application of the backtracking search algorithm (BSA), which is relatively new optimisation technique to determine the optimal settings of coordinated voltage control in a distribution system. The coordinated voltage control considers power factor, on-load tap-changer and generation curtailment control to manage voltage rise issue. A multi-objective function is formulated to minimise total losses and voltage deviation in a distribution system. The proposed BSA is compared with that of particle swarm optimisation (PSO) so as to evaluate its effectiveness in determining the optimal settings of power factor, tap-changer and percentage active power generation to be curtailed. The load flow algorithm from MATPOWER is integrated in the MATLAB environment to solve the multi-objective optimisation problem. Both the BSA and PSO optimisation techniques have been tested on a radial 13-bus distribution system and the results show that the BSA performs better than PSO by providing better fitness value and convergence rate. PMID:28991919
Tengku Hashim, Tengku Juhana; Mohamed, Azah
2017-01-01
The growing interest in distributed generation (DG) in recent years has led to a number of generators connected to a distribution system. The integration of DGs in a distribution system has resulted in a network known as active distribution network due to the existence of bidirectional power flow in the system. Voltage rise issue is one of the predominantly important technical issues to be addressed when DGs exist in an active distribution network. This paper presents the application of the backtracking search algorithm (BSA), which is relatively new optimisation technique to determine the optimal settings of coordinated voltage control in a distribution system. The coordinated voltage control considers power factor, on-load tap-changer and generation curtailment control to manage voltage rise issue. A multi-objective function is formulated to minimise total losses and voltage deviation in a distribution system. The proposed BSA is compared with that of particle swarm optimisation (PSO) so as to evaluate its effectiveness in determining the optimal settings of power factor, tap-changer and percentage active power generation to be curtailed. The load flow algorithm from MATPOWER is integrated in the MATLAB environment to solve the multi-objective optimisation problem. Both the BSA and PSO optimisation techniques have been tested on a radial 13-bus distribution system and the results show that the BSA performs better than PSO by providing better fitness value and convergence rate.
CQPSO scheduling algorithm for heterogeneous multi-core DAG task model
NASA Astrophysics Data System (ADS)
Zhai, Wenzheng; Hu, Yue-Li; Ran, Feng
2017-07-01
Efficient task scheduling is critical to achieve high performance in a heterogeneous multi-core computing environment. The paper focuses on the heterogeneous multi-core directed acyclic graph (DAG) task model and proposes a novel task scheduling method based on an improved chaotic quantum-behaved particle swarm optimization (CQPSO) algorithm. A task priority scheduling list was built. A processor with minimum cumulative earliest finish time (EFT) was acted as the object of the first task assignment. The task precedence relationships were satisfied and the total execution time of all tasks was minimized. The experimental results show that the proposed algorithm has the advantage of optimization abilities, simple and feasible, fast convergence, and can be applied to the task scheduling optimization for other heterogeneous and distributed environment.
Ren, Hongwei; Deng, Feiqi
2017-11-01
This paper investigates the mean square consensus problem of dynamical networks of leader-following multi-agent systems with measurement noises and time-varying delays. We consider that the fixed undirected communication topologies are connected. A neighbor-based tracking algorithm together with distributed estimators are presented. Using tools of algebraic graph theory and the Gronwall-Bellman-Halanay type inequality, we establish sufficient conditions to reach consensus in mean square sense via the proposed consensus protocols. Finally, a numerical simulation is provided to demonstrate the effectiveness of the obtained theoretical result. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Time-Extended Payoffs for Collectives of Autonomous Agents
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Agogino, Adrian K.
2002-01-01
A collective is a set of self-interested agents which try to maximize their own utilities, along with a a well-defined, time-extended world utility function which rates the performance of the entire system. In this paper, we use theory of collectives to design time-extended payoff utilities for agents that are both aligned with the world utility, and are "learnable", i.e., the agents can readily see how their behavior affects their utility. We show that in systems where each agent aims to optimize such payoff functions, coordination arises as a byproduct of the agents selfishly pursuing their own goals. A game theoretic analysis shows that such payoff functions have the net effect of aligning the Nash equilibrium, Pareto optimal solution and world utility optimum, thus eliminating undesirable behavior such as agents working at cross-purposes. We then apply collective-based payoff functions to the token collection in a gridworld problem where agents need to optimize the aggregate value of tokens collected across an episode of finite duration (i.e., an abstracted version of rovers on Mars collecting scientifically interesting rock samples, subject to power limitations). We show that, regardless of the initial token distribution, reinforcement learning agents using collective-based payoff functions significantly outperform both natural extensions of single agent algorithms and global reinforcement learning solutions based on "team games".
A Multi Agent Based Approach for Prehospital Emergency Management.
Safdari, Reza; Shoshtarian Malak, Jaleh; Mohammadzadeh, Niloofar; Danesh Shahraki, Azimeh
2017-07-01
To demonstrate an architecture to automate the prehospital emergency process to categorize the specialized care according to the situation at the right time for reducing the patient mortality and morbidity. Prehospital emergency process were analyzed using existing prehospital management systems, frameworks and the extracted process were modeled using sequence diagram in Rational Rose software. System main agents were identified and modeled via component diagram, considering the main system actors and by logically dividing business functionalities, finally the conceptual architecture for prehospital emergency management was proposed. The proposed architecture was simulated using Anylogic simulation software. Anylogic Agent Model, State Chart and Process Model were used to model the system. Multi agent systems (MAS) had a great success in distributed, complex and dynamic problem solving environments, and utilizing autonomous agents provides intelligent decision making capabilities. The proposed architecture presents prehospital management operations. The main identified agents are: EMS Center, Ambulance, Traffic Station, Healthcare Provider, Patient, Consultation Center, National Medical Record System and quality of service monitoring agent. In a critical condition like prehospital emergency we are coping with sophisticated processes like ambulance navigation health care provider and service assignment, consultation, recalling patients past medical history through a centralized EHR system and monitoring healthcare quality in a real-time manner. The main advantage of our work has been the multi agent system utilization. Our Future work will include proposed architecture implementation and evaluation of its impact on patient quality care improvement.
A Multi Agent Based Approach for Prehospital Emergency Management
Safdari, Reza; Shoshtarian Malak, Jaleh; Mohammadzadeh, Niloofar; Danesh Shahraki, Azimeh
2017-01-01
Objective: To demonstrate an architecture to automate the prehospital emergency process to categorize the specialized care according to the situation at the right time for reducing the patient mortality and morbidity. Methods: Prehospital emergency process were analyzed using existing prehospital management systems, frameworks and the extracted process were modeled using sequence diagram in Rational Rose software. System main agents were identified and modeled via component diagram, considering the main system actors and by logically dividing business functionalities, finally the conceptual architecture for prehospital emergency management was proposed. The proposed architecture was simulated using Anylogic simulation software. Anylogic Agent Model, State Chart and Process Model were used to model the system. Results: Multi agent systems (MAS) had a great success in distributed, complex and dynamic problem solving environments, and utilizing autonomous agents provides intelligent decision making capabilities. The proposed architecture presents prehospital management operations. The main identified agents are: EMS Center, Ambulance, Traffic Station, Healthcare Provider, Patient, Consultation Center, National Medical Record System and quality of service monitoring agent. Conclusion: In a critical condition like prehospital emergency we are coping with sophisticated processes like ambulance navigation health care provider and service assignment, consultation, recalling patients past medical history through a centralized EHR system and monitoring healthcare quality in a real-time manner. The main advantage of our work has been the multi agent system utilization. Our Future work will include proposed architecture implementation and evaluation of its impact on patient quality care improvement. PMID:28795061
Hua, Yongzhao; Dong, Xiwang; Li, Qingdong; Ren, Zhang
2017-11-01
This paper investigates the fault-tolerant time-varying formation control problems for high-order linear multi-agent systems in the presence of actuator failures. Firstly, a fully distributed formation control protocol is presented to compensate for the influences of both bias fault and loss of effectiveness fault. Using the adaptive online updating strategies, no global knowledge about the communication topology is required and the bounds of actuator failures can be unknown. Then an algorithm is proposed to determine the control parameters of the fault-tolerant formation protocol, where the time-varying formation feasible conditions and an approach to expand the feasible formation set are given. Furthermore, the stability of the proposed algorithm is proven based on the Lyapunov-like theory. Finally, two simulation examples are given to demonstrate the effectiveness of the theoretical results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Xu, Ming; Jiao, Yan; Li, Xiaoming; Cao, Qingfeng; Wang, Xiaoyang
2015-01-01
This paper presents a multi-period optimization model for high margin and zero salvage products in online distribution channels with classifying customers based on number of products required. Taking hotel customers as an example, one is regular customers who reserve rooms for one day, and the other is long term stay (LTS) customers who reserve rooms for a number of days. LTS may guarantee a specific amount of demand and generate opportunity income for a certain number of periods, meanwhile with risk of punishment incurred by overselling. By developing an operational optimization model and exploring the effects of parameters on optimal decisions, we suggest that service providers should make decisions based on the types of customers, number of products required, and duration of multi-period to reduce the loss of reputation and obtain more profit; at the same time, multi-period buying customers should buy products early. Finally, the paper conducts a numerical experiment, and the results are consistent with prevailing situations.
Xu, Ming; Jiao, Yan; Li, Xiaoming; Cao, Qingfeng; Wang, Xiaoyang
2015-01-01
This paper presents a multi-period optimization model for high margin and zero salvage products in online distribution channels with classifying customers based on number of products required. Taking hotel customers as an example, one is regular customers who reserve rooms for one day, and the other is long term stay (LTS) customers who reserve rooms for a number of days. LTS may guarantee a specific amount of demand and generate opportunity income for a certain number of periods, meanwhile with risk of punishment incurred by overselling. By developing an operational optimization model and exploring the effects of parameters on optimal decisions, we suggest that service providers should make decisions based on the types of customers, number of products required, and duration of multi-period to reduce the loss of reputation and obtain more profit; at the same time, multi-period buying customers should buy products early. Finally, the paper conducts a numerical experiment, and the results are consistent with prevailing situations. PMID:26147663
Decoupling Coupled Constraints Through Utility Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, N; Marden, JR
2014-08-01
Several multiagent systems exemplify the need for establishing distributed control laws that ensure the resulting agents' collective behavior satisfies a given coupled constraint. This technical note focuses on the design of such control laws through a game-theoretic framework. In particular, this technical note provides two systematic methodologies for the design of local agent objective functions that guarantee all resulting Nash equilibria optimize the system level objective while also satisfying a given coupled constraint. Furthermore, the designed local agent objective functions fit into the framework of state based potential games. Consequently, one can appeal to existing results in game-theoretic learning tomore » derive a distributed process that guarantees the agents will reach such an equilibrium.« less
Namboodiri, Vijay Mohan K; Levy, Joshua M; Mihalas, Stefan; Sims, David W; Hussain Shuler, Marshall G
2016-08-02
Understanding the exploration patterns of foragers in the wild provides fundamental insight into animal behavior. Recent experimental evidence has demonstrated that path lengths (distances between consecutive turns) taken by foragers are well fitted by a power law distribution. Numerous theoretical contributions have posited that "Lévy random walks"-which can produce power law path length distributions-are optimal for memoryless agents searching a sparse reward landscape. It is unclear, however, whether such a strategy is efficient for cognitively complex agents, from wild animals to humans. Here, we developed a model to explain the emergence of apparent power law path length distributions in animals that can learn about their environments. In our model, the agent's goal during search is to build an internal model of the distribution of rewards in space that takes into account the cost of time to reach distant locations (i.e., temporally discounting rewards). For an agent with such a goal, we find that an optimal model of exploration in fact produces hyperbolic path lengths, which are well approximated by power laws. We then provide support for our model by showing that humans in a laboratory spatial exploration task search space systematically and modify their search patterns under a cost of time. In addition, we find that path length distributions in a large dataset obtained from free-ranging marine vertebrates are well described by our hyperbolic model. Thus, we provide a general theoretical framework for understanding spatial exploration patterns of cognitively complex foragers.
Mostafa, Salama A; Mustapha, Aida; Mohammed, Mazin Abed; Ahmad, Mohd Sharifuddin; Mahmoud, Moamin A
2018-04-01
Autonomous agents are being widely used in many systems, such as ambient assisted-living systems, to perform tasks on behalf of humans. However, these systems usually operate in complex environments that entail uncertain, highly dynamic, or irregular workload. In such environments, autonomous agents tend to make decisions that lead to undesirable outcomes. In this paper, we propose a fuzzy-logic-based adjustable autonomy (FLAA) model to manage the autonomy of multi-agent systems that are operating in complex environments. This model aims to facilitate the autonomy management of agents and help them make competent autonomous decisions. The FLAA model employs fuzzy logic to quantitatively measure and distribute autonomy among several agents based on their performance. We implement and test this model in the Automated Elderly Movements Monitoring (AEMM-Care) system, which uses agents to monitor the daily movement activities of elderly users and perform fall detection and prevention tasks in a complex environment. The test results show that the FLAA model improves the accuracy and performance of these agents in detecting and preventing falls. Copyright © 2018 Elsevier B.V. All rights reserved.
A Multiple Period Problem in Distributed Energy Management Systems Considering CO2 Emissions
NASA Astrophysics Data System (ADS)
Muroda, Yuki; Miyamoto, Toshiyuki; Mori, Kazuyuki; Kitamura, Shoichi; Yamamoto, Takaya
Consider a special district (group) which is composed of multiple companies (agents), and where each agent responds to an energy demand and has a CO2 emission allowance imposed. A distributed energy management system (DEMS) optimizes energy consumption of a group through energy trading in the group. In this paper, we extended the energy distribution decision and optimal planning problem in DEMSs from a single period problem to a multiple periods one. The extension enabled us to consider more realistic constraints such as demand patterns, the start-up cost, and minimum running/outage times of equipment. At first, we extended the market-oriented programming (MOP) method for deciding energy distribution to the multiple periods problem. The bidding strategy of each agent is formulated by a 0-1 mixed non-linear programming problem. Secondly, we proposed decomposing the problem into a set of single period problems in order to solve it faster. In order to decompose the problem, we proposed a CO2 emission allowance distribution method, called an EP method. We confirmed that the proposed method was able to produce solutions whose group costs were close to lower-bound group costs by computational experiments. In addition, we verified that reduction in computational time was achieved without losing the quality of solutions by using the EP method.
Multi-agent fare optimization model of two modes problem and its analysis based on edge of chaos
NASA Astrophysics Data System (ADS)
Li, Xue-yan; Li, Xue-mei; Li, Xue-wei; Qiu, He-ting
2017-03-01
This paper proposes a new framework of fare optimization & game model for studying the competition between two travel modes (high speed railway and civil aviation) in which passengers' group behavior is taken into consideration. The small-world network is introduced to construct the multi-agent model of passengers' travel mode choice. The cumulative prospect theory is adopted to depict passengers' bounded rationality, the heterogeneity of passengers' reference point is depicted using the idea of group emotion computing. The conceptions of "Langton parameter" and "evolution entropy" in the theory of "edge of chaos" are introduced to create passengers' "decision coefficient" and "evolution entropy of travel mode choice" which are used to quantify passengers' group behavior. The numerical simulation and the analysis of passengers' behavior show that (1) the new model inherits the features of traditional model well and the idea of self-organizing traffic flow evolution fully embodies passengers' bounded rationality, (2) compared with the traditional model (logit model), when passengers are in the "edge of chaos" state, the total profit of the transportation system is higher.
A self-taught artificial agent for multi-physics computational model personalization.
Neumann, Dominik; Mansi, Tommaso; Itu, Lucian; Georgescu, Bogdan; Kayvanpour, Elham; Sedaghat-Hamedani, Farbod; Amr, Ali; Haas, Jan; Katus, Hugo; Meder, Benjamin; Steidl, Stefan; Hornegger, Joachim; Comaniciu, Dorin
2016-12-01
Personalization is the process of fitting a model to patient data, a critical step towards application of multi-physics computational models in clinical practice. Designing robust personalization algorithms is often a tedious, time-consuming, model- and data-specific process. We propose to use artificial intelligence concepts to learn this task, inspired by how human experts manually perform it. The problem is reformulated in terms of reinforcement learning. In an off-line phase, Vito, our self-taught artificial agent, learns a representative decision process model through exploration of the computational model: it learns how the model behaves under change of parameters. The agent then automatically learns an optimal strategy for on-line personalization. The algorithm is model-independent; applying it to a new model requires only adjusting few hyper-parameters of the agent and defining the observations to match. The full knowledge of the model itself is not required. Vito was tested in a synthetic scenario, showing that it could learn how to optimize cost functions generically. Then Vito was applied to the inverse problem of cardiac electrophysiology and the personalization of a whole-body circulation model. The obtained results suggested that Vito could achieve equivalent, if not better goodness of fit than standard methods, while being more robust (up to 11% higher success rates) and with faster (up to seven times) convergence rate. Our artificial intelligence approach could thus make personalization algorithms generalizable and self-adaptable to any patient and any model. Copyright © 2016. Published by Elsevier B.V.
Meng, Bo; Cong, Wenxiang; Xi, Yan; De Man, Bruno; Yang, Jian; Wang, Ge
2017-01-01
Contrast-enhanced computed tomography (CECT) helps enhance the visibility for tumor imaging. When a high-Z contrast agent interacts with X-rays across its K-edge, X-ray photoelectric absorption would experience a sudden increment, resulting in a significant difference of the X-ray transmission intensity between the left and right energy windows of the K-edge. Using photon-counting detectors, the X-ray intensity data in the left and right windows of the K-edge can be measured simultaneously. The differential information of the two kinds of intensity data reflects the contrast-agent concentration distribution. K-edge differences between various matters allow opportunities for the identification of contrast agents in biomedical applications. In this paper, a general radon transform is established to link the contrast-agent concentration to X-ray intensity measurement data. An iterative algorithm is proposed to reconstruct a contrast-agent distribution and tissue attenuation background simultaneously. Comprehensive numerical simulations are performed to demonstrate the merits of the proposed method over the existing K-edge imaging methods. Our results show that the proposed method accurately quantifies a distribution of a contrast agent, optimizing the contrast-to-noise ratio at a high dose efficiency. PMID:28437900
Nguyen-Trong, Khanh; Nguyen-Thi-Ngoc, Anh; Nguyen-Ngoc, Doanh; Dinh-Thi-Hai, Van
2017-01-01
The amount of municipal solid waste (MSW) has been increasing steadily over the last decade by reason of population rising and waste generation rate. In most of the urban areas, disposal sites are usually located outside of the urban areas due to the scarcity of land. There is no fixed route map for transportation. The current waste collection and transportation are already overloaded arising from the lack of facilities and insufficient resources. In this paper, a model for optimizing municipal solid waste collection will be proposed. Firstly, the optimized plan is developed in a static context, and then it is integrated into a dynamic context using multi-agent based modelling and simulation. A case study related to Hagiang City, Vietnam, is presented to show the efficiency of the proposed model. From the optimized results, it has been found that the cost of the MSW collection is reduced by 11.3%. Copyright © 2016 Elsevier Ltd. All rights reserved.
A distributed automatic target recognition system using multiple low resolution sensors
NASA Astrophysics Data System (ADS)
Yue, Zhanfeng; Lakshmi Narasimha, Pramod; Topiwala, Pankaj
2008-04-01
In this paper, we propose a multi-agent system which uses swarming techniques to perform high accuracy Automatic Target Recognition (ATR) in a distributed manner. The proposed system can co-operatively share the information from low-resolution images of different looks and use this information to perform high accuracy ATR. An advanced, multiple-agent Unmanned Aerial Vehicle (UAV) systems-based approach is proposed which integrates the processing capabilities, combines detection reporting with live video exchange, and swarm behavior modalities that dramatically surpass individual sensor system performance levels. We employ real-time block-based motion analysis and compensation scheme for efficient estimation and correction of camera jitter, global motion of the camera/scene and the effects of atmospheric turbulence. Our optimized Partition Weighted Sum (PWS) approach requires only bitshifts and additions, yet achieves a stunning 16X pixel resolution enhancement, which is moreover parallizable. We develop advanced, adaptive particle-filtering based algorithms to robustly track multiple mobile targets by adaptively changing the appearance model of the selected targets. The collaborative ATR system utilizes the homographies between the sensors induced by the ground plane to overlap the local observation with the received images from other UAVs. The motion of the UAVs distorts estimated homography frame to frame. A robust dynamic homography estimation algorithm is proposed to address this, by using the homography decomposition and the ground plane surface estimation.
Hybrid algorithms for fuzzy reverse supply chain network design.
Che, Z H; Chiang, Tzu-An; Kuo, Y C; Cui, Zhihua
2014-01-01
In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods.
Hybrid Algorithms for Fuzzy Reverse Supply Chain Network Design
Che, Z. H.; Chiang, Tzu-An; Kuo, Y. C.
2014-01-01
In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods. PMID:24892057
A Bayesian multi-stage cost-effectiveness design for animal studies in stroke research
Cai, Chunyan; Ning, Jing; Huang, Xuelin
2017-01-01
Much progress has been made in the area of adaptive designs for clinical trials. However, little has been done regarding adaptive designs to identify optimal treatment strategies in animal studies. Motivated by an animal study of a novel strategy for treating strokes, we propose a Bayesian multi-stage cost-effectiveness design to simultaneously identify the optimal dose and determine the therapeutic treatment window for administrating the experimental agent. We consider a non-monotonic pattern for the dose-schedule-efficacy relationship and develop an adaptive shrinkage algorithm to assign more cohorts to admissible strategies. We conduct simulation studies to evaluate the performance of the proposed design by comparing it with two standard designs. These simulation studies show that the proposed design yields a significantly higher probability of selecting the optimal strategy, while it is generally more efficient and practical in terms of resource usage. PMID:27405325
El-Sheikh, Amjad H; Sweileh, Jamal A; Al-Degs, Yahya S; Insisi, Ahmad A; Al-Rabady, Nancy
2008-02-15
In this work, optimization of multi-residue solid phase extraction (SPE) procedures coupled with high-performance liquid chromatography for the determination of Propoxur, Atrazine and Methidathion from environmental waters is reported. Three different sorbents were used in this work: multi-walled carbon nanotubes (MWCNTs), C18 silica and activated carbon (AC). The three optimized SPE procedures were compared in terms of analytical performance, application to environmental waters, cartridge re-use, adsorption capacity and cost of adsorbent. Although the adsorption capacity of MWCNT was larger than AC and C18, however, the analytical performance of AC could be made close to the other sorbents by appropriate optimization of the SPE procedures. A sample of AC was then oxidized with various oxidizing agents to show that ACs of various surface properties has different enrichment efficiencies. Thus researchers are advised to try AC of various surface properties in SPE of pollutants prior to using expensive sorbents (such as MWCNT and C18 silica).
An Architecture for Controlling Multiple Robots
NASA Technical Reports Server (NTRS)
Aghazarian, Hrand; Pirjanian, Paolo; Schenker, Paul; Huntsberger, Terrance
2004-01-01
The Control Architecture for Multirobot Outpost (CAMPOUT) is a distributed-control architecture for coordinating the activities of multiple robots. In the CAMPOUT, multiple-agent activities and sensor-based controls are derived as group compositions and involve coordination of more basic controllers denoted, for present purposes, as behaviors. The CAMPOUT provides basic mechanistic concepts for representation and execution of distributed group activities. One considers a network of nodes that comprise behaviors (self-contained controllers) augmented with hyper-links, which are used to exchange information between the nodes to achieve coordinated activities. Group behavior is guided by a scripted plan, which encodes a conditional sequence of single-agent activities. Thus, higher-level functionality is composed by coordination of more basic behaviors under the downward task decomposition of a multi-agent planner
How do ensembles occupy space?
NASA Astrophysics Data System (ADS)
Daffertshofer, A.
2008-04-01
To find an answer to the title question, an attractiveness function between agents and locations is introduced yielding a phenomenological but generic model for the search for optimal distributions of agents over space. Agents can be seen as, e.g., members of biological populations like colonies of bacteria, swarms, and so on. The global attractiveness between agents and locations is maximized causing (self-propelled) `motion' of agents and, eventually, distinct distributions of agents over space. At the same token spontaneous changes or `decisions' are realized via competitions between agents as well as between locations. Hence, the model's solutions can be considered a sequence of decisions of agents during their search for a proper location. Depending on initial conditions both optimal as well as suboptimal configurations can be reached. For the latter early decision-making are important for avoiding possible conflicts: if the proper moment is missed, then only a few agents can find an optimal solution. Indeed, there is a delicate interplay between the values of the attractiveness function and the constraints as can be expressed by distinct terms of a potential function containing different Lagrange parameters. The model should be viewed as a top-down approach as it describes the dynamics of order parameters, i.e. macroscopic variables that reflect affiliations between agents and locations. The dynamics, however, is modified via so-called cost functions that are interpreted in terms of affinity levels. This interpretation can be seen as an original step towards an understanding of the dynamics at the underlying microscopic level. When focusing on the agent, one may say that the dynamics of an order parameter shows the evolution of an agent's intrinsic `map' for solving the problem of space occupation. Importantly, the dynamics does not necessarily distinguish between evolving (or moving) agents and evolving (or moving) locations though agents are more likely to be actors than the locations. Put differently, an order parameter describes an internal map which is linked to the expectation of an agent to find a certain location. Owing to the dynamical representation, we can therefore follow up the change of these maps over time leading from uncertainty to certainty.
Optimal Ventilation Control in Complex Urban Tunnels with Multi-Point Pollutant Discharge
DOT National Transportation Integrated Search
2017-10-01
Zhen Tan (ORCID ID 0000-0003-1711-3557) H. Oliver Gao (ORCID ID 0000-0002-7861-9634) We propose an optimal ventilation control model for complex urban vehicular tunnels with distributed pollutant discharge points. The control problem is formulated as...
MFIRE-2: A Multi Agent System for Flow-Based Intrusion Detection Using Stochastic Search
2012-03-01
attacks that are distributed in nature , but may not protect individual systems effectively without incurring large bandwidth penalties while collecting...system-level information to help prepare for more significant attacks. The type of information potentially revealed by footprinting includes account...key areas where MAS may be appropriate: • The environment is open, highly dynamic, uncertain, or complex • Agents are a natural metaphor—Many
Agent-Based Computing in Distributed Adversarial Planning
2010-08-09
plans. An agent is expected to agree to deviate from its optimal uncoordinated plan only if it improves its position. - process models for opponent...Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Improvements ...plan only if it improves its position. – process models for opponent modeling – We have analyzed the suitability of business process models for creating
Graph Design via Convex Optimization: Online and Distributed Perspectives
NASA Astrophysics Data System (ADS)
Meng, De
Network and graph have long been natural abstraction of relations in a variety of applications, e.g. transportation, power system, social network, communication, electrical circuit, etc. As a large number of computation and optimization problems are naturally defined on graphs, graph structures not only enable important properties of these problems, but also leads to highly efficient distributed and online algorithms. For example, graph separability enables the parallelism for computation and operation as well as limits the size of local problems. More interestingly, graphs can be defined and constructed in order to take best advantage of those problem properties. This dissertation focuses on graph structure and design in newly proposed optimization problems, which establish a bridge between graph properties and optimization problem properties. We first study a new optimization problem called Geodesic Distance Maximization Problem (GDMP). Given a graph with fixed edge weights, finding the shortest path, also known as the geodesic, between two nodes is a well-studied network flow problem. We introduce the Geodesic Distance Maximization Problem (GDMP): the problem of finding the edge weights that maximize the length of the geodesic subject to convex constraints on the weights. We show that GDMP is a convex optimization problem for a wide class of flow costs, and provide a physical interpretation using the dual. We present applications of the GDMP in various fields, including optical lens design, network interdiction, and resource allocation in the control of forest fires. We develop an Alternating Direction Method of Multipliers (ADMM) by exploiting specific problem structures to solve large-scale GDMP, and demonstrate its effectiveness in numerical examples. We then turn our attention to distributed optimization on graph with only local communication. Distributed optimization arises in a variety of applications, e.g. distributed tracking and localization, estimation problems in sensor networks, multi-agent coordination. Distributed optimization aims to optimize a global objective function formed by summation of coupled local functions over a graph via only local communication and computation. We developed a weighted proximal ADMM for distributed optimization using graph structure. This fully distributed, single-loop algorithm allows simultaneous updates and can be viewed as a generalization of existing algorithms. More importantly, we achieve faster convergence by jointly designing graph weights and algorithm parameters. Finally, we propose a new problem on networks called Online Network Formation Problem: starting with a base graph and a set of candidate edges, at each round of the game, player one first chooses a candidate edge and reveals it to player two, then player two decides whether to accept it; player two can only accept limited number of edges and make online decisions with the goal to achieve the best properties of the synthesized network. The network properties considered include the number of spanning trees, algebraic connectivity and total effective resistance. These network formation games arise in a variety of cooperative multiagent systems. We propose a primal-dual algorithm framework for the general online network formation game, and analyze the algorithm performance by the competitive ratio and regret.
Nonlinear multi-analysis of agent-based financial market dynamics by epidemic system
NASA Astrophysics Data System (ADS)
Lu, Yunfan; Wang, Jun; Niu, Hongli
2015-10-01
Based on the epidemic dynamical system, we construct a new agent-based financial time series model. In order to check and testify its rationality, we compare the statistical properties of the time series model with the real stock market indices, Shanghai Stock Exchange Composite Index and Shenzhen Stock Exchange Component Index. For analyzing the statistical properties, we combine the multi-parameter analysis with the tail distribution analysis, the modified rescaled range analysis, and the multifractal detrended fluctuation analysis. For a better perspective, the three-dimensional diagrams are used to present the analysis results. The empirical research in this paper indicates that the long-range dependence property and the multifractal phenomenon exist in the real returns and the proposed model. Therefore, the new agent-based financial model can recurrence some important features of real stock markets.
Distributed MPC based consensus for single-integrator multi-agent systems.
Cheng, Zhaomeng; Fan, Ming-Can; Zhang, Hai-Tao
2015-09-01
This paper addresses model predictive control schemes for consensus in multi-agent systems (MASs) with discrete-time single-integrator dynamics under switching directed interaction graphs. The control horizon is extended to be greater than one which endows the closed-loop system with extra degree of freedom. We derive sufficient conditions on the sampling period and the interaction graph to achieve consensus by using the property of infinite products of stochastic matrices. Consensus can be achieved asymptotically if the sampling period is selected such that the interaction graph among agents has a directed spanning tree jointly. Significantly, if the interaction graph always has a spanning tree, one can select an arbitrary large sampling period to guarantee consensus. Finally, several simulations are conducted to illustrate the effectiveness of the theoretical results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bosse, Stefan
2013-05-01
Sensorial materials consisting of high-density, miniaturized, and embedded sensor networks require new robust and reliable data processing and communication approaches. Structural health monitoring is one major field of application for sensorial materials. Each sensor node provides some kind of sensor, electronics, data processing, and communication with a strong focus on microchip-level implementation to meet the goals of miniaturization and low-power energy environments, a prerequisite for autonomous behaviour and operation. Reliability requires robustness of the entire system in the presence of node, link, data processing, and communication failures. Interaction between nodes is required to manage and distribute information. One common interaction model is the mobile agent. An agent approach provides stronger autonomy than a traditional object or remote-procedure-call based approach. Agents can decide for themselves, which actions are performed, and they are capable of flexible behaviour, reacting on the environment and other agents, providing some degree of robustness. Traditionally multi-agent systems are abstract programming models which are implemented in software and executed on program controlled computer architectures. This approach does not well scale to micro-chip level and requires full equipped computers and communication structures, and the hardware architecture does not consider and reflect the requirements for agent processing and interaction. We propose and demonstrate a novel design paradigm for reliable distributed data processing systems and a synthesis methodology and framework for multi-agent systems implementable entirely on microchip-level with resource and power constrained digital logic supporting Agent-On-Chip architectures (AoC). The agent behaviour and mobility is fully integrated on the micro-chip using pipelined communicating processes implemented with finite-state machines and register-transfer logic. The agent behaviour, interaction (communication), and mobility features are modelled and specified on a machine-independent abstract programming level using a state-based agent behaviour language (APL). With this APL a high-level agent compiler is able to synthesize a hardware model (RTL, VHDL), a software model (C, ML), or a simulation model (XML) suitable to simulate a multi-agent system using the SeSAm simulator framework. Agent communication is provided by a simple tuple-space database implemented on node level providing fault tolerant access of global data. A novel synthesis development kit (SynDK) based on a graph-structured database approach is introduced to support the rapid development of compilers and synthesis tools, used for example for the design and implementation of the APL compiler.
ERIC Educational Resources Information Center
Hoppe, H. Ulrich
2016-01-01
The 1998 paper by Martin Mühlenbrock, Frank Tewissen, and myself introduced a multi-agent architecture and a component engineering approach for building open distributed learning environments to support group learning in different types of classroom settings. It took up prior work on "multiple student modeling" as a method to configure…
Multi-Agent Methods for the Configuration of Random Nanocomputers
NASA Technical Reports Server (NTRS)
Lawson, John W.
2004-01-01
As computational devices continue to shrink, the cost of manufacturing such devices is expected to grow exponentially. One alternative to the costly, detailed design and assembly of conventional computers is to place the nano-electronic components randomly on a chip. The price for such a trivial assembly process is that the resulting chip would not be programmable by conventional means. In this work, we show that such random nanocomputers can be adaptively programmed using multi-agent methods. This is accomplished through the optimization of an associated high dimensional error function. By representing each of the independent variables as a reinforcement learning agent, we are able to achieve convergence must faster than with other methods, including simulated annealing. Standard combinational logic circuits such as adders and multipliers are implemented in a straightforward manner. In addition, we show that the intrinsic flexibility of these adaptive methods allows the random computers to be reconfigured easily, making them reusable. Recovery from faults is also demonstrated.
Optimal Appearance Model for Visual Tracking
Wang, Yuru; Jiang, Longkui; Liu, Qiaoyuan; Yin, Minghao
2016-01-01
Many studies argue that integrating multiple cues in an adaptive way increases tracking performance. However, what is the definition of adaptiveness and how to realize it remains an open issue. On the premise that the model with optimal discriminative ability is also optimal for tracking the target, this work realizes adaptiveness and robustness through the optimization of multi-cue integration models. Specifically, based on prior knowledge and current observation, a set of discrete samples are generated to approximate the foreground and background distribution. With the goal of optimizing the classification margin, an objective function is defined, and the appearance model is optimized by introducing optimization algorithms. The proposed optimized appearance model framework is embedded into a particle filter for a field test, and it is demonstrated to be robust against various kinds of complex tracking conditions. This model is general and can be easily extended to other parameterized multi-cue models. PMID:26789639
Application of zonal model on indoor air sensor network design
NASA Astrophysics Data System (ADS)
Chen, Y. Lisa; Wen, Jin
2007-04-01
Growing concerns over the safety of the indoor environment have made the use of sensors ubiquitous. Sensors that detect chemical and biological warfare agents can offer early warning of dangerous contaminants. However, current sensor system design is more informed by intuition and experience rather by systematic design. To develop a sensor system design methodology, a proper indoor airflow modeling approach is needed. Various indoor airflow modeling techniques, from complicated computational fluid dynamics approaches to simplified multi-zone approaches, exist in the literature. In this study, the effects of two airflow modeling techniques, multi-zone modeling technique and zonal modeling technique, on indoor air protection sensor system design are discussed. Common building attack scenarios, using a typical CBW agent, are simulated. Both multi-zone and zonal models are used to predict airflows and contaminant dispersion. Genetic Algorithm is then applied to optimize the sensor location and quantity. Differences in the sensor system design resulting from the two airflow models are discussed for a typical office environment and a large hall environment.
Ye, Dan; Chen, Mengmeng; Li, Kui
2017-11-01
In this paper, we consider the distributed containment control problem of multi-agent systems with actuator bias faults based on observer method. The objective is to drive the followers into the convex hull spanned by the dynamic leaders, where the input is unknown but bounded. By constructing an observer to estimate the states and bias faults, an effective distributed adaptive fault-tolerant controller is developed. Different from the traditional method, an auxiliary controller gain is designed to deal with the unknown inputs and bias faults together. Moreover, the coupling gain can be adjusted online through the adaptive mechanism without using the global information. Furthermore, the proposed control protocol can guarantee that all the signals of the closed-loop systems are bounded and all the followers converge to the convex hull with bounded residual errors formed by the dynamic leaders. Finally, a decoupled linearized longitudinal motion model of the F-18 aircraft is used to demonstrate the effectiveness. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
A Multi-Scale Energy Food Systems Modeling Framework For Climate Adaptation
NASA Astrophysics Data System (ADS)
Siddiqui, S.; Bakker, C.; Zaitchik, B. F.; Hobbs, B. F.; Broaddus, E.; Neff, R.; Haskett, J.; Parker, C.
2016-12-01
Our goal is to understand coupled system dynamics across scales in a manner that allows us to quantify the sensitivity of critical human outcomes (nutritional satisfaction, household economic well-being) to development strategies and to climate or market induced shocks in sub-Saharan Africa. We adopt both bottom-up and top-down multi-scale modeling approaches focusing our efforts on food, energy, water (FEW) dynamics to define, parameterize, and evaluate modeled processes nationally as well as across climate zones and communities. Our framework comprises three complementary modeling techniques spanning local, sub-national and national scales to capture interdependencies between sectors, across time scales, and on multiple levels of geographic aggregation. At the center is a multi-player micro-economic (MME) partial equilibrium model for the production, consumption, storage, and transportation of food, energy, and fuels, which is the focus of this presentation. We show why such models can be very useful for linking and integrating across time and spatial scales, as well as a wide variety of models including an agent-based model applied to rural villages and larger population centers, an optimization-based electricity infrastructure model at a regional scale, and a computable general equilibrium model, which is applied to understand FEW resources and economic patterns at national scale. The MME is based on aggregating individual optimization problems for relevant players in an energy, electricity, or food market and captures important food supply chain components of trade and food distribution accounting for infrastructure and geography. Second, our model considers food access and utilization by modeling food waste and disaggregating consumption by income and age. Third, the model is set up to evaluate the effects of seasonality and system shocks on supply, demand, infrastructure, and transportation in both energy and food.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DuPont, Bryony; Cagan, Jonathan; Moriarty, Patrick
This paper presents a system of modeling advances that can be applied in the computational optimization of wind plants. These modeling advances include accurate cost and power modeling, partial wake interaction, and the effects of varying atmospheric stability. To validate the use of this advanced modeling system, it is employed within an Extended Pattern Search (EPS)-Multi-Agent System (MAS) optimization approach for multiple wind scenarios. The wind farm layout optimization problem involves optimizing the position and size of wind turbines such that the aerodynamic effects of upstream turbines are reduced, which increases the effective wind speed and resultant power at eachmore » turbine. The EPS-MAS optimization algorithm employs a profit objective, and an overarching search determines individual turbine positions, with a concurrent EPS-MAS determining the optimal hub height and rotor diameter for each turbine. Two wind cases are considered: (1) constant, unidirectional wind, and (2) three discrete wind speeds and varying wind directions, each of which have a probability of occurrence. Results show the advantages of applying the series of advanced models compared to previous application of an EPS with less advanced models to wind farm layout optimization, and imply best practices for computational optimization of wind farms with improved accuracy.« less
Tang, Qinggong; Nagaya, Tadanobu; Liu, Yi; Horng, Hannah; Lin, Jonathan; Sato, Kazuhide; Kobayashi, Hisataka; Chen, Yu
2018-06-10
As a novel low-side-effect cancer therapy, photo-immunotherapy (PIT) is based on conjugating monoclonal antibody (mAb) with a near-infrared (NIR) phthalocyanine dye IRDye700DX (IR 700). IR700 is not only fluorescent to be used as an imaging agent, but also phototoxic. When illuminating with NIR light, PIT can induce highly-selective cancer cell death while leaving most of tumor blood vessels unharmed, leading to an effect termed super-enhanced permeability and retention (SUPR), which can significantly improve the effectiveness of anti-cancer drug. Currently, the therapeutic effects of PIT are monitored using 2D macroscopic fluorescence reflectance imager, which lacks the resolution and depth information to reveal the 3D distribution of mAb-IR700. In the study, we applied a multi-modal optical imaging approach including high-resolution optical coherence tomography (OCT) and high-sensitivity fluorescence laminar optical tomography (FLOT), to provide 3D tumor micro-structure and micro-distribution of mAb-IR700 in the tumor simultaneously during PIT in situ and in vivo. The multi-wavelength FLOT can also provide the blood vessels morphology of the tumor. Thus, the 3D FLOT reconstructed images allow us to evaluate the IR700 fluorescence distribution change with respect to the blood vessels and at different tumor locations/depths non-invasively, thereby enabling evaluation of the therapeutic effects in vivo and optimization of treatment regimens accordingly. The mAb-IR700 can access more tumor areas after PIT treatment, which can be explained by increased vascular permeability immediately after NIR-PIT. Two-photon microscopy was also used to record the mAb-IR700 on the tumor surface near the blood vessels to verify the results. Published by Elsevier B.V.
Dong, Yimeng; Gupta, Nirupam; Chopra, Nikhil
2016-11-01
In this paper, vulnerability of a distributed consensus seeking multi-agent system (MAS) with double-integrator dynamics against edge-bound content modification cyber attacks is studied. In particular, we define a specific edge-bound content modification cyber attack called malignant content modification attack (MCoMA), which results in unbounded growth of an appropriately defined group disagreement vector. Properties of MCoMA are utilized to design detection and mitigation algorithms so as to impart resilience in the considered MAS against MCoMA. Additionally, the proposed detection mechanism is extended to detect the general edge-bound content modification attacks (not just MCoMA). Finally, the efficacies of the proposed results are illustrated through numerical simulations.
Content modification attacks on consensus seeking multi-agent system with double-integrator dynamics
NASA Astrophysics Data System (ADS)
Dong, Yimeng; Gupta, Nirupam; Chopra, Nikhil
2016-11-01
In this paper, vulnerability of a distributed consensus seeking multi-agent system (MAS) with double-integrator dynamics against edge-bound content modification cyber attacks is studied. In particular, we define a specific edge-bound content modification cyber attack called malignant content modification attack (MCoMA), which results in unbounded growth of an appropriately defined group disagreement vector. Properties of MCoMA are utilized to design detection and mitigation algorithms so as to impart resilience in the considered MAS against MCoMA. Additionally, the proposed detection mechanism is extended to detect the general edge-bound content modification attacks (not just MCoMA). Finally, the efficacies of the proposed results are illustrated through numerical simulations.
Competitive game theoretic optimal routing in optical networks
NASA Astrophysics Data System (ADS)
Yassine, Abdulsalam; Kabranov, Ognian; Makrakis, Dimitrios
2002-09-01
Optical transport service providers need control and optimization strategies for wavelength management, network provisioning, restoration and protection, allowing them to define and deploy new services and maintain competitiveness. In this paper, we investigate a game theory based model for wavelength and flow assignment in multi wavelength optical networks, consisting of several backbone long-haul optical network transport service providers (TSPs) who are offering their services -in terms of bandwidth- to Internet service providers (ISPs). The ISPs act as brokers or agents between the TSP and end user. The agent (ISP) buys services (bandwidth) from the TSP. The TSPs compete among themselves to sell their services and maintain profitability. We present a case study, demonstrating the impact of different bandwidth broker demands on the supplier's profit and the price paid by the network broker.
A Survey of Collective Intelligence
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Tumer, Kagan
1999-01-01
This chapter presents the science of "COllective INtelligence" (COIN). A COIN is a large multi-agent systems where: i) the agents each run reinforcement learning (RL) algorithms; ii) there is little to no centralized communication or control; iii) there is a provided world utility function that, rates the possible histories of tile full system. Tile conventional approach to designing large distributed systems to optimize a world utility does not use agents running RL algorithms. Rather that approach begins with explicit modeling of the overall system's dynamics, followed by detailed hand-tuning of the interactions between the components to ensure that they "cooperate" as far as the world utility is concerned. This approach is labor-intensive, often results in highly non-robust systems, and usually results in design techniques that, have limited applicability. In contrast, with COINs we wish to solve the system design problems implicitly, via the 'adaptive' character of the RL algorithms of each of the agents. This COIN approach introduces an entirely new, profound design problem: Assuming the RL algorithms are able to achieve high rewards, what reward functions for the individual agents will, when pursued by those agents, result in high world utility? In other words, what reward functions will best ensure that we do not have phenomena like the tragedy of the commons, or Braess's paradox? Although still very young, the science of COINs has already resulted in successes in artificial domains, in particular in packet-routing, the leader-follower problem, and in variants of Arthur's "El Farol bar problem". It is expected that as it matures not only will COIN science expand greatly the range of tasks addressable by human engineers, but it will also provide much insight into already established scientific fields, such as economics, game theory, or population biology.
A Mobile Multi-Agent Information System for Ubiquitous Fetal Monitoring
Su, Chuan-Jun; Chu, Ta-Wei
2014-01-01
Electronic fetal monitoring (EFM) systems integrate many previously separate clinical activities related to fetal monitoring. Promoting the use of ubiquitous fetal monitoring services with real time status assessments requires a robust information platform equipped with an automatic diagnosis engine. This paper presents the design and development of a mobile multi-agent platform-based open information systems (IMAIS) with an automated diagnosis engine to support intensive and distributed ubiquitous fetal monitoring. The automatic diagnosis engine that we developed is capable of analyzing data in both traditional paper-based and digital formats. Issues related to interoperability, scalability, and openness in heterogeneous e-health environments are addressed through the adoption of a FIPA2000 standard compliant agent development platform—the Java Agent Development Environment (JADE). Integrating the IMAIS with light-weight, portable fetal monitor devices allows for continuous long-term monitoring without interfering with a patient’s everyday activities and without restricting her mobility. The system architecture can be also applied to vast monitoring scenarios such as elder care and vital sign monitoring. PMID:24452256
Agent Collaborative Target Localization and Classification in Wireless Sensor Networks
Wang, Xue; Bi, Dao-wei; Ding, Liang; Wang, Sheng
2007-01-01
Wireless sensor networks (WSNs) are autonomous networks that have been frequently deployed to collaboratively perform target localization and classification tasks. Their autonomous and collaborative features resemble the characteristics of agents. Such similarities inspire the development of heterogeneous agent architecture for WSN in this paper. The proposed agent architecture views WSN as multi-agent systems and mobile agents are employed to reduce in-network communication. According to the architecture, an energy based acoustic localization algorithm is proposed. In localization, estimate of target location is obtained by steepest descent search. The search algorithm adapts to measurement environments by dynamically adjusting its termination condition. With the agent architecture, target classification is accomplished by distributed support vector machine (SVM). Mobile agents are employed for feature extraction and distributed SVM learning to reduce communication load. Desirable learning performance is guaranteed by combining support vectors and convex hull vectors. Fusion algorithms are designed to merge SVM classification decisions made from various modalities. Real world experiments with MICAz sensor nodes are conducted for vehicle localization and classification. Experimental results show the proposed agent architecture remarkably facilitates WSN designs and algorithm implementation. The localization and classification algorithms also prove to be accurate and energy efficient.
Deterministic Design Optimization of Structures in OpenMDAO Framework
NASA Technical Reports Server (NTRS)
Coroneos, Rula M.; Pai, Shantaram S.
2012-01-01
Nonlinear programming algorithms play an important role in structural design optimization. Several such algorithms have been implemented in OpenMDAO framework developed at NASA Glenn Research Center (GRC). OpenMDAO is an open source engineering analysis framework, written in Python, for analyzing and solving Multi-Disciplinary Analysis and Optimization (MDAO) problems. It provides a number of solvers and optimizers, referred to as components and drivers, which users can leverage to build new tools and processes quickly and efficiently. Users may download, use, modify, and distribute the OpenMDAO software at no cost. This paper summarizes the process involved in analyzing and optimizing structural components by utilizing the framework s structural solvers and several gradient based optimizers along with a multi-objective genetic algorithm. For comparison purposes, the same structural components were analyzed and optimized using CometBoards, a NASA GRC developed code. The reliability and efficiency of the OpenMDAO framework was compared and reported in this report.
Yu, Tao; Chan, Kannie W Y; Anonuevo, Abraham; Song, Xiaolei; Schuster, Benjamin S; Chattopadhyay, Sumon; Xu, Qingguo; Oskolkov, Nikita; Patel, Himatkumar; Ensign, Laura M; van Zjil, Peter C M; McMahon, Michael T; Hanes, Justin
2015-02-01
Mucus barriers lining mucosal epithelia reduce the effectiveness of nanocarrier-based mucosal drug delivery and imaging ("theranostics"). Here, we describe liposome-based mucus-penetrating particles (MPP) capable of loading hydrophilic agents, e.g., the diaCEST MRI contrast agent barbituric acid (BA). We observed that polyethylene glycol (PEG)-coated liposomes containing ≥7 mol% PEG diffused only ~10-fold slower in human cervicovaginal mucus (CVM) compared to their theoretical speeds in water. 7 mol%-PEG liposomes contained sufficient BA loading for diaCEST contrast, and provided improved vaginal distribution compared to 0 and 3mol%-PEG liposomes. However, increasing PEG content to ~12 mol% compromised BA loading and vaginal distribution, suggesting that PEG content must be optimized to maintain drug loading and stability. Non-invasive diaCEST MRI illustrated uniform vaginal coverage and longer retention of BA-loaded 7 mol%-PEG liposomes compared to unencapsulated BA. Liposomal MPP with optimized PEG content hold promise for drug delivery and imaging at mucosal surfaces. This team of authors characterized liposome-based mucus-penetrating particles (MPP) capable of loading hydrophilic agents, such as barbituric acid (a diaCEST MRI contrast agent) and concluded that liposomal MPP with optimized PEG coating enables drug delivery and imaging at mucosal surfaces. Copyright © 2015 Elsevier Inc. All rights reserved.
Designing Agent Utilities for Coordinated, Scalable and Robust Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Tumer, Kagan
2005-01-01
Coordinating the behavior of a large number of agents to achieve a system level goal poses unique design challenges. In particular, problems of scaling (number of agents in the thousands to tens of thousands), observability (agents have limited sensing capabilities), and robustness (the agents are unreliable) make it impossible to simply apply methods developed for small multi-agent systems composed of reliable agents. To address these problems, we present an approach based on deriving agent goals that are aligned with the overall system goal, and can be computed using information readily available to the agents. Then, each agent uses a simple reinforcement learning algorithm to pursue its own goals. Because of the way in which those goals are derived, there is no need to use difficult to scale external mechanisms to force collaboration or coordination among the agents, or to ensure that agents actively attempt to appropriate the tasks of agents that suffered failures. To present these results in a concrete setting, we focus on the problem of finding the sub-set of a set of imperfect devices that results in the best aggregate device. This is a large distributed agent coordination problem where each agent (e.g., device) needs to determine whether to be part of the aggregate device. Our results show that the approach proposed in this work provides improvements of over an order of magnitude over both traditional search methods and traditional multi-agent methods. Furthermore, the results show that even in extreme cases of agent failures (i.e., half the agents failed midway through the simulation) the system's performance degrades gracefully and still outperforms a failure-free and centralized search algorithm. The results also show that the gains increase as the size of the system (e.g., number of agents) increases. This latter result is particularly encouraging and suggests that this method is ideally suited for domains where the number of agents is currently in the thousands and will reach tens or hundreds of thousands in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raskin, Cody; Owen, J. Michael
Creating spherical initial conditions in smoothed particle hydrodynamics simulations that are spherically conformal is a difficult task. Here in this paper, we describe two algorithmic methods for evenly distributing points on surfaces that when paired can be used to build three-dimensional spherical objects with optimal equipartition of volume between particles, commensurate with an arbitrary radial density function. We demonstrate the efficacy of our method against stretched lattice arrangements on the metrics of hydrodynamic stability, spherical conformity, and the harmonic power distribution of gravitational settling oscillations. We further demonstrate how our method is highly optimized for simulating multi-material spheres, such asmore » planets with core–mantle boundaries.« less
Raskin, Cody; Owen, J. Michael
2016-03-24
Creating spherical initial conditions in smoothed particle hydrodynamics simulations that are spherically conformal is a difficult task. Here in this paper, we describe two algorithmic methods for evenly distributing points on surfaces that when paired can be used to build three-dimensional spherical objects with optimal equipartition of volume between particles, commensurate with an arbitrary radial density function. We demonstrate the efficacy of our method against stretched lattice arrangements on the metrics of hydrodynamic stability, spherical conformity, and the harmonic power distribution of gravitational settling oscillations. We further demonstrate how our method is highly optimized for simulating multi-material spheres, such asmore » planets with core–mantle boundaries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raskin, Cody; Owen, J. Michael
2016-04-01
Creating spherical initial conditions in smoothed particle hydrodynamics simulations that are spherically conformal is a difficult task. Here, we describe two algorithmic methods for evenly distributing points on surfaces that when paired can be used to build three-dimensional spherical objects with optimal equipartition of volume between particles, commensurate with an arbitrary radial density function. We demonstrate the efficacy of our method against stretched lattice arrangements on the metrics of hydrodynamic stability, spherical conformity, and the harmonic power distribution of gravitational settling oscillations. We further demonstrate how our method is highly optimized for simulating multi-material spheres, such as planets with core–mantlemore » boundaries.« less
Rendezvous with connectivity preservation for multi-robot systems with an unknown leader
NASA Astrophysics Data System (ADS)
Dong, Yi
2018-02-01
This paper studies the leader-following rendezvous problem with connectivity preservation for multi-agent systems composed of uncertain multi-robot systems subject to external disturbances and an unknown leader, both of which are generated by a so-called exosystem with parametric uncertainty. By combining internal model design, potential function technique and adaptive control, two distributed control strategies are proposed to maintain the connectivity of the communication network, to achieve the asymptotic tracking of all the followers to the output of the unknown leader system, as well as to reject unknown external disturbances. It is also worth to mention that the uncertain parameters in the multi-robot systems and exosystem are further allowed to belong to unknown and unbounded sets when applying the second fully distributed control law containing a dynamic gain inspired by high-gain adaptive control or self-tuning regulator.
System and method of cylinder deactivation for optimal engine torque-speed map operation
Sujan, Vivek A; Frazier, Timothy R; Follen, Kenneth; Moon, Suk-Min
2014-11-11
This disclosure provides a system and method for determining cylinder deactivation in a vehicle engine to optimize fuel consumption while providing the desired or demanded power. In one aspect, data indicative of terrain variation is utilized in determining a vehicle target operating state. An optimal active cylinder distribution and corresponding fueling is determined from a recommendation from a supervisory agent monitoring the operating state of the vehicle of a subset of the total number of cylinders, and a determination as to which number of cylinders provides the optimal fuel consumption. Once the optimal cylinder number is determined, a transmission gear shift recommendation is provided in view of the determined active cylinder distribution and target operating state.
Directional Bias and Pheromone for Discovery and Coverage on Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fink, Glenn A.; Berenhaut, Kenneth S.; Oehmen, Christopher S.
2012-09-11
Natural multi-agent systems often rely on “correlated random walks” (random walks that are biased toward a current heading) to distribute their agents over a space (e.g., for foraging, search, etc.). Our contribution involves creation of a new movement and pheromone model that applies the concept of heading bias in random walks to a multi-agent, digital-ants system designed for cyber-security monitoring. We examine the relative performance effects of both pheromone and heading bias on speed of discovery of a target and search-area coverage in a two-dimensional network layout. We found that heading bias was unexpectedly helpful in reducing search time andmore » that it was more influential than pheromone for improving coverage. We conclude that while pheromone is very important for rapid discovery, heading bias can also greatly improve both performance metrics.« less
Investigating multi-objective fluence and beam orientation IMRT optimization
NASA Astrophysics Data System (ADS)
Potrebko, Peter S.; Fiege, Jason; Biagioli, Matthew; Poleszczuk, Jan
2017-07-01
Radiation Oncology treatment planning requires compromises to be made between clinical objectives that are invariably in conflict. It would be beneficial to have a ‘bird’s-eye-view’ perspective of the full spectrum of treatment plans that represent the possible trade-offs between delivering the intended dose to the planning target volume (PTV) while optimally sparing the organs-at-risk (OARs). In this work, the authors demonstrate Pareto-aware radiotherapy evolutionary treatment optimization (PARETO), a multi-objective tool featuring such bird’s-eye-view functionality, which optimizes fluence patterns and beam angles for intensity-modulated radiation therapy (IMRT) treatment planning. The problem of IMRT treatment plan optimization is managed as a combined monolithic problem, where all beam fluence and angle parameters are treated equally during the optimization. To achieve this, PARETO is built around a powerful multi-objective evolutionary algorithm, called Ferret, which simultaneously optimizes multiple fitness functions that encode the attributes of the desired dose distribution for the PTV and OARs. The graphical interfaces within PARETO provide useful information such as: the convergence behavior during optimization, trade-off plots between the competing objectives, and a graphical representation of the optimal solution database allowing for the rapid exploration of treatment plan quality through the evaluation of dose-volume histograms and isodose distributions. PARETO was evaluated for two relatively complex clinical cases, a paranasal sinus and a pancreas case. The end result of each PARETO run was a database of optimal (non-dominated) treatment plans that demonstrated trade-offs between the OAR and PTV fitness functions, which were all equally good in the Pareto-optimal sense (where no one objective can be improved without worsening at least one other). Ferret was able to produce high quality solutions even though a large number of parameters, such as beam fluence and beam angles, were included in the optimization.
Optimal configuration of power grid sources based on optimal particle swarm algorithm
NASA Astrophysics Data System (ADS)
Wen, Yuanhua
2018-04-01
In order to optimize the distribution problem of power grid sources, an optimized particle swarm optimization algorithm is proposed. First, the concept of multi-objective optimization and the Pareto solution set are enumerated. Then, the performance of the classical genetic algorithm, the classical particle swarm optimization algorithm and the improved particle swarm optimization algorithm are analyzed. The three algorithms are simulated respectively. Compared with the test results of each algorithm, the superiority of the algorithm in convergence and optimization performance is proved, which lays the foundation for subsequent micro-grid power optimization configuration solution.
Applications of Multi-Agent Technology to Power Systems
NASA Astrophysics Data System (ADS)
Nagata, Takeshi
Currently, agents are focus of intense on many sub-fields of computer science and artificial intelligence. Agents are being used in an increasingly wide variety of applications. Many important computing applications such as planning, process control, communication networks and concurrent systems will benefit from using multi-agent system approach. A multi-agent system is a structure given by an environment together with a set of artificial agents capable to act on this environment. Multi-agent models are oriented towards interactions, collaborative phenomena, and autonomy. This article presents the applications of multi-agent technology to the power systems.
NASA Astrophysics Data System (ADS)
Castelletti, A.; Giuliani, M.; Soncini-Sessa, R.
2012-12-01
The presence of multiple, institutionally independent but physically interconnected decision-makers is a distinctive features of many water resources systems, especially of transnational river basins. The adoption of a centralized approach to study the optimal operation of these systems, as mostly done in the water resources literature, is conceptually interesting to quantify the best achievable performance, but of little practical impact given the real political and institutional setting. Centralized management indeed assumes a cooperative attitude and full information exchange by the involved parties. However, when decision-makers belong to different countries or institutions, it is very likely that they act considering only their local objectives, producing global externalities that negatively impact on other objectives. In this work we adopt a Multi-Agent Systems framework, which naturally allows to represent a set of self-interested agents (decision-makers and/or stakeholders) acting in a distributed decision-making process. According to this agent-based approach, each agent represents a decision-maker, whose decisions are defined by an explicit optimization problem considering only the agent's local interests. In particular, this work assesses the role of information exchange and increasing level of cooperation among originally non-cooperative agents. The Zambezi River basin is used to illustrate the methodology: the four largest reservoirs in the basin (Ithezhithezhi, Kafue-Gorge, Kariba and Cahora Bassa) are mainly operated for maximizing the economic revenue from hydropower energy production with considerably negative effects on the aquatic ecosystem in the Zambezi delta due to the alteration of the natural flow regime. We comparatively analyse the ideal centralized solution and the current situation where all the decision-makers act independently and non-cooperatively. Indeed, although a new basin-level institution called Zambezi Watercourse Commission (ZAMCON) should be established in the next future, Zambia recently refused to sign and ratify the ZAMCON Protocol and the road toward a fully cooperative framework is still long. Results show that increasing levels of information exchange can help in mitigating the conflict generated by a non-cooperative setting as it allows the downstream agents, i.e. Mozambique country, to better adapt to the upstream management strategies. Furthermore, the role of information exchange depends on the considered objectives and it is particularly relevant for environmental interests.
Analysis multi-agent with precense of the leader
NASA Astrophysics Data System (ADS)
Achmadi, Sentot; Marjono, Miswanto
2017-12-01
The phenomenon of swarm is a natural phenomenon that is often done by a collection of living things in the form of motion from one place to another. By clustering, a group of animals can increase their effectiveness in food search and avoid predators. A group of geese also performs a swarm phenomenon when flying and forms an inverted V-formation with one of the geese acting as a leader. Each flying track of members of the geese group always follows the leader's path at a certain distance. This article discusses the mathematical modeling of the swarm phenomenon, which is the optimal tracking control for multi-agent model with the influence of the leader in the 2-dimensional space. The leader in this model is intended to track the specified path. Firstly, the leader's motion control is to follow the predetermined path using the Tracking Error Dynamic method. Then, the path from the leader is used to design the motion control of each agent to track the leader's path at a certain distance. The result of numerical simulation shows that the leader trajectory can track the specified path. Similarly, the motion of each agent can trace and follow the leader's path.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cintuglu, Mehmet Hazar; Youssef, Tarek; Mohammed, Osama A.
This article presents the development and application of a real-time testbed for multiagent system interoperability. As utility independent private microgrids are installed constantly, standardized interoperability frameworks are required to define behavioral models of the individual agents for expandability and plug-and-play operation. In this paper, we propose a comprehensive hybrid agent framework combining the foundation for intelligent physical agents (FIPA), IEC 61850, and data distribution service (DDS) standards. The IEC 61850 logical node concept is extended using FIPA based agent communication language (ACL) with application specific attributes and deliberative behavior modeling capability. The DDS middleware is adopted to enable a real-timemore » publisher-subscriber interoperability mechanism between platforms. The proposed multi-agent framework was validated in a laboratory based testbed involving developed intelligent electronic device (IED) prototypes and actual microgrid setups. Experimental results were demonstrated for both decentralized and distributed control approaches. Secondary and tertiary control levels of a microgrid were demonstrated for decentralized hierarchical control case study. A consensus-based economic dispatch case study was demonstrated as a distributed control example. Finally, it was shown that the developed agent platform is industrially applicable for actual smart grid field deployment.« less
Cintuglu, Mehmet Hazar; Youssef, Tarek; Mohammed, Osama A.
2016-08-10
This article presents the development and application of a real-time testbed for multiagent system interoperability. As utility independent private microgrids are installed constantly, standardized interoperability frameworks are required to define behavioral models of the individual agents for expandability and plug-and-play operation. In this paper, we propose a comprehensive hybrid agent framework combining the foundation for intelligent physical agents (FIPA), IEC 61850, and data distribution service (DDS) standards. The IEC 61850 logical node concept is extended using FIPA based agent communication language (ACL) with application specific attributes and deliberative behavior modeling capability. The DDS middleware is adopted to enable a real-timemore » publisher-subscriber interoperability mechanism between platforms. The proposed multi-agent framework was validated in a laboratory based testbed involving developed intelligent electronic device (IED) prototypes and actual microgrid setups. Experimental results were demonstrated for both decentralized and distributed control approaches. Secondary and tertiary control levels of a microgrid were demonstrated for decentralized hierarchical control case study. A consensus-based economic dispatch case study was demonstrated as a distributed control example. Finally, it was shown that the developed agent platform is industrially applicable for actual smart grid field deployment.« less
1990-12-01
subject to resource constraints. Mul- tista~ze negotiation has been developed as a means by which an agent can acquire ,em 0ugh additional knowledge to...complete knowledge often expands the search space without providing a compensatiN means for focusing the search. In a multi-agent system with each...These relationships have strengthened our abilities to conduct meaningful research and to assist the transfer of technolog frni th, 81 university
Meng, Qing-chun; Rong, Xiao-xia; Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi
2016-01-01
CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated.
Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi
2016-01-01
CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996–2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated. PMID:27010658
A novel optimization algorithm for MIMO Hammerstein model identification under heavy-tailed noise.
Jin, Qibing; Wang, Hehe; Su, Qixin; Jiang, Beiyan; Liu, Qie
2018-01-01
In this paper, we study the system identification of multi-input multi-output (MIMO) Hammerstein processes under the typical heavy-tailed noise. To the best of our knowledge, there is no general analytical method to solve this identification problem. Motivated by this, we propose a general identification method to solve this problem based on a Gaussian-Mixture Distribution intelligent optimization algorithm (GMDA). The nonlinear part of Hammerstein process is modeled by a Radial Basis Function (RBF) neural network, and the identification problem is converted to an optimization problem. To overcome the drawbacks of analytical identification method in the presence of heavy-tailed noise, a meta-heuristic optimization algorithm, Cuckoo search (CS) algorithm is used. To improve its performance for this identification problem, the Gaussian-mixture Distribution (GMD) and the GMD sequences are introduced to improve the performance of the standard CS algorithm. Numerical simulations for different MIMO Hammerstein models are carried out, and the simulation results verify the effectiveness of the proposed GMDA. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Patten, W. N.; Robertshaw, H. H.; Pierpont, D.; Wynn, R. H.
1989-01-01
A new, near-optimal feedback control technique is introduced that is shown to provide excellent vibration attenuation for those distributed parameter systems that are often encountered in the areas of aeroservoelasticity and large space systems. The technique relies on a novel solution methodology for the classical optimal control problem. Specifically, the quadratic regulator control problem for a flexible vibrating structure is first cast in a weak functional form that admits an approximate solution. The necessary conditions (first-order) are then solved via a time finite-element method. The procedure produces a low dimensional, algebraic parameterization of the optimal control problem that provides a rigorous basis for a discrete controller with a first-order like hold output. Simulation has shown that the algorithm can successfully control a wide variety of plant forms including multi-input/multi-output systems and systems exhibiting significant nonlinearities. In order to firmly establish the efficacy of the algorithm, a laboratory control experiment was implemented to provide planar (bending) vibration attenuation of a highly flexible beam (with a first clamped-free mode of approximately 0.5 Hz).
Agreement Technologies for Energy Optimization at Home.
González-Briones, Alfonso; Chamoso, Pablo; De La Prieta, Fernando; Demazeau, Yves; Corchado, Juan M
2018-05-19
Nowadays, it is becoming increasingly common to deploy sensors in public buildings or homes with the aim of obtaining data from the environment and taking decisions that help to save energy. Many of the current state-of-the-art systems make decisions considering solely the environmental factors that cause the consumption of energy. These systems are successful at optimizing energy consumption; however, they do not adapt to the preferences of users and their comfort. Any system that is to be used by end-users should consider factors that affect their wellbeing. Thus, this article proposes an energy-saving system, which apart from considering the environmental conditions also adapts to the preferences of inhabitants. The architecture is based on a Multi-Agent System (MAS), its agents use Agreement Technologies (AT) to perform a negotiation process between the comfort preferences of the users and the degree of optimization that the system can achieve according to these preferences. A case study was conducted in an office building, showing that the proposed system achieved average energy savings of 17.15%.
Attention control learning in the decision space using state estimation
NASA Astrophysics Data System (ADS)
Gharaee, Zahra; Fatehi, Alireza; Mirian, Maryam S.; Nili Ahmadabadi, Majid
2016-05-01
The main goal of this paper is modelling attention while using it in efficient path planning of mobile robots. The key challenge in concurrently aiming these two goals is how to make an optimal, or near-optimal, decision in spite of time and processing power limitations, which inherently exist in a typical multi-sensor real-world robotic application. To efficiently recognise the environment under these two limitations, attention of an intelligent agent is controlled by employing the reinforcement learning framework. We propose an estimation method using estimated mixture-of-experts task and attention learning in perceptual space. An agent learns how to employ its sensory resources, and when to stop observing, by estimating its perceptual space. In this paper, static estimation of the state space in a learning task problem, which is examined in the WebotsTM simulator, is performed. Simulation results show that a robot learns how to achieve an optimal policy with a controlled cost by estimating the state space instead of continually updating sensory information.
Taheri, Mehdi; Sheikholeslam, Farid; Najafi, Majddedin; Zekri, Maryam
2017-07-01
In this paper, consensus problem is considered for second order multi-agent systems with unknown nonlinear dynamics under undirected graphs. A novel distributed control strategy is suggested for leaderless systems based on adaptive fuzzy wavelet networks. Adaptive fuzzy wavelet networks are employed to compensate for the effect of unknown nonlinear dynamics. Moreover, the proposed method is developed for leader following systems and leader following systems with state time delays. Lyapunov functions are applied to prove uniformly ultimately bounded stability of closed loop systems and to obtain adaptive laws. Three simulation examples are presented to illustrate the effectiveness of the proposed control algorithms. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Computer Based Porosity Design by Multi Phase Topology Optimization
NASA Astrophysics Data System (ADS)
Burblies, Andreas; Busse, Matthias
2008-02-01
A numerical simulation technique called Multi Phase Topology Optimization (MPTO) based on finite element method has been developed and refined by Fraunhofer IFAM during the last five years. MPTO is able to determine the optimum distribution of two or more different materials in components under thermal and mechanical loads. The objective of optimization is to minimize the component's elastic energy. Conventional topology optimization methods which simulate adaptive bone mineralization have got the disadvantage that there is a continuous change of mass by growth processes. MPTO keeps all initial material concentrations and uses methods adapted from molecular dynamics to find energy minimum. Applying MPTO to mechanically loaded components with a high number of different material densities, the optimization results show graded and sometimes anisotropic porosity distributions which are very similar to natural bone structures. Now it is possible to design the macro- and microstructure of a mechanical component in one step. Computer based porosity design structures can be manufactured by new Rapid Prototyping technologies. Fraunhofer IFAM has applied successfully 3D-Printing and Selective Laser Sintering methods in order to produce very stiff light weight components with graded porosities calculated by MPTO.
A Multi-agent Based Cooperative Voltage and Reactive Power Control
NASA Astrophysics Data System (ADS)
Ishida, Masato; Nagata, Takeshi; Saiki, Hiroshi; Shimada, Ikuhiko; Hatano, Ryousuke
In order to maintain system voltage within the optimal range and prevent voltage instability phenomena before they occur, a variety of phase modifying equipment is installed in optimal locations throughout the power system network and a variety of methods of voltage reactive control are employed. The proposed system divided the traditional method to control voltage and reactive power into two sub problems; “voltage control” to adjust the secondary bus voltage of substations, and “reactive power control” to adjust the primary bus voltage. In this system, two types of agents are installed in substations in order to cooperate “voltage control” and “reactive power control”. In order to verify the performance of the proposed method, it has been applied to the model network system. The results confirm that our proposed method is able to control violent fluctuations in load.
Nash Social Welfare in Multiagent Resource Allocation
NASA Astrophysics Data System (ADS)
Ramezani, Sara; Endriss, Ulle
We study different aspects of the multiagent resource allocation problem when the objective is to find an allocation that maximizes Nash social welfare, the product of the utilities of the individual agents. The Nash solution is an important welfare criterion that combines efficiency and fairness considerations. We show that the problem of finding an optimal outcome is NP-hard for a number of different languages for representing agent preferences; we establish new results regarding convergence to Nash-optimal outcomes in a distributed negotiation framework; and we design and test algorithms similar to those applied in combinatorial auctions for computing such an outcome directly.
Emergence of an optimal search strategy from a simple random walk
Sakiyama, Tomoko; Gunji, Yukio-Pegio
2013-01-01
In reports addressing animal foraging strategies, it has been stated that Lévy-like algorithms represent an optimal search strategy in an unknown environment, because of their super-diffusion properties and power-law-distributed step lengths. Here, starting with a simple random walk algorithm, which offers the agent a randomly determined direction at each time step with a fixed move length, we investigated how flexible exploration is achieved if an agent alters its randomly determined next step forward and the rule that controls its random movement based on its own directional moving experiences. We showed that our algorithm led to an effective food-searching performance compared with a simple random walk algorithm and exhibited super-diffusion properties, despite the uniform step lengths. Moreover, our algorithm exhibited a power-law distribution independent of uniform step lengths. PMID:23804445
Emergence of an optimal search strategy from a simple random walk.
Sakiyama, Tomoko; Gunji, Yukio-Pegio
2013-09-06
In reports addressing animal foraging strategies, it has been stated that Lévy-like algorithms represent an optimal search strategy in an unknown environment, because of their super-diffusion properties and power-law-distributed step lengths. Here, starting with a simple random walk algorithm, which offers the agent a randomly determined direction at each time step with a fixed move length, we investigated how flexible exploration is achieved if an agent alters its randomly determined next step forward and the rule that controls its random movement based on its own directional moving experiences. We showed that our algorithm led to an effective food-searching performance compared with a simple random walk algorithm and exhibited super-diffusion properties, despite the uniform step lengths. Moreover, our algorithm exhibited a power-law distribution independent of uniform step lengths.
NASA Astrophysics Data System (ADS)
Palma, V.; Carli, M.; Neri, A.
2011-02-01
In this paper a Multi-view Distributed Video Coding scheme for mobile applications is presented. Specifically a new fusion technique between temporal and spatial side information in Zernike Moments domain is proposed. Distributed video coding introduces a flexible architecture that enables the design of very low complex video encoders compared to its traditional counterparts. The main goal of our work is to generate at the decoder the side information that optimally blends temporal and interview data. Multi-view distributed coding performance strongly depends on the side information quality built at the decoder. At this aim for improving its quality a spatial view compensation/prediction in Zernike moments domain is applied. Spatial and temporal motion activity have been fused together to obtain the overall side-information. The proposed method has been evaluated by rate-distortion performances for different inter-view and temporal estimation quality conditions.
NASA Astrophysics Data System (ADS)
Yoon, J.; Klassert, C. J. A.; Lachaut, T.; Selby, P. D.; Knox, S.; Gorelick, S.; Rajsekhar, D.; Tilmant, A.; Avisse, N.; Harou, J. J.; Medellin-Azuara, J.; Gawel, E.; Klauer, B.; Mustafa, D.; Talozi, S.; Sigel, K.; Zhang, H.
2016-12-01
Our work focuses on development of a multi-agent, hydroeconomic model for water policy evaluation in Jordan. Jordan ranks among the most water-scarce countries in the world, a situation exacerbated due to a recent influx of refugees escaping the ongoing civil war in neighboring Syria. The modular, multi-agent model is used to evaluate interventions for enhancing Jordan's water security, integrating biophysical modules that simulate natural and engineered phenomena with human modules that represent behavior at multiple levels of decision making. The hydrologic modules are developed using spatially-distributed groundwater and surface water models, which are translated into compact simulators for efficient integration into the multi-agent model. For the multi-agent model, we explicitly account for human agency at multiple levels of decision making, with agents representing riparian, management, supplier, and water user groups. Human agents are implemented as autonomous entities in the model that make decisions in relation to one another and in response to hydrologic and socioeconomic conditions. The integrated model is programmed in Python using Pynsim, a generalizable, open-source object-oriented software framework for modeling network-based water resource systems. The modeling time periods include historical (2006-2014) and future (present-2050) time spans. For the historical runs, the model performance is validated against historical data for several observations that reflect the interacting dynamics of both the hydrologic and human components of the system. A historical counterfactual scenario is also constructed to isolate and identify the impacts of the recent Syrian civil war and refugee crisis on Jordan's water system. For the future period, model runs are conducted to evaluate potential supply, demand, and institutional interventions over a wide range of plausible climate and socioeconomic scenarios. In addition, model sensitivity analysis is conducted revealing the hydrologic and human aspects of the system that most strongly influence water security outcomes, providing insight into coupled human-water system dynamics as well as priority areas of focus for continued model improvement.
Optimal Power Flow for Distribution Systems under Uncertain Forecasts: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Anese, Emiliano; Baker, Kyri; Summers, Tyler
2016-12-01
The paper focuses on distribution systems featuring renewable energy sources and energy storage devices, and develops an optimal power flow (OPF) approach to optimize the system operation in spite of forecasting errors. The proposed method builds on a chance-constrained multi-period AC OPF formulation, where probabilistic constraints are utilized to enforce voltage regulation with a prescribed probability. To enable a computationally affordable solution approach, a convex reformulation of the OPF task is obtained by resorting to i) pertinent linear approximations of the power flow equations, and ii) convex approximations of the chance constraints. Particularly, the approximate chance constraints provide conservative boundsmore » that hold for arbitrary distributions of the forecasting errors. An adaptive optimization strategy is then obtained by embedding the proposed OPF task into a model predictive control framework.« less
NASA Astrophysics Data System (ADS)
Izquierdo, Joaquín; Montalvo, Idel; Campbell, Enrique; Pérez-García, Rafael
2016-08-01
Selecting the most appropriate heuristic for solving a specific problem is not easy, for many reasons. This article focuses on one of these reasons: traditionally, the solution search process has operated in a given manner regardless of the specific problem being solved, and the process has been the same regardless of the size, complexity and domain of the problem. To cope with this situation, search processes should mould the search into areas of the search space that are meaningful for the problem. This article builds on previous work in the development of a multi-agent paradigm using techniques derived from knowledge discovery (data-mining techniques) on databases of so-far visited solutions. The aim is to improve the search mechanisms, increase computational efficiency and use rules to enrich the formulation of optimization problems, while reducing the search space and catering to realistic problems.
Multi-Agent simulation of generation capacity expansion decisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Botterud, A.; Mahalik, M.; Conzelmann, G.
2008-01-01
In this paper, we use a multi-agent simulation model, EMCAS, to analyze generation expansion in the Iberian electricity market. The expansion model simulates generation investment decisions of decentralized generating companies (GenCos) interacting in a complex, multidimensional environment. A probabilistic dispatch algorithm calculates prices and profits for new candidate units in different future states of the system. Uncertainties in future load, hydropower conditions, and competitorspsila actions are represented in a scenario tree, and decision analysis is used to identify the optimal expansion decision for each individual GenCo. We run the model using detailed data for the Iberian market. In a scenariomore » analysis, we look at the impact of market design variables, such as the energy price cap and carbon emission prices. We also analyze how market concentration and GenCospsila risk preferences influence the timing and choice of new generating capacity.« less
NASA Astrophysics Data System (ADS)
Wahyuda; Santosa, Budi; Rusdiansyah, Ahmad
2018-04-01
Deregulation of the electricity market requires coordination between parties to synchronize the optimization on the production side (power station) and the transport side (transmission). Electricity supply chain presented in this article is designed to facilitate the coordination between the parties. Generally, the production side is optimized with price based dynamic economic dispatch (PBDED) model, while the transmission side is optimized with Multi-echelon distribution model. Both sides optimization are done separately. This article proposes a joint model of PBDED and multi-echelon distribution for the combined optimization of production and transmission. This combined optimization is important because changes in electricity demand on the customer side will cause changes to the production side that automatically also alter the transmission path. The transmission will cause two cost components. First, the cost of losses. Second, the cost of using the transmission network (wheeling transaction). Costs due to losses are calculated based on ohmic losses, while the cost of using transmission lines using the MW - mile method. As a result, this method is able to provide best allocation analysis for electrical transactions, as well as emission levels in power generation and cost analysis. As for the calculation of transmission costs, the Reverse MW-mile method produces a cheaper cost than the Absolute MW-mile method
Image reconstruction for x-ray K-edge imaging with a photon counting detector
NASA Astrophysics Data System (ADS)
Meng, Bo; Cong, Wenxiang; Xi, Yan; Wang, Ge
2014-09-01
Contrast agents with high-Z elements have K-absorption edges which significantly change X-ray attenuation coefficients. The K-edge characteristics is different for various kinds of contrast agents, which offers opportunities for material decomposition in biomedical applications. In this paper, we propose a new K-edge imaging method, which not only quantifies a distribution of a contrast agent but also provides an optimized contrast ratio. Our numerical simulation tests demonstrate the feasibility and merits of the proposed methodology.
NASA Astrophysics Data System (ADS)
Niu, Xiaoliang; Yuan, Fen; Huang, Shanguo; Guo, Bingli; Gu, Wanyi
2011-12-01
A Dynamic clustering scheme based on coordination of management and control is proposed to reduce network congestion rate and improve the blocking performance of hierarchical routing in Multi-layer and Multi-region intelligent optical network. Its implement relies on mobile agent (MA) technology, which has the advantages of efficiency, flexibility, functional and scalability. The paper's major contribution is to adjust dynamically domain when the performance of working network isn't in ideal status. And the incorporation of centralized NMS and distributed MA control technology migrate computing process to control plane node which releases the burden of NMS and improves process efficiently. Experiments are conducted on Multi-layer and multi-region Simulation Platform for Optical Network (MSPON) to assess the performance of the scheme.
Zubek, Julian; Denkiewicz, Michał; Barański, Juliusz; Wróblewski, Przemysław; Rączaszek-Leonardi, Joanna; Plewczynski, Dariusz
2017-01-01
This paper explores how information flow properties of a network affect the formation of categories shared between individuals, who are communicating through that network. Our work is based on the established multi-agent model of the emergence of linguistic categories grounded in external environment. We study how network information propagation efficiency and the direction of information flow affect categorization by performing simulations with idealized network topologies optimizing certain network centrality measures. We measure dynamic social adaptation when either network topology or environment is subject to change during the experiment, and the system has to adapt to new conditions. We find that both decentralized network topology efficient in information propagation and the presence of central authority (information flow from the center to peripheries) are beneficial for the formation of global agreement between agents. Systems with central authority cope well with network topology change, but are less robust in the case of environment change. These findings help to understand which network properties affect processes of social adaptation. They are important to inform the debate on the advantages and disadvantages of centralized systems.
Denkiewicz, Michał; Barański, Juliusz; Wróblewski, Przemysław; Rączaszek-Leonardi, Joanna; Plewczynski, Dariusz
2017-01-01
This paper explores how information flow properties of a network affect the formation of categories shared between individuals, who are communicating through that network. Our work is based on the established multi-agent model of the emergence of linguistic categories grounded in external environment. We study how network information propagation efficiency and the direction of information flow affect categorization by performing simulations with idealized network topologies optimizing certain network centrality measures. We measure dynamic social adaptation when either network topology or environment is subject to change during the experiment, and the system has to adapt to new conditions. We find that both decentralized network topology efficient in information propagation and the presence of central authority (information flow from the center to peripheries) are beneficial for the formation of global agreement between agents. Systems with central authority cope well with network topology change, but are less robust in the case of environment change. These findings help to understand which network properties affect processes of social adaptation. They are important to inform the debate on the advantages and disadvantages of centralized systems. PMID:28809957
Multi-Robot, Multi-Target Particle Swarm Optimization Search in Noisy Wireless Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurt Derr; Milos Manic
Multiple small robots (swarms) can work together using Particle Swarm Optimization (PSO) to perform tasks that are difficult or impossible for a single robot to accomplish. The problem considered in this paper is exploration of an unknown environment with the goal of finding a target(s) at an unknown location(s) using multiple small mobile robots. This work demonstrates the use of a distributed PSO algorithm with a novel adaptive RSS weighting factor to guide robots for locating target(s) in high risk environments. The approach was developed and analyzed on multiple robot single and multiple target search. The approach was further enhancedmore » by the multi-robot-multi-target search in noisy environments. The experimental results demonstrated how the availability of radio frequency signal can significantly affect robot search time to reach a target.« less
Preparedness for pandemics: does variation among states affect the nation as a whole?
Potter, Margaret A; Brown, Shawn T; Lee, Bruce Y; Grefenstette, John; Keane, Christopher R; Lin, Chyongchiou J; Quinn, Sandra C; Stebbins, Samuel; Sweeney, Patricia M; Burke, Donald S
2012-01-01
Since states' public health systems differ as to pandemic preparedness, this study explored whether such heterogeneity among states could affect the nation's overall influenza rate. The Centers for Disease Control and Prevention produced a uniform set of scores on a 100-point scale from its 2008 national evaluation of state preparedness to distribute materiel from the Strategic National Stockpile (SNS). This study used these SNS scores to represent each state's relative preparedness to distribute influenza vaccine in a timely manner and assumed that "optimal" vaccine distribution would reach at least 35% of the state's population within 4 weeks. The scores were used to determine the timing of vaccine distribution for each state: each 10-point decrement of score below 90 added an additional delay increment to the distribution time. A large-scale agent-based computational model simulated an influenza pandemic in the US population. In this synthetic population each individual or agent had an assigned household, age, workplace or school destination, daily commute, and domestic intercity air travel patterns. Simulations compared influenza case rates both nationally and at the state level under 3 scenarios: no vaccine distribution (baseline), optimal vaccine distribution in all states, and vaccine distribution time modified according to state-specific SNS score. Between optimal and SNS-modified scenarios, attack rates rose not only in low-scoring states but also in high-scoring states, demonstrating an interstate spread of infections. Influenza rates were sensitive to variation of the SNS-modified scenario (delay increments of 1 day versus 5 days), but the interstate effect remained. The effectiveness of a response activity such as vaccine distribution could benefit from national standards and preparedness funding allocated in part to minimize interstate disparities.
Modelling the B2C Marketplace: Evaluation of a Reputation Metric for e-Commerce
NASA Astrophysics Data System (ADS)
Gutowska, Anna; Sloane, Andrew
This paper evaluates recently developed novel and comprehensive reputation metric designed for the distributed multi-agent reputation system for the Business-to-Consumer (B2C) E-commerce applications. To do that an agent-based simulation framework was implemented which models different types of behaviours in the marketplace. The trustworthiness of different types of providers is investigated to establish whether the simulation models behaviour of B2C e-Commerce systems as they are expected to behave in real life.
NASA Astrophysics Data System (ADS)
Shi, X.; Zhang, G.
2013-12-01
Because of the extensive computational burden, parametric uncertainty analyses are rarely conducted for geological carbon sequestration (GCS) process based multi-phase models. The difficulty of predictive uncertainty analysis for the CO2 plume migration in realistic GCS models is not only due to the spatial distribution of the caprock and reservoir (i.e. heterogeneous model parameters), but also because the GCS optimization estimation problem has multiple local minima due to the complex nonlinear multi-phase (gas and aqueous), and multi-component (water, CO2, salt) transport equations. The geological model built by Doughty and Pruess (2004) for the Frio pilot site (Texas) was selected and assumed to represent the 'true' system, which was composed of seven different facies (geological units) distributed among 10 layers. We chose to calibrate the permeabilities of these facies. Pressure and gas saturation values from this true model were then extracted and used as observations for subsequent model calibration. Random noise was added to the observations to approximate realistic field conditions. Each simulation of the model lasts about 2 hours. In this study, we develop a new approach that improves computational efficiency of Bayesian inference by constructing a surrogate system based on an adaptive sparse-grid stochastic collocation method. This surrogate response surface global optimization algorithm is firstly used to calibrate the model parameters, then prediction uncertainty of the CO2 plume position is quantified due to the propagation from parametric uncertainty in the numerical experiments, which is also compared to the actual plume from the 'true' model. Results prove that the approach is computationally efficient for multi-modal optimization and prediction uncertainty quantification for computationally expensive simulation models. Both our inverse methodology and findings can be broadly applicable to GCS in heterogeneous storage formations.
[Destruction of synovial pannus of antigen-induced arthritis by ultrasonic cavitation in rabbits].
Zhang, Ling-yan; Qiu, Li; Wang, Lei; Lin, Ling; Wen, Xiao-rong
2011-11-01
To optimize the conditions of ultrasonic irradiation and microbubble of ultrasound cavitation on destruction of synovial pannus of antigen-induced arthritis (AIA) in rabbits. Antigen-induced arthritis was successfully induced on bilateral knee joints of 85 rabbits. Each 10 AIA rabbits were divided into two groups to compare various peak negative pressures, different ultrasonic pulse durations, various pulse repetition frequencies, different irradiance duration, different dosages of microbubble contrast agents, different ultrasonic irradiance times. With intravenous infusion of Sonovue to the rabbits, ultrasonic irradiance was performed on the right knee joint using the above condition of ultrasound cavitation. At the day 1 after ultrasonic irradiance, MRI and pathological examination were employed to evaluate the optimal conditions. The optimal parameters and conditions for ultrasonic irradiance included intermittent ultrasonic application (in 6 s intervals), 0.6 mL/kg of microbubble contrast agent, 4.6 MPa of ultrasonic peak negative pressure, 100 cycles of pulse duration, 50 Hz of pulse repetition frequency, 5 min of ultrasonic duration, 0.6 mL/kg of dosages of microbubble contrast agents and multi-sessional ultrasonic irradiance. After the ultrasonic irradiance, the thickness of right knee synovium measured by MRI was thinner than that of left knee and synovial necrosis was confirmed by the pathological finding. Under optimal ultrasonic irradiation and microbubble conditions, ultrasonic cavitation could destroy synovial pannus of AIA in rabbits.
Puppala, Manohar; Zhao, Xinghua; Casemore, Denise; Zhou, Bo; Aridoss, Gopalakrishnan; Narayanapillai, Sreekanth; Xing, Chengguo
2016-03-15
4H-Chromene-based compounds, for example, CXL017, CXL035, and CXL055, have a unique anticancer potential that they selectively kill multi-drug resistant cancer cells. Reported herein is the extended structure-activity relationship (SAR) study, focusing on the ester functional group at the 4th position and the conformation at the 6th position. Sharp SARs were observed at both positions with respect to cellular cytotoxic potency and selectivity between the parental HL60 and the multi-drug resistant HL60/MX2 cells. These results provide critical guidance for future medicinal optimization. Copyright © 2016. Published by Elsevier Ltd.
Exploration of Force Transition in Stability Operations Using Multi-Agent Simulation
2006-09-01
risk, mission failure risk, and time in the context of the operational threat environment. The Pythagoras Multi-Agent Simulation and Data Farming...NUMBER OF PAGES 173 14. SUBJECT TERMS Stability Operations, Peace Operations, Data Farming, Pythagoras , Agent- Based Model, Multi-Agent Simulation...the operational threat environment. The Pythagoras Multi-Agent Simulation and Data Farming techniques are used to investigate force-level
Residential solar-heating system uses pyramidal optics
NASA Technical Reports Server (NTRS)
1981-01-01
Report describes reflective panels which optimize annual solar energy collection in attic installation. Subunits include collection, storage, distribution, and 4-mode control systems. Pyramid optical system heats single-family and multi-family dwellings.
Unifying Temporal and Structural Credit Assignment Problems
NASA Technical Reports Server (NTRS)
Agogino, Adrian K.; Tumer, Kagan
2004-01-01
Single-agent reinforcement learners in time-extended domains and multi-agent systems share a common dilemma known as the credit assignment problem. Multi-agent systems have the structural credit assignment problem of determining the contributions of a particular agent to a common task. Instead, time-extended single-agent systems have the temporal credit assignment problem of determining the contribution of a particular action to the quality of the full sequence of actions. Traditionally these two problems are considered different and are handled in separate ways. In this article we show how these two forms of the credit assignment problem are equivalent. In this unified frame-work, a single-agent Markov decision process can be broken down into a single-time-step multi-agent process. Furthermore we show that Monte-Carlo estimation or Q-learning (depending on whether the values of resulting actions in the episode are known at the time of learning) are equivalent to different agent utility functions in a multi-agent system. This equivalence shows how an often neglected issue in multi-agent systems is equivalent to a well-known deficiency in multi-time-step learning and lays the basis for solving time-extended multi-agent problems, where both credit assignment problems are present.
Optimal moment determination in POME-copula based hydrometeorological dependence modelling
NASA Astrophysics Data System (ADS)
Liu, Dengfeng; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Chen, Yuanfang; Chen, Xi
2017-07-01
Copula has been commonly applied in multivariate modelling in various fields where marginal distribution inference is a key element. To develop a flexible, unbiased mathematical inference framework in hydrometeorological multivariate applications, the principle of maximum entropy (POME) is being increasingly coupled with copula. However, in previous POME-based studies, determination of optimal moment constraints has generally not been considered. The main contribution of this study is the determination of optimal moments for POME for developing a coupled optimal moment-POME-copula framework to model hydrometeorological multivariate events. In this framework, margins (marginals, or marginal distributions) are derived with the use of POME, subject to optimal moment constraints. Then, various candidate copulas are constructed according to the derived margins, and finally the most probable one is determined, based on goodness-of-fit statistics. This optimal moment-POME-copula framework is applied to model the dependence patterns of three types of hydrometeorological events: (i) single-site streamflow-water level; (ii) multi-site streamflow; and (iii) multi-site precipitation, with data collected from Yichang and Hankou in the Yangtze River basin, China. Results indicate that the optimal-moment POME is more accurate in margin fitting and the corresponding copulas reflect a good statistical performance in correlation simulation. Also, the derived copulas, capturing more patterns which traditional correlation coefficients cannot reflect, provide an efficient way in other applied scenarios concerning hydrometeorological multivariate modelling.
NASA Astrophysics Data System (ADS)
Song, Lu-Kai; Wen, Jie; Fei, Cheng-Wei; Bai, Guang-Chen
2018-05-01
To improve the computing efficiency and precision of probabilistic design for multi-failure structure, a distributed collaborative probabilistic design method-based fuzzy neural network of regression (FR) (called as DCFRM) is proposed with the integration of distributed collaborative response surface method and fuzzy neural network regression model. The mathematical model of DCFRM is established and the probabilistic design idea with DCFRM is introduced. The probabilistic analysis of turbine blisk involving multi-failure modes (deformation failure, stress failure and strain failure) was investigated by considering fluid-structure interaction with the proposed method. The distribution characteristics, reliability degree, and sensitivity degree of each failure mode and overall failure mode on turbine blisk are obtained, which provides a useful reference for improving the performance and reliability of aeroengine. Through the comparison of methods shows that the DCFRM reshapes the probability of probabilistic analysis for multi-failure structure and improves the computing efficiency while keeping acceptable computational precision. Moreover, the proposed method offers a useful insight for reliability-based design optimization of multi-failure structure and thereby also enriches the theory and method of mechanical reliability design.
Homeostatic Agent for General Environment
NASA Astrophysics Data System (ADS)
Yoshida, Naoto
2018-03-01
One of the essential aspect in biological agents is dynamic stability. This aspect, called homeostasis, is widely discussed in ethology, neuroscience and during the early stages of artificial intelligence. Ashby's homeostats are general-purpose learning machines for stabilizing essential variables of the agent in the face of general environments. However, despite their generality, the original homeostats couldn't be scaled because they searched their parameters randomly. In this paper, first we re-define the objective of homeostats as the maximization of a multi-step survival probability from the view point of sequential decision theory and probabilistic theory. Then we show that this optimization problem can be treated by using reinforcement learning algorithms with special agent architectures and theoretically-derived intrinsic reward functions. Finally we empirically demonstrate that agents with our architecture automatically learn to survive in a given environment, including environments with visual stimuli. Our survival agents can learn to eat food, avoid poison and stabilize essential variables through theoretically-derived single intrinsic reward formulations.
Vehicle Routing Problem Using Genetic Algorithm with Multi Compartment on Vegetable Distribution
NASA Astrophysics Data System (ADS)
Kurnia, Hari; Gustri Wahyuni, Elyza; Cergas Pembrani, Elang; Gardini, Syifa Tri; Kurnia Aditya, Silfa
2018-03-01
The problem that is often gained by the industries of managing and distributing vegetables is how to distribute vegetables so that the quality of the vegetables can be maintained properly. The problems encountered include optimal route selection and little travel time or so-called TSP (Traveling Salesman Problem). These problems can be modeled using the Vehicle Routing Problem (VRP) algorithm with rating ranking, a cross order based crossing, and also order based mutation mutations on selected chromosomes. This study uses limitations using only 20 market points, 2 point warehouse (multi compartment) and 5 vehicles. It is determined that for one distribution, one vehicle can only distribute to 4 market points only from 1 particular warehouse, and also one such vehicle can only accommodate 100 kg capacity.
Agent-based model with multi-level herding for complex financial systems
NASA Astrophysics Data System (ADS)
Chen, Jun-Jie; Tan, Lei; Zheng, Bo
2015-02-01
In complex financial systems, the sector structure and volatility clustering are respectively important features of the spatial and temporal correlations. However, the microscopic generation mechanism of the sector structure is not yet understood. Especially, how to produce these two features in one model remains challenging. We introduce a novel interaction mechanism, i.e., the multi-level herding, in constructing an agent-based model to investigate the sector structure combined with volatility clustering. According to the previous market performance, agents trade in groups, and their herding behavior comprises the herding at stock, sector and market levels. Further, we propose methods to determine the key model parameters from historical market data, rather than from statistical fitting of the results. From the simulation, we obtain the sector structure and volatility clustering, as well as the eigenvalue distribution of the cross-correlation matrix, for the New York and Hong Kong stock exchanges. These properties are in agreement with the empirical ones. Our results quantitatively reveal that the multi-level herding is the microscopic generation mechanism of the sector structure, and provide new insight into the spatio-temporal interactions in financial systems at the microscopic level.
Agent-based model with multi-level herding for complex financial systems
Chen, Jun-Jie; Tan, Lei; Zheng, Bo
2015-01-01
In complex financial systems, the sector structure and volatility clustering are respectively important features of the spatial and temporal correlations. However, the microscopic generation mechanism of the sector structure is not yet understood. Especially, how to produce these two features in one model remains challenging. We introduce a novel interaction mechanism, i.e., the multi-level herding, in constructing an agent-based model to investigate the sector structure combined with volatility clustering. According to the previous market performance, agents trade in groups, and their herding behavior comprises the herding at stock, sector and market levels. Further, we propose methods to determine the key model parameters from historical market data, rather than from statistical fitting of the results. From the simulation, we obtain the sector structure and volatility clustering, as well as the eigenvalue distribution of the cross-correlation matrix, for the New York and Hong Kong stock exchanges. These properties are in agreement with the empirical ones. Our results quantitatively reveal that the multi-level herding is the microscopic generation mechanism of the sector structure, and provide new insight into the spatio-temporal interactions in financial systems at the microscopic level. PMID:25669427
NASA Astrophysics Data System (ADS)
Herman, J. D.; Zeff, H. B.; Reed, P. M.; Characklis, G. W.
2013-12-01
In the Eastern United States, water infrastructure and institutional frameworks have evolved in a historically water-rich environment. However, large regional droughts over the past decade combined with continuing population growth have marked a transition to a state of water scarcity, for which current planning paradigms are ill-suited. Significant opportunities exist to improve the efficiency of water infrastructure via regional coordination, namely, regional 'portfolios' of water-related assets such as reservoirs, conveyance, conservation measures, and transfer agreements. Regional coordination offers the potential to improve reliability, cost, and environmental impact in the expected future state of the world, and, with informed planning, to improve robustness to future uncertainty. In support of this challenge, this study advances a multi-agent many-objective robust decision making (multi-agent MORDM) framework that blends novel computational search and uncertainty analysis tools to discover flexible, robust regional portfolios. Our multi-agent MORDM framework is demonstrated for four water utilities in the Research Triangle region of North Carolina, USA. The utilities supply nearly two million customers and have the ability to interact with one another via transfer agreements and shared infrastructure. We show that strategies for this region which are Pareto-optimal in the expected future state of the world remain vulnerable to performance degradation under alternative scenarios of deeply uncertain hydrologic and economic factors. We then apply the Patient Rule Induction Method (PRIM) to identify which of these uncertain factors drives the individual and collective vulnerabilities for the four cooperating utilities. Our results indicate that clear multi-agent tradeoffs emerge for attaining robustness across the utilities. Furthermore, the key factor identified for improving the robustness of the region's water supply is cooperative demand reduction. This type of approach is critically important given the risks and challenges posed by rising supply development costs, limits on new infrastructure, growing water demands and the underlying uncertainties associated with climate change. The proposed framework serves as a planning template for other historically water-rich regions which must now confront the reality of impending water scarcity.
Study on the E-commerce platform based on the agent
NASA Astrophysics Data System (ADS)
Fu, Ruixue; Qin, Lishuan; Gao, Yinmin
2011-10-01
To solve problem of dynamic integration in e-commerce, the Multi-Agent architecture of electronic commerce platform system based on Agent and Ontology has been introduced, which includes three major types of agent, Ontology and rule collection. In this architecture, service agent and rule are used to realize the business process reengineering, the reuse of software component, and agility of the electronic commerce platform. To illustrate the architecture, a simulation work has been done and the results imply that the architecture provides a very efficient method to design and implement the flexible, distributed, open and intelligent electronic commerce platform system to solve problem of dynamic integration in ecommerce. The objective of this paper is to illustrate the architecture of electronic commerce platform system, and the approach how Agent and Ontology support the electronic commerce platform system.
Multi-agent Reinforcement Learning Model for Effective Action Selection
NASA Astrophysics Data System (ADS)
Youk, Sang Jo; Lee, Bong Keun
Reinforcement learning is a sub area of machine learning concerned with how an agent ought to take actions in an environment so as to maximize some notion of long-term reward. In the case of multi-agent, especially, which state space and action space gets very enormous in compared to single agent, so it needs to take most effective measure available select the action strategy for effective reinforcement learning. This paper proposes a multi-agent reinforcement learning model based on fuzzy inference system in order to improve learning collect speed and select an effective action in multi-agent. This paper verifies an effective action select strategy through evaluation tests based on Robocop Keep away which is one of useful test-beds for multi-agent. Our proposed model can apply to evaluate efficiency of the various intelligent multi-agents and also can apply to strategy and tactics of robot soccer system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Sen; Zhang, Wei; Lian, Jianming
This paper studies a multi-stage pricing problem for a large population of thermostatically controlled loads. The problem is formulated as a reverse Stackelberg game that involves a mean field game in the hierarchy of decision making. In particular, in the higher level, a coordinator needs to design a pricing function to motivate individual agents to maximize the social welfare. In the lower level, the individual utility maximization problem of each agent forms a mean field game coupled through the pricing function that depends on the average of the population control/state. We derive the solution to the reverse Stackelberg game bymore » connecting it to a team problem and the competitive equilibrium, and we show that this solution corresponds to the optimal mean field control that maximizes the social welfare. Realistic simulations are presented to validate the proposed methods.« less
Suppressing epidemic spreading by risk-averse migration in dynamical networks
NASA Astrophysics Data System (ADS)
Yang, Han-Xin; Tang, Ming; Wang, Zhen
2018-01-01
In this paper, we study the interplay between individual behaviors and epidemic spreading in a dynamical network. We distribute agents on a square-shaped region with periodic boundary conditions. Every agent is regarded as a node of the network and a wireless link is established between two agents if their geographical distance is less than a certain radius. At each time, every agent assesses the epidemic situation and make decisions on whether it should stay in or leave its current place. An agent will leave its current place with a speed if the number of infected neighbors reaches or exceeds a critical value E. Owing to the movement of agents, the network's structure is dynamical. Interestingly, we find that there exists an optimal value of E leading to the maximum epidemic threshold. This means that epidemic spreading can be effectively controlled by risk-averse migration. Besides, we find that the epidemic threshold increases as the recovering rate increases, decreases as the contact radius increases, and is maximized by an optimal moving speed. Our findings offer a deeper understanding of epidemic spreading in dynamical networks.
NASA Astrophysics Data System (ADS)
Lachaut, T.; Yoon, J.; Klassert, C. J. A.; Talozi, S.; Mustafa, D.; Knox, S.; Selby, P. D.; Haddad, Y.; Gorelick, S.; Tilmant, A.
2016-12-01
Probabilistic approaches to uncertainty in water systems management can face challenges of several types: non stationary climate, sudden shocks such as conflict-driven migrations, or the internal complexity and dynamics of large systems. There has been a rising trend in the development of bottom-up methods that place focus on the decision side instead of probability distributions and climate scenarios. These approaches are based on defining acceptability thresholds for the decision makers and considering the entire range of possibilities over which such thresholds are crossed. We aim at improving the knowledge on the applicability and relevance of this approach by enlarging its scope beyond climate uncertainty and single decision makers; thus including demographic shifts, internal system dynamics, and multiple stakeholders at different scales. This vulnerability analysis is part of the Jordan Water Project and makes use of an ambitious multi-agent model developed by its teams with the extensive cooperation of the Ministry of Water and Irrigation of Jordan. The case of Jordan is a relevant example for migration spikes, rapid social changes, resource depletion and climate change impacts. The multi-agent modeling framework used provides a consistent structure to assess the vulnerability of complex water resources systems with distributed acceptability thresholds and stakeholder interaction. A proof of concept and preliminary results are presented for a non-probabilistic vulnerability analysis that involves different types of stakeholders, uncertainties other than climatic and the integration of threshold-based indicators. For each stakeholder (agent) a vulnerability matrix is constructed over a multi-dimensional domain, which includes various hydrologic and/or demographic variables.
Energy Optimization Using a Case-Based Reasoning Strategy
Herrera-Viedma, Enrique
2018-01-01
At present, the domotization of homes and public buildings is becoming increasingly popular. Domotization is most commonly applied to the field of energy management, since it gives the possibility of managing the consumption of the devices connected to the electric network, the way in which the users interact with these devices, as well as other external factors that influence consumption. In buildings, Heating, Ventilation and Air Conditioning (HVAC) systems have the highest consumption rates. The systems proposed so far have not succeeded in optimizing the energy consumption associated with a HVAC system because they do not monitor all the variables involved in electricity consumption. For this reason, this article presents an agent approach that benefits from the advantages provided by a Multi-Agent architecture (MAS) deployed in a Cloud environment with a wireless sensor network (WSN) in order to achieve energy savings. The agents of the MAS learn social behavior thanks to the collection of data and the use of an artificial neural network (ANN). The proposed system has been assessed in an office building achieving an average energy savings of 41% in the experimental group offices. PMID:29543729
Assessing groundwater policy with coupled economic-groundwater hydrologic modeling
NASA Astrophysics Data System (ADS)
Mulligan, Kevin B.; Brown, Casey; Yang, Yi-Chen E.; Ahlfeld, David P.
2014-03-01
This study explores groundwater management policies and the effect of modeling assumptions on the projected performance of those policies. The study compares an optimal economic allocation for groundwater use subject to streamflow constraints, achieved by a central planner with perfect foresight, with a uniform tax on groundwater use and a uniform quota on groundwater use. The policies are compared with two modeling approaches, the Optimal Control Model (OCM) and the Multi-Agent System Simulation (MASS). The economic decision models are coupled with a physically based representation of the aquifer using a calibrated MODFLOW groundwater model. The results indicate that uniformly applied policies perform poorly when simulated with more realistic, heterogeneous, myopic, and self-interested agents. In particular, the effects of the physical heterogeneity of the basin and the agents undercut the perceived benefits of policy instruments assessed with simple, single-cell groundwater modeling. This study demonstrates the results of coupling realistic hydrogeology and human behavior models to assess groundwater management policies. The Republican River Basin, which overlies a portion of the Ogallala aquifer in the High Plains of the United States, is used as a case study for this analysis.
Energy Optimization Using a Case-Based Reasoning Strategy.
González-Briones, Alfonso; Prieto, Javier; De La Prieta, Fernando; Herrera-Viedma, Enrique; Corchado, Juan M
2018-03-15
At present, the domotization of homes and public buildings is becoming increasingly popular. Domotization is most commonly applied to the field of energy management, since it gives the possibility of managing the consumption of the devices connected to the electric network, the way in which the users interact with these devices, as well as other external factors that influence consumption. In buildings, Heating, Ventilation and Air Conditioning (HVAC) systems have the highest consumption rates. The systems proposed so far have not succeeded in optimizing the energy consumption associated with a HVAC system because they do not monitor all the variables involved in electricity consumption. For this reason, this article presents an agent approach that benefits from the advantages provided by a Multi-Agent architecture (MAS) deployed in a Cloud environment with a wireless sensor network (WSN) in order to achieve energy savings. The agents of the MAS learn social behavior thanks to the collection of data and the use of an artificial neural network (ANN). The proposed system has been assessed in an office building achieving an average energy savings of 41% in the experimental group offices.
Multi-objective optimization of composite structures. A review
NASA Astrophysics Data System (ADS)
Teters, G. A.; Kregers, A. F.
1996-05-01
Studies performed on the optimization of composite structures by coworkers of the Institute of Polymers Mechanics of the Latvian Academy of Sciences in recent years are reviewed. The possibility of controlling the geometry and anisotropy of laminar composite structures will make it possible to design articles that best satisfy the requirements established for them. Conflicting requirements such as maximum bearing capacity, minimum weight and/or cost, prescribed thermal conductivity and thermal expansion, etc. usually exist for optimal design. This results in the multi-objective compromise optimization of structures. Numerical methods have been developed for solution of problems of multi-objective optimization of composite structures; parameters of the structure of the reinforcement and the geometry of the design are assigned as controlling parameters. Programs designed to run on personal computers have been compiled for multi-objective optimization of the properties of composite materials, plates, and shells. Solutions are obtained for both linear and nonlinear models. The programs make it possible to establish the Pareto compromise region and special multicriterial solutions. The problem of the multi-objective optimization of the elastic moduli of a spatially reinforced fiberglass with stochastic stiffness parameters has been solved. The region of permissible solutions and the Pareto region have been found for the elastic moduli. The dimensions of the scatter ellipse have been determined for a multidimensional Gaussian probability distribution where correlation between the composite's properties being optimized are accounted for. Two types of problems involving the optimization of a laminar rectangular composite plate are considered: the plate is considered elastic and anisotropic in the first case, and viscoelastic properties are accounted for in the second. The angle of reinforcement and the relative amount of fibers in the longitudinal direction are controlling parameters. The optimized properties are the critical stresses, thermal conductivity, and thermal expansion. The properties of a plate are determined by the properties of the components in the composite, eight of which are stochastic. The region of multi-objective compromise solutions is presented, and the parameters of the scatter ellipses of the properties are given.
Chen, Ziwei; Digiacomo, Maria; Tu, Yalin; Gu, Qiong; Wang, Shengnan; Yang, Xiaohong; Chu, Jiaqi; Chen, Qiuhe; Han, Yifan; Chen, Jingkao; Nesi, Giulia; Sestito, Simona; Macchia, Marco; Rapposelli, Simona; Pi, Rongbiao
2017-01-05
A series of rivastigmine-caffeic acid and rivastigmine-ferulic acid hybrids were designed, synthesized, and evaluated as multifunctional agents for Alzheimer's disease (AD) in vitro. The new compounds exerted antioxidant neuroprotective properties and good cholinesterases (ChE) inhibitory activities. Some of them also inhibited amyloid protein (Aβ) aggregation. In particular, compound 5 emerged as promising drug candidates endowed with neuroprotective potential, ChE inhibitory, Aβ self-aggregation inhibitory and copper chelation properties. These data suggest that compound 5 offers an attractive starting point for further lead optimization in the drug-discovery process against AD. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Volk, J. M.; Turner, M. A.; Huntington, J. L.; Gardner, M.; Tyler, S.; Sheneman, L.
2016-12-01
Many distributed models that simulate watershed hydrologic processes require a collection of multi-dimensional parameters as input, some of which need to be calibrated before the model can be applied. The Precipitation Runoff Modeling System (PRMS) is a physically-based and spatially distributed hydrologic model that contains a considerable number of parameters that often need to be calibrated. Modelers can also benefit from uncertainty analysis of these parameters. To meet these needs, we developed a modular framework in Python to conduct PRMS parameter optimization, uncertainty analysis, interactive visual inspection of parameters and outputs, and other common modeling tasks. Here we present results for multi-step calibration of sensitive parameters controlling solar radiation, potential evapo-transpiration, and streamflow in a PRMS model that we applied to the snow-dominated Dry Creek watershed in Idaho. We also demonstrate how our modular approach enables the user to use a variety of parameter optimization and uncertainty methods or easily define their own, such as Monte Carlo random sampling, uniform sampling, or even optimization methods such as the downhill simplex method or its commonly used, more robust counterpart, shuffled complex evolution.
A Nanolayer Copper Coating for Prevention Nosocomial Multi-Drug Resistant Infections
2016-10-01
done using a standard antimicrobial assay defined in ASTM method E2149-01 for determining antibacterial activity of immobilized agents under...are optimized for bacterial growth and do not represent typical conditions. Therefore, most studies reporting on the antimicrobial activity of a...given substance are done in physiological buffer (with the exception of many antibiotics as these require active metabolism for efficacy). This can be
Optimal External Wrench Distribution During a Multi-Contact Sit-to-Stand Task.
Bonnet, Vincent; Azevedo-Coste, Christine; Robert, Thomas; Fraisse, Philippe; Venture, Gentiane
2017-07-01
This paper aims at developing and evaluating a new practical method for the real-time estimate of joint torques and external wrenches during multi-contact sit-to-stand (STS) task using kinematics data only. The proposed method allows also identifying subject specific body inertial segment parameters that are required to perform inverse dynamics. The identification phase is performed using simple and repeatable motions. Thanks to an accurately identified model the estimate of the total external wrench can be used as an input to solve an under-determined multi-contact problem. It is solved using a constrained quadratic optimization process minimizing a hybrid human-like energetic criterion. The weights of this hybrid cost function are adjusted and a sensitivity analysis is performed in order to reproduce robustly human external wrench distribution. The results showed that the proposed method could successfully estimate the external wrenches under buttocks, feet, and hands during STS tasks (RMS error lower than 20 N and 6 N.m). The simplicity and generalization abilities of the proposed method allow paving the way of future diagnosis solutions and rehabilitation applications, including in-home use.
NASA Astrophysics Data System (ADS)
Feng, Ju; Shen, Wen Zhong; Xu, Chang
2016-09-01
A new algorithm for multi-objective wind farm layout optimization is presented. It formulates the wind turbine locations as continuous variables and is capable of optimizing the number of turbines and their locations in the wind farm simultaneously. Two objectives are considered. One is to maximize the total power production, which is calculated by considering the wake effects using the Jensen wake model combined with the local wind distribution. The other is to minimize the total electrical cable length. This length is assumed to be the total length of the minimal spanning tree that connects all turbines and is calculated by using Prim's algorithm. Constraints on wind farm boundary and wind turbine proximity are also considered. An ideal test case shows the proposed algorithm largely outperforms a famous multi-objective genetic algorithm (NSGA-II). In the real test case based on the Horn Rev 1 wind farm, the algorithm also obtains useful Pareto frontiers and provides a wide range of Pareto optimal layouts with different numbers of turbines for a real-life wind farm developer.
Transition-Independent Decentralized Markov Decision Processes
NASA Technical Reports Server (NTRS)
Becker, Raphen; Silberstein, Shlomo; Lesser, Victor; Goldman, Claudia V.; Morris, Robert (Technical Monitor)
2003-01-01
There has been substantial progress with formal models for sequential decision making by individual agents using the Markov decision process (MDP). However, similar treatment of multi-agent systems is lacking. A recent complexity result, showing that solving decentralized MDPs is NEXP-hard, provides a partial explanation. To overcome this complexity barrier, we identify a general class of transition-independent decentralized MDPs that is widely applicable. The class consists of independent collaborating agents that are tied up by a global reward function that depends on both of their histories. We present a novel algorithm for solving this class of problems and examine its properties. The result is the first effective technique to solve optimally a class of decentralized MDPs. This lays the foundation for further work in this area on both exact and approximate solutions.
Osting, Sue; Bennett, Antonette; Power, Shelby; Wackett, Jordan; Hurley, Samuel A; Alexander, Andrew L; Agbandje-Mckena, Mavis; Burger, Corinna
2014-01-01
Intraoperative magnetic resonance imaging (MRI) has been proposed as a method to optimize intracerebral targeting and for tracking infusate distribution in gene therapy trials for nervous system disorders. We thus investigated possible effects of two MRI contrast agents, gadoteridol (Gd) and galbumin (Gab), on the distribution and levels of transgene expression in the rat striatum and their effect on integrity and stability of recombinant adeno-associated virus (rAAV) particles. MRI studies showed that contrast agent distribution did not predict rAAV distribution. However, green fluorescent protein (GFP) immunoreactivity revealed an increase in distribution of rAAV5-GFP, but not rAAV2-GFP, in the presence of Gd when compared with viral vector injected alone. In contrast, Gab increased the distribution of rAAV2-GFP not rAAV5-GFP. These observations pointed to a direct effect of infused contrast agent on the rAAV particles. Negative-stain electron microscopy (EM), DNAase treatment, and differential scanning calorimetry (DSC) were used to monitor rAAV2 and rAAV5 particle integrity and stability following contrast agent incubation. EMs of rAAV2-GFP and rAAV5-GFP particles pretreated with Gd appear morphologically similar to the untreated sample; however, Gab treatment resulted in surface morphology changes and aggregation. A compromise of particle integrity was suggested by sensitivity of the packaged genome to DNAase treatment following Gab incubation but not Gd for both vectors. However, neither agent significantly affected particle stability when analyzed by DSC. An increase in Tm was observed for AAV2 in lactated Ringer’s buffer. These results thus highlight potential interactions between MRI contrast agents and AAV that might affect vector distribution and stability, as well as the stabilizing effect of lactated Ringer’s solution on AAV2. PMID:26015943
Automated monitoring of medical protocols: a secure and distributed architecture.
Alsinet, T; Ansótegui, C; Béjar, R; Fernández, C; Manyà, F
2003-03-01
The control of the right application of medical protocols is a key issue in hospital environments. For the automated monitoring of medical protocols, we need a domain-independent language for their representation and a fully, or semi, autonomous system that understands the protocols and supervises their application. In this paper we describe a specification language and a multi-agent system architecture for monitoring medical protocols. We model medical services in hospital environments as specialized domain agents and interpret a medical protocol as a negotiation process between agents. A medical service can be involved in multiple medical protocols, and so specialized domain agents are independent of negotiation processes and autonomous system agents perform monitoring tasks. We present the detailed architecture of the system agents and of an important domain agent, the database broker agent, that is responsible of obtaining relevant information about the clinical history of patients. We also describe how we tackle the problems of privacy, integrity and authentication during the process of exchanging information between agents.
NASA Astrophysics Data System (ADS)
Bandte, Oliver
It has always been the intention of systems engineering to invent or produce the best product possible. Many design techniques have been introduced over the course of decades that try to fulfill this intention. Unfortunately, no technique has succeeded in combining multi-criteria decision making with probabilistic design. The design technique developed in this thesis, the Joint Probabilistic Decision Making (JPDM) technique, successfully overcomes this deficiency by generating a multivariate probability distribution that serves in conjunction with a criterion value range of interest as a universally applicable objective function for multi-criteria optimization and product selection. This new objective function constitutes a meaningful Xnetric, called Probability of Success (POS), that allows the customer or designer to make a decision based on the chance of satisfying the customer's goals. In order to incorporate a joint probabilistic formulation into the systems design process, two algorithms are created that allow for an easy implementation into a numerical design framework: the (multivariate) Empirical Distribution Function and the Joint Probability Model. The Empirical Distribution Function estimates the probability that an event occurred by counting how many times it occurred in a given sample. The Joint Probability Model on the other hand is an analytical parametric model for the multivariate joint probability. It is comprised of the product of the univariate criterion distributions, generated by the traditional probabilistic design process, multiplied with a correlation function that is based on available correlation information between pairs of random variables. JPDM is an excellent tool for multi-objective optimization and product selection, because of its ability to transform disparate objectives into a single figure of merit, the likelihood of successfully meeting all goals or POS. The advantage of JPDM over other multi-criteria decision making techniques is that POS constitutes a single optimizable function or metric that enables a comparison of all alternative solutions on an equal basis. Hence, POS allows for the use of any standard single-objective optimization technique available and simplifies a complex multi-criteria selection problem into a simple ordering problem, where the solution with the highest POS is best. By distinguishing between controllable and uncontrollable variables in the design process, JPDM can account for the uncertain values of the uncontrollable variables that are inherent to the design problem, while facilitating an easy adjustment of the controllable ones to achieve the highest possible POS. Finally, JPDM's superiority over current multi-criteria decision making techniques is demonstrated with an optimization of a supersonic transport concept and ten contrived equations as well as a product selection example, determining an airline's best choice among Boeing's B-747, B-777, Airbus' A340, and a Supersonic Transport. The optimization examples demonstrate JPDM's ability to produce a better solution with a higher POS than an Overall Evaluation Criterion or Goal Programming approach. Similarly, the product selection example demonstrates JPDM's ability to produce a better solution with a higher POS and different ranking than the Overall Evaluation Criterion or Technique for Order Preferences by Similarity to the Ideal Solution (TOPSIS) approach.
Computational Model for Ethnographically Informed Systems Design
NASA Astrophysics Data System (ADS)
Iqbal, Rahat; James, Anne; Shah, Nazaraf; Terken, Jacuqes
This paper presents a computational model for ethnographically informed systems design that can support complex and distributed cooperative activities. This model is based on an ethnographic framework consisting of three important dimensions (e.g., distributed coordination, awareness of work and plans and procedure), and the BDI (Belief, Desire and Intention) model of intelligent agents. The ethnographic framework is used to conduct ethnographic analysis and to organise ethnographically driven information into three dimensions, whereas the BDI model allows such information to be mapped upon the underlying concepts of multi-agent systems. The advantage of this model is that it is built upon an adaptation of existing mature and well-understood techniques. By the use of this model, we also address the cognitive aspects of systems design.
NASA Astrophysics Data System (ADS)
Surjandari, Isti; Rachman, Amar; Dianawati, Fauzia; Wibowo, R. Pramono
2011-10-01
With the Oil and Gas Law No. 22 of 2001, national and foreign private enterprises can invest in all sectors of Oil and Gas in Indonesia. In anticipation of this free competition, Pertamina, as a state-owned enterprises, which previously had monopolized the oil and gas business activities in Indonesia, should be able to improve services as well as the efficiency in order to compete in the free market, especially in terms of cost efficiency of fuel distribution to gas station (SPBU). To optimize the distribution activity, it is necessary to design a scheduling system and its fuel delivery routes daily to every SPBU. The determination of routes and scheduling delivery of fuel to the SPBU can be modeled as a Petrol Station Replenishment Problem (PSRP) with the multi-depot, multi-product, time windows and split deliveries, which in this study will be completed by the Tabu Search algorithm (TS). This study was conducted in the area of Bandung, the capital of West Java province, which is a big city and the neighboring city of Jakarta, the capital city of Indonesia. By using the fuel delivery data for one day, the results showed a decrease of 16.38% of the distance of the route compared to the current conditions, which impacted on the reduction of distribution costs and decrease the number of total trips by 5.22% and 3.83%.
Agreement Technologies for Energy Optimization at Home
2018-01-01
Nowadays, it is becoming increasingly common to deploy sensors in public buildings or homes with the aim of obtaining data from the environment and taking decisions that help to save energy. Many of the current state-of-the-art systems make decisions considering solely the environmental factors that cause the consumption of energy. These systems are successful at optimizing energy consumption; however, they do not adapt to the preferences of users and their comfort. Any system that is to be used by end-users should consider factors that affect their wellbeing. Thus, this article proposes an energy-saving system, which apart from considering the environmental conditions also adapts to the preferences of inhabitants. The architecture is based on a Multi-Agent System (MAS), its agents use Agreement Technologies (AT) to perform a negotiation process between the comfort preferences of the users and the degree of optimization that the system can achieve according to these preferences. A case study was conducted in an office building, showing that the proposed system achieved average energy savings of 17.15%. PMID:29783768
BTFS: The Border Trade Facilitation System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, L.R.
The author demonstrates the Border Trade Facilitation System (BTFS), an agent-based bilingual e-commerce system built to expedite the regulation, control, and execution of commercial trans-border shipments during the delivery phase. The system was built to serve maquila industries at the US/Mexican border. The BTFS uses foundation technology developed here at Sandia Laboratories' Advanced Information Systems Lab (AISL), including a distributed object substrate, a general-purpose agent development framework, dynamically generated agent-human interaction via the World-Wide Web, and a collaborative agent architecture. This technology is also the substrate for the Multi-Agent Simulation Management System (MASMAS) proposed for demonstration at this conference. Themore » BTFS executes authenticated transactions among agents performing open trading over the Internet. With the BTFS in place, one could conduct secure international transactions from any site with an Internet connection and a web browser. The BTFS is currently being evaluated for commercialization.« less
The mechanisms of labor division from the perspective of individual optimization
NASA Astrophysics Data System (ADS)
Zhu, Lirong; Chen, Jiawei; Di, Zengru; Chen, Liujun; Liu, Yan; Stanley, H. Eugene
2017-12-01
Although the tools of complexity research have been applied to the phenomenon of labor division, its underlying mechanisms are still unclear. Researchers have used evolutionary models to study labor division in terms of global optimization, but focusing on individual optimization is a more realistic, real-world approach. We do this by first developing a multi-agent model that takes into account information-sharing and learning-by-doing and by using simulations to demonstrate the emergence of labor division. We then use a master equation method and find that the computational results are consistent with the results of the simulation. Finally we find that the core underlying mechanisms that cause labor division are learning-by-doing, information cost, and random fluctuation.
A Cognitive Game Theoretic Analysis of Conflict Alerts in Air Traffic Control
NASA Technical Reports Server (NTRS)
Erev, Ido; Gopher, Daniel; Remington, Roger
1999-01-01
The current research was motivated by the recommendation made by a joint Government/Industry committee to introduce a new traffic control system, referred to as the Free Flight. This system is designed to use recent new technology to facilitate efficient and safe air transportation. We addressed one of the major difficulties that arise in the design of this and similar multi-agent systems: the adaptive (and slippery) nature of human agents. To facilitate a safe and efficient design of this multi-agent system, designers have to rely on assessments of the expected behavior of the different agents under various scenarios. Whereas the behavior of the computerized agents is predictable, the behavior of the human agents (including air traffic controllers and pilots) is not. Experimental and empirical observations suggest that human agents are likely to adjust their behavior to the design of the system. To see the difficulty that the adaptive nature of human agents creates assume that a good approximation of the way operators currently behave is available. Given this information an optimal design can be performed. The problem arises as the human operator will learn to adjust their behavior to the new system. Following this adjustment process the assumptions made by the designer concerning the operators behavior will no longer be accurate and the system might reach a suboptimal state. In extreme situations these potential suboptimal states might involve unnecessary risk. That is, the fact that operators learn in an adaptive fashion does not imply that the system will become safer as they gain experience. At least in the context of Safety dilemmas, experience can lead to a pareto deficient risk taking behavior.
NASA Astrophysics Data System (ADS)
Wu, J.; Yang, Y.; Luo, Q.; Wu, J.
2012-12-01
This study presents a new hybrid multi-objective evolutionary algorithm, the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), whereby the global search ability of niched Pareto tabu search (NPTS) is improved by the diversification of candidate solutions arose from the evolving nondominated sorting genetic algorithm II (NSGA-II) population. Also, the NPTSGA coupled with the commonly used groundwater flow and transport codes, MODFLOW and MT3DMS, is developed for multi-objective optimal design of groundwater remediation systems. The proposed methodology is then applied to a large-scale field groundwater remediation system for cleanup of large trichloroethylene (TCE) plume at the Massachusetts Military Reservation (MMR) in Cape Cod, Massachusetts. Furthermore, a master-slave (MS) parallelization scheme based on the Message Passing Interface (MPI) is incorporated into the NPTSGA to implement objective function evaluations in distributed processor environment, which can greatly improve the efficiency of the NPTSGA in finding Pareto-optimal solutions to the real-world application. This study shows that the MS parallel NPTSGA in comparison with the original NPTS and NSGA-II can balance the tradeoff between diversity and optimality of solutions during the search process and is an efficient and effective tool for optimizing the multi-objective design of groundwater remediation systems under complicated hydrogeologic conditions.
Elements of decisional dynamics: An agent-based approach applied to artificial financial market
NASA Astrophysics Data System (ADS)
Lucas, Iris; Cotsaftis, Michel; Bertelle, Cyrille
2018-02-01
This paper introduces an original mathematical description for describing agents' decision-making process in the case of problems affected by both individual and collective behaviors in systems characterized by nonlinear, path dependent, and self-organizing interactions. An application to artificial financial markets is proposed by designing a multi-agent system based on the proposed formalization. In this application, agents' decision-making process is based on fuzzy logic rules and the price dynamics is purely deterministic according to the basic matching rules of a central order book. Finally, while putting most parameters under evolutionary control, the computational agent-based system is able to replicate several stylized facts of financial time series (distributions of stock returns showing a heavy tail with positive excess kurtosis, absence of autocorrelations in stock returns, and volatility clustering phenomenon).
Elements of decisional dynamics: An agent-based approach applied to artificial financial market.
Lucas, Iris; Cotsaftis, Michel; Bertelle, Cyrille
2018-02-01
This paper introduces an original mathematical description for describing agents' decision-making process in the case of problems affected by both individual and collective behaviors in systems characterized by nonlinear, path dependent, and self-organizing interactions. An application to artificial financial markets is proposed by designing a multi-agent system based on the proposed formalization. In this application, agents' decision-making process is based on fuzzy logic rules and the price dynamics is purely deterministic according to the basic matching rules of a central order book. Finally, while putting most parameters under evolutionary control, the computational agent-based system is able to replicate several stylized facts of financial time series (distributions of stock returns showing a heavy tail with positive excess kurtosis, absence of autocorrelations in stock returns, and volatility clustering phenomenon).
Model and simulation of Krause model in dynamic open network
NASA Astrophysics Data System (ADS)
Zhu, Meixia; Xie, Guangqiang
2017-08-01
The construction of the concept of evolution is an effective way to reveal the formation of group consensus. This study is based on the modeling paradigm of the HK model (Hegsekmann-Krause). This paper analyzes the evolution of multi - agent opinion in dynamic open networks with member mobility. The results of the simulation show that when the number of agents is constant, the interval distribution of the initial distribution will affect the number of the final view, The greater the distribution of opinions, the more the number of views formed eventually; The trust threshold has a decisive effect on the number of views, and there is a negative correlation between the trust threshold and the number of opinions clusters. The higher the connectivity of the initial activity group, the more easily the subjective opinion in the evolution of opinion to achieve rapid convergence. The more open the network is more conducive to the unity of view, increase and reduce the number of agents will not affect the consistency of the group effect, but not conducive to stability.
Multi-Objective Optimization for Trustworthy Tactical Networks: A Survey and Insights
2013-06-01
existing data sources, gathering and maintaining the data needed , and completing and reviewing the collection of information. Send comments regarding...problems: using repeated cooperative games [12], hedonic games [25], and nontransferable utility cooperative games [27]. It should be noted that trust...examined an optimal task allocation problem in a distributed computing system where program modules need to be allocated to different processors to
Saviuc, Crina; Ciubucă, Bianca; Dincă, Gabriela; Bleotu, Coralia; Drumea, Veronica; Chifiriuc, Mariana-Carmen; Popa, Marcela; Gradisteanu Pircalabioru, Gratiela; Marutescu, Luminita; Lazăr, Veronica
2017-01-17
The antibacterial and anti-inflammatory potential of natural, plant-derived compounds has been reported in many studies. Emerging evidence indicates that plant-derived essential oils and/or their major compounds may represent a plausible alternative treatment for acne, a prevalent skin disorder in both adolescent and adult populations. Therefore, the purpose of this study was to develop and subsequently analyze the antimicrobial activity of a new multi-agent, synergic formulation based on plant-derived antimicrobial compounds (i.e., eugenol, β-pinene, eucalyptol, and limonene) and anti-inflammatory agents for potential use in the topical treatment of acne and other skin infections. The optimal antimicrobial combinations selected in this study were eugenol/β-pinene/salicylic acid and eugenol/β-pinene/2-phenoxyethanol/potassium sorbate. The possible mechanisms of action revealed by flow cytometry were cellular permeabilization and inhibition of efflux pumps activity induced by concentrations corresponding to sub-minimal inhibitory (sub-MIC) values. The most active antimicrobial combination represented by salycilic acid/eugenol/β-pinene/2-phenoxyethanol/potassium sorbate was included in a cream base, which demonstrated thermodynamic stability and optimum microbiological characteristics.
Sánchez-Rodríguez, Aminael; Tejera, Eduardo; Cruz-Monteagudo, Maykel; Borges, Fernanda; Cordeiro, M. Natália D. S.; Le-Thi-Thu, Huong; Pham-The, Hai
2018-01-01
Gastric cancer is the third leading cause of cancer-related mortality worldwide and despite advances in prevention, diagnosis and therapy, it is still regarded as a global health concern. The efficacy of the therapies for gastric cancer is limited by a poor response to currently available therapeutic regimens. One of the reasons that may explain these poor clinical outcomes is the highly heterogeneous nature of this disease. In this sense, it is essential to discover new molecular agents capable of targeting various gastric cancer subtypes simultaneously. Here, we present a multi-objective approach for the ligand-based virtual screening discovery of chemical compounds simultaneously active against the gastric cancer cell lines AGS, NCI-N87 and SNU-1. The proposed approach relays in a novel methodology based on the development of ensemble models for the bioactivity prediction against each individual gastric cancer cell line. The methodology includes the aggregation of one ensemble per cell line using a desirability-based algorithm into virtual screening protocols. Our research leads to the proposal of a multi-targeted virtual screening protocol able to achieve high enrichment of known chemicals with anti-gastric cancer activity. Specifically, our results indicate that, using the proposed protocol, it is possible to retrieve almost 20 more times multi-targeted compounds in the first 1% of the ranked list than what is expected from a uniform distribution of the active ones in the virtual screening database. More importantly, the proposed protocol attains an outstanding initial enrichment of known multi-targeted anti-gastric cancer agents. PMID:29420638
A distributed model predictive control scheme for leader-follower multi-agent systems
NASA Astrophysics Data System (ADS)
Franzè, Giuseppe; Lucia, Walter; Tedesco, Francesco
2018-02-01
In this paper, we present a novel receding horizon control scheme for solving the formation problem of leader-follower configurations. The algorithm is based on set-theoretic ideas and is tuned for agents described by linear time-invariant (LTI) systems subject to input and state constraints. The novelty of the proposed framework relies on the capability to jointly use sequences of one-step controllable sets and polyhedral piecewise state-space partitions in order to online apply the 'better' control action in a distributed receding horizon fashion. Moreover, we prove that the design of both robust positively invariant sets and one-step-ahead controllable regions is achieved in a distributed sense. Simulations and numerical comparisons with respect to centralised and local-based strategies are finally performed on a group of mobile robots to demonstrate the effectiveness of the proposed control strategy.
Distributed Adaptive Control: Beyond Single-Instant, Discrete Variables
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Bieniawski, Stefan
2005-01-01
In extensive form noncooperative game theory, at each instant t, each agent i sets its state x, independently of the other agents, by sampling an associated distribution, q(sub i)(x(sub i)). The coupling between the agents arises in the joint evolution of those distributions. Distributed control problems can be cast the same way. In those problems the system designer sets aspects of the joint evolution of the distributions to try to optimize the goal for the overall system. Now information theory tells us what the separate q(sub i) of the agents are most likely to be if the system were to have a particular expected value of the objective function G(x(sub 1),x(sub 2), ...). So one can view the job of the system designer as speeding an iterative process. Each step of that process starts with a specified value of E(G), and the convergence of the q(sub i) to the most likely set of distributions consistent with that value. After this the target value for E(sub q)(G) is lowered, and then the process repeats. Previous work has elaborated many schemes for implementing this process when the underlying variables x(sub i) all have a finite number of possible values and G does not extend to multiple instants in time. That work also is based on a fixed mapping from agents to control devices, so that the the statistical independence of the agents' moves means independence of the device states. This paper also extends that work to relax all of these restrictions. This extends the applicability of that work to include continuous spaces and Reinforcement Learning. This paper also elaborates how some of that earlier work can be viewed as a first-principles justification of evolution-based search algorithms.
A multi-echelon supply chain model for municipal solid waste management system.
Zhang, Yimei; Huang, Guo He; He, Li
2014-02-01
In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions of the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well. Copyright © 2013 Elsevier Ltd. All rights reserved.
A multi-echelon supply chain model for municipal solid waste management system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yimei, E-mail: yimei.zhang1@gmail.com; Huang, Guo He; He, Li
2014-02-15
In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions ofmore » the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well.« less
Genetic Algorithm Based Multi-Agent System Applied to Test Generation
ERIC Educational Resources Information Center
Meng, Anbo; Ye, Luqing; Roy, Daniel; Padilla, Pierre
2007-01-01
Automatic test generating system in distributed computing context is one of the most important links in on-line evaluation system. Although the issue has been argued long since, there is not a perfect solution to it so far. This paper proposed an innovative approach to successfully addressing such issue by the seamless integration of genetic…
ERIC Educational Resources Information Center
Rosen, Yigal
2015-01-01
How can activities in which collaborative skills of an individual are measured be standardized? In order to understand how students perform on collaborative problem solving (CPS) computer-based assessment, it is necessary to examine empirically the multi-faceted performance that may be distributed across collaboration methods. The aim of this…
Optimization of cell seeding in a 2D bio-scaffold system using computational models.
Ho, Nicholas; Chua, Matthew; Chui, Chee-Kong
2017-05-01
The cell expansion process is a crucial part of generating cells on a large-scale level in a bioreactor system. Hence, it is important to set operating conditions (e.g. initial cell seeding distribution, culture medium flow rate) to an optimal level. Often, the initial cell seeding distribution factor is neglected and/or overlooked in the design of a bioreactor using conventional seeding distribution methods. This paper proposes a novel seeding distribution method that aims to maximize cell growth and minimize production time/cost. The proposed method utilizes two computational models; the first model represents cell growth patterns whereas the second model determines optimal initial cell seeding positions for adherent cell expansions. Cell growth simulation from the first model demonstrates that the model can be a representation of various cell types with known probabilities. The second model involves a combination of combinatorial optimization, Monte Carlo and concepts of the first model, and is used to design a multi-layer 2D bio-scaffold system that increases cell production efficiency in bioreactor applications. Simulation results have shown that the recommended input configurations obtained from the proposed optimization method are the most optimal configurations. The results have also illustrated the effectiveness of the proposed optimization method. The potential of the proposed seeding distribution method as a useful tool to optimize the cell expansion process in modern bioreactor system applications is highlighted. Copyright © 2017 Elsevier Ltd. All rights reserved.
Novel optimization technique of isolated microgrid with hydrogen energy storage.
Beshr, Eman Hassan; Abdelghany, Hazem; Eteiba, Mahmoud
2018-01-01
This paper presents a novel optimization technique for energy management studies of an isolated microgrid. The system is supplied by various Distributed Energy Resources (DERs), Diesel Generator (DG), a Wind Turbine Generator (WTG), Photovoltaic (PV) arrays and supported by fuel cell/electrolyzer Hydrogen storage system for short term storage. Multi-objective optimization is used through non-dominated sorting genetic algorithm to suit the load requirements under the given constraints. A novel multi-objective flower pollination algorithm is utilized to check the results. The Pros and cons of the two optimization techniques are compared and evaluated. An isolated microgrid is modelled using MATLAB software package, dispatch of active/reactive power, optimal load flow analysis with slack bus selection are carried out to be able to minimize fuel cost and line losses under realistic constraints. The performance of the system is studied and analyzed during both summer and winter conditions and three case studies are presented for each condition. The modified IEEE 15 bus system is used to validate the proposed algorithm.
Novel optimization technique of isolated microgrid with hydrogen energy storage
Abdelghany, Hazem; Eteiba, Mahmoud
2018-01-01
This paper presents a novel optimization technique for energy management studies of an isolated microgrid. The system is supplied by various Distributed Energy Resources (DERs), Diesel Generator (DG), a Wind Turbine Generator (WTG), Photovoltaic (PV) arrays and supported by fuel cell/electrolyzer Hydrogen storage system for short term storage. Multi-objective optimization is used through non-dominated sorting genetic algorithm to suit the load requirements under the given constraints. A novel multi-objective flower pollination algorithm is utilized to check the results. The Pros and cons of the two optimization techniques are compared and evaluated. An isolated microgrid is modelled using MATLAB software package, dispatch of active/reactive power, optimal load flow analysis with slack bus selection are carried out to be able to minimize fuel cost and line losses under realistic constraints. The performance of the system is studied and analyzed during both summer and winter conditions and three case studies are presented for each condition. The modified IEEE 15 bus system is used to validate the proposed algorithm. PMID:29466433
Topology for Dominance for Network of Multi-Agent System
NASA Astrophysics Data System (ADS)
Szeto, K. Y.
2007-05-01
The resource allocation problem in evolving two-dimensional point patterns is investigated for the existence of good strategies for the construction of initial configuration that leads to fast dominance of the pattern by one single species, which can be interpreted as market dominance by a company in the context of multi-agent systems in econophysics. For hexagonal lattice, certain special topological arrangements of the resource in two-dimensions, such as rings, lines and clusters have higher probability of dominance, compared to random pattern. For more complex networks, a systematic way to search for a stable and dominant strategy of resource allocation in the changing environment is found by means of genetic algorithm. Five typical features can be summarized by means of the distribution function for the local neighborhood of friends and enemies as well as the local clustering coefficients: (1) The winner has more triangles than the loser has. (2) The winner likes to form clusters as the winner tends to connect with other winner rather than with losers; while the loser tends to connect with winners rather than losers. (3) The distribution function of friends as well as enemies for the winner is broader than the corresponding distribution function for the loser. (4) The connectivity at which the peak of the distribution of friends for the winner occurs is larger than that of the loser; while the peak values for friends for winners is lower. (5) The connectivity at which the peak of the distribution of enemies for the winner occurs is smaller than that of the loser; while the peak values for enemies for winners is lower. These five features appear to be general, at least in the context of two-dimensional hexagonal lattices of various sizes, hierarchical lattice, Voronoi diagrams, as well as high-dimensional random networks. These general local topological properties of networks are relevant to strategists aiming at dominance in evolving patterns when the interaction between the agents is local.
An ACOR-Based Multi-Objective WSN Deployment Example for Lunar Surveying.
López-Matencio, Pablo
2016-02-06
Wireless sensor networks (WSNs) can gather in situ real data measurements and work unattended for long periods, even in remote, rough places. A critical aspect of WSN design is node placement, as this determines sensing capacities, network connectivity, network lifetime and, in short, the whole operational capabilities of the WSN. This paper proposes and studies a new node placement algorithm that focus on these aspects. As a motivating example, we consider a network designed to describe the distribution of helium-3 (³He), a potential enabling element for fusion reactors, on the Moon. ³He is abundant on the Moon's surface, and knowledge of its distribution is essential for future harvesting purposes. Previous data are inconclusive, and there is general agreement that on-site measurements, obtained over a long time period, are necessary to better understand the mechanisms involved in the distribution of this element on the Moon. Although a mission of this type is extremely complex, it allows us to illustrate the main challenges involved in a multi-objective WSN placement problem, i.e., selection of optimal observation sites and maximization of the lifetime of the network. To tackle optimization, we use a recent adaptation of the ant colony optimization (ACOR) metaheuristic, extended to continuous domains. Solutions are provided in the form of a Pareto frontier that shows the optimal equilibria. Moreover, we compared our scheme with the four-directional placement (FDP) heuristic, which was outperformed in all cases.
NASA Astrophysics Data System (ADS)
Wáng, Yì Xiáng J.; Idée, Jean-Marc; Corot, Claire
2015-10-01
Designing of theranostics and dual or multi-modality contrast agents are currently two of the hottest topics in biotechnology and biomaterials science. However, for single entity theranostics, a right ratio of their diagnostic component and their therapeutic component may not always be realized in a composite suitable for clinical application. For dual/multiple modality molecular imaging agents, after in vivo administration, there is an optimal time window for imaging, when an agent is imaged by one modality, the pharmacokinetics of this agent may not allow imaging by another modality. Due to reticuloendothelial system clearance, efficient in vivo delivery of nanoparticles to the lesion site is sometimes difficult. The toxicity of these entities also remains poorly understood. While the medical need of theranostics is admitted, the business model remains to be established. There is an urgent need for a global and internationally harmonized re-evaluation of the approval and marketing processes of theranostics. However, a reasonable expectation exists that, in the near future, the current obstacles will be removed, thus allowing the wide use of these very promising agents.
Scheduling based on a dynamic resource connection
NASA Astrophysics Data System (ADS)
Nagiyev, A. E.; Botygin, I. A.; Shersntneva, A. I.; Konyaev, P. A.
2017-02-01
The practical using of distributed computing systems associated with many problems, including troubles with the organization of an effective interaction between the agents located at the nodes of the system, with the specific configuration of each node of the system to perform a certain task, with the effective distribution of the available information and computational resources of the system, with the control of multithreading which implements the logic of solving research problems and so on. The article describes the method of computing load balancing in distributed automatic systems, focused on the multi-agency and multi-threaded data processing. The scheme of the control of processing requests from the terminal devices, providing the effective dynamic scaling of computing power under peak load is offered. The results of the model experiments research of the developed load scheduling algorithm are set out. These results show the effectiveness of the algorithm even with a significant expansion in the number of connected nodes and zoom in the architecture distributed computing system.
Game theoretic sensor management for target tracking
NASA Astrophysics Data System (ADS)
Shen, Dan; Chen, Genshe; Blasch, Erik; Pham, Khanh; Douville, Philip; Yang, Chun; Kadar, Ivan
2010-04-01
This paper develops and evaluates a game-theoretic approach to distributed sensor-network management for target tracking via sensor-based negotiation. We present a distributed sensor-based negotiation game model for sensor management for multi-sensor multi-target tacking situations. In our negotiation framework, each negotiation agent represents a sensor and each sensor maximizes their utility using a game approach. The greediness of each sensor is limited by the fact that the sensor-to-target assignment efficiency will decrease if too many sensor resources are assigned to a same target. It is similar to the market concept in real world, such as agreements between buyers and sellers in an auction market. Sensors are willing to switch targets so that they can obtain their highest utility and the most efficient way of applying their resources. Our sub-game perfect equilibrium-based negotiation strategies dynamically and distributedly assign sensors to targets. Numerical simulations are performed to demonstrate our sensor-based negotiation approach for distributed sensor management.
Knowledge-Directed Theory Revision
NASA Astrophysics Data System (ADS)
Ali, Kamal; Leung, Kevin; Konik, Tolga; Choi, Dongkyu; Shapiro, Dan
Using domain knowledge to speed up learning is widely accepted but theory revision of such knowledge continues to use general syntactic operators. Using such operators for theory revision of teleoreactive logic programs is especially expensive in which proof of a top-level goal involves playing a game. In such contexts, one should have the option to complement general theory revision with domain-specific knowledge. Using American football as an example, we use Icarus' multi-agent teleoreactive logic programming ability to encode a coach agent whose concepts correspond to faults recognized in execution of the play and whose skills correspond to making repairs in the goals of the player agents. Our results show effective learning using as few as twenty examples. We also show that structural changes made by such revision can produce performance gains that cannot be matched by doing only numeric optimization.
Wang, Lin; Qu, Hui; Liu, Shan; Dun, Cai-xia
2013-01-01
As a practical inventory and transportation problem, it is important to synthesize several objectives for the joint replenishment and delivery (JRD) decision. In this paper, a new multiobjective stochastic JRD (MSJRD) of the one-warehouse and n-retailer systems considering the balance of service level and total cost simultaneously is proposed. The goal of this problem is to decide the reasonable replenishment interval, safety stock factor, and traveling routing. Secondly, two approaches are designed to handle this complex multi-objective optimization problem. Linear programming (LP) approach converts the multi-objective to single objective, while a multi-objective evolution algorithm (MOEA) solves a multi-objective problem directly. Thirdly, three intelligent optimization algorithms, differential evolution algorithm (DE), hybrid DE (HDE), and genetic algorithm (GA), are utilized in LP-based and MOEA-based approaches. Results of the MSJRD with LP-based and MOEA-based approaches are compared by a contrastive numerical example. To analyses the nondominated solution of MOEA, a metric is also used to measure the distribution of the last generation solution. Results show that HDE outperforms DE and GA whenever LP or MOEA is adopted.
Dun, Cai-xia
2013-01-01
As a practical inventory and transportation problem, it is important to synthesize several objectives for the joint replenishment and delivery (JRD) decision. In this paper, a new multiobjective stochastic JRD (MSJRD) of the one-warehouse and n-retailer systems considering the balance of service level and total cost simultaneously is proposed. The goal of this problem is to decide the reasonable replenishment interval, safety stock factor, and traveling routing. Secondly, two approaches are designed to handle this complex multi-objective optimization problem. Linear programming (LP) approach converts the multi-objective to single objective, while a multi-objective evolution algorithm (MOEA) solves a multi-objective problem directly. Thirdly, three intelligent optimization algorithms, differential evolution algorithm (DE), hybrid DE (HDE), and genetic algorithm (GA), are utilized in LP-based and MOEA-based approaches. Results of the MSJRD with LP-based and MOEA-based approaches are compared by a contrastive numerical example. To analyses the nondominated solution of MOEA, a metric is also used to measure the distribution of the last generation solution. Results show that HDE outperforms DE and GA whenever LP or MOEA is adopted. PMID:24302880
NASA Astrophysics Data System (ADS)
Land, Walker H., Jr.; Lewis, Michael; Sadik, Omowunmi; Wong, Lut; Wanekaya, Adam; Gonzalez, Richard J.; Balan, Arun
2004-04-01
This paper extends the classification approaches described in reference [1] in the following way: (1.) developing and evaluating a new method for evolving organophosphate nerve agent Support Vector Machine (SVM) classifiers using Evolutionary Programming, (2.) conducting research experiments using a larger database of organophosphate nerve agents, and (3.) upgrading the architecture to an object-based grid system for evaluating the classification of EP derived SVMs. Due to the increased threats of chemical and biological weapons of mass destruction (WMD) by international terrorist organizations, a significant effort is underway to develop tools that can be used to detect and effectively combat biochemical warfare. This paper reports the integration of multi-array sensors with Support Vector Machines (SVMs) for the detection of organophosphates nerve agents using a grid computing system called Legion. Grid computing is the use of large collections of heterogeneous, distributed resources (including machines, databases, devices, and users) to support large-scale computations and wide-area data access. Finally, preliminary results using EP derived support vector machines designed to operate on distributed systems have provided accurate classification results. In addition, distributed training time architectures are 50 times faster when compared to standard iterative training time methods.
A comparative analysis of dynamic grids vs. virtual grids using the A3pviGrid framework.
Shankaranarayanan, Avinas; Amaldas, Christine
2010-11-01
With the proliferation of Quad/Multi-core micro-processors in mainstream platforms such as desktops and workstations; a large number of unused CPU cycles can be utilized for running virtual machines (VMs) as dynamic nodes in distributed environments. Grid services and its service oriented business broker now termed cloud computing could deploy image based virtualization platforms enabling agent based resource management and dynamic fault management. In this paper we present an efficient way of utilizing heterogeneous virtual machines on idle desktops as an environment for consumption of high performance grid services. Spurious and exponential increases in the size of the datasets are constant concerns in medical and pharmaceutical industries due to the constant discovery and publication of large sequence databases. Traditional algorithms are not modeled at handing large data sizes under sudden and dynamic changes in the execution environment as previously discussed. This research was undertaken to compare our previous results with running the same test dataset with that of a virtual Grid platform using virtual machines (Virtualization). The implemented architecture, A3pviGrid utilizes game theoretic optimization and agent based team formation (Coalition) algorithms to improve upon scalability with respect to team formation. Due to the dynamic nature of distributed systems (as discussed in our previous work) all interactions were made local within a team transparently. This paper is a proof of concept of an experimental mini-Grid test-bed compared to running the platform on local virtual machines on a local test cluster. This was done to give every agent its own execution platform enabling anonymity and better control of the dynamic environmental parameters. We also analyze performance and scalability of Blast in a multiple virtual node setup and present our findings. This paper is an extension of our previous research on improving the BLAST application framework using dynamic Grids on virtualization platforms such as the virtual box.
The Use of Software Agents for Autonomous Control of a DC Space Power System
NASA Technical Reports Server (NTRS)
May, Ryan D.; Loparo, Kenneth A.
2014-01-01
In order to enable manned deep-space missions, the spacecraft must be controlled autonomously using on-board algorithms. A control architecture is proposed to enable this autonomous operation for an spacecraft electric power system and then implemented using a highly distributed network of software agents. These agents collaborate and compete with each other in order to implement each of the control functions. A subset of this control architecture is tested against a steadystate power system simulation and found to be able to solve a constrained optimization problem with competing objectives using only local information.
Multi-Instance Metric Transfer Learning for Genome-Wide Protein Function Prediction.
Xu, Yonghui; Min, Huaqing; Wu, Qingyao; Song, Hengjie; Ye, Bicui
2017-02-06
Multi-Instance (MI) learning has been proven to be effective for the genome-wide protein function prediction problems where each training example is associated with multiple instances. Many studies in this literature attempted to find an appropriate Multi-Instance Learning (MIL) method for genome-wide protein function prediction under a usual assumption, the underlying distribution from testing data (target domain, i.e., TD) is the same as that from training data (source domain, i.e., SD). However, this assumption may be violated in real practice. To tackle this problem, in this paper, we propose a Multi-Instance Metric Transfer Learning (MIMTL) approach for genome-wide protein function prediction. In MIMTL, we first transfer the source domain distribution to the target domain distribution by utilizing the bag weights. Then, we construct a distance metric learning method with the reweighted bags. At last, we develop an alternative optimization scheme for MIMTL. Comprehensive experimental evidence on seven real-world organisms verifies the effectiveness and efficiency of the proposed MIMTL approach over several state-of-the-art methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Anese, Emiliano; Baker, Kyri; Summers, Tyler
The paper focuses on distribution systems featuring renewable energy sources and energy storage devices, and develops an optimal power flow (OPF) approach to optimize the system operation in spite of forecasting errors. The proposed method builds on a chance-constrained multi-period AC OPF formulation, where probabilistic constraints are utilized to enforce voltage regulation with a prescribed probability. To enable a computationally affordable solution approach, a convex reformulation of the OPF task is obtained by resorting to i) pertinent linear approximations of the power flow equations, and ii) convex approximations of the chance constraints. Particularly, the approximate chance constraints provide conservative boundsmore » that hold for arbitrary distributions of the forecasting errors. An adaptive optimization strategy is then obtained by embedding the proposed OPF task into a model predictive control framework.« less
NASA Astrophysics Data System (ADS)
Garambois, Pierre; Besset, Sebastien; Jézéquel, Louis
2015-07-01
This paper presents a methodology for the multi-objective (MO) shape optimization of plate structure under stress criteria, based on a mixed Finite Element Model (FEM) enhanced with a sub-structuring method. The optimization is performed with a classical Genetic Algorithm (GA) method based on Pareto-optimal solutions and considers thickness distributions parameters and antagonist objectives among them stress criteria. We implement a displacement-stress Dynamic Mixed FEM (DM-FEM) for plate structure vibrations analysis. Such a model gives a privileged access to the stress within the plate structure compared to primal classical FEM, and features a linear dependence to the thickness parameters. A sub-structuring reduction method is also computed in order to reduce the size of the mixed FEM and split the given structure into smaller ones with their own thickness parameters. Those methods combined enable a fast and stress-wise efficient structure analysis, and improve the performance of the repetitive GA. A few cases of minimizing the mass and the maximum Von Mises stress within a plate structure under a dynamic load put forward the relevance of our method with promising results. It is able to satisfy multiple damage criteria with different thickness distributions, and use a smaller FEM.
Neylon, J; Min, Y; Kupelian, P; Low, D A; Santhanam, A
2017-04-01
In this paper, a multi-GPU cloud-based server (MGCS) framework is presented for dose calculations, exploring the feasibility of remote computing power for parallelization and acceleration of computationally and time intensive radiotherapy tasks in moving toward online adaptive therapies. An analytical model was developed to estimate theoretical MGCS performance acceleration and intelligently determine workload distribution. Numerical studies were performed with a computing setup of 14 GPUs distributed over 4 servers interconnected by a 1 Gigabits per second (Gbps) network. Inter-process communication methods were optimized to facilitate resource distribution and minimize data transfers over the server interconnect. The analytically predicted computation time predicted matched experimentally observations within 1-5 %. MGCS performance approached a theoretical limit of acceleration proportional to the number of GPUs utilized when computational tasks far outweighed memory operations. The MGCS implementation reproduced ground-truth dose computations with negligible differences, by distributing the work among several processes and implemented optimization strategies. The results showed that a cloud-based computation engine was a feasible solution for enabling clinics to make use of fast dose calculations for advanced treatment planning and adaptive radiotherapy. The cloud-based system was able to exceed the performance of a local machine even for optimized calculations, and provided significant acceleration for computationally intensive tasks. Such a framework can provide access to advanced technology and computational methods to many clinics, providing an avenue for standardization across institutions without the requirements of purchasing, maintaining, and continually updating hardware.
A multi-agent system for coordinating international shipping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldsmith, S.Y.; Phillips, L.R.; Spires, S.V.
1998-05-01
Moving commercial cargo across the US-Mexico border is currently a complex, paper-based, error-prone process that incurs expensive inspections and delays at several ports of entry in the Southwestern US. Improved information handling will dramatically reduce border dwell time, variation in delivery time, and inventories, and will give better control of the shipment process. The Border Trade Facilitation System (BTFS) is an agent-based collaborative work environment that assists geographically distributed commercial and government users with transshipment of goods across the US-Mexico border. Software agents mediate the creation, validation and secure sharing of shipment information and regulatory documentation over the Internet, usingmore » the World Wide Web to interface with human actors. Agents are organized into Agencies. Each agency represents a commercial or government agency. Agents perform four specific functions on behalf of their user organizations: (1) agents with domain knowledge elicit commercial and regulatory information from human specialists through forms presented via web browsers; (2) agents mediate information from forms with diverse otologies, copying invariant data from one form to another thereby eliminating the need for duplicate data entry; (3) cohorts of distributed agents coordinate the work flow among the various information providers and they monitor overall progress of the documentation and the location of the shipment to ensure that all regulatory requirements are met prior to arrival at the border; (4) agents provide status information to human actors and attempt to influence them when problems are predicted.« less
Resilience-based optimal design of water distribution network
NASA Astrophysics Data System (ADS)
Suribabu, C. R.
2017-11-01
Optimal design of water distribution network is generally aimed to minimize the capital cost of the investments on tanks, pipes, pumps, and other appurtenances. Minimizing the cost of pipes is usually considered as a prime objective as its proportion in capital cost of the water distribution system project is very high. However, minimizing the capital cost of the pipeline alone may result in economical network configuration, but it may not be a promising solution in terms of resilience point of view. Resilience of the water distribution network has been considered as one of the popular surrogate measures to address ability of network to withstand failure scenarios. To improve the resiliency of the network, the pipe network optimization can be performed with two objectives, namely minimizing the capital cost as first objective and maximizing resilience measure of the configuration as secondary objective. In the present work, these two objectives are combined as single objective and optimization problem is solved by differential evolution technique. The paper illustrates the procedure for normalizing the objective functions having distinct metrics. Two of the existing resilience indices and power efficiency are considered for optimal design of water distribution network. The proposed normalized objective function is found to be efficient under weighted method of handling multi-objective water distribution design problem. The numerical results of the design indicate the importance of sizing pipe telescopically along shortest path of flow to have enhanced resiliency indices.
Amorim, Francisco; Carvalho, Sílvia B; Honrado, João; Rebelo, Hugo
2014-01-01
Here we develop a framework to design multi-species monitoring networks using species distribution models and conservation planning tools to optimize the location of monitoring stations to detect potential range shifts driven by climate change. For this study, we focused on seven bat species in Northern Portugal (Western Europe). Maximum entropy modelling was used to predict the likely occurrence of those species under present and future climatic conditions. By comparing present and future predicted distributions, we identified areas where each species is likely to gain, lose or maintain suitable climatic space. We then used a decision support tool (the Marxan software) to design three optimized monitoring networks considering: a) changes in species likely occurrence, b) species conservation status, and c) level of volunteer commitment. For present climatic conditions, species distribution models revealed that areas suitable for most species occur in the north-eastern part of the region. However, areas predicted to become climatically suitable in the future shifted towards west. The three simulated monitoring networks, adaptable for an unpredictable volunteer commitment, included 28, 54 and 110 sampling locations respectively, distributed across the study area and covering the potential full range of conditions where species range shifts may occur. Our results show that our framework outperforms the traditional approach that only considers current species ranges, in allocating monitoring stations distributed across different categories of predicted shifts in species distributions. This study presents a straightforward framework to design monitoring schemes aimed specifically at testing hypotheses about where and when species ranges may shift with climatic changes, while also ensuring surveillance of general population trends.
Multi-agent cooperation rescue algorithm based on influence degree and state prediction
NASA Astrophysics Data System (ADS)
Zheng, Yanbin; Ma, Guangfu; Wang, Linlin; Xi, Pengxue
2018-04-01
Aiming at the multi-agent cooperative rescue in disaster, a multi-agent cooperative rescue algorithm based on impact degree and state prediction is proposed. Firstly, based on the influence of the information in the scene on the collaborative task, the influence degree function is used to filter the information. Secondly, using the selected information to predict the state of the system and Agent behavior. Finally, according to the result of the forecast, the cooperative behavior of Agent is guided and improved the efficiency of individual collaboration. The simulation results show that this algorithm can effectively solve the cooperative rescue problem of multi-agent and ensure the efficient completion of the task.
Topology Optimization - Engineering Contribution to Architectural Design
NASA Astrophysics Data System (ADS)
Tajs-Zielińska, Katarzyna; Bochenek, Bogdan
2017-10-01
The idea of the topology optimization is to find within a considered design domain the distribution of material that is optimal in some sense. Material, during optimization process, is redistributed and parts that are not necessary from objective point of view are removed. The result is a solid/void structure, for which an objective function is minimized. This paper presents an application of topology optimization to multi-material structures. The design domain defined by shape of a structure is divided into sub-regions, for which different materials are assigned. During design process material is relocated, but only within selected region. The proposed idea has been inspired by architectural designs like multi-material facades of buildings. The effectiveness of topology optimization is determined by proper choice of numerical optimization algorithm. This paper utilises very efficient heuristic method called Cellular Automata. Cellular Automata are mathematical, discrete idealization of a physical systems. Engineering implementation of Cellular Automata requires decomposition of the design domain into a uniform lattice of cells. It is assumed, that the interaction between cells takes place only within the neighbouring cells. The interaction is governed by simple, local update rules, which are based on heuristics or physical laws. The numerical studies show, that this method can be attractive alternative to traditional gradient-based algorithms. The proposed approach is evaluated by selected numerical examples of multi-material bridge structures, for which various material configurations are examined. The numerical studies demonstrated a significant influence the material sub-regions location on the final topologies. The influence of assumed volume fraction on final topologies for multi-material structures is also observed and discussed. The results of numerical calculations show, that this approach produces different results as compared with classical one-material problems.
Namboodiri, Vijay Mohan K.; Levy, Joshua M.; Mihalas, Stefan; Sims, David W.; Hussain Shuler, Marshall G.
2016-01-01
Understanding the exploration patterns of foragers in the wild provides fundamental insight into animal behavior. Recent experimental evidence has demonstrated that path lengths (distances between consecutive turns) taken by foragers are well fitted by a power law distribution. Numerous theoretical contributions have posited that “Lévy random walks”—which can produce power law path length distributions—are optimal for memoryless agents searching a sparse reward landscape. It is unclear, however, whether such a strategy is efficient for cognitively complex agents, from wild animals to humans. Here, we developed a model to explain the emergence of apparent power law path length distributions in animals that can learn about their environments. In our model, the agent’s goal during search is to build an internal model of the distribution of rewards in space that takes into account the cost of time to reach distant locations (i.e., temporally discounting rewards). For an agent with such a goal, we find that an optimal model of exploration in fact produces hyperbolic path lengths, which are well approximated by power laws. We then provide support for our model by showing that humans in a laboratory spatial exploration task search space systematically and modify their search patterns under a cost of time. In addition, we find that path length distributions in a large dataset obtained from free-ranging marine vertebrates are well described by our hyperbolic model. Thus, we provide a general theoretical framework for understanding spatial exploration patterns of cognitively complex foragers. PMID:27385831
Building entity models through observation and learning
NASA Astrophysics Data System (ADS)
Garcia, Richard; Kania, Robert; Fields, MaryAnne; Barnes, Laura
2011-05-01
To support the missions and tasks of mixed robotic/human teams, future robotic systems will need to adapt to the dynamic behavior of both teammates and opponents. One of the basic elements of this adaptation is the ability to exploit both long and short-term temporal data. This adaptation allows robotic systems to predict/anticipate, as well as influence, future behavior for both opponents and teammates and will afford the system the ability to adjust its own behavior in order to optimize its ability to achieve the mission goals. This work is a preliminary step in the effort to develop online entity behavior models through a combination of learning techniques and observations. As knowledge is extracted from the system through sensor and temporal feedback, agents within the multi-agent system attempt to develop and exploit a basic movement model of an opponent. For the purpose of this work, extraction and exploitation is performed through the use of a discretized two-dimensional game. The game consists of a predetermined number of sentries attempting to keep an unknown intruder agent from penetrating their territory. The sentries utilize temporal data coupled with past opponent observations to hypothesize the probable locations of the opponent and thus optimize their guarding locations.
NASA Technical Reports Server (NTRS)
Ippolito, Corey; Nguyen, Nhan; Lohn, Jason; Dolan, John
2014-01-01
The emergence of advanced lightweight materials is resulting in a new generation of lighter, flexible, more-efficient airframes that are enabling concepts for active aeroelastic wing-shape control to achieve greater flight efficiency and increased safety margins. These elastically shaped aircraft concepts require non-traditional methods for large-scale multi-objective flight control that simultaneously seek to gain aerodynamic efficiency in terms of drag reduction while performing traditional command-tracking tasks as part of a complete guidance and navigation solution. This paper presents results from a preliminary study of a notional multi-objective control law for an aeroelastic flexible-wing aircraft controlled through distributed continuous leading and trailing edge control surface actuators. This preliminary study develops and analyzes a multi-objective control law derived from optimal linear quadratic methods on a longitudinal vehicle dynamics model with coupled aeroelastic dynamics. The controller tracks commanded attack-angle while minimizing drag and controlling wing twist and bend. This paper presents an overview of the elastic aircraft concept, outlines the coupled vehicle model, presents the preliminary control law formulation and implementation, presents results from simulation, provides analysis, and concludes by identifying possible future areas for research
The value of information in a multi-agent market model. The luck of the uninformed
NASA Astrophysics Data System (ADS)
Tóth, B.; Scalas, E.; Huber, J.; Kirchler, M.
2007-01-01
We present an experimental and simulated model of a multi-agent stock market driven by a double auction order matching mechanism. Studying the effect of cumulative information on the performance of traders, we find a non monotonic relationship of net returns of traders as a function of information levels, both in the experiments and in the simulations. Particularly, averagely informed traders perform worse than the non informed and only traders with high levels of information (insiders) are able to beat the market. The simulations and the experiments reproduce many stylized facts of tick-by-tick stock-exchange data, such as fast decay of autocorrelation of returns, volatility clustering and fat-tailed distribution of returns. These results have an important message for everyday life. They can give a possible explanation why, on average, professional fund managers perform worse than the market index.
Energy Optimal Path Planning: Integrating Coastal Ocean Modelling with Optimal Control
NASA Astrophysics Data System (ADS)
Subramani, D. N.; Haley, P. J., Jr.; Lermusiaux, P. F. J.
2016-02-01
A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. To set up the energy optimization, the relative vehicle speed and headings are considered to be stochastic, and new stochastic Dynamically Orthogonal (DO) level-set equations that govern their stochastic time-optimal reachability fronts are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. The accuracy and efficiency of the DO level-set equations for solving the governing stochastic level-set reachability fronts are quantitatively assessed, including comparisons with independent semi-analytical solutions. Energy-optimal missions are studied in wind-driven barotropic quasi-geostrophic double-gyre circulations, and in realistic data-assimilative re-analyses of multiscale coastal ocean flows. The latter re-analyses are obtained from multi-resolution 2-way nested primitive-equation simulations of tidal-to-mesoscale dynamics in the Middle Atlantic Bight and Shelbreak Front region. The effects of tidal currents, strong wind events, coastal jets, and shelfbreak fronts on the energy-optimal paths are illustrated and quantified. Results showcase the opportunities for longer-duration missions that intelligently utilize the ocean environment to save energy, rigorously integrating ocean forecasting with optimal control of autonomous vehicles.
An optimal method for phosphorylation of rare earth chlorides in LiCl-KCl eutectic based waste salt
NASA Astrophysics Data System (ADS)
Eun, H. C.; Kim, J. H.; Cho, Y. Z.; Choi, J. H.; Lee, T. K.; Park, H. S.; Park, G. I.
2013-11-01
A study on an optimal method for the phosphorylation of rare earth chlorides in LiCl-KCl eutectic waste salt generated the pyrochemical process of spent nuclear fuel was performed. A reactor with a pitched four blade impeller was designed to create a homogeneous mixing zone in LiCl-KCl eutectic salt. A phosphorylation test of NdCl3 in the salt was carried out by changing the operation conditions (operation temperature, stirring rate, agent injection amount). Based on the results of the test, a proper operation condition (450 °C, 300 rpm, 1 eq. of phosphorylation agent) for over a 0.99 conversion ratio of NdCl3 to NdPO4 was determined. Under this condition, multi-component rare earth (La, Ce, Pr, Nd, Sm, Eu, Gd, Y) chlorides were effectively converted into phosphate forms. It was confirmed that the existing regeneration process of LiCl-KCl eutectic waste salt can be greatly improved and simplified through these phosphorylation test results.
A network model of knowledge accumulation through diffusion and upgrade
NASA Astrophysics Data System (ADS)
Zhuang, Enyu; Chen, Guanrong; Feng, Gang
2011-07-01
In this paper, we introduce a model to describe knowledge accumulation through knowledge diffusion and knowledge upgrade in a multi-agent network. Here, knowledge diffusion refers to the distribution of existing knowledge in the network, while knowledge upgrade means the discovery of new knowledge. It is found that the population of the network and the number of each agent’s neighbors affect the speed of knowledge accumulation. Four different policies for updating the neighboring agents are thus proposed, and their influence on the speed of knowledge accumulation and the topology evolution of the network are also studied.
NASA Astrophysics Data System (ADS)
Lian, Enyang; Ren, Yingyu; Han, Yunfeng; Liu, Weixin; Jin, Ningde; Zhao, Junying
2016-11-01
The multi-scale analysis is an important method for detecting nonlinear systems. In this study, we carry out experiments and measure the fluctuation signals from a rotating electric field conductance sensor with eight electrodes. We first use a recurrence plot to recognise flow patterns in vertical upward gas-liquid two-phase pipe flow from measured signals. Then we apply a multi-scale morphological analysis based on the first-order difference scatter plot to investigate the signals captured from the vertical upward gas-liquid two-phase flow loop test. We find that the invariant scaling exponent extracted from the multi-scale first-order difference scatter plot with the bisector of the second-fourth quadrant as the reference line is sensitive to the inhomogeneous distribution characteristics of the flow structure, and the variation trend of the exponent is helpful to understand the process of breakup and coalescence of the gas phase. In addition, we explore the dynamic mechanism influencing the inhomogeneous distribution of the gas phase in terms of adaptive optimal kernel time-frequency representation. The research indicates that the system energy is a factor influencing the distribution of the gas phase and the multi-scale morphological analysis based on the first-order difference scatter plot is an effective method for indicating the inhomogeneous distribution of the gas phase in gas-liquid two-phase flow.
NASA Astrophysics Data System (ADS)
Zhang, Jun-You; Qi, Hong; Ren, Ya-Tao; Ruan, Li-Ming
2018-04-01
An accurate and stable identification technique is developed to retrieve the optical constants and particle size distributions (PSDs) of particle system simultaneously from the multi-wavelength scattering-transmittance signals by using the improved quantum particle swarm optimization algorithm. The Mie theory are selected to calculate the directional laser intensity scattered by particles and the spectral collimated transmittance. The sensitivity and objective function distribution analysis were conducted to evaluate the mathematical properties (i.e. ill-posedness and multimodality) of the inverse problems under three different optical signals combinations (i.e. the single-wavelength multi-angle light scattering signal, the single-wavelength multi-angle light scattering and spectral transmittance signal, and the multi-angle light scattering and spectral transmittance signal). It was found the best global convergence performance can be obtained by using the multi-wavelength scattering-transmittance signals. Meanwhile, the present technique have been tested under different Gaussian measurement noise to prove its feasibility in a large solution space. All the results show that the inverse technique by using multi-wavelength scattering-transmittance signals is effective and suitable for retrieving the optical complex refractive indices and PSD of particle system simultaneously.
Assessment of the risk of antiangiogenic agents before and after surgery.
Bailey, Christina E; Parikh, Alexander A
2018-05-08
Angiogenesis plays a critical role in the growth, progression, and metastasis of numerous solid tumor types, and thus, antiangiogenic agents have been studied for many years as potential therapeutic agents. Many different antiangiogenic agents, including monoclonal antibodies and multi-targeted tyrosine kinase inhibitors (TKIs), have been approved for various oncology indications, and promising clinical activity has been demonstrated. However, some of these agents have also been associated with serious safety concerns. Because angiogenesis is an important step in the wound healing process, agents targeting the angiogenesis pathway may interfere with wound healing, thus increasing the risk of surgical wound complications, such as dehiscence, surgical site bleeding, and wound infection. Nevertheless, antiangiogenic agents can be safely used in the perioperative setting if oncologists and surgeons are educated on the biology and pharmacokinetics of these agents. This review discusses the available published literature regarding surgical complications associated with the use of antiangiogenic agents and provides updated clinical recommendations on the optimal timing between surgery and antiangiogenic therapy. Due to the paucity of data surrounding this topic, current and future clinical trials need to evaluate prospectively the potential risks for surgical complications associated with antiangiogenic therapies to establish specific guidelines for their safe and effective use within the surgical oncology community. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahault, Benoit Alexandre; Saxena, Avadh Behari; Nisoli, Cristiano
We introduce a minimal agent-based model to qualitatively conceptualize the allocation of limited wealth among more abundant opportunities. We study the interplay of power, satisfaction and frustration in the problem of wealth distribution, concentration, and inequality. This framework allows us to compare subjective measures of frustration and satisfaction to collective measures of fairness in wealth distribution, such as the Lorenz curve and the Gini index. We find that a completely libertarian, law-of-the-jungle setting, where every agent can acquire wealth from, or lose wealth to, anybody else invariably leads to a complete polarization of the distribution of wealth vs. opportunity, onlymore » minimally ameliorated by disorder in a non-optimized society. The picture is however dramatically modified when hard constraints are imposed over agents, and they are forced to share wealth with neighbors on a network. We discuss the case of random networks and scale free networks. We then propose an out of equilibrium dynamics of the networks, based on a competition of power and frustration in the decision-making of agents that leads to network evolution. We show that the ratio of power and frustration controls different dynamical regimes separated by kinetic transition and characterized by drastically different values of the indices of equality.« less
Bees do not use nearest-neighbour rules for optimization of multi-location routes.
Lihoreau, Mathieu; Chittka, Lars; Le Comber, Steven C; Raine, Nigel E
2012-02-23
Animals collecting patchily distributed resources are faced with complex multi-location routing problems. Rather than comparing all possible routes, they often find reasonably short solutions by simply moving to the nearest unvisited resources when foraging. Here, we report the travel optimization performance of bumble-bees (Bombus terrestris) foraging in a flight cage containing six artificial flowers arranged such that movements between nearest-neighbour locations would lead to a long suboptimal route. After extensive training (80 foraging bouts and at least 640 flower visits), bees reduced their flight distances and prioritized shortest possible routes, while almost never following nearest-neighbour solutions. We discuss possible strategies used during the establishment of stable multi-location routes (or traplines), and how these could allow bees and other animals to solve complex routing problems through experience, without necessarily requiring a sophisticated cognitive representation of space.
NASA Astrophysics Data System (ADS)
Luo, D.; Guan, Z.; Wang, C.; Yue, L.; Peng, L.
2017-06-01
Distribution of different parts to the assembly lines is significant for companies to improve production. Current research investigates the problem of distribution method optimization of a logistics system in a third party logistic company that provide professional services to an automobile manufacturing case company in China. Current research investigates the logistics leveling the material distribution and unloading platform of the automobile logistics enterprise and proposed logistics distribution strategy, material classification method, as well as logistics scheduling. Moreover, the simulation technology Simio is employed on assembly line logistics system which helps to find and validate an optimization distribution scheme through simulation experiments. Experimental results indicate that the proposed scheme can solve the logistic balance and levels the material problem and congestion of the unloading pattern in an efficient way as compared to the original method employed by the case company.
Ram, Siya; Vajpayee, Poornima; Shanker, Rishi
2007-11-01
The consumption of polluted surface water for domestic and recreational purposes by large populations in developing nations is a major cause of diarrheal disease related mortality. The river Ganga and its tributaries meet 40% of the water requirement for drinking and irrigation in India. In this study, Escherichia coli isolates (n=75) of the river Ganga water were investigated for resistance to antimicrobial agents (n=15) and virulence genes specific to shiga toxin (STEC) and enterotoxin producing E. coli (ETEC). E. coli isolates from the river Ganga water exhibit resistance to multiple antimicrobial agents. The distribution of antimicrobial agent resistance in E. colivaries significantly (chi2: 81.28 at df = 24, p < 0.001) between the sites. Both stx1 and stx2 genes were present in 82.3% of STEC (n=17) while remaining isolates possess either stxl (11.8%) or stx2 (5.9%). The presence of eaeA, hlyA, and chuA genes was observed in 70.6, 88.2, and 58.8% of STEC, respectively. Both LT1 and ST1 genes were positive in 66.7% of ETEC (n=15) while 33.3% of isolates harbor only LT1 gene. The prevalence of multi-antimicrobial-agent resistant E. coli in the river Ganga water poses increased risk of infections in the human population.
NASA Astrophysics Data System (ADS)
Bai, Jing; Wen, Guoguang; Rahmani, Ahmed
2018-04-01
Leaderless consensus for the fractional-order nonlinear multi-agent systems is investigated in this paper. At the first part, a control protocol is proposed to achieve leaderless consensus for the nonlinear single-integrator multi-agent systems. At the second part, based on sliding mode estimator, a control protocol is given to solve leaderless consensus for the the nonlinear single-integrator multi-agent systems. It shows that the control protocol can improve the systems' convergence speed. At the third part, a control protocol is designed to accomplish leaderless consensus for the nonlinear double-integrator multi-agent systems. To judge the systems' stability in this paper, two classic continuous Lyapunov candidate functions are chosen. Finally, several worked out examples under directed interaction topology are given to prove above results.
A Software Product Line Process to Develop Agents for the IoT.
Ayala, Inmaculada; Amor, Mercedes; Fuentes, Lidia; Troya, José M
2015-07-01
One of the most important challenges of this decade is the Internet of Things (IoT), which aims to enable things to be connected anytime, anyplace, with anything and anyone, ideally using any path/network and any service. IoT systems are usually composed of heterogeneous and interconnected lightweight devices that support applications that are subject to change in their external environment and in the functioning of these devices. The management of the variability of these changes, autonomously, is a challenge in the development of these systems. Agents are a good option for developing self-managed IoT systems due to their distributed nature, context-awareness and self-adaptation. Our goal is to enhance the development of IoT applications using agents and software product lines (SPL). Specifically, we propose to use Self-StarMASMAS, multi-agent system) agents and to define an SPL process using the Common Variability Language. In this contribution, we propose an SPL process for Self-StarMAS, paying particular attention to agents embedded in sensor motes.
MONSS: A multi-objective nonlinear simplex search approach
NASA Astrophysics Data System (ADS)
Zapotecas-Martínez, Saúl; Coello Coello, Carlos A.
2016-01-01
This article presents a novel methodology for dealing with continuous box-constrained multi-objective optimization problems (MOPs). The proposed algorithm adopts a nonlinear simplex search scheme in order to obtain multiple elements of the Pareto optimal set. The search is directed by a well-distributed set of weight vectors, each of which defines a scalarization problem that is solved by deforming a simplex according to the movements described by Nelder and Mead's method. Considering an MOP with n decision variables, the simplex is constructed using n+1 solutions which minimize different scalarization problems defined by n+1 neighbor weight vectors. All solutions found in the search are used to update a set of solutions considered to be the minima for each separate problem. In this way, the proposed algorithm collectively obtains multiple trade-offs among the different conflicting objectives, while maintaining a proper representation of the Pareto optimal front. In this article, it is shown that a well-designed strategy using just mathematical programming techniques can be competitive with respect to the state-of-the-art multi-objective evolutionary algorithms against which it was compared.
Perdikaris, Paris; Karniadakis, George Em
2016-05-01
We present a computational framework for model inversion based on multi-fidelity information fusion and Bayesian optimization. The proposed methodology targets the accurate construction of response surfaces in parameter space, and the efficient pursuit to identify global optima while keeping the number of expensive function evaluations at a minimum. We train families of correlated surrogates on available data using Gaussian processes and auto-regressive stochastic schemes, and exploit the resulting predictive posterior distributions within a Bayesian optimization setting. This enables a smart adaptive sampling procedure that uses the predictive posterior variance to balance the exploration versus exploitation trade-off, and is a key enabler for practical computations under limited budgets. The effectiveness of the proposed framework is tested on three parameter estimation problems. The first two involve the calibration of outflow boundary conditions of blood flow simulations in arterial bifurcations using multi-fidelity realizations of one- and three-dimensional models, whereas the last one aims to identify the forcing term that generated a particular solution to an elliptic partial differential equation. © 2016 The Author(s).
Perdikaris, Paris; Karniadakis, George Em
2016-01-01
We present a computational framework for model inversion based on multi-fidelity information fusion and Bayesian optimization. The proposed methodology targets the accurate construction of response surfaces in parameter space, and the efficient pursuit to identify global optima while keeping the number of expensive function evaluations at a minimum. We train families of correlated surrogates on available data using Gaussian processes and auto-regressive stochastic schemes, and exploit the resulting predictive posterior distributions within a Bayesian optimization setting. This enables a smart adaptive sampling procedure that uses the predictive posterior variance to balance the exploration versus exploitation trade-off, and is a key enabler for practical computations under limited budgets. The effectiveness of the proposed framework is tested on three parameter estimation problems. The first two involve the calibration of outflow boundary conditions of blood flow simulations in arterial bifurcations using multi-fidelity realizations of one- and three-dimensional models, whereas the last one aims to identify the forcing term that generated a particular solution to an elliptic partial differential equation. PMID:27194481
On the MTD paradigm and optimal control for multi-drug cancer chemotherapy.
Ledzewicz, Urszula; Schättler, Heinz; Gahrooi, Mostafa Reisi; Dehkordi, Siamak Mahmoudian
2013-06-01
In standard chemotherapy protocols, drugs are given at maximum tolerated doses (MTD) with rest periods in between. In this paper, we briey discuss the rationale behind this therapy approach and, using as example multidrug cancer chemotherapy with a cytotoxic and cytostatic agent, show that these types of protocols are optimal in the sense of minimizing a weighted average of the number of tumor cells (taken both at the end of therapy and at intermediate times) and the total dose given if it is assumed that the tumor consists of a homogeneous population of chemotherapeutically sensitive cells. A 2-compartment linear model is used to model the pharmacokinetic equations for the drugs.
GPR-Based Water Leak Models in Water Distribution Systems
Ayala-Cabrera, David; Herrera, Manuel; Izquierdo, Joaquín; Ocaña-Levario, Silvia J.; Pérez-García, Rafael
2013-01-01
This paper addresses the problem of leakage in water distribution systems through the use of ground penetrating radar (GPR) as a nondestructive method. Laboratory tests are performed to extract features of water leakage from the obtained GPR images. Moreover, a test in a real-world urban system under real conditions is performed. Feature extraction is performed by interpreting GPR images with the support of a pre-processing methodology based on an appropriate combination of statistical methods and multi-agent systems. The results of these tests are presented, interpreted, analyzed and discussed in this paper.
New generation of magnetic and luminescent nanoparticles for in vivo real-time imaging
Lacroix, Lise-Marie; Delpech, Fabien; Nayral, Céline; Lachaize, Sébastien; Chaudret, Bruno
2013-01-01
A new generation of optimized contrast agents is emerging, based on metallic nanoparticles (NPs) and semiconductor nanocrystals for, respectively, magnetic resonance imaging (MRI) and near-infrared (NIR) fluorescent imaging techniques. Compared with established contrast agents, such as iron oxide NPs or organic dyes, these NPs benefit from several advantages: their magnetic and optical properties can be tuned through size, shape and composition engineering, their efficiency can exceed by several orders of magnitude that of contrast agents clinically used, their surface can be modified to incorporate specific targeting agents and antifolding polymers to increase blood circulation time and tumour recognition, and they can possibly be integrated in complex architecture to yield multi-modal imaging agents. In this review, we will report the materials of choice based on the understanding of the basic physics of NIR and MRI techniques and their corresponding syntheses as NPs. Surface engineering, water transfer and specific targeting will be highlighted prior to their first use for in vivo real-time imaging. Highly efficient NPs that are safer and target specific are likely to enter clinical application in a near future. PMID:24427542
NASA Astrophysics Data System (ADS)
Peng, Haijun; Wang, Wei
2016-10-01
An adaptive surrogate model-based multi-objective optimization strategy that combines the benefits of invariant manifolds and low-thrust control toward developing a low-computational-cost transfer trajectory between libration orbits around the L1 and L2 libration points in the Sun-Earth system has been proposed in this paper. A new structure for a multi-objective transfer trajectory optimization model that divides the transfer trajectory into several segments and gives the dominations for invariant manifolds and low-thrust control in different segments has been established. To reduce the computational cost of multi-objective transfer trajectory optimization, a mixed sampling strategy-based adaptive surrogate model has been proposed. Numerical simulations show that the results obtained from the adaptive surrogate-based multi-objective optimization are in agreement with the results obtained using direct multi-objective optimization methods, and the computational workload of the adaptive surrogate-based multi-objective optimization is only approximately 10% of that of direct multi-objective optimization. Furthermore, the generating efficiency of the Pareto points of the adaptive surrogate-based multi-objective optimization is approximately 8 times that of the direct multi-objective optimization. Therefore, the proposed adaptive surrogate-based multi-objective optimization provides obvious advantages over direct multi-objective optimization methods.
A Multi-Agent System Architecture for Sensor Networks
Fuentes-Fernández, Rubén; Guijarro, María; Pajares, Gonzalo
2009-01-01
The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work. PMID:22303172
A multi-agent system architecture for sensor networks.
Fuentes-Fernández, Rubén; Guijarro, María; Pajares, Gonzalo
2009-01-01
The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work.
2014-03-27
Their chromosome representation is a binary string of 13 actions or 39 bits. Plans consist of a limited number of build actions for the creation of...injected via case-injection which resembles case-base reasoning. Expert actions are recorded and then transformed into chromosomes for injection into GAPs...sites supply a finite amount of a resource. For example, a gold mine in AOE will disappear after a player’s workers have extracted the finite amount of
Individual Decision-Making in Uncertain and Large-Scale Multi-Agent Environments
2009-02-18
first method, labeled as MC, limits and holds constant the number of models, 0 < KMC < M, where M is the possibly large number of candidate models of...equivalent and hence may be replaced by a subset of representative models without a significant loss in the optimality of the decision maker. KMC ...for different horizons. KMC and M are equal to 50 and 100 respectively for both approximate and exact approaches (Pentium 4, 3.0GHz, 1GB RAM, WinXP
MARS, a multi-agent system for assessing rowers' coordination via motion-based stigmergy.
Avvenuti, Marco; Cesarini, Daniel; Cimino, Mario G C A
2013-09-12
A crucial aspect in rowing is having a synchronized, highly-efficient stroke. This is very difficult to obtain, due to the many interacting factors that each rower of the crew must perceive. Having a system that monitors and represents the crew coordination would be of great help to the coach during training sessions. In the literature, some methods already employ wireless sensors for capturing motion patterns that affect rowing performance. A challenging problem is to support the coach's decisions at his same level of knowledge, using a limited number of sensors and avoiding the complexity of the biomechanical analysis of human movements. In this paper, we present a multi-agent information-processing system for on-water measuring of both the overall crew asynchrony and the individual rower asynchrony towards the crew. More specifically, in the system, the first level of processing is managed by marking agents, which release marks in a sensing space, according to the rowers' motion. The accumulation of marks enables a stigmergic cooperation mechanism, generating collective marks, i.e., short-term memory structures in the sensing space. At the second level of processing, information provided by marks is observed by similarity agents, which associate a similarity degree with respect to optimal marks. Finally, the third level is managed by granulation agents, which extract asynchrony indicators for different purposes. The effectiveness of the system has been experimented on real-world scenarios. The study includes the problem statement and its characterization in the literature, as well as the proposed solving approach and initial experimental setting.
MARS, a Multi-Agent System for Assessing Rowers' Coordination via Motion-Based Stigmergy
Avvenuti, Marco; Cesarini, Daniel; Cimino, Mario G. C. A.
2013-01-01
A crucial aspect in rowing is having a synchronized, highly-efficient stroke. This is very difficult to obtain, due to the many interacting factors that each rower of the crew must perceive. Having a system that monitors and represents the crew coordination would be of great help to the coach during training sessions. In the literature, some methods already employ wireless sensors for capturing motion patterns that affect rowing performance. A challenging problem is to support the coach's decisions at his same level of knowledge, using a limited number of sensors and avoiding the complexity of the biomechanical analysis of human movements. In this paper, we present a multi-agent information-processing system for on-water measuring of both the overall crew asynchrony and the individual rower asynchrony towards the crew. More specifically, in the system, the first level of processing is managed by marking agents, which release marks in a sensing space, according to the rowers' motion. The accumulation of marks enables a stigmergic cooperation mechanism, generating collective marks, i.e., short-term memory structures in the sensing space. At the second level of processing, information provided by marks is observed by similarity agents, which associate a similarity degree with respect to optimal marks. Finally, the third level is managed by granulation agents, which extract asynchrony indicators for different purposes. The effectiveness of the system has been experimented on real-world scenarios. The study includes the problem statement and its characterization in the literature, as well as the proposed solving approach and initial experimental setting. PMID:24036582
Learning Natural Selection in 4th Grade with Multi-Agent-Based Computational Models
ERIC Educational Resources Information Center
Dickes, Amanda Catherine; Sengupta, Pratim
2013-01-01
In this paper, we investigate how elementary school students develop multi-level explanations of population dynamics in a simple predator-prey ecosystem, through scaffolded interactions with a multi-agent-based computational model (MABM). The term "agent" in an MABM indicates individual computational objects or actors (e.g., cars), and these…
Collective Machine Learning: Team Learning and Classification in Multi-Agent Systems
ERIC Educational Resources Information Center
Gifford, Christopher M.
2009-01-01
This dissertation focuses on the collaboration of multiple heterogeneous, intelligent agents (hardware or software) which collaborate to learn a task and are capable of sharing knowledge. The concept of collaborative learning in multi-agent and multi-robot systems is largely under studied, and represents an area where further research is needed to…
Distributed multi-sensor particle filter for bearings-only tracking
NASA Astrophysics Data System (ADS)
Zhang, Jungen; Ji, Hongbing
2012-02-01
In this article, the classical bearings-only tracking (BOT) problem for a single target is addressed, which belongs to the general class of non-linear filtering problems. Due to the fact that the radial distance observability of the target is poor, the algorithm-based sequential Monte-Carlo (particle filtering, PF) methods generally show instability and filter divergence. A new stable distributed multi-sensor PF method is proposed for BOT. The sensors process their measurements at their sites using a hierarchical PF approach, which transforms the BOT problem from Cartesian coordinate to the logarithmic polar coordinate and separates the observable components from the unobservable components of the target. In the fusion centre, the target state can be estimated by utilising the multi-sensor optimal information fusion rule. Furthermore, the computation of a theoretical Cramer-Rao lower bound is given for the multi-sensor BOT problem. Simulation results illustrate that the proposed tracking method can provide better performances than the traditional PF method.
NASA Astrophysics Data System (ADS)
Jiang, Min; Li, Hui; Zhang, Zeng-ke; Zeng, Jia
2011-02-01
We present an approach to faithfully teleport an unknown quantum state of entangled particles in a multi-particle system involving multi spatially remote agents via probabilistic channels. In our scheme, the integrity of an entangled multi-particle state can be maintained even when the construction of a faithful channel fails. Furthermore, in a quantum teleportation network, there are generally multi spatially remote agents which play the role of relay nodes between a sender and a distant receiver. Hence, we propose two schemes for directly and indirectly constructing a faithful channel between the sender and the distant receiver with the assistance of relay agents, respectively. Our results show that the required auxiliary particle resources, local operations and classical communications are considerably reduced for the present purpose.
Kinetic exchange models: From molecular physics to social science
NASA Astrophysics Data System (ADS)
Patriarca, Marco; Chakraborti, Anirban
2013-08-01
We discuss several multi-agent models that have their origin in the kinetic exchange theory of statistical mechanics and have been recently applied to a variety of problems in the social sciences. This class of models can be easily adapted for simulations in areas other than physics, such as the modeling of income and wealth distributions in economics and opinion dynamics in sociology.
Flexible Multi agent Algorithm for Distributed Decision Making
2015-01-01
How, J. P. Consensus - Based Auction Approaches for Decentralized task Assignment. Proceedings of the AIAA Guidance, Navigation, and Control...G. ; Kim, Y. Market- based Decentralized Task Assignment for Cooperative UA V Mission Including Rendezvous. Proceedings of the AIAA Guidance...scalable and adaptable to a variety of specific mission tasks . Additionally, the algorithm could easily be adapted for use on land or sea- based systems
Don't Fear Optimality: Sampling for Probabilistic-Logic Sequence Models
NASA Astrophysics Data System (ADS)
Thon, Ingo
One of the current challenges in artificial intelligence is modeling dynamic environments that change due to the actions or activities undertaken by people or agents. The task of inferring hidden states, e.g. the activities or intentions of people, based on observations is called filtering. Standard probabilistic models such as Dynamic Bayesian Networks are able to solve this task efficiently using approximative methods such as particle filters. However, these models do not support logical or relational representations. The key contribution of this paper is the upgrade of a particle filter algorithm for use with a probabilistic logical representation through the definition of a proposal distribution. The performance of the algorithm depends largely on how well this distribution fits the target distribution. We adopt the idea of logical compilation into Binary Decision Diagrams for sampling. This allows us to use the optimal proposal distribution which is normally prohibitively slow.
A Multi-Agent System for Intelligent Online Education.
ERIC Educational Resources Information Center
O'Riordan, Colm; Griffith, Josephine
1999-01-01
Describes the system architecture of an intelligent Web-based education system that includes user modeling agents, information filtering agents for automatic information gathering, and the multi-agent interaction. Discusses information management; user interaction; support for collaborative peer-peer learning; implementation; testing; and future…
Examining multi-component DNA-templated nanostructures as imaging agents
NASA Astrophysics Data System (ADS)
Jaganathan, Hamsa
2011-12-01
Magnetic resonance imaging (MRI) is the leading non-invasive tool for disease imaging and diagnosis. Although MRI exhibits high spatial resolution for anatomical features, the contrast resolution is low. Imaging agents serve as an aid to distinguish different types of tissues within images. Gadolinium chelates, which are considered first generation designs, can be toxic to health, while ultra-small, superparamagnetic nanoparticles (NPs) have low tissue-targeting efficiency and rapid bio-distribution, resulting to an inadequate detection of the MRI signal and enhancement of image contrast. In order to improve the utility of MRI agents, the challenge in composition and structure needs to be addressed. One-dimensional (1D), superparamagnetic nanostructures have been reported to enhance magnetic and in vivo properties and therefore has a potential to improve contrast enhancement in MRI images. In this dissertation, the structure of 1D, multi-component NP chains, scaffolded on DNA, were pre-clinically examined as potential MRI agents. First, research was focused on characterizing and understanding the mechanism of proton relaxation for DNA-templated NP chains using nuclear magnetic resonance (NMR) spectrometry. Proton relaxation and transverse relaxivity were higher in multi-component NP chains compared to disperse NPs, indicating the arrangement of NPs on a 1D structure improved proton relaxation sensitivity. Second, in vitro evaluation for potential issues in toxicity and contrast efficiency in tissue environments using a 3 Tesla clinical MRI scanner was performed. Cell uptake of DNA-templated NP chains was enhanced after encapsulating the nanostructure with layers of polyelectrolytes and targeting ligands. Compared to dispersed NPs, DNA-templated NP chains improved MRI contrast in both the epithelial basement membrane and colon cancer tumors scaffolds. The last part of the project was focused on developing a novel MRI agent that detects changes in DNA methylation levels. The findings from this dissertation suggest that the structural arrangement of NPs on DNA significantly influenced their function and utility as MRI agents.
Multiagent model and mean field theory of complex auction dynamics
NASA Astrophysics Data System (ADS)
Chen, Qinghua; Huang, Zi-Gang; Wang, Yougui; Lai, Ying-Cheng
2015-09-01
Recent years have witnessed a growing interest in analyzing a variety of socio-economic phenomena using methods from statistical and nonlinear physics. We study a class of complex systems arising from economics, the lowest unique bid auction (LUBA) systems, which is a recently emerged class of online auction game systems. Through analyzing large, empirical data sets of LUBA, we identify a general feature of the bid price distribution: an inverted J-shaped function with exponential decay in the large bid price region. To account for the distribution, we propose a multi-agent model in which each agent bids stochastically in the field of winner’s attractiveness, and develop a theoretical framework to obtain analytic solutions of the model based on mean field analysis. The theory produces bid-price distributions that are in excellent agreement with those from the real data. Our model and theory capture the essential features of human behaviors in the competitive environment as exemplified by LUBA, and may provide significant quantitative insights into complex socio-economic phenomena.
Verifying Multi-Agent Systems via Unbounded Model Checking
NASA Technical Reports Server (NTRS)
Kacprzak, M.; Lomuscio, A.; Lasica, T.; Penczek, W.; Szreter, M.
2004-01-01
We present an approach to the problem of verification of epistemic properties in multi-agent systems by means of symbolic model checking. In particular, it is shown how to extend the technique of unbounded model checking from a purely temporal setting to a temporal-epistemic one. In order to achieve this, we base our discussion on interpreted systems semantics, a popular semantics used in multi-agent systems literature. We give details of the technique and show how it can be applied to the well known train, gate and controller problem. Keywords: model checking, unbounded model checking, multi-agent systems
Adaptive Control Parameters for Dispersal of Multi-Agent Mobile Ad Hoc Network (MANET) Swarms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurt Derr; Milos Manic
A mobile ad hoc network is a collection of independent nodes that communicate wirelessly with one another. This paper investigates nodes that are swarm robots with communications and sensing capabilities. Each robot in the swarm may operate in a distributed and decentralized manner to achieve some goal. This paper presents a novel approach to dynamically adapting control parameters to achieve mesh configuration stability. The presented approach to robot interaction is based on spring force laws (attraction and repulsion laws) to create near-optimal mesh like configurations. In prior work, we presented the extended virtual spring mesh (EVSM) algorithm for the dispersionmore » of robot swarms. This paper extends the EVSM framework by providing the first known study on the effects of adaptive versus static control parameters on robot swarm stability. The EVSM algorithm provides the following novelties: 1) improved performance with adaptive control parameters and 2) accelerated convergence with high formation effectiveness. Simulation results show that 120 robots reach convergence using adaptive control parameters more than twice as fast as with static control parameters in a multiple obstacle environment.« less
Consensus pursuit of heterogeneous multi-agent systems under a directed acyclic graph
NASA Astrophysics Data System (ADS)
Yan, Jing; Guan, Xin-Ping; Luo, Xiao-Yuan
2011-04-01
This paper is concerned with the cooperative target pursuit problem by multiple agents based on directed acyclic graph. The target appears at a random location and moves only when sensed by the agents, and agents will pursue the target once they detect its existence. Since the ability of each agent may be different, we consider the heterogeneous multi-agent systems. According to the topology of the multi-agent systems, a novel consensus-based control law is proposed, where the target and agents are modeled as a leader and followers, respectively. Based on Mason's rule and signal flow graph analysis, the convergence conditions are provided to show that the agents can catch the target in a finite time. Finally, simulation studies are provided to verify the effectiveness of the proposed approach.
NASA Astrophysics Data System (ADS)
Chintalapudi, V. S.; Sirigiri, Sivanagaraju
2017-04-01
In power system restructuring, pricing the electrical power plays a vital role in cost allocation between suppliers and consumers. In optimal power dispatch problem, not only the cost of active power generation but also the costs of reactive power generated by the generators should be considered to increase the effectiveness of the problem. As the characteristics of reactive power cost curve are similar to that of active power cost curve, a nonconvex reactive power cost function is formulated. In this paper, a more realistic multi-fuel total cost objective is formulated by considering active and reactive power costs of generators. The formulated cost function is optimized by satisfying equality, in-equality and practical constraints using the proposed uniform distributed two-stage particle swarm optimization. The proposed algorithm is a combination of uniform distribution of control variables (to start the iterative process with good initial value) and two-stage initialization processes (to obtain best final value in less number of iterations) can enhance the effectiveness of convergence characteristics. Obtained results for the considered standard test functions and electrical systems indicate the effectiveness of the proposed algorithm and can obtain efficient solution when compared to existing methods. Hence, the proposed method is a promising method and can be easily applied to optimize the power system objectives.
A particle swarm-based algorithm for optimization of multi-layered and graded dental ceramics.
Askari, Ehsan; Flores, Paulo; Silva, Filipe
2018-01-01
The thermal residual stresses (TRSs) generated owing to the cooling down from the processing temperature in layered ceramic systems can lead to crack formation as well as influence the bending stress distribution and the strength of the structure. The purpose of this study is to minimize the thermal residual and bending stresses in dental ceramics to enhance their strength as well as to prevent the structure failure. Analytical parametric models are developed to evaluate thermal residual stresses in zirconia-porcelain multi-layered and graded discs and to simulate the piston-on-ring test. To identify optimal designs of zirconia-based dental restorations, a particle swarm optimizer is also developed. The thickness of each interlayer and compositional distribution are referred to as design variables. The effect of layers number constituting the interlayer between two based materials on the performance of graded prosthetic systems is also investigated. The developed methodology is validated against results available in literature and a finite element model constructed in the present study. Three different cases are considered to determine the optimal design of graded prosthesis based on minimizing (a) TRSs; (b) bending stresses; and (c) both TRS and bending stresses. It is demonstrated that each layer thickness and composition profile have important contributions into the resulting stress field and magnitude. Copyright © 2017 Elsevier Ltd. All rights reserved.
Flexibility Support for Homecare Applications Based on Models and Multi-Agent Technology
Armentia, Aintzane; Gangoiti, Unai; Priego, Rafael; Estévez, Elisabet; Marcos, Marga
2015-01-01
In developed countries, public health systems are under pressure due to the increasing percentage of population over 65. In this context, homecare based on ambient intelligence technology seems to be a suitable solution to allow elderly people to continue to enjoy the comforts of home and help optimize medical resources. Thus, current technological developments make it possible to build complex homecare applications that demand, among others, flexibility mechanisms for being able to evolve as context does (adaptability), as well as avoiding service disruptions in the case of node failure (availability). The solution proposed in this paper copes with these flexibility requirements through the whole life-cycle of the target applications: from design phase to runtime. The proposed domain modeling approach allows medical staff to design customized applications, taking into account the adaptability needs. It also guides software developers during system implementation. The application execution is managed by a multi-agent based middleware, making it possible to meet adaptation requirements, assuring at the same time the availability of the system even for stateful applications. PMID:26694416
Multi-agent systems design for aerospace applications
NASA Astrophysics Data System (ADS)
Waslander, Steven L.
2007-12-01
Engineering systems with independent decision makers are becoming increasingly prevalent and present many challenges in coordinating actions to achieve systems goals. In particular, this work investigates the applications of air traffic flow control and autonomous vehicles as motivation to define algorithms that allow agents to agree to safe, efficient and equitable solutions in a distributed manner. To ensure system requirements will be satisfied in practice, each method is evaluated for a specific model of agent behavior, be it cooperative or non-cooperative. The air traffic flow control problem is investigated from the point of view of the airlines, whose costs are directly affected by resource allocation decisions made by the Federal Aviation Administration in order to mitigate traffic disruptions caused by weather. Airlines are first modeled as cooperative, and a distributed algorithm is presented with various global cost metrics which balance efficient and equitable use of resources differently. Next, a competitive airline model is assumed and two market mechanisms are developed for allocating contested airspace resources. The resource market mechanism provides a solution for which convergence to an efficient solution can be guaranteed, and each airline will improve on the solution that would occur without its inclusion in the decision process. A lump-sum market is then introduced as an alternative mechanism, for which efficiency loss bounds exist if airlines attempt to manipulate prices. Initial convergence results for lump-sum markets are presented for simplified problems with a single resource. To validate these algorithms, two air traffic flow models are developed which extend previous techniques, the first a convenient convex model made possible by assuming constant velocity flow, and the second a more complex flow model with full inflow, velocity and rerouting control. Autonomous vehicle teams are envisaged for many applications including mobile sensing and search and rescue. To enable these high-level applications, multi-vehicle collision avoidance is solved using a cooperative, decentralized algorithm. For the development of coordination algorithms for autonomous vehicles, the Stanford Testbed of Autonomous Rotorcraft for Multi-Agent Control (STARMAC) is presented. This testbed provides significant advantages over other aerial testbeds due to its small size and low maintenance requirements.
Bonny, Jean Marie; Boespflug-Tanguly, Odile; Zanca, Michel; Renou, Jean Pierre
2003-03-01
A solution for discrete multi-exponential analysis of T(2) relaxation decay curves obtained in current multi-echo imaging protocol conditions is described. We propose a preprocessing step to improve the signal-to-noise ratio and thus lower the signal-to-noise ratio threshold from which a high percentage of true multi-exponential detection is detected. It consists of a multispectral nonlinear edge-preserving filter that takes into account the signal-dependent Rician distribution of noise affecting magnitude MR images. Discrete multi-exponential decomposition, which requires no a priori knowledge, is performed by a non-linear least-squares procedure initialized with estimates obtained from a total least-squares linear prediction algorithm. This approach was validated and optimized experimentally on simulated data sets of normal human brains.
Massive Multi-Agent Systems Control
NASA Technical Reports Server (NTRS)
Campagne, Jean-Charles; Gardon, Alain; Collomb, Etienne; Nishida, Toyoaki
2004-01-01
In order to build massive multi-agent systems, considered as complex and dynamic systems, one needs a method to analyze and control the system. We suggest an approach using morphology to represent and control the state of large organizations composed of a great number of light software agents. Morphology is understood as representing the state of the multi-agent system as shapes in an abstract geometrical space, this notion is close to the notion of phase space in physics.
Cox, Benjamin L; Mackie, Thomas R; Eliceiri, Kevin W
2015-01-01
Multi-modal imaging approaches of tumor metabolism that provide improved specificity, physiological relevance and spatial resolution would improve diagnosing of tumors and evaluation of tumor progression. Currently, the molecular probe FDG, glucose fluorinated with 18F at the 2-carbon, is the primary metabolic approach for clinical diagnostics with PET imaging. However, PET lacks the resolution necessary to yield intratumoral distributions of deoxyglucose, on the cellular level. Multi-modal imaging could elucidate this problem, but requires the development of new glucose analogs that are better suited for other imaging modalities. Several such analogs have been created and are reviewed here. Also reviewed are several multi-modal imaging studies that have been performed that attempt to shed light on the cellular distribution of glucose analogs within tumors. Some of these studies are performed in vitro, while others are performed in vivo, in an animal model. The results from these studies introduce a visualization gap between the in vitro and in vivo studies that, if solved, could enable the early detection of tumors, the high resolution monitoring of tumors during treatment, and the greater accuracy in assessment of different imaging agents. PMID:25625022
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nehrir, M. Hashem
In this Project we collaborated with two DOE National Laboratories, Pacific Northwest National Lab (PNNL) and Lawrence Berkeley National Lab (LBL). Dr. Hammerstrom of PNNL initially supported our project and was on the graduate committee of one of the Ph.D. students (graduated in 2014) who was supported by this project. He is also a committee member of a current graduate student of the PI who was supported by this project in the last two years (August 2014-July 2016). The graduate student is now supported be the Electrical and Computer Engineering (ECE) Department at Montana State University (MSU). Dr. Chris Marneymore » of LBL provided actual load data, and the software WEBOPT developed at LBL for microgrid (MG) design for our project. NEC-Labs America, a private industry, also supported our project, providing expert support and modest financial support. We also used the software “HOMER,” originally developed at the National Renewable Energy Laboratory (NREL) and the most recent version made available to us by HOMER Energy, Inc., for MG (hybrid energy system) unit sizing. We compared the findings from WebOpt and HOMER and designed appropriately sized hybrid systems for our case studies. The objective of the project was to investigate real-time power management strategies for MGs using intelligent control, considering maximum feasible energy sustainability, reliability and efficiency while, minimizing cost and undesired environmental impact (emissions). Through analytic and simulation studies, we evaluated the suitability of several heuristic and artificial-intelligence (AI)-based optimization techniques that had potential for real-time MG power management, including genetic algorithms (GA), ant colony optimization (ACO), particle swarm optimization (PSO), and multi-agent systems (MAS), which is based on the negotiation of smart software-based agents. We found that PSO and MAS, in particular, distributed MAS, were more efficient and better suited for our work. We investigated the following: • Intelligent load control - demand response (DR) - for frequency stabilization in islanded MGs (partially supported by PNNL). • The impact of high penetration of solar photovoltaic (PV)-generated power at the distribution level (partially supported by PNNL). • The application of AI approaches to renewable (wind, PV) power forecasting (proposed by the reviewers of our proposal). • Application of AI approaches and DR for real-time MG power management (partially supported by NEC Labs-America) • Application of DR in dealing with the variability of wind power • Real-time MG power management using DR and storage (partially supported by NEC Labs-America) • Application of DR in enhancing the performance of load-frequency controller • MAS-based whole-sale and retail power market design for smart grid A« less
LMI-Based Fuzzy Optimal Variance Control of Airfoil Model Subject to Input Constraints
NASA Technical Reports Server (NTRS)
Swei, Sean S.M.; Ayoubi, Mohammad A.
2017-01-01
This paper presents a study of fuzzy optimal variance control problem for dynamical systems subject to actuator amplitude and rate constraints. Using Takagi-Sugeno fuzzy modeling and dynamic Parallel Distributed Compensation technique, the stability and the constraints can be cast as a multi-objective optimization problem in the form of Linear Matrix Inequalities. By utilizing the formulations and solutions for the input and output variance constraint problems, we develop a fuzzy full-state feedback controller. The stability and performance of the proposed controller is demonstrated through its application to the airfoil flutter suppression.
A cognitive information processing framework for distributed sensor networks
NASA Astrophysics Data System (ADS)
Wang, Feiyi; Qi, Hairong
2004-09-01
In this paper, we present a cognitive agent framework (CAF) based on swarm intelligence and self-organization principles, and demonstrate it through collaborative processing for target classification in sensor networks. The framework involves integrated designs to provide both cognitive behavior at the organization level to conquer complexity and reactive behavior at the individual agent level to retain simplicity. The design tackles various problems in the current information processing systems, including overly complex systems, maintenance difficulties, increasing vulnerability to attack, lack of capability to tolerate faults, and inability to identify and cope with low-frequency patterns. An important and distinguishing point of the presented work from classical AI research is that the acquired intelligence does not pertain to distinct individuals but to groups. It also deviates from multi-agent systems (MAS) due to sheer quantity of extremely simple agents we are able to accommodate, to the degree that some loss of coordination messages and behavior of faulty/compromised agents will not affect the collective decision made by the group.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-03
...] Multi-Agency Informational Meeting Concerning Compliance With the Federal Select Agent Program; Public... Select Agent Program established under the Public Health Security and Bioterrorism Preparedness and... Roberson, Veterinary Permit Examiner, APHIS Select Agent Program, VS, ASAP, APHIS, 4700 River Road Unit 2...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-18
...] Multi-Agency Informational Meeting Concerning Compliance With the Federal Select Agent Program; Public... specific regulatory guidance related to the Federal Select Agent Program established under the Public.... Sarah Kwiatkowski, Veterinary Program Assistant, APHIS Select Agent Program, APHIS, 4700 River Road Unit...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-30
...] Multi-Agency Informational Meeting Concerning Compliance With the Federal Select Agent Program; Public... specific regulatory guidance related to the Federal Select Agent Program established under the Public.... Sarah Kwiatkowski, Veterinary Program Assistant, APHIS Select Agent Program, APHIS, 4700 River Road Unit...
Distributed Power Allocation for Wireless Sensor Network Localization: A Potential Game Approach.
Ke, Mingxing; Li, Ding; Tian, Shiwei; Zhang, Yuli; Tong, Kaixiang; Xu, Yuhua
2018-05-08
The problem of distributed power allocation in wireless sensor network (WSN) localization systems is investigated in this paper, using the game theoretic approach. Existing research focuses on the minimization of the localization errors of individual agent nodes over all anchor nodes subject to power budgets. When the service area and the distribution of target nodes are considered, finding the optimal trade-off between localization accuracy and power consumption is a new critical task. To cope with this issue, we propose a power allocation game where each anchor node minimizes the square position error bound (SPEB) of the service area penalized by its individual power. Meanwhile, it is proven that the power allocation game is an exact potential game which has one pure Nash equilibrium (NE) at least. In addition, we also prove the existence of an ϵ -equilibrium point, which is a refinement of NE and the better response dynamic approach can reach the end solution. Analytical and simulation results demonstrate that: (i) when prior distribution information is available, the proposed strategies have better localization accuracy than the uniform strategies; (ii) when prior distribution information is unknown, the performance of the proposed strategies outperforms power management strategies based on the second-order cone program (SOCP) for particular agent nodes after obtaining the estimated distribution of agent nodes. In addition, proposed strategies also provide an instructional trade-off between power consumption and localization accuracy.
Agent-based station for on-line diagnostics by self-adaptive laser Doppler vibrometry
NASA Astrophysics Data System (ADS)
Serafini, S.; Paone, N.; Castellini, P.
2013-12-01
A self-adaptive diagnostic system based on laser vibrometry is proposed for quality control of mechanical defects by vibration testing; it is developed for appliances at the end of an assembly line, but its characteristics are generally suited for testing most types of electromechanical products. It consists of a laser Doppler vibrometer, equipped with scanning mirrors and a camera, which implements self-adaptive bahaviour for optimizing the measurement. The system is conceived as a Quality Control Agent (QCA) and it is part of a Multi Agent System that supervises all the production line. The QCA behaviour is defined so to minimize measurement uncertainty during the on-line tests and to compensate target mis-positioning under guidance of a vision system. Best measurement conditions are reached by maximizing the amplitude of the optical Doppler beat signal (signal quality) and consequently minimize uncertainty. In this paper, the optimization strategy for measurement enhancement achieved by the down-hill algorithm (Nelder-Mead algorithm) and its effect on signal quality improvement is discussed. Tests on a washing machine in controlled operating conditions allow to evaluate the efficacy of the method; significant reduction of noise on vibration velocity spectra is observed. Results from on-line tests are presented, which demonstrate the potential of the system for industrial quality control.
Efficient Credit Assignment through Evaluation Function Decomposition
NASA Technical Reports Server (NTRS)
Agogino, Adrian; Turner, Kagan; Mikkulainen, Risto
2005-01-01
Evolutionary methods are powerful tools in discovering solutions for difficult continuous tasks. When such a solution is encoded over multiple genes, a genetic algorithm faces the difficult credit assignment problem of evaluating how a single gene in a chromosome contributes to the full solution. Typically a single evaluation function is used for the entire chromosome, implicitly giving each gene in the chromosome the same evaluation. This method is inefficient because a gene will get credit for the contribution of all the other genes as well. Accurately measuring the fitness of individual genes in such a large search space requires many trials. This paper instead proposes turning this single complex search problem into a multi-agent search problem, where each agent has the simpler task of discovering a suitable gene. Gene-specific evaluation functions can then be created that have better theoretical properties than a single evaluation function over all genes. This method is tested in the difficult double-pole balancing problem, showing that agents using gene-specific evaluation functions can create a successful control policy in 20 percent fewer trials than the best existing genetic algorithms. The method is extended to more distributed problems, achieving 95 percent performance gains over tradition methods in the multi-rover domain.
Shared prefetching to reduce execution skew in multi-threaded systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichenberger, Alexandre E; Gunnels, John A
Mechanisms are provided for optimizing code to perform prefetching of data into a shared memory of a computing device that is shared by a plurality of threads that execute on the computing device. A memory stream of a portion of code that is shared by the plurality of threads is identified. A set of prefetch instructions is distributed across the plurality of threads. Prefetch instructions are inserted into the instruction sequences of the plurality of threads such that each instruction sequence has a separate sub-portion of the set of prefetch instructions, thereby generating optimized code. Executable code is generated basedmore » on the optimized code and stored in a storage device. The executable code, when executed, performs the prefetches associated with the distributed set of prefetch instructions in a shared manner across the plurality of threads.« less
MASM: a market architecture for sensor management in distributed sensor networks
NASA Astrophysics Data System (ADS)
Viswanath, Avasarala; Mullen, Tracy; Hall, David; Garga, Amulya
2005-03-01
Rapid developments in sensor technology and its applications have energized research efforts towards devising a firm theoretical foundation for sensor management. Ubiquitous sensing, wide bandwidth communications and distributed processing provide both opportunities and challenges for sensor and process control and optimization. Traditional optimization techniques do not have the ability to simultaneously consider the wildly non-commensurate measures involved in sensor management in a single optimization routine. Market-oriented programming provides a valuable and principled paradigm to designing systems to solve this dynamic and distributed resource allocation problem. We have modeled the sensor management scenario as a competitive market, wherein the sensor manager holds a combinatorial auction to sell the various items produced by the sensors and the communication channels. However, standard auction mechanisms have been found not to be directly applicable to the sensor management domain. For this purpose, we have developed a specialized market architecture MASM (Market architecture for Sensor Management). In MASM, the mission manager is responsible for deciding task allocations to the consumers and their corresponding budgets and the sensor manager is responsible for resource allocation to the various consumers. In addition to having a modified combinatorial winner determination algorithm, MASM has specialized sensor network modules that address commensurability issues between consumers and producers in the sensor network domain. A preliminary multi-sensor, multi-target simulation environment has been implemented to test the performance of the proposed system. MASM outperformed the information theoretic sensor manager in meeting the mission objectives in the simulation experiments.
Conflict resolution in multi-agent hybrid systems
DOT National Transportation Integrated Search
1996-12-01
A conflict resolution architecture for multi-agent hybrid systems with emphasis on Air Traffic Management Systems (ATMS) is presented. In such systems, conflicts arise in the form of potential collisions which are resolved locally by inter-agent coor...
On Nonconvex Decentralized Gradient Descent
2016-08-01
and J. Bolte, On the convergence of the proximal algorithm for nonsmooth functions involving analytic features, Math . Program., 116: 5-16, 2009. [2] H...splitting, and regularized Gauss-Seidel methods, Math . Pro- gram., Ser. A, 137: 91-129, 2013. [3] P. Bianchi and J. Jakubowicz, Convergence of a multi-agent...subgradient method under random communication topologies , IEEE J. Sel. Top. Signal Process., 5:754-771, 2011. [11] A. Nedic and A. Ozdaglar, Distributed
US Army Research Laboratory Visualization Framework Design Document
2016-01-01
This section highlights each module in the ARL-VF and subsequent sections provide details on how each module interacts . Fig. 2 ARL-VF with the...ConfigAgent MultiTouch VizDatabase VizController TUIO VizDatabase User VizDaemon VizDaemon VizDaemon VizDaemon VizDaemon TestPoint...received by the destination. The sequence diagram in Fig. 4 shows this interaction . Approved for public release; distribution unlimited. 13 Fig. 4
A novel method for 3D measurement of RFID multi-tag network based on matching vision and wavelet
NASA Astrophysics Data System (ADS)
Zhuang, Xiao; Yu, Xiaolei; Zhao, Zhimin; Wang, Donghua; Zhang, Wenjie; Liu, Zhenlu; Lu, Dongsheng; Dong, Dingbang
2018-07-01
In the field of radio frequency identification (RFID), the three-dimensional (3D) distribution of RFID multi-tag networks has a significant impact on their reading performance. At the same time, in order to realize the anti-collision of RFID multi-tag networks in practical engineering applications, the 3D distribution of RFID multi-tag networks must be measured. In this paper, a novel method for the 3D measurement of RFID multi-tag networks is proposed. A dual-CCD system (vertical and horizontal cameras) is used to obtain images of RFID multi-tag networks from different angles. Then, the wavelet threshold denoising method is used to remove noise in the obtained images. The template matching method is used to determine the two-dimensional coordinates and vertical coordinate of each tag. The 3D coordinates of each tag are obtained subsequently. Finally, a model of the nonlinear relation between the 3D coordinate distribution of the RFID multi-tag network and the corresponding reading distance is established using the wavelet neural network. The experiment results show that the average prediction relative error is 0.71% and the time cost is 2.17 s. The values of the average prediction relative error and time cost are smaller than those of the particle swarm optimization neural network and genetic algorithm–back propagation neural network. The time cost of the wavelet neural network is about 1% of that of the other two methods. The method proposed in this paper has a smaller relative error. The proposed method can improve the real-time performance of RFID multi-tag networks and the overall dynamic performance of multi-tag networks.
Distributed Optimization of Multi Beam Directional Communication Networks
2017-06-30
kT is the noise figure of the receiver. The path loss from node i to the central station is denoted as fi,C and is similarly defined. We seek to...optimally allocate power among several transmit beams per node in order to maximize the total signal-to- interference noise ratio at the central station...Computing, vol. 15, no. 9, September 2016. [6] X. Quan, Y. Liu, S. Shao, C. Huang, and Y. Tang, “Impacts of Phase Noise on Digital Self-Iinterference
Multi-period equilibrium/near-equilibrium in electricity markets based on locational marginal prices
NASA Astrophysics Data System (ADS)
Garcia Bertrand, Raquel
In this dissertation we propose an equilibrium procedure that coordinates the point of view of every market agent resulting in an equilibrium that simultaneously maximizes the independent objective of every market agent and satisfies network constraints. Therefore, the activities of the generating companies, consumers and an independent system operator are modeled: (1) The generating companies seek to maximize profits by specifying hourly step functions of productions and minimum selling prices, and bounds on productions. (2) The goals of the consumers are to maximize their economic utilities by specifying hourly step functions of demands and maximum buying prices, and bounds on demands. (3) The independent system operator then clears the market taking into account consistency conditions as well as capacity and line losses so as to achieve maximum social welfare. Then, we approach this equilibrium problem using complementarity theory in order to have the capability of imposing constraints on dual variables, i.e., on prices, such as minimum profit conditions for the generating units or maximum cost conditions for the consumers. In this way, given the form of the individual optimization problems, the Karush-Kuhn-Tucker conditions for the generating companies, the consumers and the independent system operator are both necessary and sufficient. The simultaneous solution to all these conditions constitutes a mixed linear complementarity problem. We include minimum profit constraints imposed by the units in the market equilibrium model. These constraints are added as additional constraints to the equivalent quadratic programming problem of the mixed linear complementarity problem previously described. For the sake of clarity, the proposed equilibrium or near-equilibrium is first developed for the particular case considering only one time period. Afterwards, we consider an equilibrium or near-equilibrium applied to a multi-period framework. This model embodies binary decisions, i.e., on/off status for the units, and therefore optimality conditions cannot be directly applied. To avoid limitations provoked by binary variables, while retaining the advantages of using optimality conditions, we define the multi-period market equilibrium using Benders decomposition, which allows computing binary variables through the master problem and continuous variables through the subproblem. Finally, we illustrate these market equilibrium concepts through several case studies.
Wang, Xi-fen; Zhou, Huai-chun
2005-01-01
The control of 3-D temperature distribution in a utility boiler furnace is essential for the safe, economic and clean operation of pc-fired furnace with multi-burner system. The development of the visualization of 3-D temperature distributions in pc-fired furnaces makes it possible for a new combustion control strategy directly with the furnace temperature as its goal to improve the control quality for the combustion processes. Studied in this paper is such a new strategy that the whole furnace is divided into several parts in the vertical direction, and the average temperature and its bias from the center in every cross section can be extracted from the visualization results of the 3-D temperature distributions. In the simulation stage, a computational fluid dynamics (CFD) code served to calculate the 3-D temperature distributions in a furnace, then a linear model was set up to relate the features of the temperature distributions with the input of the combustion processes, such as the flow rates of fuel and air fed into the furnaces through all the burners. The adaptive genetic algorithm was adopted to find the optimal combination of the whole input parameters which ensure to form an optimal 3-D temperature field in the furnace desired for the operation of boiler. Simulation results showed that the strategy could soon find the factors making the temperature distribution apart from the optimal state and give correct adjusting suggestions.
NASA Technical Reports Server (NTRS)
Dubovik, O; Herman, M.; Holdak, A.; Lapyonok, T.; Taure, D.; Deuze, J. L.; Ducos, F.; Sinyuk, A.
2011-01-01
The proposed development is an attempt to enhance aerosol retrieval by emphasizing statistical optimization in inversion of advanced satellite observations. This optimization concept improves retrieval accuracy relying on the knowledge of measurement error distribution. Efficient application of such optimization requires pronounced data redundancy (excess of the measurements number over number of unknowns) that is not common in satellite observations. The POLDER imager on board the PARASOL microsatellite registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. The completeness of such observations is notably higher than for most currently operating passive satellite aerosol sensors. This provides an opportunity for profound utilization of statistical optimization principles in satellite data inversion. The proposed retrieval scheme is designed as statistically optimized multi-variable fitting of all available angular observations obtained by the POLDER sensor in the window spectral channels where absorption by gas is minimal. The total number of such observations by PARASOL always exceeds a hundred over each pixel and the statistical optimization concept promises to be efficient even if the algorithm retrieves several tens of aerosol parameters. Based on this idea, the proposed algorithm uses a large number of unknowns and is aimed at retrieval of extended set of parameters affecting measured radiation.
NASA Astrophysics Data System (ADS)
Yang, Hong-Yong; Zhang, Shun; Zong, Guang-Deng
2011-01-01
In this paper, the trajectory control of multi-agent dynamical systems with exogenous disturbances is studied. Suppose multiple agents composing of a scale-free network topology, the performance of rejecting disturbances for the low degree node and high degree node is analyzed. Firstly, the consensus of multi-agent systems without disturbances is studied by designing a pinning control strategy on a part of agents, where this pinning control can bring multiple agents' states to an expected consensus track. Then, the influence of the disturbances is considered by developing disturbance observers, and disturbance observers based control (DOBC) are developed for disturbances generated by an exogenous system to estimate the disturbances. Asymptotical consensus of the multi-agent systems with disturbances under the composite controller can be achieved for scale-free network topology. Finally, by analyzing examples of multi-agent systems with scale-free network topology and exogenous disturbances, the verities of the results are proved. Under the DOBC with the designed parameters, the trajectory convergence of multi-agent systems is researched by pinning two class of the nodes. We have found that it has more stronger robustness to exogenous disturbances for the high degree node pinned than that of the low degree node pinned.
Wen, Tingxi; Zhang, Zhongnan; Wong, Kelvin K. L.
2016-01-01
Unmanned aerial vehicle (UAV) has been widely used in many industries. In the medical environment, especially in some emergency situations, UAVs play an important role such as the supply of medicines and blood with speed and efficiency. In this paper, we study the problem of multi-objective blood supply by UAVs in such emergency situations. This is a complex problem that includes maintenance of the supply blood’s temperature model during transportation, the UAVs’ scheduling and routes’ planning in case of multiple sites requesting blood, and limited carrying capacity. Most importantly, we need to study the blood’s temperature change due to the external environment, the heating agent (or refrigerant) and time factor during transportation, and propose an optimal method for calculating the mixing proportion of blood and appendage in different circumstances and delivery conditions. Then, by introducing the idea of transportation appendage into the traditional Capacitated Vehicle Routing Problem (CVRP), this new problem is proposed according to the factors of distance and weight. Algorithmically, we use the combination of decomposition-based multi-objective evolutionary algorithm and local search method to perform a series of experiments on the CVRP public dataset. By comparing our technique with the traditional ones, our algorithm can obtain better optimization results and time performance. PMID:27163361
Wen, Tingxi; Zhang, Zhongnan; Wong, Kelvin K L
2016-01-01
Unmanned aerial vehicle (UAV) has been widely used in many industries. In the medical environment, especially in some emergency situations, UAVs play an important role such as the supply of medicines and blood with speed and efficiency. In this paper, we study the problem of multi-objective blood supply by UAVs in such emergency situations. This is a complex problem that includes maintenance of the supply blood's temperature model during transportation, the UAVs' scheduling and routes' planning in case of multiple sites requesting blood, and limited carrying capacity. Most importantly, we need to study the blood's temperature change due to the external environment, the heating agent (or refrigerant) and time factor during transportation, and propose an optimal method for calculating the mixing proportion of blood and appendage in different circumstances and delivery conditions. Then, by introducing the idea of transportation appendage into the traditional Capacitated Vehicle Routing Problem (CVRP), this new problem is proposed according to the factors of distance and weight. Algorithmically, we use the combination of decomposition-based multi-objective evolutionary algorithm and local search method to perform a series of experiments on the CVRP public dataset. By comparing our technique with the traditional ones, our algorithm can obtain better optimization results and time performance.
On the application of copula in modeling maintenance contract
NASA Astrophysics Data System (ADS)
Iskandar, B. P.; Husniah, H.
2016-02-01
This paper deals with the application of copula in maintenance contracts for a nonrepayable item. Failures of the item are modeled using a two dimensional approach where age and usage of the item and this requires a bi-variate distribution to modelling failures. When the item fails then corrective maintenance (CM) is minimally repaired. CM can be outsourced to an external agent or done in house. The decision problem for the owner is to find the maximum total profit whilst for the agent is to determine the optimal price of the contract. We obtain the mathematical models of the decision problems for the owner as well as the agent using a Nash game theory formulation.
Optimality versus stability in water resource allocation.
Read, Laura; Madani, Kaveh; Inanloo, Bahareh
2014-01-15
Water allocation is a growing concern in a developing world where limited resources like fresh water are in greater demand by more parties. Negotiations over allocations often involve multiple groups with disparate social, economic, and political status and needs, who are seeking a management solution for a wide range of demands. Optimization techniques for identifying the Pareto-optimal (social planner solution) to multi-criteria multi-participant problems are commonly implemented, although often reaching agreement for this solution is difficult. In negotiations with multiple-decision makers, parties who base decisions on individual rationality may find the social planner solution to be unfair, thus creating a need to evaluate the willingness to cooperate and practicality of a cooperative allocation solution, i.e., the solution's stability. This paper suggests seeking solutions for multi-participant resource allocation problems through an economics-based power index allocation method. This method can inform on allocation schemes that quantify a party's willingness to participate in a negotiation rather than opt for no agreement. Through comparison of the suggested method with a range of distance-based multi-criteria decision making rules, namely, least squares, MAXIMIN, MINIMAX, and compromise programming, this paper shows that optimality and stability can produce different allocation solutions. The mismatch between the socially-optimal alternative and the most stable alternative can potentially result in parties leaving the negotiation as they may be too dissatisfied with their resource share. This finding has important policy implications as it justifies why stakeholders may not accept the socially optimal solution in practice, and underlies the necessity of considering stability where it may be more appropriate to give up an unstable Pareto-optimal solution for an inferior stable one. Authors suggest assessing the stability of an allocation solution as an additional component to an analysis that seeks to distribute water in a negotiated process. Copyright © 2013 Elsevier Ltd. All rights reserved.
A Bayesian Alternative for Multi-objective Ecohydrological Model Specification
NASA Astrophysics Data System (ADS)
Tang, Y.; Marshall, L. A.; Sharma, A.; Ajami, H.
2015-12-01
Process-based ecohydrological models combine the study of hydrological, physical, biogeochemical and ecological processes of the catchments, which are usually more complex and parametric than conceptual hydrological models. Thus, appropriate calibration objectives and model uncertainty analysis are essential for ecohydrological modeling. In recent years, Bayesian inference has become one of the most popular tools for quantifying the uncertainties in hydrological modeling with the development of Markov Chain Monte Carlo (MCMC) techniques. Our study aims to develop appropriate prior distributions and likelihood functions that minimize the model uncertainties and bias within a Bayesian ecohydrological framework. In our study, a formal Bayesian approach is implemented in an ecohydrological model which combines a hydrological model (HyMOD) and a dynamic vegetation model (DVM). Simulations focused on one objective likelihood (Streamflow/LAI) and multi-objective likelihoods (Streamflow and LAI) with different weights are compared. Uniform, weakly informative and strongly informative prior distributions are used in different simulations. The Kullback-leibler divergence (KLD) is used to measure the dis(similarity) between different priors and corresponding posterior distributions to examine the parameter sensitivity. Results show that different prior distributions can strongly influence posterior distributions for parameters, especially when the available data is limited or parameters are insensitive to the available data. We demonstrate differences in optimized parameters and uncertainty limits in different cases based on multi-objective likelihoods vs. single objective likelihoods. We also demonstrate the importance of appropriately defining the weights of objectives in multi-objective calibration according to different data types.
Optimization of multi-objective micro-grid based on improved particle swarm optimization algorithm
NASA Astrophysics Data System (ADS)
Zhang, Jian; Gan, Yang
2018-04-01
The paper presents a multi-objective optimal configuration model for independent micro-grid with the aim of economy and environmental protection. The Pareto solution set can be obtained by solving the multi-objective optimization configuration model of micro-grid with the improved particle swarm algorithm. The feasibility of the improved particle swarm optimization algorithm for multi-objective model is verified, which provides an important reference for multi-objective optimization of independent micro-grid.
Sustainable Society Formed by Unselfish Agents
NASA Astrophysics Data System (ADS)
Kikuchi, Toshiko
It has been pointed out that if the social configuration of the three relations (market, communal and obligatory relations) is not balanced, a market based society as a total system fails. Using multi-agent simulations, this paper shows that a sustainable society is formed when all three relations are integrated and function respectively. When agent trades are based on the market mechanism (i.e., agents act in their own interest and thus only market relations exist), weak agents who cannot perform transactions die. If a compulsory tax is imposed to enable all weak agents to survive (i.e., obligatory relations exist), then the fiscal deficit increases. On the other hand, if agents who have excess income undertake the unselfish action of distributing their surplus to the weak agents (i.e., communal relations exist), then trade volume increases. It is shown that the existence of unselfish agents is necessary for the realization of a sustainable society. However, the survival of all agents is difficult in a communal society. In an artificial society, for all agents survive and fiscal balance to be maintained, all three social relations need to be fully integrated. These results show that adjusting the balance of the three social relations well lead to the realization of a sustainable society.
Optimal distance of multi-plane sensor in three-dimensional electrical impedance tomography.
Hao, Zhenhua; Yue, Shihong; Sun, Benyuan; Wang, Huaxiang
2017-12-01
Electrical impedance tomography (EIT) is a visual imaging technique for obtaining the conductivity and permittivity distributions in the domain of interest. As an advanced technique, EIT has the potential to be a valuable tool for continuously bedside monitoring of pulmonary function. The EIT applications in any three-dimensional (3 D) field are very limited to the 3 D effects, i.e. the distribution of electric field spreads far beyond the electrode plane. The 3 D effects can result in measurement errors and image distortion. An important way to overcome the 3 D effect is to use the multiple groups of sensors. The aim of this paper is to find the best space resolution of EIT image over various electrode planes and select an optimal plane spacing in a 3 D EIT sensor, and provide guidance for 3 D EIT electrodes placement in monitoring lung function. In simulation and experiment, several typical conductivity distribution models, such as one rod (central, midway and edge), two rods and three rods, are set at different plane spacings between the two electrode planes. A Tikhonov regularization algorithm is utilized for reconstructing the images; the relative error and the correlation coefficient are utilized for evaluating the image quality. Based on numerical simulation and experimental results, the image performance at different spacing conditions is evaluated. The results demonstrate that there exists an optimal plane spacing between the two electrode planes for 3 D EIT sensor. And then the selection of the optimal plane spacing between the electrode planes is suggested for the electrodes placement of multi-plane EIT sensor.
FMRQ-A Multiagent Reinforcement Learning Algorithm for Fully Cooperative Tasks.
Zhang, Zhen; Zhao, Dongbin; Gao, Junwei; Wang, Dongqing; Dai, Yujie
2017-06-01
In this paper, we propose a multiagent reinforcement learning algorithm dealing with fully cooperative tasks. The algorithm is called frequency of the maximum reward Q-learning (FMRQ). FMRQ aims to achieve one of the optimal Nash equilibria so as to optimize the performance index in multiagent systems. The frequency of obtaining the highest global immediate reward instead of immediate reward is used as the reinforcement signal. With FMRQ each agent does not need the observation of the other agents' actions and only shares its state and reward at each step. We validate FMRQ through case studies of repeated games: four cases of two-player two-action and one case of three-player two-action. It is demonstrated that FMRQ can converge to one of the optimal Nash equilibria in these cases. Moreover, comparison experiments on tasks with multiple states and finite steps are conducted. One is box-pushing and the other one is distributed sensor network problem. Experimental results show that the proposed algorithm outperforms others with higher performance.
Convergence and Applications of a Gossip-Based Gauss-Newton Algorithm
NASA Astrophysics Data System (ADS)
Li, Xiao; Scaglione, Anna
2013-11-01
The Gauss-Newton algorithm is a popular and efficient centralized method for solving non-linear least squares problems. In this paper, we propose a multi-agent distributed version of this algorithm, named Gossip-based Gauss-Newton (GGN) algorithm, which can be applied in general problems with non-convex objectives. Furthermore, we analyze and present sufficient conditions for its convergence and show numerically that the GGN algorithm achieves performance comparable to the centralized algorithm, with graceful degradation in case of network failures. More importantly, the GGN algorithm provides significant performance gains compared to other distributed first order methods.
NASA Astrophysics Data System (ADS)
Narayan Ray, Dip; Majumder, Somajyoti
2014-07-01
Several attempts have been made by the researchers around the world to develop a number of autonomous exploration techniques for robots. But it has been always an important issue for developing the algorithm for unstructured and unknown environments. Human-like gradual Multi-agent Q-leaming (HuMAQ) is a technique developed for autonomous robotic exploration in unknown (and even unimaginable) environments. It has been successfully implemented in multi-agent single robotic system. HuMAQ uses the concept of Subsumption architecture, a well-known Behaviour-based architecture for prioritizing the agents of the multi-agent system and executes only the most common action out of all the different actions recommended by different agents. Instead of using new state-action table (Q-table) each time, HuMAQ uses the immediate past table for efficient and faster exploration. The proof of learning has also been established both theoretically and practically. HuMAQ has the potential to be used in different and difficult situations as well as applications. The same architecture has been modified to use for multi-robot exploration in an environment. Apart from all other existing agents used in the single robotic system, agents for inter-robot communication and coordination/ co-operation with the other similar robots have been introduced in the present research. Current work uses a series of indigenously developed identical autonomous robotic systems, communicating with each other through ZigBee protocol.
Application of a Multimedia Service and Resource Management Architecture for Fault Diagnosis
Castro, Alfonso; Sedano, Andrés A.; García, Fco. Javier; Villoslada, Eduardo
2017-01-01
Nowadays, the complexity of global video products has substantially increased. They are composed of several associated services whose functionalities need to adapt across heterogeneous networks with different technologies and administrative domains. Each of these domains has different operational procedures; therefore, the comprehensive management of multi-domain services presents serious challenges. This paper discusses an approach to service management linking fault diagnosis system and Business Processes for Telefónica’s global video service. The main contribution of this paper is the proposal of an extended service management architecture based on Multi Agent Systems able to integrate the fault diagnosis with other different service management functionalities. This architecture includes a distributed set of agents able to coordinate their actions under the umbrella of a Shared Knowledge Plane, inferring and sharing their knowledge with semantic techniques and three types of automatic reasoning: heterogeneous, ontology-based and Bayesian reasoning. This proposal has been deployed and validated in a real scenario in the video service offered by Telefónica Latam. PMID:29283398
Application of a Multimedia Service and Resource Management Architecture for Fault Diagnosis.
Castro, Alfonso; Sedano, Andrés A; García, Fco Javier; Villoslada, Eduardo; Villagrá, Víctor A
2017-12-28
Nowadays, the complexity of global video products has substantially increased. They are composed of several associated services whose functionalities need to adapt across heterogeneous networks with different technologies and administrative domains. Each of these domains has different operational procedures; therefore, the comprehensive management of multi-domain services presents serious challenges. This paper discusses an approach to service management linking fault diagnosis system and Business Processes for Telefónica's global video service. The main contribution of this paper is the proposal of an extended service management architecture based on Multi Agent Systems able to integrate the fault diagnosis with other different service management functionalities. This architecture includes a distributed set of agents able to coordinate their actions under the umbrella of a Shared Knowledge Plane, inferring and sharing their knowledge with semantic techniques and three types of automatic reasoning: heterogeneous, ontology-based and Bayesian reasoning. This proposal has been deployed and validated in a real scenario in the video service offered by Telefónica Latam.
Self Organized Multi Agent Swarms (SOMAS) for Network Security Control
2009-03-01
Normal hierarchy vs entangled hierarchy 2.5.7 Quantifying Entangledness . While self organization means that the swarm develops a consistent structure of...flexibility due to centralization of control and com- munication. Thus, self organized, entangled hierarchy multi-agent swarms are evolved in this study to...technique. The resulting design exhibits a self organized multi-agent swarm (SOMAS) with entangled hierarchical control and communication through the
Research of negotiation in network trade system based on multi-agent
NASA Astrophysics Data System (ADS)
Cai, Jun; Wang, Guozheng; Wu, Haiyan
2009-07-01
A construction and implementation technology of network trade based on multi-agent is described in this paper. First, we researched the technology of multi-agent, then we discussed the consumer's behaviors and the negotiation between purchaser and bargainer which emerges in the traditional business mode and analysed the key technology to implement the network trade system. Finally, we implement the system.
NASA Astrophysics Data System (ADS)
Zou, Zhen-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen
2018-04-01
At first, the entanglement source deployment problem is studied in a quantum multi-hop network, which has a significant influence on quantum connectivity. Two optimization algorithms are introduced with limited entanglement sources in this paper. A deployment algorithm based on node position (DNP) improves connectivity by guaranteeing that all overlapping areas of the distribution ranges of the entanglement sources contain nodes. In addition, a deployment algorithm based on an improved genetic algorithm (DIGA) is implemented by dividing the region into grids. From the simulation results, DNP and DIGA improve quantum connectivity by 213.73% and 248.83% compared to random deployment, respectively, and the latter performs better in terms of connectivity. However, DNP is more flexible and adaptive to change, as it stops running when all nodes are covered.
Agents Control in Intelligent Learning Systems: The Case of Reactive Characteristics
ERIC Educational Resources Information Center
Laureano-Cruces, Ana Lilia; Ramirez-Rodriguez, Javier; de Arriaga, Fernando; Escarela-Perez, Rafael
2006-01-01
Intelligent learning systems (ILSs) have evolved in the last few years basically because of influences received from multi-agent architectures (MAs). Conflict resolution among agents has been a very important problem for multi-agent systems, with specific features in the case of ILSs. The literature shows that ILSs with cognitive or pedagogical…
Zhu, Feng; Aziz, H. M. Abdul; Qian, Xinwu; ...
2015-01-31
Our study develops a novel reinforcement learning algorithm for the challenging coordinated signal control problem. Traffic signals are modeled as intelligent agents interacting with the stochastic traffic environment. The model is built on the framework of coordinated reinforcement learning. The Junction Tree Algorithm (JTA) based reinforcement learning is proposed to obtain an exact inference of the best joint actions for all the coordinated intersections. Moreover, the algorithm is implemented and tested with a network containing 18 signalized intersections in VISSIM. Finally, our results show that the JTA based algorithm outperforms independent learning (Q-learning), real-time adaptive learning, and fixed timing plansmore » in terms of average delay, number of stops, and vehicular emissions at the network level.« less
Unbiased multi-fidelity estimate of failure probability of a free plane jet
NASA Astrophysics Data System (ADS)
Marques, Alexandre; Kramer, Boris; Willcox, Karen; Peherstorfer, Benjamin
2017-11-01
Estimating failure probability related to fluid flows is a challenge because it requires a large number of evaluations of expensive models. We address this challenge by leveraging multiple low fidelity models of the flow dynamics to create an optimal unbiased estimator. In particular, we investigate the effects of uncertain inlet conditions in the width of a free plane jet. We classify a condition as failure when the corresponding jet width is below a small threshold, such that failure is a rare event (failure probability is smaller than 0.001). We estimate failure probability by combining the frameworks of multi-fidelity importance sampling and optimal fusion of estimators. Multi-fidelity importance sampling uses a low fidelity model to explore the parameter space and create a biasing distribution. An unbiased estimate is then computed with a relatively small number of evaluations of the high fidelity model. In the presence of multiple low fidelity models, this framework offers multiple competing estimators. Optimal fusion combines all competing estimators into a single estimator with minimal variance. We show that this combined framework can significantly reduce the cost of estimating failure probabilities, and thus can have a large impact in fluid flow applications. This work was funded by DARPA.
Kamiura, Moto; Sano, Kohei
2017-10-01
The principle of optimism in the face of uncertainty is known as a heuristic in sequential decision-making problems. Overtaking method based on this principle is an effective algorithm to solve multi-armed bandit problems. It was defined by a set of some heuristic patterns of the formulation in the previous study. The objective of the present paper is to redefine the value functions of Overtaking method and to unify the formulation of them. The unified Overtaking method is associated with upper bounds of confidence intervals of expected rewards on statistics. The unification of the formulation enhances the universality of Overtaking method. Consequently we newly obtain Overtaking method for the exponentially distributed rewards, numerically analyze it, and show that it outperforms UCB algorithm on average. The present study suggests that the principle of optimism in the face of uncertainty should be regarded as the statistics-based consequence of the law of large numbers for the sample mean of rewards and estimation of upper bounds of expected rewards, rather than as a heuristic, in the context of multi-armed bandit problems. Copyright © 2017 Elsevier B.V. All rights reserved.
Contrast agent enhanced pQCT of articular cartilage
NASA Astrophysics Data System (ADS)
Kallioniemi, A. S.; Jurvelin, J. S.; Nieminen, M. T.; Lammi, M. J.; Töyräs, J.
2007-02-01
The delayed gadolinium enhanced MRI of cartilage (dGEMRIC) technique is the only non-invasive means to estimate proteoglycan (PG) content in articular cartilage. In dGEMRIC, the anionic paramagnetic contrast agent gadopentetate distributes in inverse relation to negatively charged PGs, leading to a linear relation between T1,Gd and spatial PG content in tissue. In the present study, for the first time, contrast agent enhanced peripheral quantitative computed tomography (pQCT) was applied, analogously to dGEMRIC, for the quantitative detection of spatial PG content in cartilage. The suitability of two anionic radiographic contrast agents, gadopentetate and ioxaglate, to detect enzymatically induced PG depletion in articular cartilage was investigated. First, the interrelationships of x-ray absorption, as measured with pQCT, and the contrast agent solution concentration were investigated. Optimal contrast agent concentrations for the following experiments were selected. Second, diffusion rates for both contrast agents were investigated in intact (n = 3) and trypsin-degraded (n = 3) bovine patellar cartilage. The contrast agent concentration of the cartilaginous layer was measured prior to and 2-27 h after immersion. Optimal immersion time for the further experiments was selected. Third, the suitability of gadopentetate and ioxaglate enhanced pQCT to detect the enzymatically induced specific PG depletion was investigated by determining the contrast agent concentrations and uronic acid and water contents in digested and intact osteochondral samples (n = 16). After trypsin-induced PG loss (-70%, p < 0.05) the penetration of gadopentetate and ioxaglate increased (p < 0.05) by 34% and 48%, respectively. Gadopentetate and ioxaglate concentrations both showed strong correlation (r = -0.95, r = -0.94, p < 0.01, respectively) with the uronic acid content. To conclude, contrast agent enhanced pQCT provides a technique to quantify PG content in normal and experimentally degraded articular cartilage in vitro. As high resolution imaging of e.g. the knee joint is possible with pQCT, the present technique may be further developed for in vivo quantification of PG depletion in osteoarthritic cartilage. However, careful in vitro and in vivo characterization of diffusion mechanics and optimal contrast agent concentrations are needed before diagnostic applications are feasible.
Back, Susan J; Edgar, J Christopher; Canning, Douglas A; Darge, Kassa
2015-09-01
Pediatric contrast-enhanced ultrasound (CEUS) is primarily performed outside the United States where a track record for safety in intravenous and intravesical applications has been established. Contrast-enhanced voiding urosonography (ceVUS) has also been shown to have a much higher rate of vesicoureteral reflux detection compared to voiding cystourethrography. US contrast agents available in the United States differ from those abroad. Optison® (GE Healthcare, Princeton, NJ) is such an US contrast agent. While Optison® has similar characteristics to other second-generation agents, it has never been used for ceVUS. In vitro optimization of dose and imaging parameters as well as assessment of contrast visualization when delivered in conditions similar to ceVUS are necessary starting points prior to in vivo applications. To optimize the intravesical use of Optison® in vitro for ceVUS before its use in pediatric studies. The experimental design simulated intravesical use. Using 9- and 12-MHz linear transducers, we scanned 20-mL syringes varying mechanical index, US contrast agent concentration (0.25%, 0.5%, 1.0%), solvent (saline, urine, radiographic contrast agent) and time out of refrigeration. We evaluated mechanical index settings and contrast duration, optimized the contrast dose, measured the effect of urine and radiographic contrast agent, and the impact of length of time of contrast outside of the refrigerator on US contrast appearance. We scanned 50-ml saline bags to assess the appearance and duration of US contrast with different delivery systems (injection vs. infusion). Consistent contrast visualization was achieved at a mechanical index of 0.06-0.17 and 0.11-0.48 for the L9 and L12 MHz transducers (P < 0.01), respectively. Thus, it was necessary to increase the mechanical index for better contrast visualization of the microbubbles with a higher transducer frequency. The lowest mechanical index for earliest visible microbubble destruction was 0.21 for the 9 MHz and 0.39 for the 12 MHz (P < 0.01) transducers. The 0.5% US contrast agent volume to bladder filling was the most optimal. At this concentration, the mean time to visualize homogenous contrast was 2 min and destruction of approximately half of the microbubbles in the field of view occurred in 7.8 min using the 9-MHz transducer. During contrast infusion, the contrast dose needed to be reduced to 0.12% for maintenance of optimal visualization of microbubbles. There was no deleterious effect on the visualization of contrast in the presence of urine or radiographic contrast agent. Infusion of the US contrast agent speeded visualization of homogeneous enhancement compared with injection. Time outside refrigeration did not affect contrast performance. Transducer mechanical index settings need to be optimized. A very low dose of the US contrast agent Optison® will suffice for intravesical application, i.e. 0.12% to 0.50% of the bladder filling volume. The presence of urine or radiographic contrast agent did not compromise contrast visualization. The best mode of administration is the infusion method due to fast homogenous distribution at the lowest dose of 0.12%. Leaving the US contrast agent outside the refrigerator for an hour does not affect the microbubbles.
Modeling marine oily wastewater treatment by a probabilistic agent-based approach.
Jing, Liang; Chen, Bing; Zhang, Baiyu; Ye, Xudong
2018-02-01
This study developed a novel probabilistic agent-based approach for modeling of marine oily wastewater treatment processes. It begins first by constructing a probability-based agent simulation model, followed by a global sensitivity analysis and a genetic algorithm-based calibration. The proposed modeling approach was tested through a case study of the removal of naphthalene from marine oily wastewater using UV irradiation. The removal of naphthalene was described by an agent-based simulation model using 8 types of agents and 11 reactions. Each reaction was governed by a probability parameter to determine its occurrence. The modeling results showed that the root mean square errors between modeled and observed removal rates were 8.73 and 11.03% for calibration and validation runs, respectively. Reaction competition was analyzed by comparing agent-based reaction probabilities, while agents' heterogeneity was visualized by plotting their real-time spatial distribution, showing a strong potential for reactor design and process optimization. Copyright © 2017 Elsevier Ltd. All rights reserved.
Providing Effective Access to Shared Resources: A COIN Approach
NASA Technical Reports Server (NTRS)
Airiau, Stephane; Wolpert, David H.
2004-01-01
Managers of systems of shared resources typically have many separate goals. Examples are efficient utilization of the resources among its users and ensuring no user s satisfaction in the system falls below a preset minimal level. Since such goals will usually conflict with one another, either implicitly or explicitly the manager must determine the relative importance of the goals, encapsulating that into an overall utility function rating the possible behaviors of the entire system. Here we demonstrate a distributed, robust, and adaptive way to optimize that overall function. Our approach is to interpose adaptive agents between each user and the system, where each such agent is working to maximize its own private utility function. In turn, each such agent's function should be both relatively easy for the agent to learn to optimize, and "aligned" with the overall utility function of the system manager - an overall function that is based on but in general different from the satisfaction functions of the individual users. To ensure this we enhance the Collective INtelligence (COIN) framework to incorporate user satisfaction functions in the overall utility function of the system manager and accordingly in the associated private utility functions assigned to the users agents. We present experimental evaluations of different COIN-based private utility functions and demonstrate that those COIN-based functions outperform some natural alternatives.