Traffic-driven epidemic spreading on scale-free networks with tunable degree distribution
NASA Astrophysics Data System (ADS)
Yang, Han-Xin; Wang, Bing-Hong
2016-04-01
We study the traffic-driven epidemic spreading on scale-free networks with tunable degree distribution. The heterogeneity of networks is controlled by the exponent γ of power-law degree distribution. It is found that the epidemic threshold is minimized at about γ=2.2. Moreover, we find that nodes with larger algorithmic betweenness are more likely to be infected. We expect our work to provide new insights in to the effect of network structures on traffic-driven epidemic spreading.
Modeling Dynamic Evolution of Online Friendship Network
NASA Astrophysics Data System (ADS)
Wu, Lian-Ren; Yan, Qiang
2012-10-01
In this paper, we study the dynamic evolution of friendship network in SNS (Social Networking Site). Our analysis suggests that an individual joining a community depends not only on the number of friends he or she has within the community, but also on the friendship network generated by those friends. In addition, we propose a model which is based on two processes: first, connecting nearest neighbors; second, strength driven attachment mechanism. The model reflects two facts: first, in the social network it is a universal phenomenon that two nodes are connected when they have at least one common neighbor; second, new nodes connect more likely to nodes which have larger weights and interactions, a phenomenon called strength driven attachment (also called weight driven attachment). From the simulation results, we find that degree distribution P(k), strength distribution P(s), and degree-strength correlation are all consistent with empirical data.
Exploring activity-driven network with biased walks
NASA Astrophysics Data System (ADS)
Wang, Yan; Wu, Ding Juan; Lv, Fang; Su, Meng Long
We investigate the concurrent dynamics of biased random walks and the activity-driven network, where the preferential transition probability is in terms of the edge-weighting parameter. We also obtain the analytical expressions for stationary distribution and the coverage function in directed and undirected networks, all of which depend on the weight parameter. Appropriately adjusting this parameter, more effective search strategy can be obtained when compared with the unbiased random walk, whether in directed or undirected networks. Since network weights play a significant role in the diffusion process.
NASA Astrophysics Data System (ADS)
Wong, Jianhui; Lim, Yun Seng; Morris, Stella; Morris, Ezra; Chua, Kein Huat
2017-04-01
The amount of small-scaled renewable energy sources is anticipated to increase on the low-voltage distribution networks for the improvement of energy efficiency and reduction of greenhouse gas emission. The growth of the PV systems on the low-voltage distribution networks can create voltage unbalance, voltage rise, and reverse-power flow. Usually these issues happen with little fluctuation. However, it tends to fluctuate severely as Malaysia is a region with low clear sky index. A large amount of clouds often passes over the country, hence making the solar irradiance to be highly scattered. Therefore, the PV power output fluctuates substantially. These issues can lead to the malfunction of the electronic based equipment, reduction in the network efficiency and improper operation of the power protection system. At the current practice, the amount of PV system installed on the distribution network is constraint by the utility company. As a result, this can limit the reduction of carbon footprint. Therefore, energy storage system is proposed as a solution for these power quality issues. To ensure an effective operation of the distribution network with PV system, a fuzzy control system is developed and implemented to govern the operation of an energy storage system. The fuzzy driven energy storage system is able to mitigate the fluctuating voltage rise and voltage unbalance on the electrical grid by actively manipulates the flow of real power between the grid and the batteries. To verify the effectiveness of the proposed fuzzy driven energy storage system, an experimental network integrated with 7.2kWp PV system was setup. Several case studies are performed to evaluate the response of the proposed solution to mitigate voltage rises, voltage unbalance and reduce the amount of reverse power flow under highly intermittent PV power output.
Water Network Tool for Resilience v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-12-09
WNTR is a python package designed to simulate and analyze resilience of water distribution networks. The software includes: - Pressure driven and demand driven hydraulic simulation - Water quality simulation to track concentration, trace, and water age - Conditional controls to simulate power outages - Models to simulate pipe breaks - A wide range of resilience metrics - Analysis and visualization tools
Asymptotic theory of time varying networks with burstiness and heterogeneous activation patterns
NASA Astrophysics Data System (ADS)
Burioni, Raffaella; Ubaldi, Enrico; Vezzani, Alessandro
2017-05-01
The recent availability of large-scale, time-resolved and high quality digital datasets has allowed for a deeper understanding of the structure and properties of many real-world networks. The empirical evidence of a temporal dimension prompted the switch of paradigm from a static representation of networks to a time varying one. In this work we briefly review the framework of time-varying-networks in real world social systems, especially focusing on the activity-driven paradigm. We develop a framework that allows for the encoding of three generative mechanisms that seem to play a central role in the social networks’ evolution: the individual’s propensity to engage in social interactions, its strategy in allocate these interactions among its alters and the burstiness of interactions amongst social actors. The functional forms and probability distributions encoding these mechanisms are typically data driven. A natural question arises if different classes of strategies and burstiness distributions, with different local scale behavior and analogous asymptotics can lead to the same long time and large scale structure of the evolving networks. We consider the problem in its full generality, by investigating and solving the system dynamics in the asymptotic limit, for general classes of ties allocation mechanisms and waiting time probability distributions. We show that the asymptotic network evolution is driven by a few characteristics of these functional forms, that can be extracted from direct measurements on large datasets.
Naveros, Francisco; Luque, Niceto R; Garrido, Jesús A; Carrillo, Richard R; Anguita, Mancia; Ros, Eduardo
2015-07-01
Time-driven simulation methods in traditional CPU architectures perform well and precisely when simulating small-scale spiking neural networks. Nevertheless, they still have drawbacks when simulating large-scale systems. Conversely, event-driven simulation methods in CPUs and time-driven simulation methods in graphic processing units (GPUs) can outperform CPU time-driven methods under certain conditions. With this performance improvement in mind, we have developed an event-and-time-driven spiking neural network simulator suitable for a hybrid CPU-GPU platform. Our neural simulator is able to efficiently simulate bio-inspired spiking neural networks consisting of different neural models, which can be distributed heterogeneously in both small layers and large layers or subsystems. For the sake of efficiency, the low-activity parts of the neural network can be simulated in CPU using event-driven methods while the high-activity subsystems can be simulated in either CPU (a few neurons) or GPU (thousands or millions of neurons) using time-driven methods. In this brief, we have undertaken a comparative study of these different simulation methods. For benchmarking the different simulation methods and platforms, we have used a cerebellar-inspired neural-network model consisting of a very dense granular layer and a Purkinje layer with a smaller number of cells (according to biological ratios). Thus, this cerebellar-like network includes a dense diverging neural layer (increasing the dimensionality of its internal representation and sparse coding) and a converging neural layer (integration) similar to many other biologically inspired and also artificial neural networks.
Limitations of demand- and pressure-driven modeling for large deficient networks
NASA Astrophysics Data System (ADS)
Braun, Mathias; Piller, Olivier; Deuerlein, Jochen; Mortazavi, Iraj
2017-10-01
The calculation of hydraulic state variables for a network is an important task in managing the distribution of potable water. Over the years the mathematical modeling process has been improved by numerous researchers for utilization in new computer applications and the more realistic modeling of water distribution networks. But, in spite of these continuous advances, there are still a number of physical phenomena that may not be tackled correctly by current models. This paper will take a closer look at the two modeling paradigms given by demand- and pressure-driven modeling. The basic equations are introduced and parallels are drawn with the optimization formulations from electrical engineering. These formulations guarantee the existence and uniqueness of the solution. One of the central questions of the French and German research project ResiWater is the investigation of the network resilience in the case of extreme events or disasters. Under such extraordinary conditions where models are pushed beyond their limits, we talk about deficient network models. Examples of deficient networks are given by highly regulated flow, leakage or pipe bursts and cases where pressure falls below the vapor pressure of water. These examples will be presented and analyzed on the solvability and physical correctness of the solution with respect to demand- and pressure-driven models.
Microwave-Driven Multifunctional Capability of Membrane Structures
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Chu, Sang-Hyong; Song, Kyo D.; King, Glen C.
2002-01-01
A large, ultra lightweight space structure, such as solar sails and Gossamer spacecrafts, requires a distributed power source to alleviate wire networks, unlike the localized on-board power infrastructures typically found in most small spacecrafts. The concept of microwave-driven multifunctional capability for membrane structures is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry and on-board power infrastructures. A rectenna array based on a patch configuration for high voltage output was developed to drive membrane actuators, sensors, probes, or other devices. Networked patch rectenna array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is adopted for networking a rectenna/actuator patch array. The use of patch rectennas adds a significant amount of rigidity to membrane flexibility and they are relatively heavy. A dipole rectenna array (DRA) appears to be ideal for thin-film membrane structures, since DRA is flexible and light. Preliminary design and fabrication of PAD circuitry that consists of a few nodal elements were made for laboratory testing. The networked actuators were tested to correlate the network coupling effect, power allocation and distribution, and response time.
Epidemic spreading on activity-driven networks with attractiveness.
Pozzana, Iacopo; Sun, Kaiyuan; Perra, Nicola
2017-10-01
We study SIS epidemic spreading processes unfolding on a recent generalization of the activity-driven modeling framework. In this model of time-varying networks, each node is described by two variables: activity and attractiveness. The first describes the propensity to form connections, while the second defines the propensity to attract them. We derive analytically the epidemic threshold considering the time scale driving the evolution of contacts and the contagion as comparable. The solutions are general and hold for any joint distribution of activity and attractiveness. The theoretical picture is confirmed via large-scale numerical simulations performed considering heterogeneous distributions and different correlations between the two variables. We find that heterogeneous distributions of attractiveness alter the contagion process. In particular, in the case of uncorrelated and positive correlations between the two variables, heterogeneous attractiveness facilitates the spreading. On the contrary, negative correlations between activity and attractiveness hamper the spreading. The results presented contribute to the understanding of the dynamical properties of time-varying networks and their effects on contagion phenomena unfolding on their fabric.
Modeling complexity in engineered infrastructure system: Water distribution network as an example
NASA Astrophysics Data System (ADS)
Zeng, Fang; Li, Xiang; Li, Ke
2017-02-01
The complex topology and adaptive behavior of infrastructure systems are driven by both self-organization of the demand and rigid engineering solutions. Therefore, engineering complex systems requires a method balancing holism and reductionism. To model the growth of water distribution networks, a complex network model was developed following the combination of local optimization rules and engineering considerations. The demand node generation is dynamic and follows the scaling law of urban growth. The proposed model can generate a water distribution network (WDN) similar to reported real-world WDNs on some structural properties. Comparison with different modeling approaches indicates that a realistic demand node distribution and co-evolvement of demand node and network are important for the simulation of real complex networks. The simulation results indicate that the efficiency of water distribution networks is exponentially affected by the urban growth pattern. On the contrary, the improvement of efficiency by engineering optimization is limited and relatively insignificant. The redundancy and robustness, on another aspect, can be significantly improved through engineering methods.
NASA Astrophysics Data System (ADS)
Lu, Siqi; Wang, Xiaorong; Wu, Junyong
2018-01-01
The paper presents a method to generate the planning scenarios, which is based on K-means clustering analysis algorithm driven by data, for the location and size planning of distributed photovoltaic (PV) units in the network. Taken the power losses of the network, the installation and maintenance costs of distributed PV, the profit of distributed PV and the voltage offset as objectives and the locations and sizes of distributed PV as decision variables, Pareto optimal front is obtained through the self-adaptive genetic algorithm (GA) and solutions are ranked by a method called technique for order preference by similarity to an ideal solution (TOPSIS). Finally, select the planning schemes at the top of the ranking list based on different planning emphasis after the analysis in detail. The proposed method is applied to a 10-kV distribution network in Gansu Province, China and the results are discussed.
Wind-Driven Wireless Networked System of Mobile Sensors for Mars Exploration
NASA Technical Reports Server (NTRS)
Davoodi, Faranak; Murphy, Neil
2013-01-01
A revolutionary way is proposed of studying the surface of Mars using a wind-driven network of mobile sensors: GOWON. GOWON would be a scalable, self-powered and autonomous distributed system that could allow in situ mapping of a wide range of environmental phenomena in a much larger portion of the surface of Mars compared to earlier missions. It could improve the possibility of finding rare phenomena such as "blueberries' or bio-signatures and mapping their occurrence, through random wind-driven search. It would explore difficult terrains that were beyond the reach of previous missions, such as regions with very steep slopes and cluttered surfaces. GOWON has a potentially long life span, as individual elements can be added to the array periodically. It could potentially provide a cost-effective solution for mapping wide areas of Martian terrain, enabling leaving a long-lasting sensing and searching infrastructure on the surface of Mars. The system proposed here addresses this opportunity using technology advances in a distributed system of wind-driven sensors, referred to as Moballs.
The Role of Graphlets in Viral Processes on Networks
NASA Astrophysics Data System (ADS)
Khorshidi, Samira; Al Hasan, Mohammad; Mohler, George; Short, Martin B.
2018-05-01
Predicting the evolution of viral processes on networks is an important problem with applications arising in biology, the social sciences, and the study of the Internet. In existing works, mean-field analysis based upon degree distribution is used for the prediction of viral spreading across networks of different types. However, it has been shown that degree distribution alone fails to predict the behavior of viruses on some real-world networks and recent attempts have been made to use assortativity to address this shortcoming. In this paper, we show that adding assortativity does not fully explain the variance in the spread of viruses for a number of real-world networks. We propose using the graphlet frequency distribution in combination with assortativity to explain variations in the evolution of viral processes across networks with identical degree distribution. Using a data-driven approach by coupling predictive modeling with viral process simulation on real-world networks, we show that simple regression models based on graphlet frequency distribution can explain over 95% of the variance in virality on networks with the same degree distribution but different network topologies. Our results not only highlight the importance of graphlets but also identify a small collection of graphlets which may have the highest influence over the viral processes on a network.
Gehrig, Nicolas; Dragotti, Pier Luigi
2009-03-01
In this paper, we study the sampling and the distributed compression of the data acquired by a camera sensor network. The effective design of these sampling and compression schemes requires, however, the understanding of the structure of the acquired data. To this end, we show that the a priori knowledge of the configuration of the camera sensor network can lead to an effective estimation of such structure and to the design of effective distributed compression algorithms. For idealized scenarios, we derive the fundamental performance bounds of a camera sensor network and clarify the connection between sampling and distributed compression. We then present a distributed compression algorithm that takes advantage of the structure of the data and that outperforms independent compression algorithms on real multiview images.
Signal Processing in Periodically Forced Gradient Frequency Neural Networks
Kim, Ji Chul; Large, Edward W.
2015-01-01
Oscillatory instability at the Hopf bifurcation is a dynamical phenomenon that has been suggested to characterize active non-linear processes observed in the auditory system. Networks of oscillators poised near Hopf bifurcation points and tuned to tonotopically distributed frequencies have been used as models of auditory processing at various levels, but systematic investigation of the dynamical properties of such oscillatory networks is still lacking. Here we provide a dynamical systems analysis of a canonical model for gradient frequency neural networks driven by a periodic signal. We use linear stability analysis to identify various driven behaviors of canonical oscillators for all possible ranges of model and forcing parameters. The analysis shows that canonical oscillators exhibit qualitatively different sets of driven states and transitions for different regimes of model parameters. We classify the parameter regimes into four main categories based on their distinct signal processing capabilities. This analysis will lead to deeper understanding of the diverse behaviors of neural systems under periodic forcing and can inform the design of oscillatory network models of auditory signal processing. PMID:26733858
Leadership and the Design of Data-Driven Professional Networks in Schools
ERIC Educational Resources Information Center
Liou, Yi-Hwa; Grigg, Jeffrey; Halverson, Richard
2014-01-01
Using data from a multi-method comparative case study of two matched schools, this paper adds to the growing body of applications of social network analysis to the study of distributed leadership and accountability. We contrast two approaches to instructional leadership, prescriptive and discretionary, to investigate how leaders design…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Kyri; Dall'Anese, Emiliano; Summers, Tyler
This paper outlines a data-driven, distributionally robust approach to solve chance-constrained AC optimal power flow problems in distribution networks. Uncertain forecasts for loads and power generated by photovoltaic (PV) systems are considered, with the goal of minimizing PV curtailment while meeting power flow and voltage regulation constraints. A data- driven approach is utilized to develop a distributionally robust conservative convex approximation of the chance-constraints; particularly, the mean and covariance matrix of the forecast errors are updated online, and leveraged to enforce voltage regulation with predetermined probability via Chebyshev-based bounds. By combining an accurate linear approximation of the AC power flowmore » equations with the distributionally robust chance constraint reformulation, the resulting optimization problem becomes convex and computationally tractable.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Zhang, Yingchen; Muljadi, Eduard
In this paper, a short-term load forecasting approach based network reconfiguration is proposed in a parallel manner. Specifically, a support vector regression (SVR) based short-term load forecasting approach is designed to provide an accurate load prediction and benefit the network reconfiguration. Because of the nonconvexity of the three-phase balanced optimal power flow, a second-order cone program (SOCP) based approach is used to relax the optimal power flow problem. Then, the alternating direction method of multipliers (ADMM) is used to compute the optimal power flow in distributed manner. Considering the limited number of the switches and the increasing computation capability, themore » proposed network reconfiguration is solved in a parallel way. The numerical results demonstrate the feasible and effectiveness of the proposed approach.« less
NASA Astrophysics Data System (ADS)
Paine, Gregory Harold
1982-03-01
The primary objective of the thesis is to explore the dynamical properties of small nerve networks by means of the methods of statistical mechanics. To this end, a general formalism is developed and applied to elementary groupings of model neurons which are driven by either constant (steady state) or nonconstant (nonsteady state) forces. Neuronal models described by a system of coupled, nonlinear, first-order, ordinary differential equations are considered. A linearized form of the neuronal equations is studied in detail. A Lagrange function corresponding to the linear neural network is constructed which, through a Legendre transformation, provides a constant of motion. By invoking the Maximum-Entropy Principle with the single integral of motion as a constraint, a probability distribution function for the network in a steady state can be obtained. The formalism is implemented for some simple networks driven by a constant force; accordingly, the analysis focuses on a study of fluctuations about the steady state. In particular, a network composed of N noninteracting neurons, termed Free Thinkers, is considered in detail, with a view to interpretation and numerical estimation of the Lagrange multiplier corresponding to the constant of motion. As an archetypical example of a net of interacting neurons, the classical neural oscillator, consisting of two mutually inhibitory neurons, is investigated. It is further shown that in the case of a network driven by a nonconstant force, the Maximum-Entropy Principle can be applied to determine a probability distribution functional describing the network in a nonsteady state. The above examples are reconsidered with nonconstant driving forces which produce small deviations from the steady state. Numerical studies are performed on simplified models of two physical systems: the starfish central nervous system and the mammalian olfactory bulb. Discussions are given as to how statistical neurodynamics can be used to gain a better understanding of the behavior of these systems.
Distribution-Agnostic Stochastic Optimal Power Flow for Distribution Grids: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Kyri; Dall'Anese, Emiliano; Summers, Tyler
2016-09-01
This paper outlines a data-driven, distributionally robust approach to solve chance-constrained AC optimal power flow problems in distribution networks. Uncertain forecasts for loads and power generated by photovoltaic (PV) systems are considered, with the goal of minimizing PV curtailment while meeting power flow and voltage regulation constraints. A data- driven approach is utilized to develop a distributionally robust conservative convex approximation of the chance-constraints; particularly, the mean and covariance matrix of the forecast errors are updated online, and leveraged to enforce voltage regulation with predetermined probability via Chebyshev-based bounds. By combining an accurate linear approximation of the AC power flowmore » equations with the distributionally robust chance constraint reformulation, the resulting optimization problem becomes convex and computationally tractable.« less
NASA Astrophysics Data System (ADS)
Foster, Peter J.; Yan, Wen; Fürthauer, Sebastian; Shelley, Michael J.; Needleman, Daniel J.
2017-12-01
The cellular cytoskeleton is an active material, driven out of equilibrium by molecular motor proteins. It is not understood how the collective behaviors of cytoskeletal networks emerge from the properties of the network’s constituent motor proteins and filaments. Here we present experimental results on networks of stabilized microtubules in Xenopus oocyte extracts, which undergo spontaneous bulk contraction driven by the motor protein dynein, and investigate the effects of varying the initial microtubule density and length distribution. We find that networks contract to a similar final density, irrespective of the length of microtubules or their initial density, but that the contraction timescale varies with the average microtubule length. To gain insight into why this microscopic property influences the macroscopic network contraction time, we developed simulations where microtubules and motors are explicitly represented. The simulations qualitatively recapitulate the variation of contraction timescale with microtubule length, and allowed stress contributions from different sources to be estimated and decoupled.
Zounemat-Kermani, Mohammad; Ramezani-Charmahineh, Abdollah; Adamowski, Jan; Kisi, Ozgur
2018-06-13
Chlorination, the basic treatment utilized for drinking water sources, is widely used for water disinfection and pathogen elimination in water distribution networks. Thereafter, the proper prediction of chlorine consumption is of great importance in water distribution network performance. In this respect, data mining techniques-which have the ability to discover the relationship between dependent variable(s) and independent variables-can be considered as alternative approaches in comparison to conventional methods (e.g., numerical methods). This study examines the applicability of three key methods, based on the data mining approach, for predicting chlorine levels in four water distribution networks. ANNs (artificial neural networks, including the multi-layer perceptron neural network, MLPNN, and radial basis function neural network, RBFNN), SVM (support vector machine), and CART (classification and regression tree) methods were used to estimate the concentration of residual chlorine in distribution networks for three villages in Kerman Province, Iran. Produced water (flow), chlorine consumption, and residual chlorine were collected daily for 3 years. An assessment of the studied models using several statistical criteria (NSC, RMSE, R 2 , and SEP) indicated that, in general, MLPNN has the greatest capability for predicting chlorine levels followed by CART, SVM, and RBF-ANN. Weaker performance of the data-driven methods in the water distribution networks, in some cases, could be attributed to improper chlorination management rather than the methods' capability.
Random walks on activity-driven networks with attractiveness
NASA Astrophysics Data System (ADS)
Alessandretti, Laura; Sun, Kaiyuan; Baronchelli, Andrea; Perra, Nicola
2017-05-01
Virtually all real-world networks are dynamical entities. In social networks, the propensity of nodes to engage in social interactions (activity) and their chances to be selected by active nodes (attractiveness) are heterogeneously distributed. Here, we present a time-varying network model where each node and the dynamical formation of ties are characterized by these two features. We study how these properties affect random-walk processes unfolding on the network when the time scales describing the process and the network evolution are comparable. We derive analytical solutions for the stationary state and the mean first-passage time of the process, and we study cases informed by empirical observations of social networks. Our work shows that previously disregarded properties of real social systems, such as heterogeneous distributions of activity and attractiveness as well as the correlations between them, substantially affect the dynamical process unfolding on the network.
Amorim, Francisco; Carvalho, Sílvia B; Honrado, João; Rebelo, Hugo
2014-01-01
Here we develop a framework to design multi-species monitoring networks using species distribution models and conservation planning tools to optimize the location of monitoring stations to detect potential range shifts driven by climate change. For this study, we focused on seven bat species in Northern Portugal (Western Europe). Maximum entropy modelling was used to predict the likely occurrence of those species under present and future climatic conditions. By comparing present and future predicted distributions, we identified areas where each species is likely to gain, lose or maintain suitable climatic space. We then used a decision support tool (the Marxan software) to design three optimized monitoring networks considering: a) changes in species likely occurrence, b) species conservation status, and c) level of volunteer commitment. For present climatic conditions, species distribution models revealed that areas suitable for most species occur in the north-eastern part of the region. However, areas predicted to become climatically suitable in the future shifted towards west. The three simulated monitoring networks, adaptable for an unpredictable volunteer commitment, included 28, 54 and 110 sampling locations respectively, distributed across the study area and covering the potential full range of conditions where species range shifts may occur. Our results show that our framework outperforms the traditional approach that only considers current species ranges, in allocating monitoring stations distributed across different categories of predicted shifts in species distributions. This study presents a straightforward framework to design monitoring schemes aimed specifically at testing hypotheses about where and when species ranges may shift with climatic changes, while also ensuring surveillance of general population trends.
Fast Distributed Dynamics of Semantic Networks via Social Media.
Carrillo, Facundo; Cecchi, Guillermo A; Sigman, Mariano; Slezak, Diego Fernández
2015-01-01
We investigate the dynamics of semantic organization using social media, a collective expression of human thought. We propose a novel, time-dependent semantic similarity measure (TSS), based on the social network Twitter. We show that TSS is consistent with static measures of similarity but provides high temporal resolution for the identification of real-world events and induced changes in the distributed structure of semantic relationships across the entire lexicon. Using TSS, we measured the evolution of a concept and its movement along the semantic neighborhood, driven by specific news/events. Finally, we showed that particular events may trigger a temporary reorganization of elements in the semantic network.
Fast Distributed Dynamics of Semantic Networks via Social Media
Carrillo, Facundo; Cecchi, Guillermo A.; Sigman, Mariano; Fernández Slezak, Diego
2015-01-01
We investigate the dynamics of semantic organization using social media, a collective expression of human thought. We propose a novel, time-dependent semantic similarity measure (TSS), based on the social network Twitter. We show that TSS is consistent with static measures of similarity but provides high temporal resolution for the identification of real-world events and induced changes in the distributed structure of semantic relationships across the entire lexicon. Using TSS, we measured the evolution of a concept and its movement along the semantic neighborhood, driven by specific news/events. Finally, we showed that particular events may trigger a temporary reorganization of elements in the semantic network. PMID:26074953
Mnemonic training reshapes brain networks to support superior memory
Dresler, Martin; Shirer, William R.; Konrad, Boris N.; Müller, Nils C.J.; Wagner, Isabella C.; Fernández, Guillén; Czisch, Michael; Greicius, Michael D.
2017-01-01
Summary Memory skills strongly differ across the general population, however little is known about the brain characteristics supporting superior memory performance. Here, we assess functional brain network organization of 23 of the world’s most successful memory athletes and matched controls by fMRI during both task-free resting state baseline and active memory encoding. We demonstrate that in a group of naïve controls, functional connectivity changes induced by six weeks of mnemonic training were correlated with the network organization that distinguishes athletes from controls. During rest, this effect was mainly driven by connections between rather than within the visual, medial temporal lobe and default mode networks, whereas during task it was driven by connectivity within these networks. Similarity with memory athlete connectivity patterns predicted memory improvements up to 4 months after training. In conclusion, mnemonic training drives distributed rather than regional changes, reorganizing the brain’s functional network organization to enable superior memory performance. PMID:28279356
Distributed convex optimisation with event-triggered communication in networked systems
NASA Astrophysics Data System (ADS)
Liu, Jiayun; Chen, Weisheng
2016-12-01
This paper studies the distributed convex optimisation problem over directed networks. Motivated by practical considerations, we propose a novel distributed zero-gradient-sum optimisation algorithm with event-triggered communication. Therefore, communication and control updates just occur at discrete instants when some predefined condition satisfies. Thus, compared with the time-driven distributed optimisation algorithms, the proposed algorithm has the advantages of less energy consumption and less communication cost. Based on Lyapunov approaches, we show that the proposed algorithm makes the system states asymptotically converge to the solution of the problem exponentially fast and the Zeno behaviour is excluded. Finally, simulation example is given to illustrate the effectiveness of the proposed algorithm.
Brown, Jeffrey S; Holmes, John H; Shah, Kiran; Hall, Ken; Lazarus, Ross; Platt, Richard
2010-06-01
Comparative effectiveness research, medical product safety evaluation, and quality measurement will require the ability to use electronic health data held by multiple organizations. There is no consensus about whether to create regional or national combined (eg, "all payer") databases for these purposes, or distributed data networks that leave most Protected Health Information and proprietary data in the possession of the original data holders. Demonstrate functions of a distributed research network that supports research needs and also address data holders concerns about participation. Key design functions included strong local control of data uses and a centralized web-based querying interface. We implemented a pilot distributed research network and evaluated the design considerations, utility for research, and the acceptability to data holders of methods for menu-driven querying. We developed and tested a central, web-based interface with supporting network software. Specific functions assessed include query formation and distribution, query execution and review, and aggregation of results. This pilot successfully evaluated temporal trends in medication use and diagnoses at 5 separate sites, demonstrating some of the possibilities of using a distributed research network. The pilot demonstrated the potential utility of the design, which addressed the major concerns of both users and data holders. No serious obstacles were identified that would prevent development of a fully functional, scalable network. Distributed networks are capable of addressing nearly all anticipated uses of routinely collected electronic healthcare data. Distributed networks would obviate the need for centralized databases, thus avoiding numerous obstacles.
Synchronization and Inter-Layer Interactions of Noise-Driven Neural Networks
Yuniati, Anis; Mai, Te-Lun; Chen, Chi-Ming
2017-01-01
In this study, we used the Hodgkin-Huxley (HH) model of neurons to investigate the phase diagram of a developing single-layer neural network and that of a network consisting of two weakly coupled neural layers. These networks are noise driven and learn through the spike-timing-dependent plasticity (STDP) or the inverse STDP rules. We described how these networks transited from a non-synchronous background activity state (BAS) to a synchronous firing state (SFS) by varying the network connectivity and the learning efficacy. In particular, we studied the interaction between a SFS layer and a BAS layer, and investigated how synchronous firing dynamics was induced in the BAS layer. We further investigated the effect of the inter-layer interaction on a BAS to SFS repair mechanism by considering three types of neuron positioning (random, grid, and lognormal distributions) and two types of inter-layer connections (random and preferential connections). Among these scenarios, we concluded that the repair mechanism has the largest effect for a network with the lognormal neuron positioning and the preferential inter-layer connections. PMID:28197088
Synchronization and Inter-Layer Interactions of Noise-Driven Neural Networks.
Yuniati, Anis; Mai, Te-Lun; Chen, Chi-Ming
2017-01-01
In this study, we used the Hodgkin-Huxley (HH) model of neurons to investigate the phase diagram of a developing single-layer neural network and that of a network consisting of two weakly coupled neural layers. These networks are noise driven and learn through the spike-timing-dependent plasticity (STDP) or the inverse STDP rules. We described how these networks transited from a non-synchronous background activity state (BAS) to a synchronous firing state (SFS) by varying the network connectivity and the learning efficacy. In particular, we studied the interaction between a SFS layer and a BAS layer, and investigated how synchronous firing dynamics was induced in the BAS layer. We further investigated the effect of the inter-layer interaction on a BAS to SFS repair mechanism by considering three types of neuron positioning (random, grid, and lognormal distributions) and two types of inter-layer connections (random and preferential connections). Among these scenarios, we concluded that the repair mechanism has the largest effect for a network with the lognormal neuron positioning and the preferential inter-layer connections.
2015-08-24
SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 15. SUBJECT TERMS b. ABSTRACT 2...network keeping constraints such as transmission rate, transmission delay, Signal-to-Interference and Noise Ratio (SINR) under consideration. Table...distances. It is advantageous to accomplish such transmission using sensors in a multi-hop relay form keeping constraints such as transmission rate
Entanglement replication in driven dissipative many-body systems.
Zippilli, S; Paternostro, M; Adesso, G; Illuminati, F
2013-01-25
We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks.
Vajdi, Ahmadreza; Zhang, Gongxuan; Zhou, Junlong; Wei, Tongquan; Wang, Yongli; Wang, Tianshu
2018-05-04
We study the problem of employing a mobile-sink into a large-scale Event-Driven Wireless Sensor Networks (EWSNs) for the purpose of data harvesting from sensor-nodes. Generally, this employment improves the main weakness of WSNs that is about energy-consumption in battery-driven sensor-nodes. The main motivation of our work is to address challenges which are related to a network’s topology by adopting a mobile-sink that moves in a predefined trajectory in the environment. Since, in this fashion, it is not possible to gather data from sensor-nodes individually, we adopt the approach of defining some of the sensor-nodes as Rendezvous Points (RPs) in the network. We argue that RP-planning in this case is a tradeoff between minimizing the number of RPs while decreasing the number of hops for a sensor-node that needs data transformation to the related RP which leads to minimizing average energy consumption in the network. We address the problem by formulating the challenges and expectations as a Mixed Integer Linear Programming (MILP). Henceforth, by proving the NP-hardness of the problem, we propose three effective and distributed heuristics for RP-planning, identifying sojourn locations, and constructing routing trees. Finally, experimental results prove the effectiveness of our approach.
NASA Astrophysics Data System (ADS)
Carvalho, D.; Gavillet, Ph.; Delgado, V.; Albert, J. N.; Bellas, N.; Javello, J.; Miere, Y.; Ruffinoni, D.; Smith, G.
Large Scientific Equipments are controlled by Computer Systems whose complexity is growing driven, on the one hand by the volume and variety of the information, its distributed nature, the sophistication of its treatment and, on the other hand by the fast evolution of the computer and network market. Some people call them genetically Large-Scale Distributed Data Intensive Information Systems or Distributed Computer Control Systems (DCCS) for those systems dealing more with real time control. Taking advantage of (or forced by) the distributed architecture, the tasks are more and more often implemented as Client-Server applications. In this framework the monitoring of the computer nodes, the communications network and the applications becomes of primary importance for ensuring the safe running and guaranteed performance of the system. With the future generation of HEP experiments, such as those at the LHC in view, it is proposed to integrate the various functions of DCCS monitoring into one general purpose Multi-layer System.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Jiang, Huaiguang; Tan, Jin
This paper proposes an event-driven approach for reconfiguring distribution systems automatically. Specifically, an optimal synchrophasor sensor placement (OSSP) is used to reduce the number of synchrophasor sensors while keeping the whole system observable. Then, a wavelet-based event detection and location approach is used to detect and locate the event, which performs as a trigger for network reconfiguration. With the detected information, the system is then reconfigured using the hierarchical decentralized approach to seek for the new optimal topology. In this manner, whenever an event happens the distribution network can be reconfigured automatically based on the real-time information that is observablemore » and detectable.« less
Influence of reciprocal edges on degree distribution and degree correlations
NASA Astrophysics Data System (ADS)
Zlatić, Vinko; Štefančić, Hrvoje
2009-07-01
Reciprocal edges represent the lowest-order cycle possible to find in directed graphs without self-loops. Representing also a measure of feedback between vertices, it is interesting to understand how reciprocal edges influence other properties of complex networks. In this paper, we focus on the influence of reciprocal edges on vertex degree distribution and degree correlations. We show that there is a fundamental difference between properties observed on the static network compared to the properties of networks, which are obtained by simple evolution mechanism driven by reciprocity. We also present a way to statistically infer the portion of reciprocal edges, which can be explained as a consequence of feedback process on the static network. In the rest of the paper, the influence of reciprocal edges on a model of growing network is also presented. It is shown that our model of growing network nicely interpolates between Barabási-Albert (BA) model for undirected and the BA model for directed networks.
Microwave Driven Actuators Power Allocation and Distribution
NASA Technical Reports Server (NTRS)
Forbes, Timothy; Song, Kyo D.
2000-01-01
Design, fabrication and test of a power allocation and distribution (PAD) network for microwave driven actuators is presented in this paper. Development of a circuit that would collect power from a rectenna array amplify and distribute the power to actuators was designed and fabricated for space application in an actuator array driven by a microwave. A P-SPICE model was constructed initially for data reduction purposes, and was followed by a working real-world model. A voltage up - converter (VUC) is used to amplify the voltage from the individual rectenna. The testing yielded a 26:1 voltage amplification ratio with input voltage at 9 volts and a measured output voltage 230VDC. Future work includes the miniaturization of the circuitry, the use of microwave remote control, and voltage amplification technology for each voltage source. The objective of this work is to develop a model system that will collect DC voltage from an array of rectenna and propagate the voltage to an array of actuators.
General Dynamics of Topology and Traffic on Weighted Technological Networks
NASA Astrophysics Data System (ADS)
Wang, Wen-Xu; Wang, Bing-Hong; Hu, Bo; Yan, Gang; Ou, Qing
2005-05-01
For most technical networks, the interplay of dynamics, traffic, and topology is assumed crucial to their evolution. In this Letter, we propose a traffic-driven evolution model of weighted technological networks. By introducing a general strength-coupling mechanism under which the traffic and topology mutually interact, the model gives power-law distributions of degree, weight, and strength, as confirmed in many real networks. Particularly, depending on a parameter W that controls the total weight growth of the system, the nontrivial clustering coefficient C, degree assortativity coefficient r, and degree-strength correlation are all consistent with empirical evidence.
NASA Astrophysics Data System (ADS)
Anghel, M.; Toroczkai, Zoltán; Bassler, Kevin E.; Korniss, G.
2004-02-01
Using the minority game as a model for competition dynamics, we investigate the effects of interagent communications across a network on the global evolution of the game. Agent communication across this network leads to the formation of an influence network, which is dynamically coupled to the evolution of the game, and it is responsible for the information flow driving the agents' actions. We show that the influence network spontaneously develops hubs with a broad distribution of in-degrees, defining a scale-free robust leadership structure. Furthermore, in realistic parameter ranges, facilitated by information exchange on the network, agents can generate a high degree of cooperation making the collective almost maximally efficient.
Reliable Adaptive Video Streaming Driven by Perceptual Semantics for Situational Awareness
Pimentel-Niño, M. A.; Saxena, Paresh; Vazquez-Castro, M. A.
2015-01-01
A novel cross-layer optimized video adaptation driven by perceptual semantics is presented. The design target is streamed live video to enhance situational awareness in challenging communications conditions. Conventional solutions for recreational applications are inadequate and novel quality of experience (QoE) framework is proposed which allows fully controlled adaptation and enables perceptual semantic feedback. The framework relies on temporal/spatial abstraction for video applications serving beyond recreational purposes. An underlying cross-layer optimization technique takes into account feedback on network congestion (time) and erasures (space) to best distribute available (scarce) bandwidth. Systematic random linear network coding (SRNC) adds reliability while preserving perceptual semantics. Objective metrics of the perceptual features in QoE show homogeneous high performance when using the proposed scheme. Finally, the proposed scheme is in line with content-aware trends, by complying with information-centric-networking philosophy and architecture. PMID:26247057
Contagion processes on the static and activity-driven coupling networks
NASA Astrophysics Data System (ADS)
Lei, Yanjun; Jiang, Xin; Guo, Quantong; Ma, Yifang; Li, Meng; Zheng, Zhiming
2016-03-01
The evolution of network structure and the spreading of epidemic are common coexistent dynamical processes. In most cases, network structure is treated as either static or time-varying, supposing the whole network is observed in the same time window. In this paper, we consider the epidemics spreading on a network which has both static and time-varying structures. Meanwhile, the time-varying part and the epidemic spreading are supposed to be of the same time scale. We introduce a static and activity-driven coupling (SADC) network model to characterize the coupling between the static ("strong") structure and the dynamic ("weak") structure. Epidemic thresholds of the SIS and SIR models are studied using the SADC model both analytically and numerically under various coupling strategies, where the strong structure is of homogeneous or heterogeneous degree distribution. Theoretical thresholds obtained from the SADC model can both recover and generalize the classical results in static and time-varying networks. It is demonstrated that a weak structure might make the epidemic threshold low in homogeneous networks but high in heterogeneous cases. Furthermore, we show that the weak structure has a substantive effect on the outbreak of the epidemics. This result might be useful in designing some efficient control strategies for epidemics spreading in networks.
Analyzing Distributional Learning of Phonemic Categories in Unsupervised Deep Neural Networks
Räsänen, Okko; Nagamine, Tasha; Mesgarani, Nima
2017-01-01
Infants’ speech perception adapts to the phonemic categories of their native language, a process assumed to be driven by the distributional properties of speech. This study investigates whether deep neural networks (DNNs), the current state-of-the-art in distributional feature learning, are capable of learning phoneme-like representations of speech in an unsupervised manner. We trained DNNs with unlabeled and labeled speech and analyzed the activations of each layer with respect to the phones in the input segments. The analyses reveal that the emergence of phonemic invariance in DNNs is dependent on the availability of phonemic labeling of the input during the training. No increased phonemic selectivity of the hidden layers was observed in the purely unsupervised networks despite successful learning of low-dimensional representations for speech. This suggests that additional learning constraints or more sophisticated models are needed to account for the emergence of phone-like categories in distributional learning operating on natural speech. PMID:29359204
Distributed Observer Network (DON), Version 3.0, User's Guide
NASA Technical Reports Server (NTRS)
Mazzone, Rebecca A.; Conroy, Michael P.
2015-01-01
The Distributed Observer Network (DON) is a data presentation tool developed by the National Aeronautics and Space Administration (NASA) to distribute and publish simulation results. Leveraging the display capabilities inherent in modern gaming technology, DON places users in a fully navigable 3-D environment containing graphical models and allows the users to observe how those models evolve and interact over time in a given scenario. Each scenario is driven with data that has been generated by authoritative NASA simulation tools and exported in accordance with a published data interface specification. This decoupling of the data from the source tool enables DON to faithfully display a simulator's results and ensure that every simulation stakeholder will view the exact same information every time.
Distributed run of a one-dimensional model in a regional application using SOAP-based web services
NASA Astrophysics Data System (ADS)
Smiatek, Gerhard
This article describes the setup of a distributed computing system in Perl. It facilitates the parallel run of a one-dimensional environmental model on a number of simple network PC hosts. The system uses Simple Object Access Protocol (SOAP) driven web services offering the model run on remote hosts and a multi-thread environment distributing the work and accessing the web services. Its application is demonstrated in a regional run of a process-oriented biogenic emission model for the area of Germany. Within a network consisting of up to seven web services implemented on Linux and MS-Windows hosts, a performance increase of approximately 400% has been reached compared to a model run on the fastest single host.
Virtual Sensor Web Architecture
NASA Astrophysics Data System (ADS)
Bose, P.; Zimdars, A.; Hurlburt, N.; Doug, S.
2006-12-01
NASA envisions the development of smart sensor webs, intelligent and integrated observation network that harness distributed sensing assets, their associated continuous and complex data sets, and predictive observation processing mechanisms for timely, collaborative hazard mitigation and enhanced science productivity and reliability. This paper presents Virtual Sensor Web Infrastructure for Collaborative Science (VSICS) Architecture for sustained coordination of (numerical and distributed) model-based processing, closed-loop resource allocation, and observation planning. VSICS's key ideas include i) rich descriptions of sensors as services based on semantic markup languages like OWL and SensorML; ii) service-oriented workflow composition and repair for simple and ensemble models; event-driven workflow execution based on event-based and distributed workflow management mechanisms; and iii) development of autonomous model interaction management capabilities providing closed-loop control of collection resources driven by competing targeted observation needs. We present results from initial work on collaborative science processing involving distributed services (COSEC framework) that is being extended to create VSICS.
Predicting commuter flows in spatial networks using a radiation model based on temporal ranges
NASA Astrophysics Data System (ADS)
Ren, Yihui; Ercsey-Ravasz, Mária; Wang, Pu; González, Marta C.; Toroczkai, Zoltán
2014-11-01
Understanding network flows such as commuter traffic in large transportation networks is an ongoing challenge due to the complex nature of the transportation infrastructure and human mobility. Here we show a first-principles based method for traffic prediction using a cost-based generalization of the radiation model for human mobility, coupled with a cost-minimizing algorithm for efficient distribution of the mobility fluxes through the network. Using US census and highway traffic data, we show that traffic can efficiently and accurately be computed from a range-limited, network betweenness type calculation. The model based on travel time costs captures the log-normal distribution of the traffic and attains a high Pearson correlation coefficient (0.75) when compared with real traffic. Because of its principled nature, this method can inform many applications related to human mobility driven flows in spatial networks, ranging from transportation, through urban planning to mitigation of the effects of catastrophic events.
NASA Astrophysics Data System (ADS)
Hassanzadeh, H.; Jafari Raad, S. M.
2017-12-01
Linear stability analysis is conducted to study the onset of buoyancy-driven convection involved in solubility trapping of CO2 into deep fractured aquifers. In this study, the effect of fracture network physical properties on the stability criteria in a brine-rich fractured porous layer is investigated using dual porosity concept for both single and variable matrix block size distributions. Linear stability analysis results show that both fracture interporosity flow and fracture storativity factors play an important role in the stability behavior of the system. It is shown that a diffusive boundary layer under the gravity field in a fractured rock with lower fracture storativity and/or higher fracture interporosity flow coefficient is more stable. We present scaling relations that relate the onset of convective instability in fractured aquifers. These findings improve our understanding of buoyancy driven flow in fractured aquifers and are particularly important in estimation of potential storage capacity, risk assessment, and storage sites characterization and screening.Keywords: CO2 sequestration; fractured rock; buoyancy-driven convection; stability analysis
Clusters of poverty and disease emerge from feedbacks on an epidemiological network.
Pluciński, Mateusz M; Ngonghala, Calistus N; Getz, Wayne M; Bonds, Matthew H
2013-03-06
The distribution of health conditions is characterized by extreme inequality. These disparities have been alternately attributed to disease ecology and the economics of poverty. Here, we provide a novel framework that integrates epidemiological and economic growth theory on an individual-based hierarchically structured network. Our model indicates that, under certain parameter regimes, feedbacks between disease ecology and economics create clusters of low income and high disease that can stably persist in populations that become otherwise predominantly rich and free of disease. Surprisingly, unlike traditional poverty trap models, these localized disease-driven poverty traps can arise despite homogeneity of parameters and evenly distributed initial economic conditions.
Zhang, Gongxuan; Wang, Yongli; Wang, Tianshu
2018-01-01
We study the problem of employing a mobile-sink into a large-scale Event-Driven Wireless Sensor Networks (EWSNs) for the purpose of data harvesting from sensor-nodes. Generally, this employment improves the main weakness of WSNs that is about energy-consumption in battery-driven sensor-nodes. The main motivation of our work is to address challenges which are related to a network’s topology by adopting a mobile-sink that moves in a predefined trajectory in the environment. Since, in this fashion, it is not possible to gather data from sensor-nodes individually, we adopt the approach of defining some of the sensor-nodes as Rendezvous Points (RPs) in the network. We argue that RP-planning in this case is a tradeoff between minimizing the number of RPs while decreasing the number of hops for a sensor-node that needs data transformation to the related RP which leads to minimizing average energy consumption in the network. We address the problem by formulating the challenges and expectations as a Mixed Integer Linear Programming (MILP). Henceforth, by proving the NP-hardness of the problem, we propose three effective and distributed heuristics for RP-planning, identifying sojourn locations, and constructing routing trees. Finally, experimental results prove the effectiveness of our approach. PMID:29734718
Statistical mechanics of scale-free gene expression networks
NASA Astrophysics Data System (ADS)
Gross, Eitan
2012-12-01
The gene co-expression networks of many organisms including bacteria, mice and man exhibit scale-free distribution. This heterogeneous distribution of connections decreases the vulnerability of the network to random attacks and thus may confer the genetic replication machinery an intrinsic resilience to such attacks, triggered by changing environmental conditions that the organism may be subject to during evolution. This resilience to random attacks comes at an energetic cost, however, reflected by the lower entropy of the scale-free distribution compared to the more homogenous, random network. In this study we found that the cell cycle-regulated gene expression pattern of the yeast Saccharomyces cerevisiae obeys a power-law distribution with an exponent α = 2.1 and an entropy of 1.58. The latter is very close to the maximal value of 1.65 obtained from linear optimization of the entropy function under the constraint of a constant cost function, determined by the average degree connectivity
Teschendorff, Andrew E; Banerji, Christopher R S; Severini, Simone; Kuehn, Reimer; Sollich, Peter
2015-04-28
One of the key characteristics of cancer cells is an increased phenotypic plasticity, driven by underlying genetic and epigenetic perturbations. However, at a systems-level it is unclear how these perturbations give rise to the observed increased plasticity. Elucidating such systems-level principles is key for an improved understanding of cancer. Recently, it has been shown that signaling entropy, an overall measure of signaling pathway promiscuity, and computable from integrating a sample's gene expression profile with a protein interaction network, correlates with phenotypic plasticity and is increased in cancer compared to normal tissue. Here we develop a computational framework for studying the effects of network perturbations on signaling entropy. We demonstrate that the increased signaling entropy of cancer is driven by two factors: (i) the scale-free (or near scale-free) topology of the interaction network, and (ii) a subtle positive correlation between differential gene expression and node connectivity. Indeed, we show that if protein interaction networks were random graphs, described by Poisson degree distributions, that cancer would generally not exhibit an increased signaling entropy. In summary, this work exposes a deep connection between cancer, signaling entropy and interaction network topology.
The role of endogenous and exogenous mechanisms in the formation of R&D networks
NASA Astrophysics Data System (ADS)
Tomasello, Mario V.; Perra, Nicola; Tessone, Claudio J.; Karsai, Márton; Schweitzer, Frank
2014-07-01
We develop an agent-based model of strategic link formation in Research and Development (R&D) networks. Empirical evidence has shown that the growth of these networks is driven by mechanisms which are both endogenous to the system (that is, depending on existing alliances patterns) and exogenous (that is, driven by an exploratory search for newcomer firms). Extant research to date has not investigated both mechanisms simultaneously in a comparative manner. To overcome this limitation, we develop a general modeling framework to shed light on the relative importance of these two mechanisms. We test our model against a comprehensive dataset, listing cross-country and cross-sectoral R&D alliances from 1984 to 2009. Our results show that by fitting only three macroscopic properties of the network topology, this framework is able to reproduce a number of micro-level measures, including the distributions of degree, local clustering, path length and component size, and the emergence of network clusters. Furthermore, by estimating the link probabilities towards newcomers and established firms from the data, we find that endogenous mechanisms are predominant over the exogenous ones in the network formation, thus quantifying the importance of existing structures in selecting partner firms.
Teschendorff, Andrew E.; Banerji, Christopher R. S.; Severini, Simone; Kuehn, Reimer; Sollich, Peter
2015-01-01
One of the key characteristics of cancer cells is an increased phenotypic plasticity, driven by underlying genetic and epigenetic perturbations. However, at a systems-level it is unclear how these perturbations give rise to the observed increased plasticity. Elucidating such systems-level principles is key for an improved understanding of cancer. Recently, it has been shown that signaling entropy, an overall measure of signaling pathway promiscuity, and computable from integrating a sample's gene expression profile with a protein interaction network, correlates with phenotypic plasticity and is increased in cancer compared to normal tissue. Here we develop a computational framework for studying the effects of network perturbations on signaling entropy. We demonstrate that the increased signaling entropy of cancer is driven by two factors: (i) the scale-free (or near scale-free) topology of the interaction network, and (ii) a subtle positive correlation between differential gene expression and node connectivity. Indeed, we show that if protein interaction networks were random graphs, described by Poisson degree distributions, that cancer would generally not exhibit an increased signaling entropy. In summary, this work exposes a deep connection between cancer, signaling entropy and interaction network topology. PMID:25919796
Secret Forwarding of Events over Distributed Publish/Subscribe Overlay Network.
Yoon, Young; Kim, Beom Heyn
2016-01-01
Publish/subscribe is a communication paradigm where loosely-coupled clients communicate in an asynchronous fashion. Publish/subscribe supports the flexible development of large-scale, event-driven and ubiquitous systems. Publish/subscribe is prevalent in a number of application domains such as social networking, distributed business processes and real-time mission-critical systems. Many publish/subscribe applications are sensitive to message loss and violation of privacy. To overcome such issues, we propose a novel method of using secret sharing and replication techniques. This is to reliably and confidentially deliver decryption keys along with encrypted publications even under the presence of several Byzantine brokers across publish/subscribe overlay networks. We also propose a framework for dynamically and strategically allocating broker replicas based on flexibly definable criteria for reliability and performance. Moreover, a thorough evaluation is done through a case study on social networks using the real trace of interactions among Facebook users.
Secret Forwarding of Events over Distributed Publish/Subscribe Overlay Network
Kim, Beom Heyn
2016-01-01
Publish/subscribe is a communication paradigm where loosely-coupled clients communicate in an asynchronous fashion. Publish/subscribe supports the flexible development of large-scale, event-driven and ubiquitous systems. Publish/subscribe is prevalent in a number of application domains such as social networking, distributed business processes and real-time mission-critical systems. Many publish/subscribe applications are sensitive to message loss and violation of privacy. To overcome such issues, we propose a novel method of using secret sharing and replication techniques. This is to reliably and confidentially deliver decryption keys along with encrypted publications even under the presence of several Byzantine brokers across publish/subscribe overlay networks. We also propose a framework for dynamically and strategically allocating broker replicas based on flexibly definable criteria for reliability and performance. Moreover, a thorough evaluation is done through a case study on social networks using the real trace of interactions among Facebook users. PMID:27367610
Data-driven process decomposition and robust online distributed modelling for large-scale processes
NASA Astrophysics Data System (ADS)
Shu, Zhang; Lijuan, Li; Lijuan, Yao; Shipin, Yang; Tao, Zou
2018-02-01
With the increasing attention of networked control, system decomposition and distributed models show significant importance in the implementation of model-based control strategy. In this paper, a data-driven system decomposition and online distributed subsystem modelling algorithm was proposed for large-scale chemical processes. The key controlled variables are first partitioned by affinity propagation clustering algorithm into several clusters. Each cluster can be regarded as a subsystem. Then the inputs of each subsystem are selected by offline canonical correlation analysis between all process variables and its controlled variables. Process decomposition is then realised after the screening of input and output variables. When the system decomposition is finished, the online subsystem modelling can be carried out by recursively block-wise renewing the samples. The proposed algorithm was applied in the Tennessee Eastman process and the validity was verified.
Networked Rectenna Array for Smart Material Actuators
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Golembiewski, Walter T.; Song, Kyo D.
2000-01-01
The concept of microwave-driven smart material actuators is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry. Networked rectenna patch array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is adopted for networking a rectenna/actuator patch array. The PAD circuit is imbedded into a single embodiment of rectenna and actuator array. The thin-film microcircuit embodiment of PAD circuit adds insignificant amount of rigidity to membrane flexibility. Preliminary design and fabrication of PAD circuitry that consists of a few nodal elements were made for laboratory testing. The networked actuators were tested to correlate the network coupling effect, power allocation and distribution, and response time. The features of preliminary design are 16-channel computer control of actuators by a PCI board and the compensator for a power failure or leakage of one or more rectennas.
Silenzio, Vincent M B; Duberstein, Paul R; Tang, Wan; Lu, Naiji; Tu, Xin; Homan, Christopher M
2009-08-01
Young lesbian, gay, and bisexual (young LGB) individuals report higher rates of suicide ideation and attempts from their late teens through early twenties. Their high rate of Internet use suggests that online social networks offer a novel opportunity to reach them. This study explores online social networks as a venue for prevention research targeting young LGB. An automated data collection program was used to map the social connections between LGB self-identified individuals between 16 and 24 years old participating in an online social network. We then completed a descriptive analysis of the structural characteristics known to affect diffusion within such networks. Finally, we conducted Monte Carlo simulations of peer-driven diffusion of a hypothetical preventive intervention within the observed network under varying starting conditions. We mapped a network of 100,014 young LGB. The mean age was 20.4 years. The mean nodal degree was 137.5, representing an exponential degree distribution ranging from 1 through 4309. Monte Carlo simulations revealed that a peer-driven preventive intervention ultimately reached final sample sizes of up to 18,409 individuals. The network's structure is consistent with other social networks in terms of the underlying degree distribution. Such networks are typically formed dynamically through a process of preferential attachment. This implies that some individuals could be more important to target to facilitate the diffusion of interventions. However, in terms of determining the success of an intervention targeting this population, our simulation results suggest that varying the number of peers that can be recruited is more important than increasing the number of randomly-selected starting individuals. This has implications for intervention design. Given the potential to access this previously isolated population, this novel approach represents a promising new frontier in suicide prevention and other research areas.
Data Driven Performance Evaluation of Wireless Sensor Networks
Frery, Alejandro C.; Ramos, Heitor S.; Alencar-Neto, José; Nakamura, Eduardo; Loureiro, Antonio A. F.
2010-01-01
Wireless Sensor Networks are presented as devices for signal sampling and reconstruction. Within this framework, the qualitative and quantitative influence of (i) signal granularity, (ii) spatial distribution of sensors, (iii) sensors clustering, and (iv) signal reconstruction procedure are assessed. This is done by defining an error metric and performing a Monte Carlo experiment. It is shown that all these factors have significant impact on the quality of the reconstructed signal. The extent of such impact is quantitatively assessed. PMID:22294920
Event-driven contrastive divergence for spiking neuromorphic systems.
Neftci, Emre; Das, Srinjoy; Pedroni, Bruno; Kreutz-Delgado, Kenneth; Cauwenberghs, Gert
2013-01-01
Restricted Boltzmann Machines (RBMs) and Deep Belief Networks have been demonstrated to perform efficiently in a variety of applications, such as dimensionality reduction, feature learning, and classification. Their implementation on neuromorphic hardware platforms emulating large-scale networks of spiking neurons can have significant advantages from the perspectives of scalability, power dissipation and real-time interfacing with the environment. However, the traditional RBM architecture and the commonly used training algorithm known as Contrastive Divergence (CD) are based on discrete updates and exact arithmetics which do not directly map onto a dynamical neural substrate. Here, we present an event-driven variation of CD to train a RBM constructed with Integrate & Fire (I&F) neurons, that is constrained by the limitations of existing and near future neuromorphic hardware platforms. Our strategy is based on neural sampling, which allows us to synthesize a spiking neural network that samples from a target Boltzmann distribution. The recurrent activity of the network replaces the discrete steps of the CD algorithm, while Spike Time Dependent Plasticity (STDP) carries out the weight updates in an online, asynchronous fashion. We demonstrate our approach by training an RBM composed of leaky I&F neurons with STDP synapses to learn a generative model of the MNIST hand-written digit dataset, and by testing it in recognition, generation and cue integration tasks. Our results contribute to a machine learning-driven approach for synthesizing networks of spiking neurons capable of carrying out practical, high-level functionality.
Event-driven contrastive divergence for spiking neuromorphic systems
Neftci, Emre; Das, Srinjoy; Pedroni, Bruno; Kreutz-Delgado, Kenneth; Cauwenberghs, Gert
2014-01-01
Restricted Boltzmann Machines (RBMs) and Deep Belief Networks have been demonstrated to perform efficiently in a variety of applications, such as dimensionality reduction, feature learning, and classification. Their implementation on neuromorphic hardware platforms emulating large-scale networks of spiking neurons can have significant advantages from the perspectives of scalability, power dissipation and real-time interfacing with the environment. However, the traditional RBM architecture and the commonly used training algorithm known as Contrastive Divergence (CD) are based on discrete updates and exact arithmetics which do not directly map onto a dynamical neural substrate. Here, we present an event-driven variation of CD to train a RBM constructed with Integrate & Fire (I&F) neurons, that is constrained by the limitations of existing and near future neuromorphic hardware platforms. Our strategy is based on neural sampling, which allows us to synthesize a spiking neural network that samples from a target Boltzmann distribution. The recurrent activity of the network replaces the discrete steps of the CD algorithm, while Spike Time Dependent Plasticity (STDP) carries out the weight updates in an online, asynchronous fashion. We demonstrate our approach by training an RBM composed of leaky I&F neurons with STDP synapses to learn a generative model of the MNIST hand-written digit dataset, and by testing it in recognition, generation and cue integration tasks. Our results contribute to a machine learning-driven approach for synthesizing networks of spiking neurons capable of carrying out practical, high-level functionality. PMID:24574952
NASA Technical Reports Server (NTRS)
Hayashi, Isao; Nomura, Hiroyoshi; Wakami, Noboru
1991-01-01
Whereas conventional fuzzy reasonings are associated with tuning problems, which are lack of membership functions and inference rule designs, a neural network driven fuzzy reasoning (NDF) capable of determining membership functions by neural network is formulated. In the antecedent parts of the neural network driven fuzzy reasoning, the optimum membership function is determined by a neural network, while in the consequent parts, an amount of control for each rule is determined by other plural neural networks. By introducing an algorithm of neural network driven fuzzy reasoning, inference rules for making a pendulum stand up from its lowest suspended point are determined for verifying the usefulness of the algorithm.
NASA Astrophysics Data System (ADS)
Yao, Bing; Yang, Hui
2016-12-01
This paper presents a novel physics-driven spatiotemporal regularization (STRE) method for high-dimensional predictive modeling in complex healthcare systems. This model not only captures the physics-based interrelationship between time-varying explanatory and response variables that are distributed in the space, but also addresses the spatial and temporal regularizations to improve the prediction performance. The STRE model is implemented to predict the time-varying distribution of electric potentials on the heart surface based on the electrocardiogram (ECG) data from the distributed sensor network placed on the body surface. The model performance is evaluated and validated in both a simulated two-sphere geometry and a realistic torso-heart geometry. Experimental results show that the STRE model significantly outperforms other regularization models that are widely used in current practice such as Tikhonov zero-order, Tikhonov first-order and L1 first-order regularization methods.
Duberstein, Paul R; Tu, Xin; Tang, Wan; Lu, Naiji; Homan, Christopher M
2009-01-01
Young lesbian, gay, and bisexual (young LGB) individuals report higher rates of suicide ideation and attempts from their late teens through early twenties. Their high rate of Internet use suggests that online social networks offer a novel opportunity to reach them. This study explores online social networks as a venue for prevention research targeting young LGB. An automated data collection program was used to map the social connections between LGB self-identified individuals between 16 and 24 years old participating in an online social network. We then completed a descriptive analysis of the structural characteristics known to affect diffusion within such networks. Finally, we conducted Monte Carlo simulations of peer-driven diffusion of a hypothetical preventive intervention within the observed network under varying starting conditions. We mapped a network of 100,014 young LGB. The mean age was 20.4 years. The mean nodal degree was 137.5, representing an exponential degree distribution ranging from 1 through 4,309. Monte Carlo simulations revealed that a peer-driven preventive intervention ultimately reached final sample sizes of up to 18,409 individuals. The network’s structure is consistent with other social networks in terms of the underlying degree distribution. Such networks are typically formed dynamically through a process of preferential attachment. This implies that some individuals could be more important to target to facilitate the diffusion of interventions. However, in terms of determining the success of an intervention targeting this population, our simulation results suggest that varying the number of peers that can be recruited is more important than increasing the number of randomly-selected starting individuals. This has implications for intervention design. Given the potential to access this previously isolated population, this novel approach represents a promising new frontier in suicide prevention and other research areas. PMID:19540641
Opinion formation driven by PageRank node influence on directed networks
NASA Astrophysics Data System (ADS)
Eom, Young-Ho; Shepelyansky, Dima L.
2015-10-01
We study a two states opinion formation model driven by PageRank node influence and report an extensive numerical study on how PageRank affects collective opinion formations in large-scale empirical directed networks. In our model the opinion of a node can be updated by the sum of its neighbor nodes' opinions weighted by the node influence of the neighbor nodes at each step. We consider PageRank probability and its sublinear power as node influence measures and investigate evolution of opinion under various conditions. First, we observe that all networks reach steady state opinion after a certain relaxation time. This time scale is decreasing with the heterogeneity of node influence in the networks. Second, we find that our model shows consensus and non-consensus behavior in steady state depending on types of networks: Web graph, citation network of physics articles, and LiveJournal social network show non-consensus behavior while Wikipedia article network shows consensus behavior. Third, we find that a more heterogeneous influence distribution leads to a more uniform opinion state in the cases of Web graph, Wikipedia, and Livejournal. However, the opposite behavior is observed in the citation network. Finally we identify that a small number of influential nodes can impose their own opinion on significant fraction of other nodes in all considered networks. Our study shows that the effects of heterogeneity of node influence on opinion formation can be significant and suggests further investigations on the interplay between node influence and collective opinion in networks.
Boltzmann sampling from the Ising model using quantum heating of coupled nonlinear oscillators.
Goto, Hayato; Lin, Zhirong; Nakamura, Yasunobu
2018-05-08
A network of Kerr-nonlinear parametric oscillators without dissipation has recently been proposed for solving combinatorial optimization problems via quantum adiabatic evolution through its bifurcation point. Here we investigate the behavior of the quantum bifurcation machine (QbM) in the presence of dissipation. Our numerical study suggests that the output probability distribution of the dissipative QbM is Boltzmann-like, where the energy in the Boltzmann distribution corresponds to the cost function of the optimization problem. We explain the Boltzmann distribution by generalizing the concept of quantum heating in a single nonlinear oscillator to the case of multiple coupled nonlinear oscillators. The present result also suggests that such driven dissipative nonlinear oscillator networks can be applied to Boltzmann sampling, which is used, e.g., for Boltzmann machine learning in the field of artificial intelligence.
Venusian channels and valleys - Distribution and volcanological implications
NASA Technical Reports Server (NTRS)
Komatsu, Goro; Baker, Victor R.; Gulick, Virginia C.; Parker, Timothy J.
1993-01-01
An updated map is presented which shows the distribution of more than 200 channels and valleys on Venus. A large number of channels are concentrated in equatorial regions characterized by highlands, rift and fracture zones, an associated volcanic features. Many channels associated with flow deposits are similar to typical terrestrial lava drainage channels. They are associated with a wide range of volcanic edifices. More than half of the sinuous rilles are associated with coronae, coronalike features, or arachnoids. Corona volcanism driven by mantle plume events may explain this association. Many valley network are observed in highlands and in association with coronae, coronalike features, or arachnoids. This indicates that highlands and coronae provided fractures and flow-viscosity lavas, both of which seem to be required for network formation by lava sapping processes. Canali-type channels have a unique distribution limited to some plains regions.
Petersen, Peter C; Berg, Rune W
2016-01-01
When spinal circuits generate rhythmic movements it is important that the neuronal activity remains within stable bounds to avoid saturation and to preserve responsiveness. Here, we simultaneously record from hundreds of neurons in lumbar spinal circuits of turtles and establish the neuronal fraction that operates within either a ‘mean-driven’ or a ‘fluctuation–driven’ regime. Fluctuation-driven neurons have a ‘supralinear’ input-output curve, which enhances sensitivity, whereas the mean-driven regime reduces sensitivity. We find a rich diversity of firing rates across the neuronal population as reflected in a lognormal distribution and demonstrate that half of the neurons spend at least 50 % of the time in the ‘fluctuation–driven’ regime regardless of behavior. Because of the disparity in input–output properties for these two regimes, this fraction may reflect a fine trade–off between stability and sensitivity in order to maintain flexibility across behaviors. DOI: http://dx.doi.org/10.7554/eLife.18805.001 PMID:27782883
Recent progress in distributed optical fiber Raman photon sensors at China Jiliang University
NASA Astrophysics Data System (ADS)
Zhang, Zaixuan; Wang, Jianfeng; Li, Yi; Gong, Huaping; Yu, Xiangdong; Liu, Honglin; Jin, Yongxing; Kang, Juan; Li, Chenxia; Zhang, Wensheng; Zhang, Wenping; Niu, Xiaohui; Sun, Zhongzhou; Zhao, Chunliu; Dong, Xinyong; Jin, Shangzhong
2012-06-01
A brief review of recent progress in researches, productions and applications of full distributed fiber Raman photon sensors at China Jiliang University (CJLU) is presented. In order to improve the measurement distance, the accuracy, the space resolution, the ability of multi-parameter measurements, and the intelligence of full distributed fiber sensor systems, a new generation fiber sensor technology based on the optical fiber nonlinear scattering fusion principle is proposed. A series of new generation full distributed fiber sensors are investigated and designed, which consist of new generation ultra-long distance full distributed fiber Raman and Rayleigh scattering photon sensors integrated with a fiber Raman amplifier, auto-correction full distributed fiber Raman photon temperature sensors based on Raman correlation dual sources, full distributed fiber Raman photon temperature sensors based on a pulse coding source, full distributed fiber Raman photon temperature sensors using a fiber Raman wavelength shifter, a new type of Brillouin optical time domain analyzers (BOTDAs) integrated with a fiber Raman amplifier for replacing a fiber Brillouin amplifier, full distributed fiber Raman and Brillouin photon sensors integrated with a fiber Raman amplifier, and full distributed fiber Brillouin photon sensors integrated with a fiber Brillouin frequency shifter. The Internet of things is believed as one of candidates of the next technological revolution, which has driven hundreds of millions of class markets. Sensor networks are important components of the Internet of things. The full distributed optical fiber sensor network (Rayleigh, Raman, and Brillouin scattering) is a 3S (smart materials, smart structure, and smart skill) system, which is easy to construct smart fiber sensor networks. The distributed optical fiber sensor can be embedded in the power grids, railways, bridges, tunnels, roads, constructions, water supply systems, dams, oil and gas pipelines and other facilities, and can be integrated with wireless networks.
Data-driven modeling of solar-powered urban microgrids
Halu, Arda; Scala, Antonio; Khiyami, Abdulaziz; González, Marta C.
2016-01-01
Distributed generation takes center stage in today’s rapidly changing energy landscape. Particularly, locally matching demand and generation in the form of microgrids is becoming a promising alternative to the central distribution paradigm. Infrastructure networks have long been a major focus of complex networks research with their spatial considerations. We present a systemic study of solar-powered microgrids in the urban context, obeying real hourly consumption patterns and spatial constraints of the city. We propose a microgrid model and study its citywide implementation, identifying the self-sufficiency and temporal properties of microgrids. Using a simple optimization scheme, we find microgrid configurations that result in increased resilience under cost constraints. We characterize load-related failures solving power flows in the networks, and we show the robustness behavior of urban microgrids with respect to optimization using percolation methods. Our findings hint at the existence of an optimal balance between cost and robustness in urban microgrids. PMID:26824071
Data-driven modeling of solar-powered urban microgrids.
Halu, Arda; Scala, Antonio; Khiyami, Abdulaziz; González, Marta C
2016-01-01
Distributed generation takes center stage in today's rapidly changing energy landscape. Particularly, locally matching demand and generation in the form of microgrids is becoming a promising alternative to the central distribution paradigm. Infrastructure networks have long been a major focus of complex networks research with their spatial considerations. We present a systemic study of solar-powered microgrids in the urban context, obeying real hourly consumption patterns and spatial constraints of the city. We propose a microgrid model and study its citywide implementation, identifying the self-sufficiency and temporal properties of microgrids. Using a simple optimization scheme, we find microgrid configurations that result in increased resilience under cost constraints. We characterize load-related failures solving power flows in the networks, and we show the robustness behavior of urban microgrids with respect to optimization using percolation methods. Our findings hint at the existence of an optimal balance between cost and robustness in urban microgrids.
NASA Astrophysics Data System (ADS)
Soelistijanto, B.; Muliadi, V.
2018-03-01
Diffie-Hellman (DH) provides an efficient key exchange system by reducing the number of cryptographic keys distributed in the network. In this method, a node broadcasts a single public key to all nodes in the network, and in turn each peer uses this key to establish a shared secret key which then can be utilized to encrypt and decrypt traffic between the peer and the given node. In this paper, we evaluate the key transfer delay and cost performance of DH in opportunistic mobile networks, a specific scenario of MANETs where complete end-to-end paths rarely exist between sources and destinations; consequently, the end-to-end delays in these networks are much greater than typical MANETs. Simulation results, driven by a random node movement model and real human mobility traces, showed that DH outperforms a typical key distribution scheme based on the RSA algorithm in terms of key transfer delay, measured by average key convergence time; however, DH performs as well as the benchmark in terms of key transfer cost, evaluated by total key (copies) forwards.
Ethernet access network based on free-space optic deployment technology
NASA Astrophysics Data System (ADS)
Gebhart, Michael; Leitgeb, Erich; Birnbacher, Ulla; Schrotter, Peter
2004-06-01
The satisfaction of all communication needs from single households and business companies over a single access infrastructure is probably the most challenging topic in communications technology today. But even though the so-called "Last Mile Access Bottleneck" is well known since more than ten years and many distribution technologies have been tried out, the optimal solution has not yet been found and paying commercial access networks offering all service classes are still rare today. Conventional services like telephone, radio and TV, as well as new and emerging services like email, web browsing, online-gaming, video conferences, business data transfer or external data storage can all be transmitted over the well known and cost effective Ethernet networking protocol standard. Key requirements for the deployment technology driven by the different services are high data rates to the single customer, security, moderate deployment costs and good scalability to number and density of users, quick and flexible deployment without legal impediments and high availability, referring to the properties of optical and wireless communication. We demonstrate all elements of an Ethernet Access Network based on Free Space Optic distribution technology. Main physical parts are Central Office, Distribution Network and Customer Equipment. Transmission of different services, as well as configuration, service upgrades and remote control of the network are handled by networking features over one FSO connection. All parts of the network are proven, the latest commercially available technology. The set up is flexible and can be adapted to any more specific need if required.
Self-organization of complex networks as a dynamical system
NASA Astrophysics Data System (ADS)
Aoki, Takaaki; Yawata, Koichiro; Aoyagi, Toshio
2015-01-01
To understand the dynamics of real-world networks, we investigate a mathematical model of the interplay between the dynamics of random walkers on a weighted network and the link weights driven by a resource carried by the walkers. Our numerical studies reveal that, under suitable conditions, the co-evolving dynamics lead to the emergence of stationary power-law distributions of the resource and link weights, while the resource quantity at each node ceaselessly changes with time. We analyze the network organization as a deterministic dynamical system and find that the system exhibits multistability, with numerous fixed points, limit cycles, and chaotic states. The chaotic behavior of the system leads to the continual changes in the microscopic network dynamics in the absence of any external random noises. We conclude that the intrinsic interplay between the states of the nodes and network reformation constitutes a major factor in the vicissitudes of real-world networks.
Self-organization of complex networks as a dynamical system.
Aoki, Takaaki; Yawata, Koichiro; Aoyagi, Toshio
2015-01-01
To understand the dynamics of real-world networks, we investigate a mathematical model of the interplay between the dynamics of random walkers on a weighted network and the link weights driven by a resource carried by the walkers. Our numerical studies reveal that, under suitable conditions, the co-evolving dynamics lead to the emergence of stationary power-law distributions of the resource and link weights, while the resource quantity at each node ceaselessly changes with time. We analyze the network organization as a deterministic dynamical system and find that the system exhibits multistability, with numerous fixed points, limit cycles, and chaotic states. The chaotic behavior of the system leads to the continual changes in the microscopic network dynamics in the absence of any external random noises. We conclude that the intrinsic interplay between the states of the nodes and network reformation constitutes a major factor in the vicissitudes of real-world networks.
Data-Driven H∞ Control for Nonlinear Distributed Parameter Systems.
Luo, Biao; Huang, Tingwen; Wu, Huai-Ning; Yang, Xiong
2015-11-01
The data-driven H∞ control problem of nonlinear distributed parameter systems is considered in this paper. An off-policy learning method is developed to learn the H∞ control policy from real system data rather than the mathematical model. First, Karhunen-Loève decomposition is used to compute the empirical eigenfunctions, which are then employed to derive a reduced-order model (ROM) of slow subsystem based on the singular perturbation theory. The H∞ control problem is reformulated based on the ROM, which can be transformed to solve the Hamilton-Jacobi-Isaacs (HJI) equation, theoretically. To learn the solution of the HJI equation from real system data, a data-driven off-policy learning approach is proposed based on the simultaneous policy update algorithm and its convergence is proved. For implementation purpose, a neural network (NN)- based action-critic structure is developed, where a critic NN and two action NNs are employed to approximate the value function, control, and disturbance policies, respectively. Subsequently, a least-square NN weight-tuning rule is derived with the method of weighted residuals. Finally, the developed data-driven off-policy learning approach is applied to a nonlinear diffusion-reaction process, and the obtained results demonstrate its effectiveness.
Koo, Hyung-Jun
2017-01-01
Hydrogel could serve as a matrix material of new classes of solar cells and photoreactors with embedded microfluidic networks. These devices mimic the structure and function of plant leaves, which are a natural soft matter based microfluidic system. These unusual microfluidic-hydrogel devices with fluid-penetrable medium operate on the basis of convective-diffusive mechanism, where the liquid is transported between the non-connected channels via molecular permeation through the hydrogel. We define three key designs of such hydrogel devices, having linear, T-shaped, and branched channels and report results of numerical simulation of the process of their infusion with solute carried by the incoming fluid. The computational procedure takes into account both pressure-driven convection and concentration gradient-driven diffusion in the permeable gel matrix. We define the criteria for evaluation of the fluid infusion rate, uniformity, solute loss by outflow and overall performance. The T-shaped channel network was identified as the most efficient one and was improved further by investigating the effect of the channel-end secondary branches. Our parallel experimental data on the pattern of solute infusions are in excellent agreement with the simulation. These network designs can be applied to a broad range of novel microfluidic materials and soft matter devices with distributed microchannel networks. PMID:28396708
NASA Astrophysics Data System (ADS)
Zhang, Fan; Zhou, Zude; Liu, Quan; Xu, Wenjun
2017-02-01
Due to the advantages of being able to function under harsh environmental conditions and serving as a distributed condition information source in a networked monitoring system, the fibre Bragg grating (FBG) sensor network has attracted considerable attention for equipment online condition monitoring. To provide an overall conditional view of the mechanical equipment operation, a networked service-oriented condition monitoring framework based on FBG sensing is proposed, together with an intelligent matching method for supporting monitoring service management. In the novel framework, three classes of progressive service matching approaches, including service-chain knowledge database service matching, multi-objective constrained service matching and workflow-driven human-interactive service matching, are developed and integrated with an enhanced particle swarm optimisation (PSO) algorithm as well as a workflow-driven mechanism. Moreover, the manufacturing domain ontology, FBG sensor network structure and monitoring object are considered to facilitate the automatic matching of condition monitoring services to overcome the limitations of traditional service processing methods. The experimental results demonstrate that FBG monitoring services can be selected intelligently, and the developed condition monitoring system can be re-built rapidly as new equipment joins the framework. The effectiveness of the service matching method is also verified by implementing a prototype system together with its performance analysis.
Synchrony detection and amplification by silicon neurons with STDP synapses.
Bofill-i-petit, Adria; Murray, Alan F
2004-09-01
Spike-timing dependent synaptic plasticity (STDP) is a form of plasticity driven by precise spike-timing differences between presynaptic and postsynaptic spikes. Thus, the learning rules underlying STDP are suitable for learning neuronal temporal phenomena such as spike-timing synchrony. It is well known that weight-independent STDP creates unstable learning processes resulting in balanced bimodal weight distributions. In this paper, we present a neuromorphic analog very large scale integration (VLSI) circuit that contains a feedforward network of silicon neurons with STDP synapses. The learning rule implemented can be tuned to have a moderate level of weight dependence. This helps stabilise the learning process and still generates binary weight distributions. From on-chip learning experiments we show that the chip can detect and amplify hierarchical spike-timing synchrony structures embedded in noisy spike trains. The weight distributions of the network emerging from learning are bimodal.
The emergence of overlapping scale-free genetic architecture in digital organisms.
Gerlee, P; Lundh, T
2008-01-01
We have studied the evolution of genetic architecture in digital organisms and found that the gene overlap follows a scale-free distribution, which is commonly found in metabolic networks of many organisms. Our results show that the slope of the scale-free distribution depends on the mutation rate and that the gene development is driven by expansion of already existing genes, which is in direct correspondence to the preferential growth algorithm that gives rise to scale-free networks. To further validate our results we have constructed a simple model of gene development, which recapitulates the results from the evolutionary process and shows that the mutation rate affects the tendency of genes to cluster. In addition we could relate the slope of the scale-free distribution to the genetic complexity of the organisms and show that a high mutation rate gives rise to a more complex genetic architecture.
NASA Technical Reports Server (NTRS)
Hart, Andrew F.; Verma, Rishi; Mattmann, Chris A.; Crichton, Daniel J.; Kelly, Sean; Kincaid, Heather; Hughes, Steven; Ramirez, Paul; Goodale, Cameron; Anton, Kristen;
2012-01-01
For the past decade, the NASA Jet Propulsion Laboratory, in collaboration with Dartmouth University has served as the center for informatics for the Early Detection Research Network (EDRN). The EDRN is a multi-institution research effort funded by the U.S. National Cancer Institute (NCI) and tasked with identifying and validating biomarkers for the early detection of cancer. As the distributed network has grown, increasingly formal processes have been developed for the acquisition, curation, storage, and dissemination of heterogeneous research information assets, and an informatics infrastructure has emerged. In this paper we discuss the evolution of EDRN informatics, its success as a mechanism for distributed information integration, and the potential sustainability and reuse benefits of emerging efforts to make the platform components themselves open source. We describe our experience transitioning a large closed-source software system to a community driven, open source project at the Apache Software Foundation, and point to lessons learned that will guide our present efforts to promote the reuse of the EDRN informatics infrastructure by a broader community.
Flood impacts on a water distribution network
NASA Astrophysics Data System (ADS)
Arrighi, Chiara; Tarani, Fabio; Vicario, Enrico; Castelli, Fabio
2017-12-01
Floods cause damage to people, buildings and infrastructures. Water distribution systems are particularly exposed, since water treatment plants are often located next to the rivers. Failure of the system leads to both direct losses, for instance damage to equipment and pipework contamination, and indirect impact, since it may lead to service disruption and thus affect populations far from the event through the functional dependencies of the network. In this work, we present an analysis of direct and indirect damages on a drinking water supply system, considering the hazard of riverine flooding as well as the exposure and vulnerability of active system components. The method is based on interweaving, through a semi-automated GIS procedure, a flood model and an EPANET-based pipe network model with a pressure-driven demand approach, which is needed when modelling water distribution networks in highly off-design conditions. Impact measures are defined and estimated so as to quantify service outage and potential pipe contamination. The method is applied to the water supply system of the city of Florence, Italy, serving approximately 380 000 inhabitants. The evaluation of flood impact on the water distribution network is carried out for different events with assigned recurrence intervals. Vulnerable elements exposed to the flood are identified and analysed in order to estimate their residual functionality and to simulate failure scenarios. Results show that in the worst failure scenario (no residual functionality of the lifting station and a 500-year flood), 420 km of pipework would require disinfection with an estimated cost of EUR 21 million, which is about 0.5 % of the direct flood losses evaluated for buildings and contents. Moreover, if flood impacts on the water distribution network are considered, the population affected by the flood is up to 3 times the population directly flooded.
Dynamic model of time-dependent complex networks.
Hill, Scott A; Braha, Dan
2010-10-01
The characterization of the "most connected" nodes in static or slowly evolving complex networks has helped in understanding and predicting the behavior of social, biological, and technological networked systems, including their robustness against failures, vulnerability to deliberate attacks, and diffusion properties. However, recent empirical research of large dynamic networks (characterized by irregular connections that evolve rapidly) has demonstrated that there is little continuity in degree centrality of nodes over time, even when their degree distributions follow a power law. This unexpected dynamic centrality suggests that the connections in these systems are not driven by preferential attachment or other known mechanisms. We present an approach to explain real-world dynamic networks and qualitatively reproduce these dynamic centrality phenomena. This approach is based on a dynamic preferential attachment mechanism, which exhibits a sharp transition from a base pure random walk scheme.
Two-population dynamics in a growing network model
NASA Astrophysics Data System (ADS)
Ivanova, Kristinka; Iordanov, Ivan
2012-02-01
We introduce a growing network evolution model with nodal attributes. The model describes the interactions between potentially violent V and non-violent N agents who have different affinities in establishing connections within their own population versus between the populations. The model is able to generate all stable triads observed in real social systems. In the framework of rate equations theory, we employ the mean-field approximation to derive analytical expressions of the degree distribution and the local clustering coefficient for each type of nodes. Analytical derivations agree well with numerical simulation results. The assortativity of the potentially violent network qualitatively resembles the connectivity pattern in terrorist networks that was recently reported. The assortativity of the network driven by aggression shows clearly different behavior than the assortativity of the networks with connections of non-aggressive nature in agreement with recent empirical results of an online social system.
Modeling the coevolution of topology and traffic on weighted technological networks
NASA Astrophysics Data System (ADS)
Xie, Yan-Bo; Wang, Wen-Xu; Wang, Bing-Hong
2007-02-01
For many technological networks, the network structures and the traffic taking place on them mutually interact. The demands of traffic increment spur the evolution and growth of the networks to maintain their normal and efficient functioning. In parallel, a change of the network structure leads to redistribution of the traffic. In this paper, we perform an extensive numerical and analytical study, extending results of Wang [Phys. Rev. Lett. 94, 188702 (2005)]. By introducing a general strength-coupling interaction driven by the traffic increment between any pair of vertices, our model generates networks of scale-free distributions of strength, weight, and degree. In particular, the obtained nonlinear correlation between vertex strength and degree, and the disassortative property demonstrate that the model is capable of characterizing weighted technological networks. Moreover, the generated graphs possess both dense clustering structures and an anticorrelation between vertex clustering and degree, which are widely observed in real-world networks. The corresponding theoretical predictions are well consistent with simulation results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ping; Lv, Youbin; Wang, Hong
Optimal operation of a practical blast furnace (BF) ironmaking process depends largely on a good measurement of molten iron quality (MIQ) indices. However, measuring the MIQ online is not feasible using the available techniques. In this paper, a novel data-driven robust modeling is proposed for online estimation of MIQ using improved random vector functional-link networks (RVFLNs). Since the output weights of traditional RVFLNs are obtained by the least squares approach, a robustness problem may occur when the training dataset is contaminated with outliers. This affects the modeling accuracy of RVFLNs. To solve this problem, a Cauchy distribution weighted M-estimation basedmore » robust RFVLNs is proposed. Since the weights of different outlier data are properly determined by the Cauchy distribution, their corresponding contribution on modeling can be properly distinguished. Thus robust and better modeling results can be achieved. Moreover, given that the BF is a complex nonlinear system with numerous coupling variables, the data-driven canonical correlation analysis is employed to identify the most influential components from multitudinous factors that affect the MIQ indices to reduce the model dimension. Finally, experiments using industrial data and comparative studies have demonstrated that the obtained model produces a better modeling and estimating accuracy and stronger robustness than other modeling methods.« less
Highlighting entanglement of cultures via ranking of multilingual Wikipedia articles.
Eom, Young-Ho; Shepelyansky, Dima L
2013-01-01
How different cultures evaluate a person? Is an important person in one culture is also important in the other culture? We address these questions via ranking of multilingual Wikipedia articles. With three ranking algorithms based on network structure of Wikipedia, we assign ranking to all articles in 9 multilingual editions of Wikipedia and investigate general ranking structure of PageRank, CheiRank and 2DRank. In particular, we focus on articles related to persons, identify top 30 persons for each rank among different editions and analyze distinctions of their distributions over activity fields such as politics, art, science, religion, sport for each edition. We find that local heroes are dominant but also global heroes exist and create an effective network representing entanglement of cultures. The Google matrix analysis of network of cultures shows signs of the Zipf law distribution. This approach allows to examine diversity and shared characteristics of knowledge organization between cultures. The developed computational, data driven approach highlights cultural interconnections in a new perspective. Dated: June 26, 2013.
Highlighting Entanglement of Cultures via Ranking of Multilingual Wikipedia Articles
Eom, Young-Ho; Shepelyansky, Dima L.
2013-01-01
How different cultures evaluate a person? Is an important person in one culture is also important in the other culture? We address these questions via ranking of multilingual Wikipedia articles. With three ranking algorithms based on network structure of Wikipedia, we assign ranking to all articles in 9 multilingual editions of Wikipedia and investigate general ranking structure of PageRank, CheiRank and 2DRank. In particular, we focus on articles related to persons, identify top 30 persons for each rank among different editions and analyze distinctions of their distributions over activity fields such as politics, art, science, religion, sport for each edition. We find that local heroes are dominant but also global heroes exist and create an effective network representing entanglement of cultures. The Google matrix analysis of network of cultures shows signs of the Zipf law distribution. This approach allows to examine diversity and shared characteristics of knowledge organization between cultures. The developed computational, data driven approach highlights cultural interconnections in a new perspective. Dated: June 26, 2013 PMID:24098338
Wireless intelligent network: infrastructure before services?
NASA Astrophysics Data System (ADS)
Chu, Narisa N.
1996-01-01
The Wireless Intelligent Network (WIN) intends to take advantage of the Advanced Intelligent Network (AIN) concepts and products developed from wireline communications. However, progress of the AIN deployment has been slow due to the many barriers that exist in the traditional wireline carriers' deployment procedures and infrastructure. The success of AIN has not been truly demonstrated. The AIN objectives and directions are applicable to the wireless industry although the plans and implementations could be significantly different. This paper points out WIN characteristics in architecture, flexibility, deployment, and value to customers. In order to succeed, the technology driven AIN concept has to be reinforced by the market driven WIN services. An infrastructure suitable for the WIN will contain elements that are foreign to the wireline network. The deployment process is expected to seed with the revenue generated services. Standardization will be achieved by simplifying and incorporating the IS-41C, AIN, and Intelligent Network CS-1 recommendations. Integration of the existing and future systems impose the biggest challenge of all. Service creation has to be complemented with service deployment process which heavily impact the carriers' infrastructure. WIN deployment will likely start from an Intelligent Peripheral, a Service Control Point and migrate to a Service Node when sufficient triggers are implemented in the mobile switch for distributed call control. The struggle to move forward will not be based on technology, but rather on the impact to existing infrastructure.
Hearne, Luke J; Cocchi, Luca; Zalesky, Andrew; Mattingley, Jason B
2017-08-30
Our capacity for higher cognitive reasoning has a measurable limit. This limit is thought to arise from the brain's capacity to flexibly reconfigure interactions between spatially distributed networks. Recent work, however, has suggested that reconfigurations of task-related networks are modest when compared with intrinsic "resting-state" network architecture. Here we combined resting-state and task-driven functional magnetic resonance imaging to examine how flexible, task-specific reconfigurations associated with increasing reasoning demands are integrated within a stable intrinsic brain topology. Human participants (21 males and 28 females) underwent an initial resting-state scan, followed by a cognitive reasoning task involving different levels of complexity, followed by a second resting-state scan. The reasoning task required participants to deduce the identity of a missing element in a 4 × 4 matrix, and item difficulty was scaled parametrically as determined by relational complexity theory. Analyses revealed that external task engagement was characterized by a significant change in functional brain modules. Specifically, resting-state and null-task demand conditions were associated with more segregated brain-network topology, whereas increases in reasoning complexity resulted in merging of resting-state modules. Further increments in task complexity did not change the established modular architecture, but affected selective patterns of connectivity between frontoparietal, subcortical, cingulo-opercular, and default-mode networks. Larger increases in network efficiency within the newly established task modules were associated with higher reasoning accuracy. Our results shed light on the network architectures that underlie external task engagement, and highlight selective changes in brain connectivity supporting increases in task complexity. SIGNIFICANCE STATEMENT Humans have clear limits in their ability to solve complex reasoning problems. It is thought that such limitations arise from flexible, moment-to-moment reconfigurations of functional brain networks. It is less clear how such task-driven adaptive changes in connectivity relate to stable, intrinsic networks of the brain and behavioral performance. We found that increased reasoning demands rely on selective patterns of connectivity within cortical networks that emerged in addition to a more general, task-induced modular architecture. This task-driven architecture reverted to a more segregated resting-state architecture both immediately before and after the task. These findings reveal how flexibility in human brain networks is integral to achieving successful reasoning performance across different levels of cognitive demand. Copyright © 2017 the authors 0270-6474/17/378399-13$15.00/0.
Ocean plankton. Determinants of community structure in the global plankton interactome.
Lima-Mendez, Gipsi; Faust, Karoline; Henry, Nicolas; Decelle, Johan; Colin, Sébastien; Carcillo, Fabrizio; Chaffron, Samuel; Ignacio-Espinosa, J Cesar; Roux, Simon; Vincent, Flora; Bittner, Lucie; Darzi, Youssef; Wang, Jun; Audic, Stéphane; Berline, Léo; Bontempi, Gianluca; Cabello, Ana M; Coppola, Laurent; Cornejo-Castillo, Francisco M; d'Ovidio, Francesco; De Meester, Luc; Ferrera, Isabel; Garet-Delmas, Marie-José; Guidi, Lionel; Lara, Elena; Pesant, Stéphane; Royo-Llonch, Marta; Salazar, Guillem; Sánchez, Pablo; Sebastian, Marta; Souffreau, Caroline; Dimier, Céline; Picheral, Marc; Searson, Sarah; Kandels-Lewis, Stefanie; Gorsky, Gabriel; Not, Fabrice; Ogata, Hiroyuki; Speich, Sabrina; Stemmann, Lars; Weissenbach, Jean; Wincker, Patrick; Acinas, Silvia G; Sunagawa, Shinichi; Bork, Peer; Sullivan, Matthew B; Karsenti, Eric; Bowler, Chris; de Vargas, Colomban; Raes, Jeroen
2015-05-22
Species interaction networks are shaped by abiotic and biotic factors. Here, as part of the Tara Oceans project, we studied the photic zone interactome using environmental factors and organismal abundance profiles and found that environmental factors are incomplete predictors of community structure. We found associations across plankton functional types and phylogenetic groups to be nonrandomly distributed on the network and driven by both local and global patterns. We identified interactions among grazers, primary producers, viruses, and (mainly parasitic) symbionts and validated network-generated hypotheses using microscopy to confirm symbiotic relationships. We have thus provided a resource to support further research on ocean food webs and integrating biological components into ocean models. Copyright © 2015, American Association for the Advancement of Science.
Two-layer wireless distributed sensor/control network based on RF
NASA Astrophysics Data System (ADS)
Feng, Li; Lin, Yuchi; Zhou, Jingjing; Dong, Guimei; Xia, Guisuo
2006-11-01
A project of embedded Wireless Distributed Sensor/Control Network (WDSCN) based on RF is presented after analyzing the disadvantages of traditional measure and control system. Because of high-cost and complexity, such wireless techniques as Bluetooth and WiFi can't meet the needs of WDSCN. The two-layer WDSCN is designed based on RF technique, which operates in the ISM free frequency channel with low power and high transmission speed. Also the network is low cost, portable and moveable, integrated with the technologies of computer network, sensor, microprocessor and wireless communications. The two-layer network topology is selected in the system; a simple but efficient self-organization net protocol is designed to fit the periodic data collection, event-driven and store-and-forward. Furthermore, adaptive frequency hopping technique is adopted for anti-jamming apparently. The problems about power reduction and synchronization of data in wireless system are solved efficiently. Based on the discussion above, a measure and control network is set up to control such typical instruments and sensors as temperature sensor and signal converter, collect data, and monitor environmental parameters around. This system works well in different rooms. Experiment results show that the system provides an efficient solution to WDSCN through wireless links, with high efficiency, low power, high stability, flexibility and wide working range.
Fasoli, Diego; Cattani, Anna; Panzeri, Stefano
2018-05-01
Despite their biological plausibility, neural network models with asymmetric weights are rarely solved analytically, and closed-form solutions are available only in some limiting cases or in some mean-field approximations. We found exact analytical solutions of an asymmetric spin model of neural networks with arbitrary size without resorting to any approximation, and we comprehensively studied its dynamical and statistical properties. The network had discrete time evolution equations and binary firing rates, and it could be driven by noise with any distribution. We found analytical expressions of the conditional and stationary joint probability distributions of the membrane potentials and the firing rates. By manipulating the conditional probability distribution of the firing rates, we extend to stochastic networks the associating learning rule previously introduced by Personnaz and coworkers. The new learning rule allowed the safe storage, under the presence of noise, of point and cyclic attractors, with useful implications for content-addressable memories. Furthermore, we studied the bifurcation structure of the network dynamics in the zero-noise limit. We analytically derived examples of the codimension 1 and codimension 2 bifurcation diagrams of the network, which describe how the neuronal dynamics changes with the external stimuli. This showed that the network may undergo transitions among multistable regimes, oscillatory behavior elicited by asymmetric synaptic connections, and various forms of spontaneous symmetry breaking. We also calculated analytically groupwise correlations of neural activity in the network in the stationary regime. This revealed neuronal regimes where, statistically, the membrane potentials and the firing rates are either synchronous or asynchronous. Our results are valid for networks with any number of neurons, although our equations can be realistically solved only for small networks. For completeness, we also derived the network equations in the thermodynamic limit of infinite network size and we analytically studied their local bifurcations. All the analytical results were extensively validated by numerical simulations.
Prospects of second generation artificial intelligence tools in calibration of chemical sensors.
Braibanti, Antonio; Rao, Rupenaguntla Sambasiva; Ramam, Veluri Anantha; Rao, Gollapalli Nageswara; Rao, Vaddadi Venkata Panakala
2005-05-01
Multivariate data driven calibration models with neural networks (NNs) are developed for binary (Cu++ and Ca++) and quaternary (K+, Ca++, NO3- and Cl-) ion-selective electrode (ISE) data. The response profiles of ISEs with concentrations are non-linear and sub-Nernstian. This task represents function approximation of multi-variate, multi-response, correlated, non-linear data with unknown noise structure i.e. multi-component calibration/prediction in chemometric parlance. Radial distribution function (RBF) and Fuzzy-ARTMAP-NN models implemented in the software packages, TRAJAN and Professional II, are employed for the calibration. The optimum NN models reported are based on residuals in concentration space. Being a data driven information technology, NN does not require a model, prior- or posterior- distribution of data or noise structure. Missing information, spikes or newer trends in different concentration ranges can be modeled through novelty detection. Two simulated data sets generated from mathematical functions are modeled as a function of number of data points and network parameters like number of neurons and nearest neighbors. The success of RBF and Fuzzy-ARTMAP-NNs to develop adequate calibration models for experimental data and function approximation models for more complex simulated data sets ensures AI2 (artificial intelligence, 2nd generation) as a promising technology in quantitation.
Statistical learning and the challenge of syntax: Beyond finite state automata
NASA Astrophysics Data System (ADS)
Elman, Jeff
2003-10-01
Over the past decade, it has been clear that even very young infants are sensitive to the statistical structure of language input presented to them, and use the distributional regularities to induce simple grammars. But can such statistically-driven learning also explain the acquisition of more complex grammar, particularly when the grammar includes recursion? Recent claims (e.g., Hauser, Chomsky, and Fitch, 2002) have suggested that the answer is no, and that at least recursion must be an innate capacity of the human language acquisition device. In this talk evidence will be presented that indicates that, in fact, statistically-driven learning (embodied in recurrent neural networks) can indeed enable the learning of complex grammatical patterns, including those that involve recursion. When the results are generalized to idealized machines, it is found that the networks are at least equivalent to Push Down Automata. Perhaps more interestingly, with limited and finite resources (such as are presumed to exist in the human brain) these systems demonstrate patterns of performance that resemble those in humans.
Variation of the hydraulic properties within gravity-driven deposits in basinal carbonates
NASA Astrophysics Data System (ADS)
Jablonska, D.; Zambrano, M.; Emanuele, T.; Di Celma, C.
2017-12-01
Deepwater gravity-driven deposits represent important stratigraphic heterogeneities within basinal sedimentary successions. A poor understanding of their distribution, internal architecture (at meso- and micro-scale) and hydraulic properties (porosity and permeability), may lead to unexpected compartmentalization issues in reservoir analysis. In this study, we examine gravity-driven deposits within the basinal-carbonate Maiolica Formation adjacent to the Apulian Carbonate Plaftorm, southern Italy. Maiolica formation is represented by horizontal layers of thin-bedded cherty pelagic limestones often intercalated by mass-transport deposits (slumps, debris-flow deposits) and calcarenites of diverse thickness (0.1 m - 40 m) and lateral extent (100 m - >500 m). Locally, gravity-driven deposits compose up to 60 % of the exposed succession. These deposits display broad array of internal architectures (from faulted and folded strata to conglomerates) and various texture. In order to further constrain the variation of the internal architectures and fracture distribution within gravity-driven deposits, field sedimentological and structural analyses were performed. To examine the texture and hydraulic properties of various lithofacies, the laboratory porosity measurements of suitable rock samples were undertaken. These data were supported by 3D pore network quantitative analysis of X-ray Computed microtomography (MicroCT) images performed at resolutions 1.25 and 2.0 microns. This analysis helped to describe the pores and grains geometrical and morphological properties (such as size, shape, specific surface area) and the hydraulic properties (porosity and permeability) of various lithofacies. The integration of the analyses allowed us to show how the internal architecture and the hydraulic properties vary in different types of gravity-driven deposits within the basinal carbonate succession.
Cost-aware request routing in multi-geography cloud data centres using software-defined networking
NASA Astrophysics Data System (ADS)
Yuan, Haitao; Bi, Jing; Li, Bo Hu; Tan, Wei
2017-03-01
Current geographically distributed cloud data centres (CDCs) require gigantic energy and bandwidth costs to provide multiple cloud applications to users around the world. Previous studies only focus on energy cost minimisation in distributed CDCs. However, a CDC provider needs to deliver gigantic data between users and distributed CDCs through internet service providers (ISPs). Geographical diversity of bandwidth and energy costs brings a highly challenging problem of how to minimise the total cost of a CDC provider. With the recently emerging software-defined networking, we study the total cost minimisation problem for a CDC provider by exploiting geographical diversity of energy and bandwidth costs. We formulate the total cost minimisation problem as a mixed integer non-linear programming (MINLP). Then, we develop heuristic algorithms to solve the problem and to provide a cost-aware request routing for joint optimisation of the selection of ISPs and the number of servers in distributed CDCs. Besides, to tackle the dynamic workload in distributed CDCs, this article proposes a regression-based workload prediction method to obtain future incoming workload. Finally, this work evaluates the cost-aware request routing by trace-driven simulation and compares it with the existing approaches to demonstrate its effectiveness.
Onset of density-driven instabilities in fractured aquifers
NASA Astrophysics Data System (ADS)
Jafari Raad, Seyed Mostafa; Hassanzadeh, Hassan
2018-04-01
Linear stability analysis is conducted to study the onset of density-driven convection involved in solubility trapping of C O2 in fractured aquifers. The effect of physical properties of a fracture network on the stability of a diffusive boundary layer in a saturated fractured porous media is investigated using the dual porosity concept. Linear stability analysis results show that both fracture interporosity flow and fracture storativity play an important role in the stability behavior of the system. It is shown that a diffusive boundary layer under the gravity field in fractured porous media with lower fracture storativity and/or higher fracture interporosity flow coefficient is more stable. We present scaling relations for the onset of convective instability in fractured aquifers with single and variable matrix block size distribution. These findings improve our understanding of density-driven flow in fractured aquifers and are important in the estimation of potential storage capacity, risk assessment, and storage site characterization and screening.
A convex optimization method for self-organization in dynamic (FSO/RF) wireless networks
NASA Astrophysics Data System (ADS)
Llorca, Jaime; Davis, Christopher C.; Milner, Stuart D.
2008-08-01
Next generation communication networks are becoming increasingly complex systems. Previously, we presented a novel physics-based approach to model dynamic wireless networks as physical systems which react to local forces exerted on network nodes. We showed that under clear atmospheric conditions the network communication energy can be modeled as the potential energy of an analogous spring system and presented a distributed mobility control algorithm where nodes react to local forces driving the network to energy minimizing configurations. This paper extends our previous work by including the effects of atmospheric attenuation and transmitted power constraints in the optimization problem. We show how our new formulation still results in a convex energy minimization problem. Accordingly, an updated force-driven mobility control algorithm is presented. Forces on mobile backbone nodes are computed as the negative gradient of the new energy function. Results show how in the presence of atmospheric obscuration stronger forces are exerted on network nodes that make them move closer to each other, avoiding loss of connectivity. We show results in terms of network coverage and backbone connectivity and compare the developed algorithms for different scenarios.
1989-12-01
Interrupt Procedures ....... 29 13. Support for a Larger Memory Model ................ 29 C. IMPLEMENTATION ........................................ 29...describe the programmer’s model of the hardware utilized in the microcomputers and interrupt driven serial communication considerations. Chapter III...Central Processor Unit The programming model of Table 2.1 is common to the Intel 8088, 8086 and 80x86 series of microprocessors used in the IBM PC/AT
Kriener, Birgit; Helias, Moritz; Rotter, Stefan; Diesmann, Markus; Einevoll, Gaute T
2013-01-01
Pattern formation, i.e., the generation of an inhomogeneous spatial activity distribution in a dynamical system with translation invariant structure, is a well-studied phenomenon in neuronal network dynamics, specifically in neural field models. These are population models to describe the spatio-temporal dynamics of large groups of neurons in terms of macroscopic variables such as population firing rates. Though neural field models are often deduced from and equipped with biophysically meaningful properties, a direct mapping to simulations of individual spiking neuron populations is rarely considered. Neurons have a distinct identity defined by their action on their postsynaptic targets. In its simplest form they act either excitatorily or inhibitorily. When the distribution of neuron identities is assumed to be periodic, pattern formation can be observed, given the coupling strength is supracritical, i.e., larger than a critical weight. We find that this critical weight is strongly dependent on the characteristics of the neuronal input, i.e., depends on whether neurons are mean- or fluctuation driven, and different limits in linearizing the full non-linear system apply in order to assess stability. In particular, if neurons are mean-driven, the linearization has a very simple form and becomes independent of both the fixed point firing rate and the variance of the input current, while in the very strongly fluctuation-driven regime the fixed point rate, as well as the input mean and variance are important parameters in the determination of the critical weight. We demonstrate that interestingly even in "intermediate" regimes, when the system is technically fluctuation-driven, the simple linearization neglecting the variance of the input can yield the better prediction of the critical coupling strength. We moreover analyze the effects of structural randomness by rewiring individual synapses or redistributing weights, as well as coarse-graining on the formation of inhomogeneous activity patterns.
Kriener, Birgit; Helias, Moritz; Rotter, Stefan; Diesmann, Markus; Einevoll, Gaute T.
2014-01-01
Pattern formation, i.e., the generation of an inhomogeneous spatial activity distribution in a dynamical system with translation invariant structure, is a well-studied phenomenon in neuronal network dynamics, specifically in neural field models. These are population models to describe the spatio-temporal dynamics of large groups of neurons in terms of macroscopic variables such as population firing rates. Though neural field models are often deduced from and equipped with biophysically meaningful properties, a direct mapping to simulations of individual spiking neuron populations is rarely considered. Neurons have a distinct identity defined by their action on their postsynaptic targets. In its simplest form they act either excitatorily or inhibitorily. When the distribution of neuron identities is assumed to be periodic, pattern formation can be observed, given the coupling strength is supracritical, i.e., larger than a critical weight. We find that this critical weight is strongly dependent on the characteristics of the neuronal input, i.e., depends on whether neurons are mean- or fluctuation driven, and different limits in linearizing the full non-linear system apply in order to assess stability. In particular, if neurons are mean-driven, the linearization has a very simple form and becomes independent of both the fixed point firing rate and the variance of the input current, while in the very strongly fluctuation-driven regime the fixed point rate, as well as the input mean and variance are important parameters in the determination of the critical weight. We demonstrate that interestingly even in “intermediate” regimes, when the system is technically fluctuation-driven, the simple linearization neglecting the variance of the input can yield the better prediction of the critical coupling strength. We moreover analyze the effects of structural randomness by rewiring individual synapses or redistributing weights, as well as coarse-graining on the formation of inhomogeneous activity patterns. PMID:24501591
Grammatical Analysis as a Distributed Neurobiological Function
Bozic, Mirjana; Fonteneau, Elisabeth; Su, Li; Marslen-Wilson, William D
2015-01-01
Language processing engages large-scale functional networks in both hemispheres. Although it is widely accepted that left perisylvian regions have a key role in supporting complex grammatical computations, patient data suggest that some aspects of grammatical processing could be supported bilaterally. We investigated the distribution and the nature of grammatical computations across language processing networks by comparing two types of combinatorial grammatical sequences—inflectionally complex words and minimal phrases—and contrasting them with grammatically simple words. Novel multivariate analyses revealed that they engage a coalition of separable subsystems: inflected forms triggered left-lateralized activation, dissociable into dorsal processes supporting morphophonological parsing and ventral, lexically driven morphosyntactic processes. In contrast, simple phrases activated a consistently bilateral pattern of temporal regions, overlapping with inflectional activations in L middle temporal gyrus. These data confirm the role of the left-lateralized frontotemporal network in supporting complex grammatical computations. Critically, they also point to the capacity of bilateral temporal regions to support simple, linear grammatical computations. This is consistent with a dual neurobiological framework where phylogenetically older bihemispheric systems form part of the network that supports language function in the modern human, and where significant capacities for language comprehension remain intact even following severe left hemisphere damage. PMID:25421880
Microwave Power for Smart Membrane Actuators
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Song, Kyo D.; Golembiewski, Walter T.; Chu, Sang-Hyon; King, Glen C.
2002-01-01
The concept of microwave-driven smart membrane actuators is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry. A large, ultra-light space structure, such as solar sails and Gossamer spacecrafts, requires a distribution of power into individual membrane actuators to control them in an effective way. A patch rectenna array with a high voltage output was developed to drive smart membrane actuators. Networked patch rectenna array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is developed and tested for networking a rectenna/actuator patch array. For the future development, the PAD circuit could be imbedded into a single embodiment of rectenna and actuator array with the thin-film microcircuit embodiment. Preliminary design and fabrication of PAD circuitry that consists of a sixteen nodal elements were made for laboratory testing.
Netz, Roland R
2018-05-14
An exactly solvable, Hamiltonian-based model of many massive particles that are coupled by harmonic potentials and driven by stochastic non-equilibrium forces is introduced. The stationary distribution and the fluctuation-dissipation relation are derived in closed form for the general non-equilibrium case. Deviations from equilibrium are on one hand characterized by the difference of the obtained stationary distribution from the Boltzmann distribution; this is possible because the model derives from a particle Hamiltonian. On the other hand, the difference between the obtained non-equilibrium fluctuation-dissipation relation and the standard equilibrium fluctuation-dissipation theorem allows us to quantify non-equilibrium in an alternative fashion. Both indicators of non-equilibrium behavior, i.e., deviations from the Boltzmann distribution and deviations from the equilibrium fluctuation-dissipation theorem, can be expressed in terms of a single non-equilibrium parameter α that involves the ratio of friction coefficients and random force strengths. The concept of a non-equilibrium effective temperature, which can be defined by the relation between fluctuations and the dissipation, is by comparison with the exactly derived stationary distribution shown not to hold, even if the effective temperature is made frequency dependent. The analysis is not confined to close-to-equilibrium situations but rather is exact and thus holds for arbitrarily large deviations from equilibrium. Also, the suggested harmonic model can be obtained from non-linear mechanical network systems by an expansion in terms of suitably chosen deviatory coordinates; the obtained results should thus be quite general. This is demonstrated by comparison of the derived non-equilibrium fluctuation dissipation relation with experimental data on actin networks that are driven out of equilibrium by energy-consuming protein motors. The comparison is excellent and allows us to extract the non-equilibrium parameter α from experimental spectral response and fluctuation data.
NASA Astrophysics Data System (ADS)
Netz, Roland R.
2018-05-01
An exactly solvable, Hamiltonian-based model of many massive particles that are coupled by harmonic potentials and driven by stochastic non-equilibrium forces is introduced. The stationary distribution and the fluctuation-dissipation relation are derived in closed form for the general non-equilibrium case. Deviations from equilibrium are on one hand characterized by the difference of the obtained stationary distribution from the Boltzmann distribution; this is possible because the model derives from a particle Hamiltonian. On the other hand, the difference between the obtained non-equilibrium fluctuation-dissipation relation and the standard equilibrium fluctuation-dissipation theorem allows us to quantify non-equilibrium in an alternative fashion. Both indicators of non-equilibrium behavior, i.e., deviations from the Boltzmann distribution and deviations from the equilibrium fluctuation-dissipation theorem, can be expressed in terms of a single non-equilibrium parameter α that involves the ratio of friction coefficients and random force strengths. The concept of a non-equilibrium effective temperature, which can be defined by the relation between fluctuations and the dissipation, is by comparison with the exactly derived stationary distribution shown not to hold, even if the effective temperature is made frequency dependent. The analysis is not confined to close-to-equilibrium situations but rather is exact and thus holds for arbitrarily large deviations from equilibrium. Also, the suggested harmonic model can be obtained from non-linear mechanical network systems by an expansion in terms of suitably chosen deviatory coordinates; the obtained results should thus be quite general. This is demonstrated by comparison of the derived non-equilibrium fluctuation dissipation relation with experimental data on actin networks that are driven out of equilibrium by energy-consuming protein motors. The comparison is excellent and allows us to extract the non-equilibrium parameter α from experimental spectral response and fluctuation data.
A Discrete Fracture Network Model with Stress-Driven Nucleation and Growth
NASA Astrophysics Data System (ADS)
Lavoine, E.; Darcel, C.; Munier, R.; Davy, P.
2017-12-01
The realism of Discrete Fracture Network (DFN) models, beyond the bulk statistical properties, relies on the spatial organization of fractures, which is not issued by purely stochastic DFN models. The realism can be improved by injecting prior information in DFN from a better knowledge of the geological fracturing processes. We first develop a model using simple kinematic rules for mimicking the growth of fractures from nucleation to arrest, in order to evaluate the consequences of the DFN structure on the network connectivity and flow properties. The model generates fracture networks with power-law scaling distributions and a percentage of T-intersections that are consistent with field observations. Nevertheless, a larger complexity relying on the spatial variability of natural fractures positions cannot be explained by the random nucleation process. We propose to introduce a stress-driven nucleation in the timewise process of this kinematic model to study the correlations between nucleation, growth and existing fracture patterns. The method uses the stress field generated by existing fractures and remote stress as an input for a Monte-Carlo sampling of nuclei centers at each time step. Networks so generated are found to have correlations over a large range of scales, with a correlation dimension that varies with time and with the function that relates the nucleation probability to stress. A sensibility analysis of input parameters has been performed in 3D to quantify the influence of fractures and remote stress field orientations.
Bridge damage detection using spatiotemporal patterns extracted from dense sensor network
NASA Astrophysics Data System (ADS)
Liu, Chao; Gong, Yongqiang; Laflamme, Simon; Phares, Brent; Sarkar, Soumik
2017-01-01
The alarmingly degrading state of transportation infrastructures combined with their key societal and economic importance calls for automatic condition assessment methods to facilitate smart management of maintenance and repairs. With the advent of ubiquitous sensing and communication capabilities, scalable data-driven approaches is of great interest, as it can utilize large volume of streaming data without requiring detailed physical models that can be inaccurate and computationally expensive to run. Properly designed, a data-driven methodology could enable fast and automatic evaluation of infrastructures, discovery of causal dependencies among various sub-system dynamic responses, and decision making with uncertainties and lack of labeled data. In this work, a spatiotemporal pattern network (STPN) strategy built on symbolic dynamic filtering (SDF) is proposed to explore spatiotemporal behaviors in a bridge network. Data from strain gauges installed on two bridges are generated using finite element simulation for three types of sensor networks from a density perspective (dense, nominal, sparse). Causal relationships among spatially distributed strain data streams are extracted and analyzed for vehicle identification and detection, and for localization of structural degradation in bridges. Multiple case studies show significant capabilities of the proposed approach in: (i) capturing spatiotemporal features to discover causality between bridges (geographically close), (ii) robustness to noise in data for feature extraction, (iii) detecting and localizing damage via comparison of bridge responses to similar vehicle loads, and (iv) implementing real-time health monitoring and decision making work flow for bridge networks. Also, the results demonstrate increased sensitivity in detecting damages and higher reliability in quantifying the damage level with increase in sensor network density.
Benchmarking Measures of Network Controllability on Canonical Graph Models
NASA Astrophysics Data System (ADS)
Wu-Yan, Elena; Betzel, Richard F.; Tang, Evelyn; Gu, Shi; Pasqualetti, Fabio; Bassett, Danielle S.
2018-03-01
The control of networked dynamical systems opens the possibility for new discoveries and therapies in systems biology and neuroscience. Recent theoretical advances provide candidate mechanisms by which a system can be driven from one pre-specified state to another, and computational approaches provide tools to test those mechanisms in real-world systems. Despite already having been applied to study network systems in biology and neuroscience, the practical performance of these tools and associated measures on simple networks with pre-specified structure has yet to be assessed. Here, we study the behavior of four control metrics (global, average, modal, and boundary controllability) on eight canonical graphs (including Erdős-Rényi, regular, small-world, random geometric, Barábasi-Albert preferential attachment, and several modular networks) with different edge weighting schemes (Gaussian, power-law, and two nonparametric distributions from brain networks, as examples of real-world systems). We observe that differences in global controllability across graph models are more salient when edge weight distributions are heavy-tailed as opposed to normal. In contrast, differences in average, modal, and boundary controllability across graph models (as well as across nodes in the graph) are more salient when edge weight distributions are less heavy-tailed. Across graph models and edge weighting schemes, average and modal controllability are negatively correlated with one another across nodes; yet, across graph instances, the relation between average and modal controllability can be positive, negative, or nonsignificant. Collectively, these findings demonstrate that controllability statistics (and their relations) differ across graphs with different topologies and that these differences can be muted or accentuated by differences in the edge weight distributions. More generally, our numerical studies motivate future analytical efforts to better understand the mathematical underpinnings of the relationship between graph topology and control, as well as efforts to design networks with specific control profiles.
Design of pressure-driven microfluidic networks using electric circuit analogy.
Oh, Kwang W; Lee, Kangsun; Ahn, Byungwook; Furlani, Edward P
2012-02-07
This article reviews the application of electric circuit methods for the analysis of pressure-driven microfluidic networks with an emphasis on concentration- and flow-dependent systems. The application of circuit methods to microfluidics is based on the analogous behaviour of hydraulic and electric circuits with correlations of pressure to voltage, volumetric flow rate to current, and hydraulic to electric resistance. Circuit analysis enables rapid predictions of pressure-driven laminar flow in microchannels and is very useful for designing complex microfluidic networks in advance of fabrication. This article provides a comprehensive overview of the physics of pressure-driven laminar flow, the formal analogy between electric and hydraulic circuits, applications of circuit theory to microfluidic network-based devices, recent development and applications of concentration- and flow-dependent microfluidic networks, and promising future applications. The lab-on-a-chip (LOC) and microfluidics community will gain insightful ideas and practical design strategies for developing unique microfluidic network-based devices to address a broad range of biological, chemical, pharmaceutical, and other scientific and technical challenges.
Balancing building and maintenance costs in growing transport networks
NASA Astrophysics Data System (ADS)
Bottinelli, Arianna; Louf, Rémi; Gherardi, Marco
2017-09-01
The costs associated to the length of links impose unavoidable constraints to the growth of natural and artificial transport networks. When future network developments cannot be predicted, the costs of building and maintaining connections cannot be minimized simultaneously, requiring competing optimization mechanisms. Here, we study a one-parameter nonequilibrium model driven by an optimization functional, defined as the convex combination of building cost and maintenance cost. By varying the coefficient of the combination, the model interpolates between global and local length minimization, i.e., between minimum spanning trees and a local version known as dynamical minimum spanning trees. We show that cost balance within this ensemble of dynamical networks is a sufficient ingredient for the emergence of tradeoffs between the network's total length and transport efficiency, and of optimal strategies of construction. At the transition between two qualitatively different regimes, the dynamics builds up power-law distributed waiting times between global rearrangements, indicating a point of nonoptimality. Finally, we use our model as a framework to analyze empirical ant trail networks, showing its relevance as a null model for cost-constrained network formation.
Information transmission and signal permutation in active flow networks
NASA Astrophysics Data System (ADS)
Woodhouse, Francis G.; Fawcett, Joanna B.; Dunkel, Jörn
2018-03-01
Recent experiments show that both natural and artificial microswimmers in narrow channel-like geometries will self-organise to form steady, directed flows. This suggests that networks of flowing active matter could function as novel autonomous microfluidic devices. However, little is known about how information propagates through these far-from-equilibrium systems. Through a mathematical analogy with spin-ice vertex models, we investigate here the input–output characteristics of generic incompressible active flow networks (AFNs). Our analysis shows that information transport through an AFN is inherently different from conventional pressure or voltage driven networks. Active flows on hexagonal arrays preserve input information over longer distances than their passive counterparts and are highly sensitive to bulk topological defects, whose presence can be inferred from marginal input–output distributions alone. This sensitivity further allows controlled permutations on parallel inputs, revealing an unexpected link between active matter and group theory that can guide new microfluidic mixing strategies facilitated by active matter and aid the design of generic autonomous information transport networks.
m6A-Driver: Identifying Context-Specific mRNA m6A Methylation-Driven Gene Interaction Networks
Zhang, Song-Yao; Zhang, Shao-Wu; Liu, Lian; Huang, Yufei
2016-01-01
As the most prevalent mammalian mRNA epigenetic modification, N6-methyladenosine (m6A) has been shown to possess important post-transcriptional regulatory functions. However, the regulatory mechanisms and functional circuits of m6A are still largely elusive. To help unveil the regulatory circuitry mediated by mRNA m6A methylation, we develop here m6A-Driver, an algorithm for predicting m6A-driven genes and associated networks, whose functional interactions are likely to be actively modulated by m6A methylation under a specific condition. Specifically, m6A-Driver integrates the PPI network and the predicted differential m6A methylation sites from methylated RNA immunoprecipitation sequencing (MeRIP-Seq) data using a Random Walk with Restart (RWR) algorithm and then builds a consensus m6A-driven network of m6A-driven genes. To evaluate the performance, we applied m6A-Driver to build the context-specific m6A-driven networks for 4 known m6A (de)methylases, i.e., FTO, METTL3, METTL14 and WTAP. Our results suggest that m6A-Driver can robustly and efficiently identify m6A-driven genes that are functionally more enriched and associated with higher degree of differential expression than differential m6A methylated genes. Pathway analysis of the constructed context-specific m6A-driven gene networks further revealed the regulatory circuitry underlying the dynamic interplays between the methyltransferases and demethylase at the epitranscriptomic layer of gene regulation. PMID:28027310
Mouse Driven Window Graphics for Network Teaching.
ERIC Educational Resources Information Center
Makinson, G. J.; And Others
Computer enhanced teaching of computational mathematics on a network system driving graphics terminals is being redeveloped for a mouse-driven, high resolution, windowed environment of a UNIX work station. Preservation of the features of networked access by heterogeneous terminals is provided by the use of the X Window environment. A dmonstrator…
Opinion dynamics in activity-driven networks
NASA Astrophysics Data System (ADS)
Li, Dandan; Han, Dun; Ma, Jing; Sun, Mei; Tian, Lixin; Khouw, Timothy; Stanley, H. Eugene
2017-10-01
Social interaction between individuals constantly affects the development of their personal opinions. Previous models such as the Deffuant model and the Hegselmann-Krause (HK) model have assumed that individuals only update their opinions after interacting with neighbors whose opinions are similar to their own. However, people are capable of communicating widely with all of their neighbors to gather their ideas and opinions, even if they encounter a number of opposing attitudes. We propose a model in which agents listen to the opinions of all their neighbors. Continuous opinion dynamics are investigated in activity-driven networks with a tolerance threshold. We study how the initial opinion distribution, tolerance threshold, opinion-updating speed, and activity rate affect the evolution of opinion. We find that when the initial fraction of positive opinion is small, all opinions become negative by the end of the simulation. As the initial fraction of positive opinions rises above a certain value —about 0.45— the final fraction of positive opinions sharply increases and eventually equals 1. Increased tolerance threshold δ is found to lead to a more varied final opinion distribution. We also find that if the negative opinion has an initial advantage, the final fraction of negative opinion increases and reaches its peak as the updating speed λ approaches 0.5. Finally we show that the lower the activity rate of individuals, the greater the fluctuation range of their opinions.
Master-slave mixed arrays for data-flow computations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, T.L.; Fisher, P.D.
1983-01-01
Control cells (masters) and computation cells (slaves) are mixed in regular geometric patterns to form reconfigurable arrays known as master-slave mixed arrays (MSMAS). Interconnections of the corners and edges of the hexagonal control cells and the edges of the hexagonal computation cells are used to construct synchronous and asynchronous communication networks, which support local computation and local communication. Data-driven computations result in self-directed ring pipelines within the MSMA, and composite data-flow computations are executed in a pipelined fashion. By viewing an MSMA as a computing network of tightly-linked ring pipelines, data-flow programs can be uniformly distributed over these pipelines formore » efficient resource utilisation. 9 references.« less
Ramirez, A G; Gallion, K J; Espinoza, R; Chalela, P
1999-01-01
Mirame!/Look at Me! is a substance abuse prevention program for low-income Mexican-American youth aged 9-13 years. The theory-driven curriculum, developed for mass distribution via a satellite television network, features social models who demonstrate cognitive-behavioral skills and display conservative norms regarding substance abuse. An 18-session curriculum contains 5-min videos that are assigned to be followed by discussion and social reinforcement from a teacher or volunteer. This case study reports the program development process and experiences in the initial dissemination of the program through national networks for schools and cable television subscribers.
Small Aircraft Data Distribution System
NASA Technical Reports Server (NTRS)
Chazanoff, Seth L.; Dinardo, Steven J.
2012-01-01
The CARVE Small Aircraft Data Distribution System acquires the aircraft location and attitude data that is required by the various programs running on a distributed network. This system distributes the data it acquires to the data acquisition programs for inclusion in their data files. It uses UDP (User Datagram Protocol) to broadcast data over a LAN (Local Area Network) to any programs that might have a use for the data. The program is easily adaptable to acquire additional data and log that data to disk. The current version also drives displays using precision pitch and roll information to aid the pilot in maintaining a level-level attitude for radar/radiometer mapping beyond the degree available by flying visually or using a standard gyro-driven attitude indicator. The software is designed to acquire an array of data to help the mission manager make real-time decisions as to the effectiveness of the flight. This data is displayed for the mission manager and broadcast to the other experiments on the aircraft for inclusion in their data files. The program also drives real-time precision pitch and roll displays for the pilot and copilot to aid them in maintaining the desired attitude, when required, during data acquisition on mapping lines.
Daly, Kevin C.; Galán, Roberto F.; Peters, Oakland J.; Staudacher, Erich M.
2011-01-01
The transient oscillatory model of odor identity encoding seeks to explain how odorants with spatially overlapped patterns of input into primary olfactory networks can be discriminated. This model provides several testable predictions about the distributed nature of network oscillations and how they control spike timing. To test these predictions, 16 channel electrode arrays were placed within the antennal lobe (AL) of the moth Manduca sexta. Unitary spiking and multi site local field potential (LFP) recordings were made during spontaneous activity and in response to repeated presentations of an odor panel. We quantified oscillatory frequency, cross correlations between LFP recording sites, and spike–LFP phase relationships. We show that odor-driven AL oscillations in Manduca are frequency modulating (FM) from ∼100 to 30 Hz; this was odorant and stimulus duration dependent. FM oscillatory responses were localized to one or two recording sites suggesting a localized (perhaps glomerular) not distributed source. LFP cross correlations further demonstrated that only a small (r < 0.05) distributed and oscillatory component was present. Cross spectral density analysis demonstrated the frequency of these weakly distributed oscillations was state dependent (spontaneous activity = 25–55 Hz; odor-driven = 55–85 Hz). Surprisingly, vector strength analysis indicated that unitary phase locking of spikes to the LFP was strongest during spontaneous activity and dropped significantly during responses. Application of bicuculline, a GABAA receptor antagonist, significantly lowered the frequency content of odor-driven distributed oscillatory activity. Bicuculline significantly reduced spike phase locking generally, but the ubiquitous pattern of increased phase locking during spontaneous activity persisted. Collectively, these results indicate that oscillations perform poorly as a stimulus-mediated spike synchronizing mechanism for Manduca and hence are incongruent with the transient oscillatory model. PMID:22046161
Barkhofen, Sonja; Bartley, Tim J; Sansoni, Linda; Kruse, Regina; Hamilton, Craig S; Jex, Igor; Silberhorn, Christine
2017-01-13
Sampling the distribution of bosons that have undergone a random unitary evolution is strongly believed to be a computationally hard problem. Key to outperforming classical simulations of this task is to increase both the number of input photons and the size of the network. We propose driven boson sampling, in which photons are input within the network itself, as a means to approach this goal. We show that the mean number of photons entering a boson sampling experiment can exceed one photon per input mode, while maintaining the required complexity, potentially leading to less stringent requirements on the input states for such experiments. When using heralded single-photon sources based on parametric down-conversion, this approach offers an ∼e-fold enhancement in the input state generation rate over scattershot boson sampling, reaching the scaling limit for such sources. This approach also offers a dramatic increase in the signal-to-noise ratio with respect to higher-order photon generation from such probabilistic sources, which removes the need for photon number resolution during the heralding process as the size of the system increases.
Stream Width Dynamics in a Small Headwater Catchment
NASA Astrophysics Data System (ADS)
Barefoot, E. A.; Pavelsky, T.; Allen, G. H.; Zimmer, M. A.; McGlynn, B. L.
2016-12-01
Changing streamflow conditions cause small, ephemeral and intermittent stream networks to expand and contract, while simultaneously driving widening and narrowing of streams. The resulting dynamic surface area of ephemeral streams impacts critical hydrological and biogeochemical processes, including air-water gas exchange, solute transport, and sediment transport. Despite the importance of these dynamics, to our knowledge there exists no complete study of how stream widths vary throughout an entire catchment in response to changing streamflow conditions. Here we present the first characterization of how variable hydrologic conditions impact the distribution of stream widths in a 48 ha headwater catchment in the Stony Creek Research Watershed, NC, USA. We surveyed stream widths longitudinally every 5 m on 12 occasions over a range of stream discharge from 7 L/s to 128 L/s at the catchment outlet. We hypothesize that the shape and location of the stream width distribution are driven by the action of two interrelated mechanisms, network extension and at-a-station widening, both of which increase with discharge. We observe that during very low flow conditions, network extension more significantly influences distribution location, and during high flow conditions stream widening is the dominant driver. During moderate flows, we observe an approximately 1 cm rightward shift in the distribution peak with every additional 10 L/s of increased discharge, which we attribute to a greater impact of at-a-station widening on distribution location. Aside from this small shift, the qualitative location and shape of the stream width distribution are largely invariant with changing streamflow. We suggest that the basic characteristics of stream width distributions constitute an equilibrium between the two described mechanisms across variable hydrologic conditions.
AST: Activity-Security-Trust driven modeling of time varying networks.
Wang, Jian; Xu, Jiake; Liu, Yanheng; Deng, Weiwen
2016-02-18
Network modeling is a flexible mathematical structure that enables to identify statistical regularities and structural principles hidden in complex systems. The majority of recent driving forces in modeling complex networks are originated from activity, in which an activity potential of a time invariant function is introduced to identify agents' interactions and to construct an activity-driven model. However, the new-emerging network evolutions are already deeply coupled with not only the explicit factors (e.g. activity) but also the implicit considerations (e.g. security and trust), so more intrinsic driving forces behind should be integrated into the modeling of time varying networks. The agents undoubtedly seek to build a time-dependent trade-off among activity, security, and trust in generating a new connection to another. Thus, we reasonably propose the Activity-Security-Trust (AST) driven model through synthetically considering the explicit and implicit driving forces (e.g. activity, security, and trust) underlying the decision process. AST-driven model facilitates to more accurately capture highly dynamical network behaviors and figure out the complex evolution process, allowing a profound understanding of the effects of security and trust in driving network evolution, and improving the biases induced by only involving activity representations in analyzing the dynamical processes.
Zhang, Xiao-Fei; Ou-Yang, Le; Yan, Hong
2017-08-15
Understanding how gene regulatory networks change under different cellular states is important for revealing insights into network dynamics. Gaussian graphical models, which assume that the data follow a joint normal distribution, have been used recently to infer differential networks. However, the distributions of the omics data are non-normal in general. Furthermore, although much biological knowledge (or prior information) has been accumulated, most existing methods ignore the valuable prior information. Therefore, new statistical methods are needed to relax the normality assumption and make full use of prior information. We propose a new differential network analysis method to address the above challenges. Instead of using Gaussian graphical models, we employ a non-paranormal graphical model that can relax the normality assumption. We develop a principled model to take into account the following prior information: (i) a differential edge less likely exists between two genes that do not participate together in the same pathway; (ii) changes in the networks are driven by certain regulator genes that are perturbed across different cellular states and (iii) the differential networks estimated from multi-view gene expression data likely share common structures. Simulation studies demonstrate that our method outperforms other graphical model-based algorithms. We apply our method to identify the differential networks between platinum-sensitive and platinum-resistant ovarian tumors, and the differential networks between the proneural and mesenchymal subtypes of glioblastoma. Hub nodes in the estimated differential networks rediscover known cancer-related regulator genes and contain interesting predictions. The source code is at https://github.com/Zhangxf-ccnu/pDNA. szuouyl@gmail.com. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
NASA Astrophysics Data System (ADS)
Parsons, R.; Hustoft, J. W.; Holtzman, B. K.; Kohlstedt, D. L.; Phipps Morgan, J.
2004-12-01
As discussed in the two previous abstracts in this series, simple shear experiments on synthetic upper mantle-type rock samples reveal the segregation of melt into melt-rich bands separated by melt-depleted lenses. Here, we present new results from experiments designed to understand the driving forces working for and against melt segregation. To better understand the kinetics of surface tension-driven melt redistribution, we first deform samples at similar conditions (starting material, sample size, stress and strain) to produce melt-rich band networks that are statistically similar. Then the load is removed and the samples are statically annealed to allow surface tension to redistribute the melt-rich networks. Three samples of olivine + 20 vol% chromite + 4 vol% MORB were deformed at a confining pressure of 300 MPa and a temperature of 1523 K in simple shear at shear stresses of 20 - 55 MPa to shear strains of 3.5 and then statically annealed for 0, 10, or 100 h at the same P-T conditions. Melt-rich bands are fewer in number and appear more diffuse when compared to the deformed but not annealed samples. Bands with less melt tend to disappear more rapidly than more melt-rich ones. The melt fraction in the melt-rich bands decreased from 0.2 in the quenched sample to 0.1 in the sample annealed for 100 h. After deformation, the melt fraction in the melt-depleted regions are ~0.006; after static annealing for 100 h, this value increases to 0.02. These experiments provide new quantitative constraints on the kinetics of melt migration driven by surface tension. By quantifying this driving force in the same samples in which stress-driven distribution occurred, we learn about the relative kinetics of stress-driven melt segregation. The kinetics of both of these processes must be scaled together to mantle conditions to understand the importance of stress-driven melt segregation in the Earth, and to understand the interaction of this process with melt-rock reaction-driven processes.
Korostil, Michele; Remington, Gary; McIntosh, Anthony Randal
2016-01-01
Understanding how practice mediates the transition of brain-behavior networks between early and later stages of learning is constrained by the common approach to analysis of fMRI data. Prior imaging studies have mostly relied on a single scan, and parametric, task-related analyses. Our experiment incorporates a multisession fMRI lexicon-learning experiment with multivariate, whole-brain analysis to further knowledge of the distributed networks supporting practice-related learning in schizophrenia (SZ). Participants with SZ were compared with healthy control (HC) participants as they learned a novel lexicon during two fMRI scans over a several day period. All participants were trained to equal task proficiency prior to scanning. Behavioral-Partial Least Squares, a multivariate analytic approach, was used to analyze the imaging data. Permutation testing was used to determine statistical significance and bootstrap resampling to determine the reliability of the findings. With practice, HC participants transitioned to a brain-accuracy network incorporating dorsostriatal regions in late-learning stages. The SZ participants did not transition to this pattern despite comparable behavioral results. Instead, successful learners with SZ were differentiated primarily on the basis of greater engagement of perceptual and perceptual-integration brain regions. There is a different spatiotemporal unfolding of brain-learning relationships in SZ. In SZ, given the same amount of practice, the movement from networks suggestive of effortful learning toward subcortically driven procedural one differs from HC participants. Learning performance in SZ is driven by varying levels of engagement in perceptual regions, which suggests perception itself is impaired and may impact downstream, "higher level" cognition.
A Minimax Network Flow Model for Characterizing the Impact of Slot Restrictions
NASA Technical Reports Server (NTRS)
Lee, Douglas W.; Patek, Stephen D.; Alexandrov, Natalia; Bass, Ellen J.; Kincaid, Rex K.
2010-01-01
This paper proposes a model for evaluating long-term measures to reduce congestion at airports in the National Airspace System (NAS). This model is constructed with the goal of assessing the global impacts of congestion management strategies, specifically slot restrictions. We develop the Minimax Node Throughput Problem (MINNTHRU), a multicommodity network flow model that provides insight into air traffic patterns when one minimizes the worst-case operation across all airports in a given network. MINNTHRU is thus formulated as a model where congestion arises from network topology. It reflects not market-driven airline objectives, but those of a regulatory authority seeking a distribution of air traffic beneficial to all airports, in response to congestion management measures. After discussing an algorithm for solving MINNTHRU for moderate-sized (30 nodes) and larger networks, we use this model to study the impacts of slot restrictions on the operation of an entire hub-spoke airport network. For both a small example network and a medium-sized network based on 30 airports in the NAS, we use MINNTHRU to demonstrate that increasing the severity of slot restrictions increases the traffic around unconstrained hub airports as well as the worst-case level of operation over all airports.
Zhao, Yongli; Chen, Zhendong; Zhang, Jie; Wang, Xinbo
2016-07-25
Driven by the forthcoming of 5G mobile communications, the all-IP architecture of mobile core networks, i.e. evolved packet core (EPC) proposed by 3GPP, has been greatly challenged by the users' demands for higher data rate and more reliable end-to-end connection, as well as operators' demands for low operational cost. These challenges can be potentially met by software defined optical networking (SDON), which enables dynamic resource allocation according to the users' requirement. In this article, a novel network architecture for mobile core network is proposed based on SDON. A software defined network (SDN) controller is designed to realize the coordinated control over different entities in EPC networks. We analyze the requirement of EPC-lightpath (EPCL) in data plane and propose an optical switch load balancing (OSLB) algorithm for resource allocation in optical layer. The procedure of establishment and adjustment of EPCLs is demonstrated on a SDON-based EPC testbed with extended OpenFlow protocol. We also evaluate the OSLB algorithm through simulation in terms of bandwidth blocking ratio, traffic load distribution, and resource utilization ratio compared with link-based load balancing (LLB) and MinHops algorithms.
Trade-offs between driving nodes and time-to-control in complex networks
Pequito, Sérgio; Preciado, Victor M.; Barabási, Albert-László; Pappas, George J.
2017-01-01
Recent advances in control theory provide us with efficient tools to determine the minimum number of driving (or driven) nodes to steer a complex network towards a desired state. Furthermore, we often need to do it within a given time window, so it is of practical importance to understand the trade-offs between the minimum number of driving/driven nodes and the minimum time required to reach a desired state. Therefore, we introduce the notion of actuation spectrum to capture such trade-offs, which we used to find that in many complex networks only a small fraction of driving (or driven) nodes is required to steer the network to a desired state within a relatively small time window. Furthermore, our empirical studies reveal that, even though synthetic network models are designed to present structural properties similar to those observed in real networks, their actuation spectra can be dramatically different. Thus, it supports the need to develop new synthetic network models able to replicate controllability properties of real-world networks. PMID:28054597
Trade-offs between driving nodes and time-to-control in complex networks
NASA Astrophysics Data System (ADS)
Pequito, Sérgio; Preciado, Victor M.; Barabási, Albert-László; Pappas, George J.
2017-01-01
Recent advances in control theory provide us with efficient tools to determine the minimum number of driving (or driven) nodes to steer a complex network towards a desired state. Furthermore, we often need to do it within a given time window, so it is of practical importance to understand the trade-offs between the minimum number of driving/driven nodes and the minimum time required to reach a desired state. Therefore, we introduce the notion of actuation spectrum to capture such trade-offs, which we used to find that in many complex networks only a small fraction of driving (or driven) nodes is required to steer the network to a desired state within a relatively small time window. Furthermore, our empirical studies reveal that, even though synthetic network models are designed to present structural properties similar to those observed in real networks, their actuation spectra can be dramatically different. Thus, it supports the need to develop new synthetic network models able to replicate controllability properties of real-world networks.
DeDaL: Cytoscape 3 app for producing and morphing data-driven and structure-driven network layouts.
Czerwinska, Urszula; Calzone, Laurence; Barillot, Emmanuel; Zinovyev, Andrei
2015-08-14
Visualization and analysis of molecular profiling data together with biological networks are able to provide new mechanistic insights into biological functions. Currently, it is possible to visualize high-throughput data on top of pre-defined network layouts, but they are not always adapted to a given data analysis task. A network layout based simultaneously on the network structure and the associated multidimensional data might be advantageous for data visualization and analysis in some cases. We developed a Cytoscape app, which allows constructing biological network layouts based on the data from molecular profiles imported as values of node attributes. DeDaL is a Cytoscape 3 app, which uses linear and non-linear algorithms of dimension reduction to produce data-driven network layouts based on multidimensional data (typically gene expression). DeDaL implements several data pre-processing and layout post-processing steps such as continuous morphing between two arbitrary network layouts and aligning one network layout with respect to another one by rotating and mirroring. The combination of all these functionalities facilitates the creation of insightful network layouts representing both structural network features and correlation patterns in multivariate data. We demonstrate the added value of applying DeDaL in several practical applications, including an example of a large protein-protein interaction network. DeDaL is a convenient tool for applying data dimensionality reduction methods and for designing insightful data displays based on data-driven layouts of biological networks, built within Cytoscape environment. DeDaL is freely available for downloading at http://bioinfo-out.curie.fr/projects/dedal/.
2012-07-12
fields ranging from real- time alarm systems and vehicle systems to aeronautical guidance and formation control , the need for establishing a theoretical...noisy channels In the publication [7], we have considered the problem of remotely controlling a continuous- time lin- ear time -invariant system driven by...the controller ) and the reverse channel (connecting the controller to the plant). For stability of the closed-loop system , we look for the existence of
Grammatical analysis as a distributed neurobiological function.
Bozic, Mirjana; Fonteneau, Elisabeth; Su, Li; Marslen-Wilson, William D
2015-03-01
Language processing engages large-scale functional networks in both hemispheres. Although it is widely accepted that left perisylvian regions have a key role in supporting complex grammatical computations, patient data suggest that some aspects of grammatical processing could be supported bilaterally. We investigated the distribution and the nature of grammatical computations across language processing networks by comparing two types of combinatorial grammatical sequences--inflectionally complex words and minimal phrases--and contrasting them with grammatically simple words. Novel multivariate analyses revealed that they engage a coalition of separable subsystems: inflected forms triggered left-lateralized activation, dissociable into dorsal processes supporting morphophonological parsing and ventral, lexically driven morphosyntactic processes. In contrast, simple phrases activated a consistently bilateral pattern of temporal regions, overlapping with inflectional activations in L middle temporal gyrus. These data confirm the role of the left-lateralized frontotemporal network in supporting complex grammatical computations. Critically, they also point to the capacity of bilateral temporal regions to support simple, linear grammatical computations. This is consistent with a dual neurobiological framework where phylogenetically older bihemispheric systems form part of the network that supports language function in the modern human, and where significant capacities for language comprehension remain intact even following severe left hemisphere damage. Copyright © 2014 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Huang, Ailing; Zang, Guangzhi; He, Zhengbing; Guan, Wei
2017-05-01
Urban public transit system is a typical mixed complex network with dynamic flow, and its evolution should be a process coupling topological structure with flow dynamics, which has received little attention. This paper presents the R-space to make a comparative empirical analysis on Beijing’s flow-weighted transit route network (TRN) and we found that both the Beijing’s TRNs in the year of 2011 and 2015 exhibit the scale-free properties. As such, we propose an evolution model driven by flow to simulate the development of TRNs with consideration of the passengers’ dynamical behaviors triggered by topological change. The model simulates that the evolution of TRN is an iterative process. At each time step, a certain number of new routes are generated driven by travel demands, which leads to dynamical evolution of new routes’ flow and triggers perturbation in nearby routes that will further impact the next round of opening new routes. We present the theoretical analysis based on the mean-field theory, as well as the numerical simulation for this model. The results obtained agree well with our empirical analysis results, which indicate that our model can simulate the TRN evolution with scale-free properties for distributions of node’s strength and degree. The purpose of this paper is to illustrate the global evolutional mechanism of transit network that will be used to exploit planning and design strategies for real TRNs.
Gonzalez, Dennis; Tjandraatmadja, Grace; Barry, Karen; Vanderzalm, Joanne; Kaksonen, Anna H; Dillon, Peter; Puzon, Geoff J; Sidhu, Jatinder; Wylie, Jason; Goodman, Nigel; Low, Jason
2016-11-15
The injection of stormwater into aquifers for storage and recovery during high water demand periods is a promising technology for augmenting conventional water reserves. Limited information exists regarding the potential impact of aquifer treated stormwater in distribution system infrastructure. This study describes a one year pilot distribution pipe network trial to determine the biofouling potential for cement, copper and polyvinyl chloride pipe materials exposed to stormwater stored in a limestone aquifer compared to an identical drinking water rig. Median alkalinity (123 mg/L) and colour (12 HU) in stormwater was significantly higher than in drinking water (82 mg/L and 1 HU) and pipe discolouration was more evident for stormwater samples. X-ray Diffraction and Fluorescence analyses confirmed this was driven by the presence of iron rich amorphous compounds in more thickly deposited sediments also consistent with significantly higher median levels of iron (∼0.56 mg/L) in stormwater compared to drinking water (∼0.17 mg/L). Water type did not influence biofilm development as determined by microbial density but faecal indicators were significantly higher for polyvinyl chloride and cement exposed to stormwater. Treatment to remove iron through aeration and filtration would reduce the potential for sediment accumulation. Operational and verification monitoring parameters to manage scaling, corrosion, colour, turbidity and microbial growth in recycled stormwater distribution networks are discussed. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Sampled-data consensus in switching networks of integrators based on edge events
NASA Astrophysics Data System (ADS)
Xiao, Feng; Meng, Xiangyu; Chen, Tongwen
2015-02-01
This paper investigates the event-driven sampled-data consensus in switching networks of multiple integrators and studies both the bidirectional interaction and leader-following passive reaction topologies in a unified framework. In these topologies, each information link is modelled by an edge of the information graph and assigned a sequence of edge events, which activate the mutual data sampling and controller updates of the two linked agents. Two kinds of edge-event-detecting rules are proposed for the general asynchronous data-sampling case and the synchronous periodic event-detecting case. They are implemented in a distributed fashion, and their effectiveness in reducing communication costs and solving consensus problems under a jointly connected topology condition is shown by both theoretical analysis and simulation examples.
MAX - An advanced parallel computer for space applications
NASA Technical Reports Server (NTRS)
Lewis, Blair F.; Bunker, Robert L.
1991-01-01
MAX is a fault-tolerant multicomputer hardware and software architecture designed to meet the needs of NASA spacecraft systems. It consists of conventional computing modules (computers) connected via a dual network topology. One network is used to transfer data among the computers and between computers and I/O devices. This network's topology is arbitrary. The second network operates as a broadcast medium for operating system synchronization messages and supports the operating system's Byzantine resilience. A fully distributed operating system supports multitasking in an asynchronous event and data driven environment. A large grain dataflow paradigm is used to coordinate the multitasking and provide easy control of concurrency. It is the basis of the system's fault tolerance and allows both static and dynamical location of tasks. Redundant execution of tasks with software voting of results may be specified for critical tasks. The dataflow paradigm also supports simplified software design, test and maintenance. A unique feature is a method for reliably patching code in an executing dataflow application.
Cybersim: geographic, temporal, and organizational dynamics of malware propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santhi, Nandakishore; Yan, Guanhua; Eidenbenz, Stephan
2010-01-01
Cyber-infractions into a nation's strategic security envelope pose a constant and daunting challenge. We present the modular CyberSim tool which has been developed in response to the need to realistically simulate at a national level, software vulnerabilities and resulting mal ware propagation in online social networks. CyberSim suite (a) can generate realistic scale-free networks from a database of geocoordinated computers to closely model social networks arising from personal and business email contacts and online communities; (b) maintains for each,bost a list of installed software, along with the latest published vulnerabilities; (d) allows designated initial nodes where malware gets introduced; (e)more » simulates, using distributed discrete event-driven technology, the spread of malware exploiting a specific vulnerability, with packet delay and user online behavior models; (f) provides a graphical visualization of spread of infection, its severity, businesses affected etc to the analyst. We present sample simulations on a national level network with millions of computers.« less
AST: Activity-Security-Trust driven modeling of time varying networks
Wang, Jian; Xu, Jiake; Liu, Yanheng; Deng, Weiwen
2016-01-01
Network modeling is a flexible mathematical structure that enables to identify statistical regularities and structural principles hidden in complex systems. The majority of recent driving forces in modeling complex networks are originated from activity, in which an activity potential of a time invariant function is introduced to identify agents’ interactions and to construct an activity-driven model. However, the new-emerging network evolutions are already deeply coupled with not only the explicit factors (e.g. activity) but also the implicit considerations (e.g. security and trust), so more intrinsic driving forces behind should be integrated into the modeling of time varying networks. The agents undoubtedly seek to build a time-dependent trade-off among activity, security, and trust in generating a new connection to another. Thus, we reasonably propose the Activity-Security-Trust (AST) driven model through synthetically considering the explicit and implicit driving forces (e.g. activity, security, and trust) underlying the decision process. AST-driven model facilitates to more accurately capture highly dynamical network behaviors and figure out the complex evolution process, allowing a profound understanding of the effects of security and trust in driving network evolution, and improving the biases induced by only involving activity representations in analyzing the dynamical processes. PMID:26888717
NASA Astrophysics Data System (ADS)
Vilà, A.; Zhu, J.; Scrinzi, A.; Emmanouilidou, A.
2018-03-01
We study frustrated double ionization (FDI) in a strongly-driven heteronuclear molecule HeH+ and compare with H2. We compute the probability distribution of the sum of the final kinetic energies of the nuclei for strongly-driven HeH+. We find that this distribution has more than one peak for strongly-driven HeH+, a feature we do not find to be present for strongly-driven H2. Moreover, we compute the probability distribution of the principal quantum number n of FDI. We find that this distribution has several peaks for strongly-driven HeH+, while the respective distribution has one main peak and a ‘shoulder’ at lower principal quantum numbers n for strongly-driven H2. Surprisingly, we find this feature to be a clear signature of the intertwined electron-nuclear motion.
Sequence-of-events-driven automation of the deep space network
NASA Technical Reports Server (NTRS)
Hill, R., Jr.; Fayyad, K.; Smyth, C.; Santos, T.; Chen, R.; Chien, S.; Bevan, R.
1996-01-01
In February 1995, sequence-of-events (SOE)-driven automation technology was demonstrated for a Voyager telemetry downlink track at DSS 13. This demonstration entailed automated generation of an operations procedure (in the form of a temporal dependency network) from project SOE information using artificial intelligence planning technology and automated execution of the temporal dependency network using the link monitor and control operator assistant system. This article describes the overall approach to SOE-driven automation that was demonstrated, identifies gaps in SOE definitions and project profiles that hamper automation, and provides detailed measurements of the knowledge engineering effort required for automation.
Sequence-of-Events-Driven Automation of the Deep Space Network
NASA Technical Reports Server (NTRS)
Hill, R., Jr.; Fayyad, K.; Smyth, C.; Santos, T.; Chen, R.; Chien, S.; Bevan, R.
1996-01-01
In February 1995, sequence-of-events (SOE)-driven automation technology was demonstrated for a Voyager telemetry downlink track at DSS 13. This demonstration entailed automated generation of an operations procedure (in the form of a temporal dependency network) from project SOE information using artificial intelligence planning technology and automated execution of the temporal dependency network using the link monitor and control operator assistant system. This article describes the overall approach to SOE-driven automation that was demonstrated, identifies gaps in SOE definitions and project profiles that hamper automation, and provides detailed measurements of the knowledge engineering effort required for automation.
Supervised dictionary learning for inferring concurrent brain networks.
Zhao, Shijie; Han, Junwei; Lv, Jinglei; Jiang, Xi; Hu, Xintao; Zhao, Yu; Ge, Bao; Guo, Lei; Liu, Tianming
2015-10-01
Task-based fMRI (tfMRI) has been widely used to explore functional brain networks via predefined stimulus paradigm in the fMRI scan. Traditionally, the general linear model (GLM) has been a dominant approach to detect task-evoked networks. However, GLM focuses on task-evoked or event-evoked brain responses and possibly ignores the intrinsic brain functions. In comparison, dictionary learning and sparse coding methods have attracted much attention recently, and these methods have shown the promise of automatically and systematically decomposing fMRI signals into meaningful task-evoked and intrinsic concurrent networks. Nevertheless, two notable limitations of current data-driven dictionary learning method are that the prior knowledge of task paradigm is not sufficiently utilized and that the establishment of correspondences among dictionary atoms in different brains have been challenging. In this paper, we propose a novel supervised dictionary learning and sparse coding method for inferring functional networks from tfMRI data, which takes both of the advantages of model-driven method and data-driven method. The basic idea is to fix the task stimulus curves as predefined model-driven dictionary atoms and only optimize the other portion of data-driven dictionary atoms. Application of this novel methodology on the publicly available human connectome project (HCP) tfMRI datasets has achieved promising results.
NASA Astrophysics Data System (ADS)
Nisoli, Cristiano; Mahault, Benoit; Saxena, Avadh
We introduce a minimal agent-based model to qualitatively conceptualize the allocation of limited wealth among more abundant opportunities. There the interplay of power, satisfaction and frustration determines the distribution, concentration, and inequality of wealth. Our framework allows us to compare subjective measures of frustration and satisfaction to collective measures of fairness in wealth distribution, such as the Lorenz curve and the Gini index. We find that a completely libertarian, law-of-the-jungle setting, where every agent can acquire wealth from, or lose wealth to, anybody else invariably leads to large inequality. The picture is however dramatically modified when hard constraints are imposed over agents, and they are limited to share wealth with neighbors on a network. We address dynamical societies via an out of equilibrium coevolution of the network, driven by a competition between power and frustration. The ratio between power and frustration controls different dynamical regimes separated by kinetic transitions and characterized by drastically different values of the indices of equality. In particular, it leads to the emergence of three self-organized social classes, lower, middle, and upper class, whose interactions drive a cyclical regime.
Soper, Alan K
2010-10-13
Liquids and glasses continue to produce a lively debate about the nature of the disordered structure in these materials, and whether it is driven by longer range concentration or density fluctuations. One factor often lacking in these studies is an overview of a wide range of structures from which common features of and differences between materials can be identified. Here I examine the structure of a wide range of chain and network, elemental, binary and tertiary liquids and glasses, using available x-ray and neutron diffraction data and combining them with empirical potential structure refinement. Calculation of the Bhatia-Thornton number-number and concentration-concentration structure factors and distribution functions highlights common structural motifs that run through many of the series. It is found that the greatest structural overlap occurs where the nearest-neighbour and second-neighbour coordination numbers are similar for different materials. As these coordination numbers increase, so the structures undergo a sequence of characteristic changes involving increasingly bent bond angle distributions and increased packing fractions. In these regards liquid and amorphous phosphorus appear to be in a structural class of their own, combining both chain-like and network-like characteristics.
Comparing species interaction networks along environmental gradients.
Pellissier, Loïc; Albouy, Camille; Bascompte, Jordi; Farwig, Nina; Graham, Catherine; Loreau, Michel; Maglianesi, Maria Alejandra; Melián, Carlos J; Pitteloud, Camille; Roslin, Tomas; Rohr, Rudolf; Saavedra, Serguei; Thuiller, Wilfried; Woodward, Guy; Zimmermann, Niklaus E; Gravel, Dominique
2018-05-01
Knowledge of species composition and their interactions, in the form of interaction networks, is required to understand processes shaping their distribution over time and space. As such, comparing ecological networks along environmental gradients represents a promising new research avenue to understand the organization of life. Variation in the position and intensity of links within networks along environmental gradients may be driven by turnover in species composition, by variation in species abundances and by abiotic influences on species interactions. While investigating changes in species composition has a long tradition, so far only a limited number of studies have examined changes in species interactions between networks, often with differing approaches. Here, we review studies investigating variation in network structures along environmental gradients, highlighting how methodological decisions about standardization can influence their conclusions. Due to their complexity, variation among ecological networks is frequently studied using properties that summarize the distribution or topology of interactions such as number of links, connectance, or modularity. These properties can either be compared directly or using a procedure of standardization. While measures of network structure can be directly related to changes along environmental gradients, standardization is frequently used to facilitate interpretation of variation in network properties by controlling for some co-variables, or via null models. Null models allow comparing the deviation of empirical networks from random expectations and are expected to provide a more mechanistic understanding of the factors shaping ecological networks when they are coupled with functional traits. As an illustration, we compare approaches to quantify the role of trait matching in driving the structure of plant-hummingbird mutualistic networks, i.e. a direct comparison, standardized by null models and hypothesis-based metaweb. Overall, our analysis warns against a comparison of studies that rely on distinct forms of standardization, as they are likely to highlight different signals. Fostering a better understanding of the analytical tools available and the signal they detect will help produce deeper insights into how and why ecological networks vary along environmental gradients. © 2017 Cambridge Philosophical Society.
Distributions of Autocorrelated First-Order Kinetic Outcomes: Illness Severity
Englehardt, James D.
2015-01-01
Many complex systems produce outcomes having recurring, power law-like distributions over wide ranges. However, the form necessarily breaks down at extremes, whereas the Weibull distribution has been demonstrated over the full observed range. Here the Weibull distribution is derived as the asymptotic distribution of generalized first-order kinetic processes, with convergence driven by autocorrelation, and entropy maximization subject to finite positive mean, of the incremental compounding rates. Process increments represent multiplicative causes. In particular, illness severities are modeled as such, occurring in proportion to products of, e.g., chronic toxicant fractions passed by organs along a pathway, or rates of interacting oncogenic mutations. The Weibull form is also argued theoretically and by simulation to be robust to the onset of saturation kinetics. The Weibull exponential parameter is shown to indicate the number and widths of the first-order compounding increments, the extent of rate autocorrelation, and the degree to which process increments are distributed exponential. In contrast with the Gaussian result in linear independent systems, the form is driven not by independence and multiplicity of process increments, but by increment autocorrelation and entropy. In some physical systems the form may be attracting, due to multiplicative evolution of outcome magnitudes towards extreme values potentially much larger and smaller than control mechanisms can contain. The Weibull distribution is demonstrated in preference to the lognormal and Pareto I for illness severities versus (a) toxicokinetic models, (b) biologically-based network models, (c) scholastic and psychological test score data for children with prenatal mercury exposure, and (d) time-to-tumor data of the ED01 study. PMID:26061263
Potjans, Wiebke; Morrison, Abigail; Diesmann, Markus
2010-01-01
A major puzzle in the field of computational neuroscience is how to relate system-level learning in higher organisms to synaptic plasticity. Recently, plasticity rules depending not only on pre- and post-synaptic activity but also on a third, non-local neuromodulatory signal have emerged as key candidates to bridge the gap between the macroscopic and the microscopic level of learning. Crucial insights into this topic are expected to be gained from simulations of neural systems, as these allow the simultaneous study of the multiple spatial and temporal scales that are involved in the problem. In particular, synaptic plasticity can be studied during the whole learning process, i.e., on a time scale of minutes to hours and across multiple brain areas. Implementing neuromodulated plasticity in large-scale network simulations where the neuromodulatory signal is dynamically generated by the network itself is challenging, because the network structure is commonly defined purely by the connectivity graph without explicit reference to the embedding of the nodes in physical space. Furthermore, the simulation of networks with realistic connectivity entails the use of distributed computing. A neuromodulated synapse must therefore be informed in an efficient way about the neuromodulatory signal, which is typically generated by a population of neurons located on different machines than either the pre- or post-synaptic neuron. Here, we develop a general framework to solve the problem of implementing neuromodulated plasticity in a time-driven distributed simulation, without reference to a particular implementation language, neuromodulator, or neuromodulated plasticity mechanism. We implement our framework in the simulator NEST and demonstrate excellent scaling up to 1024 processors for simulations of a recurrent network incorporating neuromodulated spike-timing dependent plasticity. PMID:21151370
Mean-field theory of a plastic network of integrate-and-fire neurons.
Chen, Chun-Chung; Jasnow, David
2010-01-01
We consider a noise-driven network of integrate-and-fire neurons. The network evolves as result of the activities of the neurons following spike-timing-dependent plasticity rules. We apply a self-consistent mean-field theory to the system to obtain the mean activity level for the system as a function of the mean synaptic weight, which predicts a first-order transition and hysteresis between a noise-dominated regime and a regime of persistent neural activity. Assuming Poisson firing statistics for the neurons, the plasticity dynamics of a synapse under the influence of the mean-field environment can be mapped to the dynamics of an asymmetric random walk in synaptic-weight space. Using a master equation for small steps, we predict a narrow distribution of synaptic weights that scales with the square root of the plasticity rate for the stationary state of the system given plausible physiological parameter values describing neural transmission and plasticity. The dependence of the distribution on the synaptic weight of the mean-field environment allows us to determine the mean synaptic weight self-consistently. The effect of fluctuations in the total synaptic conductance and plasticity step sizes are also considered. Such fluctuations result in a smoothing of the first-order transition for low number of afferent synapses per neuron and a broadening of the synaptic-weight distribution, respectively.
Modelling opinion formation driven communities in social networks
NASA Astrophysics Data System (ADS)
Iñiguez, Gerardo; Barrio, Rafael A.; Kertész, János; Kaski, Kimmo K.
2011-09-01
In a previous paper we proposed a model to study the dynamics of opinion formation in human societies by a co-evolution process involving two distinct time scales of fast transaction and slower network evolution dynamics. In the transaction dynamics we take into account short range interactions as discussions between individuals and long range interactions to describe the attitude to the overall mood of society. The latter is handled by a uniformly distributed parameter α, assigned randomly to each individual, as quenched personal bias. The network evolution dynamics is realised by rewiring the societal network due to state variable changes as a result of transaction dynamics. The main consequence of this complex dynamics is that communities emerge in the social network for a range of values in the ratio between time scales. In this paper we focus our attention on the attitude parameter α and its influence on the conformation of opinion and the size of the resulting communities. We present numerical studies and extract interesting features of the model that can be interpreted in terms of social behaviour.
From network structure to network reorganization: implications for adult neurogenesis
NASA Astrophysics Data System (ADS)
Schneider-Mizell, Casey M.; Parent, Jack M.; Ben-Jacob, Eshel; Zochowski, Michal R.; Sander, Leonard M.
2010-12-01
Networks can be dynamical systems that undergo functional and structural reorganization. One example of such a process is adult hippocampal neurogenesis, in which new cells are continuously born and incorporate into the existing network of the dentate gyrus region of the hippocampus. Many of these introduced cells mature and become indistinguishable from established neurons, joining the existing network. Activity in the network environment is known to promote birth, survival and incorporation of new cells. However, after epileptogenic injury, changes to the connectivity structure around the neurogenic niche are known to correlate with aberrant neurogenesis. The possible role of network-level changes in the development of epilepsy is not well understood. In this paper, we use a computational model to investigate how the structural and functional outcomes of network reorganization, driven by addition of new cells during neurogenesis, depend on the original network structure. We find that there is a stable network topology that allows the network to incorporate new neurons in a manner that enhances activity of the persistently active region, but maintains global network properties. In networks having other connectivity structures, new cells can greatly alter the distribution of firing activity and destroy the initial activity patterns. We thus find that new cells are able to provide focused enhancement of network only for small-world networks with sufficient inhibition. Network-level deviations from this topology, such as those caused by epileptogenic injury, can set the network down a path that develops toward pathological dynamics and aberrant structural integration of new cells.
Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks.
Vlachas, Pantelis R; Byeon, Wonmin; Wan, Zhong Y; Sapsis, Themistoklis P; Koumoutsakos, Petros
2018-05-01
We introduce a data-driven forecasting method for high-dimensional chaotic systems using long short-term memory (LSTM) recurrent neural networks. The proposed LSTM neural networks perform inference of high-dimensional dynamical systems in their reduced order space and are shown to be an effective set of nonlinear approximators of their attractor. We demonstrate the forecasting performance of the LSTM and compare it with Gaussian processes (GPs) in time series obtained from the Lorenz 96 system, the Kuramoto-Sivashinsky equation and a prototype climate model. The LSTM networks outperform the GPs in short-term forecasting accuracy in all applications considered. A hybrid architecture, extending the LSTM with a mean stochastic model (MSM-LSTM), is proposed to ensure convergence to the invariant measure. This novel hybrid method is fully data-driven and extends the forecasting capabilities of LSTM networks.
NASA Astrophysics Data System (ADS)
Leon, Barbara D.; Heller, Paul R.
1987-05-01
A surveillance network is a group of multiplatform sensors cooperating to improve network performance. Network control is distributed as a measure to decrease vulnerability to enemy threat. The network may contain diverse sensor types such as radar, ESM (Electronic Support Measures), IRST (Infrared search and track) and E-0 (Electro-Optical). Each platform may contain a single sensor or suite of sensors. In a surveillance network it is desirable to control sensors to make the overall system more effective. This problem has come to be known as sensor management and control (SM&C). Two major facets of network performance are surveillance and survivability. In a netted environment, surveillance can be enhanced if information from all sensors is combined and sensor operating conditions are controlled to provide a synergistic effect. In contrast, when survivability is the main concern for the network, the best operating status for all sensors would be passive or off. Of course, improving survivability tends to degrade surveillance. Hence, the objective of SM&C is to optimize surveillance and survivability of the network. Too voluminous data of various formats and the quick response time are two characteristics of this problem which make it an ideal application for Artificial Intelligence. A solution to the SM&C problem, presented as a computer simulation, will be presented in this paper. The simulation is a hybrid production written in LISP and FORTRAN. It combines the latest conventional computer programming methods with Artificial Intelligence techniques to produce a flexible state-of-the-art tool to evaluate network performance. The event-driven simulation contains environment models coupled with an expert system. These environment models include sensor (track-while-scan and agile beam) and target models, local tracking, and system tracking. These models are used to generate the environment for the sensor management and control expert system. The expert system, driven by a forward chaining inference engine, makes decisions based on the global database. The global database contains current track and sensor information supplied by the simulation. At present, the rule base emphasizes the surveillance features with rules grouped into three main categories: maintenance and enhancing track on prioritized targets; filling coverage holes and countering jamming; and evaluating sensor status. The paper will describe the architecture used for the expert system and the reasons for selecting the chosen methods. The SM&C simulation produces a graphical representation of sensors and their associated tracks such that the benefits of the sensor management and control expert system are evident. Jammer locations are also part of the display. The paper will describe results from several scenarios that best illustrate the sensor management and control concepts.
Projected climate-induced habitat loss for salmonids in the John Day River network, Oregon, U.S.A.
Ruesch, Aaron S.; Torgersen, Christian E.; Lawler, Joshua J.; Olden, Julian D.; Peterson, Erin E.; Volk, Carol J.; Lawrence, David J.
2012-01-01
Climate change will likely have profound effects on cold-water species of freshwater fishes. As temperatures rise, cold-water fish distributions may shift and contract in response. Predicting the effects of projected stream warming in stream networks is complicated by the generally poor correlation between water temperature and air temperature. Spatial dependencies in stream networks are complex because the geography of stream processes is governed by dimensions of flow direction and network structure. Therefore, forecasting climate-driven range shifts of stream biota has lagged behind similar terrestrial modeling efforts. We predicted climate-induced changes in summer thermal habitat for 3 cold-water fish species—juvenile Chinook salmon, rainbow trout, and bull trout (Oncorhynchus tshawytscha, O. mykiss, and Salvelinus confluentus, respectively)—in the John Day River basin, northwestern United States. We used a spatially explicit statistical model designed to predict water temperature in stream networks on the basis of flow and spatial connectivity. The spatial distribution of stream temperature extremes during summers from 1993 through 2009 was largely governed by solar radiation and interannual extremes of air temperature. For a moderate climate change scenario, estimated declines by 2100 in the volume of habitat for Chinook salmon, rainbow trout, and bull trout were 69–95%, 51–87%, and 86–100%, respectively. Although some restoration strategies may be able to offset these projected effects, such forecasts point to how and where restoration and management efforts might focus.
Network harness: bundles of routes in public transport networks
NASA Astrophysics Data System (ADS)
Berche, B.; von Ferber, C.; Holovatch, T.
2009-12-01
Public transport routes sharing the same grid of streets and tracks are often found to proceed in parallel along shorter or longer sequences of stations. Similar phenomena are observed in other networks built with space consuming links such as cables, vessels, pipes, neurons, etc. In the case of public transport networks (PTNs) this behavior may be easily worked out on the basis of sequences of stations serviced by each route. To quantify this behavior we use the recently introduced notion of network harness. It is described by the harness distribution P(r, s): the number of sequences of s consecutive stations that are serviced by r parallel routes. For certain PTNs that we have analyzed we observe that the harness distribution may be described by power laws. These power laws indicate a certain level of organization and planning which may be driven by the need to minimize the costs of infrastructure and secondly by the fact that points of interest tend to be clustered in certain locations of a city. This effect may be seen as a result of the strong interdependence of the evolutions of both the city and its PTN. To further investigate the significance of the empirical results we have studied one- and two-dimensional models of randomly placed routes modeled by different types of walks. While in one dimension an analytic treatment was successful, the two dimensional case was studied by simulations showing that the empirical results for real PTNs deviate significantly from those expected for randomly placed routes.
NASA Astrophysics Data System (ADS)
van der Linden, Joost H.; Narsilio, Guillermo A.; Tordesillas, Antoinette
2016-08-01
We present a data-driven framework to study the relationship between fluid flow at the macroscale and the internal pore structure, across the micro- and mesoscales, in porous, granular media. Sphere packings with varying particle size distribution and confining pressure are generated using the discrete element method. For each sample, a finite element analysis of the fluid flow is performed to compute the permeability. We construct a pore network and a particle contact network to quantify the connectivity of the pores and particles across the mesoscopic spatial scales. Machine learning techniques for feature selection are employed to identify sets of microstructural properties and multiscale complex network features that optimally characterize permeability. We find a linear correlation (in log-log scale) between permeability and the average closeness centrality of the weighted pore network. With the pore network links weighted by the local conductance, the average closeness centrality represents a multiscale measure of efficiency of flow through the pore network in terms of the mean geodesic distance (or shortest path) between all pore bodies in the pore network. Specifically, this study objectively quantifies a hypothesized link between high permeability and efficient shortest paths that thread through relatively large pore bodies connected to each other by high conductance pore throats, embodying connectivity and pore structure.
NASA Astrophysics Data System (ADS)
Wang, Chenxu; Guan, Xiaohong; Qin, Tao; Yang, Tao
2015-06-01
Online social network has become an indispensable communication tool in the information age. The development of microblog also provides us a great opportunity to study human dynamics that play a crucial role in the design of efficient communication systems. In this paper we study the characteristics of the tweeting behavior based on the data collected from Sina Microblog. The user activity level is measured to characterize how often a user posts a tweet. We find that the user activity level follows a bimodal distribution. That is, the microblog users tend to be either active or inactive. The inter-tweeting time distribution is then measured at both the aggregate and individual levels. We find that the inter-tweeting time follows a piecewise power law distribution of two tails. Furthermore, the exponents of the two tails have different correlations with the user activity level. These findings demonstrate that the dynamics of the tweeting behavior are heterogeneous in different time scales. We then develop a dynamic model co-driven by the memory and the interest mechanism to characterize the heterogeneity. The numerical simulations validate the model and verify that the short time interval tweeting behavior is driven by the memory mechanism while the long time interval behavior by the interest mechanism.
Reaching Agreement in Quantum Hybrid Networks.
Shi, Guodong; Li, Bo; Miao, Zibo; Dower, Peter M; James, Matthew R
2017-07-20
We consider a basic quantum hybrid network model consisting of a number of nodes each holding a qubit, for which the aim is to drive the network to a consensus in the sense that all qubits reach a common state. Projective measurements are applied serving as control means, and the measurement results are exchanged among the nodes via classical communication channels. In this way the quantum-opeartion/classical-communication nature of hybrid quantum networks is captured, although coherent states and joint operations are not taken into consideration in order to facilitate a clear and explicit analysis. We show how to carry out centralized optimal path planning for this network with all-to-all classical communications, in which case the problem becomes a stochastic optimal control problem with a continuous action space. To overcome the computation and communication obstacles facing the centralized solutions, we also develop a distributed Pairwise Qubit Projection (PQP) algorithm, where pairs of nodes meet at a given time and respectively perform measurements at their geometric average. We show that the qubit states are driven to a consensus almost surely along the proposed PQP algorithm, and that the expected qubit density operators converge to the average of the network's initial values.
Anderson, Brian A
2017-03-01
Through associative reward learning, arbitrary cues acquire the ability to automatically capture visual attention. Previous studies have examined the neural correlates of value-driven attentional orienting, revealing elevated activity within a network of brain regions encompassing the visual corticostriatal loop [caudate tail, lateral occipital complex (LOC) and early visual cortex] and intraparietal sulcus (IPS). Such attentional priority signals raise a broader question concerning how visual signals are combined with reward signals during learning to create a representation that is sensitive to the confluence of the two. This study examines reward signals during the cued reward training phase commonly used to generate value-driven attentional biases. High, compared with low, reward feedback preferentially activated the value-driven attention network, in addition to regions typically implicated in reward processing. Further examination of these reward signals within the visual system revealed information about the identity of the preceding cue in the caudate tail and LOC, and information about the location of the preceding cue in IPS, while early visual cortex represented both location and identity. The results reveal teaching signals within the value-driven attention network during associative reward learning, and further suggest functional specialization within different regions of this network during the acquisition of an integrated representation of stimulus value. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Flow-aggregated traffic-driven label mapping in label-switching networks
NASA Astrophysics Data System (ADS)
Nagami, Kenichi; Katsube, Yasuhiro; Esaki, Hiroshi; Nakamura, Osamu
1998-12-01
Label switching technology enables high performance, flexible, layer-3 packet forwarding based on the fixed length label information mapped to the layer-3 packet stream. A Label Switching Router (LSR) forwards layer-3 packets based on their label information mapped to the layer-3 address information as well as their layer-3 address information. This paper evaluates the required number of labels under traffic-driven label mapping policy using the real backbone traffic traces. The evaluation shows that the label mapping policy requires a large number of labels. In order to reduce the required number of labels, we propose a label mapping policy which is a traffic-driven label mapping for the traffic toward the same destination network. The evaluation shows that the proposed label mapping policy requires only about one tenth as many labels compared with the traffic-driven label mapping for the host-pair packet stream,and the topology-driven label mapping for the destination network packet stream.
Hydrogel Actuation by Electric Field Driven Effects
NASA Astrophysics Data System (ADS)
Morales, Daniel Humphrey
Hydrogels are networks of crosslinked, hydrophilic polymers capable of absorbing and releasing large amounts of water while maintaining their structural integrity. Polyelectrolyte hydrogels are a subset of hydrogels that contain ionizable moieties, which render the network sensitive to the pH and the ionic strength of the media and provide mobile counterions, which impart conductivity. These networks are part of a class of "smart" material systems that can sense and adjust their shape in response to the external environment. Hence, the ability to program and modulate hydrogel shape change has great potential for novel biomaterial and soft robotics applications. We utilized electric field driven effects to manipulate the interaction of ions within polyelectrolyte hydrogels in order to induce controlled deformation and patterning. Additionally, electric fields can be used to promote the interactions of separate gel networks, as modular components, and particle assemblies within gel networks to develop new types of soft composite systems. First, we present and analyze a walking gel actuator comprised of cationic and anionic gel legs attached by electric field-promoted polyion complexation. We characterize the electro-osmotic response of the hydrogels as a function of charge density and external salt concentration. The gel walkers achieve unidirectional motion on flat elastomer substrates and exemplify a simple way to move and manipulate soft matter devices in aqueous solutions. An 'ionoprinting' technique is presented with the capability to topographically structure and actuate hydrated gels in two and three dimensions by locally patterning ions induced by electric fields. The bound charges change the local mechanical properties of the gel to induce relief patterns and evoke localized stress, causing rapid folding in air. The ionically patterned hydrogels exhibit programmable temporal and spatial shape transitions which can be tuned by the duration and/or strength of the applied electric field. We extend the use of ionoprinting to develop multi-responsive bilayer gel systems capable of more complex shape transformation. The localized crosslinked regions determine the bending axis as the gel responds to the external environment. The bending can be tuned to reverse direction isothermally by changing the solvent quality or by changing the temperature at a fixed concentration. The multi-responsive behavior is caused by the volume transitions of a non-ionic, thermos-sensitive hydrogel coupled with a superabsorbent ionic hydrogel. Lastly, electric field driven microparticle assembly, using dielectrophoretic (DEP) forces, organized colloidal microparticles within a hydrogel matrix. The use of DEP forces enables rapid, efficient and precise control over the colloidal distribution. The resulting supracolloidal endoskeleton structures impart directional bending as the hydrogel shrinks. We compare the ordered particles structures to random particle distributions in affecting the hydrogel sheet bending response. This study demonstrates a universal technique for imparting directional properties in hydrogels towards new generations of hybrid soft materials.
Phillips, Gregory; Kuhns, Lisa M.; Garofalo, Rob; Mustanski, Brian
2014-01-01
Background In order to generate unbiased estimates for data collected using respondent-driven sampling (RDS), a number of assumptions need to be met: individuals recruit randomly from their social network and people can accurately report their eligible network size. However, research has shown that these assumptions are often violated. Methods This study used baseline data from Crew 450, a longitudinal study of young men who have sex with men in Chicago who were recruited via a modified form of RDS, and its network substudy, in which a subset of 175 participants reported details on the composition and characteristics of their social network at either one or two years post-baseline. Results Nearly two-thirds of participants reported giving coupons to at least one alter (64.0%), and 56.3% believed their alter(s) used the coupons. Frequency of communication, closeness, and type of relationship played a major role in determining coupon distribution. Participants whose alters used coupons were significantly less likely to describe the strength of their relationship as “not at all close” (OR = 0.08; 95% CI: 0.02, 0.36) compared to “very close” and to communicate weekly (OR = 0.20; 95% CI: 0.08, 0.49) or 1–6 times in the last 6 months (OR = 0.18; 95% CI: 0.06, 0.59). Conclusion Contrary to RDS assumptions, we found that relationship characteristics played a significant role when individuals decided to whom they would give coupons. PMID:25086159
Quantum key distribution with an entangled light emitting diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzurnak, B.; Stevenson, R. M.; Nilsson, J.
Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurementsmore » also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.« less
OCEAN-PC and a distributed network for ocean data
NASA Technical Reports Server (NTRS)
Mclain, Douglas R.
1992-01-01
The Intergovernmental Oceanographic Commission (IOC) wishes to develop an integrated software package for oceanographic data entry and access in developing countries. The software, called 'OCEAN-PC', would run on low cost PC microcomputers and would encourage and standardize: (1) entry of local ocean observations; (2) quality control of the local data; (3) merging local data with historical data; (4) improved display and analysis of the merged data; and (5) international data exchange. OCEAN-PC will link existing MS-DOS oceanographic programs and data sets with table-driven format conversions. Since many ocean data sets are now being distributed on optical discs (Compact Discs - Read Only Memory, CD-ROM, Mass et al. 1987), OCEAN-PC will emphasize access to CD-ROMs.
Quantum key distribution with an entangled light emitting diode
NASA Astrophysics Data System (ADS)
Dzurnak, B.; Stevenson, R. M.; Nilsson, J.; Dynes, J. F.; Yuan, Z. L.; Skiba-Szymanska, J.; Farrer, I.; Ritchie, D. A.; Shields, A. J.
2015-12-01
Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurements also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.
A compact model for electroosmotic flows in microfluidic devices
NASA Astrophysics Data System (ADS)
Qiao, R.; Aluru, N. R.
2002-09-01
A compact model to compute flow rate and pressure in microfluidic devices is presented. The microfluidic flow can be driven by either an applied electric field or a combined electric field and pressure gradient. A step change in the ζ-potential on a channel wall is treated by a pressure source in the compact model. The pressure source is obtained from the pressure Poisson equation and conservation of mass principle. In the proposed compact model, the complex fluidic network is simplified by an electrical circuit. The compact model can predict the flow rate, pressure distribution and other basic characteristics in microfluidic channels quickly with good accuracy when compared to detailed numerical simulation. Using the compact model, fluidic mixing and dispersion control are studied in a complex microfluidic network.
Authors as vehicles of scientific memes
NASA Astrophysics Data System (ADS)
Krawczyk, M. J.; Kułakowski, K.
2016-04-01
Scientific memes have been defined as short units of text in a publication that are replicated in citing [T. Kuhn et al., Phys. Rev. X 4, 041036 (2014)]. Here, we investigate how often the meme appears in the title of the paper when driven by a coauthorship with somebody who has already published a paper with the same meme in the paper title. Five memes are investigated: traffic flow (TF), stochastic resonance (SR), key distribution (KD), small world (SW) and prisoner’s dilemma (PD). For each meme, a network of papers (GP) and network of authors (GA) are constructed. A meme index is proposed which is a measure how often scientific teams undertake the research on a given area, marked by the meme, without a cooperation with coauthors with previous achievements in the subject.
Design of a QoS-controlled ATM-based communications system in chorus
NASA Astrophysics Data System (ADS)
Coulson, Geoff; Campbell, Andrew; Robin, Philippe; Blair, Gordon; Papathomas, Michael; Shepherd, Doug
1995-05-01
We describe the design of an application platform able to run distributed real-time and multimedia applications alongside conventional UNIX programs. The platform is embedded in a microkernel/PC environment and supported by an ATM-based, QoS-driven communications stack. In particular, we focus on resource-management aspects of the design and deal with CPU scheduling, network resource-management and memory-management issues. An architecture is presented that guarantees QoS levels of both communications and processing with varying degrees of commitment as specified by user-level QoS parameters. The architecture uses admission tests to determine whether or not new activities can be accepted and includes modules to translate user-level QoS parameters into representations usable by the scheduling, network, and memory-management subsystems.
Bayesian network learning for natural hazard assessments
NASA Astrophysics Data System (ADS)
Vogel, Kristin
2016-04-01
Even though quite different in occurrence and consequences, from a modelling perspective many natural hazards share similar properties and challenges. Their complex nature as well as lacking knowledge about their driving forces and potential effects make their analysis demanding. On top of the uncertainty about the modelling framework, inaccurate or incomplete event observations and the intrinsic randomness of the natural phenomenon add up to different interacting layers of uncertainty, which require a careful handling. Thus, for reliable natural hazard assessments it is crucial not only to capture and quantify involved uncertainties, but also to express and communicate uncertainties in an intuitive way. Decision-makers, who often find it difficult to deal with uncertainties, might otherwise return to familiar (mostly deterministic) proceedings. In the scope of the DFG research training group „NatRiskChange" we apply the probabilistic framework of Bayesian networks for diverse natural hazard and vulnerability studies. The great potential of Bayesian networks was already shown in previous natural hazard assessments. Treating each model component as random variable, Bayesian networks aim at capturing the joint distribution of all considered variables. Hence, each conditional distribution of interest (e.g. the effect of precautionary measures on damage reduction) can be inferred. The (in-)dependencies between the considered variables can be learned purely data driven or be given by experts. Even a combination of both is possible. By translating the (in-)dependences into a graph structure, Bayesian networks provide direct insights into the workings of the system and allow to learn about the underlying processes. Besides numerous studies on the topic, learning Bayesian networks from real-world data remains challenging. In previous studies, e.g. on earthquake induced ground motion and flood damage assessments, we tackled the problems arising with continuous variables and incomplete observations. Further studies rise the challenge of relying on very small data sets. Since parameter estimates for complex models based on few observations are unreliable, it is necessary to focus on simplified, yet still meaningful models. A so called Markov Blanket approach is developed to identify the most relevant model components and to construct a simple Bayesian network based on those findings. Since the proceeding is completely data driven, it can easily be transferred to various applications in natural hazard domains. This study is funded by the Deutsche Forschungsgemeinschaft (DFG) within the research training programme GRK 2043/1 "NatRiskChange - Natural hazards and risks in a changing world" at Potsdam University.
Fast detection of the fuzzy communities based on leader-driven algorithm
NASA Astrophysics Data System (ADS)
Fang, Changjian; Mu, Dejun; Deng, Zhenghong; Hu, Jun; Yi, Chen-He
2018-03-01
In this paper, we present the leader-driven algorithm (LDA) for learning community structure in networks. The algorithm allows one to find overlapping clusters in a network, an important aspect of real networks, especially social networks. The algorithm requires no input parameters and learns the number of clusters naturally from the network. It accomplishes this using leadership centrality in a clever manner. It identifies local minima of leadership centrality as followers which belong only to one cluster, and the remaining nodes are leaders which connect clusters. In this way, the number of clusters can be learned using only the network structure. The LDA is also an extremely fast algorithm, having runtime linear in the network size. Thus, this algorithm can be used to efficiently cluster extremely large networks.
Teles, Magda C.; Almeida, Olinda; Lopes, João S.; Oliveira, Rui F.
2015-01-01
According to the social decision-making (SDM) network hypothesis, SDM is encoded in a network of forebrain and midbrain structures in a distributed and dynamic fashion, such that the expression of a given social behaviour is better reflected by the overall profile of activation across the different loci rather than by the activity of a single node. This proposal has the implicit assumption that SDM relies on integration across brain regions, rather than on regional specialization. Here we tested the occurrence of functional localization and of functional connectivity in the SDM network. For this purpose we used zebrafish to map different social behaviour states into patterns of neuronal activity, as indicated by the expression of the immediate early genes c-fos and egr-1, across the SDM network. The results did not support functional localization, as some loci had similar patterns of activity associated with different social behaviour states, and showed socially driven changes in functional connectivity. Thus, this study provides functional support to the SDM network hypothesis and suggests that the neural context in which a given node of the network is operating (i.e. the state of its interconnected areas) is central to its functional relevance. PMID:26423839
Teles, Magda C; Almeida, Olinda; Lopes, João S; Oliveira, Rui F
2015-10-07
According to the social decision-making (SDM) network hypothesis, SDM is encoded in a network of forebrain and midbrain structures in a distributed and dynamic fashion, such that the expression of a given social behaviour is better reflected by the overall profile of activation across the different loci rather than by the activity of a single node. This proposal has the implicit assumption that SDM relies on integration across brain regions, rather than on regional specialization. Here we tested the occurrence of functional localization and of functional connectivity in the SDM network. For this purpose we used zebrafish to map different social behaviour states into patterns of neuronal activity, as indicated by the expression of the immediate early genes c-fos and egr-1, across the SDM network. The results did not support functional localization, as some loci had similar patterns of activity associated with different social behaviour states, and showed socially driven changes in functional connectivity. Thus, this study provides functional support to the SDM network hypothesis and suggests that the neural context in which a given node of the network is operating (i.e. the state of its interconnected areas) is central to its functional relevance. © 2015 The Author(s).
Hybrid modeling and empirical analysis of automobile supply chain network
NASA Astrophysics Data System (ADS)
Sun, Jun-yan; Tang, Jian-ming; Fu, Wei-ping; Wu, Bing-ying
2017-05-01
Based on the connection mechanism of nodes which automatically select upstream and downstream agents, a simulation model for dynamic evolutionary process of consumer-driven automobile supply chain is established by integrating ABM and discrete modeling in the GIS-based map. Firstly, the rationality is proved by analyzing the consistency of sales and changes in various agent parameters between the simulation model and a real automobile supply chain. Second, through complex network theory, hierarchical structures of the model and relationships of networks at different levels are analyzed to calculate various characteristic parameters such as mean distance, mean clustering coefficients, and degree distributions. By doing so, it verifies that the model is a typical scale-free network and small-world network. Finally, the motion law of this model is analyzed from the perspective of complex self-adaptive systems. The chaotic state of the simulation system is verified, which suggests that this system has typical nonlinear characteristics. This model not only macroscopically illustrates the dynamic evolution of complex networks of automobile supply chain but also microcosmically reflects the business process of each agent. Moreover, the model construction and simulation of the system by means of combining CAS theory and complex networks supplies a novel method for supply chain analysis, as well as theory bases and experience for supply chain analysis of auto companies.
Data driven CAN node reliability assessment for manufacturing system
NASA Astrophysics Data System (ADS)
Zhang, Leiming; Yuan, Yong; Lei, Yong
2017-01-01
The reliability of the Controller Area Network(CAN) is critical to the performance and safety of the system. However, direct bus-off time assessment tools are lacking in practice due to inaccessibility of the node information and the complexity of the node interactions upon errors. In order to measure the mean time to bus-off(MTTB) of all the nodes, a novel data driven node bus-off time assessment method for CAN network is proposed by directly using network error information. First, the corresponding network error event sequence for each node is constructed using multiple-layer network error information. Then, the generalized zero inflated Poisson process(GZIP) model is established for each node based on the error event sequence. Finally, the stochastic model is constructed to predict the MTTB of the node. The accelerated case studies with different error injection rates are conducted on a laboratory network to demonstrate the proposed method, where the network errors are generated by a computer controlled error injection system. Experiment results show that the MTTB of nodes predicted by the proposed method agree well with observations in the case studies. The proposed data driven node time to bus-off assessment method for CAN networks can successfully predict the MTTB of nodes by directly using network error event data.
Cheng, Wenchi; Zhang, Hailin
2017-01-01
Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks. However, how to improve the energy efficiency while guaranteeing the quality of service (QoS) for energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop statistical delay-bounded QoS-driven power control policies to maximize the effective energy efficiency (EEE), which is defined as the spectrum efficiency under given specified QoS constraints per unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite wireless sensor networks, our developed QoS-driven power control policy converges to the Energy harvesting Water Filling (E-WF) scheme and the Energy harvesting Channel Inversion (E-CI) scheme under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting Water Filling (T-WF) scheme and the Truncated energy harvesting Channel Inversion (T-CI) scheme under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage probabilities to theoretically analyze the performance of our developed QoS-driven power control policies. The obtained numerical results validate our analysis and show that our developed optimal power control policies can optimize the EEE over energy harvesting based wireless sensor networks. PMID:28832509
Gao, Ya; Cheng, Wenchi; Zhang, Hailin
2017-08-23
Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks. However, how to improve the energy efficiency while guaranteeing the quality of service (QoS) for energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop statistical delay-bounded QoS-driven power control policies to maximize the effective energy efficiency (EEE), which is defined as the spectrum efficiency under given specified QoS constraints per unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite wireless sensor networks, our developed QoS-driven power control policy converges to the Energy harvesting Water Filling (E-WF) scheme and the Energy harvesting Channel Inversion (E-CI) scheme under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting Water Filling (T-WF) scheme and the Truncated energy harvesting Channel Inversion (T-CI) scheme under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage probabilities to theoretically analyze the performance of our developed QoS-driven power control policies. The obtained numerical results validate our analysis and show that our developed optimal power control policies can optimize the EEE over energy harvesting based wireless sensor networks.
Stormer, Ame; Tun, Waimar; Guli, Lisa; Harxhi, Arjan; Bodanovskaia, Zinaida; Yakovleva, Anna; Rusakova, Maia; Levina, Olga; Bani, Roland; Rjepaj, Klodian; Bino, Silva
2006-11-01
Injection drug users in Tirana, Albania and St. Petersburg, Russia were recruited into a study assessing HIV-related behaviors and HIV serostatus using Respondent Driven Sampling (RDS), a peer-driven recruitment sampling strategy that results in a probability sample. (Salganik M, Heckathorn DD. Sampling and estimation in hidden populations using respondent-driven sampling. Sociol Method. 2004;34:193-239). This paper presents a comparison of RDS implementation, findings on network and recruitment characteristics, and lessons learned. Initiated with 13 to 15 seeds, approximately 200 IDUs were recruited within 8 weeks. Information resulting from RDS indicates that social network patterns from the two studies differ greatly. Female IDUs in Tirana had smaller network sizes than male IDUs, unlike in St. Petersburg where female IDUs had larger network sizes than male IDUs. Recruitment patterns in each country also differed by demographic categories. Recruitment analyses indicate that IDUs form socially distinct groups by sex in Tirana, whereas there was a greater degree of gender mixing patterns in St. Petersburg. RDS proved to be an effective means of surveying these hard-to-reach populations.
Sensory-driven and spontaneous gamma oscillations engage distinct cortical circuitry
2015-01-01
Gamma oscillations are a robust component of sensory responses but are also part of the background spontaneous activity of the brain. To determine whether the properties of gamma oscillations in cortex are specific to their mechanism of generation, we compared in mouse visual cortex in vivo the laminar geometry and single-neuron rhythmicity of oscillations produced during sensory representation with those occurring spontaneously in the absence of stimulation. In mouse visual cortex under anesthesia (isoflurane and xylazine), visual stimulation triggered oscillations mainly between 20 and 50 Hz, which, because of their similar functional significance to gamma oscillations in higher mammals, we define here as gamma range. Sensory representation in visual cortex specifically increased gamma oscillation amplitude in the supragranular (L2/3) and granular (L4) layers and strongly entrained putative excitatory and inhibitory neurons in infragranular layers, while spontaneous gamma oscillations were distributed evenly through the cortical depth and primarily entrained putative inhibitory neurons in the infragranular (L5/6) cortical layers. The difference in laminar distribution of gamma oscillations during the two different conditions may result from differences in the source of excitatory input to the cortex. In addition, modulation of superficial gamma oscillation amplitude did not result in a corresponding change in deep-layer oscillations, suggesting that superficial and deep layers of cortex may utilize independent but related networks for gamma generation. These results demonstrate that stimulus-driven gamma oscillations engage cortical circuitry in a manner distinct from spontaneous oscillations and suggest multiple networks for the generation of gamma oscillations in cortex. PMID:26719085
Data-driven integration of genome-scale regulatory and metabolic network models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imam, Saheed; Schauble, Sascha; Brooks, Aaron N.
Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or moremore » network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. Lastly, in this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.« less
Data-driven integration of genome-scale regulatory and metabolic network models
Imam, Saheed; Schauble, Sascha; Brooks, Aaron N.; ...
2015-05-05
Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or moremore » network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. Lastly, in this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.« less
Using WNTR to Model Water Distribution System Resilience ...
The Water Network Tool for Resilience (WNTR) is a new open source Python package developed by the U.S. Environmental Protection Agency and Sandia National Laboratories to model and evaluate resilience of water distribution systems. WNTR can be used to simulate a wide range of disruptive events, including earthquakes, contamination incidents, floods, climate change, and fires. The software includes the EPANET solver as well as a WNTR solver with the ability to model pressure-driven demand hydraulics, pipe breaks, component degradation and failure, changes to supply and demand, and cascading failure. Damage to individual components in the network (i.e. pipes, tanks) can be selected probabilistically using fragility curves. WNTR can also simulate different types of resilience-enhancing actions, including scheduled pipe repair or replacement, water conservation efforts, addition of back-up power, and use of contamination warning systems. The software can be used to estimate potential damage in a network, evaluate preparedness, prioritize repair strategies, and identify worse case scenarios. As a Python package, WNTR takes advantage of many existing python capabilities, including parallel processing of scenarios and graphics capabilities. This presentation will outline the modeling components in WNTR, demonstrate their use, give the audience information on how to get started using the code, and invite others to participate in this open source project. This pres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behnia, Pouran
2007-06-15
The metallogeny of Central Iran is characterized mainly by the presence of several iron, apatite, and uranium deposits of Proterozoic age. Radial Basis Function Link Networks (RBFLN) were used as a data-driven method for GIS-based predictive mapping of Proterozoic mineralization in this area. To generate the input data for RBFLN, the evidential maps comprising stratigraphic, structural, geophysical, and geochemical data were used. Fifty-eight deposits and 58 'nondeposits' were used to train the network. The operations for the application of neural networks employed in this study involve both multiclass and binary representation of evidential maps. Running RBFLN on different input datamore » showed that an increase in the number of evidential maps and classes leads to a larger classification sum of squared error (SSE). As a whole, an increase in the number of iterations resulted in the improvement of training SSE. The results of applying RBFLN showed that a successful classification depends on the existence of spatially well distributed deposits and nondeposits throughout the study area.« less
Nonequilibrium dynamics of probe filaments in actin-myosin networks
NASA Astrophysics Data System (ADS)
Gladrow, J.; Broedersz, C. P.; Schmidt, C. F.
2017-08-01
Active dynamic processes of cells are largely driven by the cytoskeleton, a complex and adaptable semiflexible polymer network, motorized by mechanoenzymes. Small dimensions, confined geometries, and hierarchical structures make it challenging to probe dynamics and mechanical response of such networks. Embedded semiflexible probe polymers can serve as nonperturbing multiscale probes to detect force distributions in active polymer networks. We show here that motor-induced forces transmitted to the probe polymers are reflected in nonequilibrium bending dynamics, which we analyze in terms of spatial eigenmodes of an elastic beam under steady-state conditions. We demonstrate how these active forces induce correlations among the mode amplitudes, which furthermore break time-reversal symmetry. This leads to a breaking of detailed balance in this mode space. We derive analytical predictions for the magnitude of resulting probability currents in mode space in the white-noise limit of motor activity. We relate the structure of these currents to the spatial profile of motor-induced forces along the probe polymers and provide a general relation for observable currents on two-dimensional hyperplanes.
Combined neurostimulation and neuroimaging in cognitive neuroscience: past, present, and future.
Bestmann, Sven; Feredoes, Eva
2013-08-01
Modern neurostimulation approaches in humans provide controlled inputs into the operations of cortical regions, with highly specific behavioral consequences. This enables causal structure-function inferences, and in combination with neuroimaging, has provided novel insights into the basic mechanisms of action of neurostimulation on distributed networks. For example, more recent work has established the capacity of transcranial magnetic stimulation (TMS) to probe causal interregional influences, and their interaction with cognitive state changes. Combinations of neurostimulation and neuroimaging now face the challenge of integrating the known physiological effects of neurostimulation with theoretical and biological models of cognition, for example, when theoretical stalemates between opposing cognitive theories need to be resolved. This will be driven by novel developments, including biologically informed computational network analyses for predicting the impact of neurostimulation on brain networks, as well as novel neuroimaging and neurostimulation techniques. Such future developments may offer an expanded set of tools with which to investigate structure-function relationships, and to formulate and reconceptualize testable hypotheses about complex neural network interactions and their causal roles in cognition. © 2013 New York Academy of Sciences.
Uribe-Sánchez, Andrés; Savachkin, Alex
2011-01-01
As recently pointed out by the Institute of Medicine, the existing pandemic mitigation models lack the dynamic decision support capability. We develop a large-scale simulation-driven optimization model for generating dynamic predictive distribution of vaccines and antivirals over a network of regional pandemic outbreaks. The model incorporates measures of morbidity, mortality, and social distancing, translated into the cost of lost productivity and medical expenses. The performance of the strategy is compared to that of the reactive myopic policy, using a sample outbreak in Fla, USA, with an affected population of over four millions. The comparison is implemented at different levels of vaccine and antiviral availability and administration capacity. Sensitivity analysis is performed to assess the impact of variability of some critical factors on policy performance. The model is intended to support public health policy making for effective distribution of limited mitigation resources. PMID:23074658
Identification of literary movements using complex networks to represent texts
NASA Astrophysics Data System (ADS)
Amancio, Diego Raphael; Oliveira, Osvaldo N., Jr.; da Fontoura Costa, Luciano
2012-04-01
The use of statistical methods to analyze large databases of text has been useful in unveiling patterns of human behavior and establishing historical links between cultures and languages. In this study, we identified literary movements by treating books published from 1590 to 1922 as complex networks, whose metrics were analyzed with multivariate techniques to generate six clusters of books. The latter correspond to time periods coinciding with relevant literary movements over the last five centuries. The most important factor contributing to the distinctions between different literary styles was the average shortest path length, in particular the asymmetry of its distribution. Furthermore, over time there has emerged a trend toward larger average shortest path lengths, which is correlated with increased syntactic complexity, and a more uniform use of the words reflected in a smaller power-law coefficient for the distribution of word frequency. Changes in literary style were also found to be driven by opposition to earlier writing styles, as revealed by the analysis performed with geometrical concepts. The approaches adopted here are generic and may be extended to analyze a number of features of languages and cultures.
Ji, Jiadong; He, Di; Feng, Yang; He, Yong; Xue, Fuzhong; Xie, Lei
2017-10-01
A complex disease is usually driven by a number of genes interwoven into networks, rather than a single gene product. Network comparison or differential network analysis has become an important means of revealing the underlying mechanism of pathogenesis and identifying clinical biomarkers for disease classification. Most studies, however, are limited to network correlations that mainly capture the linear relationship among genes, or rely on the assumption of a parametric probability distribution of gene measurements. They are restrictive in real application. We propose a new Joint density based non-parametric Differential Interaction Network Analysis and Classification (JDINAC) method to identify differential interaction patterns of network activation between two groups. At the same time, JDINAC uses the network biomarkers to build a classification model. The novelty of JDINAC lies in its potential to capture non-linear relations between molecular interactions using high-dimensional sparse data as well as to adjust confounding factors, without the need of the assumption of a parametric probability distribution of gene measurements. Simulation studies demonstrate that JDINAC provides more accurate differential network estimation and lower classification error than that achieved by other state-of-the-art methods. We apply JDINAC to a Breast Invasive Carcinoma dataset, which includes 114 patients who have both tumor and matched normal samples. The hub genes and differential interaction patterns identified were consistent with existing experimental studies. Furthermore, JDINAC discriminated the tumor and normal sample with high accuracy by virtue of the identified biomarkers. JDINAC provides a general framework for feature selection and classification using high-dimensional sparse omics data. R scripts available at https://github.com/jijiadong/JDINAC. lxie@iscb.org. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Faust, Kevin; Xie, Quin; Han, Dominick; Goyle, Kartikay; Volynskaya, Zoya; Djuric, Ugljesa; Diamandis, Phedias
2018-05-16
There is growing interest in utilizing artificial intelligence, and particularly deep learning, for computer vision in histopathology. While accumulating studies highlight expert-level performance of convolutional neural networks (CNNs) on focused classification tasks, most studies rely on probability distribution scores with empirically defined cutoff values based on post-hoc analysis. More generalizable tools that allow humans to visualize histology-based deep learning inferences and decision making are scarce. Here, we leverage t-distributed Stochastic Neighbor Embedding (t-SNE) to reduce dimensionality and depict how CNNs organize histomorphologic information. Unique to our workflow, we develop a quantitative and transparent approach to visualizing classification decisions prior to softmax compression. By discretizing the relationships between classes on the t-SNE plot, we show we can super-impose randomly sampled regions of test images and use their distribution to render statistically-driven classifications. Therefore, in addition to providing intuitive outputs for human review, this visual approach can carry out automated and objective multi-class classifications similar to more traditional and less-transparent categorical probability distribution scores. Importantly, this novel classification approach is driven by a priori statistically defined cutoffs. It therefore serves as a generalizable classification and anomaly detection tool less reliant on post-hoc tuning. Routine incorporation of this convenient approach for quantitative visualization and error reduction in histopathology aims to accelerate early adoption of CNNs into generalized real-world applications where unanticipated and previously untrained classes are often encountered.
NASA Technical Reports Server (NTRS)
Roberts, Christopher J.; Morgenstern, Robert M.; Israel, David J.; Borky, John M.; Bradley, Thomas H.
2017-01-01
NASA's next generation space communications network will involve dynamic and autonomous services analogous to services provided by current terrestrial wireless networks. This architecture concept, known as the Space Mobile Network (SMN), is enabled by several technologies now in development. A pillar of the SMN architecture is the establishment and utilization of a continuous bidirectional control plane space link channel and a new User Initiated Service (UIS) protocol to enable more dynamic and autonomous mission operations concepts, reduced user space communications planning burden, and more efficient and effective provider network resource utilization. This paper provides preliminary results from the application of model driven architecture methodology to develop UIS. Such an approach is necessary to ensure systematic investigation of several open questions concerning the efficiency, robustness, interoperability, scalability and security of the control plane space link and UIS protocol.
Semantic integration of data on transcriptional regulation
Baitaluk, Michael; Ponomarenko, Julia
2010-01-01
Motivation: Experimental and predicted data concerning gene transcriptional regulation are distributed among many heterogeneous sources. However, there are no resources to integrate these data automatically or to provide a ‘one-stop shop’ experience for users seeking information essential for deciphering and modeling gene regulatory networks. Results: IntegromeDB, a semantic graph-based ‘deep-web’ data integration system that automatically captures, integrates and manages publicly available data concerning transcriptional regulation, as well as other relevant biological information, is proposed in this article. The problems associated with data integration are addressed by ontology-driven data mapping, multiple data annotation and heterogeneous data querying, also enabling integration of the user's data. IntegromeDB integrates over 100 experimental and computational data sources relating to genomics, transcriptomics, genetics, and functional and interaction data concerning gene transcriptional regulation in eukaryotes and prokaryotes. Availability: IntegromeDB is accessible through the integrated research environment BiologicalNetworks at http://www.BiologicalNetworks.org Contact: baitaluk@sdsc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20427517
Critical regimes driven by recurrent mobility patterns of reaction-diffusion processes in networks
NASA Astrophysics Data System (ADS)
Gómez-Gardeñes, J.; Soriano-Paños, D.; Arenas, A.
2018-04-01
Reaction-diffusion processes1 have been widely used to study dynamical processes in epidemics2-4 and ecology5 in networked metapopulations. In the context of epidemics6, reaction processes are understood as contagions within each subpopulation (patch), while diffusion represents the mobility of individuals between patches. Recently, the characteristics of human mobility7, such as its recurrent nature, have been proven crucial to understand the phase transition to endemic epidemic states8,9. Here, by developing a framework able to cope with the elementary epidemic processes, the spatial distribution of populations and the commuting mobility patterns, we discover three different critical regimes of the epidemic incidence as a function of these parameters. Interestingly, we reveal a regime of the reaction-diffussion process in which, counter-intuitively, mobility is detrimental to the spread of disease. We analytically determine the precise conditions for the emergence of any of the three possible critical regimes in real and synthetic networks.
NASA Astrophysics Data System (ADS)
Morelli, Marco J.; Allen, Rosalind J.; Tǎnase-Nicola, Sorin; ten Wolde, Pieter Rein
2008-01-01
In many stochastic simulations of biochemical reaction networks, it is desirable to "coarse grain" the reaction set, removing fast reactions while retaining the correct system dynamics. Various coarse-graining methods have been proposed, but it remains unclear which methods are reliable and which reactions can safely be eliminated. We address these issues for a model gene regulatory network that is particularly sensitive to dynamical fluctuations: a bistable genetic switch. We remove protein-DNA and/or protein-protein association-dissociation reactions from the reaction set using various coarse-graining strategies. We determine the effects on the steady-state probability distribution function and on the rate of fluctuation-driven switch flipping transitions. We find that protein-protein interactions may be safely eliminated from the reaction set, but protein-DNA interactions may not. We also find that it is important to use the chemical master equation rather than macroscopic rate equations to compute effective propensity functions for the coarse-grained reactions.
Semantic integration of data on transcriptional regulation.
Baitaluk, Michael; Ponomarenko, Julia
2010-07-01
Experimental and predicted data concerning gene transcriptional regulation are distributed among many heterogeneous sources. However, there are no resources to integrate these data automatically or to provide a 'one-stop shop' experience for users seeking information essential for deciphering and modeling gene regulatory networks. IntegromeDB, a semantic graph-based 'deep-web' data integration system that automatically captures, integrates and manages publicly available data concerning transcriptional regulation, as well as other relevant biological information, is proposed in this article. The problems associated with data integration are addressed by ontology-driven data mapping, multiple data annotation and heterogeneous data querying, also enabling integration of the user's data. IntegromeDB integrates over 100 experimental and computational data sources relating to genomics, transcriptomics, genetics, and functional and interaction data concerning gene transcriptional regulation in eukaryotes and prokaryotes. IntegromeDB is accessible through the integrated research environment BiologicalNetworks at http://www.BiologicalNetworks.org baitaluk@sdsc.edu Supplementary data are available at Bioinformatics online.
Beguin, Julien; McIntire, Eliot J B; Fortin, Daniel; Cumming, Steven G; Raulier, Frédéric; Racine, Pierre; Dussault, Claude
2013-01-01
Many animal species exhibit broad-scale latitudinal or longitudinal gradients in their response to biotic and abiotic components of their habitat. Although knowing the underlying mechanism of these patterns can be critical to the development of sound measures for the preservation or recovery of endangered species, few studies have yet identified which processes drive the existence of geographical gradients in habitat selection. Using extensive spatial data of broad latitudinal and longitudinal extent, we tested three hypotheses that could explain the presence of geographical gradients in landscape selection of the endangered boreal woodland caribou (Rangifer tarandus caribou) during winter in Eastern Canadian boreal forests: 1) climate-driven selection, which postulates that geographic gradients are surrogates for climatic gradients; 2) road-driven selection, which proposes that boreal caribou adjust their selection for certain habitat classes as a function of proximity to roads; and 3) an additive effect of both roads and climate. Our data strongly supported road-driven selection over climate influences. Thus, direct human alteration of landscapes drives boreal caribou distribution and should likely remain so until the climate changes sufficiently from present conditions. Boreal caribou avoided logged areas two-fold more strongly than burnt areas. Limiting the spread of road networks and accounting for the uneven impact of logging compared to wildfire should therefore be integral parts of any habitat management plan and conservation measures within the range of the endangered boreal caribou. The use of hierarchical spatial models allowed us to explore the distribution of spatially-structured errors in our models, which in turn provided valuable insights for generating alternative hypotheses about processes responsible for boreal caribou distribution.
Modeling particle transport and discoloration risk in drinking water distribution networks
NASA Astrophysics Data System (ADS)
van Summeren, Joost; Blokker, Mirjam
2017-10-01
Discoloration of drinking water is a worldwide phenomenon caused by accumulation and subsequent remobilization of particulate matter in drinking water distribution systems (DWDSs). It contributes a substantial fraction of customer complaints to water utilities. Accurate discoloration risk predictions could improve system operation by allowing for more effective programs on cleaning and prevention actions and field measurements, but are challenged by incomplete understanding on the origins and properties of particles and a complex and not fully understood interplay of processes in distribution networks. In this paper, we assess and describe relevant hydraulic processes that govern particle transport in turbulent pipe flow, including gravitational settling, bed-load transport, and particle entrainment into suspension. We assess which transport mechanisms are dominant for a range of bulk flow velocities, particle diameters, and particle mass densities, which includes common conditions for DWDSs in the Netherlands, the UK, and Australia. Our analysis shows that the theoretically predicted particle settling velocity and threshold shear stresses for incipient particle motion are in the same range as, but more variable than, previous estimates from lab experiments, field measurements, and modeling. The presented material will be used in the future development of a numerical modeling tool to determine and predict the spatial distribution of particulate material and discoloration risk in DWDSs. Our approach is aimed at understanding specific causalities and processes, which can complement data-driven approaches.
Extension algorithm for generic low-voltage networks
NASA Astrophysics Data System (ADS)
Marwitz, S.; Olk, C.
2018-02-01
Distributed energy resources (DERs) are increasingly penetrating the energy system which is driven by climate and sustainability goals. These technologies are mostly connected to low- voltage electrical networks and change the demand and supply situation in these networks. This can cause critical network states. Network topologies vary significantly and depend on several conditions including geography, historical development, network design or number of network connections. In the past, only some of these aspects were taken into account when estimating the network investment needs for Germany on the low-voltage level. Typically, fixed network topologies are examined or a Monte Carlo approach is used to quantify the investment needs at this voltage level. Recent research has revealed that DERs differ substantially between rural, suburban and urban regions. The low-voltage network topologies have different design concepts in these regions, so that different network topologies have to be considered when assessing the need for network extensions and investments due to DERs. An extension algorithm is needed to calculate network extensions and investment needs for the different typologies of generic low-voltage networks. We therefore present a new algorithm, which is capable of calculating the extension for generic low-voltage networks of any given topology based on voltage range deviations and thermal overloads. The algorithm requires information about line and cable lengths, their topology and the network state only. We test the algorithm on a radial, a loop, and a heavily meshed network. Here we show that the algorithm functions for electrical networks with these topologies. We found that the algorithm is able to extend different networks efficiently by placing cables between network nodes. The main value of the algorithm is that it does not require any information about routes for additional cables or positions for additional substations when it comes to estimating network extension needs.
The most remote point method for the site selection of the future GGOS network
NASA Astrophysics Data System (ADS)
Hase, Hayo; Pedreros, Felipe
2014-10-01
The Global Geodetic Observing System (GGOS) proposes 30-40 geodetic observatories as global infrastructure for the most accurate reference frame to monitor the global change. To reach this goal, several geodetic observatories have upgrade plans to become GGOS stations. Most initiatives are driven by national institutions following national interests. From a global perspective, the site distribution remains incomplete and the initiatives to improve this are up until now insufficient. This article is a contribution to answer the question on where to install new GGOS observatories and where to add observation techniques to existing observatories. It introduces the iterative most remote point (MRP) method for filling in the largest gaps in existing technique-specific networks. A spherical version of the Voronoi-diagram is used to pick the optimal location of the new observatory, but practical concerns determine its realistic location. Once chosen, the process is iterated. A quality and a homogeneity parameter of global networks measure the progress of improving the homogeneity of the global site distribution. This method is applied to the global networks of VGOS, and VGOS co-located with SLR to derive some clues about where additional observatory sites or additional observation techniques at existing observatories will improve the GGOS network configuration. With only six additional VGOS-stations, the homogeneity of the global VGOS-network could be significantly improved by more than . From the presented analysis, 25 known or new co-located VGOS and SLR sites are proposed as the future GGOS backbone: Colombo, Easter Island, Fairbanks, Fortaleza, Galapagos, GGAO, Hartebeesthoek, Honiara, Ibadan, Kokee Park, La Plata, Mauritius, McMurdo, Metsahövi, Ny Alesund, Riyadh, San Diego, Santa Maria, Shanghai, Syowa, Tahiti, Tristan de Cunha, Warkworth, Wettzell, and Yarragadee.
Characterizing and modeling the dynamics of activity and popularity.
Zhang, Peng; Li, Menghui; Gao, Liang; Fan, Ying; Di, Zengru
2014-01-01
Social media, regarded as two-layer networks consisting of users and items, turn out to be the most important channels for access to massive information in the era of Web 2.0. The dynamics of human activity and item popularity is a crucial issue in social media networks. In this paper, by analyzing the growth of user activity and item popularity in four empirical social media networks, i.e., Amazon, Flickr, Delicious and Wikipedia, it is found that cross links between users and items are more likely to be created by active users and to be acquired by popular items, where user activity and item popularity are measured by the number of cross links associated with users and items. This indicates that users generally trace popular items, overall. However, it is found that the inactive users more severely trace popular items than the active users. Inspired by empirical analysis, we propose an evolving model for such networks, in which the evolution is driven only by two-step random walk. Numerical experiments verified that the model can qualitatively reproduce the distributions of user activity and item popularity observed in empirical networks. These results might shed light on the understandings of micro dynamics of activity and popularity in social media networks.
Characterizing and Modeling the Dynamics of Activity and Popularity
Zhang, Peng; Li, Menghui; Gao, Liang; Fan, Ying; Di, Zengru
2014-01-01
Social media, regarded as two-layer networks consisting of users and items, turn out to be the most important channels for access to massive information in the era of Web 2.0. The dynamics of human activity and item popularity is a crucial issue in social media networks. In this paper, by analyzing the growth of user activity and item popularity in four empirical social media networks, i.e., Amazon, Flickr, Delicious and Wikipedia, it is found that cross links between users and items are more likely to be created by active users and to be acquired by popular items, where user activity and item popularity are measured by the number of cross links associated with users and items. This indicates that users generally trace popular items, overall. However, it is found that the inactive users more severely trace popular items than the active users. Inspired by empirical analysis, we propose an evolving model for such networks, in which the evolution is driven only by two-step random walk. Numerical experiments verified that the model can qualitatively reproduce the distributions of user activity and item popularity observed in empirical networks. These results might shed light on the understandings of micro dynamics of activity and popularity in social media networks. PMID:24586586
A Markov chain model for image ranking system in social networks
NASA Astrophysics Data System (ADS)
Zin, Thi Thi; Tin, Pyke; Toriu, Takashi; Hama, Hiromitsu
2014-03-01
In today world, different kinds of networks such as social, technological, business and etc. exist. All of the networks are similar in terms of distributions, continuously growing and expanding in large scale. Among them, many social networks such as Facebook, Twitter, Flickr and many others provides a powerful abstraction of the structure and dynamics of diverse kinds of inter personal connection and interaction. Generally, the social network contents are created and consumed by the influences of all different social navigation paths that lead to the contents. Therefore, identifying important and user relevant refined structures such as visual information or communities become major factors in modern decision making world. Moreover, the traditional method of information ranking systems cannot be successful due to their lack of taking into account the properties of navigation paths driven by social connections. In this paper, we propose a novel image ranking system in social networks by using the social data relational graphs from social media platform jointly with visual data to improve the relevance between returned images and user intentions (i.e., social relevance). Specifically, we propose a Markov chain based Social-Visual Ranking algorithm by taking social relevance into account. By using some extensive experiments, we demonstrated the significant and effectiveness of the proposed social-visual ranking method.
Solving Constraint-Satisfaction Problems with Distributed Neocortical-Like Neuronal Networks.
Rutishauser, Ueli; Slotine, Jean-Jacques; Douglas, Rodney J
2018-05-01
Finding actions that satisfy the constraints imposed by both external inputs and internal representations is central to decision making. We demonstrate that some important classes of constraint satisfaction problems (CSPs) can be solved by networks composed of homogeneous cooperative-competitive modules that have connectivity similar to motifs observed in the superficial layers of neocortex. The winner-take-all modules are sparsely coupled by programming neurons that embed the constraints onto the otherwise homogeneous modular computational substrate. We show rules that embed any instance of the CSP's planar four-color graph coloring, maximum independent set, and sudoku on this substrate and provide mathematical proofs that guarantee these graph coloring problems will convergence to a solution. The network is composed of nonsaturating linear threshold neurons. Their lack of right saturation allows the overall network to explore the problem space driven through the unstable dynamics generated by recurrent excitation. The direction of exploration is steered by the constraint neurons. While many problems can be solved using only linear inhibitory constraints, network performance on hard problems benefits significantly when these negative constraints are implemented by nonlinear multiplicative inhibition. Overall, our results demonstrate the importance of instability rather than stability in network computation and offer insight into the computational role of dual inhibitory mechanisms in neural circuits.
Phillips, Gregory; Kuhns, Lisa M; Garofalo, Rob; Mustanski, Brian
2014-12-01
To generate unbiased estimates for data collected using respondent-driven sampling (RDS), a number of assumptions need to be met: individuals recruit randomly from their social network and people can accurately report their eligible network size. However, research has shown that these assumptions are often violated. This study used baseline data from Crew 450, a longitudinal study of young men who have sex with men in Chicago who were recruited via a modified form of RDS and its network substudy, in which a subset of 175 participants reported details on the composition and characteristics of their social network at either 1 or 2 years postbaseline. Nearly two-thirds of participants reported giving coupons to at least one alter (64%), and 56.3% believed their alter(s) used the coupons. Frequency of communication, closeness and type of relationship played a major role in determining coupon distribution. Participants whose alters used coupons were significantly less likely to describe the strength of their relationship as 'not at all close' (OR=0.08; 95% CI 0.02 to 0.36) compared with 'very close' and to communicate weekly (OR=0.20; 95% CI 0.08 to 0.49) or 1-6 times in the past 6 months (OR=0.18; 95% CI 0.06 to 0.59). Contrary to RDS assumptions, we found that relationship characteristics played a significant role when individuals decided to whom they would give coupons. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
NASA Astrophysics Data System (ADS)
Iyer, Sridhar
2015-06-01
With the ever-increasing traffic demands, infrastructure of the current 10 Gbps optical network needs to be enhanced. Further, since the energy crisis is gaining increasing concerns, new research topics need to be devised and technological solutions for energy conservation need to be investigated. In all-optical mixed line rate (MLR) network, feasibility of a lightpath is determined by the physical layer impairment (PLI) accumulation. Contrary to PLI-aware routing and wavelength assignment (PLIA-RWA) algorithm applicable for a 10 Gbps wavelength-division multiplexed (WDM) network, a new Routing, Wavelength, Modulation format assignment (RWMFA) algorithm is required for the MLR optical network. With the rapid growth of energy consumption in Information and Communication Technologies (ICT), recently, lot of attention is being devoted toward "green" ICT solutions. This article presents a review of different RWMFA (PLIA-RWA) algorithms for MLR networks, and surveys the most relevant research activities aimed at minimizing energy consumption in optical networks. In essence, this article presents a comprehensive and timely survey on a growing field of research, as it covers most aspects of MLR and energy-driven optical networks. Hence, the author aims at providing a comprehensive reference for the growing base of researchers who will work on MLR and energy-driven optical networks in the upcoming years. Finally, the article also identifies several open problems for future research.
Kajita, Seiji; Ohba, Nobuko; Jinnouchi, Ryosuke; Asahi, Ryoji
2017-12-05
Material informatics (MI) is a promising approach to liberate us from the time-consuming Edisonian (trial and error) process for material discoveries, driven by machine-learning algorithms. Several descriptors, which are encoded material features to feed computers, were proposed in the last few decades. Especially to solid systems, however, their insufficient representations of three dimensionality of field quantities such as electron distributions and local potentials have critically hindered broad and practical successes of the solid-state MI. We develop a simple, generic 3D voxel descriptor that compacts any field quantities, in such a suitable way to implement convolutional neural networks (CNNs). We examine the 3D voxel descriptor encoded from the electron distribution by a regression test with 680 oxides data. The present scheme outperforms other existing descriptors in the prediction of Hartree energies that are significantly relevant to the long-wavelength distribution of the valence electrons. The results indicate that this scheme can forecast any functionals of field quantities just by learning sufficient amount of data, if there is an explicit correlation between the target properties and field quantities. This 3D descriptor opens a way to import prominent CNNs-based algorithms of supervised, semi-supervised and reinforcement learnings into the solid-state MI.
Mobility timing for agent communities, a cue for advanced connectionist systems.
Apolloni, Bruno; Bassis, Simone; Pagani, Elena; Rossi, Gian Paolo; Valerio, Lorenzo
2011-12-01
We introduce a wait-and-chase scheme that models the contact times between moving agents within a connectionist construct. The idea that elementary processors move within a network to get a proper position is borne out both by biological neurons in the brain morphogenesis and by agents within social networks. From the former, we take inspiration to devise a medium-term project for new artificial neural network training procedures where mobile neurons exchange data only when they are close to one another in a proper space (are in contact). From the latter, we accumulate mobility tracks experience. We focus on the preliminary step of characterizing the elapsed time between neuron contacts, which results from a spatial process fitting in the family of random processes with memory, where chasing neurons are stochastically driven by the goal of hitting target neurons. Thus, we add an unprecedented mobility model to the literature in the field, introducing a distribution law of the intercontact times that merges features of both negative exponential and Pareto distribution laws. We give a constructive description and implementation of our model, as well as a short analytical form whose parameters are suitably estimated in terms of confidence intervals from experimental data. Numerical experiments show the model and related inference tools to be sufficiently robust to cope with two main requisites for its exploitation in a neural network: the nonindependence of the observed intercontact times and the feasibility of the model inversion problem to infer suitable mobility parameters.
Software LS-MIDA for efficient mass isotopomer distribution analysis in metabolic modelling.
Ahmed, Zeeshan; Zeeshan, Saman; Huber, Claudia; Hensel, Michael; Schomburg, Dietmar; Münch, Richard; Eisenreich, Wolfgang; Dandekar, Thomas
2013-07-09
The knowledge of metabolic pathways and fluxes is important to understand the adaptation of organisms to their biotic and abiotic environment. The specific distribution of stable isotope labelled precursors into metabolic products can be taken as fingerprints of the metabolic events and dynamics through the metabolic networks. An open-source software is required that easily and rapidly calculates from mass spectra of labelled metabolites, derivatives and their fragments global isotope excess and isotopomer distribution. The open-source software "Least Square Mass Isotopomer Analyzer" (LS-MIDA) is presented that processes experimental mass spectrometry (MS) data on the basis of metabolite information such as the number of atoms in the compound, mass to charge ratio (m/e or m/z) values of the compounds and fragments under study, and the experimental relative MS intensities reflecting the enrichments of isotopomers in 13C- or 15 N-labelled compounds, in comparison to the natural abundances in the unlabelled molecules. The software uses Brauman's least square method of linear regression. As a result, global isotope enrichments of the metabolite or fragment under study and the molar abundances of each isotopomer are obtained and displayed. The new software provides an open-source platform that easily and rapidly converts experimental MS patterns of labelled metabolites into isotopomer enrichments that are the basis for subsequent observation-driven analysis of pathways and fluxes, as well as for model-driven metabolic flux calculations.
Controlling Contagion Processes in Activity Driven Networks
NASA Astrophysics Data System (ADS)
Liu, Suyu; Perra, Nicola; Karsai, Márton; Vespignani, Alessandro
2014-03-01
The vast majority of strategies aimed at controlling contagion processes on networks consider the connectivity pattern of the system either quenched or annealed. However, in the real world, many networks are highly dynamical and evolve, in time, concurrently with the contagion process. Here, we derive an analytical framework for the study of control strategies specifically devised for a class of time-varying networks, namely activity-driven networks. We develop a block variable mean-field approach that allows the derivation of the equations describing the coevolution of the contagion process and the network dynamic. We derive the critical immunization threshold and assess the effectiveness of three different control strategies. Finally, we validate the theoretical picture by simulating numerically the spreading process and control strategies in both synthetic networks and a large-scale, real-world, mobile telephone call data set.
Stormer, Ame; Tun, Waimar; Harxhi, Arjan; Bodanovskaia, Zinaida; Yakovleva, Anna; Rusakova, Maia; Levina, Olga; Bani, Roland; Rjepaj, Klodian; Bino, Silva
2006-01-01
Injection drug users in Tirana, Albania and St. Petersburg, Russia were recruited into a study assessing HIV-related behaviors and HIV serostatus using Respondent Driven Sampling (RDS), a peer-driven recruitment sampling strategy that results in a probability sample. (Salganik M, Heckathorn DD. Sampling and estimation in hidden populations using respondent-driven sampling. Sociol Method. 2004;34:193–239). This paper presents a comparison of RDS implementation, findings on network and recruitment characteristics, and lessons learned. Initiated with 13 to 15 seeds, approximately 200 IDUs were recruited within 8 weeks. Information resulting from RDS indicates that social network patterns from the two studies differ greatly. Female IDUs in Tirana had smaller network sizes than male IDUs, unlike in St. Petersburg where female IDUs had larger network sizes than male IDUs. Recruitment patterns in each country also differed by demographic categories. Recruitment analyses indicate that IDUs form socially distinct groups by sex in Tirana, whereas there was a greater degree of gender mixing patterns in St. Petersburg. RDS proved to be an effective means of surveying these hard-to-reach populations. PMID:17075727
Cloud Engineering Principles and Technology Enablers for Medical Image Processing-as-a-Service.
Bao, Shunxing; Plassard, Andrew J; Landman, Bennett A; Gokhale, Aniruddha
2017-04-01
Traditional in-house, laboratory-based medical imaging studies use hierarchical data structures (e.g., NFS file stores) or databases (e.g., COINS, XNAT) for storage and retrieval. The resulting performance from these approaches is, however, impeded by standard network switches since they can saturate network bandwidth during transfer from storage to processing nodes for even moderate-sized studies. To that end, a cloud-based "medical image processing-as-a-service" offers promise in utilizing the ecosystem of Apache Hadoop, which is a flexible framework providing distributed, scalable, fault tolerant storage and parallel computational modules, and HBase, which is a NoSQL database built atop Hadoop's distributed file system. Despite this promise, HBase's load distribution strategy of region split and merge is detrimental to the hierarchical organization of imaging data (e.g., project, subject, session, scan, slice). This paper makes two contributions to address these concerns by describing key cloud engineering principles and technology enhancements we made to the Apache Hadoop ecosystem for medical imaging applications. First, we propose a row-key design for HBase, which is a necessary step that is driven by the hierarchical organization of imaging data. Second, we propose a novel data allocation policy within HBase to strongly enforce collocation of hierarchically related imaging data. The proposed enhancements accelerate data processing by minimizing network usage and localizing processing to machines where the data already exist. Moreover, our approach is amenable to the traditional scan, subject, and project-level analysis procedures, and is compatible with standard command line/scriptable image processing software. Experimental results for an illustrative sample of imaging data reveals that our new HBase policy results in a three-fold time improvement in conversion of classic DICOM to NiFTI file formats when compared with the default HBase region split policy, and nearly a six-fold improvement over a commonly available network file system (NFS) approach even for relatively small file sets. Moreover, file access latency is lower than network attached storage.
Mass extinctions drove increased global faunal cosmopolitanism on the supercontinent Pangaea.
Button, David J; Lloyd, Graeme T; Ezcurra, Martín D; Butler, Richard J
2017-10-10
Mass extinctions have profoundly impacted the evolution of life through not only reducing taxonomic diversity but also reshaping ecosystems and biogeographic patterns. In particular, they are considered to have driven increased biogeographic cosmopolitanism, but quantitative tests of this hypothesis are rare and have not explicitly incorporated information on evolutionary relationships. Here we quantify faunal cosmopolitanism using a phylogenetic network approach for 891 terrestrial vertebrate species spanning the late Permian through Early Jurassic. This key interval witnessed the Permian-Triassic and Triassic-Jurassic mass extinctions, the onset of fragmentation of the supercontinent Pangaea, and the origins of dinosaurs and many modern vertebrate groups. Our results recover significant increases in global faunal cosmopolitanism following both mass extinctions, driven mainly by new, widespread taxa, leading to homogenous 'disaster faunas'. Cosmopolitanism subsequently declines in post-recovery communities. These shared patterns in both biotic crises suggest that mass extinctions have predictable influences on animal distribution and may shed light on biodiversity loss in extant ecosystems.Mass extinctions are thought to produce 'disaster faunas', communities dominated by a small number of widespread species. Here, Button et al. develop a phylogenetic network approach to test this hypothesis and find that mass extinctions did increase faunal cosmopolitanism across Pangaea during the late Palaeozoic and early Mesozoic.
EEG-based functional networks evoked by acupuncture at ST 36: A data-driven thresholding study
NASA Astrophysics Data System (ADS)
Li, Huiyan; Wang, Jiang; Yi, Guosheng; Deng, Bin; Zhou, Hexi
2017-10-01
This paper investigates how acupuncture at ST 36 modulates the brain functional network. 20 channel EEG signals from 15 healthy subjects are respectively recorded before, during and after acupuncture. The correlation between two EEG channels is calculated by using Pearson’s coefficient. A data-driven approach is applied to determine the threshold, which is performed by considering the connected set, connected edge and network connectivity. Based on such thresholding approach, the functional network in each acupuncture period is built with graph theory, and the associated functional connectivity is determined. We show that acupuncturing at ST 36 increases the connectivity of the EEG-based functional network, especially for the long distance ones between two hemispheres. The properties of the functional network in five EEG sub-bands are also characterized. It is found that the delta and gamma bands are affected more obviously by acupuncture than the other sub-bands. These findings highlight the modulatory effects of acupuncture on the EEG-based functional connectivity, which is helpful for us to understand how it participates in the cortical or subcortical activities. Further, the data-driven threshold provides an alternative approach to infer the functional connectivity under other physiological conditions.
De Witte, Nele A J; Mueller, Sven C
2017-12-01
Anxiety and depression are associated with altered communication within global brain networks and between these networks and the amygdala. Functional connectivity studies demonstrate an effect of anxiety and depression on four critical brain networks involved in top-down attentional control (fronto-parietal network; FPN), salience detection and error monitoring (cingulo-opercular network; CON), bottom-up stimulus-driven attention (ventral attention network; VAN), and default mode (default mode network; DMN). However, structural evidence on the white matter (WM) connections within these networks and between these networks and the amygdala is lacking. The current study in a large healthy sample (n = 483) observed that higher trait anxiety-depression predicted lower WM integrity in the connections between amygdala and specific regions of the FPN, CON, VAN, and DMN. We discuss the possible consequences of these anatomical alterations for cognitive-affective functioning and underscore the need for further theory-driven research on individual differences in anxiety and depression on brain structure.
Taillefumier, Thibaud; Touboul, Jonathan; Magnasco, Marcelo
2012-12-01
In vivo cortical recording reveals that indirectly driven neural assemblies can produce reliable and temporally precise spiking patterns in response to stereotyped stimulation. This suggests that despite being fundamentally noisy, the collective activity of neurons conveys information through temporal coding. Stochastic integrate-and-fire models delineate a natural theoretical framework to study the interplay of intrinsic neural noise and spike timing precision. However, there are inherent difficulties in simulating their networks' dynamics in silico with standard numerical discretization schemes. Indeed, the well-posedness of the evolution of such networks requires temporally ordering every neuronal interaction, whereas the order of interactions is highly sensitive to the random variability of spiking times. Here, we answer these issues for perfect stochastic integrate-and-fire neurons by designing an exact event-driven algorithm for the simulation of recurrent networks, with delayed Dirac-like interactions. In addition to being exact from the mathematical standpoint, our proposed method is highly efficient numerically. We envision that our algorithm is especially indicated for studying the emergence of polychronized motifs in networks evolving under spike-timing-dependent plasticity with intrinsic noise.
On-Chip Pressure Generation for Driving Liquid Phase Separations in Nanochannels.
Xia, Ling; Choi, Chiwoong; Kothekar, Shrinivas C; Dutta, Debashis
2016-01-05
In this Article, we describe the generation of pressure gradients on-chip for driving liquid phase separations in submicrometer deep channels. The reported pressure-generation capability was realized by applying an electrical voltage across the interface of two glass channel segments with different depths. A mismatch in the electroosmotic flow rate at this junction led to the generation of pressure-driven flow in our device, a fraction of which was then directed to an analysis channel to carry out the desired separation. Experiments showed the reported strategy to be particularly conducive for miniaturization of pressure-driven separations yielding flow velocities in the separation channel that were nearly unaffected upon scaling down the depth of the entire fluidic network. Moreover, the small dead volume in our system allowed for high dynamic control over this pressure gradient, which otherwise was challenging to accomplish during the sample injection process using external pumps. Pressure-driven velocities up to 3.1 mm/s were realized in separation ducts as shallow as 300 nm using our current design for a maximum applied voltage of 3 kV. The functionality of this integrated device was demonstrated by implementing a pressure-driven ion chromatographic analysis that relied on analyte interaction with the nanochannel surface charges to yield a nonuniform solute concentration across the channel depth. Upon coupling such analyte distribution to the parabolic pressure-driven flow profile in the separation duct, a mixture of amino acids could be resolved. The reported assay yielded a higher separation resolution compared to its electrically driven counterpart in which sample migration was realized using electroosmosis/electrophoresis.
Thermally driven microfluidic pumping via reversible shape memory polymers
NASA Astrophysics Data System (ADS)
Robertson, J. M.; Rodriguez, R. X.; Holmes, L. R., Jr.; Mather, P. T.; Wetzel, E. D.
2016-08-01
The need exists for autonomous microfluidic pumping systems that utilize environmental cues to transport fluid within a network of channels for such purposes as heat distribution, self-healing, or optical reconfiguration. Here, we report on reversible thermally driven microfluidic pumping enabled by two-way shape memory polymers. After developing a suitable shape memory polymer (SMP) through variation in the crosslink density, thin and flexible microfluidic devices were constructed by lamination of plastic films with channels defined by laser-cutting of double-sided adhesive film. SMP blisters integrated into the devices provide thermally driven pumping, while opposing elastic blisters are used to generate backpressure for reversible operation. Thermal cycling of the device was found to drive reversible fluid flow: upon heating to 60 °C, the SMP rapidly contracted to fill the surface channels with a transparent fluid, and upon cooling to 8 °C the flow reversed and the channel re-filled with black ink. Combined with a metallized backing layer, this device results in refection of incident light at high temperatures and absorption of light (at the portions covered with channels) at low temperatures. We discuss power-free, autonomous applications ranging from thermal regulation of structures to thermal indication via color change.
Evaluation of two typical distributed energy systems
NASA Astrophysics Data System (ADS)
Han, Miaomiao; Tan, Xiu
2018-03-01
According to the two-natural gas distributed energy system driven by gas engine driven and gas turbine, in this paper, the first and second laws of thermodynamics are used to measure the distributed energy system from the two parties of “quantity” and “quality”. The calculation results show that the internal combustion engine driven distributed energy station has a higher energy efficiency, but the energy efficiency is low; the gas turbine driven distributed energy station energy efficiency is high, but the primary energy utilization rate is relatively low. When configuring the system, we should determine the applicable natural gas distributed energy system technology plan and unit configuration plan according to the actual load factors of the project and the actual factors such as the location, background and environmental requirements of the project. “quality” measure, the utilization of waste heat energy efficiency index is proposed.
Nonequilibrium thermodynamics of restricted Boltzmann machines.
Salazar, Domingos S P
2017-08-01
In this work, we analyze the nonequilibrium thermodynamics of a class of neural networks known as restricted Boltzmann machines (RBMs) in the context of unsupervised learning. We show how the network is described as a discrete Markov process and how the detailed balance condition and the Maxwell-Boltzmann equilibrium distribution are sufficient conditions for a complete thermodynamics description, including nonequilibrium fluctuation theorems. Numerical simulations in a fully trained RBM are performed and the heat exchange fluctuation theorem is verified with excellent agreement to the theory. We observe how the contrastive divergence functional, mostly used in unsupervised learning of RBMs, is closely related to nonequilibrium thermodynamic quantities. We also use the framework to interpret the estimation of the partition function of RBMs with the annealed importance sampling method from a thermodynamics standpoint. Finally, we argue that unsupervised learning of RBMs is equivalent to a work protocol in a system driven by the laws of thermodynamics in the absence of labeled data.
Synchronization in a noise-driven developing neural network
NASA Astrophysics Data System (ADS)
Lin, I.-H.; Wu, R.-K.; Chen, C.-M.
2011-11-01
We use computer simulations to investigate the structural and dynamical properties of a developing neural network whose activity is driven by noise. Structurally, the constructed neural networks in our simulations exhibit the small-world properties that have been observed in several neural networks. The dynamical change of neuronal membrane potential is described by the Hodgkin-Huxley model, and two types of learning rules, including spike-timing-dependent plasticity (STDP) and inverse STDP, are considered to restructure the synaptic strength between neurons. Clustered synchronized firing (SF) of the network is observed when the network connectivity (number of connections/maximal connections) is about 0.75, in which the firing rate of neurons is only half of the network frequency. At the connectivity of 0.86, all neurons fire synchronously at the network frequency. The network SF frequency increases logarithmically with the culturing time of a growing network and decreases exponentially with the delay time in signal transmission. These conclusions are consistent with experimental observations. The phase diagrams of SF in a developing network are investigated for both learning rules.
NASA Technical Reports Server (NTRS)
Schenker, Paul S. (Editor)
1992-01-01
Various papers on control paradigms and data structures in sensor fusion are presented. The general topics addressed include: decision models and computational methods, sensor modeling and data representation, active sensing strategies, geometric planning and visualization, task-driven sensing, motion analysis, models motivated biology and psychology, decentralized detection and distributed decision, data fusion architectures, robust estimation of shapes and features, application and implementation. Some of the individual subjects considered are: the Firefly experiment on neural networks for distributed sensor data fusion, manifold traversing as a model for learning control of autonomous robots, choice of coordinate systems for multiple sensor fusion, continuous motion using task-directed stereo vision, interactive and cooperative sensing and control for advanced teleoperation, knowledge-based imaging for terrain analysis, physical and digital simulations for IVA robotics.
NASA Astrophysics Data System (ADS)
Scozzari, Andrea; Doveri, Marco
2015-04-01
The knowledge of the physical/chemical processes implied with the exploitation of water bodies for human consumption is an essential tool for the optimisation of the monitoring infrastructure. Due to their increasing importance in the context of human consumption (at least in the EU), this work focuses on groundwater resources. In the framework of drinkable water networks, the physical and data-driven modelling of transport phenomena in groundwater can help optimising the sensor network and validating the acquired data. This work proposes the combined usage of physical and data-driven modelling as a support to the design and maximisation of results from a network of distributed sensors. In particular, the validation of physico-chemical measurements and the detection of eventual anomalies by a set of continuous measurements take benefit from the knowledge of the domain from which water is abstracted, and its expected characteristics. Change-detection techniques based on non-specific sensors (presented by quite a large literature during the last two decades) have to deal with the classical issues of maximising correct detections and minimising false alarms, the latter of the two being the most typical problem to be faced, in the view of designing truly applicable monitoring systems. In this context, the definition of "anomaly" in terms of distance from an expected value or feature characterising the quality of water implies the definition of a suitable metric and the knowledge of the physical and chemical peculiarities of the natural domain from which water is exploited, with its implications in terms of characteristics of the water resource.
NASA Astrophysics Data System (ADS)
Zhu, Zheng; Andresen, Juan Carlos; Moore, M. A.; Katzgraber, Helmut G.
2014-02-01
We study the equilibrium and nonequilibrium properties of Boolean decision problems with competing interactions on scale-free networks in an external bias (magnetic field). Previous studies at zero field have shown a remarkable equilibrium stability of Boolean variables (Ising spins) with competing interactions (spin glasses) on scale-free networks. When the exponent that describes the power-law decay of the connectivity of the network is strictly larger than 3, the system undergoes a spin-glass transition. However, when the exponent is equal to or less than 3, the glass phase is stable for all temperatures. First, we perform finite-temperature Monte Carlo simulations in a field to test the robustness of the spin-glass phase and show that the system has a spin-glass phase in a field, i.e., exhibits a de Almeida-Thouless line. Furthermore, we study avalanche distributions when the system is driven by a field at zero temperature to test if the system displays self-organized criticality. Numerical results suggest that avalanches (damage) can spread across the whole system with nonzero probability when the decay exponent of the interaction degree is less than or equal to 2, i.e., that Boolean decision problems on scale-free networks with competing interactions can be fragile when not in thermal equilibrium.
Orban, Pierre; Doyon, Julien; Petrides, Michael; Mennes, Maarten; Hoge, Richard; Bellec, Pierre
2015-01-01
Functional magnetic resonance imaging can measure distributed and subtle variations in brain responses associated with task performance. However, it is unclear whether the rich variety of responses observed across the brain is functionally meaningful and consistent across individuals. Here, we used a multivariate clustering approach that grouped brain regions into clusters based on the similarity of their task-evoked temporal responses at the individual level, and then established the spatial consistency of these individual clusters at the group level. We observed a stable pseudohierarchy of task-evoked networks in the context of a delayed sequential motor task, where the fractionation of networks was driven by a gradient of involvement in motor sequence preparation versus execution. In line with theories about higher-level cognitive functioning, this gradient evolved in a rostro-caudal manner in the frontal lobe. In addition, parcellations in the cerebellum and basal ganglia matched with known anatomical territories and fiber pathways with the cerebral cortex. These findings demonstrate that subtle variations in brain responses associated with task performance are systematic enough across subjects to define a pseudohierarchy of task-evoked networks. Such networks capture meaningful functional features of brain organization as shaped by a given cognitive context. PMID:24729172
Origin of the Valley Networks On Mars: A Hydrological Perspective
NASA Technical Reports Server (NTRS)
Gulick, Virginia C.
2000-01-01
The geomorphology of the Martian valley networks is examined from a hydrological perspective for their compatibility with an origin by rainfall, globally higher heat flow, and localized hydrothermal systems. Comparison of morphology and spatial distribution of valleys on geologic surfaces with terrestrial fluvial valleys suggests that most Martian valleys are probably not indicative of a rainfall origin, nor are they indicative of formation by an early global uniformly higher heat flow. In general, valleys are not uniformly distributed within geologic surface units as are terrestrial fluvial valleys. Valleys tend to form either as isolated systems or in clusters on a geologic surface unit leaving large expanses of the unit virtually untouched by erosion. With the exception of fluvial valleys on some volcanoes, most Martian valleys exhibit a sapping morphology and do not appear to have formed along with those that exhibit a runoff morphology. In contrast, terrestrial sapping valleys form from and along with runoff valleys. The isolated or clustered distribution of valleys suggests localized water sources were important in drainage development. Persistent ground-water outflow driven by localized, but vigorous hydrothermal circulation associated with magmatism, volcanism, impacts, or tectonism is, however, consistent with valley morphology and distribution. Snowfall from sublimating ice-covered lakes or seas may have provided an atmospheric water source for the formation of some valleys in regions where the surface is easily eroded and where localized geothermal/hydrothermal activity is sufficient to melt accumulated snowpacks.
Brignol, Sandra Mara Silva; Dourado, Inês; Amorim, Leila Denise; Miranda, José Garcia Vivas; Kerr, Lígia R F S
2015-11-01
Social and sexual contact networks between men who have sex with men (MSM) play an important role in understanding the transmission of HIV and other sexually transmitted infections (STIs). In Salvador (Bahia State, Brazil), one of the cities in the survey Behavior, Attitudes, Practices, and Prevalence of HIV and Syphilis among Men Who Have Sex with Men in 10 Brazilian Cities, data were collected in 2008/2009 from a sample of 383 MSM using Respondent Driven Sampling (RDS). Network analysis was used to study friendship networks and sexual partner networks. The study also focused on the association between the number of links (degree) and the number of sexual partners, in addition to socio-demographic characteristics. The networks' structure potentially facilitates HIV transmission. However, the same networks can also be used to spread messages on STI/HIV prevention, since the proximity and similarity of MSM in these networks can encourage behavior change and positive attitudes towards prevention.
NASA Astrophysics Data System (ADS)
Joo, Seong-Soon; Nam, Hyun-Soon; Lim, Chang-Kyu
2003-08-01
With the rapid growth of the Optical Internet, high capacity pipes is finally destined to support end-to-end IP on the WDM optical network. Newly launched 2D MEMS optical switching module in the market supports that expectations of upcoming a transparent optical cross-connect in the network have encouraged the field applicable research on establishing real all-optical transparent network. To open up a customer-driven bandwidth services, design of the optical transport network becomes more challenging task in terms of optimal network resource usage. This paper presents a practical approach to finding a route and wavelength assignment for wavelength routed all-optical network, which has λ-plane OXC switches and wavelength converters, and supports that optical paths are randomly set up and released by dynamic wavelength provisioning to create bandwidth between end users with timescales on the order of seconds or milliseconds. We suggest three constraints to make the RWA problem become more practical one on deployment for wavelength routed all-optical network in network view: limitation on maximum hop of a route within bearable optical network impairments, limitation on minimum hops to travel before converting a wavelength, and limitation on calculation time to find all routes for connections requested at once. We design the NRCD (Normalized Resource and Constraints for All-Optical Network RWA Design) algorithm for the Tera OXC: network resource for a route is calculated by the number of internal switching paths established in each OXC nodes on the route, and is normalized by ratio of number of paths established and number of paths equipped in a node. We show that it fits for the RWA algorithm of the wavelength routed all-optical network through real experiments on the distributed objects platform.
Actin growth profile in clathrin-mediated endocytosis
NASA Astrophysics Data System (ADS)
Tweten, D. J.; Bayly, P. V.; Carlsson, A. E.
2017-05-01
Clathrin-mediated endocytosis in yeast is driven by a protein patch containing close to 100 different types of proteins. Among the proteins are 5000 -10 000 copies of polymerized actin, and successful endocytosis requires growth of the actin network. Since it is not known exactly how actin network growth drives endocytosis, we calculate the spatial distribution of actin growth required to generate the force that drives the process. First, we establish the force distribution that must be supplied by actin growth, by combining membrane-bending profiles obtained via electron microscopy with established theories of membrane mechanics. Next, we determine the profile of actin growth, using a continuum mechanics approach and an iterative procedure starting with an actin growth profile obtained from a linear analysis. The profile has fairly constant growth outside a central hole of radius 45-50 nm, but very little growth in this hole. This growth profile can reproduce the required forces if the actin shear modulus exceeds 80 kPa, and the growing filaments can exert very large polymerization forces. The growth profile prediction could be tested via electron-microscopy or super-resolution experiments in which the turgor pressure is suddenly turned off.
Jiang, Haihe; Yin, Yixin; Xiao, Wendong; Zhao, Baoyong
2018-01-01
Gas utilization ratio (GUR) is an important indicator that is used to evaluate the energy consumption of blast furnaces (BFs). Currently, the existing methods cannot predict the GUR accurately. In this paper, we present a novel data-driven model for predicting the GUR. The proposed approach utilized both the TS fuzzy neural network (TS-FNN) and the particle swarm algorithm (PSO) to predict the GUR. The particle swarm algorithm (PSO) is applied to optimize the parameters of the TS-FNN in order to decrease the error caused by the inaccurate initial parameter. This paper also applied the box graph (Box-plot) method to eliminate the abnormal value of the raw data during the data preprocessing. This method can deal with the data which does not obey the normal distribution which is caused by the complex industrial environments. The prediction results demonstrate that the optimization model based on PSO and the TS-FNN approach achieves higher prediction accuracy compared with the TS-FNN model and SVM model and the proposed approach can accurately predict the GUR of the blast furnace, providing an effective way for the on-line blast furnace distribution control. PMID:29461469
A trace-driven analysis of name and attribute caching in a distributed system
NASA Technical Reports Server (NTRS)
Shirriff, Ken W.; Ousterhout, John K.
1992-01-01
This paper presents the results of simulating file name and attribute caching on client machines in a distributed file system. The simulation used trace data gathered on a network of about 40 workstations. Caching was found to be advantageous: a cache on each client containing just 10 directories had a 91 percent hit rate on name look ups. Entry-based name caches (holding individual directory entries) had poorer performance for several reasons, resulting in a maximum hit rate of about 83 percent. File attribute caching obtained a 90 percent hit rate with a cache on each machine of the attributes for 30 files. The simulations show that maintaining cache consistency between machines is not a significant problem; only 1 in 400 name component look ups required invalidation of a remotely cached entry. Process migration to remote machines had little effect on caching. Caching was less successful in heavily shared and modified directories such as /tmp, but there weren't enough references to /tmp overall to affect the results significantly. We estimate that adding name and attribute caching to the Sprite operating system could reduce server load by 36 percent and the number of network packets by 30 percent.
Zhang, Sen; Jiang, Haihe; Yin, Yixin; Xiao, Wendong; Zhao, Baoyong
2018-02-20
Gas utilization ratio (GUR) is an important indicator that is used to evaluate the energy consumption of blast furnaces (BFs). Currently, the existing methods cannot predict the GUR accurately. In this paper, we present a novel data-driven model for predicting the GUR. The proposed approach utilized both the TS fuzzy neural network (TS-FNN) and the particle swarm algorithm (PSO) to predict the GUR. The particle swarm algorithm (PSO) is applied to optimize the parameters of the TS-FNN in order to decrease the error caused by the inaccurate initial parameter. This paper also applied the box graph (Box-plot) method to eliminate the abnormal value of the raw data during the data preprocessing. This method can deal with the data which does not obey the normal distribution which is caused by the complex industrial environments. The prediction results demonstrate that the optimization model based on PSO and the TS-FNN approach achieves higher prediction accuracy compared with the TS-FNN model and SVM model and the proposed approach can accurately predict the GUR of the blast furnace, providing an effective way for the on-line blast furnace distribution control.
NASA Astrophysics Data System (ADS)
Ren, Yihui
As real-world complex networks are heterogeneous structures, not all their components such as nodes, edges and subgraphs carry the same role or importance in the functions performed by the networks: some elements are more critical than others. Understanding the roles of the components of a network is crucial for understanding the behavior of the network as a whole. One the most basic function of networks is transport; transport of vehicles/people, information, materials, forces, etc., and these quantities are transported along edges between source and destination nodes. For this reason, network path-based importance measures, also called centralities, play a crucial role in the understanding of the transport functions of the network and the network's structural and dynamical behavior in general. In this thesis we study the notion of betweenness centrality, which measures the fraction of lowest-cost (or shortest) paths running through a network component, in particular through a node or an edge. High betweenness centrality nodes/edges are those that will be frequently used by the entities transported through the network and thus they play a key role in the overall transport properties of the network. In the first part of the thesis we present a first-principles based method for traffic prediction using a cost-based generalization of the radiation model (emission/absorbtion model) for human mobility, coupled with a cost-minimizing algorithm for efficient distribution of the mobility fluxes through the network. Using US census and highway traffic data, we show that traffic can efficiently and accurately be computed from a range-limited, network betweenness type calculation. The model based on travel time costs captures the log-normal distribution of the traffic and attains a high Pearson correlation coefficient (0.75) when compared with real traffic. We then focus on studying the extent of changes in traffic flows in the wake of a localized damage or alteration to the network and we demonstrate that the changes can propagate globally, affecting traffic several hundreds of miles away. Because of its principled nature, this method can inform many applications related to human mobility driven flows in spatial networks, ranging from transportation, through urban planning to mitigation of the effects of catastrophic events. In the second part of the thesis we focus on network deconstruction and community detection problems, both intensely studied topics in network science, using a weighted betweenness centrality approach. We present an algorithm that solves both problems efficiently and accurately and demonstrate that on both benchmark networks and data networks.
Swan, Melanie
2009-01-01
A new class of patient-driven health care services is emerging to supplement and extend traditional health care delivery models and empower patient self-care. Patient-driven health care can be characterized as having an increased level of information flow, transparency, customization, collaboration and patient choice and responsibility-taking, as well as quantitative, predictive and preventive aspects. The potential exists to both improve traditional health care systems and expand the concept of health care though new services. This paper examines three categories of novel health services: health social networks, consumer personalized medicine and quantified self-tracking. PMID:19440396
Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism
Chang, Roger L; Ghamsari, Lila; Manichaikul, Ani; Hom, Erik F Y; Balaji, Santhanam; Fu, Weiqi; Shen, Yun; Hao, Tong; Palsson, Bernhard Ø; Salehi-Ashtiani, Kourosh; Papin, Jason A
2011-01-01
Metabolic network reconstruction encompasses existing knowledge about an organism's metabolism and genome annotation, providing a platform for omics data analysis and phenotype prediction. The model alga Chlamydomonas reinhardtii is employed to study diverse biological processes from photosynthesis to phototaxis. Recent heightened interest in this species results from an international movement to develop algal biofuels. Integrating biological and optical data, we reconstructed a genome-scale metabolic network for this alga and devised a novel light-modeling approach that enables quantitative growth prediction for a given light source, resolving wavelength and photon flux. We experimentally verified transcripts accounted for in the network and physiologically validated model function through simulation and generation of new experimental growth data, providing high confidence in network contents and predictive applications. The network offers insight into algal metabolism and potential for genetic engineering and efficient light source design, a pioneering resource for studying light-driven metabolism and quantitative systems biology. PMID:21811229
Seismicity and source spectra analysis in Salton Sea Geothermal Field
NASA Astrophysics Data System (ADS)
Cheng, Y.; Chen, X.
2016-12-01
The surge of "man-made" earthquakes in recent years has led to considerable concerns about the associated hazards. Improved monitoring of small earthquakes would significantly help understand such phenomena and the underlying physical mechanisms. In the Salton Sea Geothermal field in southern California, open access of a local borehole network provides a unique opportunity to better understand the seismicity characteristics, the related earthquake hazards, and the relationship with the geothermal system, tectonic faulting and other physical conditions. We obtain high-resolution earthquake locations in the Salton Sea Geothermal Field, analyze characteristics of spatiotemporal isolated earthquake clusters, magnitude-frequency distributions and spatial variation of stress drops. The analysis reveals spatial coherent distributions of different types of clustering, b-value distributions, and stress drop distribution. The mixture type clusters (short-duration rapid bursts with high aftershock productivity) are predominately located within active geothermal field that correlate with high b-value, low stress drop microearthquake clouds, while regular aftershock sequences and swarms are distributed throughout the study area. The differences between earthquakes inside and outside of geothermal operation field suggest a possible way to distinguish directly induced seismicity due to energy operation versus typical seismic slip driven sequences. The spatial coherent b-value distribution enables in-situ estimation of probabilities for M≥3 earthquakes, and shows that the high large-magnitude-event (LME) probability zones with high stress drop are likely associated with tectonic faulting. The high stress drop in shallow (1-3 km) depth indicates the existence of active faults, while low stress drops near injection wells likely corresponds to the seismic response to fluid injection. I interpret the spatial variation of seismicity and source characteristics as the result of fluid circulation, the fracture network, and tectonic faulting.
Capillary-Driven Flow in Liquid Filaments Connecting Orthogonal Channels
NASA Technical Reports Server (NTRS)
Allen, Jeffrey S.
2005-01-01
Capillary phenomena plays an important role in the management of product water in PEM fuel cells because of the length scales associated with the porous layers and the gas flow channels. The distribution of liquid water within the network of gas flow channels can be dramatically altered by capillary flow. We experimentally demonstrate the rapid movement of significant volumes of liquid via capillarity through thin liquid films which connect orthogonal channels. The microfluidic experiments discussed provide a good benchmark against which the proper modeling of capillarity by computational models may be tested. The effect of surface wettability, as expressed through the contact angle, on capillary flow will also be discussed.
NASA Astrophysics Data System (ADS)
Kaniyantethu, Shaji
2011-06-01
This paper discusses the many features and composed technologies in Firestorm™ - a Distributed Collaborative Fires and Effects software. Modern response management systems capitalize on the capabilities of a plethora of sensors and its output for situational awareness. Firestorm utilizes a unique networked lethality approach by integrating unmanned air and ground vehicles to provide target handoff and sharing of data between humans and sensors. The system employs Bayesian networks for track management of sensor data, and distributed auction algorithms for allocating targets and delivering the right effect without information overload to the Warfighter. Firestorm Networked Effects Component provides joint weapon-target pairing, attack guidance, target selection standards, and other fires and effects components. Moreover, the open and modular architecture allows for easy integration with new data sources. Versatility and adaptability of the application enable it to devise and dispense a suitable response to a wide variety of scenarios. Recently, this application was used for detecting and countering a vehicle intruder with the help of radio frequency spotter sensor, command driven cameras, remote weapon system, portable vehicle arresting barrier, and an unmanned aerial vehicle - which confirmed the presence of the intruder, as well as provided lethal/non-lethal response and battle damage assessment. The completed demonstrations have proved Firestorm's™ validity and feasibility to predict, detect, neutralize, and protect key assets and/or area against a variety of possible threats. The sensors and responding assets can be deployed with numerous configurations to cover the various terrain and environmental conditions, and can be integrated to a number of platforms.
Emergence and robustness of target waves in a neuronal network
NASA Astrophysics Data System (ADS)
Xu, Ying; Jin, Wuyin; Ma, Jun
2015-08-01
Target waves in excitable media such as neuronal network can regulate the spatial distribution and orderliness as a continuous pacemaker. Three different schemes are used to develop stable target wave in the network, and the potential mechanism for emergence of target waves in the excitable media is investigated. For example, a local pacing driven by external periodical forcing can generate stable target wave in the excitable media, furthermore, heterogeneity and local feedback under self-feedback coupling are also effective to generate continuous target wave as well. To discern the difference of these target waves, a statistical synchronization factor is defined by using mean field theory and artificial defects are introduced into the network to block the target wave, thus the robustness of these target waves could be detected. However, these target waves developed from the above mentioned schemes show different robustness to the blocking from artificial defects. A regular network of Hindmarsh-Rose neurons is designed in a two-dimensional square array, target waves are induced by using three different ways, and then some artificial defects, which are associated with anatomical defects, are set in the network to detect the effect of defects blocking on the travelling waves. It confirms that the robustness of target waves to defects blocking depends on the intrinsic properties (ways to generate target wave) of target waves.
Optimizing Distribution of Pandemic Influenza Antiviral Drugs
Huang, Hsin-Chan; Morton, David P.; Johnson, Gregory P.; Gutfraind, Alexander; Galvani, Alison P.; Clements, Bruce; Meyers, Lauren A.
2015-01-01
We provide a data-driven method for optimizing pharmacy-based distribution of antiviral drugs during an influenza pandemic in terms of overall access for a target population and apply it to the state of Texas, USA. We found that during the 2009 influenza pandemic, the Texas Department of State Health Services achieved an estimated statewide access of 88% (proportion of population willing to travel to the nearest dispensing point). However, access reached only 34.5% of US postal code (ZIP code) areas containing <1,000 underinsured persons. Optimized distribution networks increased expected access to 91% overall and 60% in hard-to-reach regions, and 2 or 3 major pharmacy chains achieved near maximal coverage in well-populated areas. Independent pharmacies were essential for reaching ZIP code areas containing <1,000 underinsured persons. This model was developed during a collaboration between academic researchers and public health officials and is available as a decision support tool for Texas Department of State Health Services at a Web-based interface. PMID:25625858
Adhesion signaling promotes protease‑driven polyploidization of glioblastoma cells.
Mercapide, Javier; Lorico, Aurelio
2014-11-01
An increase in ploidy (polyploidization) causes genomic instability in cancer. However, the determinants for the increased DNA content of cancer cells have not yet been fully elucidated. In the present study, we investigated whether adhesion induces polyploidization in human U87MG glioblastoma cells. For this purpose, we employed expression vectors that reported transcriptional activation by signaling networks implicated in cancer. Signaling activation induced by intercellular integrin binding elicited both extracellular signal‑regulated kinase (ERK) and Notch target transcription. Upon the prolonged activation of both ERK and Notch target transcription induced by integrin binding to adhesion protein, cell cultures accumulated polyploid cells, as determined by cell DNA content distribution analysis and the quantification of polynucleated cells. This linked the transcriptional activation induced by integrin adhesion to the increased frequency of polyploidization. Accordingly, the inhibition of signaling decreased the extent of polyploidization mediated by protease‑driven intracellular invasion. Therefore, the findings of this study indicate that integrin adhesion induces polyploidization through the stimulation of glioblastoma cell invasiveness.
A free market in telescope time?
NASA Astrophysics Data System (ADS)
Etherton, Jason; Steele, Iain A.; Mottram, Christopher J.
2004-09-01
As distributed systems are becoming more and more diverse in application there is a growing need for more intelligent resource scheduling. eSTAR Is a geographically distributed network of Grid-enabled telescopes, using grid middleware to provide telescope users with an authentication and authorisation method, allowing secure, remote access to such resources. The eSTAR paradigm is based upon this secure, single sign-on, giving astronomers or their agent proxies direct access to these telescopes. This concept, however, involves the complex issue of how to schedule observations stored within physically distributed media, on geographically distributed resources. This matter is complicated further by the varying degrees of constraints placed upon observations such as timeliness, atmospheric and meteorological conditions, and sky brightness to name a few. This paper discusses a free market approach to this scheduling problem, where astronomers are given credit, instead of time, from their respective TAGs to spend on telescopes as they see fit. This approach will ultimately provide a community-driven schedule, genuine indicators of the worth of specific telescope time and promote a more efficient use of that time, as well as demonstrating a 'survival of the fittest' type selection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thakur, Gautam
A data-driven realistic design and evalua- tion of vehicular mobility has been particularly chal- lenging due to a lack of large-scale real-world mea- surements in the research community. Current research methodologies rely on articial scenarios, random con- nectivity, and use small and biased samples. In this pa- per, we perform a combined study to learn the struc- ture and connectivity of urban streets and modeling and characterization of vehicular trac densities on them. Our dataset is a collection of more than 222 thousand routes and 25 million vehicular mobility images from 1091 online web cameras located in six dierent re-more » gions of the world. Our results centered around four major observations: i. study shows that driving routes and visiting locations of regions demonstrate power-law distribution, indicating a planned or recently designed road infrastructure; ii. we represent regions by network graphs in which nodes are camera locations and edges are urban streets that connect the nodes. Such represen- tation exhibits small world properties with short path lengths and large clustering coecient; iii. trac densi- ties show 80% temporal correlation during several hours of a day; iv. modeling trac densities against known theoretical distributions show less than 5% deviation for heavy-trailed models such as log-logistic and log- gamma distributions. We believe this work will provide a much-needed contribution to the research community for design and evaluation of future vehicular networks and smart cities.« less
Verdery, Ashton M; Siripong, Nalyn; Pence, Brian W
2017-09-01
The Philippines has seen rapid increases in HIV prevalence among people who inject drugs. We study 2 neighboring cities where a linked HIV epidemic differed in timing of onset and levels of prevalence. In Cebu, prevalence rose rapidly from below 1% to 54% between 2009 and 2011 and remained high through 2013. In nearby Mandaue, HIV remained below 4% through 2011 then rose rapidly to 38% by 2013. We hypothesize that infection prevalence differences in these cities may owe to aspects of social network structure, specifically levels of network clustering. Building on previous research, we hypothesize that higher levels of network clustering are associated with greater epidemic potential. Data were collected with respondent-driven sampling among men who inject drugs in Cebu and Mandaue in 2013. We first examine sample composition using estimators for population means. We then apply new estimators of network clustering in respondent-driven sampling data to examine associations with HIV prevalence. Samples in both cities were comparable in composition by age, education, and injection locations. Dyadic needle-sharing levels were also similar between the 2 cities, but network clustering in the needle-sharing network differed dramatically. We found higher clustering in Cebu than Mandaue, consistent with expectations that higher clustering is associated with faster epidemic spread. This article is the first to apply estimators of network clustering to empirical respondent-driven samples, and it offers suggestive evidence that researchers should pay greater attention to network structure's role in HIV transmission dynamics.
Hydrodynamically induced oscillations and traffic dynamics in 1D microfludic networks
NASA Astrophysics Data System (ADS)
Bartolo, Denis; Jeanneret, Raphael
2011-03-01
We report on the traffic dynamics of particles driven through a minimal microfluidic network. Even in the minimal network consisting in a single loop, the traffic dynamics has proven to yield complex temporal patterns, including periodic, multi-periodic or chaotic sequences. This complex dynamics arises from the strongly nonlinear hydrodynamic interactions between the particles, that takes place at a junction. To better understand the consequences of this nontrivial coupling, we combined theoretical, numerical and experimental efforts and solved the 3-body problem in a 1D loop network. This apparently simple dynamical system revealed a rich and unexpected dynamics, including coherent spontaneous oscillations along closed orbits. Striking similarities between Hamiltonian systems and this driven dissipative system will be explained.
Moon, Hyun Ho; Lee, Jong Joo; Choi, Sang Yule; Cha, Jae Sang; Kang, Jang Mook; Kim, Jong Tae; Shin, Myong Chul
2011-01-01
Recently there have been many studies of power systems with a focus on "New and Renewable Energy" as part of "New Growth Engine Industry" promoted by the Korean government. "New And Renewable Energy"-especially focused on wind energy, solar energy and fuel cells that will replace conventional fossil fuels-is a part of the Power-IT Sector which is the basis of the SmartGrid. A SmartGrid is a form of highly-efficient intelligent electricity network that allows interactivity (two-way communications) between suppliers and consumers by utilizing information technology in electricity production, transmission, distribution and consumption. The New and Renewable Energy Program has been driven with a goal to develop and spread through intensive studies, by public or private institutions, new and renewable energy which, unlike conventional systems, have been operated through connections with various kinds of distributed power generation systems. Considerable research on smart grids has been pursued in the United States and Europe. In the United States, a variety of research activities on the smart power grid have been conducted within EPRI's IntelliGrid research program. The European Union (EU), which represents Europe's Smart Grid policy, has focused on an expansion of distributed generation (decentralized generation) and power trade between countries with improved environmental protection. Thus, there is current emphasis on a need for studies that assesses the economic efficiency of such distributed generation systems. In this paper, based on the cost of distributed power generation capacity, calculations of the best profits obtainable were made by a Monte Carlo simulation. Monte Carlo simulations that rely on repeated random sampling to compute their results take into account the cost of electricity production, daily loads and the cost of sales and generate a result faster than mathematical computations. In addition, we have suggested the optimal design, which considers the distribution loss associated with power distribution systems focus on sensing aspect and distributed power generation.
Lindner, Michael; Donner, Reik V
2017-03-01
We study the Lagrangian dynamics of passive tracers in a simple model of a driven two-dimensional vortex resembling real-world geophysical flow patterns. Using a discrete approximation of the system's transfer operator, we construct a directed network that describes the exchange of mass between distinct regions of the flow domain. By studying different measures characterizing flow network connectivity at different time-scales, we are able to identify the location of dynamically invariant structures and regions of maximum dispersion. Specifically, our approach allows us to delimit co-existing flow regimes with different dynamics. To validate our findings, we compare several network characteristics to the well-established finite-time Lyapunov exponents and apply a receiver operating characteristic analysis to identify network measures that are particularly useful for unveiling the skeleton of Lagrangian chaos.
Li, Gang; He, Bin; Huang, Hongwei; Tang, Limin
2016-01-01
The spatial–temporal correlation is an important feature of sensor data in wireless sensor networks (WSNs). Most of the existing works based on the spatial–temporal correlation can be divided into two parts: redundancy reduction and anomaly detection. These two parts are pursued separately in existing works. In this work, the combination of temporal data-driven sleep scheduling (TDSS) and spatial data-driven anomaly detection is proposed, where TDSS can reduce data redundancy. The TDSS model is inspired by transmission control protocol (TCP) congestion control. Based on long and linear cluster structure in the tunnel monitoring system, cooperative TDSS and spatial data-driven anomaly detection are then proposed. To realize synchronous acquisition in the same ring for analyzing the situation of every ring, TDSS is implemented in a cooperative way in the cluster. To keep the precision of sensor data, spatial data-driven anomaly detection based on the spatial correlation and Kriging method is realized to generate an anomaly indicator. The experiment results show that cooperative TDSS can realize non-uniform sensing effectively to reduce the energy consumption. In addition, spatial data-driven anomaly detection is quite significant for maintaining and improving the precision of sensor data. PMID:27690035
From calls to communities: a model for time-varying social networks
NASA Astrophysics Data System (ADS)
Laurent, Guillaume; Saramäki, Jari; Karsai, Márton
2015-11-01
Social interactions vary in time and appear to be driven by intrinsic mechanisms that shape the emergent structure of social networks. Large-scale empirical observations of social interaction structure have become possible only recently, and modelling their dynamics is an actual challenge. Here we propose a temporal network model which builds on the framework of activity-driven time-varying networks with memory. The model integrates key mechanisms that drive the formation of social ties - social reinforcement, focal closure and cyclic closure, which have been shown to give rise to community structure and small-world connectedness in social networks. We compare the proposed model with a real-world time-varying network of mobile phone communication, and show that they share several characteristics from heterogeneous degrees and weights to rich community structure. Further, the strong and weak ties that emerge from the model follow similar weight-topology correlations as real-world social networks, including the role of weak ties.
Wei, Qinglai; Song, Ruizhuo; Yan, Pengfei
2016-02-01
This paper is concerned with a new data-driven zero-sum neuro-optimal control problem for continuous-time unknown nonlinear systems with disturbance. According to the input-output data of the nonlinear system, an effective recurrent neural network is introduced to reconstruct the dynamics of the nonlinear system. Considering the system disturbance as a control input, a two-player zero-sum optimal control problem is established. Adaptive dynamic programming (ADP) is developed to obtain the optimal control under the worst case of the disturbance. Three single-layer neural networks, including one critic and two action networks, are employed to approximate the performance index function, the optimal control law, and the disturbance, respectively, for facilitating the implementation of the ADP method. Convergence properties of the ADP method are developed to show that the system state will converge to a finite neighborhood of the equilibrium. The weight matrices of the critic and the two action networks are also convergent to finite neighborhoods of their optimal ones. Finally, the simulation results will show the effectiveness of the developed data-driven ADP methods.
Optimal Operation of Energy Storage in Power Transmission and Distribution
NASA Astrophysics Data System (ADS)
Akhavan Hejazi, Seyed Hossein
In this thesis, we investigate optimal operation of energy storage units in power transmission and distribution grids. At transmission level, we investigate the problem where an investor-owned independently-operated energy storage system seeks to offer energy and ancillary services in the day-ahead and real-time markets. We specifically consider the case where a significant portion of the power generated in the grid is from renewable energy resources and there exists significant uncertainty in system operation. In this regard, we formulate a stochastic programming framework to choose optimal energy and reserve bids for the storage units that takes into account the fluctuating nature of the market prices due to the randomness in the renewable power generation availability. At distribution level, we develop a comprehensive data set to model various stochastic factors on power distribution networks, with focus on networks that have high penetration of electric vehicle charging load and distributed renewable generation. Furthermore, we develop a data-driven stochastic model for energy storage operation at distribution level, where the distribution of nodal voltage and line power flow are modelled as stochastic functions of the energy storage unit's charge and discharge schedules. In particular, we develop new closed-form stochastic models for such key operational parameters in the system. Our approach is analytical and allows formulating tractable optimization problems. Yet, it does not involve any restricting assumption on the distribution of random parameters, hence, it results in accurate modeling of uncertainties. By considering the specific characteristics of random variables, such as their statistical dependencies and often irregularly-shaped probability distributions, we propose a non-parametric chance-constrained optimization approach to operate and plan energy storage units in power distribution girds. In the proposed stochastic optimization, we consider uncertainty from various elements, such as solar photovoltaic , electric vehicle chargers, and residential baseloads, in the form of discrete probability functions. In the last part of this thesis we address some other resources and concepts for enhancing the operation of power distribution and transmission systems. In particular, we proposed a new framework to determine the best sites, sizes, and optimal payment incentives under special contracts for committed-type DG projects to offset distribution network investment costs. In this framework, the aim is to allocate DGs such that the profit gained by the distribution company is maximized while each DG unit's individual profit is also taken into account to assure that private DG investment remains economical.
A routing protocol based on energy and link quality for Internet of Things applications.
Machado, Kássio; Rosário, Denis; Cerqueira, Eduardo; Loureiro, Antonio A F; Neto, Augusto; Souza, José Neuman de
2013-02-04
The Internet of Things (IoT) is attracting considerable attention from the universities, industries, citizens and governments for applications, such as healthcare, environmental monitoring and smart buildings. IoT enables network connectivity between smart devices at all times, everywhere, and about everything. In this context, Wireless Sensor Networks (WSNs) play an important role in increasing the ubiquity of networks with smart devices that are low-cost and easy to deploy. However, sensor nodes are restricted in terms of energy, processing and memory. Additionally, low-power radios are very sensitive to noise, interference and multipath distortions. In this context, this article proposes a routing protocol based on Routing by Energy and Link quality (REL) for IoT applications. To increase reliability and energy-efficiency, REL selects routes on the basis of a proposed end-to-end link quality estimator mechanism, residual energy and hop count. Furthermore, REL proposes an event-driven mechanism to provide load balancing and avoid the premature energy depletion of nodes/networks. Performance evaluations were carried out using simulation and testbed experiments to show the impact and benefits of REL in small and large-scale networks. The results show that REL increases the network lifetime and services availability, as well as the quality of service of IoT applications. It also provides an even distribution of scarce network resources and reduces the packet loss rate, compared with the performance of well-known protocols.
A Routing Protocol Based on Energy and Link Quality for Internet of Things Applications
Machado, Kassio; Rosário, Denis; Cerqueira, Eduardo; Loureiro, Antonio A. F.; Neto, Augusto; de Souza, José Neuman
2013-01-01
The Internet of Things (IoT) is attracting considerable attention from the universities, industries, citizens and governments for applications, such as healthcare,environmental monitoring and smart buildings. IoT enables network connectivity between smart devices at all times, everywhere, and about everything. In this context, Wireless Sensor Networks (WSNs) play an important role in increasing the ubiquity of networks with smart devices that are low-cost and easy to deploy. However, sensor nodes are restricted in terms of energy, processing and memory. Additionally, low-power radios are very sensitive to noise, interference and multipath distortions. In this context, this article proposes a routing protocol based on Routing by Energy and Link quality (REL) for IoT applications. To increase reliability and energy-efficiency, REL selects routes on the basis of a proposed end-to-end link quality estimator mechanism, residual energy and hop count. Furthermore, REL proposes an event-driven mechanism to provide load balancing and avoid the premature energy depletion of nodes/networks. Performance evaluations were carried out using simulation and testbed experiments to show the impact and benefits of REL in small and large-scale networks. The results show that REL increases the network lifetime and services availability, as well as the quality of service of IoT applications. It also provides an even distribution of scarce network resources and reduces the packet loss rate, compared with the performance of well-known protocols. PMID:23385410
NASA Technical Reports Server (NTRS)
Hewagama, TIlak; Aslam, Shahid; Talabac, Stephen; Allen, John E., Jr.; Annen, John N.; Jennings, Donald E.
2011-01-01
Fourier transform spectrometers have a venerable heritage as flight instruments. However, obtaining an accurate spectrum exacts a penalty in instrument mass and power requirements. Recent advances in a broad class of non-scanning Fourier transform spectrometer (FTS) devices, generally called spatial heterodyne spectrometers, offer distinct advantages as flight optimized systems. We are developing a miniaturized system that employs photonics lightwave circuit principles and functions as an FTS operating in the 7-14 micrometer spectral region. The inteferogram is constructed from an ensemble of Mach-Zehnder interferometers with path length differences calibrated to mimic scan mirror sample positions of a classic Michelson type FTS. One potential long-term application of this technology in low cost planetary missions is the concept of a self-contained sensor system. We are developing a systems architecture concept for wide area in situ and remote monitoring of characteristic properties that are of scientific interest. The system will be based on wavelength- and resolution-independent spectroscopic sensors for studying atmospheric and surface chemistry, physics, and mineralogy. The self-contained sensor network is based on our concept of an Addressable Photonics Cube (APC) which has real-time flexibility and broad science applications. It is envisaged that a spatially distributed autonomous sensor web concept that integrates multiple APCs will be reactive and dynamically driven. The network is designed to respond in an event- or model-driven manner or reconfigured as needed.
Rhetoric vs. reality: employer views on consumer-driven health care.
Trude, Sally; Conwell, Leslie
2004-07-01
Because of rising premiums, employers are investigating new health insurance approaches that maintain workers' broad choice of providers while raising awareness of health care costs through increased patient financial responsibility. Employers' knowledge of new health plan products, including consumer-driven health plans and tiered-provider networks, has grown considerably in recent years, according to findings from the Center for Studying Health System Change's (HSC) 2002-03 site visit to 12 nationally representative communities. But employers are concerned that consumer-driven health plans would take considerable effort to implement without much cost savings. They also are skeptical that tiered-provider networks can adequately capture both cost and quality information in a way that is understandable to patients.
Flow Rate Driven by Peristaltic Movement in Plasmodial Tube of Physarum Polycephalum
NASA Astrophysics Data System (ADS)
Yamada, Hiroyasu; Nakagaki, Toshiyuki
2008-07-01
We report a theoretical analysis of protoplasmic streaming driven by peristaltic movement in an elastic tube of an amoeba-like organism. The Plasmodium of Physarum polycephalum, a true slime mold, is a large amoeboid organism that adopts a sheet-like form with a tubular network. The network extends throughout the Plasmodium and enables the transport and circulation of chemical signals and nutrients. This tubular flow is driven by periodically propagating waves of active contraction of the tube cortex, a process known as peristaltic movement. We derive the relationship between the phase velocity of the contraction wave and the flow rate, and we discuss the physiological implications of this relationship.
A Distributed Laboratory for Event-Driven Coastal Prediction and Hazard Planning
NASA Astrophysics Data System (ADS)
Bogden, P.; Allen, G.; MacLaren, J.; Creager, G. J.; Flournoy, L.; Sheng, Y. P.; Graber, H.; Graves, S.; Conover, H.; Luettich, R.; Perrie, W.; Ramakrishnan, L.; Reed, D. A.; Wang, H. V.
2006-12-01
The 2005 Atlantic hurricane season was the most active in recorded history. Collectively, 2005 hurricanes caused more than 2,280 deaths and record damages of over 100 billion dollars. Of the storms that made landfall, Dennis, Emily, Katrina, Rita, and Wilma caused most of the destruction. Accurate predictions of storm-driven surge, wave height, and inundation can save lives and help keep recovery costs down, provided the information gets to emergency response managers in time. The information must be available well in advance of landfall so that responders can weigh the costs of unnecessary evacuation against the costs of inadequate preparation. The SURA Coastal Ocean Observing and Prediction (SCOOP) Program is a multi-institution collaboration implementing a modular, distributed service-oriented architecture for real time prediction and visualization of the impacts of extreme atmospheric events. The modular infrastructure enables real-time prediction of multi- scale, multi-model, dynamic, data-driven applications. SURA institutions are working together to create a virtual and distributed laboratory integrating coastal models, simulation data, and observations with computational resources and high speed networks. The loosely coupled architecture allows teams of computer and coastal scientists at multiple institutions to innovate complex system components that are interconnected with relatively stable interfaces. The operational system standardizes at the interface level to enable substantial innovation by complementary communities of coastal and computer scientists. This architectural philosophy solves a long-standing problem associated with the transition from research to operations. The SCOOP Program thereby implements a prototype laboratory consistent with the vision of a national, multi-agency initiative called the Integrated Ocean Observing System (IOOS). Several service- oriented components of the SCOOP enterprise architecture have already been designed and implemented, including data archive and transport services, metadata registry and retrieval (catalog), resource management, and portal interfaces. SCOOP partners are integrating these at the service level and implementing reconfigurable workflows for several kinds of user scenarios, and are working with resource providers to prototype new policies and technologies for on-demand computing.
Photonic integrated circuits based on sampled-grating distributed-Bragg-reflector lasers
NASA Astrophysics Data System (ADS)
Barton, Jonathon S.; Skogen, Erik J.; Masanovic, Milan L.; Raring, James; Sysak, Matt N.; Johansson, Leif; DenBaars, Steven P.; Coldren, Larry A.
2003-07-01
The Sampled-Grating Distributed-Bragg-Reflector laser(SGDBR) provides wide tunability (>40nm), and high output power (>10mW). Driven by the demand for network reconfigurability and ease of implementation, the SGDBR has moved from the research lab to be commercially viable in the marketplace. The SGDBR is most often implemented using an offset-quantum well epitaxial structure in which the quantum wells are etched off in the passive sections. Alternatively, quantum well intermixing has been used recently to achieve the same goal - resulting in improved optical gain and the potential for multiple bandgaps along the device structure. These epitaxial "platforms" provide the basis for more exotic opto-electronic device functionality exhibiting low chirp for digital applications and enhanced linearity for analog applications. This talk will cover state-of-the-art opto-electronic devices based on the SGDBR platform including: integrated Mach-Zehnder modulators, and integrated electro-absorption modulators.
Human factors for capacity building: lessons learned from the OpenMRS implementers network.
Seebregts, C J; Mamlin, B W; Biondich, P G; Fraser, H S F; Wolfe, B A; Jazayeri, D; Miranda, J; Blaya, J; Sinha, C; Bailey, C T; Kanter, A S
2010-01-01
The overall objective of this project was to investigate ways to strengthen the OpenMRS community by (i) developing capacity and implementing a network focusing specifically on the needs of OpenMRS implementers, (ii) strengthening community-driven aspects of OpenMRS and providing a dedicated forum for implementation-specific issues, and; (iii) providing regional support for OpenMRS implementations as well as mentorship and training. The methods used included (i) face-to-face networking using meetings and workshops; (ii) online collaboration tools, peer support and mentorship programmes; (iii) capacity and community development programmes, and; (iv) community outreach programmes. The community-driven approach, combined with a few simple interventions, has been a key factor in the growth and success of the OpenMRS Implementers Network. It has contributed to implementations in at least twenty-three different countries using basic online tools; and provided mentorship and peer support through an annual meeting, workshops and an internship program. The OpenMRS Implementers Network has formed collaborations with several other open source networks and is evolving regional OpenMRS Centres of Excellence to provide localized support for OpenMRS development and implementation. These initiatives are increasing the range of functionality and sustainability of open source software in the health domain, resulting in improved adoption and enterprise-readiness. Social organization and capacity development activities are important in growing a successful community-driven open source software model.
Data-Driven Design of Intelligent Wireless Networks: An Overview and Tutorial.
Kulin, Merima; Fortuna, Carolina; De Poorter, Eli; Deschrijver, Dirk; Moerman, Ingrid
2016-06-01
Data science or "data-driven research" is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves.
Data-Driven Design of Intelligent Wireless Networks: An Overview and Tutorial
Kulin, Merima; Fortuna, Carolina; De Poorter, Eli; Deschrijver, Dirk; Moerman, Ingrid
2016-01-01
Data science or “data-driven research” is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves. PMID:27258286
NASA Astrophysics Data System (ADS)
Gierzynski, A.; Pollyea, R.
2016-12-01
Recent studies suggest that continental flood basalts may be suitable for geologic carbon sequestration, due to fluid-rock reactions that mineralize injected CO2 on relatively short time-scales. Flood basalts also possess a morphological structure conducive to injection, with alternating high-permeability (flow margin) and low-permeability (flow interior) layers. However, little information exists on the behavior of CO2 migration within field-scale fracture networks, particularly within flow interiors and at conditions near the critical point for CO2. In this study, numerical simulation is used to investigate the influence of fracture permeability uncertainty during gravity-driven CO2 migration within a jointed basalt flow interior as CO2 undergoes phase change from supercritical fluid to a subcritical phase. The model domain comprises a 2D fracture network mapped with terrestrial LiDAR scans of Columbia River Basalt acquired near Starbuck, WA. The model domain is 5 m × 5 m with bimodal heterogeneity (fracture and matrix), and initial conditions corresponding to a hydrostatic pressure gradient between 750 and 755 m depth. Under these conditions, the critical point for CO2 occurs 1.5 m above the bottom of the domain. For this model scenario, CO2 enters the base of the fracture network at 0.5 MPa overpressure, and matrix permeability is assumed constant. Fracture permeability follows a lognormal distribution on the basis of fracture aperture values from literature. In order to account for spatial uncertainty, the lognormal fracture permeability distribution is randomly located in the model domain and CO2 migration is simulated within the same fracture network for 50 equally probable realizations. Model results suggest that fracture connectivity, which is independent of permeability distribution, governs the path taken by buoyant CO2 as it rises through the flow interior; however, the permeability distribution strongly governs the CO2 flux magnitude. In particular, this research shows that even where fracture networks are sufficiently connected, CO2 flux is often inhibited by a cell of lower permeability, analogous to an obstruction or asperity in a natural fracture. This impresses the importance of considering spatial uncertainty in fracture apertures when modeling CO2 leakage through a caprock.
Traffic Driven Analysis of Cellular and WiFi Networks
ERIC Educational Resources Information Center
Paul, Utpal Kumar
2012-01-01
Since the days Internet traffic proliferated, measurement, monitoring and analysis of network traffic have been critical to not only the basic understanding of large networks, but also to seek improvements in resource management, traffic engineering and security. At the current times traffic in wireless local and wide area networks are facing…
Hosseini, Mohammad; Jiang, Yu; Wu, Poliang; Berlin, Richard B; Ren, Shangping; Sha, Lui
2016-11-01
There is a great divide between rural and urban areas, particularly in medical emergency care. Although medical best practice guidelines exist and are in hospital handbooks, they are often lengthy and difficult to apply clinically. The challenges are exaggerated for doctors in rural areas and emergency medical technicians (EMT) during patient transport. In this paper, we propose the concept of distributed executable medical best practice guidance systems to assist adherence to best practice from the time that a patient first presents at a rural hospital, through diagnosis and ambulance transfer to arrival and treatment at a regional tertiary hospital center. We codify complex medical knowledge in the form of simplified distributed executable disease automata, from the thin automata at rural hospitals to the rich automata in the regional center hospitals. However, a main challenge is how to efficiently and safely synchronize distributed best practice models as the communication among medical facilities, devices, and professionals generates a large number of messages. This complex problem of patient diagnosis and transport from rural to center facility is also fraught with many uncertainties and changes resulting in a high degree of dynamism. A critically ill patient's medical conditions can change abruptly in addition to changes in the wireless bandwidth during the ambulance transfer. Such dynamics have yet to be addressed in existing literature on telemedicine. To address this situation, we propose a pathophysiological model-driven message exchange communication architecture that ensures the real-time and dynamic requirements of synchronization among distributed emergency best practice models are met in a reliable and safe manner. Taking the signs, symptoms, and progress of stroke patients transported across a geographically distributed healthcare network as the motivating use case, we implement our communication system and apply it to our developed best practice automata using laboratory simulations. Our proof-of-concept experiments shows there is potential for the use of our system in a wide variety of domains.
Taylor dispersion in wind-driven current
NASA Astrophysics Data System (ADS)
Li, Gang; Wang, Ping; Jiang, Wei-Quan; Zeng, Li; Li, Zhi; Chen, G. Q.
2017-12-01
Taylor dispersion associated with wind-driven currents in channels, shallow lakes and estuaries is essential to hydrological environmental management. For solute dispersion in a wind-driven current, presented in this paper is an analytical study of the evolution of concentration distribution. The concentration moments are intensively derived for an accurate presentation of the mean concentration distribution, up to the effect of kurtosis. The vertical divergence of concentration is then deduced by Gill's method of series expansion up to the fourth order. Based on the temporal evolution of the vertical concentration distribution, the dispersion process in the wind-driven current is concretely characterized. The uniform shear leads to a special symmetrical distribution of mean concentration free of skewness. The non-uniformity of vertical concentration is caused by convection and smeared out gradually by the effect of diffusion, but fails to disappear even at large times.
A Hybrid Adaptive Routing Algorithm for Event-Driven Wireless Sensor Networks
Figueiredo, Carlos M. S.; Nakamura, Eduardo F.; Loureiro, Antonio A. F.
2009-01-01
Routing is a basic function in wireless sensor networks (WSNs). For these networks, routing algorithms depend on the characteristics of the applications and, consequently, there is no self-contained algorithm suitable for every case. In some scenarios, the network behavior (traffic load) may vary a lot, such as an event-driven application, favoring different algorithms at different instants. This work presents a hybrid and adaptive algorithm for routing in WSNs, called Multi-MAF, that adapts its behavior autonomously in response to the variation of network conditions. In particular, the proposed algorithm applies both reactive and proactive strategies for routing infrastructure creation, and uses an event-detection estimation model to change between the strategies and save energy. To show the advantages of the proposed approach, it is evaluated through simulations. Comparisons with independent reactive and proactive algorithms show improvements on energy consumption. PMID:22423207
A hybrid adaptive routing algorithm for event-driven wireless sensor networks.
Figueiredo, Carlos M S; Nakamura, Eduardo F; Loureiro, Antonio A F
2009-01-01
Routing is a basic function in wireless sensor networks (WSNs). For these networks, routing algorithms depend on the characteristics of the applications and, consequently, there is no self-contained algorithm suitable for every case. In some scenarios, the network behavior (traffic load) may vary a lot, such as an event-driven application, favoring different algorithms at different instants. This work presents a hybrid and adaptive algorithm for routing in WSNs, called Multi-MAF, that adapts its behavior autonomously in response to the variation of network conditions. In particular, the proposed algorithm applies both reactive and proactive strategies for routing infrastructure creation, and uses an event-detection estimation model to change between the strategies and save energy. To show the advantages of the proposed approach, it is evaluated through simulations. Comparisons with independent reactive and proactive algorithms show improvements on energy consumption.
Terrestrial origin of bacterial communities in complex boreal freshwater networks.
Ruiz-González, Clara; Niño-García, Juan Pablo; Del Giorgio, Paul A
2015-08-25
Bacteria inhabiting boreal freshwaters are part of metacommunities where local assemblages are often linked by the flow of water in the landscape, yet the resulting spatial structure and the boundaries of the network metacommunity have never been explored. Here, we reconstruct the spatial structure of the bacterial metacommunity in a complex boreal aquatic network by determining the taxonomic composition of bacterial communities along the entire terrestrial/aquatic continuum, including soil and soilwaters, headwater streams, large rivers and lakes. We show that the network metacommunity has a directional spatial structure driven by a common terrestrial origin of aquatic communities, which are numerically dominated by taxa recruited from soils. Local community assembly is driven by variations along the hydrological continuum in the balance between mass effects and species sorting of terrestrial taxa, and seems further influenced by priority effects related to the spatial sequence of entry of soil bacteria into the network. © 2015 John Wiley & Sons Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Falzone, Tobias; Blair, Savanna; Robertson-Anderson, Rae
2015-03-01
The semiflexible biopolymer actin, a ubiquitous component of nearly all biological organisms, plays an important role in many mechanically-driven processes such as muscle contraction, cancer invasion and cell motility. As such, entangled actin networks, which possess unique and complex viscoelastic properties, have been the subject of much theoretical and experimental work. However, due to this viscoelastic complexity, much is still unknown regarding the correlation of the applied stress on actin networks to the induced filament strain at the molecular and micro scale. Here, we use simultaneous optical trapping and fluorescence microscopy to characterize the link between applied microscopic forces and strain propagation as a function of strain rate and concentration. Specifically, we track fiduciary markers on entangled actin filaments before, during and after actively driving embedded microspheres through the network. These measurements provide much needed insight into the molecular-level dynamics connecting stress and strain in semiflexible polymer networks.
An opinion-driven behavioral dynamics model for addictive behaviors
NASA Astrophysics Data System (ADS)
Moore, Thomas W.; Finley, Patrick D.; Apelberg, Benjamin J.; Ambrose, Bridget K.; Brodsky, Nancy S.; Brown, Theresa J.; Husten, Corinne; Glass, Robert J.
2015-04-01
We present a model of behavioral dynamics that combines a social network-based opinion dynamics model with behavioral mapping. The behavioral component is discrete and history-dependent to represent situations in which an individual's behavior is initially driven by opinion and later constrained by physiological or psychological conditions that serve to maintain the behavior. Individuals are modeled as nodes in a social network connected by directed edges. Parameter sweeps illustrate model behavior and the effects of individual parameters and parameter interactions on model results. Mapping a continuous opinion variable into a discrete behavioral space induces clustering on directed networks. Clusters provide targets of opportunity for influencing the network state; however, the smaller the network the greater the stochasticity and potential variability in outcomes. This has implications both for behaviors that are influenced by close relationships verses those influenced by societal norms and for the effectiveness of strategies for influencing those behaviors.
Cloud Engineering Principles and Technology Enablers for Medical Image Processing-as-a-Service
Bao, Shunxing; Plassard, Andrew J.; Landman, Bennett A.; Gokhale, Aniruddha
2017-01-01
Traditional in-house, laboratory-based medical imaging studies use hierarchical data structures (e.g., NFS file stores) or databases (e.g., COINS, XNAT) for storage and retrieval. The resulting performance from these approaches is, however, impeded by standard network switches since they can saturate network bandwidth during transfer from storage to processing nodes for even moderate-sized studies. To that end, a cloud-based “medical image processing-as-a-service” offers promise in utilizing the ecosystem of Apache Hadoop, which is a flexible framework providing distributed, scalable, fault tolerant storage and parallel computational modules, and HBase, which is a NoSQL database built atop Hadoop’s distributed file system. Despite this promise, HBase’s load distribution strategy of region split and merge is detrimental to the hierarchical organization of imaging data (e.g., project, subject, session, scan, slice). This paper makes two contributions to address these concerns by describing key cloud engineering principles and technology enhancements we made to the Apache Hadoop ecosystem for medical imaging applications. First, we propose a row-key design for HBase, which is a necessary step that is driven by the hierarchical organization of imaging data. Second, we propose a novel data allocation policy within HBase to strongly enforce collocation of hierarchically related imaging data. The proposed enhancements accelerate data processing by minimizing network usage and localizing processing to machines where the data already exist. Moreover, our approach is amenable to the traditional scan, subject, and project-level analysis procedures, and is compatible with standard command line/scriptable image processing software. Experimental results for an illustrative sample of imaging data reveals that our new HBase policy results in a three-fold time improvement in conversion of classic DICOM to NiFTI file formats when compared with the default HBase region split policy, and nearly a six-fold improvement over a commonly available network file system (NFS) approach even for relatively small file sets. Moreover, file access latency is lower than network attached storage. PMID:28884169
Seasonality and pathogen transmission in pastoral cattle contact networks.
VanderWaal, Kimberly; Gilbertson, Marie; Okanga, Sharon; Allan, Brian F; Craft, Meggan E
2017-12-01
Capturing heterogeneity in contact patterns in animal populations is essential for understanding the spread of infectious diseases. In contrast to other regions of the world in which livestock movement networks are integral to pathogen prevention and control policies, contact networks are understudied in pastoral regions of Africa due to the challenge of measuring contact among mobile herds of cattle whose movements are driven by access to resources. Furthermore, the extent to which seasonal changes in the distribution of water and resources impacts the structure of contact networks in cattle is uncertain. Contact networks may be more conducive to pathogen spread in the dry season due to congregation at limited water sources. Alternatively, less abundant forage may result in decreased pathogen transmission due to competitive avoidance among herds, as measured by reduced contact rates. Here, we use GPS technology to concurrently track 49 free-roaming cattle herds within a semi-arid region of Kenya, and use these data to characterize seasonal contact networks and model the spread of a highly infectious pathogen. This work provides the first empirical data on the local contact network structure of mobile herds based on quantifiable contact events. The contact network demonstrated high levels of interconnectivity. An increase in contacts near to water resources in the dry season resulted in networks with both higher contact rates and higher potential for pathogen spread than in the wet season. Simulated disease outbreaks were also larger in the dry season. Results support the hypothesis that limited water resources enhance connectivity and transmission within contact networks, as opposed to reducing connectivity as a result of competitive avoidance. These results cast light on the impact of seasonal heterogeneity in resource availability on predicting pathogen transmission dynamics, which has implications for other free-ranging wild and domestic populations.
Gómez-Hortigüela, Luis; Álvaro-Muñoz, Teresa; Bernardo-Maestro, Beatriz; Pérez-Pariente, Joaquín
2015-01-07
A molecular-mechanics computational study is performed in order to analyze the arrangement of (1R,2S)-(-)-ephedrine molecules within the 12-MR channels of the AFI aluminophosphate microporous framework and the influence on the spatial distribution of dopants embedded in the tetrahedral network. Results showed that ephedrine molecules arrange exclusively as dimers by π-π stacking of the aromatic rings within the AFI channels. Interestingly, the asymmetric nature of ephedrine and the presence of H-bond-forming groups (NH2 and OH) involve a preferential orientation where consecutive dimers within the channels are rotated by an angle of +30°; this is driven by the establishment of inter-dimer H-bonds. This preferential orientation leads to the development of a supramolecular enantiomerically-pure helicoidal (chiral) arrangement of ephedrine dimers. In addition, the computational results demonstrate that the particular molecular structure of ephedrine imparts a strong trend to attract negative charges to the vicinity of the NH2(+) positively-charged groups. Hence divalent dopants such as Mg, whose replacement by trivalent Al in the aluminophosphate network involves the generation of a negative charge, will tend to locate close to the NH2(+) molecular groups, suggesting that an imprinting of the organic arrangement to the spatial distribution of dopants would be feasible. Combined with the trend of ephedrine to arrange in a helicoidal fashion, an enantiomerically-pure helicoidal distribution of dopants would be expected, thus inducing a new type of chirality in microporous materials.
Ocean Observatories Initiative (OOI): Status of Design, Capabilities, and Implementation
NASA Astrophysics Data System (ADS)
Brasseur, L. H.; Banahan, S.; Cowles, T.
2009-05-01
The National Science Foundation's (NSF) Ocean Observatories Initiative (OOI) will implement the construction and operation of an interactive, integrated ocean observing network. This research- driven, multi-scale network will provide the broad ocean science community with access to advanced technology to enable studies of fundamental ocean processes. The OOI will afford observations at coastal, regional, and global scales on timeframes of milliseconds to decades in support of investigations into climate variability, ocean ecosystems, biogeochemical processes, coastal ocean dynamics, circulation and mixing dynamics, fluid-rock interactions, and the sub-seafloor biosphere. The elements of the OOI include arrays of fixed and re-locatable moorings, autonomous underwater vehicles, and cabled seafloor nodes. All assets combined, the OOI network will provide data from over 45 distinct types of sensors, comprising over 800 total sensors distributed in the Pacific and Atlantic oceans. These core sensors for the OOI were determined through a formal process of science requirements development. This core sensor array will be integrated through a system-wide cyberinfrastructure allowing for remote control of instruments, adaptive sampling, and near-real time access to data. Implementation of the network will stimulate new avenues of research and the development of new infrastructure, instrumentation, and sensor technologies. The OOI is funded by the NSF and managed by the Consortium for Ocean Leadership which focuses on the science, technology, education, and outreach for an emerging network of ocean observing systems.
The data-driven null models for information dissemination tree in social networks
NASA Astrophysics Data System (ADS)
Zhang, Zhiwei; Wang, Zhenyu
2017-10-01
For the purpose of detecting relatedness and co-occurrence between users, as well as the distribution features of nodes in spreading path of a social network, this paper explores topological characteristics of information dissemination trees (IDT) that can be employed indirectly to probe the information dissemination laws within social networks. Hence, three different null models of IDT are presented in this article, including the statistical-constrained 0-order IDT null model, the random-rewire-broken-edge 0-order IDT null model and the random-rewire-broken-edge 2-order IDT null model. These null models firstly generate the corresponding randomized copy of an actual IDT; then the extended significance profile, which is developed by adding the cascade ratio of information dissemination path, is exploited not only to evaluate degree correlation of two nodes associated with an edge, but also to assess the cascade ratio of different length of information dissemination paths. The experimental correspondences of the empirical analysis for several SinaWeibo IDTs and Twitter IDTs indicate that the IDT null models presented in this paper perform well in terms of degree correlation of nodes and dissemination path cascade ratio, which can be better to reveal the features of information dissemination and to fit the situation of real social networks.
Evolution of weighted complex bus transit networks with flow
NASA Astrophysics Data System (ADS)
Huang, Ailing; Xiong, Jie; Shen, Jinsheng; Guan, Wei
2016-02-01
Study on the intrinsic properties and evolutional mechanism of urban public transit networks (PTNs) has great significance for transit planning and control, particularly considering passengers’ dynamic behaviors. This paper presents an empirical analysis for exploring the complex properties of Beijing’s weighted bus transit network (BTN) based on passenger flow in L-space, and proposes a bi-level evolution model to simulate the development of transit routes from the view of complex network. The model is an iterative process that is driven by passengers’ travel demands and dual-controlled interest mechanism, which is composed of passengers’ spatio-temporal requirements and cost constraint of transit agencies. Also, the flow’s dynamic behaviors, including the evolutions of travel demand, sectional flow attracted by a new link and flow perturbation triggered in nearby routes, are taken into consideration in the evolutional process. We present the numerical experiment to validate the model, where the main parameters are estimated by using distribution functions that are deduced from real-world data. The results obtained have proven that our model can generate a BTN with complex properties, such as the scale-free behavior or small-world phenomenon, which shows an agreement with our empirical results. Our study’s results can be exploited to optimize the real BTN’s structure and improve the network’s robustness.
The Potential of Knowing More: A Review of Data-Driven Urban Water Management.
Eggimann, Sven; Mutzner, Lena; Wani, Omar; Schneider, Mariane Yvonne; Spuhler, Dorothee; Moy de Vitry, Matthew; Beutler, Philipp; Maurer, Max
2017-03-07
The promise of collecting and utilizing large amounts of data has never been greater in the history of urban water management (UWM). This paper reviews several data-driven approaches which play a key role in bringing forward a sea change. It critically investigates whether data-driven UWM offers a promising foundation for addressing current challenges and supporting fundamental changes in UWM. We discuss the examples of better rain-data management, urban pluvial flood-risk management and forecasting, drinking water and sewer network operation and management, integrated design and management, increasing water productivity, wastewater-based epidemiology and on-site water and wastewater treatment. The accumulated evidence from literature points toward a future UWM that offers significant potential benefits thanks to increased collection and utilization of data. The findings show that data-driven UWM allows us to develop and apply novel methods, to optimize the efficiency of the current network-based approach, and to extend functionality of today's systems. However, generic challenges related to data-driven approaches (e.g., data processing, data availability, data quality, data costs) and the specific challenges of data-driven UWM need to be addressed, namely data access and ownership, current engineering practices and the difficulty of assessing the cost benefits of data-driven UWM.
A review of international biobanks and networks: success factors and key benchmarks.
Vaught, Jim; Kelly, Andrea; Hewitt, Robert
2009-09-01
Biobanks and biobanking networks are involved in varying degrees in the collection, processing, storage, and dissemination of biological specimens. This review outlines the approaches that 16 of the largest biobanks and biobanking networks in Europe, North America, Australia, and Asia have taken to collecting and distributing human research specimens and managing scientific initiatives while covering operating costs. Many are small operations that exist as either a single or a few freezers in a research laboratory, hospital clinical laboratory, or pathology suite. Larger academic and commercial biobanks operate to support large clinical and epidemiological studies. Operational and business models depend on the medical and research missions of their institutions and home countries. Some national biobanks operate with a centralized physical biobank that accepts samples from multiple locations. Others operate under a "federated" model where each institution maintains its own collections but agrees to list them on a central shared database. Some collections are "project-driven" meaning that specimens are collected and distributed to answer specific research questions. "General" collections are those that exist to establish a reference collection, that is, not to meet particular research goals but to be available to respond to multiple requests for an assortment of research uses. These individual and networked biobanking systems operate under a variety of business models, usually incorporating some form of partial cost recovery, while requiring at least partial public or government funding. Each has a well-defined biospecimen-access policy in place that specifies requirements that must be met-such as ethical clearance and the expertise to perform the proposed experiments-to obtain samples for research. The success of all of these biobanking models depends on a variety of factors including well-defined goals, a solid business plan, and specimen collections that are developed according to strict quality and operational controls.
Distributed framework for dyanmic telescope and instrument control
NASA Astrophysics Data System (ADS)
Ames, Troy J.; Case, Lynne
2003-02-01
Traditionally, instrument command and control systems have been developed specifically for a single instrument. Such solutions are frequently expensive and are inflexible to support the next instrument development effort. NASA Goddard Space Flight Center is developing an extensible framework, known as Instrument Remote Control (IRC) that applies to any kind of instrument that can be controlled by a computer. IRC combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML). A key aspect of the architecture is software that is driven by an instrument description, written using the Instrument Markup Language (IML). IML is an XML dialect used to describe graphical user interfaces to control and monitor the instrument, command sets and command formats, data streams, communication mechanisms, and data processing algorithms. The IRC framework provides the ability to communicate to components anywhere on a network using the JXTA protocol for dynamic discovery of distributed components. JXTA (see http://www.jxta.org) is a generalized protocol that allows any devices connected by a network to communicate in a peer-to-peer manner. IRC uses JXTA to advertise a devices IML and discover devices of interest on the network. Devices can join or leave the network and thus join or leave the instrument control environment of IRC. Currently, several astronomical instruments are working with the IRC development team to develop custom components for IRC to control their instruments. These instruments include: High resolution Airborne Wideband Camera (HAWC), a first light instrument for the Stratospheric Observatory for Infrared Astronomy (SOFIA); Submillimeter And Far Infrared Experiment (SAFIRE), a Principal Investigator instrument for SOFIA; and Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE), a prototype of the SAFIRE instrument, used at the Caltech Submillimeter Observatory (CSO). Most recently, we have been working with the Submillimetre High
Purpose-Driven Communities in Multiplex Networks: Thresholding User-Engaged Layer Aggregation
2016-06-01
dark networks is a non-trivial yet useful task. Because terrorists work hard to hide their relationships/network, analysts have an incomplete picture...them identify meaningful terrorist communities. This thesis introduces a general-purpose algorithm for community detection in multiplex dark networks...aggregation, dark networks, conductance, cluster adequacy, mod- ularity, Louvain method, shortest path interdiction 15. NUMBER OF PAGES 155 16. PRICE CODE
Controlling An Inverter-Driven Three-Phase Motor
NASA Technical Reports Server (NTRS)
Dolland, C.
1984-01-01
Control system for three-phase permanent-magnet motor driven by linecommutated inverter uses signals generated by integrating back emf of each phase of motor. High-pass filter network eliminates low-frequency components from control loop while maintaining desired power factor.
Larsen, Frank Wugt; Petersen, Anders Højgård; Strange, Niels; Lund, Mette Palitzsch; Rahbek, Carsten
2008-05-01
Denmark has committed itself to the European 2010 target to halt the loss of biodiversity. Currently, Denmark is in the process of designating larger areas as national parks, and 7 areas (of a possible 32 larger nature areas) have been selected for pilot projects to test the feasibility of establishing national parks. In this article, we first evaluate the effectiveness of the a priori network of national parks proposed through expert and political consensus versus a network chosen specifically for biodiversity through quantitative analysis. Second, we analyze the potential synergy between preserving biodiversity in terms of species representation and recreational values in selecting a network of national parks. We use the actual distribution of 973 species within these 32 areas and 4 quantitative measures of recreational value. Our results show that the 7 pilot project areas are not significantly more effective in representing species than expected by chance and that considerably more efficient networks can be selected. Moreover, it is possible to select more-effective networks of areas that combine high representation of species with high ranking in terms of recreational values. Therefore, our findings suggest possible synergies between outdoor recreation and biodiversity conservation when selecting networks of national parks. Overall, this Danish case illustrates that data-driven analysis can not only provide valuable information to guide the decision-making process of designating national parks, but it can also be a means to identify solutions that simultaneously fulfill several goals (biodiversity preservation and recreational values).
Time-dependent particle migration and margination in the pressure-driven channel flow of blood
NASA Astrophysics Data System (ADS)
Qi, Qin M.; Shaqfeh, Eric S. G.
2018-03-01
We present a theory to describe the time evolution of the red blood cell (RBC) and platelet concentration distributions in pressure-driven flow through a straight channel. This model is based on our previous theory for the steady-state distributions [Qi and Shaqfeh, Phys. Rev. Fluids 2, 093102 (2017), 10.1103/PhysRevFluids.2.093102] and captures the flow-induced nonuniformity of the concentrations of RBCs and platelets in the cross-flow direction. Starting with a uniform concentration, RBCs migrate away from the channel walls due to a shear-induced lift force and eventually reach steady state due to shear-induced diffusion, i.e., hydrodynamic "collisions" with other RBCs. On the other hand, platelets exit the cell-laden region due to RBC-platelet interactions and enter the cell-free layer, resulting in margination. To validate the theory, we also perform boundary integral simulations of blood flow in microchannels and directly compare various measureables between theory and simulation. The timescales associated with RBC migration and platelet margination are discussed in the context of the simulation and theory, and their importance in the function of microfluidic devices as well as the vascular network are elucidated. Due to the varying shear rate in pressure-driven flow and the wall-induced RBC lift, we report a separation of timescales for the transport in the near-wall region and in the bulk region. We also relate the transient problem to the axial variation of migration and margination, and we demonstrate how the relevant timescales can be used to predict corresponding entrance lengths. Our theory can serve as a fast and convenient alternative to large-scale simulations of these phenomena.
Experiences of Pioneers Facilitating Teacher Networks for Professional Development
ERIC Educational Resources Information Center
Hanraets, Irene; Hulsebosch, Joitske; de Laat, Maarten
2011-01-01
This study presents an exploration into facilitation practices of teacher professional development networks. Stimulating networked learning amongst teachers is a powerful way of creating an informal practice-based learning space driven by teacher needs. As such, it presents an additional channel (besides more formal traditional professional…
Arayasirikul, Sean; Chen, Yea-Hung; Jin, Harry; Wilson, Erin
2015-01-01
Respondent-driven sampling (RDS) peer referral has been proven to be an effective recruitment method for hard-to-reach populations; however, its application in diverse populations is limited. Recruitment occurred in two phases: RDS-only followed by development and implementation of an online social network strategy in combination with RDS peer referral (RDS+SNS). Compared to RDS-only, RDS+SNS reached a sample that was younger (χ2=9.19, P = .03), more likely to identify with a non-binary gender identity (χ2=10.4247, P = .03), with less housing instability (50.5% vs. 68.6%, χ2=9.0038, P = .002) and less sex work (19.7% vs. 31.4%, χ2=5.0798, P = .02). Additionally, we describe lessons learned as a result of implementing our online social network strategy. Our findings underscore the importance of integrating Internet-driven strategies to meet challenges in sample diversity and recruitment of young transwomen. PMID:26499337
Van Landeghem, Sofie; Van Parys, Thomas; Dubois, Marieke; Inzé, Dirk; Van de Peer, Yves
2016-01-05
Differential networks have recently been introduced as a powerful way to study the dynamic rewiring capabilities of an interactome in response to changing environmental conditions or stimuli. Currently, such differential networks are generated and visualised using ad hoc methods, and are often limited to the analysis of only one condition-specific response or one interaction type at a time. In this work, we present a generic, ontology-driven framework to infer, visualise and analyse an arbitrary set of condition-specific responses against one reference network. To this end, we have implemented novel ontology-based algorithms that can process highly heterogeneous networks, accounting for both physical interactions and regulatory associations, symmetric and directed edges, edge weights and negation. We propose this integrative framework as a standardised methodology that allows a unified view on differential networks and promotes comparability between differential network studies. As an illustrative application, we demonstrate its usefulness on a plant abiotic stress study and we experimentally confirmed a predicted regulator. Diffany is freely available as open-source java library and Cytoscape plugin from http://bioinformatics.psb.ugent.be/supplementary_data/solan/diffany/.
Shlizerman, Eli; Riffell, Jeffrey A.; Kutz, J. Nathan
2014-01-01
The antennal lobe (AL), olfactory processing center in insects, is able to process stimuli into distinct neural activity patterns, called olfactory neural codes. To model their dynamics we perform multichannel recordings from the projection neurons in the AL driven by different odorants. We then derive a dynamic neuronal network from the electrophysiological data. The network consists of lateral-inhibitory neurons and excitatory neurons (modeled as firing-rate units), and is capable of producing unique olfactory neural codes for the tested odorants. To construct the network, we (1) design a projection, an odor space, for the neural recording from the AL, which discriminates between distinct odorants trajectories (2) characterize scent recognition, i.e., decision-making based on olfactory signals and (3) infer the wiring of the neural circuit, the connectome of the AL. We show that the constructed model is consistent with biological observations, such as contrast enhancement and robustness to noise. The study suggests a data-driven approach to answer a key biological question in identifying how lateral inhibitory neurons can be wired to excitatory neurons to permit robust activity patterns. PMID:25165442
NASA Astrophysics Data System (ADS)
Tejedor, A.; Longjas, A.; Foufoula-Georgiou, E.
2017-12-01
Previous work [e.g. Tejedor et al., 2016 - GRL] has demonstrated the potential of using graph theory to study key properties of the structure and dynamics of river delta channel networks. Although the distribution of fluxes in river deltas is mostly driven by the connectivity of its channel network a significant part of the fluxes might also arise from connectivity between the channels and islands due to overland flow and seepage. This channel-island-subsurface interaction creates connectivity pathways which facilitate or inhibit transport depending on their degree of coupling. The question we pose here is how to collectively study system connectivity that emerges from the aggregated action of different processes (different in nature, intensity and time scales). Single-layer graphs as those introduced for delta channel networks are inadequate as they lack the ability to represent coupled processes, and neglecting across-process interactions can lead to mis-representation of the overall system dynamics. We present here a framework that generalizes the traditional representation of networks (single-layer graphs) to the so-called multi-layer networks or multiplex. A multi-layer network conceptualizes the overall connectivity arising from different processes as distinct graphs (layers), while allowing at the same time to represent interactions between layers by introducing interlayer links (across process interactions). We illustrate this framework using a study of the joint connectivity that arises from the coupling of the confined flow on the channel network and the overland flow on islands, on a prototype delta. We show the potential of the multi-layer framework to answer quantitatively questions related to the characteristic time scales to steady-state transport in the system as a whole when different levels of channel-island coupling are modulated by different magnitudes of discharge rates.
Dynamic Data Driven Applications Systems (DDDAS)
2013-03-06
INS • Chip-scale atomic clocks • Ad hoc networks • Polymorphic networks • Agile networks • Laser communications • Frequency-agile RF...atomi clocks • Ad hoc networks • Polymorphic networks • Agile networks • Laser co munications • Frequency-agile RF systems...Real-Time Doppler Wind Wind field Sensor observations Energy Estimation Atmospheric Models for On-line Planning Planning and Control
NASA Astrophysics Data System (ADS)
Li, Ming; Huang, Xiaobo; Kang, Zhan
2015-08-01
Hydrogen is clean, sustainable, and renewable, thus is viewed as promising energy carrier. However, its industrial utilization is greatly hampered by the lack of effective hydrogen storage and release method. Carbon nanotubes (CNTs) were viewed as one of the potential hydrogen containers, but it has been proved that pure CNTs cannot attain the desired target capacity of hydrogen storage. In this paper, we present a numerical study on the material-driven and structure-driven hydrogen adsorption of 3D silicon networks and propose a deformation-driven hydrogen desorption approach based on molecular simulations. Two types of 3D nanostructures, silicon nanotube-network (Si-NN) and silicon film-network (Si-FN), are first investigated in terms of hydrogen adsorption and desorption capacity with grand canonical Monte Carlo simulations. It is revealed that the hydrogen storage capacity is determined by the lithium doping ratio and geometrical parameters, and the maximum hydrogen uptake can be achieved by a 3D nanostructure with optimal configuration and doping ratio obtained through design optimization technique. For hydrogen desorption, a mechanical-deformation-driven-hydrogen-release approach is proposed. Compared with temperature/pressure change-induced hydrogen desorption method, the proposed approach is so effective that nearly complete hydrogen desorption can be achieved by Si-FN nanostructures under sufficient compression but without structural failure observed. The approach is also reversible since the mechanical deformation in Si-FN nanostructures can be elastically recovered, which suggests a good reusability. This study may shed light on the mechanism of hydrogen adsorption and desorption and thus provide useful guidance toward engineering design of microstructural hydrogen (or other gas) adsorption materials.
Multimodal EEG Recordings, Psychometrics and Behavioural Analysis.
Boeijinga, Peter H
2015-01-01
High spatial and temporal resolution measurements of neuronal activity are preferably combined. In an overview on how this approach can take shape, multimodal electroencephalography (EEG) is treated in 2 main parts: by experiments without a task and in the experimentally cued working brain. It concentrates first on the alpha rhythm properties and next on data-driven search for patterns such as the default mode network. The high-resolution volumic distributions of neuronal metabolic indices result in distributed cortical regions and possibly relate to numerous nuclei, observable in a non-invasive manner in the central nervous system of humans. The second part deals with paradigms in which nowadays assessment of target-related networks can align level-dependent blood oxygenation, electrical responses and behaviour, taking the temporal resolution advantages of event-related potentials. Evidence-based electrical propagation in serial tasks during performance is now to a large extent attributed to interconnected pathways, particularly chronometry-dependent ones, throughout a chain including a dorsal stream, next ventral cortical areas taking the flow of information towards inferior temporal domains. The influence of aging is documented, and results of the first multimodal studies in neuropharmacology are consistent. Finally a scope on implementation of advanced clinical applications and personalized marker strategies in neuropsychiatry is indicated. © 2016 S. Karger AG, Basel.
The Unidata LDM Data Distribution System
NASA Astrophysics Data System (ADS)
Emmerson, S.; Yoksas, T. C.; Weber, W. J.; Schmidt, M.
2010-12-01
The Unidata LDM is a near real-time, event-driven system for transmitting frequently-generated data-products, 24/7, from a producer to multiple subscribers using the Internet. Once received, a data-product is processed according to user specifications. A data-product can be anything up to 4 gigabytes in size. Downstream LDM-s register a regular expression based selection predicate with upstream LDM-s. Network topologies include point-to-point, star, and tree. Based on ONC RPC, the LDM system is extremely robust and efficient. Since its initial release in 1994, a network of LDM-s called the Internet Data Distribution (IDD) system has been the primary means by which many if not most Earth Sciences departments in the US obtain and process meteorological data (up to 20 GB/hour and 250k products/hour) with latencies measured in seconds or less. Data-products include numerical model output, radar data, WMO bulletins, and lightning data. Users of the LDM also include the international atmospheric science university community, NOAA, NASA, USGS, the US military, ECMWF, and the meteorological agencies of China, Australia, Brazil, South Korea, and Vietnam. The LDM is the highest volume advanced application on Internet-2 (currently averaging 27 terabytes per week). The LDM history and architecture is presented together with an analysis of its strengths and weaknesses.
Workload Characterization and Performance Implications of Large-Scale Blog Servers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeon, Myeongjae; Kim, Youngjae; Hwang, Jeaho
With the ever-increasing popularity of social network services (SNSs), an understanding of the characteristics of these services and their effects on the behavior of their host servers is critical. However, there has been a lack of research on the workload characterization of servers running SNS applications such as blog services. To fill this void, we empirically characterized real-world web server logs collected from one of the largest South Korean blog hosting sites for 12 consecutive days. The logs consist of more than 96 million HTTP requests and 4.7 TB of network traffic. Our analysis reveals the followings: (i) The transfermore » size of non-multimedia files and blog articles can be modeled using a truncated Pareto distribution and a log-normal distribution, respectively; (ii) User access for blog articles does not show temporal locality, but is strongly biased towards those posted with image or audio files. We additionally discuss the potential performance improvement through clustering of small files on a blog page into contiguous disk blocks, which benefits from the observed file access patterns. Trace-driven simulations show that, on average, the suggested approach achieves 60.6% better system throughput and reduces the processing time for file access by 30.8% compared to the best performance of the Ext4 file system.« less
Optimal information networks: Application for data-driven integrated health in populations
Servadio, Joseph L.; Convertino, Matteo
2018-01-01
Development of composite indicators for integrated health in populations typically relies on a priori assumptions rather than model-free, data-driven evidence. Traditional variable selection processes tend not to consider relatedness and redundancy among variables, instead considering only individual correlations. In addition, a unified method for assessing integrated health statuses of populations is lacking, making systematic comparison among populations impossible. We propose the use of maximum entropy networks (MENets) that use transfer entropy to assess interrelatedness among selected variables considered for inclusion in a composite indicator. We also define optimal information networks (OINs) that are scale-invariant MENets, which use the information in constructed networks for optimal decision-making. Health outcome data from multiple cities in the United States are applied to this method to create a systemic health indicator, representing integrated health in a city. PMID:29423440
Nowak, Jacqueline; Ivakov, Alexander; Somssich, Marc; Persson, Staffan; Nikoloski, Zoran
2017-01-01
The actin cytoskeleton is an essential intracellular filamentous structure that underpins cellular transport and cytoplasmic streaming in plant cells. However, the system-level properties of actin-based cellular trafficking remain tenuous, largely due to the inability to quantify key features of the actin cytoskeleton. Here, we developed an automated image-based, network-driven framework to accurately segment and quantify actin cytoskeletal structures and Golgi transport. We show that the actin cytoskeleton in both growing and elongated hypocotyl cells has structural properties facilitating efficient transport. Our findings suggest that the erratic movement of Golgi is a stable cellular phenomenon that might optimize distribution efficiency of cell material. Moreover, we demonstrate that Golgi transport in hypocotyl cells can be accurately predicted from the actin network topology alone. Thus, our framework provides quantitative evidence for system-wide coordination of cellular transport in plant cells and can be readily applied to investigate cytoskeletal organization and transport in other organisms. PMID:28655850
NASA Astrophysics Data System (ADS)
Bartell, Jennifer A.; Blazier, Anna S.; Yen, Phillip; Thøgersen, Juliane C.; Jelsbak, Lars; Goldberg, Joanna B.; Papin, Jason A.
2017-03-01
Virulence-linked pathways in opportunistic pathogens are putative therapeutic targets that may be associated with less potential for resistance than targets in growth-essential pathways. However, efficacy of virulence-linked targets may be affected by the contribution of virulence-related genes to metabolism. We evaluate the complex interrelationships between growth and virulence-linked pathways using a genome-scale metabolic network reconstruction of Pseudomonas aeruginosa strain PA14 and an updated, expanded reconstruction of P. aeruginosa strain PAO1. The PA14 reconstruction accounts for the activity of 112 virulence-linked genes and virulence factor synthesis pathways that produce 17 unique compounds. We integrate eight published genome-scale mutant screens to validate gene essentiality predictions in rich media, contextualize intra-screen discrepancies and evaluate virulence-linked gene distribution across essentiality datasets. Computational screening further elucidates interconnectivity between inhibition of virulence factor synthesis and growth. Successful validation of selected gene perturbations using PA14 transposon mutants demonstrates the utility of model-driven screening of therapeutic targets.
Temporal asymmetries in Interbank Market: an empirically grounded Agent-Based Model
NASA Astrophysics Data System (ADS)
Zlatic, Vinko; Popovic, Marko; Abraham, Hrvoje; Caldarelli, Guido; Iori, Giulia
2014-03-01
We analyse the changes in the topology of the structure of the E-mid interbank market in the period from September 1st 1999 to September 1st 2009. We uncover a type of temporal irreversibility in the growth of the largest component of the interbank trading network, which is not common to any of the usual network growth models. Such asymmetry, which is also detected on the growth of the clustering and reciprocity coefficient, reveals that the trading mechanism is driven by different dynamics at the beginning and at the end of the day. We are able to recover the complexity of the system by means of a simple Agent Based Model in which the probability of matching between counter parties depends on a time varying vertex fitness (or attractiveness) describing banks liquidity needs. We show that temporal irreversibility is associated with heterogeneity in the banking system and emerges when the distribution of liquidity shocks across banks is broad. We acknowledge support from FET project FOC-II.
A Mathematical Motivation for Complex-Valued Convolutional Networks.
Tygert, Mark; Bruna, Joan; Chintala, Soumith; LeCun, Yann; Piantino, Serkan; Szlam, Arthur
2016-05-01
A complex-valued convolutional network (convnet) implements the repeated application of the following composition of three operations, recursively applying the composition to an input vector of nonnegative real numbers: (1) convolution with complex-valued vectors, followed by (2) taking the absolute value of every entry of the resulting vectors, followed by (3) local averaging. For processing real-valued random vectors, complex-valued convnets can be viewed as data-driven multiscale windowed power spectra, data-driven multiscale windowed absolute spectra, data-driven multiwavelet absolute values, or (in their most general configuration) data-driven nonlinear multiwavelet packets. Indeed, complex-valued convnets can calculate multiscale windowed spectra when the convnet filters are windowed complex-valued exponentials. Standard real-valued convnets, using rectified linear units (ReLUs), sigmoidal (e.g., logistic or tanh) nonlinearities, or max pooling, for example, do not obviously exhibit the same exact correspondence with data-driven wavelets (whereas for complex-valued convnets, the correspondence is much more than just a vague analogy). Courtesy of the exact correspondence, the remarkably rich and rigorous body of mathematical analysis for wavelets applies directly to (complex-valued) convnets.
NASA Astrophysics Data System (ADS)
Fahrul Hassan, Mohd; Jamri, Azmil; Nawawi, Azli; Zaini Yunos, Muhamad; Fauzi Ahmad, Md; Adzila, Sharifah; Nasrull Abdol Rahman, Mohd
2017-08-01
The main purpose of this study is to investigate the performance of a driven fan design made by Polyester/Epoxy interpenetrate polymer network (IPN) material that specifically used for turbocharger compressor. Polyester/Epoxy IPN is polymer plastics that was used as replacements for traditional polymers and has been widely used in a variety of applications because of their limitless conformations. Simulation based on several parameters which are air pressure, air velocity and air temperature have been carried out for a driven fan design performance of two different materials, aluminum alloy (existing driven fan design) and Polyester/Epoxy IPN using SolidWorks Flow Simulation software. Results from both simulations were analyzed and compared where both materials show similar performance in terms of air pressure and air velocity due to similar geometric and dimension, but Polyester/Epoxy IPN produces lower air temperature than aluminum alloy. This study shows a preliminary result of the potential Polyester/Epoxy IPN to be used as a driven fan design material. In the future, further studies will be conducted on detail simulation and experimental analysis.
Network charges in a low CO2 world
NASA Astrophysics Data System (ADS)
Rubino, Alessandro
2018-04-01
New and emerging energy consumption patterns driven by the rise of prosumers may lead to under-recovery of network costs under current network charges, so new tariffs are being sought. A study using detailed household consumption data now illustrates the potentially disproportionate impact of different tariffs on household budgets.
Application of stochastic processes in random growth and evolutionary dynamics
NASA Astrophysics Data System (ADS)
Oikonomou, Panagiotis
We study the effect of power-law distributed randomness on the dynamical behavior of processes such as stochastic growth patterns and evolution. First, we examine the geometrical properties of random shapes produced by a generalized stochastic Loewner Evolution driven by a superposition of a Brownian motion and a stable Levy process. The situation is defined by the usual stochastic Loewner Evolution parameter, kappa, as well as alpha which defines the power-law tail of the stable Levy distribution. We show that the properties of these patterns change qualitatively and singularly at critical values of kappa and alpha. It is reasonable to call such changes "phase transitions". These transitions occur as kappa passes through four and as alpha passes through one. Numerical simulations are used to explore the global scaling behavior of these patterns in each "phase". We show both analytically and numerically that the growth continues indefinitely in the vertical direction for alpha greater than 1, goes as logarithmically with time for alpha equals to 1, and saturates for alpha smaller than 1. The probability density has two different scales corresponding to directions along and perpendicular to the boundary. Scaling functions for the probability density are given for various limiting cases. Second, we study the effect of the architecture of biological networks on their evolutionary dynamics. In recent years, studies of the architecture of large networks have unveiled a common topology, called scale-free, in which a majority of the elements are poorly connected except for a small fraction of highly connected components. We ask how networks with distinct topologies can evolve towards a pre-established target phenotype through a process of random mutations and selection. We use networks of Boolean components as a framework to model a large class of phenotypes. Within this approach, we find that homogeneous random networks and scale-free networks exhibit drastically different evolutionary paths. While homogeneous random networks accumulate neutral mutations and evolve by sparse punctuated steps, scale-free networks evolve rapidly and continuously towards the target phenotype. Moreover, we show that scale-free networks always evolve faster than homogeneous random networks; remarkably, this property does not depend on the precise value of the topological parameter. By contrast, homogeneous random networks require a specific tuning of their topological parameter in order to optimize their fitness. This model suggests that the evolutionary paths of biological networks, punctuated or continuous, may solely be determined by the network topology.
Signaling in large-scale neural networks.
Berg, Rune W; Hounsgaard, Jørn
2009-02-01
We examine the recent finding that neurons in spinal motor circuits enter a high conductance state during functional network activity. The underlying concomitant increase in random inhibitory and excitatory synaptic activity leads to stochastic signal processing. The possible advantages of this metabolically costly organization are analyzed by comparing with synaptically less intense networks driven by the intrinsic response properties of the network neurons.
Strain-driven criticality underlies nonlinear mechanics of fibrous networks
NASA Astrophysics Data System (ADS)
Sharma, A.; Licup, A. J.; Rens, R.; Vahabi, M.; Jansen, K. A.; Koenderink, G. H.; MacKintosh, F. C.
2016-10-01
Networks with only central force interactions are floppy when their average connectivity is below an isostatic threshold. Although such networks are mechanically unstable, they can become rigid when strained. It was recently shown that the transition from floppy to rigid states as a function of simple shear strain is continuous, with hallmark signatures of criticality [Sharma et al., Nature Phys. 12, 584 (2016), 10.1038/nphys3628]. The nonlinear mechanical response of collagen networks was shown to be quantitatively described within the framework of such mechanical critical phenomenon. Here, we provide a more quantitative characterization of critical behavior in subisostatic networks. Using finite-size scaling we demonstrate the divergence of strain fluctuations in the network at well-defined critical strain. We show that the characteristic strain corresponding to the onset of strain stiffening is distinct from but related to this critical strain in a way that depends on critical exponents. We confirm this prediction experimentally for collagen networks. Moreover, we find that the apparent critical exponents are largely independent of the spatial dimensionality. With subisostaticity as the only required condition, strain-driven criticality is expected to be a general feature of biologically relevant fibrous networks.
Comprehensive evaluation index system of total supply capability in distribution network
NASA Astrophysics Data System (ADS)
Zhang, Linyao; Wu, Guilian; Yang, Jingyuan; Jia, Shuangrui; Zhang, Wei; Sun, Weiqing
2018-01-01
Aiming at the lack of a comprehensive evaluation of the distribution network, based on the existing distribution network evaluation index system, combined with the basic principles of constructing the evaluation index, put forward a new evaluation index system of distribution network capacity. This paper is mainly based on the total supply capability of the distribution network, combining single index and various factors, into a multi-evaluation index of the distribution network, thus forming a reasonable index system, and various indicators of rational quantification make the evaluation results more intuitive. In order to have a comprehensive judgment of distribution network, this paper uses weights to analyse the importance of each index, verify the rationality of the index system through the example, it is proved that the rationality of the index system, so as to guide the direction of distribution network planning.
Dynamics of neural cryptography
NASA Astrophysics Data System (ADS)
Ruttor, Andreas; Kinzel, Wolfgang; Kanter, Ido
2007-05-01
Synchronization of neural networks has been used for public channel protocols in cryptography. In the case of tree parity machines the dynamics of both bidirectional synchronization and unidirectional learning is driven by attractive and repulsive stochastic forces. Thus it can be described well by a random walk model for the overlap between participating neural networks. For that purpose transition probabilities and scaling laws for the step sizes are derived analytically. Both these calculations as well as numerical simulations show that bidirectional interaction leads to full synchronization on average. In contrast, successful learning is only possible by means of fluctuations. Consequently, synchronization is much faster than learning, which is essential for the security of the neural key-exchange protocol. However, this qualitative difference between bidirectional and unidirectional interaction vanishes if tree parity machines with more than three hidden units are used, so that those neural networks are not suitable for neural cryptography. In addition, the effective number of keys which can be generated by the neural key-exchange protocol is calculated using the entropy of the weight distribution. As this quantity increases exponentially with the system size, brute-force attacks on neural cryptography can easily be made unfeasible.
Development of an integrated set of research facilities for the support of research flight test
NASA Technical Reports Server (NTRS)
Moore, Archie L.; Harney, Constance D.
1988-01-01
The Ames-Dryden Flight Research Facility (DFRF) serves as the site for high-risk flight research on many one-of-a-kind test vehicles like the X-29A advanced technology demonstrator, F-16 advanced fighter technology integration (AFTI), AFTI F-111 mission adaptive wing, and F-18 high-alpha research vehicle (HARV). Ames-Dryden is on a section of the historic Muroc Range. The facility is oriented toward the testing of high-performance aircraft, as shown by its part in the development of the X-series aircraft. Given the cost of research flight tests and the complexity of today's systems-driven aircraft, an integrated set of ground support experimental facilities is a necessity. In support of the research flight test of highly advanced test beds, the DFRF is developing a network of facilities to expedite the acquisition and distribution of flight research data to the researcher. The network consists of an array of experimental ground-based facilities and systems as nodes and the necessary telecommunications paths to pass research data and information between these facilities. This paper presents the status of the current network, an overview of current developments, and a prospectus on future major enhancements.
A consensus opinion model based on the evolutionary game
NASA Astrophysics Data System (ADS)
Yang, Han-Xin
2016-08-01
We propose a consensus opinion model based on the evolutionary game. In our model, both of the two connected agents receive a benefit if they have the same opinion, otherwise they both pay a cost. Agents update their opinions by comparing payoffs with neighbors. The opinion of an agent with higher payoff is more likely to be imitated. We apply this model in scale-free networks with tunable degree distribution. Interestingly, we find that there exists an optimal ratio of cost to benefit, leading to the shortest consensus time. Qualitative analysis is obtained by examining the evolution of the opinion clusters. Moreover, we find that the consensus time decreases as the average degree of the network increases, but increases with the noise introduced to permit irrational choices. The dependence of the consensus time on the network size is found to be a power-law form. For small or larger ratio of cost to benefit, the consensus time decreases as the degree exponent increases. However, for moderate ratio of cost to benefit, the consensus time increases with the degree exponent. Our results may provide new insights into opinion dynamics driven by the evolutionary game theory.
Prediction of surface distress using neural networks
NASA Astrophysics Data System (ADS)
Hamdi, Hadiwardoyo, Sigit P.; Correia, A. Gomes; Pereira, Paulo; Cortez, Paulo
2017-06-01
Road infrastructures contribute to a healthy economy throughout a sustainable distribution of goods and services. A road network requires appropriately programmed maintenance treatments in order to keep roads assets in good condition, providing maximum safety for road users under a cost-effective approach. Surface Distress is the key element to identify road condition and may be generated by many different factors. In this paper, a new approach is aimed to predict Surface Distress Index (SDI) values following a data-driven approach. Later this model will be accordingly applied by using data obtained from the Integrated Road Management System (IRMS) database. Artificial Neural Networks (ANNs) are used to predict SDI index using input variables related to the surface of distress, i.e., crack area and width, pothole, rutting, patching and depression. The achieved results show that ANN is able to predict SDI with high correlation factor (R2 = 0.996%). Moreover, a sensitivity analysis was applied to the ANN model, revealing the influence of the most relevant input parameters for SDI prediction, namely rutting (59.8%), crack width (29.9%) and crack area (5.0%), patching (3.0%), pothole (1.7%) and depression (0.3%).
An Immunization Strategy for Hidden Populations.
Chen, Saran; Lu, Xin
2017-06-12
Hidden populations, such as injecting drug users (IDUs), sex workers (SWs) and men who have sex with men (MSM), are considered at high risk of contracting and transmitting infectious diseases such as AIDS, gonorrhea, syphilis etc. However, public health interventions to such groups are prohibited due to strong privacy concerns and lack of global information, which is a necessity for traditional strategies such as targeted immunization and acquaintance immunization. In this study, we introduce an innovative intervention strategy to be used in combination with a sampling approach that is widely used for hidden populations, Respondent-driven Sampling (RDS). The RDS strategy is implemented in two steps: First, RDS is used to estimate the average degree (personal network size) and degree distribution of the target population with sample data. Second, a cut-off threshold is calculated and used to screen the respondents to be immunized. Simulations on model networks and real-world networks reveal that the efficiency of the RDS strategy is close to that of the targeted strategy. As the new strategy can be implemented with the RDS sampling process, it provides a cost-efficient and feasible approach for disease intervention and control for hidden populations.
Dynamics of neural cryptography.
Ruttor, Andreas; Kinzel, Wolfgang; Kanter, Ido
2007-05-01
Synchronization of neural networks has been used for public channel protocols in cryptography. In the case of tree parity machines the dynamics of both bidirectional synchronization and unidirectional learning is driven by attractive and repulsive stochastic forces. Thus it can be described well by a random walk model for the overlap between participating neural networks. For that purpose transition probabilities and scaling laws for the step sizes are derived analytically. Both these calculations as well as numerical simulations show that bidirectional interaction leads to full synchronization on average. In contrast, successful learning is only possible by means of fluctuations. Consequently, synchronization is much faster than learning, which is essential for the security of the neural key-exchange protocol. However, this qualitative difference between bidirectional and unidirectional interaction vanishes if tree parity machines with more than three hidden units are used, so that those neural networks are not suitable for neural cryptography. In addition, the effective number of keys which can be generated by the neural key-exchange protocol is calculated using the entropy of the weight distribution. As this quantity increases exponentially with the system size, brute-force attacks on neural cryptography can easily be made unfeasible.
Dynamics of neural cryptography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruttor, Andreas; Kinzel, Wolfgang; Kanter, Ido
2007-05-15
Synchronization of neural networks has been used for public channel protocols in cryptography. In the case of tree parity machines the dynamics of both bidirectional synchronization and unidirectional learning is driven by attractive and repulsive stochastic forces. Thus it can be described well by a random walk model for the overlap between participating neural networks. For that purpose transition probabilities and scaling laws for the step sizes are derived analytically. Both these calculations as well as numerical simulations show that bidirectional interaction leads to full synchronization on average. In contrast, successful learning is only possible by means of fluctuations. Consequently,more » synchronization is much faster than learning, which is essential for the security of the neural key-exchange protocol. However, this qualitative difference between bidirectional and unidirectional interaction vanishes if tree parity machines with more than three hidden units are used, so that those neural networks are not suitable for neural cryptography. In addition, the effective number of keys which can be generated by the neural key-exchange protocol is calculated using the entropy of the weight distribution. As this quantity increases exponentially with the system size, brute-force attacks on neural cryptography can easily be made unfeasible.« less
Short-term forecasting of turbidity in trunk main networks.
Meyers, Gregory; Kapelan, Zoran; Keedwell, Edward
2017-11-01
Water discolouration is an increasingly important and expensive issue due to rising customer expectations, tighter regulatory demands and ageing Water Distribution Systems (WDSs) in the UK and abroad. This paper presents a new turbidity forecasting methodology capable of aiding operational staff and enabling proactive management strategies. The turbidity forecasting methodology developed here is completely data-driven and does not require hydraulic or water quality network model that is expensive to build and maintain. The methodology is tested and verified on a real trunk main network with observed turbidity measurement data. Results obtained show that the methodology can detect if discolouration material is mobilised, estimate if sufficient turbidity will be generated to exceed a preselected threshold and approximate how long the material will take to reach the downstream meter. Classification based forecasts of turbidity can be reliably made up to 5 h ahead although at the expense of increased false alarm rates. The methodology presented here could be used as an early warning system that can enable a multitude of cost beneficial proactive management strategies to be implemented as an alternative to expensive trunk mains cleaning programs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Statistical Maps of Ground Magnetic Disturbance Derived from Global Geospace Models
NASA Astrophysics Data System (ADS)
Rigler, E. J.; Wiltberger, M. J.; Love, J. J.
2017-12-01
Electric currents in space are the principal driver of magnetic variations measured at Earth's surface. These in turn induce geoelectric fields that present a natural hazard for technological systems like high-voltage power distribution networks. Modern global geospace models can reasonably simulate large-scale geomagnetic response to solar wind variations, but they are less successful at deterministic predictions of intense localized geomagnetic activity that most impacts technological systems on the ground. Still, recent studies have shown that these models can accurately reproduce the spatial statistical distributions of geomagnetic activity, suggesting that their physics are largely correct. Since the magnetosphere is a largely externally driven system, most model-measurement discrepancies probably arise from uncertain boundary conditions. So, with realistic distributions of solar wind parameters to establish its boundary conditions, we use the Lyon-Fedder-Mobarry (LFM) geospace model to build a synthetic multivariate statistical model of gridded ground magnetic disturbance. From this, we analyze the spatial modes of geomagnetic response, regress on available measurements to fill in unsampled locations on the grid, and estimate the global probability distribution of extreme magnetic disturbance. The latter offers a prototype geomagnetic "hazard map", similar to those used to characterize better-known geophysical hazards like earthquakes and floods.
Cooperative Learning for Distributed In-Network Traffic Classification
NASA Astrophysics Data System (ADS)
Joseph, S. B.; Loo, H. R.; Ismail, I.; Andromeda, T.; Marsono, M. N.
2017-04-01
Inspired by the concept of autonomic distributed/decentralized network management schemes, we consider the issue of information exchange among distributed network nodes to network performance and promote scalability for in-network monitoring. In this paper, we propose a cooperative learning algorithm for propagation and synchronization of network information among autonomic distributed network nodes for online traffic classification. The results show that network nodes with sharing capability perform better with a higher average accuracy of 89.21% (sharing data) and 88.37% (sharing clusters) compared to 88.06% for nodes without cooperative learning capability. The overall performance indicates that cooperative learning is promising for distributed in-network traffic classification.
NASA Astrophysics Data System (ADS)
Turner, D. P.; Jacobson, A. R.; Nemani, R. R.
2013-12-01
The recent development of large spatially-explicit datasets for multiple variables relevant to monitoring terrestrial carbon flux offers the opportunity to estimate the terrestrial land flux using several alternative, potentially complimentary, approaches. Here we developed and compared regional estimates of net ecosystem exchange (NEE) over the Pacific Northwest region of the U.S. using three approaches. In the prognostic modeling approach, the process-based Biome-BGC model was driven by distributed meteorological station data and was informed by Landsat-based coverages of forest stand age and disturbance regime. In the diagnostic modeling approach, the quasi-mechanistic CFLUX model estimated net ecosystem production (NEP) by upscaling eddy covariance flux tower observations. The model was driven by distributed climate data and MODIS FPAR (the fraction of incident PAR that is absorbed by the vegetation canopy). It was informed by coarse resolution (1 km) data about forest stand age. In both the prognostic and diagnostic modeling approaches, emissions estimates for biomass burning, harvested products, and river/stream evasion were added to model-based NEP to get NEE. The inversion model (CarbonTracker) relied on observations of atmospheric CO2 concentration to optimize prior surface carbon flux estimates. The Pacific Northwest is heterogeneous with respect to land cover and forest management, and repeated surveys of forest inventory plots support the presence of a strong regional carbon sink. The diagnostic model suggested a stronger carbon sink than the prognostic model, and a much larger sink that the inversion model. The introduction of Landsat data on disturbance history served to reduce uncertainty with respect to regional NEE in the diagnostic and prognostic modeling approaches. The FPAR data was particularly helpful in capturing the seasonality of the carbon flux using the diagnostic modeling approach. The inversion approach took advantage of a global network of CO2 observation stations, but had difficulty resolving regional fluxes such as that in the PNW given the still sparse nature of the CO2 measurement network.
Reis, Yara; Wolf, Thomas; Brors, Benedikt; Hamacher-Brady, Anne; Eils, Roland; Brady, Nathan R.
2012-01-01
Mitochondria exist as a network of interconnected organelles undergoing constant fission and fusion. Current approaches to study mitochondrial morphology are limited by low data sampling coupled with manual identification and classification of complex morphological phenotypes. Here we propose an integrated mechanistic and data-driven modeling approach to analyze heterogeneous, quantified datasets and infer relations between mitochondrial morphology and apoptotic events. We initially performed high-content, multi-parametric measurements of mitochondrial morphological, apoptotic, and energetic states by high-resolution imaging of human breast carcinoma MCF-7 cells. Subsequently, decision tree-based analysis was used to automatically classify networked, fragmented, and swollen mitochondrial subpopulations, at the single-cell level and within cell populations. Our results revealed subtle but significant differences in morphology class distributions in response to various apoptotic stimuli. Furthermore, key mitochondrial functional parameters including mitochondrial membrane potential and Bax activation, were measured under matched conditions. Data-driven fuzzy logic modeling was used to explore the non-linear relationships between mitochondrial morphology and apoptotic signaling, combining morphological and functional data as a single model. Modeling results are in accordance with previous studies, where Bax regulates mitochondrial fragmentation, and mitochondrial morphology influences mitochondrial membrane potential. In summary, we established and validated a platform for mitochondrial morphological and functional analysis that can be readily extended with additional datasets. We further discuss the benefits of a flexible systematic approach for elucidating specific and general relationships between mitochondrial morphology and apoptosis. PMID:22272225
Hagmann, Patric; Deco, Gustavo
2015-01-01
How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model’s prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information. PMID:26317432
Optimally Distributed Kalman Filtering with Data-Driven Communication †
Dormann, Katharina
2018-01-01
For multisensor data fusion, distributed state estimation techniques that enable a local processing of sensor data are the means of choice in order to minimize storage and communication costs. In particular, a distributed implementation of the optimal Kalman filter has recently been developed. A significant disadvantage of this algorithm is that the fusion center needs access to each node so as to compute a consistent state estimate, which requires full communication each time an estimate is requested. In this article, different extensions of the optimally distributed Kalman filter are proposed that employ data-driven transmission schemes in order to reduce communication expenses. As a first relaxation of the full-rate communication scheme, it can be shown that each node only has to transmit every second time step without endangering consistency of the fusion result. Also, two data-driven algorithms are introduced that even allow for lower transmission rates, and bounds are derived to guarantee consistent fusion results. Simulations demonstrate that the data-driven distributed filtering schemes can outperform a centralized Kalman filter that requires each measurement to be sent to the center node. PMID:29596392
An opinion-driven behavioral dynamics model for addictive behaviors
Moore, Thomas W.; Finley, Patrick D.; Apelberg, Benjamin J.; ...
2015-04-08
We present a model of behavioral dynamics that combines a social network-based opinion dynamics model with behavioral mapping. The behavioral component is discrete and history-dependent to represent situations in which an individual’s behavior is initially driven by opinion and later constrained by physiological or psychological conditions that serve to maintain the behavior. Additionally, individuals are modeled as nodes in a social network connected by directed edges. Parameter sweeps illustrate model behavior and the effects of individual parameters and parameter interactions on model results. Mapping a continuous opinion variable into a discrete behavioral space induces clustering on directed networks. Clusters providemore » targets of opportunity for influencing the network state; however, the smaller the network the greater the stochasticity and potential variability in outcomes. Furthermore, this has implications both for behaviors that are influenced by close relationships verses those influenced by societal norms and for the effectiveness of strategies for influencing those behaviors.« less
Master stability functions reveal diffusion-driven pattern formation in networks
NASA Astrophysics Data System (ADS)
Brechtel, Andreas; Gramlich, Philipp; Ritterskamp, Daniel; Drossel, Barbara; Gross, Thilo
2018-03-01
We study diffusion-driven pattern formation in networks of networks, a class of multilayer systems, where different layers have the same topology, but different internal dynamics. Agents are assumed to disperse within a layer by undergoing random walks, while they can be created or destroyed by reactions between or within a layer. We show that the stability of homogeneous steady states can be analyzed with a master stability function approach that reveals a deep analogy between pattern formation in networks and pattern formation in continuous space. For illustration, we consider a generalized model of ecological meta-food webs. This fairly complex model describes the dispersal of many different species across a region consisting of a network of individual habitats while subject to realistic, nonlinear predator-prey interactions. In this example, the method reveals the intricate dependence of the dynamics on the spatial structure. The ability of the proposed approach to deal with this fairly complex system highlights it as a promising tool for ecology and other applications.
Entropic forces drive contraction of cytoskeletal networks.
Braun, Marcus; Lansky, Zdenek; Hilitski, Feodor; Dogic, Zvonimir; Diez, Stefan
2016-05-01
The cytoskeleton is a network of interconnected protein filaments, which provide a three-dimensional scaffold for cells. Remodeling of the cytoskeleton is important for key cellular processes, such as cell motility, division, or morphogenesis. This remodeling is traditionally considered to be driven exclusively by processes consuming chemical energy, such as the dynamics of the filaments or the action of molecular motors. Here, we review two mechanisms of cytoskeletal network remodeling that are independent of the consumption of chemical energy. In both cases directed motion of overlapping filaments is driven by entropic forces, which arise from harnessing thermal energy present in solution. Entropic forces are induced either by macromolecular crowding agents or by diffusible crosslinkers confined to the regions where filaments overlap. Both mechanisms increase filament overlap length and lead to the contraction of filament networks. These force-generating mechanisms, together with the chemical energy-dependent mechanisms, need to be considered for the comprehensive quantitative picture of the remodeling of cytoskeletal networks in cells. © 2016 WILEY Periodicals, Inc.
A disassembly-driven mechanism explains F-actin-mediated chromosome transport in starfish oocytes
Bun, Philippe; Dmitrieff, Serge; Belmonte, Julio M
2018-01-01
While contraction of sarcomeric actomyosin assemblies is well understood, this is not the case for disordered networks of actin filaments (F-actin) driving diverse essential processes in animal cells. For example, at the onset of meiosis in starfish oocytes a contractile F-actin network forms in the nuclear region transporting embedded chromosomes to the assembling microtubule spindle. Here, we addressed the mechanism driving contraction of this 3D disordered F-actin network by comparing quantitative observations to computational models. We analyzed 3D chromosome trajectories and imaged filament dynamics to monitor network behavior under various physical and chemical perturbations. We found no evidence of myosin activity driving network contractility. Instead, our observations are well explained by models based on a disassembly-driven contractile mechanism. We reconstitute this disassembly-based contractile system in silico revealing a simple architecture that robustly drives chromosome transport to prevent aneuploidy in the large oocyte, a prerequisite for normal embryonic development. PMID:29350616
Roh, Chul-Young; Moon, M Jae; Jung, Kwangho
2013-11-01
This study examined the impact of ownership, size, location, and network on the relative technical efficiency of community hospitals in Tennessee for the 2002-2006 period, by applying data envelopment analysis (DEA) to measure technical efficiency (decomposed into scale efficiency and pure technical efficiency). Data envelopment analysis results indicate that medium-size hospitals (126-250 beds) are more efficient than their counterparts. Interestingly, public hospitals are significantly more efficient than private and nonprofit hospitals in Tennessee, and rural hospitals are more efficient than urban hospitals. This is the first study to investigate whether hospital networks with other health care providers affect hospital efficiency. Results indicate that community hospitals with networks are more efficient than non-network hospitals. From a management and policy perspective, this study suggests that public policies should induce hospitals to downsize or upsize into optional size, and private hospitals and nonprofit hospitals should change their organizational objectives from profit-driven to quality-driven.
Bluetooth-based wireless sensor networks
NASA Astrophysics Data System (ADS)
You, Ke; Liu, Rui Qiang
2007-11-01
In this work a Bluetooth-based wireless sensor network is proposed. In this bluetooth-based wireless sensor networks, information-driven star topology and energy-saved mode are used, through which a blue master node can control more than seven slave node, the energy of each sensor node is reduced and secure management of each sensor node is improved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, Christopher S.; Bernstein, Hans C.; Weisenhorn, Pamela
Metabolic network modeling of microbial communities provides an in-depth understanding of community-wide metabolic and regulatory processes. Compared to single organism analyses, community metabolic network modeling is more complex because it needs to account for interspecies interactions. To date, most approaches focus on reconstruction of high-quality individual networks so that, when combined, they can predict community behaviors as a result of interspecies interactions. However, this conventional method becomes ineffective for communities whose members are not well characterized and cannot be experimentally interrogated in isolation. Here, we tested a new approach that uses community-level data as a critical input for the networkmore » reconstruction process. This method focuses on directly predicting interspecies metabolic interactions in a community, when axenic information is insufficient. We validated our method through the case study of a bacterial photoautotroph-heterotroph consortium that was used to provide data needed for a community-level metabolic network reconstruction. Resulting simulations provided experimentally validated predictions of how a photoautotrophic cyanobacterium supports the growth of an obligate heterotrophic species by providing organic carbon and nitrogen sources.« less
The Dynamical Balance of the Brain at Rest
Deco, Gustavo; Corbetta, Maurizio
2014-01-01
We review evidence that spontaneous, i.e. not stimulus- or task-driven, activity in the brain is not noise, but orderly organized at the level of large scale systems in a series of functional networks that maintain at all times a high level of coherence. These networks of spontaneous activity correlation or resting state networks (RSN) are closely related to the underlying anatomical connectivity, but their topography is also gated by the history of prior task activation. Network coherence does not depend on covert cognitive activity, but its strength and integrity relates to behavioral performance. Some RSN are functionally organized as dynamically competing systems both at rest and during tasks. Computational studies show that one of such dynamics, the anti-correlation between networks, depends on noise driven transitions between different multi-stable cluster synchronization states. These multi-stable states emerge because of transmission delays between regions that are modeled as coupled oscillators systems. Large-scale systems dynamics are useful for keeping different functional sub-networks in a state of heightened competition, which can be stabilized and fired by even small modulations of either sensory or internal signals. PMID:21196530
Accelerating consensus on coevolving networks: The effect of committed individuals
NASA Astrophysics Data System (ADS)
Singh, P.; Sreenivasan, S.; Szymanski, B. K.; Korniss, G.
2012-04-01
Social networks are not static but, rather, constantly evolve in time. One of the elements thought to drive the evolution of social network structure is homophily—the need for individuals to connect with others who are similar to them. In this paper, we study how the spread of a new opinion, idea, or behavior on such a homophily-driven social network is affected by the changing network structure. In particular, using simulations, we study a variant of the Axelrod model on a network with a homophily-driven rewiring rule imposed. First, we find that the presence of rewiring within the network, in general, impedes the reaching of consensus in opinion, as the time to reach consensus diverges exponentially with network size N. We then investigate whether the introduction of committed individuals who are rigid in their opinion on a particular issue can speed up the convergence to consensus on that issue. We demonstrate that as committed agents are added, beyond a critical value of the committed fraction, the consensus time growth becomes logarithmic in network size N. Furthermore, we show that slight changes in the interaction rule can produce strikingly different results in the scaling behavior of consensus time, Tc. However, the benefit gained by introducing committed agents is qualitatively preserved across all the interaction rules we consider.
Non-Equlibrium Driven Dynamics of Continuous Attractors in Place Cell Networks
NASA Astrophysics Data System (ADS)
Zhong, Weishun; Kim, Hyun Jin; Schwab, David; Murugan, Arvind
Attractors have found much use in neuroscience as a means of information processing and decision making. Examples include associative memory with point and continuous attractors, spatial navigation and planning using place cell networks, dynamic pattern recognition among others. The functional use of such attractors requires the action of spatially and temporally varying external driving signals and yet, most theoretical work on attractors has been in the limit of small or no drive. We take steps towards understanding the non-equilibrium driven dynamics of continuous attractors in place cell networks. We establish an `equivalence principle' that relates fluctuations under a time-dependent external force to equilibrium fluctuations in a `co-moving' frame with only static forces, much like in Newtonian physics. Consequently, we analytically derive a network's capacity to encode multiple attractors as a function of the driving signal size and rate of change.
Network-based simulation of aircraft at gates in airport terminals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Y.
1998-03-01
Simulation is becoming an essential tool for planning, design, and management of airport facilities. A simulation of aircraft at gates at an airport can be applied for various periodically performed applications, relating to the dynamic behavior of aircraft at gates in airport terminals for analyses, evaluations, and decision supports. Conventionally, such simulations are implemented using an event-driven method. For a more efficient simulation, this paper proposes a network-based method. The basic idea is to transform all the sequence constraint relations of aircraft at gates into a network. The simulation is done by calculating the longest path to all the nodesmore » in the network. The effect of the algorithm of the proposed method has been examined by experiments, and the superiority of the proposed method over the event-driven method is revealed through comprehensive comparisons of their overall simulation performance.« less
Self-assembly of thin, triangular prisms into open networks at a flat air-water interface
NASA Astrophysics Data System (ADS)
Solomon, Michael; Ferrar, Joseph; Bedi, Deshpreet; Zhou, Shangnan; Mao, Xiaoming
We observe capillary-driven binding between thin, equilateral triangle microprisms at a flat air-water interface. The triangles are fabricated from epoxy resin via SU-8 photolithography. For small thickness to length (T/L) ratios, two distinct pairwise particle-particle binding events occur with roughly equal frequency, and optical and environmental scanning electron microscopy (eSEM) demonstrate that these two distinct binding events are driven by the specific manner in which the interface is pinned to the particle surface. Additionally, particle bending is observed for the lowest T/L ratios, which leads to enhanced interface curvature and thus enhanced strength of capillary-driven attractions, and may also play a pivotal role in the dichotomy in particle-particle binding. Dichotomy in particle-particle binding is not observed at thicker T/L ratios, although capillary-driven binding still occurs. Ultimately, the particles self-assemble into space-spanning open networks, and the results suggest design parameters for the fabrication of building blocks of ordered open structures, such as the Kagome lattice.
Khan, Bilal; Lee, Hsuan-Wei; Fellows, Ian; Dombrowski, Kirk
2018-01-01
Size estimation is particularly important for populations whose members experience disproportionate health issues or pose elevated health risks to the ambient social structures in which they are embedded. Efforts to derive size estimates are often frustrated when the population is hidden or hard-to-reach in ways that preclude conventional survey strategies, as is the case when social stigma is associated with group membership or when group members are involved in illegal activities. This paper extends prior research on the problem of network population size estimation, building on established survey/sampling methodologies commonly used with hard-to-reach groups. Three novel one-step, network-based population size estimators are presented, for use in the context of uniform random sampling, respondent-driven sampling, and when networks exhibit significant clustering effects. We give provably sufficient conditions for the consistency of these estimators in large configuration networks. Simulation experiments across a wide range of synthetic network topologies validate the performance of the estimators, which also perform well on a real-world location-based social networking data set with significant clustering. Finally, the proposed schemes are extended to allow them to be used in settings where participant anonymity is required. Systematic experiments show favorable tradeoffs between anonymity guarantees and estimator performance. Taken together, we demonstrate that reasonable population size estimates are derived from anonymous respondent driven samples of 250-750 individuals, within ambient populations of 5,000-40,000. The method thus represents a novel and cost-effective means for health planners and those agencies concerned with health and disease surveillance to estimate the size of hidden populations. We discuss limitations and future work in the concluding section.
Event-driven simulations of nonlinear integrate-and-fire neurons.
Tonnelier, Arnaud; Belmabrouk, Hana; Martinez, Dominique
2007-12-01
Event-driven strategies have been used to simulate spiking neural networks exactly. Previous work is limited to linear integrate-and-fire neurons. In this note, we extend event-driven schemes to a class of nonlinear integrate-and-fire models. Results are presented for the quadratic integrate-and-fire model with instantaneous or exponential synaptic currents. Extensions to conductance-based currents and exponential integrate-and-fire neurons are discussed.
Inter-subject phase synchronization for exploratory analysis of task-fMRI.
Bolt, Taylor; Nomi, Jason S; Vij, Shruti G; Chang, Catie; Uddin, Lucina Q
2018-08-01
Analysis of task-based fMRI data is conventionally carried out using a hypothesis-driven approach, where blood-oxygen-level dependent (BOLD) time courses are correlated with a hypothesized temporal structure. In some experimental designs, this temporal structure can be difficult to define. In other cases, experimenters may wish to take a more exploratory, data-driven approach to detecting task-driven BOLD activity. In this study, we demonstrate the efficiency and power of an inter-subject synchronization approach for exploratory analysis of task-based fMRI data. Combining the tools of instantaneous phase synchronization and independent component analysis, we characterize whole-brain task-driven responses in terms of group-wise similarity in temporal signal dynamics of brain networks. We applied this framework to fMRI data collected during performance of a simple motor task and a social cognitive task. Analyses using an inter-subject phase synchronization approach revealed a large number of brain networks that dynamically synchronized to various features of the task, often not predicted by the hypothesized temporal structure of the task. We suggest that this methodological framework, along with readily available tools in the fMRI community, provides a powerful exploratory, data-driven approach for analysis of task-driven BOLD activity. Copyright © 2018 Elsevier Inc. All rights reserved.
Moon, Hyun Ho; Lee, Jong Joo; Choi, Sang Yule; Cha, Jae Sang; Kang, Jang Mook; Kim, Jong Tae; Shin, Myong Chul
2011-01-01
Recently there have been many studies of power systems with a focus on “New and Renewable Energy” as part of “New Growth Engine Industry” promoted by the Korean government. “New And Renewable Energy”—especially focused on wind energy, solar energy and fuel cells that will replace conventional fossil fuels—is a part of the Power-IT Sector which is the basis of the SmartGrid. A SmartGrid is a form of highly-efficient intelligent electricity network that allows interactivity (two-way communications) between suppliers and consumers by utilizing information technology in electricity production, transmission, distribution and consumption. The New and Renewable Energy Program has been driven with a goal to develop and spread through intensive studies, by public or private institutions, new and renewable energy which, unlike conventional systems, have been operated through connections with various kinds of distributed power generation systems. Considerable research on smart grids has been pursued in the United States and Europe. In the United States, a variety of research activities on the smart power grid have been conducted within EPRI’s IntelliGrid research program. The European Union (EU), which represents Europe’s Smart Grid policy, has focused on an expansion of distributed generation (decentralized generation) and power trade between countries with improved environmental protection. Thus, there is current emphasis on a need for studies that assesses the economic efficiency of such distributed generation systems. In this paper, based on the cost of distributed power generation capacity, calculations of the best profits obtainable were made by a Monte Carlo simulation. Monte Carlo simulations that rely on repeated random sampling to compute their results take into account the cost of electricity production, daily loads and the cost of sales and generate a result faster than mathematical computations. In addition, we have suggested the optimal design, which considers the distribution loss associated with power distribution systems focus on sensing aspect and distributed power generation. PMID:22164047
Caballero, Víctor; Vernet, David; Zaballos, Agustín; Corral, Guiomar
2018-01-30
Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs) layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid's Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction.
Dynamics of person-to-person interactions from distributed RFID sensor networks.
Cattuto, Ciro; Van den Broeck, Wouter; Barrat, Alain; Colizza, Vittoria; Pinton, Jean-François; Vespignani, Alessandro
2010-07-15
Digital networks, mobile devices, and the possibility of mining the ever-increasing amount of digital traces that we leave behind in our daily activities are changing the way we can approach the study of human and social interactions. Large-scale datasets, however, are mostly available for collective and statistical behaviors, at coarse granularities, while high-resolution data on person-to-person interactions are generally limited to relatively small groups of individuals. Here we present a scalable experimental framework for gathering real-time data resolving face-to-face social interactions with tunable spatial and temporal granularities. We use active Radio Frequency Identification (RFID) devices that assess mutual proximity in a distributed fashion by exchanging low-power radio packets. We analyze the dynamics of person-to-person interaction networks obtained in three high-resolution experiments carried out at different orders of magnitude in community size. The data sets exhibit common statistical properties and lack of a characteristic time scale from 20 seconds to several hours. The association between the number of connections and their duration shows an interesting super-linear behavior, which indicates the possibility of defining super-connectors both in the number and intensity of connections. Taking advantage of scalability and resolution, this experimental framework allows the monitoring of social interactions, uncovering similarities in the way individuals interact in different contexts, and identifying patterns of super-connector behavior in the community. These results could impact our understanding of all phenomena driven by face-to-face interactions, such as the spreading of transmissible infectious diseases and information.
Dai, Wenrui; Xiong, Hongkai; Jiang, Xiaoqian; Chen, Chang Wen
2014-01-01
This paper proposes a novel model on intra coding for High Efficiency Video Coding (HEVC), which simultaneously predicts blocks of pixels with optimal rate distortion. It utilizes the spatial statistical correlation for the optimal prediction based on 2-D contexts, in addition to formulating the data-driven structural interdependences to make the prediction error coherent with the probability distribution, which is desirable for successful transform and coding. The structured set prediction model incorporates a max-margin Markov network (M3N) to regulate and optimize multiple block predictions. The model parameters are learned by discriminating the actual pixel value from other possible estimates to maximize the margin (i.e., decision boundary bandwidth). Compared to existing methods that focus on minimizing prediction error, the M3N-based model adaptively maintains the coherence for a set of predictions. Specifically, the proposed model concurrently optimizes a set of predictions by associating the loss for individual blocks to the joint distribution of succeeding discrete cosine transform coefficients. When the sample size grows, the prediction error is asymptotically upper bounded by the training error under the decomposable loss function. As an internal step, we optimize the underlying Markov network structure to find states that achieve the maximal energy using expectation propagation. For validation, we integrate the proposed model into HEVC for optimal mode selection on rate-distortion optimization. The proposed prediction model obtains up to 2.85% bit rate reduction and achieves better visual quality in comparison to the HEVC intra coding. PMID:25505829
Vernet, David; Corral, Guiomar
2018-01-01
Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs) layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid’s Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction. PMID:29385748
Asymptotic theory of time-varying social networks with heterogeneous activity and tie allocation.
Ubaldi, Enrico; Perra, Nicola; Karsai, Márton; Vezzani, Alessandro; Burioni, Raffaella; Vespignani, Alessandro
2016-10-24
The dynamic of social networks is driven by the interplay between diverse mechanisms that still challenge our theoretical and modelling efforts. Amongst them, two are known to play a central role in shaping the networks evolution, namely the heterogeneous propensity of individuals to i) be socially active and ii) establish a new social relationships with their alters. Here, we empirically characterise these two mechanisms in seven real networks describing temporal human interactions in three different settings: scientific collaborations, Twitter mentions, and mobile phone calls. We find that the individuals' social activity and their strategy in choosing ties where to allocate their social interactions can be quantitatively described and encoded in a simple stochastic network modelling framework. The Master Equation of the model can be solved in the asymptotic limit. The analytical solutions provide an explicit description of both the system dynamic and the dynamical scaling laws characterising crucial aspects about the evolution of the networks. The analytical predictions match with accuracy the empirical observations, thus validating the theoretical approach. Our results provide a rigorous dynamical system framework that can be extended to include other processes shaping social dynamics and to generate data driven predictions for the asymptotic behaviour of social networks.
Asymptotic theory of time-varying social networks with heterogeneous activity and tie allocation
NASA Astrophysics Data System (ADS)
Ubaldi, Enrico; Perra, Nicola; Karsai, Márton; Vezzani, Alessandro; Burioni, Raffaella; Vespignani, Alessandro
2016-10-01
The dynamic of social networks is driven by the interplay between diverse mechanisms that still challenge our theoretical and modelling efforts. Amongst them, two are known to play a central role in shaping the networks evolution, namely the heterogeneous propensity of individuals to i) be socially active and ii) establish a new social relationships with their alters. Here, we empirically characterise these two mechanisms in seven real networks describing temporal human interactions in three different settings: scientific collaborations, Twitter mentions, and mobile phone calls. We find that the individuals’ social activity and their strategy in choosing ties where to allocate their social interactions can be quantitatively described and encoded in a simple stochastic network modelling framework. The Master Equation of the model can be solved in the asymptotic limit. The analytical solutions provide an explicit description of both the system dynamic and the dynamical scaling laws characterising crucial aspects about the evolution of the networks. The analytical predictions match with accuracy the empirical observations, thus validating the theoretical approach. Our results provide a rigorous dynamical system framework that can be extended to include other processes shaping social dynamics and to generate data driven predictions for the asymptotic behaviour of social networks.
Analysis of critical operating conditions for LV distribution networks with microgrids
NASA Astrophysics Data System (ADS)
Zehir, M. A.; Batman, A.; Sonmez, M. A.; Font, A.; Tsiamitros, D.; Stimoniaris, D.; Kollatou, T.; Bagriyanik, M.; Ozdemir, A.; Dialynas, E.
2016-11-01
Increase in the penetration of Distributed Generation (DG) in distribution networks, raises the risk of voltage limit violations while contributing to line losses. Especially in low voltage (LV) distribution networks (secondary distribution networks), impacts of active power flows on the bus voltages and on the network losses are more dominant. As network operators must meet regulatory limitations, they have to take into account the most critical operating conditions in their systems. In this study, it is aimed to present the impact of the worst operation cases of LV distribution networks comprising microgrids. Simulation studies are performed on a field data-based virtual test-bed. The simulations are repeated for several cases consisting different microgrid points of connection with different network loading and microgrid supply/demand conditions.
Transfer functions of double- and multiple-cavity Fabry-Perot filters driven by Lorentzian sources.
Marti, J; Capmany, J
1996-12-20
We derive expressions for the transfer functions of double- and multiple-cavity Fabry-Perot filters driven by laser sources with Lorentzian spectrum. These are of interest because of their applications in sensing and channel filtering in optical frequency-division multiplexing networks.
Transfer functions of double- and multiple-cavity Fabry Perot filters driven by Lorentzian sources
NASA Astrophysics Data System (ADS)
Marti, Javier; Capmany, Jose
1996-12-01
We derive expressions for the transfer functions of double- and multiple-cavity Fabry Perot filters driven by laser sources with Lorentzian spectrum. These are of interest because of their applications in sensing and channel filtering in optical frequency-division multiplexing networks.
The dynamics of information-driven coordination phenomena: A transfer entropy analysis
Borge-Holthoefer, Javier; Perra, Nicola; Gonçalves, Bruno; González-Bailón, Sandra; Arenas, Alex; Moreno, Yamir; Vespignani, Alessandro
2016-01-01
Data from social media provide unprecedented opportunities to investigate the processes that govern the dynamics of collective social phenomena. We consider an information theoretical approach to define and measure the temporal and structural signatures typical of collective social events as they arise and gain prominence. We use the symbolic transfer entropy analysis of microblogging time series to extract directed networks of influence among geolocalized subunits in social systems. This methodology captures the emergence of system-level dynamics close to the onset of socially relevant collective phenomena. The framework is validated against a detailed empirical analysis of five case studies. In particular, we identify a change in the characteristic time scale of the information transfer that flags the onset of information-driven collective phenomena. Furthermore, our approach identifies an order-disorder transition in the directed network of influence between social subunits. In the absence of clear exogenous driving, social collective phenomena can be represented as endogenously driven structural transitions of the information transfer network. This study provides results that can help define models and predictive algorithms for the analysis of societal events based on open source data. PMID:27051875
Arayasirikul, Sean; Chen, Yea-Hung; Jin, Harry; Wilson, Erin
2016-06-01
Respondent-driven sampling (RDS) peer referral has been proven to be an effective recruitment method for hard-to-reach populations; however, its application in diverse populations is limited. Recruitment occurred in two phases: RDS-only followed by development and implementation of an online social network strategy in combination with RDS peer referral (RDS + SNS). Compared to RDS-only, RDS + SNS reached a sample that was younger (χ(2) = 9.19, P = .03), more likely to identify with a non-binary gender identity (χ(2) = 10.4247, P = .03), with less housing instability (50.5 vs. 68.6 %, χ(2) = 9.0038, P = .002) and less sex work (19.7 vs. 31.4 %, χ(2) = 5.0798, P = .02). Additionally, we describe lessons learned as a result of implementing our online social network strategy. Our findings underscore the importance of integrating Internet-driven strategies to meet challenges in sample diversity and recruitment of young transwomen.
The dynamics of information-driven coordination phenomena: A transfer entropy analysis.
Borge-Holthoefer, Javier; Perra, Nicola; Gonçalves, Bruno; González-Bailón, Sandra; Arenas, Alex; Moreno, Yamir; Vespignani, Alessandro
2016-04-01
Data from social media provide unprecedented opportunities to investigate the processes that govern the dynamics of collective social phenomena. We consider an information theoretical approach to define and measure the temporal and structural signatures typical of collective social events as they arise and gain prominence. We use the symbolic transfer entropy analysis of microblogging time series to extract directed networks of influence among geolocalized subunits in social systems. This methodology captures the emergence of system-level dynamics close to the onset of socially relevant collective phenomena. The framework is validated against a detailed empirical analysis of five case studies. In particular, we identify a change in the characteristic time scale of the information transfer that flags the onset of information-driven collective phenomena. Furthermore, our approach identifies an order-disorder transition in the directed network of influence between social subunits. In the absence of clear exogenous driving, social collective phenomena can be represented as endogenously driven structural transitions of the information transfer network. This study provides results that can help define models and predictive algorithms for the analysis of societal events based on open source data.
NASA Technical Reports Server (NTRS)
Miller, D. W.
1981-01-01
A prototype of a linear inertial reaction actuation (damper) device employing a flexure-pivoted reaction (proof) mass is discussed. The mass is driven by an electromechanic motor using a dc electromagnetic field and an ac electromagnetic drive. During the damping process, the actuator dissipates structural kinetic energy as heat through electromagnetic damping. A model of the inertial, stiffness and damping properties is presented along with the characteristic differential equations describing the coupled response of the actuator and structure. The equations, employing the dynamic coefficients, are oriented in the form of a feedback control network in which distributed sensors are used to dictate actuator response leading to a specified amount of structural excitation or damping.
Instrumentation complex for Langley Research Center's National Transonic Facility
NASA Technical Reports Server (NTRS)
Russell, C. H.; Bryant, C. S.
1977-01-01
The instrumentation discussed in the present paper was developed to ensure reliable operation for a 2.5-meter cryogenic high-Reynolds-number fan-driven transonic wind tunnel. It will incorporate four CPU's and associated analog and digital input/output equipment, necessary for acquiring research data, controlling the tunnel parameters, and monitoring the process conditions. Connected in a multipoint distributed network, the CPU's will support data base management and processing; research measurement data acquisition and display; process monitoring; and communication control. The design will allow essential processes to continue, in the case of major hardware failures, by switching input/output equipment to alternate CPU's and by eliminating nonessential functions. It will also permit software modularization by CPU activity and thereby reduce complexity and development time.
Equation-based model for the stock market
NASA Astrophysics Data System (ADS)
Xavier, Paloma O. C.; Atman, A. P. F.; de Magalhães, A. R. Bosco
2017-09-01
We propose a stock market model which is investigated in the forms of difference and differential equations whose variables correspond to the demand or supply of each agent and to the price. In the model, agents are driven by the behavior of their trust contact network as well by fundamental analysis. By means of the deterministic version of the model, the connection between such drive mechanisms and the price is analyzed: imitation behavior promotes market instability, finitude of resources is associated to stock index stability, and high sensitivity to the fair price provokes price oscillations. Long-range correlations in the price temporal series and heavy-tailed distribution of returns are observed for the version of the model which considers different proposals for stochasticity of microeconomic and macroeconomic origins.
Integrating Data Distribution and Data Assimilation Between the OOI CI and the NOAA DIF
NASA Astrophysics Data System (ADS)
Meisinger, M.; Arrott, M.; Clemesha, A.; Farcas, C.; Farcas, E.; Im, T.; Schofield, O.; Krueger, I.; Klacansky, I.; Orcutt, J.; Peach, C.; Chave, A.; Raymer, D.; Vernon, F.
2008-12-01
The Ocean Observatories Initiative (OOI) is an NSF funded program to establish the ocean observing infrastructure of the 21st century benefiting research and education. It is currently approaching final design and promises to deliver cyber and physical observatory infrastructure components as well as substantial core instrumentation to study environmental processes of the ocean at various scales, from coastal shelf-slope exchange processes to the deep ocean. The OOI's data distribution network lies at the heart of its cyber- infrastructure, which enables a multitude of science and education applications, ranging from data analysis, to processing, visualization and ontology supported query and mediation. In addition, it fundamentally supports a class of applications exploiting the knowledge gained from analyzing observational data for objective-driven ocean observing applications, such as automatically triggered response to episodic environmental events and interactive instrument tasking and control. The U.S. Department of Commerce through NOAA operates the Integrated Ocean Observing System (IOOS) providing continuous data in various formats, rates and scales on open oceans and coastal waters to scientists, managers, businesses, governments, and the public to support research and inform decision-making. The NOAA IOOS program initiated development of the Data Integration Framework (DIF) to improve management and delivery of an initial subset of ocean observations with the expectation of achieving improvements in a select set of NOAA's decision-support tools. Both OOI and NOAA through DIF collaborate on an effort to integrate the data distribution, access and analysis needs of both programs. We present details and early findings from this collaboration; one part of it is the development of a demonstrator combining web-based user access to oceanographic data through ERDDAP, efficient science data distribution, and scalable, self-healing deployment in a cloud computing environment. ERDDAP is a web-based front-end application integrating oceanographic data sources of various formats, for instance CDF data files as aggregated through NcML or presented using a THREDDS server. The OOI-designed data distribution network provides global traffic management and computational load balancing for observatory resources; it makes use of the OpenDAP Data Access Protocol (DAP) for efficient canonical science data distribution over the network. A cloud computing strategy is the basis for scalable, self-healing organization of an observatory's computing and storage resources, independent of the physical location and technical implementation of these resources.
Friedman, Amy L.; Burgess, Ashley; Ramaseshan, Karthik; Easter, Phil; Khatib, Dalal; Chowdury, Asadur; Arnold, Paul D.; Hanna, Gregory L.; Rosenberg, David R.; Diwadkar, Vaibhav A.
2017-01-01
In an effort to elucidate differences in functioning brain networks between youth with obsessive-compulsive disorder and controls, we used fMRI signals to analyze brain network interactions of the dorsal anterior cingulate cortex (dACC) during visually coordinated motor responses. Subjects made a uni-manual response to briefly presented probes, at periodic (allowing participants to maintain a “motor set”) or random intervals (demanding reactive responses). Network interactions were assessed using psycho-physiological interaction (PPI), a basic model of functional connectivity evaluating modulatory effects of the dACC in the context of each task condition. Across conditions, OCD were characterized by hyper-modulation by the dACC, with loci alternatively observed as both condition-general and condition-specific. Thus, dynamically driven task demands during simple uni-manual motor control induce compensatory network interactions in cortical-thalamic regions in OCD. These findings support previous research in OCD showing compensatory network interactions during complex memory tasks, but establish that these network effects are observed during basic sensorimotor processing. Thus, these patterns of network dysfunction may in fact be independent of the complexity of tasks used to induce brain network activity. Hypothesis-driven approaches coupled with sophisticated network analyses are a highly valuable approach in using fMRI to uncover mechanisms in disorders like OCD. PMID:27992792
NASA Astrophysics Data System (ADS)
Frew, E.; Argrow, B. M.; Houston, A. L.; Weiss, C.
2014-12-01
The energy-aware airborne dynamic, data-driven application system (EA-DDDAS) performs persistent sampling in complex atmospheric conditions by exploiting wind energy using the dynamic data-driven application system paradigm. The main challenge for future airborne sampling missions is operation with tight integration of physical and computational resources over wireless communication networks, in complex atmospheric conditions. The physical resources considered here include sensor platforms, particularly mobile Doppler radar and unmanned aircraft, the complex conditions in which they operate, and the region of interest. Autonomous operation requires distributed computational effort connected by layered wireless communication. Onboard decision-making and coordination algorithms can be enhanced by atmospheric models that assimilate input from physics-based models and wind fields derived from multiple sources. These models are generally too complex to be run onboard the aircraft, so they need to be executed in ground vehicles in the field, and connected over broadband or other wireless links back to the field. Finally, the wind field environment drives strong interaction between the computational and physical systems, both as a challenge to autonomous path planning algorithms and as a novel energy source that can be exploited to improve system range and endurance. Implementation details of a complete EA-DDDAS will be provided, along with preliminary flight test results targeting coherent boundary-layer structures.
Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations
2011-01-01
Background Previous one-dimensional network modeling of the cerebellar granular layer has been successfully linked with a range of cerebellar cortex oscillations observed in vivo. However, the recent discovery of gap junctions between Golgi cells (GoCs), which may cause oscillations by themselves, has raised the question of how gap-junction coupling affects GoC and granular-layer oscillations. To investigate this question, we developed a novel two-dimensional computational model of the GoC-granule cell (GC) circuit with and without gap junctions between GoCs. Results Isolated GoCs coupled by gap junctions had a strong tendency to generate spontaneous oscillations without affecting their mean firing frequencies in response to distributed mossy fiber input. Conversely, when GoCs were synaptically connected in the granular layer, gap junctions increased the power of the oscillations, but the oscillations were primarily driven by the synaptic feedback loop between GoCs and GCs, and the gap junctions did not change oscillation frequency or the mean firing rate of either GoCs or GCs. Conclusion Our modeling results suggest that gap junctions between GoCs increase the robustness of cerebellar cortex oscillations that are primarily driven by the feedback loop between GoCs and GCs. The robustness effect of gap junctions on synaptically driven oscillations observed in our model may be a general mechanism, also present in other regions of the brain. PMID:22330240
Power-Law Statistics of Driven Reconnection in the Magnetically Closed Corona
NASA Technical Reports Server (NTRS)
Klimchuk, J. A.; DeVore, C. R.; Knizhnik, K. J.; Uritskiy, V. M.
2018-01-01
Numerous observations have revealed that power-law distributions are ubiquitous in energetic solar processes. Hard X-rays, soft X-rays, extreme ultraviolet radiation, and radio waves all display power-law frequency distributions. Since magnetic reconnection is the driving mechanism for many energetic solar phenomena, it is likely that reconnection events themselves display such power-law distributions. In this work, we perform numerical simulations of the solar corona driven by simple convective motions at the photospheric level. Using temperature changes, current distributions, and Poynting fluxes as proxies for heating, we demonstrate that energetic events occurring in our simulation display power-law frequency distributions, with slopes in good agreement with observations. We suggest that the braiding-associated reconnection in the corona can be understood in terms of a self-organized criticality model driven by convective rotational motions similar to those observed at the photosphere.
NASA Astrophysics Data System (ADS)
Sprovieri, Francesca; Pirrone, Nicola; Bencardino, Mariantonia; D'Amore, Francesco; Carbone, Francesco; Cinnirella, Sergio; Mannarino, Valentino; Landis, Matthew; Ebinghaus, Ralf; Weigelt, Andreas; Brunke, Ernst-Günther; Labuschagne, Casper; Martin, Lynwill; Munthe, John; Wängberg, Ingvar; Artaxo, Paulo; Morais, Fernando; Barbosa, Henrique de Melo Jorge; Brito, Joel; Cairns, Warren; Barbante, Carlo; Diéguez, María del Carmen; Garcia, Patricia Elizabeth; Dommergue, Aurélien; Angot, Helene; Magand, Olivier; Skov, Henrik; Horvat, Milena; Kotnik, Jože; Read, Katie Alana; Mendes Neves, Luis; Gawlik, Bernd Manfred; Sena, Fabrizio; Mashyanov, Nikolay; Obolkin, Vladimir; Wip, Dennis; Feng, Xin Bin; Zhang, Hui; Fu, Xuewu; Ramachandran, Ramesh; Cossa, Daniel; Knoery, Joël; Marusczak, Nicolas; Nerentorp, Michelle; Norstrom, Claus
2016-09-01
Long-term monitoring of data of ambient mercury (Hg) on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS) project was funded by the European Commission (http://www.gmos.eu) and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010-2015), analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.
Mechanistic principles of colloidal crystal growth by evaporation-induced convective steering.
Brewer, Damien D; Allen, Joshua; Miller, Michael R; de Santos, Juan M; Kumar, Satish; Norris, David J; Tsapatsis, Michael; Scriven, L E
2008-12-02
We simulate evaporation-driven self-assembly of colloidal crystals using an equivalent network model. Relationships between a regular hexagonally close-packed array of hard, monodisperse spheres, the associated pore space, and selectivity mechanisms for face-centered cubic microstructure propagation are described. By accounting for contact line rearrangement and evaporation at a series of exposed menisci, the equivalent network model describes creeping flow of solvent into and through a rigid colloidal crystal. Observations concerning colloidal crystal growth are interpreted in terms of the convective steering hypothesis, which posits that solvent flow into and through the pore space of the crystal may play a major role in colloidal self-assembly. Aspects of the convective steering and deposition of high-Peclet-number rigid spherical particles at a crystal boundary are inferred from spatially resolved solvent flow into the crystal. Gradients in local flow through boundary channels were predicted due to the channels' spatial distribution relative to a pinned free surface contact line. On the basis of a uniform solvent and particle flux as the criterion for stability of a particular growth plane, these network simulations suggest the stability of a declining {311} crystal interface, a symmetry plane which exclusively propagates fcc microstructure. Network simulations of alternate crystal planes suggest preferential growth front evolution to the declining {311} interface, in consistent agreement with the proposed stability mechanism for preferential fcc microstructure propagation in convective assembly.
Tewarie, P.; Bright, M.G.; Hillebrand, A.; Robson, S.E.; Gascoyne, L.E.; Morris, P.G.; Meier, J.; Van Mieghem, P.; Brookes, M.J.
2016-01-01
Understanding the electrophysiological basis of resting state networks (RSNs) in the human brain is a critical step towards elucidating how inter-areal connectivity supports healthy brain function. In recent years, the relationship between RSNs (typically measured using haemodynamic signals) and electrophysiology has been explored using functional Magnetic Resonance Imaging (fMRI) and magnetoencephalography (MEG). Significant progress has been made, with similar spatial structure observable in both modalities. However, there is a pressing need to understand this relationship beyond simple visual similarity of RSN patterns. Here, we introduce a mathematical model to predict fMRI-based RSNs using MEG. Our unique model, based upon a multivariate Taylor series, incorporates both phase and amplitude based MEG connectivity metrics, as well as linear and non-linear interactions within and between neural oscillations measured in multiple frequency bands. We show that including non-linear interactions, multiple frequency bands and cross-frequency terms significantly improves fMRI network prediction. This shows that fMRI connectivity is not only the result of direct electrophysiological connections, but is also driven by the overlap of connectivity profiles between separate regions. Our results indicate that a complete understanding of the electrophysiological basis of RSNs goes beyond simple frequency-specific analysis, and further exploration of non-linear and cross-frequency interactions will shed new light on distributed network connectivity, and its perturbation in pathology. PMID:26827811
Voltage regulation in distribution networks with distributed generation
NASA Astrophysics Data System (ADS)
Blažič, B.; Uljanić, B.; Papič, I.
2012-11-01
The paper deals with the topic of voltage regulation in distribution networks with relatively high distributed energy resources (DER) penetration. The problem of voltage rise is described and different options for voltage regulation are given. The influence of DER on voltage profile and the effectiveness of the investigated solutions are evaluated by means of simulation in DIgSILENT. The simulated network is an actual distribution network in Slovenia with a relatively high penetration of distributed generation. Recommendations for voltage control in networks with DER penetration are given at the end.
Stringer, Clive; Beeknoo, Neeraj
2017-01-01
The topology of the patient flow network in a hospital is complex, comprising hundreds of overlapping patient journeys, and is a determinant of operational efficiency. To understand the network architecture of patient flow, we performed a data-driven network analysis of patient flow through two acute hospital sites of King’s College Hospital NHS Foundation Trust. Administration databases were queried for all intra-hospital patient transfers in an 18-month period and modelled as a dynamic weighted directed graph. A ‘core’ subnetwork containing only 13–17% of all edges channelled 83–90% of the patient flow, while an ‘ephemeral’ network constituted the remainder. Unsupervised cluster analysis and differential network analysis identified sub-networks where traffic is most associated with A&E performance. Increased flow to clinical decision units was associated with the best A&E performance in both sites. The component analysis also detected a weekend effect on patient transfers which was not associated with performance. We have performed the first data-driven hypothesis-free analysis of patient flow which can enhance understanding of whole healthcare systems. Such analysis can drive transformation in healthcare as it has in industries such as manufacturing. PMID:28968472
Moreira-Filho, Carlos Alberto; Bando, Silvia Yumi; Bertonha, Fernanda Bernardi; Silva, Filipi Nascimento; da Fontoura Costa, Luciano; Ferreira, Leandro Rodrigues; Furlanetto, Glaucio; Chacur, Paulo; Zerbini, Maria Claudia Nogueira; Carneiro-Sampaio, Magda
2016-01-01
Trisomy 21-driven transcriptional alterations in human thymus were characterized through gene coexpression network (GCN) and miRNA-target analyses. We used whole thymic tissue - obtained at heart surgery from Down syndrome (DS) and karyotipically normal subjects (CT) - and a network-based approach for GCN analysis that allows the identification of modular transcriptional repertoires (communities) and the interactions between all the system's constituents through community detection. Changes in the degree of connections observed for hierarchically important hubs/genes in CT and DS networks corresponded to community changes. Distinct communities of highly interconnected genes were topologically identified in these networks. The role of miRNAs in modulating the expression of highly connected genes in CT and DS was revealed through miRNA-target analysis. Trisomy 21 gene dysregulation in thymus may be depicted as the breakdown and altered reorganization of transcriptional modules. Leading networks acting in normal or disease states were identified. CT networks would depict the “canonical” way of thymus functioning. Conversely, DS networks represent a “non-canonical” way, i.e., thymic tissue adaptation under trisomy 21 genomic dysregulation. This adaptation is probably driven by epigenetic mechanisms acting at chromatin level and through the miRNA control of transcriptional programs involving the networks' high-hierarchy genes. PMID:26848775
NASA Astrophysics Data System (ADS)
Donado-Garzon, L. D.; Pardo, Y.
2013-12-01
Fractured media are very heterogeneous systems where occur complex physical and chemical processes to model. One of the possible approaches to conceptualize this type of massifs is the Discrete Fracture Network (DFN). Donado et al., modeled flow and transport in a granitic batholith based on this approach and found good fitting with hydraulic and tracer tests, but the computational cost was excessive due to a gigantic amount of elements to model. We present in this work a methodology based on percolation theory for reducing the number of elements and in consequence, to reduce the bandwidth of the conductance matrix and the execution time of each network. DFN poses as an excellent representation of all the set of fractures of the media, but not all the fractures of the media are part of the conductive network. Percolation theory is used to identify which nodes or fractures are not conductive, based on the occupation probability or percolation threshold. In a fractured system, connectivity determines the flow pattern in the fractured rock mass. This volume of fluid is driven through connection paths formed by the fractures, when the permeability of the rock is negligible compared to the fractures. In a population of distributed fractures, each of this that has no intersection with any connected fracture do not contribute to generate a flow field. This algorithm also permits us to erase these elements however they are water conducting and hence, refine even more the backbone of the network. We used 100 different generations of DFN that were optimized in this study using percolation theory. In each of the networks calibrate hydrodynamic parameters as hydraulic conductivity and specific storage coefficient, for each of the five families of fractures, yielding a total of 10 parameters to estimate, at each generation. Since the effects of the distribution of fault orientation changes the value of the percolation threshold, but not the universal laws of classical percolation theory, the latter is applicable to such networks. Under these conditions, percolation theory permit us to reduced the number of elements (90% in average) that form clusters of the 100 DFNs, preserving the so-called backbone. In this way the calibration runs in these networks changed from several hours to just a second obtaining much better results.
Distribution of shortest cycle lengths in random networks
NASA Astrophysics Data System (ADS)
Bonneau, Haggai; Hassid, Aviv; Biham, Ofer; Kühn, Reimer; Katzav, Eytan
2017-12-01
We present analytical results for the distribution of shortest cycle lengths (DSCL) in random networks. The approach is based on the relation between the DSCL and the distribution of shortest path lengths (DSPL). We apply this approach to configuration model networks, for which analytical results for the DSPL were obtained before. We first calculate the fraction of nodes in the network which reside on at least one cycle. Conditioning on being on a cycle, we provide the DSCL over ensembles of configuration model networks with degree distributions which follow a Poisson distribution (Erdős-Rényi network), degenerate distribution (random regular graph), and a power-law distribution (scale-free network). The mean and variance of the DSCL are calculated. The analytical results are found to be in very good agreement with the results of computer simulations.
Wu, Siqi; Joseph, Antony; Hammonds, Ann S; Celniker, Susan E; Yu, Bin; Frise, Erwin
2016-04-19
Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set ofDrosophilaearly embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identified 21 principal patterns (PP). Providing a compact yet biologically interpretable representation ofDrosophilaexpression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior-posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. The performance of PP with theDrosophiladata suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data.
Uncertainty Model for Total Solar Irradiance Estimation on Australian Rooftops
NASA Astrophysics Data System (ADS)
Al-Saadi, Hassan; Zivanovic, Rastko; Al-Sarawi, Said
2017-11-01
The installations of solar panels on Australian rooftops have been in rise for the last few years, especially in the urban areas. This motivates academic researchers, distribution network operators and engineers to accurately address the level of uncertainty resulting from grid-connected solar panels. The main source of uncertainty is the intermittent nature of radiation, therefore, this paper presents a new model to estimate the total radiation incident on a tilted solar panel. Where a probability distribution factorizes clearness index, the model is driven upon clearness index with special attention being paid for Australia with the utilization of best-fit-correlation for diffuse fraction. The assessment of the model validity is achieved with the adoption of four goodness-of-fit techniques. In addition, the Quasi Monte Carlo and sparse grid methods are used as sampling and uncertainty computation tools, respectively. High resolution data resolution of solar irradiations for Adelaide city were used for this assessment, with an outcome indicating a satisfactory agreement between actual data variation and model.
Active distribution network planning considering linearized system loss
NASA Astrophysics Data System (ADS)
Li, Xiao; Wang, Mingqiang; Xu, Hao
2018-02-01
In this paper, various distribution network planning techniques with DGs are reviewed, and a new distribution network planning method is proposed. It assumes that the location of DGs and the topology of the network are fixed. The proposed model optimizes the capacities of DG and the optimal distribution line capacity simultaneously by a cost/benefit analysis and the benefit is quantified by the reduction of the expected interruption cost. Besides, the network loss is explicitly analyzed in the paper. For simplicity, the network loss is appropriately simplified as a quadratic function of difference of voltage phase angle. Then it is further piecewise linearized. In this paper, a piecewise linearization technique with different segment lengths is proposed. To validate its effectiveness and superiority, the proposed distribution network planning model with elaborate linearization technique is tested on the IEEE 33-bus distribution network system.
Delay-induced cluster patterns in coupled Cayley tree networks
NASA Astrophysics Data System (ADS)
Singh, A.; Jalan, S.
2013-07-01
We study effects of delay in diffusively coupled logistic maps on the Cayley tree networks. We find that smaller coupling values exhibit sensitiveness to value of delay, and lead to different cluster patterns of self-organized and driven types. Whereas larger coupling strengths exhibit robustness against change in delay values, and lead to stable driven clusters comprising nodes from last generation of the Cayley tree. Furthermore, introduction of delay exhibits suppression as well as enhancement of synchronization depending upon coupling strength values. To the end we discuss the importance of results to understand conflicts and cooperations observed in family business.
French wind generator systems. [as auxiliary power sources for electrical networks
NASA Technical Reports Server (NTRS)
Noel, J. M.
1973-01-01
The experimental design of a wind driven generator with a rated power of 800 kilovolt amperes and capable of being connected to the main electrical network is reported. The rotor is a three bladed propeller; each blade is twisted but the fixed pitch is adjustable. The asynchronous 800-kilovolt ampere generator is driven by the propeller through a gearbox. A dissipating resistor regulates the machine under no-load conditions. The first propeller on the machine lasted 18 months; replacement of the rigid propeller with a flexible structure resulted in breakdown due to flutter effects.
NASA Astrophysics Data System (ADS)
Hunter, K. S.; Van Cappellen, P.
2000-01-01
Our paper, 'Kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry' (Hunter et al., 1998), presents a theoretical exploration of biogeochemical reaction networks and their importance to the biogeochemistry of groundwater systems. As with any other model, the kinetic reaction-transport model developed in our paper includes only a subset of all physically, biologically and chemically relevant processes in subsurface environments. It considers aquifer systems where the primary energy source driving microbial activity is the degradation of organic matter. In addition to the primary biodegradation pathways of organic matter (i.e. respiration and fermentation), the redox chemistry of groundwaters is also affected by reactions not directly involving organic matter oxidation. We refer to the latter as secondary reactions. By including secondary redox reactions which consume reduced reaction products (e.g., Mn2+, FeS, H2S), and in the process compete with microbial heterotrophic populations for available oxidants (i.e. O2, NO3-, Mn(IV), Fe(III), SO42-), we predict spatio-temporal distributions of microbial activity which differ significantly from those of models which consider only the biodegradation reactions. That is, the secondary reactions have a significant impact on the distributions of the rates of heterotrophic and chemolithotrophic metabolic pathways. We further show that secondary redox reactions, as well as non-redox reactions, significantly influence the acid-base chemistry of groundwaters. The distributions of dissolved inorganic redox species along flowpaths, however, are similar in simulations with and without secondary reactions (see Figs. 3(b) and 7(b) in Hunter et al., 1998), indicating that very different biogeochemical reaction dynamics may lead to essentially the same chemical redox zonation of a groundwater system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Guanhua; Eidenbenz, Stephan; Ha, Duc T
Botnets, which are networks of compromised machines that are controlled by one or a group of attackers, have emerged as one of the most serious security threats on the Internet. With an army of bots at the scale of tens of thousands of hosts or even as large as 1.5 million PCs, the computational power of botnets can be leveraged to launch large-scale DDoS (Distributed Denial of Service) attacks, sending spamming emails, stealing identities and financial information, etc. As detection and mitigation techniques against botnets have been stepped up in recent years, attackers are also constantly improving their strategies tomore » operate these botnets. The first generation of botnets typically employ IRC (Internet Relay Chat) channels as their command and control (C&C) centers. Though simple and easy to deploy, the centralized C&C mechanism of such botnets has made them prone to being detected and disabled. Against this backdrop, peer-to-peer (P2P) based botnets have emerged as a new generation of botnets which can conceal their C&C communication. Recently, P2P networks have emerged as a covert communication platform for malicious programs known as bots. As popular distributed systems, they allow bots to communicate easily while protecting the botmaster from being discovered. Existing work on P2P-based hotnets mainly focuses on measurement of botnet sizes. In this work, through simulation, we study extensively the structure of P2P networks running Kademlia, one of a few widely used P2P protocols in practice. Our simulation testbed incorporates the actual code of a real Kademlia client software to achieve great realism, and distributed event-driven simulation techniques to achieve high scalability. Using this testbed, we analyze the scaling, reachability, clustering, and centrality properties of P2P-based botnets from a graph-theoretical perspective. We further demonstrate experimentally and theoretically that monitoring bot activities in a P2P network is difficult, suggesting that the P2P mechanism indeed helps botnets hide their communication effectively. Finally, we evaluate the effectiveness of some potential mitigation techniques, such as content poisoning, Sybil-based and Eclipse-based mitigation. Conclusions drawn from this work shed light on the structure of P2P botnets, how to monitor bot activities in P2P networks, and how to mitigate botnet operations effectively.« less
Van Belle, Sara B; Marchal, Bruno; Dubourg, Dominique; Kegels, Guy
2010-11-30
This paper presents the development of a study design built on the principles of theory-driven evaluation. The theory-driven evaluation approach was used to evaluate an adolescent sexual and reproductive health intervention in Mali, Burkina Faso and Cameroon to improve continuity of care through the creation of networks of social and health care providers. Based on our experience and the existing literature, we developed a six-step framework for the design of theory-driven evaluations, which we applied in the ex-post evaluation of the networking component of the intervention. The protocol was drafted with the input of the intervention designer. The programme theory, the central element of theory-driven evaluation, was constructed on the basis of semi-structured interviews with designers, implementers and beneficiaries and an analysis of the intervention's logical framework. The six-step framework proved useful as it allowed for a systematic development of the protocol. We describe the challenges at each step. We found that there is little practical guidance in the existing literature, and also a mix up of terminology of theory-driven evaluation approaches. There is a need for empirical methodological development in order to refine the tools to be used in theory driven evaluation. We conclude that ex-post evaluations of programmes can be based on such an approach if the required information on context and mechanisms is collected during the programme.
2010-01-01
Background This paper presents the development of a study design built on the principles of theory-driven evaluation. The theory-driven evaluation approach was used to evaluate an adolescent sexual and reproductive health intervention in Mali, Burkina Faso and Cameroon to improve continuity of care through the creation of networks of social and health care providers. Methods/design Based on our experience and the existing literature, we developed a six-step framework for the design of theory-driven evaluations, which we applied in the ex-post evaluation of the networking component of the intervention. The protocol was drafted with the input of the intervention designer. The programme theory, the central element of theory-driven evaluation, was constructed on the basis of semi-structured interviews with designers, implementers and beneficiaries and an analysis of the intervention's logical framework. Discussion The six-step framework proved useful as it allowed for a systematic development of the protocol. We describe the challenges at each step. We found that there is little practical guidance in the existing literature, and also a mix up of terminology of theory-driven evaluation approaches. There is a need for empirical methodological development in order to refine the tools to be used in theory driven evaluation. We conclude that ex-post evaluations of programmes can be based on such an approach if the required information on context and mechanisms is collected during the programme. PMID:21118510
Mitchell, Timothy J.; Hacker, Carl D.; Breshears, Jonathan D.; Szrama, Nick P.; Sharma, Mohit; Bundy, David T.; Pahwa, Mrinal; Corbetta, Maurizio; Snyder, Abraham Z.; Shimony, Joshua S.
2013-01-01
BACKGROUND: Recent findings associated with resting-state cortical networks have provided insight into the brain's organizational structure. In addition to their neuroscientific implications, the networks identified by resting-state functional magnetic resonance imaging (rs-fMRI) may prove useful for clinical brain mapping. OBJECTIVE: To demonstrate that a data-driven approach to analyze resting-state networks (RSNs) is useful in identifying regions classically understood to be eloquent cortex as well as other functional networks. METHODS: This study included 6 patients undergoing surgical treatment for intractable epilepsy and 7 patients undergoing tumor resection. rs-fMRI data were obtained before surgery and 7 canonical RSNs were identified by an artificial neural network algorithm. Of these 7, the motor and language networks were then compared with electrocortical stimulation (ECS) as the gold standard in the epilepsy patients. The sensitivity and specificity for identifying these eloquent sites were calculated at varying thresholds, which yielded receiver-operating characteristic (ROC) curves and their associated area under the curve (AUC). RSNs were plotted in the tumor patients to observe RSN distortions in altered anatomy. RESULTS: The algorithm robustly identified all networks in all patients, including those with distorted anatomy. When all ECS-positive sites were considered for motor and language, rs-fMRI had AUCs of 0.80 and 0.64, respectively. When the ECS-positive sites were analyzed pairwise, rs-fMRI had AUCs of 0.89 and 0.76 for motor and language, respectively. CONCLUSION: A data-driven approach to rs-fMRI may be a new and efficient method for preoperative localization of numerous functional brain regions. ABBREVIATIONS: AUC, area under the curve BA, Brodmann area BOLD, blood oxygen level dependent ECS, electrocortical stimulation fMRI, functional magnetic resonance imaging ICA, independent component analysis MLP, multilayer perceptron MP-RAGE, magnetization-prepared rapid gradient echo ROC, receiver-operating characteristic rs-fMRI, resting-state functional magnetic resonance imaging RSN, resting-state network PMID:24264234
A Complex Network Approach to Distributional Semantic Models
Utsumi, Akira
2015-01-01
A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models. PMID:26295940
Evaluation model of distribution network development based on ANP and grey correlation analysis
NASA Astrophysics Data System (ADS)
Ma, Kaiqiang; Zhan, Zhihong; Zhou, Ming; Wu, Qiang; Yan, Jun; Chen, Genyong
2018-06-01
The existing distribution network evaluation system cannot scientifically and comprehensively reflect the distribution network development status. Furthermore, the evaluation model is monotonous and it is not suitable for horizontal analysis of many regional power grids. For these reason, this paper constructs a set of universal adaptability evaluation index system and model of distribution network development. Firstly, distribution network evaluation system is set up by power supply capability, power grid structure, technical equipment, intelligent level, efficiency of the power grid and development benefit of power grid. Then the comprehensive weight of indices is calculated by combining the AHP with the grey correlation analysis. Finally, the index scoring function can be obtained by fitting the index evaluation criterion to the curve, and then using the multiply plus operator to get the result of sample evaluation. The example analysis shows that the model can reflect the development of distribution network and find out the advantages and disadvantages of distribution network development. Besides, the model provides suggestions for the development and construction of distribution network.
NASA Astrophysics Data System (ADS)
McCormack, Kimberly A.; Hesse, Marc A.
2018-04-01
We model the subsurface hydrologic response to the 7.6 Mw subduction zone earthquake that occurred on the plate interface beneath the Nicoya peninsula in Costa Rica on September 5, 2012. The regional-scale poroelastic model of the overlying plate integrates seismologic, geodetic and hydrologic data sets to predict the post-seismic poroelastic response. A representative two-dimensional model shows that thrust earthquakes with a slip width less than a third of their depth produce complex multi-lobed pressure perturbations in the shallow subsurface. This leads to multiple poroelastic relaxation timescales that may overlap with the longer viscoelastic timescales. In the three-dimensional model, the complex slip distribution of 2012 Nicoya event and its small width to depth ratio lead to a pore pressure distribution comprising multiple trench parallel ridges of high and low pressure. This leads to complex groundwater flow patterns, non-monotonic variations in predicted well water levels, and poroelastic relaxation on multiple time scales. The model also predicts significant tectonically driven submarine groundwater discharge off-shore. In the weeks following the earthquake, the predicted net submarine groundwater discharge in the study area increases, creating a 100 fold increase in net discharge relative to topography-driven flow over the first 30 days. Our model suggests the hydrological response on land is more complex than typically acknowledged in tectonic studies. This may complicate the interpretation of transient post-seismic surface deformations. Combined tectonic-hydrological observation networks have the potential to reduce such ambiguities.
NASA Astrophysics Data System (ADS)
Bowman, Christopher; Haith, Gary; Steinberg, Alan; Morefield, Charles; Morefield, Michael
2013-05-01
This paper describes methods to affordably improve the robustness of distributed fusion systems by opportunistically leveraging non-traditional data sources. Adaptive methods help find relevant data, create models, and characterize the model quality. These methods also can measure the conformity of this non-traditional data with fusion system products including situation modeling and mission impact prediction. Non-traditional data can improve the quantity, quality, availability, timeliness, and diversity of the baseline fusion system sources and therefore can improve prediction and estimation accuracy and robustness at all levels of fusion. Techniques are described that automatically learn to characterize and search non-traditional contextual data to enable operators integrate the data with the high-level fusion systems and ontologies. These techniques apply the extension of the Data Fusion & Resource Management Dual Node Network (DNN) technical architecture at Level 4. The DNN architecture supports effectively assessment and management of the expanded portfolio of data sources, entities of interest, models, and algorithms including data pattern discovery and context conformity. Affordable model-driven and data-driven data mining methods to discover unknown models from non-traditional and `big data' sources are used to automatically learn entity behaviors and correlations with fusion products, [14 and 15]. This paper describes our context assessment software development, and the demonstration of context assessment of non-traditional data to compare to an intelligence surveillance and reconnaissance fusion product based upon an IED POIs workflow.
Packets Distributing Evolutionary Algorithm Based on PSO for Ad Hoc Network
NASA Astrophysics Data System (ADS)
Xu, Xiao-Feng
2018-03-01
Wireless communication network has such features as limited bandwidth, changeful channel and dynamic topology, etc. Ad hoc network has lots of difficulties in accessing control, bandwidth distribution, resource assign and congestion control. Therefore, a wireless packets distributing Evolutionary algorithm based on PSO (DPSO)for Ad Hoc Network is proposed. Firstly, parameters impact on performance of network are analyzed and researched to obtain network performance effective function. Secondly, the improved PSO Evolutionary Algorithm is used to solve the optimization problem from local to global in the process of network packets distributing. The simulation results show that the algorithm can ensure fairness and timeliness of network transmission, as well as improve ad hoc network resource integrated utilization efficiency.
Analysis on Voltage Profile of Distribution Network with Distributed Generation
NASA Astrophysics Data System (ADS)
Shao, Hua; Shi, Yujie; Yuan, Jianpu; An, Jiakun; Yang, Jianhua
2018-02-01
Penetration of distributed generation has some impacts on a distribution network in load flow, voltage profile, reliability, power loss and so on. After the impacts and the typical structures of the grid-connected distributed generation are analyzed, the back/forward sweep method of the load flow calculation of the distribution network is modelled including distributed generation. The voltage profiles of the distribution network affected by the installation location and the capacity of distributed generation are thoroughly investigated and simulated. The impacts on the voltage profiles are summarized and some suggestions to the installation location and the capacity of distributed generation are given correspondingly.
A Systems' Biology Approach to Study MicroRNA-Mediated Gene Regulatory Networks
Kunz, Manfred; Vera, Julio; Wolkenhauer, Olaf
2013-01-01
MicroRNAs (miRNAs) are potent effectors in gene regulatory networks where aberrant miRNA expression can contribute to human diseases such as cancer. For a better understanding of the regulatory role of miRNAs in coordinating gene expression, we here present a systems biology approach combining data-driven modeling and model-driven experiments. Such an approach is characterized by an iterative process, including biological data acquisition and integration, network construction, mathematical modeling and experimental validation. To demonstrate the application of this approach, we adopt it to investigate mechanisms of collective repression on p21 by multiple miRNAs. We first construct a p21 regulatory network based on data from the literature and further expand it using algorithms that predict molecular interactions. Based on the network structure, a detailed mechanistic model is established and its parameter values are determined using data. Finally, the calibrated model is used to study the effect of different miRNA expression profiles and cooperative target regulation on p21 expression levels in different biological contexts. PMID:24350286
High Performance Visualization using Query-Driven Visualizationand Analytics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bethel, E. Wes; Campbell, Scott; Dart, Eli
2006-06-15
Query-driven visualization and analytics is a unique approach for high-performance visualization that offers new capabilities for knowledge discovery and hypothesis testing. The new capabilities akin to finding needles in haystacks are the result of combining technologies from the fields of scientific visualization and scientific data management. This approach is crucial for rapid data analysis and visualization in the petascale regime. This article describes how query-driven visualization is applied to a hero-sized network traffic analysis problem.
NASA Astrophysics Data System (ADS)
Zimmer, M. A.; McGlynn, B. L.
2017-12-01
Our understanding of the balance between longitudinal, lateral, and vertical expansion and contraction of reactive flowpaths and source areas in headwater catchments is limited. To address this, we utilized an ephemeral-to-perennial stream network in the Piedmont region of North Carolina, USA to gain new understanding about critical zone mechanisms that drive runoff generation and biogeochemical signals in both groundwater and stream water. Here, we used chemical and hydrometric data collected from zero through second order catchments to characterize spatial and temporal runoff and overland, shallow soil, and deep subsurface flow across characteristic landscape positions. Our results showed that the active stream network was driven by two superimposed runoff generation regimes that produced distinct hydro-biogeochemical signals at the catchment outlet. The baseflow runoff generation regime expanded and contracted the stream network seasonally through the rise and fall of the seasonal water table. Superimposed on this, event-activated source area contributions were driven by surficial and shallow subsurface flowpaths. The subsurface critical zone stratigraphy in this landscape coupled with the precipitation regime activated these shallow flowpaths frequently. This drove an increase in dissolved organic carbon (DOC) concentrations with increases in runoff across catchment scales. DOC-runoff relationship variability and spread was driven by the balance between runoff regimes as well as a seasonal depletion of DOC from shallow subsurface flowpath activation and annual replenishment from litterfall. From this, we suggest that the hydro-biogeochemical signals at larger catchment outlets can be driven by a balance of longitudinal, lateral, and vertical source area contributions, critical zone structure, and complex hydrological processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ming; Kang, Zhan, E-mail: zhankang@dlut.edu.cn; Huang, Xiaobo
2015-08-28
Hydrogen is clean, sustainable, and renewable, thus is viewed as promising energy carrier. However, its industrial utilization is greatly hampered by the lack of effective hydrogen storage and release method. Carbon nanotubes (CNTs) were viewed as one of the potential hydrogen containers, but it has been proved that pure CNTs cannot attain the desired target capacity of hydrogen storage. In this paper, we present a numerical study on the material-driven and structure-driven hydrogen adsorption of 3D silicon networks and propose a deformation-driven hydrogen desorption approach based on molecular simulations. Two types of 3D nanostructures, silicon nanotube-network (Si-NN) and silicon film-networkmore » (Si-FN), are first investigated in terms of hydrogen adsorption and desorption capacity with grand canonical Monte Carlo simulations. It is revealed that the hydrogen storage capacity is determined by the lithium doping ratio and geometrical parameters, and the maximum hydrogen uptake can be achieved by a 3D nanostructure with optimal configuration and doping ratio obtained through design optimization technique. For hydrogen desorption, a mechanical-deformation-driven-hydrogen-release approach is proposed. Compared with temperature/pressure change-induced hydrogen desorption method, the proposed approach is so effective that nearly complete hydrogen desorption can be achieved by Si-FN nanostructures under sufficient compression but without structural failure observed. The approach is also reversible since the mechanical deformation in Si-FN nanostructures can be elastically recovered, which suggests a good reusability. This study may shed light on the mechanism of hydrogen adsorption and desorption and thus provide useful guidance toward engineering design of microstructural hydrogen (or other gas) adsorption materials.« less
Knowledge diffusion of dynamical network in terms of interaction frequency.
Liu, Jian-Guo; Zhou, Qing; Guo, Qiang; Yang, Zhen-Hua; Xie, Fei; Han, Jing-Ti
2017-09-07
In this paper, we present a knowledge diffusion (SKD) model for dynamic networks by taking into account the interaction frequency which always used to measure the social closeness. A set of agents, which are initially interconnected to form a random network, either exchange knowledge with their neighbors or move toward a new location through an edge-rewiring procedure. The activity of knowledge exchange between agents is determined by a knowledge transfer rule that the target node would preferentially select one neighbor node to transfer knowledge with probability p according to their interaction frequency instead of the knowledge distance, otherwise, the target node would build a new link with its second-order neighbor preferentially or select one node in the system randomly with probability 1 - p. The simulation results show that, comparing with the Null model defined by the random selection mechanism and the traditional knowledge diffusion (TKD) model driven by knowledge distance, the knowledge would spread more fast based on SKD driven by interaction frequency. In particular, the network structure of SKD would evolve as an assortative one, which is a fundamental feature of social networks. This work would be helpful for deeply understanding the coevolution of the knowledge diffusion and network structure.
NASA Astrophysics Data System (ADS)
Zehe, Erwin; Jackisch, Conrad; Blume, Theresa; Haßler, Sibylle; Allroggen, Niklas; Tronicke, Jens
2013-04-01
The CAOS Research Unit recently proposed a hierarchical classification scheme to subdivide a catchment into what we vaguely name classes of functional entities that puts the gradients driving mass and energy flows and their controls on top of the hierarchy and the arrangement of landscape attributes controlling flow resistances along these driving gradients (for instance soil types and apparent preferential pathways) at the second level. We name these functional entities lead topology classes, to highlight that they are characterized by a spatially ordered arrangement of landscape elements along a superordinate driving gradient. Our idea is that these lead topology classes have a distinct way how their structural and textural architecture controls the interplay of storage dynamics and integral response behavior that is typical for all members of a class, but is dissimilar between different classes. This implies that we might gain exemplary understanding of the typical dynamic behavior of the class, when thoroughly studying a few class members. We propose that the main integral catchment functions mass export and drainage, mass redistribution and storage, energy exchange with the atmosphere, as well as energy redistribution and storage - result from spatially organized interactions of processes within lead topologies that operate at different scale levels and partly dominate during different conditions. We distinguish: 1) Lead topologies controlling the land surface energy balance during radiation driven conditions at the plot/pedon scale level. In this case energy fluxes dominate and deplete a vertical temperature gradient that is build up by depleting a gradient in radiation fluxes. Water is a facilitator in this concert due to the high specific heat of vaporization. Slow vertical water fluxes in soil dominate, which are driven by vertical gradients in atmospheric water potential, chemical potential in the plant and in soil hydraulic potentials. 2) Lead topologies controlling fast drainage and generation stream flow during rainfall events at the hillslope scale level: Fast vertical and lateral mass fluxes dominate. They are driven by vertical and lateral gradients in pressure heads which build up by depleting the kinetic energy/velocity gradient of rainfall when it hits the ground or of vertical subsurface flows that "hit" a layer of low permeability. 3) Lead topologies controlling slow drainage and its supply, and thus creating memory at the catchment scale level: These are the groundwater system and the stream including the riparian zone. Permanent lateral water flows dominate that are driven by permanently active lateral gradients in pressure heads. Event scale stream flow generation and energy exchange with the atmospheric boundary layer are organized by the first two types of lead topologies, and their dominance changes with prevailing type of boundary conditions. We furthermore propose that lead topologies at the plot and the hillslope scale levels can be further subdivided into least functional entities we name call classes of elementary functional units. These classes of elementary functional units co-evolved being exposed to similar superordinate vertical gradients in a self-reinforcing manner. Being located either at the hilltop (sediment source area), midslope (sediment transport area) or hillfoot/riparian zone (sediment deposit area) they experienced similar weathering processes (past water, energy and nutrient flows), causing formation of similar soil texture in different horizons. This implies, depending on hillslope position and aspect, formation of distinct niches (with respect to water, nutrient and sun light availability) and thus "similar filters" to select distinct natural communities of animal and vegetation species. This in turn implies similarity with respect to formation of biotic flow networks (ant-, worm-, mole- and whole burrow systems, as well as root systems), which feeds back on vertical and lateral water/mass and thermal energy flows and so on. The idea is that members of EFU classes interact within lead topologies along a hierarchy of driving potential gradients and that these interactions are mediated by a hierarchy of connected flow networks like macropores, root networks or lateral pipe systems. We hypothesize that members of a functional unit class are similar with respect to the time invariant controls of the vertical gradients (soil hydraulic potentials, soil temperature, plant water potential) and the flow resistances in vertical direction (plant and soil albedo, soil hydraulic and thermal conductivity, vertical macropore networks). This implies that members of an EFU class behave functionally similar at least with respect to vertical flows of water and heat: we may gain exemplary understanding of the typical dynamic behavior of the class, by thoroughly studying a few class members. In the following we will thus use the term "elementary functional units, EFUs" and "elementary functional unit class, EFU class" as synonyms. We propose that a thorough understanding of the behavior of a few representatives of the most important EFU classes and of their interactions within a hierarchy of lead topology classes is sufficient for understanding and distributed modeling of event scale stream flow production under rainfall driven conditions and energy exchange with the atmosphere under radiation driven conditions. Good and not surprising news is that lead topologies controlling stream flow contribution, are an interconnected, ordered arrangement of the lead topologies that control energy exchange. We suggests that a combination of the related model approaches which simplified but physical based approaches to simulate dynamics in the saturated zone, riparian zone and the river network results in a structurally more adequate model framework for catchments of organized complexity. The feasibility of this concept is currently tested in the Attert catchment by setting up pseudo replica of field experiments and a distributed monitoring network in several members of first guess EFUs and superordinate lead topology classes. We combine geophysical and soil physical survey, artificial tracer tests and analysis of stable isotopes and ecological survey with distributed sensor clusters that permanently monitor meteorological variables, soil moisture and matric potential, piezometric heads etc. Within the proposed study we will present first results especially from the sensor clusters and geophysical survey. By using geostatistical methods we will work out to which extend members within a candidate EFU class are similar with respect to subsurface structures like depth to bedrock and soil properties as well as with respect to soil moisture/storage dynamics. Secondly, we will work out whether structurally similar hillslopes produce a similar event scale stream flow contribution, which of course is dependent on the degree of similarity of a) the rainfall forcing they receive and b) of their wetness state. To this end we will perform virtual experiments with the physically based model CATFLOW by perturbing behavioral model structures. These have been shown to portray system behavior and its architecture in a sense that they reproduce distributed observations of soil moisture and subsurface storm flow and represent the observed structural and textural signatures of soils, flow networks and vegetation.
Impacts on the Voltage Profile of DC Distribution Network with DG Access
NASA Astrophysics Data System (ADS)
Tu, J. J.; Yin, Z. D.
2017-07-01
With the development of electronic, more and more distributed generations (DGs) access into grid and cause the research fever of direct current (DC) distribution network. Considering distributed generation (DG) location and capacity have great impacts on voltage profile, so use IEEE9 and IEEE33 typical circuit as examples, with DGs access in centralized and decentralized mode, to compare voltage profile in alternating and direct current (AC/DC) distribution network. Introducing the voltage change ratio as an evaluation index, so gets the general results on voltage profile of DC distributed network with DG access. Simulation shows that, in the premise of reasonable location and capacity, DC distribution network is more suitable for DG access.
Research on key technology of planning and design for AC/DC hybrid distribution network
NASA Astrophysics Data System (ADS)
Shen, Yu; Wu, Guilian; Zheng, Huan; Deng, Junpeng; Shi, Pengjia
2018-04-01
With the increasing demand of DC generation and DC load, the development of DC technology, AC and DC distribution network integrating will become an important form of future distribution network. In this paper, the key technology of planning and design for AC/DC hybrid distribution network is proposed, including the selection of AC and DC voltage series, the design of typical grid structure and the comprehensive evaluation method of planning scheme. The research results provide some ideas and directions for the future development of AC/DC hybrid distribution network.
A Distributed Architecture for Tsunami Early Warning and Collaborative Decision-support in Crises
NASA Astrophysics Data System (ADS)
Moßgraber, J.; Middleton, S.; Hammitzsch, M.; Poslad, S.
2012-04-01
The presentation will describe work on the system architecture that is being developed in the EU FP7 project TRIDEC on "Collaborative, Complex and Critical Decision-Support in Evolving Crises". The challenges for a Tsunami Early Warning System (TEWS) are manifold and the success of a system depends crucially on the system's architecture. A modern warning system following a system-of-systems approach has to integrate various components and sub-systems such as different information sources, services and simulation systems. Furthermore, it has to take into account the distributed and collaborative nature of warning systems. In order to create an architecture that supports the whole spectrum of a modern, distributed and collaborative warning system one must deal with multiple challenges. Obviously, one cannot expect to tackle these challenges adequately with a monolithic system or with a single technology. Therefore, a system architecture providing the blueprints to implement the system-of-systems approach has to combine multiple technologies and architectural styles. At the bottom layer it has to reliably integrate a large set of conventional sensors, such as seismic sensors and sensor networks, buoys and tide gauges, and also innovative and unconventional sensors, such as streams of messages from social media services. At the top layer it has to support collaboration on high-level decision processes and facilitates information sharing between organizations. In between, the system has to process all data and integrate information on a semantic level in a timely manner. This complex communication follows an event-driven mechanism allowing events to be published, detected and consumed by various applications within the architecture. Therefore, at the upper layer the event-driven architecture (EDA) aspects are combined with principles of service-oriented architectures (SOA) using standards for communication and data exchange. The most prominent challenges on this layer include providing a framework for information integration on a syntactic and semantic level, leveraging distributed processing resources for a scalable data processing platform, and automating data processing and decision support workflows.
Value co-creation platform design within the context of technology-driven businesses
NASA Astrophysics Data System (ADS)
Tanev, Stoyan; Ruskov, Petko
2010-02-01
The article provides a discussion of value co-creation platforms within the context of technology driven business. It emphasizes the need for a terminological refinement of the value co-creation paradigm as well as for an articulation of its implications for the design and reconfiguration of the company value network.
Assessing Argumentative Representation with Bayesian Network Models in Debatable Social Issues
ERIC Educational Resources Information Center
Zhang, Zhidong; Lu, Jingyan
2014-01-01
This study seeks to obtain argumentation models, which represent argumentative processes and an assessment structure in secondary school debatable issues in the social sciences. The argumentation model was developed based on mixed methods, a combination of both theory-driven and data-driven methods. The coding system provided a combing point by…
Can Public Education Coexist with Participatory Culture?
ERIC Educational Resources Information Center
Losh, Elizabeth; Jenkins, Henry
2012-01-01
Participatory culture has many mechanisms to support peer-to-peer learning as young people enter interest-driven and friendship-driven networks. In this article, the authors argue that school librarians can help bridge the gap between the excitement of having students experiment with new forms of social learning and new digital-media practices,…
Phillips, Reid H; Jain, Rahil; Browning, Yoni; Shah, Rachana; Kauffman, Peter; Dinh, Doan; Lutz, Barry R
2016-08-16
Fluid control remains a challenge in development of portable lab-on-a-chip devices. Here, we show that microfluidic networks driven by single-frequency audio tones create resonant oscillating flow that is predicted by equivalent electrical circuit models. We fabricated microfluidic devices with fluidic resistors (R), inductors (L), and capacitors (C) to create RLC networks with band-pass resonance in the audible frequency range available on portable audio devices. Microfluidic devices were fabricated from laser-cut adhesive plastic, and a "buzzer" was glued to a diaphragm (capacitor) to integrate the actuator on the device. The AC flowrate magnitude was measured by imaging oscillation of bead tracers to allow direct comparison to the RLC circuit model across the frequency range. We present a systematic build-up from single-channel systems to multi-channel (3-channel) networks, and show that RLC circuit models predict complex frequency-dependent interactions within multi-channel networks. Finally, we show that adding flow rectifying valves to the network creates pumps that can be driven by amplified and non-amplified audio tones from common audio devices (iPod and iPhone). This work shows that RLC circuit models predict resonant flow responses in multi-channel fluidic networks as a step towards microfluidic devices controlled by audio tones.
Rueckauer, Bodo; Lungu, Iulia-Alexandra; Hu, Yuhuang; Pfeiffer, Michael; Liu, Shih-Chii
2017-01-01
Spiking neural networks (SNNs) can potentially offer an efficient way of doing inference because the neurons in the networks are sparsely activated and computations are event-driven. Previous work showed that simple continuous-valued deep Convolutional Neural Networks (CNNs) can be converted into accurate spiking equivalents. These networks did not include certain common operations such as max-pooling, softmax, batch-normalization and Inception-modules. This paper presents spiking equivalents of these operations therefore allowing conversion of nearly arbitrary CNN architectures. We show conversion of popular CNN architectures, including VGG-16 and Inception-v3, into SNNs that produce the best results reported to date on MNIST, CIFAR-10 and the challenging ImageNet dataset. SNNs can trade off classification error rate against the number of available operations whereas deep continuous-valued neural networks require a fixed number of operations to achieve their classification error rate. From the examples of LeNet for MNIST and BinaryNet for CIFAR-10, we show that with an increase in error rate of a few percentage points, the SNNs can achieve more than 2x reductions in operations compared to the original CNNs. This highlights the potential of SNNs in particular when deployed on power-efficient neuromorphic spiking neuron chips, for use in embedded applications.
Rueckauer, Bodo; Lungu, Iulia-Alexandra; Hu, Yuhuang; Pfeiffer, Michael; Liu, Shih-Chii
2017-01-01
Spiking neural networks (SNNs) can potentially offer an efficient way of doing inference because the neurons in the networks are sparsely activated and computations are event-driven. Previous work showed that simple continuous-valued deep Convolutional Neural Networks (CNNs) can be converted into accurate spiking equivalents. These networks did not include certain common operations such as max-pooling, softmax, batch-normalization and Inception-modules. This paper presents spiking equivalents of these operations therefore allowing conversion of nearly arbitrary CNN architectures. We show conversion of popular CNN architectures, including VGG-16 and Inception-v3, into SNNs that produce the best results reported to date on MNIST, CIFAR-10 and the challenging ImageNet dataset. SNNs can trade off classification error rate against the number of available operations whereas deep continuous-valued neural networks require a fixed number of operations to achieve their classification error rate. From the examples of LeNet for MNIST and BinaryNet for CIFAR-10, we show that with an increase in error rate of a few percentage points, the SNNs can achieve more than 2x reductions in operations compared to the original CNNs. This highlights the potential of SNNs in particular when deployed on power-efficient neuromorphic spiking neuron chips, for use in embedded applications. PMID:29375284
Jiao, Meng; Wu, Di; Wei, Qize
2018-03-01
Blebs are involved in various biological processes such as cell migration, cytokinesis, and apoptosis. While the expansion of blebs is largely an intracellular pressure-driven process, the retraction of blebs is believed to be driven by RhoA activation that leads to the reassembly of the actomyosin cortex at the bleb membrane. However, it is still poorly understood how RhoA is activated at the bleb membrane. Here, we provide evidence demonstrating that myosin II-interacting guanine nucleotide exchange factor (MYOGEF) is implicated in bleb retraction via stimulating RhoA activation and the reassembly of an actomyosin network at the bleb membrane during bleb retraction. Interaction of MYOGEF with ezrin, a well-known regulator of bleb retraction, is required for MYOGEF localization to retracting blebs. Notably, knockout of MYOGEF or ezrin not only disrupts RhoA activation at the bleb membrane, but also interferes with nonmuscle myosin II localization and activation, as well as actin polymerization in retracting blebs. Importantly, MYOGEF knockout slows down bleb retraction. We propose that ezrin interacts with MYOGEF and recruits it to retracting blebs, where MYOGEF activates RhoA and promotes the reassembly of the cortical actomyosin network at the bleb membrane, thus contributing to the regulation of bleb retraction. © 2018 Jiao et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Johnston, Lisa G; McLaughlin, Katherine R; Rhilani, Houssine El; Latifi, Amina; Toufik, Abdalla; Bennani, Aziza; Alami, Kamal; Elomari, Boutaina; Handcock, Mark S
2015-01-01
Background Respondent-driven sampling is used worldwide to estimate the population prevalence of characteristics such as HIV/AIDS and associated risk factors in hard-to-reach populations. Estimating the total size of these populations is of great interest to national and international organizations, however reliable measures of population size often do not exist. Methods Successive Sampling-Population Size Estimation (SS-PSE) along with network size imputation allows population size estimates to be made without relying on separate studies or additional data (as in network scale-up, multiplier and capture-recapture methods), which may be biased. Results Ten population size estimates were calculated for people who inject drugs, female sex workers, men who have sex with other men, and migrants from sub-Sahara Africa in six different cities in Morocco. SS-PSE estimates fell within or very close to the likely values provided by experts and the estimates from previous studies using other methods. Conclusions SS-PSE is an effective method for estimating the size of hard-to-reach populations that leverages important information within respondent-driven sampling studies. The addition of a network size imputation method helps to smooth network sizes allowing for more accurate results. However, caution should be used particularly when there is reason to believe that clustered subgroups may exist within the population of interest or when the sample size is small in relation to the population. PMID:26258908
Performance limits and trade-offs in entropy-driven biochemical computers.
Chu, Dominique
2018-04-14
It is now widely accepted that biochemical reaction networks can perform computations. Examples are kinetic proof reading, gene regulation, or signalling networks. For many of these systems it was found that their computational performance is limited by a trade-off between the metabolic cost, the speed and the accuracy of the computation. In order to gain insight into the origins of these trade-offs, we consider entropy-driven computers as a model of biochemical computation. Using tools from stochastic thermodynamics, we show that entropy-driven computation is subject to a trade-off between accuracy and metabolic cost, but does not involve time-trade-offs. Time trade-offs appear when it is taken into account that the result of the computation needs to be measured in order to be known. We argue that this measurement process, although usually ignored, is a major contributor to the cost of biochemical computation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tchumatchenko, Tatjana; Clopath, Claudia
2014-01-01
Oscillations play a critical role in cognitive phenomena and have been observed in many brain regions. Experimental evidence indicates that classes of neurons exhibit properties that could promote oscillations, such as subthreshold resonance and electrical gap junctions. Typically, these two properties are studied separately but it is not clear which is the dominant determinant of global network rhythms. Our aim is to provide an analytical understanding of how these two effects destabilize the fluctuation-driven state, in which neurons fire irregularly, and lead to an emergence of global synchronous oscillations. Here we show how the oscillation frequency is shaped by single neuron resonance, electrical and chemical synapses.The presence of both gap junctions and subthreshold resonance are necessary for the emergence of oscillations. Our results are in agreement with several experimental observations such as network responses to oscillatory inputs and offer a much-needed conceptual link connecting a collection of disparate effects observed in networks. PMID:25405458
Contraction driven flow in the extended vein networks of Physarum polycephalum
NASA Astrophysics Data System (ADS)
Alim, Karen; Amselem, Gabriel; Peaudecerf, Francois; Pringle, Anne; Brenner, Michael P.
2011-11-01
The true slime mold Physarum polycephalum is a basal organism that forms an extended network of veins to forage for food. P. polycephalum is renown for its adaptive changes of vein structure and morphology in response to food sources. These rearrangements presumably occur to establish an efficient transport and mixing of resources throughout the networks thus presenting a prototype to design transport networks under the constraints of laminar flow. The physical flows of cytoplasmic fluid enclosed by the veins exhibit an oscillatory flow termed ``shuttle streaming.'' The flow exceed by far the volume required for growth at the margins suggesting that the additional energy cost for generating the flow is spent for efficient and/or targeted redistribution of resources. We show that the viscous shuttle flow is driven by the radial contractions of the veins that accompany the streaming. We present a model for the fluid flow and resource dispersion arising due to radial contractions. The transport and mixing properties of the flow are discussed.
Du, Shuhui; Wang, Zhaoshan; Ingvarsson, Pär K; Wang, Dongsheng; Wang, Junhui; Wu, Zhiqiang; Tembrock, Luke R; Zhang, Jianguo
2015-10-01
Historical tectonism and climate oscillations can isolate and contract the geographical distributions of many plant species, and they are even known to trigger species divergence and ultimately speciation. Here, we estimated the nucleotide variation and speciation in three closely related Populus species, Populus tremuloides, P. tremula and P. davidiana, distributed in North America and Eurasia. We analysed the sequence variation in six single-copy nuclear loci and three chloroplast (cpDNA) fragments in 497 individuals sampled from 33 populations of these three species across their geographic distributions. These three Populus species harboured relatively high levels of nucleotide diversity and showed high levels of nucleotide differentiation. Phylogenetic analysis revealed that P. tremuloides diverged earlier than the other two species. The cpDNA haplotype network result clearly illustrated the dispersal route from North America to eastern Asia and then into Europe. Molecular dating results confirmed that the divergence of these three species coincided with the sundering of the Bering land bridge in the late Miocene and a rapid uplift of the Qinghai-Tibetan Plateau around the Miocene/Pliocene boundary. Vicariance-driven successful allopatric speciation resulting from historical tectonism and climate oscillations most likely played roles in the formation of the disjunct distributions and divergence of these three Populus species. © 2015 John Wiley & Sons Ltd.
Potential impacts of changing supply-water quality on drinking water distribution: A review.
Liu, Gang; Zhang, Ya; Knibbe, Willem-Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter
2017-06-01
Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water quality, the water quality may be impacted during its distribution through piped networks due to the processes such as pipe material release, biofilm formation and detachment, accumulation and resuspension of loose deposits. Irregular changes in supply-water quality may cause physiochemical and microbiological de-stabilization of pipe material, biofilms and loose deposits in the distribution system that have been established over decades and may harbor components that cause health or esthetical issues (brown water). Even though it is clearly relevant to customers' health (e.g., recent Flint water crisis), until now, switching of supply-water quality is done without any systematic evaluation. This article reviews the contaminants that develop in the water distribution system and their characteristics, as well as the possible transition effects during the switching of treated water quality by destabilization and the release of pipe material and contaminants into the water and the subsequent risks. At the end of this article, a framework is proposed for the evaluation of potential transition effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
A review on machine learning principles for multi-view biological data integration.
Li, Yifeng; Wu, Fang-Xiang; Ngom, Alioune
2018-03-01
Driven by high-throughput sequencing techniques, modern genomic and clinical studies are in a strong need of integrative machine learning models for better use of vast volumes of heterogeneous information in the deep understanding of biological systems and the development of predictive models. How data from multiple sources (called multi-view data) are incorporated in a learning system is a key step for successful analysis. In this article, we provide a comprehensive review on omics and clinical data integration techniques, from a machine learning perspective, for various analyses such as prediction, clustering, dimension reduction and association. We shall show that Bayesian models are able to use prior information and model measurements with various distributions; tree-based methods can either build a tree with all features or collectively make a final decision based on trees learned from each view; kernel methods fuse the similarity matrices learned from individual views together for a final similarity matrix or learning model; network-based fusion methods are capable of inferring direct and indirect associations in a heterogeneous network; matrix factorization models have potential to learn interactions among features from different views; and a range of deep neural networks can be integrated in multi-modal learning for capturing the complex mechanism of biological systems.
“Guilt by Association” Is the Exception Rather Than the Rule in Gene Networks
Gillis, Jesse; Pavlidis, Paul
2012-01-01
Gene networks are commonly interpreted as encoding functional information in their connections. An extensively validated principle called guilt by association states that genes which are associated or interacting are more likely to share function. Guilt by association provides the central top-down principle for analyzing gene networks in functional terms or assessing their quality in encoding functional information. In this work, we show that functional information within gene networks is typically concentrated in only a very few interactions whose properties cannot be reliably related to the rest of the network. In effect, the apparent encoding of function within networks has been largely driven by outliers whose behaviour cannot even be generalized to individual genes, let alone to the network at large. While experimentalist-driven analysis of interactions may use prior expert knowledge to focus on the small fraction of critically important data, large-scale computational analyses have typically assumed that high-performance cross-validation in a network is due to a generalizable encoding of function. Because we find that gene function is not systemically encoded in networks, but dependent on specific and critical interactions, we conclude it is necessary to focus on the details of how networks encode function and what information computational analyses use to extract functional meaning. We explore a number of consequences of this and find that network structure itself provides clues as to which connections are critical and that systemic properties, such as scale-free-like behaviour, do not map onto the functional connectivity within networks. PMID:22479173
Respondent-driven sampling and the recruitment of people with small injecting networks.
Paquette, Dana; Bryant, Joanne; de Wit, John
2012-05-01
Respondent-driven sampling (RDS) is a form of chain-referral sampling, similar to snowball sampling, which was developed to reach hidden populations such as people who inject drugs (PWID). RDS is said to reach members of a hidden population that may not be accessible through other sampling methods. However, less attention has been paid as to whether there are segments of the population that are more likely to be missed by RDS. This study examined the ability of RDS to capture people with small injecting networks. A study of PWID, using RDS, was conducted in 2009 in Sydney, Australia. The size of participants' injecting networks was examined by recruitment chain and wave. Participants' injecting network characteristics were compared to those of participants from a separate pharmacy-based study. A logistic regression analysis was conducted to examine the characteristics independently associated with having small injecting networks, using the combined RDS and pharmacy-based samples. In comparison with the pharmacy-recruited participants, RDS participants were almost 80% less likely to have small injecting networks, after adjusting for other variables. RDS participants were also more likely to have their injecting networks form a larger proportion of those in their social networks, and to have acquaintances as part of their injecting networks. Compared to those with larger injecting networks, individuals with small injecting networks were equally likely to engage in receptive sharing of injecting equipment, but less likely to have had contact with prevention services. These findings suggest that those with small injecting networks are an important group to recruit, and that RDS is less likely to capture these individuals.
NASA Astrophysics Data System (ADS)
Han, Keesook J.; Hodge, Matthew; Ross, Virginia W.
2011-06-01
For monitoring network traffic, there is an enormous cost in collecting, storing, and analyzing network traffic datasets. Data mining based network traffic analysis has a growing interest in the cyber security community, but is computationally expensive for finding correlations between attributes in massive network traffic datasets. To lower the cost and reduce computational complexity, it is desirable to perform feasible statistical processing on effective reduced datasets instead of on the original full datasets. Because of the dynamic behavior of network traffic, traffic traces exhibit mixtures of heavy tailed statistical distributions or overdispersion. Heavy tailed network traffic characterization and visualization are important and essential tasks to measure network performance for the Quality of Services. However, heavy tailed distributions are limited in their ability to characterize real-time network traffic due to the difficulty of parameter estimation. The Entropy-Based Heavy Tailed Distribution Transformation (EHTDT) was developed to convert the heavy tailed distribution into a transformed distribution to find the linear approximation. The EHTDT linearization has the advantage of being amenable to characterize and aggregate overdispersion of network traffic in realtime. Results of applying the EHTDT for innovative visual analytics to real network traffic data are presented.
Finding a planet's heartbeat: surprising results from patient Mars
NASA Astrophysics Data System (ADS)
Stamenkovic, Vlada; Ward, Lewis; Fischer, Woodward; Russell, Michael J.
2016-10-01
We explore, from a 3D time-dependent perspective, the evolution of oxidizing and reducing planetary niches and how they form a planetary-scale redox network - from a planet's deep interior to its atmosphere. Such redox networks are similar to the circulatory system of animals, but instead of pressure gradients redox gradients drive the flow of electrons and create hotspots for nutrients and metabolic activity.Using time-dependent geodynamic and atmospheric models, we compute for Mars the time-dependent 3D distribution of 1) hydrogen- and methane-rich reducing subsurface environments, driven by serpentinization and radiolysis of water, and 2) oxygen-rich oases as a product of atmosphere-brine interactions governed by climate and surface chemistry.This is only a first step towards our greater goal to globally model the evolution of local redox environments through time for rocky planets. However, already now our preliminary results show where on Mars oxidizing and reducing oases might have existed and might still exist today. This opens the window to search for extinct and extant life on Mars from a probabilistic global 3D perspective.
Final Technical Report: Mathematical Foundations for Uncertainty Quantification in Materials Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plechac, Petr; Vlachos, Dionisios G.
We developed path-wise information theory-based and goal-oriented sensitivity analysis and parameter identification methods for complex high-dimensional dynamics and in particular of non-equilibrium extended molecular systems. The combination of these novel methodologies provided the first methods in the literature which are capable to handle UQ questions for stochastic complex systems with some or all of the following features: (a) multi-scale stochastic models such as (bio)chemical reaction networks, with a very large number of parameters, (b) spatially distributed systems such as Kinetic Monte Carlo or Langevin Dynamics, (c) non-equilibrium processes typically associated with coupled physico-chemical mechanisms, driven boundary conditions, hybrid micro-macro systems,more » etc. A particular computational challenge arises in simulations of multi-scale reaction networks and molecular systems. Mathematical techniques were applied to in silico prediction of novel materials with emphasis on the effect of microstructure on model uncertainty quantification (UQ). We outline acceleration methods to make calculations of real chemistry feasible followed by two complementary tasks on structure optimization and microstructure-induced UQ.« less
Hadi, M.F.; Sander, E.A.; Ruberti, J.W.; Barocas, V. H.
2011-01-01
Recent work has demonstrated that enzymatic degradation of collagen fibers exhibits strain-dependent kinetics. Conceptualizing how the strain dependence affects remodeling of collagenous tissues is vital to our understanding of collagen management in native and bioengineered tissues. As a first step towards this goal, the current study puts forward a multiscale model for enzymatic degradation and remodeling of collagen networks for two sample geometries we routinely use in experiments as model tissues. The multiscale model, driven by microstructural data from an enzymatic decay experiment, includes an exponential strain-dependent kinetic relation for degradation and constant growth. For a dogbone sample under uniaxial load, the model predicted that the distribution of fiber diameters would spread over the course of degradation because of variation in individual fiber load. In a cross-shaped sample, the central region, which experiences smaller, more isotropic loads, showed more decay and less spread in fiber diameter compared to the arms. There was also a slight shift in average orientation in different regions of the cruciform. PMID:22180691
Organization of the secure distributed computing based on multi-agent system
NASA Astrophysics Data System (ADS)
Khovanskov, Sergey; Rumyantsev, Konstantin; Khovanskova, Vera
2018-04-01
Nowadays developing methods for distributed computing is received much attention. One of the methods of distributed computing is using of multi-agent systems. The organization of distributed computing based on the conventional network computers can experience security threats performed by computational processes. Authors have developed the unified agent algorithm of control system of computing network nodes operation. Network PCs is used as computing nodes. The proposed multi-agent control system for the implementation of distributed computing allows in a short time to organize using of the processing power of computers any existing network to solve large-task by creating a distributed computing. Agents based on a computer network can: configure a distributed computing system; to distribute the computational load among computers operated agents; perform optimization distributed computing system according to the computing power of computers on the network. The number of computers connected to the network can be increased by connecting computers to the new computer system, which leads to an increase in overall processing power. Adding multi-agent system in the central agent increases the security of distributed computing. This organization of the distributed computing system reduces the problem solving time and increase fault tolerance (vitality) of computing processes in a changing computing environment (dynamic change of the number of computers on the network). Developed a multi-agent system detects cases of falsification of the results of a distributed system, which may lead to wrong decisions. In addition, the system checks and corrects wrong results.
NASA Astrophysics Data System (ADS)
Beeson, H. W.; McCoy, S. W.; Willett, S.
2016-12-01
Erosional river networks dissect much of Earth's surface into drainage basins. Global scaling laws such as Hack's Law suggest that river basins trend toward a particular scale-invariant shape. While erosional instabilities arising from competition between advective and diffusive processes can explain why headwaters branch, the erosional mechanics linking larger scale network branching with evolution towards a characteristic river basin shape remain poorly constrained. We map river steepness and a proxy for the steady-state elevation of river networks, χ, in simulated and real landscapes with a large range in spatial scale (102 -106 m) but with similar inclined, planar surfaces at the time of incipient network formation. We document that the evolution from narrow rill-like networks to dendritic, leaf-shaped river basins follows from drainage area differences between catchments. These serve as instabilities that grow, leading to divide migration, stream capture, lateral branching and network reorganization. As Horton hypothesized, incipient networks formed down gradient on an inclined, planar surface have an unequal distribution of drainage area and nonuniformity in response times such that larger basins erode more rapidly and branch laterally via capture of adjacent streams with lower erosion rates. Positive feedback owing to increase in drainage area furthers the process of branching at the expense of neighboring rivers. We show that drainage area exchange and the degree of network reorganization has a significant effect on river steepness in the Dragon's Back Pressure Ridge, CA, the Sierra Nevada, CA, and the Rocky Mountain High Plains, USA. Similarly, metrics of basin shape reveal that basins are evolving from narrow basins towards more common leaf shapes. Our results suggest that divide migration and stream capture driven by erosional disequilibrium could be fundamental processes by which river basins reach their characteristic geometry and dendritic form.
Inherently unstable networks collapse to a critical point
NASA Astrophysics Data System (ADS)
Sheinman, M.; Sharma, A.; Alvarado, J.; Koenderink, G. H.; MacKintosh, F. C.
2015-07-01
Nonequilibrium systems that are driven or drive themselves towards a critical point have been studied for almost three decades. Here we present a minimalist example of such a system, motivated by experiments on collapsing active elastic networks. Our model of an unstable elastic network exhibits a collapse towards a critical point from any macroscopically connected initial configuration. Taking into account steric interactions within the network, the model qualitatively and quantitatively reproduces results of the experiments on collapsing active gels.
A Model-Driven Approach for Telecommunications Network Services Definition
NASA Astrophysics Data System (ADS)
Chiprianov, Vanea; Kermarrec, Yvon; Alff, Patrick D.
Present day Telecommunications market imposes a short concept-to-market time for service providers. To reduce it, we propose a computer-aided, model-driven, service-specific tool, with support for collaborative work and for checking properties on models. We started by defining a prototype of the Meta-model (MM) of the service domain. Using this prototype, we defined a simple graphical modeling language specific for service designers. We are currently enlarging the MM of the domain using model transformations from Network Abstractions Layers (NALs). In the future, we will investigate approaches to ensure the support for collaborative work and for checking properties on models.
NASA Astrophysics Data System (ADS)
Rath, S.; Sengupta, P. P.; Singh, A. P.; Marik, A. K.; Talukdar, P.
2013-07-01
Accurate prediction of roll force during hot strip rolling is essential for model based operation of hot strip mills. Traditionally, mathematical models based on theory of plastic deformation have been used for prediction of roll force. In the last decade, data driven models like artificial neural network have been tried for prediction of roll force. Pure mathematical models have accuracy limitations whereas data driven models have difficulty in convergence when applied to industrial conditions. Hybrid models by integrating the traditional mathematical formulations and data driven methods are being developed in different parts of world. This paper discusses the methodology of development of an innovative hybrid mathematical-artificial neural network model. In mathematical model, the most important factor influencing accuracy is flow stress of steel. Coefficients of standard flow stress equation, calculated by parameter estimation technique, have been used in the model. The hybrid model has been trained and validated with input and output data collected from finishing stands of Hot Strip Mill, Bokaro Steel Plant, India. It has been found that the model accuracy has been improved with use of hybrid model, over the traditional mathematical model.
Tensegrity and motor-driven effective interactions in a model cytoskeleton
NASA Astrophysics Data System (ADS)
Wang, Shenshen; Wolynes, Peter G.
2012-04-01
Actomyosin networks are major structural components of the cell. They provide mechanical integrity and allow dynamic remodeling of eukaryotic cells, self-organizing into the diverse patterns essential for development. We provide a theoretical framework to investigate the intricate interplay between local force generation, network connectivity, and collective action of molecular motors. This framework is capable of accommodating both regular and heterogeneous pattern formation, arrested coarsening and macroscopic contraction in a unified manner. We model the actomyosin system as a motorized cat's cradle consisting of a crosslinked network of nonlinear elastic filaments subjected to spatially anti-correlated motor kicks acting on motorized (fibril) crosslinks. The phase diagram suggests there can be arrested phase separation which provides a natural explanation for the aggregation and coalescence of actomyosin condensates. Simulation studies confirm the theoretical picture that a nonequilibrium many-body system driven by correlated motor kicks can behave as if it were at an effective equilibrium, but with modified interactions that account for the correlation of the motor driven motions of the actively bonded nodes. Regular aster patterns are observed both in Brownian dynamics simulations at effective equilibrium and in the complete stochastic simulations. The results show that large-scale contraction requires correlated kicking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Siqi; Joseph, Antony; Hammonds, Ann S.
Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set of Drosophila early embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identifiedmore » 21 principal patterns (PP). Providing a compact yet biologically interpretable representation of Drosophila expression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior-posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. In conclusion, the performance of PP with the Drosophila data suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data.« less
Wu, Siqi; Joseph, Antony; Hammonds, Ann S.; ...
2016-04-06
Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set of Drosophila early embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identifiedmore » 21 principal patterns (PP). Providing a compact yet biologically interpretable representation of Drosophila expression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior-posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. In conclusion, the performance of PP with the Drosophila data suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data.« less
Code of Federal Regulations, 2013 CFR
2013-04-01
... be included in the AFA: (a) Formula-driven. For formula-driven programs, a Tribe's/Consortium's... applying the distribution formula to the remaining eligible funding for each program involved. (1) Distribution formulas must be reasonably related to the function or service performed by an office, and must be...
Code of Federal Regulations, 2010 CFR
2010-04-01
... be included in the AFA: (a) Formula-driven. For formula-driven programs, a Tribe's/Consortium's... applying the distribution formula to the remaining eligible funding for each program involved. (1) Distribution formulas must be reasonably related to the function or service performed by an office, and must be...
Code of Federal Regulations, 2012 CFR
2012-04-01
... be included in the AFA: (a) Formula-driven. For formula-driven programs, a Tribe's/Consortium's... applying the distribution formula to the remaining eligible funding for each program involved. (1) Distribution formulas must be reasonably related to the function or service performed by an office, and must be...
Code of Federal Regulations, 2011 CFR
2011-04-01
... be included in the AFA: (a) Formula-driven. For formula-driven programs, a Tribe's/Consortium's... applying the distribution formula to the remaining eligible funding for each program involved. (1) Distribution formulas must be reasonably related to the function or service performed by an office, and must be...
Code of Federal Regulations, 2014 CFR
2014-04-01
... be included in the AFA: (a) Formula-driven. For formula-driven programs, a Tribe's/Consortium's... applying the distribution formula to the remaining eligible funding for each program involved. (1) Distribution formulas must be reasonably related to the function or service performed by an office, and must be...
Design of fuzzy system by NNs and realization of adaptability
NASA Technical Reports Server (NTRS)
Takagi, Hideyuki
1993-01-01
The issue of designing and tuning fuzzy membership functions by neural networks (NN's) was started by NN-driven Fuzzy Reasoning in 1988. NN-driven fuzzy reasoning involves a NN embedded in the fuzzy system which generates membership values. In conventional fuzzy system design, the membership functions are hand-crafted by trial and error for each input variable. In contrast, NN-driven fuzzy reasoning considers several variables simultaneously and can design a multidimensional, nonlinear membership function for the entire subspace.
Statistical distributions of avalanche size and waiting times in an inter-sandpile cascade model
NASA Astrophysics Data System (ADS)
Batac, Rene; Longjas, Anthony; Monterola, Christopher
2012-02-01
Sandpile-based models have successfully shed light on key features of nonlinear relaxational processes in nature, particularly the occurrence of fat-tailed magnitude distributions and exponential return times, from simple local stress redistributions. In this work, we extend the existing sandpile paradigm into an inter-sandpile cascade, wherein the avalanches emanating from a uniformly-driven sandpile (first layer) is used to trigger the next (second layer), and so on, in a successive fashion. Statistical characterizations reveal that avalanche size distributions evolve from a power-law p(S)≈S-1.3 for the first layer to gamma distributions p(S)≈Sαexp(-S/S0) for layers far away from the uniformly driven sandpile. The resulting avalanche size statistics is found to be associated with the corresponding waiting time distribution, as explained in an accompanying analytic formulation. Interestingly, both the numerical and analytic models show good agreement with actual inventories of non-uniformly driven events in nature.
Design of a national distributed health data network.
Maro, Judith C; Platt, Richard; Holmes, John H; Strom, Brian L; Hennessy, Sean; Lazarus, Ross; Brown, Jeffrey S
2009-09-01
A distributed health data network is a system that allows secure remote analysis of separate data sets, each comprising a different medical organization's or health plan's records. Distributed health data networks are currently being planned that could cover millions of people, permitting studies of comparative clinical effectiveness, best practices, diffusion of medical technologies, and quality of care. These networks could also support assessment of medical product safety and other public health needs. Distributed network technologies allow data holders to control all uses of their data, which overcomes many practical obstacles related to confidentiality, regulation, and proprietary interests. Some of the challenges and potential methods of operation of a multipurpose, multi-institutional distributed health data network are described.
Motakis, E S; Nason, G P; Fryzlewicz, P; Rutter, G A
2006-10-15
Many standard statistical techniques are effective on data that are normally distributed with constant variance. Microarray data typically violate these assumptions since they come from non-Gaussian distributions with a non-trivial mean-variance relationship. Several methods have been proposed that transform microarray data to stabilize variance and draw its distribution towards the Gaussian. Some methods, such as log or generalized log, rely on an underlying model for the data. Others, such as the spread-versus-level plot, do not. We propose an alternative data-driven multiscale approach, called the Data-Driven Haar-Fisz for microarrays (DDHFm) with replicates. DDHFm has the advantage of being 'distribution-free' in the sense that no parametric model for the underlying microarray data is required to be specified or estimated; hence, DDHFm can be applied very generally, not just to microarray data. DDHFm achieves very good variance stabilization of microarray data with replicates and produces transformed intensities that are approximately normally distributed. Simulation studies show that it performs better than other existing methods. Application of DDHFm to real one-color cDNA data validates these results. The R package of the Data-Driven Haar-Fisz transform (DDHFm) for microarrays is available in Bioconductor and CRAN.
NASA Astrophysics Data System (ADS)
Raheja, G.; Shusterman, A.; Martin, S.; Shahar, E.; Laughner, J.; Turner, A. J.; Miller, M. K.; Cohen, R. C.
2016-12-01
The Berkeley Atmospheric CO2 Observation Network (BEACO2N) is a high-density network of 28 carbon dioxide sensors distributed around the San Francisco Bay Area that serve to enhance understanding of intra-city variations in CO2 concentrations that are not necessarily captured by sparser networks maintained by local and national air quality management agencies. We partner with designers at the San Francisco Exploratorium to create a suite of interactive exhibits and hands-on activities that creatively visualize data from BEACO2N for general audiences. Museum goers can manipulate a light-up "bar graph" of live CO2 concentrations by exhaling on an in-room sensor, query the current readings of rooftop sensors using a scale model of the Wired Pier observation system, scroll through the data from other BEACO2N sites projected on a 3-D "topographic table" of the Bay Area, and view interpolated CO2 fields driven by research-grade weather models on a nine-screen LCD display. We present lessons learned from these initial installations, from layperson audience feedback to details of the Stochastic Time-Inverted Lagrangian Transport (STILT) model coupled to Weather Research and Forecasting (WRF) weather fields used to generate intuitive concentration maps. We propose that compelling visual demonstrations of elevated CO2 concentrations due to routine small-scale high-emission anthropogenic activities (e.g. rush hour) and/or special events (such as fireworks or factory fires) generate deeper engagement in local environmental issues and interest in undertaking personal actions that can become part of the broader climate solution. While global means and other large-scale aggregate climate metrics can lead to feelings of disconnect and subsequent ambivalence, via such exhibitions, distributed network instruments like BEACO2N can provide the local sensitivity needed to "personalize" greenhouse gas concentrations to a given individual or community and incite the drive toward understanding, education, and action.
Distributed Framework for Dynamic Telescope and Instrument Control
NASA Astrophysics Data System (ADS)
Ames, Troy J.; Case, Lynne
2002-12-01
Traditionally, instrument command and control systems have been developed specifically for a single instrument. Such solutions are frequently expensive and are inflexible to support the next instrument development effort. NASA Goddard Space Flight Center is developing an extensible framework, known as Instrument Remote Control (IRC) that applies to any kind of instrument that can be controlled by a computer. IRC combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML). A key aspect of the architecture is software that is driven by an instrument description, written using the Instrument Markup Language (IML). IML is an XML dialect used to describe graphical user interfaces to control and monitor the instrument, command sets and command formats, data streams, communication mechanisms, and data processing algorithms. The IRC framework provides the ability to communicate to components anywhere on a network using the JXTA protocol for dynamic discovery of distributed components. JXTA (see http://www.jxta.org) is a generalized protocol that allows any devices connected by a network to communicate in a peer-to-peer manner. IRC uses JXTA to advertise a device?s IML and discover devices of interest on the network. Devices can join or leave the network and thus join or leave the instrument control environment of IRC. Currently, several astronomical instruments are working with the IRC development team to develop custom components for IRC to control their instruments. These instruments include: High resolution Airborne Wideband Camera (HAWC), a first light instrument for the Stratospheric Observatory for Infrared Astronomy (SOFIA); Submillimeter And Far Infrared Experiment (SAFIRE), a principal investigator instrument for SOFIA; and Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE), a prototype of the SAFIRE instrument, used at the Caltech Submillimeter Observatory (CSO). Most recently, we have been working with the Submillimetre High Angular Resolution Camera IInd Generation (SHARCII) at the CSO to investigate using IRC capabilities with the SHARC instrument.
Seasonality of Shallow Icequakes at Mount Erebus Volcano, Antarctica
NASA Astrophysics Data System (ADS)
Knox, H. A.; Aster, R. C.; Kyle, P. R.
2010-12-01
Background (non-eruptive) seismicity at Mount Erebus Volcano is dominated by icequake activity on its extensive ice fields and glaciers. We examine icequake seismograms recorded by both long-running and temporary densification deployments spanning seven years (2003-2009) to assess event frequency, size, apparent seasonality, event mechanism, and geographic distribution. In addition to generally investigating mountain glacial ice seismicity in cold and dry glacial environments, we also hope to exploit icequakes as local sources for tomographic imaging of the volcano’s interior in conjunction with 2008-2010 active source and explosive volcanism data. Using Antelope-based methodologies, we determined the distribution and magnitude of a subset of well-recorded icequakes using data from the long-running Mount Erebus Volcano Network (MEVO) network, as well as two dense IRIS PASSCAL supported temporary networks deployed during 2008 and 2009 (the MEVO network consists of six broadband and nine short period stations with environmental data streams; the dense arrays consisted of 24 broadband stations arranged in two concentric rings around the volcano and 99 short period stations deployed near the summit of Erebus volcano and along the Terror-Erebus axis of Ross Island). During each of the seven years, we note a number of large icequake swarms (up to many hundreds of events per day). We hypothesize that many of these events occur in very shallow ice, based on the apparent ambient temperature-driven seasonality of the events. Specifically, approximately 43% of the events occur between March and May and approximately 30% occur between October and December. Each of these times feature rapidly changing ambient air temperatures due to the high latitude appearance/disappearance of the sun. A shallow mechanism is predicted by 1-D thermal skin depth calculations that show that annual temperature fluctuations decay by 1/e within the top few meters of ice.
Distributed Framework for Dynamic Telescope and Instrument Control
NASA Technical Reports Server (NTRS)
Ames, Troy J.; Case, Lynne
2002-01-01
Traditionally, instrument command and control systems have been developed specifically for a single instrument. Such solutions are frequently expensive and are inflexible to support the next instrument development effort. NASA Goddard Space Flight Center is developing an extensible framework, known as Instrument Remote Control (IRC) that applies to any kind of instrument that can be controlled by a computer. IRC combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML). A key aspect of the architecture is software that is driven by an instrument description, written using the Instrument Markup Language (IML). IML is an XML dialect used to describe graphical user interfaces to control and monitor the instrument, command sets and command formats, data streams, communication mechanisms, and data processing algorithms. The IRC framework provides the ability to communicate to components anywhere on a network using the JXTA protocol for dynamic discovery of distributed components. JXTA (see httD://www.jxta.org,) is a generalized protocol that allows any devices connected by a network to communicate in a peer-to-peer manner. IRC uses JXTA to advertise a device's IML and discover devices of interest on the network. Devices can join or leave the network and thus join or leave the instrument control environment of IRC. Currently, several astronomical instruments are working with the IRC development team to develop custom components for IRC to control their instruments. These instruments include: High resolution Airborne Wideband Camera (HAWC), a first light instrument for the Stratospheric Observatory for Infrared Astronomy (SOFIA); Submillimeter And Far Infrared Experiment (SAFIRE), a Principal Investigator instrument for SOFIA; and Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE), a prototype of the SAFIRE instrument, used at the Caltech Submillimeter Observatory (CSO). Most recently, we have been working with the Submillimetre High Angular Resolution Camera IInd Generation (SHARCII) at the CSO to investigate using IRC capabilities with the SHARC instrument.
Criticality meets learning: Criticality signatures in a self-organizing recurrent neural network
Del Papa, Bruno; Priesemann, Viola
2017-01-01
Many experiments have suggested that the brain operates close to a critical state, based on signatures of criticality such as power-law distributed neuronal avalanches. In neural network models, criticality is a dynamical state that maximizes information processing capacities, e.g. sensitivity to input, dynamical range and storage capacity, which makes it a favorable candidate state for brain function. Although models that self-organize towards a critical state have been proposed, the relation between criticality signatures and learning is still unclear. Here, we investigate signatures of criticality in a self-organizing recurrent neural network (SORN). Investigating criticality in the SORN is of particular interest because it has not been developed to show criticality. Instead, the SORN has been shown to exhibit spatio-temporal pattern learning through a combination of neural plasticity mechanisms and it reproduces a number of biological findings on neural variability and the statistics and fluctuations of synaptic efficacies. We show that, after a transient, the SORN spontaneously self-organizes into a dynamical state that shows criticality signatures comparable to those found in experiments. The plasticity mechanisms are necessary to attain that dynamical state, but not to maintain it. Furthermore, onset of external input transiently changes the slope of the avalanche distributions – matching recent experimental findings. Interestingly, the membrane noise level necessary for the occurrence of the criticality signatures reduces the model’s performance in simple learning tasks. Overall, our work shows that the biologically inspired plasticity and homeostasis mechanisms responsible for the SORN’s spatio-temporal learning abilities can give rise to criticality signatures in its activity when driven by random input, but these break down under the structured input of short repeating sequences. PMID:28552964
On the Probability of Error and Stochastic Resonance in Discrete Memoryless Channels
2013-12-01
Information - Driven Doppler Shift Estimation and Compensation Methods for Underwater Wireless Sensor Networks ”, which is to analyze and develop... underwater wireless sensor networks . We formulated an analytic relationship that relates the average probability of error to the systems parameters, the...thesis, we studied the performance of Discrete Memoryless Channels (DMC), arising in the context of cooperative underwater wireless sensor networks
Measurement-Driven Characterization of the Mobile Environment
ERIC Educational Resources Information Center
Soroush, Hamed
2013-01-01
The concurrent deployment of high-quality wireless networks and large-scale cloud services offers the promise of secure ubiquitous access to seemingly limitless amount of content. However, as users' expectations have grown more demanding, the performance and connectivity failures endemic to the existing networking infrastructure have become more…
Online People Tagging: Social (Mobile) Network(ing) Services and Work-Based Learning
ERIC Educational Resources Information Center
Cook, John; Pachler, Norbert
2012-01-01
Social and mobile technologies offer users unprecedented opportunities for communicating, interacting, sharing, meaning-making, content and context generation. And, these affordances are in constant flux driven by a powerful interplay between technological innovation and emerging cultural practices. Significantly, also, they are starting to…
The Value of Information in Distributed Decision Networks
2016-03-04
formulation, and then we describe the various results at- tained. 1 Mathematical description of Distributed Decision Network un- der Information...Constraints We now define a mathematical framework for networks. Let G = (V,E) be an undirected random network (graph) drawn from a known distribution pG, 1
The Brain's Router: A Cortical Network Model of Serial Processing in the Primate Brain
Zylberberg, Ariel; Fernández Slezak, Diego; Roelfsema, Pieter R.; Dehaene, Stanislas; Sigman, Mariano
2010-01-01
The human brain efficiently solves certain operations such as object recognition and categorization through a massively parallel network of dedicated processors. However, human cognition also relies on the ability to perform an arbitrarily large set of tasks by flexibly recombining different processors into a novel chain. This flexibility comes at the cost of a severe slowing down and a seriality of operations (100–500 ms per step). A limit on parallel processing is demonstrated in experimental setups such as the psychological refractory period (PRP) and the attentional blink (AB) in which the processing of an element either significantly delays (PRP) or impedes conscious access (AB) of a second, rapidly presented element. Here we present a spiking-neuron implementation of a cognitive architecture where a large number of local parallel processors assemble together to produce goal-driven behavior. The precise mapping of incoming sensory stimuli onto motor representations relies on a “router” network capable of flexibly interconnecting processors and rapidly changing its configuration from one task to another. Simulations show that, when presented with dual-task stimuli, the network exhibits parallel processing at peripheral sensory levels, a memory buffer capable of keeping the result of sensory processing on hold, and a slow serial performance at the router stage, resulting in a performance bottleneck. The network captures the detailed dynamics of human behavior during dual-task-performance, including both mean RTs and RT distributions, and establishes concrete predictions on neuronal dynamics during dual-task experiments in humans and non-human primates. PMID:20442869
Computational Models and Emergent Properties of Respiratory Neural Networks
Lindsey, Bruce G.; Rybak, Ilya A.; Smith, Jeffrey C.
2012-01-01
Computational models of the neural control system for breathing in mammals provide a theoretical and computational framework bringing together experimental data obtained from different animal preparations under various experimental conditions. Many of these models were developed in parallel and iteratively with experimental studies and provided predictions guiding new experiments. This data-driven modeling approach has advanced our understanding of respiratory network architecture and neural mechanisms underlying generation of the respiratory rhythm and pattern, including their functional reorganization under different physiological conditions. Models reviewed here vary in neurobiological details and computational complexity and span multiple spatiotemporal scales of respiratory control mechanisms. Recent models describe interacting populations of respiratory neurons spatially distributed within the Bötzinger and pre-Bötzinger complexes and rostral ventrolateral medulla that contain core circuits of the respiratory central pattern generator (CPG). Network interactions within these circuits along with intrinsic rhythmogenic properties of neurons form a hierarchy of multiple rhythm generation mechanisms. The functional expression of these mechanisms is controlled by input drives from other brainstem components, including the retrotrapezoid nucleus and pons, which regulate the dynamic behavior of the core circuitry. The emerging view is that the brainstem respiratory network has rhythmogenic capabilities at multiple levels of circuit organization. This allows flexible, state-dependent expression of different neural pattern-generation mechanisms under various physiological conditions, enabling a wide repertoire of respiratory behaviors. Some models consider control of the respiratory CPG by pulmonary feedback and network reconfiguration during defensive behaviors such as cough. Future directions in modeling of the respiratory CPG are considered. PMID:23687564
Two-dimensional optoelectronic interconnect-processor and its operational bit error rate
NASA Astrophysics Data System (ADS)
Liu, J. Jiang; Gollsneider, Brian; Chang, Wayne H.; Carhart, Gary W.; Vorontsov, Mikhail A.; Simonis, George J.; Shoop, Barry L.
2004-10-01
Two-dimensional (2-D) multi-channel 8x8 optical interconnect and processor system were designed and developed using complementary metal-oxide-semiconductor (CMOS) driven 850-nm vertical-cavity surface-emitting laser (VCSEL) arrays and the photodetector (PD) arrays with corresponding wavelengths. We performed operation and bit-error-rate (BER) analysis on this free-space integrated 8x8 VCSEL optical interconnects driven by silicon-on-sapphire (SOS) circuits. Pseudo-random bit stream (PRBS) data sequence was used in operation of the interconnects. Eye diagrams were measured from individual channels and analyzed using a digital oscilloscope at data rates from 155 Mb/s to 1.5 Gb/s. Using a statistical model of Gaussian distribution for the random noise in the transmission, we developed a method to compute the BER instantaneously with the digital eye-diagrams. Direct measurements on this interconnects were also taken on a standard BER tester for verification. We found that the results of two methods were in the same order and within 50% accuracy. The integrated interconnects were investigated in an optoelectronic processing architecture of digital halftoning image processor. Error diffusion networks implemented by the inherently parallel nature of photonics promise to provide high quality digital halftoned images.
Analysis of Intelligent Transportation Systems Using Model-Driven Simulations.
Fernández-Isabel, Alberto; Fuentes-Fernández, Rubén
2015-06-15
Intelligent Transportation Systems (ITSs) integrate information, sensor, control, and communication technologies to provide transport related services. Their users range from everyday commuters to policy makers and urban planners. Given the complexity of these systems and their environment, their study in real settings is frequently unfeasible. Simulations help to address this problem, but present their own issues: there can be unintended mistakes in the transition from models to code; their platforms frequently bias modeling; and it is difficult to compare works that use different models and tools. In order to overcome these problems, this paper proposes a framework for a model-driven development of these simulations. It is based on a specific modeling language that supports the integrated specification of the multiple facets of an ITS: people, their vehicles, and the external environment; and a network of sensors and actuators conveniently arranged and distributed that operates over them. The framework works with a model editor to generate specifications compliant with that language, and a code generator to produce code from them using platform specifications. There are also guidelines to help researchers in the application of this infrastructure. A case study on advanced management of traffic lights with cameras illustrates its use.
Analysis of Intelligent Transportation Systems Using Model-Driven Simulations
Fernández-Isabel, Alberto; Fuentes-Fernández, Rubén
2015-01-01
Intelligent Transportation Systems (ITSs) integrate information, sensor, control, and communication technologies to provide transport related services. Their users range from everyday commuters to policy makers and urban planners. Given the complexity of these systems and their environment, their study in real settings is frequently unfeasible. Simulations help to address this problem, but present their own issues: there can be unintended mistakes in the transition from models to code; their platforms frequently bias modeling; and it is difficult to compare works that use different models and tools. In order to overcome these problems, this paper proposes a framework for a model-driven development of these simulations. It is based on a specific modeling language that supports the integrated specification of the multiple facets of an ITS: people, their vehicles, and the external environment; and a network of sensors and actuators conveniently arranged and distributed that operates over them. The framework works with a model editor to generate specifications compliant with that language, and a code generator to produce code from them using platform specifications. There are also guidelines to help researchers in the application of this infrastructure. A case study on advanced management of traffic lights with cameras illustrates its use. PMID:26083232
Fluxoids behavior in superconducting ladders
NASA Astrophysics Data System (ADS)
Sharon, Omri J.; Haham, Noam; Shaulov, Avner; Yeshurun, Yosef
2018-03-01
The nature of the interaction between fluxoids and between them and the external magnetic field is studied in one-dimensional superconducting networks. An Ising like expression is derived for the energy of a network revealing that fluxoids behave as repulsively interacting objects driven towards the network center by the effective applied field. Competition between these two interactions determines the equilibrium arrangement of fluxoids in the network as a function of the applied field. It is demonstrated that the fluxoids configurations are not always commensurate to the network symmetry. Incommensurate, degenerated configurations may be formed even in networks with an odd number of loops.
Customer-Driven Reliability Models for Multistate Coherent Systems
1992-01-01
AENCYUSEONLY(Leae bank)2. RPO- COVERED 1 11992DISSERTATION 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Customer -Driven Reliability Models For Multistate Coherent...UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE CUSTOMER -DRIVEN RELIABILITY MODELS FOR MULTISTATE COHERENT SYSTEMS A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY...BOEDIGHEIMER I Norman, Oklahoma Distribution/ Av~ilability Codes 1992 A vil andior Dist Special CUSTOMER -DRIVEN RELIABILITY MODELS FOR MULTISTATE
A Multi-level Fuzzy Evaluation Method for Smart Distribution Network Based on Entropy Weight
NASA Astrophysics Data System (ADS)
Li, Jianfang; Song, Xiaohui; Gao, Fei; Zhang, Yu
2017-05-01
Smart distribution network is considered as the future trend of distribution network. In order to comprehensive evaluate smart distribution construction level and give guidance to the practice of smart distribution construction, a multi-level fuzzy evaluation method based on entropy weight is proposed. Firstly, focus on both the conventional characteristics of distribution network and new characteristics of smart distribution network such as self-healing and interaction, a multi-level evaluation index system which contains power supply capability, power quality, economy, reliability and interaction is established. Then, a combination weighting method based on Delphi method and entropy weight method is put forward, which take into account not only the importance of the evaluation index in the experts’ subjective view, but also the objective and different information from the index values. Thirdly, a multi-level evaluation method based on fuzzy theory is put forward. Lastly, an example is conducted based on the statistical data of some cites’ distribution network and the evaluation method is proved effective and rational.
Value Driven Information Processing and Fusion
2016-03-01
consensus approach allows a decentralized approach to achieve the optimal error exponent of the centralized counterpart, a conclusion that is signifi...SECURITY CLASSIFICATION OF: The objective of the project is to develop a general framework for value driven decentralized information processing...including: optimal data reduction in a network setting for decentralized inference with quantization constraint; interactive fusion that allows queries and
Designing Cognitively Diagnostic Assessment for Algebraic Content Knowledge and Thinking Skills
ERIC Educational Resources Information Center
Zhang, Zhidong
2018-01-01
This study explored a diagnostic assessment method that emphasized the cognitive process of algebra learning. The study utilized a design and a theory-driven model to examine the content knowledge. Using the theory driven model, the thinking skills of algebra learning was also examined. A Bayesian network model was applied to represent the theory…
Information Weighted Consensus for Distributed Estimation in Vision Networks
ERIC Educational Resources Information Center
Kamal, Ahmed Tashrif
2013-01-01
Due to their high fault-tolerance, ease of installation and scalability to large networks, distributed algorithms have recently gained immense popularity in the sensor networks community, especially in computer vision. Multi-target tracking in a camera network is one of the fundamental problems in this domain. Distributed estimation algorithms…
NASA Astrophysics Data System (ADS)
Liang, Likai; Bi, Yushen
Considered on the distributed network management system's demand of high distributives, extensibility and reusability, a framework model of Three-tier distributed network management system based on COM/COM+ and DNA is proposed, which adopts software component technology and N-tier application software framework design idea. We also give the concrete design plan of each layer of this model. Finally, we discuss the internal running process of each layer in the distributed network management system's framework model.
Towards a carrier SDN: an example for elastic inter-datacenter connectivity.
Velasco, L; Asensio, A; Berral, J L; Castro, A; López, V
2014-01-13
We propose a network-driven transfer mode for cloud operations in a step towards a carrier SDN. Inter-datacenter connectivity is requested in terms of volume of data and completion time. The SDN controller translates and forwards requests to an ABNO controller in charge of a flexgrid network.
Technology-Driven Resource Sharing: Paying for Improvement.
ERIC Educational Resources Information Center
Rush, James E.
1993-01-01
Addresses the inadequacies of traditional methods of library financing and proposes a strategy to be implemented in an environment supported by automation and networks. Publisher pricing of data rather than publications, options for charging library users with debit cards, and the role of regional library networks are discussed. (EAM)
ERIC Educational Resources Information Center
Williamson, Ben
2015-01-01
This article examines the emergence of "digital governance" in public education in England. Drawing on and combining concepts from software studies, policy and political studies, it identifies some specific approaches to digital governance facilitated by network-based communications and database-driven information processing software…
Uniform rotating field network structure to efficiently package a magnetic bubble domain memory
NASA Technical Reports Server (NTRS)
Murray, Glen W. (Inventor); Chen, Thomas T. (Inventor); Wolfshagen, Ronald G. (Inventor); Ypma, John E. (Inventor)
1978-01-01
A unique and compact open coil rotating magnetic field network structure to efficiently package an array of bubble domain devices is disclosed. The field network has a configuration which effectively enables selected bubble domain devices from the array to be driven in a vertical magnetic field and in an independent and uniform horizontal rotating magnetic field. The field network is suitably adapted to minimize undesirable inductance effects, improve capabilities of heat dissipation, and facilitate repair or replacement of a bubble device.
Synaptic Impairment and Robustness of Excitatory Neuronal Networks with Different Topologies
Mirzakhalili, Ehsan; Gourgou, Eleni; Booth, Victoria; Epureanu, Bogdan
2017-01-01
Synaptic deficiencies are a known hallmark of neurodegenerative diseases, but the diagnosis of impaired synapses on the cellular level is not an easy task. Nonetheless, changes in the system-level dynamics of neuronal networks with damaged synapses can be detected using techniques that do not require high spatial resolution. This paper investigates how the structure/topology of neuronal networks influences their dynamics when they suffer from synaptic loss. We study different neuronal network structures/topologies by specifying their degree distributions. The modes of the degree distribution can be used to construct networks that consist of rich clubs and resemble small world networks, as well. We define two dynamical metrics to compare the activity of networks with different structures: persistent activity (namely, the self-sustained activity of the network upon removal of the initial stimulus) and quality of activity (namely, percentage of neurons that participate in the persistent activity of the network). Our results show that synaptic loss affects the persistent activity of networks with bimodal degree distributions less than it affects random networks. The robustness of neuronal networks enhances when the distance between the modes of the degree distribution increases, suggesting that the rich clubs of networks with distinct modes keep the whole network active. In addition, a tradeoff is observed between the quality of activity and the persistent activity. For a range of distributions, both of these dynamical metrics are considerably high for networks with bimodal degree distribution compared to random networks. We also propose three different scenarios of synaptic impairment, which may correspond to different pathological or biological conditions. Regardless of the network structure/topology, results demonstrate that synaptic loss has more severe effects on the activity of the network when impairments are correlated with the activity of the neurons. PMID:28659765
Structural diversity effects of multilayer networks on the threshold of interacting epidemics
NASA Astrophysics Data System (ADS)
Wang, Weihong; Chen, MingMing; Min, Yong; Jin, Xiaogang
2016-02-01
Foodborne diseases always spread through multiple vectors (e.g. fresh vegetables and fruits) and reveal that multilayer network could spread fatal pathogen with complex interactions. In this paper, first, we use a "top-down analysis framework that depends on only two distributions to describe a random multilayer network with any number of layers. These two distributions are the overlaid degree distribution and the edge-type distribution of the multilayer network. Second, based on the two distributions, we adopt three indicators of multilayer network diversity to measure the correlation between network layers, including network richness, likeness, and evenness. The network richness is the number of layers forming the multilayer network. The network likeness is the degree of different layers sharing the same edge. The network evenness is the variance of the number of edges in every layer. Third, based on a simple epidemic model, we analyze the influence of network diversity on the threshold of interacting epidemics with the coexistence of collaboration and competition. Our work extends the "top-down" analysis framework to deal with the more complex epidemic situation and more diversity indicators and quantifies the trade-off between thresholds of inter-layer collaboration and intra-layer transmission.
Distributed Detection with Collisions in a Random, Single-Hop Wireless Sensor Network
2013-05-26
public release; distribution is unlimited. Distributed detection with collisions in a random, single-hop wireless sensor network The views, opinions...1274 2 ABSTRACT Distributed detection with collisions in a random, single-hop wireless sensor network Report Title We consider the problem of... WIRELESS SENSOR NETWORK Gene T. Whipps?† Emre Ertin† Randolph L. Moses† ?U.S. Army Research Laboratory, Adelphi, MD 20783 †The Ohio State University
ERIC Educational Resources Information Center
Park, Vicki; Datnow, Amanda
2009-01-01
The purpose of this paper is to examine leadership practices in school systems that are implementing data-driven decision-making employing the theory of distributed leadership. With the advent of No Child Left Behind Act of 2001 (NCLB) in the US, educational leaders are now required to analyse, interpret and use data to make informed decisions in…
Transit-time and age distributions for nonlinear time-dependent compartmental systems.
Metzler, Holger; Müller, Markus; Sierra, Carlos A
2018-02-06
Many processes in nature are modeled using compartmental systems (reservoir/pool/box systems). Usually, they are expressed as a set of first-order differential equations describing the transfer of matter across a network of compartments. The concepts of age of matter in compartments and the time required for particles to transit the system are important diagnostics of these models with applications to a wide range of scientific questions. Until now, explicit formulas for transit-time and age distributions of nonlinear time-dependent compartmental systems were not available. We compute densities for these types of systems under the assumption of well-mixed compartments. Assuming that a solution of the nonlinear system is available at least numerically, we show how to construct a linear time-dependent system with the same solution trajectory. We demonstrate how to exploit this solution to compute transit-time and age distributions in dependence on given start values and initial age distributions. Furthermore, we derive equations for the time evolution of quantiles and moments of the age distributions. Our results generalize available density formulas for the linear time-independent case and mean-age formulas for the linear time-dependent case. As an example, we apply our formulas to a nonlinear and a linear version of a simple global carbon cycle model driven by a time-dependent input signal which represents fossil fuel additions. We derive time-dependent age distributions for all compartments and calculate the time it takes to remove fossil carbon in a business-as-usual scenario.
Statistical characteristics of dynamics for population migration driven by the economic interests
NASA Astrophysics Data System (ADS)
Huo, Jie; Wang, Xu-Ming; Zhao, Ning; Hao, Rui
2016-06-01
Population migration typically occurs under some constraints, which can deeply affect the structure of a society and some other related aspects. Therefore, it is critical to investigate the characteristics of population migration. Data from the China Statistical Yearbook indicate that the regional gross domestic product per capita relates to the population size via a linear or power-law relation. In addition, the distribution of population migration sizes or relative migration strength introduced here is dominated by a shifted power-law relation. To reveal the mechanism that creates the aforementioned distributions, a dynamic model is proposed based on the population migration rule that migration is facilitated by higher financial gains and abated by fewer employment opportunities at the destination, considering the migration cost as a function of the migration distance. The calculated results indicate that the distribution of the relative migration strength is governed by a shifted power-law relation, and that the distribution of migration distances is dominated by a truncated power-law relation. These results suggest the use of a power-law to fit a distribution may be not always suitable. Additionally, from the modeling framework, one can infer that it is the randomness and determinacy that jointly create the scaling characteristics of the distributions. The calculation also demonstrates that the network formed by active nodes, representing the immigration and emigration regions, usually evolves from an ordered state with a non-uniform structure to a disordered state with a uniform structure, which is evidenced by the increasing structural entropy.
AnaBench: a Web/CORBA-based workbench for biomolecular sequence analysis
Badidi, Elarbi; De Sousa, Cristina; Lang, B Franz; Burger, Gertraud
2003-01-01
Background Sequence data analyses such as gene identification, structure modeling or phylogenetic tree inference involve a variety of bioinformatics software tools. Due to the heterogeneity of bioinformatics tools in usage and data requirements, scientists spend much effort on technical issues including data format, storage and management of input and output, and memorization of numerous parameters and multi-step analysis procedures. Results In this paper, we present the design and implementation of AnaBench, an interactive, Web-based bioinformatics Analysis workBench allowing streamlined data analysis. Our philosophy was to minimize the technical effort not only for the scientist who uses this environment to analyze data, but also for the administrator who manages and maintains the workbench. With new bioinformatics tools published daily, AnaBench permits easy incorporation of additional tools. This flexibility is achieved by employing a three-tier distributed architecture and recent technologies including CORBA middleware, Java, JDBC, and JSP. A CORBA server permits transparent access to a workbench management database, which stores information about the users, their data, as well as the description of all bioinformatics applications that can be launched from the workbench. Conclusion AnaBench is an efficient and intuitive interactive bioinformatics environment, which offers scientists application-driven, data-driven and protocol-driven analysis approaches. The prototype of AnaBench, managed by a team at the Université de Montréal, is accessible on-line at: . Please contact the authors for details about setting up a local-network AnaBench site elsewhere. PMID:14678565
The evolution of cooperation on geographical networks
NASA Astrophysics Data System (ADS)
Li, Yixiao; Wang, Yi; Sheng, Jichuan
2017-11-01
We study evolutionary public goods game on geographical networks, i.e., complex networks which are located on a geographical plane. The geographical feature effects in two ways: In one way, the geographically-induced network structure influences the overall evolutionary dynamics, and, in the other way, the geographical length of an edge influences the cost when the two players at the two ends interact. For the latter effect, we design a new cost function of cooperators, which simply assumes that the longer the distance between two players, the higher cost the cooperator(s) of them have to pay. In this study, network substrates are generated by a previous spatial network model with a cost-benefit parameter controlling the network topology. Our simulations show that the greatest promotion of cooperation is achieved in the intermediate regime of the parameter, in which empirical estimates of various railway networks fall. Further, we investigate how the distribution of edges' geographical costs influences the evolutionary dynamics and consider three patterns of the distribution: an approximately-equal distribution, a diverse distribution, and a polarized distribution. For normal geographical networks which are generated using intermediate values of the cost-benefit parameter, a diverse distribution hinders the evolution of cooperation, whereas a polarized distribution lowers the threshold value of the amplification factor for cooperation in public goods game. These results are helpful for understanding the evolution of cooperation on real-world geographical networks.
Modeling sediment transport after ditch network maintenance of a forested peatland
NASA Astrophysics Data System (ADS)
Haahti, K.; Marttila, H.; Warsta, L.; Kokkonen, T.; Finér, L.; Koivusalo, H.
2016-11-01
Elevated suspended sediment (SS) loads released from peatlands after drainage operations and the resulting negative effect on the ecological status of the receiving water bodies have been widely recognized. Understanding the processes controlling erosion and sediment transport within the ditch network forms a prerequisite for adequate sediment control. While numerous experimental studies have been reported in this field, model based assessments are rare. This study presents a modeling approach to investigate sediment transport in a peatland ditch network. The transport model describes bed erosion, rain-induced bank erosion, floc deposition, and consolidation of the bed. Coupled to a distributed hydrological model, sediment transport was simulated in a 5.2 ha forestry-drained peatland catchment for 2 years after ditch cleaning. Comparing simulation results to measured SS concentrations suggested that the loose peat material, produced during excavation, contributed markedly to elevated SS concentrations immediately after ditch cleaning. Both snowmelt and summer rainstorms contributed critically to annual loads. Springtime peat erosion during snowmelt was driven by ditch flow whereas during summer rainfalls, bank erosion by raindrop impact was identified as an important process. Relating modeling results to observed spatial topographic changes in the ditch network was challenging and the results were difficult to verify. Nevertheless, the model has potential to identify risk areas for erosion. The results demonstrate that modeling is effective in separating the importance of different processes and complements pure experimental approaches. Modeling results can aid planning and designing efficient sediment control measures and guide the focus of experimental studies.
Learning about learning: Mining human brain sub-network biomarkers from fMRI data
Dereli, Nazli; Dang, Xuan-Hong; Bassett, Danielle S.; Wymbs, Nicholas F.; Grafton, Scott T.; Singh, Ambuj K.
2017-01-01
Modeling the brain as a functional network can reveal the relationship between distributed neurophysiological processes and functional interactions between brain structures. Existing literature on functional brain networks focuses mainly on a battery of network properties in “resting state” employing, for example, modularity, clustering, or path length among regions. In contrast, we seek to uncover functionally connected subnetworks that predict or correlate with cohort differences and are conserved within the subjects within a cohort. We focus on differences in both the rate of learning as well as overall performance in a sensorimotor task across subjects and develop a principled approach for the discovery of discriminative subgraphs of functional connectivity based on imaging acquired during practice. We discover two statistically significant subgraph regions: one involving multiple regions in the visual cortex and another involving the parietal operculum and planum temporale. High functional coherence in the former characterizes sessions in which subjects take longer to perform the task, while high coherence in the latter is associated with high learning rate (performance improvement across trials). Our proposed methodology is general, in that it can be applied to other cognitive tasks, to study learning or to differentiate between healthy patients and patients with neurological disorders, by revealing the salient interactions among brain regions associated with the observed global state. The discovery of such significant discriminative subgraphs promises a better data-driven understanding of the dynamic brain processes associated with high-level cognitive functions. PMID:29016686
Learning about learning: Mining human brain sub-network biomarkers from fMRI data.
Bogdanov, Petko; Dereli, Nazli; Dang, Xuan-Hong; Bassett, Danielle S; Wymbs, Nicholas F; Grafton, Scott T; Singh, Ambuj K
2017-01-01
Modeling the brain as a functional network can reveal the relationship between distributed neurophysiological processes and functional interactions between brain structures. Existing literature on functional brain networks focuses mainly on a battery of network properties in "resting state" employing, for example, modularity, clustering, or path length among regions. In contrast, we seek to uncover functionally connected subnetworks that predict or correlate with cohort differences and are conserved within the subjects within a cohort. We focus on differences in both the rate of learning as well as overall performance in a sensorimotor task across subjects and develop a principled approach for the discovery of discriminative subgraphs of functional connectivity based on imaging acquired during practice. We discover two statistically significant subgraph regions: one involving multiple regions in the visual cortex and another involving the parietal operculum and planum temporale. High functional coherence in the former characterizes sessions in which subjects take longer to perform the task, while high coherence in the latter is associated with high learning rate (performance improvement across trials). Our proposed methodology is general, in that it can be applied to other cognitive tasks, to study learning or to differentiate between healthy patients and patients with neurological disorders, by revealing the salient interactions among brain regions associated with the observed global state. The discovery of such significant discriminative subgraphs promises a better data-driven understanding of the dynamic brain processes associated with high-level cognitive functions.
iSANLA: intelligent sensor and actuator network for life science applications.
Schloesser, Mario; Schnitzer, Andreas; Ying, Hong; Silex, Carmen; Schiek, Michael
2008-01-01
In the fields of neurological rehabilitation and neurophysiological research there is a strong need for miniaturized, multi channel, battery driven, wireless networking DAQ systems enabling real-time digital signal processing and feedback experiments. For the scientific investigation on the passive auditory based 3D-orientation of Barn Owls and the scientific research on vegetative locomotor coordination of Parkinson's disease patients during rehabilitation we developed our 'intelligent Sensor and Actuator Network for Life science Application' (iSANLA) system. Implemented on the ultra low power microcontroller MSP430 sample rates up to 96 kHz have been realised for single channel DAQ. The system includes lossless local data storage up to 4 GB. With its outer dimensions of 20mm per rim and less than 15 g of weight including the Lithium-Ion battery our modular designed sensor node is thoroughly capable of up to eight channel recordings with 8 kHz sample rate each and provides sufficient computational power for digital signal processing ready to start our first mobile experiments. For wireless mobility a compact communication protocol based on the IEEE 802.15.4 wireless standard with net data rates up to 141 kbit/s has been implemented. To merge the lossless acquired data of the distributed iNODEs a time synchronization protocol has been developed preserving causality. Hence the necessary time synchronous start of the data acquisition inside a network of multiple sensors with a precision better than the highest sample rate has been realized.
Application of artificial intelligence to the management of urological cancer.
Abbod, Maysam F; Catto, James W F; Linkens, Derek A; Hamdy, Freddie C
2007-10-01
Artificial intelligence techniques, such as artificial neural networks, Bayesian belief networks and neuro-fuzzy modeling systems, are complex mathematical models based on the human neuronal structure and thinking. Such tools are capable of generating data driven models of biological systems without making assumptions based on statistical distributions. A large amount of study has been reported of the use of artificial intelligence in urology. We reviewed the basic concepts behind artificial intelligence techniques and explored the applications of this new dynamic technology in various aspects of urological cancer management. A detailed and systematic review of the literature was performed using the MEDLINE and Inspec databases to discover reports using artificial intelligence in urological cancer. The characteristics of machine learning and their implementation were described and reports of artificial intelligence use in urological cancer were reviewed. While most researchers in this field were found to focus on artificial neural networks to improve the diagnosis, staging and prognostic prediction of urological cancers, some groups are exploring other techniques, such as expert systems and neuro-fuzzy modeling systems. Compared to traditional regression statistics artificial intelligence methods appear to be accurate and more explorative for analyzing large data cohorts. Furthermore, they allow individualized prediction of disease behavior. Each artificial intelligence method has characteristics that make it suitable for different tasks. The lack of transparency of artificial neural networks hinders global scientific community acceptance of this method but this can be overcome by neuro-fuzzy modeling systems.
Software-Enabled Distributed Network Governance: The PopMedNet Experience.
Davies, Melanie; Erickson, Kyle; Wyner, Zachary; Malenfant, Jessica; Rosen, Rob; Brown, Jeffrey
2016-01-01
The expanded availability of electronic health information has led to increased interest in distributed health data research networks. The distributed research network model leaves data with and under the control of the data holder. Data holders, network coordinating centers, and researchers have distinct needs and challenges within this model. The concerns of network stakeholders are addressed in the design and governance models of the PopMedNet software platform. PopMedNet features include distributed querying, customizable workflows, and auditing and search capabilities. Its flexible role-based access control system enables the enforcement of varying governance policies. Four case studies describe how PopMedNet is used to enforce network governance models. Trust is an essential component of a distributed research network and must be built before data partners may be willing to participate further. The complexity of the PopMedNet system must be managed as networks grow and new data, analytic methods, and querying approaches are developed. The PopMedNet software platform supports a variety of network structures, governance models, and research activities through customizable features designed to meet the needs of network stakeholders.
Brandt, Heather M.; Freedman, Darcy A.; Adams, Swann Arp; Young, Vicki M.; Ureda, John R.; McCracken, James Lyndon; Hébert, James R.
2014-01-01
The South Carolina Cancer Prevention and Control Research Network (SC-CPCRN) is 1 of 10 networks funded by the Centers for Disease Control and Prevention and the National Cancer Institute (NCI) that works to reduce cancer-related health disparities. In partnership with federally qualified health centers and community stakeholders, the SC-CPCRN uses evidence-based approaches (eg, NCI Research-tested Intervention Programs) to disseminate and implement cancer prevention and control messages, programs, and interventions. We describe the innovative stakeholder- and community-driven communication efforts conducted by the SC-CPCRN to improve overall health and reduce cancer-related health disparities among high-risk and disparate populations in South Carolina. We describe how our communication efforts are aligned with 5 core values recommended for dissemination and implementation science: 1) rigor and relevance, 2) efficiency and speed, 3) collaboration, 4) improved capacity, and 5) cumulative knowledge. PMID:25058673
Slow synaptic dynamics in a network: From exponential to power-law forgetting
NASA Astrophysics Data System (ADS)
Luck, J. M.; Mehta, A.
2014-09-01
We investigate a mean-field model of interacting synapses on a directed neural network. Our interest lies in the slow adaptive dynamics of synapses, which are driven by the fast dynamics of the neurons they connect. Cooperation is modeled from the usual Hebbian perspective, while competition is modeled by an original polarity-driven rule. The emergence of a critical manifold culminating in a tricritical point is crucially dependent on the presence of synaptic competition. This leads to a universal 1/t power-law relaxation of the mean synaptic strength along the critical manifold and an equally universal 1/√t relaxation at the tricritical point, to be contrasted with the exponential relaxation that is otherwise generic. In turn, this leads to the natural emergence of long- and short-term memory from different parts of parameter space in a synaptic network, which is the most original and important result of our present investigations.
Network Model-Assisted Inference from Respondent-Driven Sampling Data
Gile, Krista J.; Handcock, Mark S.
2015-01-01
Summary Respondent-Driven Sampling is a widely-used method for sampling hard-to-reach human populations by link-tracing over their social networks. Inference from such data requires specialized techniques because the sampling process is both partially beyond the control of the researcher, and partially implicitly defined. Therefore, it is not generally possible to directly compute the sampling weights for traditional design-based inference, and likelihood inference requires modeling the complex sampling process. As an alternative, we introduce a model-assisted approach, resulting in a design-based estimator leveraging a working network model. We derive a new class of estimators for population means and a corresponding bootstrap standard error estimator. We demonstrate improved performance compared to existing estimators, including adjustment for an initial convenience sample. We also apply the method and an extension to the estimation of HIV prevalence in a high-risk population. PMID:26640328
Network Model-Assisted Inference from Respondent-Driven Sampling Data.
Gile, Krista J; Handcock, Mark S
2015-06-01
Respondent-Driven Sampling is a widely-used method for sampling hard-to-reach human populations by link-tracing over their social networks. Inference from such data requires specialized techniques because the sampling process is both partially beyond the control of the researcher, and partially implicitly defined. Therefore, it is not generally possible to directly compute the sampling weights for traditional design-based inference, and likelihood inference requires modeling the complex sampling process. As an alternative, we introduce a model-assisted approach, resulting in a design-based estimator leveraging a working network model. We derive a new class of estimators for population means and a corresponding bootstrap standard error estimator. We demonstrate improved performance compared to existing estimators, including adjustment for an initial convenience sample. We also apply the method and an extension to the estimation of HIV prevalence in a high-risk population.
NASA Astrophysics Data System (ADS)
Pal, Krishnendu; Das, Biswajit; Banerjee, Kinshuk; Gangopadhyay, Gautam
2015-09-01
We have introduced an approach to nonequilibrium thermodynamics of an open chemical reaction network in terms of the propensities of the individual elementary reactions and the corresponding reverse reactions. The method is a microscopic formulation of the dissipation function in terms of the relative entropy or Kullback-Leibler distance which is based on the analogy of phase space trajectory with the path of elementary reactions in a network of chemical process. We have introduced here a fluctuation theorem valid for each opposite pair of elementary reactions which is useful in determining the contribution of each sub-reaction on the nonequilibrium thermodynamics of overall reaction. The methodology is applied to an oligomeric enzyme kinetics at a chemiostatic condition that leads the reaction to a nonequilibrium steady state for which we have estimated how each step of the reaction is energy driven or entropy driven to contribute to the overall reaction.
Friedman, Daniela B; Brandt, Heather M; Freedman, Darcy A; Adams, Swann Arp; Young, Vicki M; Ureda, John R; McCracken, James Lyndon; Hébert, James R
2014-07-24
The South Carolina Cancer Prevention and Control Research Network (SC-CPCRN) is 1 of 10 networks funded by the Centers for Disease Control and Prevention and the National Cancer Institute (NCI) that works to reduce cancer-related health disparities. In partnership with federally qualified health centers and community stakeholders, the SC-CPCRN uses evidence-based approaches (eg, NCI Research-tested Intervention Programs) to disseminate and implement cancer prevention and control messages, programs, and interventions. We describe the innovative stakeholder- and community-driven communication efforts conducted by the SC-CPCRN to improve overall health and reduce cancer-related health disparities among high-risk and disparate populations in South Carolina. We describe how our communication efforts are aligned with 5 core values recommended for dissemination and implementation science: 1) rigor and relevance, 2) efficiency and speed, 3) collaboration, 4) improved capacity, and 5) cumulative knowledge.
Documentation Driven Software Development
2010-06-01
Applications, Vol. 13, No. 1, March, 2006, pp. 28-38. 3. G. Jacoby, R. Marchany, Davis IV, “Using Battery Constraints Within Mobile Hosts To Improve Network ...2005. 2. Luqi, V. Berzins, William Roof, “Nautical Predictive Routing Protocol (NPRP) for the Dynamic Ad-Hoc Nautical Network (DANN)”, Monterey...Workshop 2005: realization of reliable systems on top of unreliable networked platforms, Laguna Beach, California, September, 2005. 3. B. Lewis, “The
75 FR 9343 - Nomenclature Change Relating to the Network Distribution Center Transition
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-02
... POSTAL SERVICE 39 CFR Parts 111 and 121 Nomenclature Change Relating to the Network Distribution... (BMC) to network distribution centers (NDC), by replacing all text references to ``BMC'' with ``NDC...: Background: The BMC network was established in the 1970s to process Parcel Post[supreg], Bound Printed Matter...
Sensitivity of marine protected area network connectivity to atmospheric variability
NASA Astrophysics Data System (ADS)
Fox, Alan D.; Henry, Lea-Anne; Corne, David W.; Roberts, J. Murray
2016-11-01
International efforts are underway to establish well-connected systems of marine protected areas (MPAs) covering at least 10% of the ocean by 2020. But the nature and dynamics of ocean ecosystem connectivity are poorly understood, with unresolved effects of climate variability. We used 40-year runs of a particle tracking model to examine the sensitivity of an MPA network for habitat-forming cold-water corals in the northeast Atlantic to changes in larval dispersal driven by atmospheric cycles and larval behaviour. Trajectories of Lophelia pertusa larvae were strongly correlated to the North Atlantic Oscillation (NAO), the dominant pattern of interannual atmospheric circulation variability over the northeast Atlantic. Variability in trajectories significantly altered network connectivity and source-sink dynamics, with positive phase NAO conditions producing a well-connected but asymmetrical network connected from west to east. Negative phase NAO produced reduced connectivity, but notably some larvae tracked westward-flowing currents towards coral populations on the mid-Atlantic ridge. Graph theoretical metrics demonstrate critical roles played by seamounts and offshore banks in larval supply and maintaining connectivity across the network. Larval longevity and behaviour mediated dispersal and connectivity, with shorter lived and passive larvae associated with reduced connectivity. We conclude that the existing MPA network is vulnerable to atmospheric-driven changes in ocean circulation.
Network Structure and Biased Variance Estimation in Respondent Driven Sampling
Verdery, Ashton M.; Mouw, Ted; Bauldry, Shawn; Mucha, Peter J.
2015-01-01
This paper explores bias in the estimation of sampling variance in Respondent Driven Sampling (RDS). Prior methodological work on RDS has focused on its problematic assumptions and the biases and inefficiencies of its estimators of the population mean. Nonetheless, researchers have given only slight attention to the topic of estimating sampling variance in RDS, despite the importance of variance estimation for the construction of confidence intervals and hypothesis tests. In this paper, we show that the estimators of RDS sampling variance rely on a critical assumption that the network is First Order Markov (FOM) with respect to the dependent variable of interest. We demonstrate, through intuitive examples, mathematical generalizations, and computational experiments that current RDS variance estimators will always underestimate the population sampling variance of RDS in empirical networks that do not conform to the FOM assumption. Analysis of 215 observed university and school networks from Facebook and Add Health indicates that the FOM assumption is violated in every empirical network we analyze, and that these violations lead to substantially biased RDS estimators of sampling variance. We propose and test two alternative variance estimators that show some promise for reducing biases, but which also illustrate the limits of estimating sampling variance with only partial information on the underlying population social network. PMID:26679927
NASA Astrophysics Data System (ADS)
Li, Jinze; Qu, Zhi; He, Xiaoyang; Jin, Xiaoming; Li, Tie; Wang, Mingkai; Han, Qiu; Gao, Ziji; Jiang, Feng
2018-02-01
Large-scale access of distributed power can improve the current environmental pressure, at the same time, increasing the complexity and uncertainty of overall distribution system. Rational planning of distributed power can effectively improve the system voltage level. To this point, the specific impact on distribution network power quality caused by the access of typical distributed power was analyzed and from the point of improving the learning factor and the inertia weight, an improved particle swarm optimization algorithm (IPSO) was proposed which could solve distributed generation planning for distribution network to improve the local and global search performance of the algorithm. Results show that the proposed method can well reduce the system network loss and improve the economic performance of system operation with distributed generation.
Ni, Jianhua; Qian, Tianlu; Xi, Changbai; Rui, Yikang; Wang, Jiechen
2016-08-18
The spatial distribution of urban service facilities is largely constrained by the road network. In this study, network point pattern analysis and correlation analysis were used to analyze the relationship between road network and healthcare facility distribution. The weighted network kernel density estimation method proposed in this study identifies significant differences between the outside and inside areas of the Ming city wall. The results of network K-function analysis show that private hospitals are more evenly distributed than public hospitals, and pharmacy stores tend to cluster around hospitals along the road network. After computing the correlation analysis between different categorized hospitals and street centrality, we find that the distribution of these hospitals correlates highly with the street centralities, and that the correlations are higher with private and small hospitals than with public and large hospitals. The comprehensive analysis results could help examine the reasonability of existing urban healthcare facility distribution and optimize the location of new healthcare facilities.
Complex Network Theory Applied to the Growth of Kuala Lumpur's Public Urban Rail Transit Network.
Ding, Rui; Ujang, Norsidah; Hamid, Hussain Bin; Wu, Jianjun
2015-01-01
Recently, the number of studies involving complex network applications in transportation has increased steadily as scholars from various fields analyze traffic networks. Nonetheless, research on rail network growth is relatively rare. This research examines the evolution of the Public Urban Rail Transit Networks of Kuala Lumpur (PURTNoKL) based on complex network theory and covers both the topological structure of the rail system and future trends in network growth. In addition, network performance when facing different attack strategies is also assessed. Three topological network characteristics are considered: connections, clustering and centrality. In PURTNoKL, we found that the total number of nodes and edges exhibit a linear relationship and that the average degree stays within the interval [2.0488, 2.6774] with heavy-tailed distributions. The evolutionary process shows that the cumulative probability distribution (CPD) of degree and the average shortest path length show good fit with exponential distribution and normal distribution, respectively. Moreover, PURTNoKL exhibits clear cluster characteristics; most of the nodes have a 2-core value, and the CPDs of the centrality's closeness and betweenness follow a normal distribution function and an exponential distribution, respectively. Finally, we discuss four different types of network growth styles and the line extension process, which reveal that the rail network's growth is likely based on the nodes with the biggest lengths of the shortest path and that network protection should emphasize those nodes with the largest degrees and the highest betweenness values. This research may enhance the networkability of the rail system and better shape the future growth of public rail networks.
Baek, K; Morris, L S; Kundu, P; Voon, V
2017-03-01
The efficient organization and communication of brain networks underlie cognitive processing and their disruption can lead to pathological behaviours. Few studies have focused on whole-brain networks in obesity and binge eating disorder (BED). Here we used multi-echo resting-state functional magnetic resonance imaging (rsfMRI) along with a data-driven graph theory approach to assess brain network characteristics in obesity and BED. Multi-echo rsfMRI scans were collected from 40 obese subjects (including 20 BED patients) and 40 healthy controls and denoised using multi-echo independent component analysis (ME-ICA). We constructed a whole-brain functional connectivity matrix with normalized correlation coefficients between regional mean blood oxygenation level-dependent (BOLD) signals from 90 brain regions in the Automated Anatomical Labeling atlas. We computed global and regional network properties in the binarized connectivity matrices with an edge density of 5%-25%. We also verified our findings using a separate parcellation, the Harvard-Oxford atlas parcellated into 470 regions. Obese subjects exhibited significantly reduced global and local network efficiency as well as decreased modularity compared with healthy controls, showing disruption in small-world and modular network structures. In regional metrics, the putamen, pallidum and thalamus exhibited significantly decreased nodal degree and efficiency in obese subjects. Obese subjects also showed decreased connectivity of cortico-striatal/cortico-thalamic networks associated with putaminal and cortical motor regions. These findings were significant with ME-ICA with limited group differences observed with conventional denoising or single-echo analysis. Using this data-driven analysis of multi-echo rsfMRI data, we found disruption in global network properties and motor cortico-striatal networks in obesity consistent with habit formation theories. Our findings highlight the role of network properties in pathological food misuse as possible biomarkers and therapeutic targets.
Multiple-Ring Digital Communication Network
NASA Technical Reports Server (NTRS)
Kirkham, Harold
1992-01-01
Optical-fiber digital communication network to support data-acquisition and control functions of electric-power-distribution networks. Optical-fiber links of communication network follow power-distribution routes. Since fiber crosses open power switches, communication network includes multiple interconnected loops with occasional spurs. At each intersection node is needed. Nodes of communication network include power-distribution substations and power-controlling units. In addition to serving data acquisition and control functions, each node acts as repeater, passing on messages to next node(s). Multiple-ring communication network operates on new AbNET protocol and features fiber-optic communication.
Neuronal correlates of a virtual-reality-based passive sensory P300 network.
Chen, Chun-Chuan; Syue, Kai-Syun; Li, Kai-Chiun; Yeh, Shih-Ching
2014-01-01
P300, a positive event-related potential (ERP) evoked at around 300 ms after stimulus, can be elicited using an active or passive oddball paradigm. Active P300 requires a person's intentional response, whereas passive P300 does not require an intentional response. Passive P300 has been used in incommunicative patients for consciousness detection and brain computer interface. Active and passive P300 differ in amplitude, but not in latency or scalp distribution. However, no study has addressed the mechanism underlying the production of passive P300. In particular, it remains unclear whether the passive P300 shares an identical active P300 generating network architecture when no response is required. This study aims to explore the hierarchical network of passive sensory P300 production using dynamic causal modelling (DCM) for ERP and a novel virtual reality (VR)-based passive oddball paradigm. Moreover, we investigated the causal relationship of this passive P300 network and the changes in connection strength to address the possible functional roles. A classical ERP analysis was performed to verify that the proposed VR-based game can reliably elicit passive P300. The DCM results suggested that the passive and active P300 share the same parietal-frontal neural network for attentional control and, underlying the passive network, the feed-forward modulation is stronger than the feed-back one. The functional role of this forward modulation may indicate the delivery of sensory information, automatic detection of differences, and stimulus-driven attentional processes involved in performing this passive task. To our best knowledge, this is the first study to address the passive P300 network. The results of this study may provide a reference for future clinical studies on addressing the network alternations under pathological states of incommunicative patients. However, caution is required when comparing patients' analytic results with this study. For example, the task presented here is not applicable to incommunicative patients.
Neuronal Correlates of a Virtual-Reality-Based Passive Sensory P300 Network
Chen, Chun-Chuan; Syue, Kai-Syun; Li, Kai-Chiun; Yeh, Shih-Ching
2014-01-01
P300, a positive event-related potential (ERP) evoked at around 300 ms after stimulus, can be elicited using an active or passive oddball paradigm. Active P300 requires a person’s intentional response, whereas passive P300 does not require an intentional response. Passive P300 has been used in incommunicative patients for consciousness detection and brain computer interface. Active and passive P300 differ in amplitude, but not in latency or scalp distribution. However, no study has addressed the mechanism underlying the production of passive P300. In particular, it remains unclear whether the passive P300 shares an identical active P300 generating network architecture when no response is required. This study aims to explore the hierarchical network of passive sensory P300 production using dynamic causal modelling (DCM) for ERP and a novel virtual reality (VR)-based passive oddball paradigm. Moreover, we investigated the causal relationship of this passive P300 network and the changes in connection strength to address the possible functional roles. A classical ERP analysis was performed to verify that the proposed VR-based game can reliably elicit passive P300. The DCM results suggested that the passive and active P300 share the same parietal-frontal neural network for attentional control and, underlying the passive network, the feed-forward modulation is stronger than the feed-back one. The functional role of this forward modulation may indicate the delivery of sensory information, automatic detection of differences, and stimulus-driven attentional processes involved in performing this passive task. To our best knowledge, this is the first study to address the passive P300 network. The results of this study may provide a reference for future clinical studies on addressing the network alternations under pathological states of incommunicative patients. However, caution is required when comparing patients’ analytic results with this study. For example, the task presented here is not applicable to incommunicative patients. PMID:25401520
Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems
NASA Astrophysics Data System (ADS)
Giulioni, Massimiliano; Corradi, Federico; Dante, Vittorio; Del Giudice, Paolo
2015-10-01
Neuromorphic chips embody computational principles operating in the nervous system, into microelectronic devices. In this domain it is important to identify computational primitives that theory and experiments suggest as generic and reusable cognitive elements. One such element is provided by attractor dynamics in recurrent networks. Point attractors are equilibrium states of the dynamics (up to fluctuations), determined by the synaptic structure of the network; a ‘basin’ of attraction comprises all initial states leading to a given attractor upon relaxation, hence making attractor dynamics suitable to implement robust associative memory. The initial network state is dictated by the stimulus, and relaxation to the attractor state implements the retrieval of the corresponding memorized prototypical pattern. In a previous work we demonstrated that a neuromorphic recurrent network of spiking neurons and suitably chosen, fixed synapses supports attractor dynamics. Here we focus on learning: activating on-chip synaptic plasticity and using a theory-driven strategy for choosing network parameters, we show that autonomous learning, following repeated presentation of simple visual stimuli, shapes a synaptic connectivity supporting stimulus-selective attractors. Associative memory develops on chip as the result of the coupled stimulus-driven neural activity and ensuing synaptic dynamics, with no artificial separation between learning and retrieval phases.
Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems.
Giulioni, Massimiliano; Corradi, Federico; Dante, Vittorio; del Giudice, Paolo
2015-10-14
Neuromorphic chips embody computational principles operating in the nervous system, into microelectronic devices. In this domain it is important to identify computational primitives that theory and experiments suggest as generic and reusable cognitive elements. One such element is provided by attractor dynamics in recurrent networks. Point attractors are equilibrium states of the dynamics (up to fluctuations), determined by the synaptic structure of the network; a 'basin' of attraction comprises all initial states leading to a given attractor upon relaxation, hence making attractor dynamics suitable to implement robust associative memory. The initial network state is dictated by the stimulus, and relaxation to the attractor state implements the retrieval of the corresponding memorized prototypical pattern. In a previous work we demonstrated that a neuromorphic recurrent network of spiking neurons and suitably chosen, fixed synapses supports attractor dynamics. Here we focus on learning: activating on-chip synaptic plasticity and using a theory-driven strategy for choosing network parameters, we show that autonomous learning, following repeated presentation of simple visual stimuli, shapes a synaptic connectivity supporting stimulus-selective attractors. Associative memory develops on chip as the result of the coupled stimulus-driven neural activity and ensuing synaptic dynamics, with no artificial separation between learning and retrieval phases.
Distributed Propulsion Vehicles
NASA Technical Reports Server (NTRS)
Kim, Hyun Dae
2010-01-01
Since the introduction of large jet-powered transport aircraft, the majority of these vehicles have been designed by placing thrust-generating engines either under the wings or on the fuselage to minimize aerodynamic interactions on the vehicle operation. However, advances in computational and experimental tools along with new technologies in materials, structures, and aircraft controls, etc. are enabling a high degree of integration of the airframe and propulsion system in aircraft design. The National Aeronautics and Space Administration (NASA) has been investigating a number of revolutionary distributed propulsion vehicle concepts to increase aircraft performance. The concept of distributed propulsion is to fully integrate a propulsion system within an airframe such that the aircraft takes full synergistic benefits of coupling of airframe aerodynamics and the propulsion thrust stream by distributing thrust using many propulsors on the airframe. Some of the concepts are based on the use of distributed jet flaps, distributed small multiple engines, gas-driven multi-fans, mechanically driven multifans, cross-flow fans, and electric fans driven by turboelectric generators. This paper describes some early concepts of the distributed propulsion vehicles and the current turboelectric distributed propulsion (TeDP) vehicle concepts being studied under the NASA s Subsonic Fixed Wing (SFW) Project to drastically reduce aircraft-related fuel burn, emissions, and noise by the year 2030 to 2035.
Mishra, A.; Ray, C.; Kolpin, D.W.
2004-01-01
A neural network analysis of agrichemical occurrence in groundwater was conducted using data from a pilot study of 192 small-diameter drilled and driven wells and 115 dug and bored wells in Illinois, a regional reconnaissance network of 303 wells across 12 Midwestern states, and a study of 687 domestic wells across Iowa. Potential factors contributing to well contamination (e.g., depth to aquifer material, well depth, and distance to cropland) were investigated. These contributing factors were available in either numeric (actual or categorical) or descriptive (yes or no) format. A method was devised to use the numeric and descriptive values simultaneously. Training of the network was conducted using a standard backpropagation algorithm. Approximately 15% of the data was used for testing. Analysis indicated that training error was quite low for most data. Testing results indicated that it was possible to predict the contamination potential of a well with pesticides. However, predicting the actual level of contamination was more difficult. For pesticide occurrence in drilled and driven wells, the network predictions were good. The performance of the network was poorer for predicting nitrate occurrence in dug and bored wells. Although the data set for Iowa was large, the prediction ability of the trained network was poor, due to descriptive or categorical input parameters, compared with smaller data sets such as that for Illinois, which contained more numeric information.
Kong, Bingxin; Liu, Siqi; Yin, Jie; Li, Shengru; Zhu, Zuqing
2018-05-28
Nowadays, it is common for service providers (SPs) to leverage hybrid clouds to improve the quality-of-service (QoS) of their Big Data applications. However, for achieving guaranteed latency and/or bandwidth in its hybrid cloud, an SP might desire to have a virtual datacenter (vDC) network, in which it can manage and manipulate the network connections freely. To address this requirement, we design and implement a network slicing and orchestration (NSO) system that can create and expand vDCs across optical/packet domains on-demand. Considering Hadoop MapReduce (M/R) as the use-case, we describe the proposed architectures of the system's data, control and management planes, and present the operation procedures for creating, expanding, monitoring and managing a vDC for M/R optimization. The proposed NSO system is then realized in a small-scale network testbed that includes four optical/packet domains, and we conduct experiments in it to demonstrate the whole operations of the data, control and management planes. Our experimental results verify that application-driven on-demand vDC expansion across optical/packet domains can be achieved for M/R optimization, and after being provisioned with a vDC, the SP using the NSO system can fully control the vDC network and further optimize the M/R jobs in it with network orchestration.
A growth model for directed complex networks with power-law shape in the out-degree distribution
Esquivel-Gómez, J.; Stevens-Navarro, E.; Pineda-Rico, U.; Acosta-Elias, J.
2015-01-01
Many growth models have been published to model the behavior of real complex networks. These models are able to reproduce several of the topological properties of such networks. However, in most of these growth models, the number of outgoing links (i.e., out-degree) of nodes added to the network is constant, that is all nodes in the network are born with the same number of outgoing links. In other models, the resultant out-degree distribution decays as a poisson or an exponential distribution. However, it has been found that in real complex networks, the out-degree distribution decays as a power-law. In order to obtain out-degree distribution with power-law behavior some models have been proposed. This work introduces a new model that allows to obtain out-degree distributions that decay as a power-law with an exponent in the range from 0 to 1. PMID:25567141
Opinion evolution in different social acquaintance networks.
Chen, Xi; Zhang, Xiao; Wu, Zhan; Wang, Hongwei; Wang, Guohua; Li, Wei
2017-11-01
Social acquaintance networks influenced by social culture and social policy have a great impact on public opinion evolution in daily life. Based on the differences between socio-culture and social policy, three different social acquaintance networks (kinship-priority acquaintance network, independence-priority acquaintance network, and hybrid acquaintance network) incorporating heredity proportion p h and variation proportion p v are proposed in this paper. Numerical experiments are conducted to investigate network topology and different phenomena during opinion evolution, using the Deffuant model. We found that in kinship-priority acquaintance networks, similar to the Chinese traditional acquaintance networks, opinions always achieve fragmentation, resulting in the formation of multiple large clusters and many small clusters due to the fact that individuals believe more in their relatives and live in a relatively closed environment. In independence-priority acquaintance networks, similar to Western acquaintance networks, the results are similar to those in the kinship-priority acquaintance network. In hybrid acquaintance networks, similar to the Chinese modern acquaintance networks, only a few clusters are formed indicating that in modern China, opinions are more likely to reach consensus on a large scale. These results are similar to the opinion evolution phenomena in modern society, proving the rationality and applicability of network models combined with social culture and policy. We also found a threshold curve p v +2p h =2.05 in the results for the final opinion clusters and evolution time. Above the threshold curve, opinions could easily reach consensus. Based on the above experimental results, a culture-policy-driven mechanism for the opinion dynamic is worth promoting in this paper, that is, opinion dynamics can be driven by different social cultures and policies through the influence of heredity and variation in interpersonal relationship networks. This finding is of great significance for predicting opinion evolution under different acquaintance networks and formulating reasonable policies based on cultural characteristics to guide public opinion.
Opinion evolution in different social acquaintance networks
NASA Astrophysics Data System (ADS)
Chen, Xi; Zhang, Xiao; Wu, Zhan; Wang, Hongwei; Wang, Guohua; Li, Wei
2017-11-01
Social acquaintance networks influenced by social culture and social policy have a great impact on public opinion evolution in daily life. Based on the differences between socio-culture and social policy, three different social acquaintance networks (kinship-priority acquaintance network, independence-priority acquaintance network, and hybrid acquaintance network) incorporating heredity proportion ph and variation proportion pv are proposed in this paper. Numerical experiments are conducted to investigate network topology and different phenomena during opinion evolution, using the Deffuant model. We found that in kinship-priority acquaintance networks, similar to the Chinese traditional acquaintance networks, opinions always achieve fragmentation, resulting in the formation of multiple large clusters and many small clusters due to the fact that individuals believe more in their relatives and live in a relatively closed environment. In independence-priority acquaintance networks, similar to Western acquaintance networks, the results are similar to those in the kinship-priority acquaintance network. In hybrid acquaintance networks, similar to the Chinese modern acquaintance networks, only a few clusters are formed indicating that in modern China, opinions are more likely to reach consensus on a large scale. These results are similar to the opinion evolution phenomena in modern society, proving the rationality and applicability of network models combined with social culture and policy. We also found a threshold curve pv+2 ph=2.05 in the results for the final opinion clusters and evolution time. Above the threshold curve, opinions could easily reach consensus. Based on the above experimental results, a culture-policy-driven mechanism for the opinion dynamic is worth promoting in this paper, that is, opinion dynamics can be driven by different social cultures and policies through the influence of heredity and variation in interpersonal relationship networks. This finding is of great significance for predicting opinion evolution under different acquaintance networks and formulating reasonable policies based on cultural characteristics to guide public opinion.
Comprehensive evaluation of impacts of distributed generation integration in distribution network
NASA Astrophysics Data System (ADS)
Peng, Sujiang; Zhou, Erbiao; Ji, Fengkun; Cao, Xinhui; Liu, Lingshuang; Liu, Zifa; Wang, Xuyang; Cai, Xiaoyu
2018-04-01
All Distributed generation (DG) as the supplement to renewable energy centralized utilization, is becoming the focus of development direction of renewable energy utilization. With the increasing proportion of DG in distribution network, the network power structure, power flow distribution, operation plans and protection are affected to some extent. According to the main impacts of DG, a comprehensive evaluation model of distributed network with DG is proposed in this paper. A comprehensive evaluation index system including 7 aspects, along with their corresponding index calculation method is established for quantitative analysis. The indices under different access capacity of DG in distribution network are calculated based on the IEEE RBTS-Bus 6 system and the evaluation result is calculated by analytic hierarchy process (AHP). The proposed model and method are verified effective and validity through case study.
NASA Astrophysics Data System (ADS)
Wang, Hao; Zhong, Guoxin
2018-03-01
Optical communication network is the mainstream technique of the communication networks for distribution automation, and self-healing technologies can improve the in reliability of the optical communication networks significantly. This paper discussed the technical characteristics and application scenarios of several network self-healing technologies in the access layer, the backbone layer and the core layer of the optical communication networks for distribution automation. On the base of the contrastive analysis, this paper gives an application suggestion of these self-healing technologies.
Strategy on energy saving reconstruction of distribution networks based on life cycle cost
NASA Astrophysics Data System (ADS)
Chen, Xiaofei; Qiu, Zejing; Xu, Zhaoyang; Xiao, Chupeng
2017-08-01
Because the actual distribution network reconstruction project funds are often limited, the cost-benefit model and the decision-making method are crucial for distribution network energy saving reconstruction project. From the perspective of life cycle cost (LCC), firstly the research life cycle is determined for the energy saving reconstruction of distribution networks with multi-devices. Then, a new life cycle cost-benefit model for energy-saving reconstruction of distribution network is developed, in which the modification schemes include distribution transformers replacement, lines replacement and reactive power compensation. In the operation loss cost and maintenance cost area, the operation cost model considering the influence of load season characteristics and the maintenance cost segmental model of transformers are proposed. Finally, aiming at the highest energy saving profit per LCC, a decision-making method is developed while considering financial and technical constraints as well. The model and method are applied to a real distribution network reconstruction, and the results prove that the model and method are effective.
Tschechne, Stephan; Neumann, Heiko
2014-01-01
Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1–V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy. PMID:25157228
Graham, Matthew R; Jaeger, Jef R; Prendini, Lorenzo; Riddle, Brett R
2013-12-01
The distribution of Beck's Desert Scorpion, Paruroctonus becki (Gertsch and Allred, 1965), spans the 'warm' Mojave Desert and the western portion of the 'cold' Great Basin Desert. We used genetic analyses and species distribution modeling to test whether P. becki persisted in the Great Basin Desert during the Last Glacial Maximum (LGM), or colonized the area as glacial conditions retreated and the climate warmed. Phylogenetic and network analyses of mitochondrial cytochrome c oxidase 1 (cox1), 16S rDNA, and nuclear internal transcribed spacer (ITS-2) DNA sequences uncovered five geographically-structured groups in P. becki with varying degrees of statistical support. Molecular clock estimates and the geographical arrangement of three of the groups suggested that Pliocene geological events in the tectonically dynamic Eastern California Shear Zone may have driven diversification by vicariance. Diversification was estimated to have continued through the Pleistocene, during which a group endemic to the western Great Basin diverged from a related group in the eastern Mojave Desert and western Colorado Plateau. Demographic and network analyses suggested that P. becki underwent a recent expansion in the Great Basin. According to a landscape interpolation of genetic distances, this expansion appears to have occurred from the northwest, implying that P. becki may have persisted in part of the Great Basin during the LGM. This prediction is supported by species distribution models which suggest that climate was unsuitable throughout most of the Great Basin during the LGM, but that small patches of suitable climate may have remained in areas of the Lahontan Trough. Published by Elsevier Inc.
Tschechne, Stephan; Neumann, Heiko
2014-01-01
Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1-V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy.
Topology Counts: Force Distributions in Circular Spring Networks.
Heidemann, Knut M; Sageman-Furnas, Andrew O; Sharma, Abhinav; Rehfeldt, Florian; Schmidt, Christoph F; Wardetzky, Max
2018-02-09
Filamentous polymer networks govern the mechanical properties of many biological materials. Force distributions within these networks are typically highly inhomogeneous, and, although the importance of force distributions for structural properties is well recognized, they are far from being understood quantitatively. Using a combination of probabilistic and graph-theoretical techniques, we derive force distributions in a model system consisting of ensembles of random linear spring networks on a circle. We show that characteristic quantities, such as the mean and variance of the force supported by individual springs, can be derived explicitly in terms of only two parameters: (i) average connectivity and (ii) number of nodes. Our analysis shows that a classical mean-field approach fails to capture these characteristic quantities correctly. In contrast, we demonstrate that network topology is a crucial determinant of force distributions in an elastic spring network. Our results for 1D linear spring networks readily generalize to arbitrary dimensions.
Epidemic extinction paths in complex networks
NASA Astrophysics Data System (ADS)
Hindes, Jason; Schwartz, Ira B.
2017-05-01
We study the extinction of long-lived epidemics on finite complex networks induced by intrinsic noise. Applying analytical techniques to the stochastic susceptible-infected-susceptible model, we predict the distribution of large fluctuations, the most probable or optimal path through a network that leads to a disease-free state from an endemic state, and the average extinction time in general configurations. Our predictions agree with Monte Carlo simulations on several networks, including synthetic weighted and degree-distributed networks with degree correlations, and an empirical high school contact network. In addition, our approach quantifies characteristic scaling patterns for the optimal path and distribution of large fluctuations, both near and away from the epidemic threshold, in networks with heterogeneous eigenvector centrality and degree distributions.
Epidemic extinction paths in complex networks.
Hindes, Jason; Schwartz, Ira B
2017-05-01
We study the extinction of long-lived epidemics on finite complex networks induced by intrinsic noise. Applying analytical techniques to the stochastic susceptible-infected-susceptible model, we predict the distribution of large fluctuations, the most probable or optimal path through a network that leads to a disease-free state from an endemic state, and the average extinction time in general configurations. Our predictions agree with Monte Carlo simulations on several networks, including synthetic weighted and degree-distributed networks with degree correlations, and an empirical high school contact network. In addition, our approach quantifies characteristic scaling patterns for the optimal path and distribution of large fluctuations, both near and away from the epidemic threshold, in networks with heterogeneous eigenvector centrality and degree distributions.
Research on social communication network evolution based on topology potential distribution
NASA Astrophysics Data System (ADS)
Zhao, Dongjie; Jiang, Jian; Li, Deyi; Zhang, Haisu; Chen, Guisheng
2011-12-01
Aiming at the problem of social communication network evolution, first, topology potential is introduced to measure the local influence among nodes in networks. Second, from the perspective of topology potential distribution the method of network evolution description based on topology potential distribution is presented, which takes the artificial intelligence with uncertainty as basic theory and local influence among nodes as essentiality. Then, a social communication network is constructed by enron email dataset, the method presented is used to analyze the characteristic of the social communication network evolution and some useful conclusions are got, implying that the method is effective, which shows that topology potential distribution can effectively describe the characteristic of sociology and detect the local changes in social communication network.
NASA Astrophysics Data System (ADS)
Saleh, Omar A.; Fygenson, Deborah K.; Bertrand, Olivier J. N.; Park, Chang Young
2013-02-01
Research into the mechanics and fluctuations of living cells has revealed the key role played by the cytoskeleton, a gel of stiff filaments driven out of equilibrium by force-generating motor proteins. Inspired by the extraordinary mechanical functions that the cytoskeleton imparts to the cell, we sought to create an artificial gel with similar characteristics. We identified DNA, and DNA-based motor proteins, as functional counterparts to the constituents of the cytoskeleton. We used DNA selfassembly to create a gel, and characterized its fluctuations and mechanics both before and after activation by the motor. We found that certain aspects of the DNA gel quantitatively match those of cytoskeletal networks, indicating the universal features of motor-driven, non-equilibrium networks.
Properties of four real world collaboration--competition networks
NASA Astrophysics Data System (ADS)
Fu, Chun-Hua; Xu, Xiu-Lian; He, Da-Ren
2009-03-01
Our research group has empirically investigated 9 real world collaboration networks and 25 real world cooperation-competition networks. Among the 34 real world systems, all the 9 real world collaboration networks and 6 real world cooperation-competition networks show the unimodal act-size distribution and the shifted power law distribution of degree and act-degree. We have proposed a collaboration network evolution model for an explanation of the rules [1]. The other 14 real world cooperation-competition networks show that the act-size distributions are not unimodal; instead, they take qualitatively the same shifted power law forms as the degree and act-degree distributions. The properties of four systems (the main land movie film network, Beijing restaurant network, 2004 Olympic network, and Tao-Bao notebook computer sale network) are reported in detail as examples. Via a numerical simulation, we show that the new rule can still be explained by the above-mentioned model. [1] H. Chang, B. B. Su, et al. Phsica A, 2007, 383: 687-702.
Robust quantum network architectures and topologies for entanglement distribution
NASA Astrophysics Data System (ADS)
Das, Siddhartha; Khatri, Sumeet; Dowling, Jonathan P.
2018-01-01
Entanglement distribution is a prerequisite for several important quantum information processing and computing tasks, such as quantum teleportation, quantum key distribution, and distributed quantum computing. In this work, we focus on two-dimensional quantum networks based on optical quantum technologies using dual-rail photonic qubits for the building of a fail-safe quantum internet. We lay out a quantum network architecture for entanglement distribution between distant parties using a Bravais lattice topology, with the technological constraint that quantum repeaters equipped with quantum memories are not easily accessible. We provide a robust protocol for simultaneous entanglement distribution between two distant groups of parties on this network. We also discuss a memory-based quantum network architecture that can be implemented on networks with an arbitrary topology. We examine networks with bow-tie lattice and Archimedean lattice topologies and use percolation theory to quantify the robustness of the networks. In particular, we provide figures of merit on the loss parameter of the optical medium that depend only on the topology of the network and quantify the robustness of the network against intermittent photon loss and intermittent failure of nodes. These figures of merit can be used to compare the robustness of different network topologies in order to determine the best topology in a given real-world scenario, which is critical in the realization of the quantum internet.
Event management for large scale event-driven digital hardware spiking neural networks.
Caron, Louis-Charles; D'Haene, Michiel; Mailhot, Frédéric; Schrauwen, Benjamin; Rouat, Jean
2013-09-01
The interest in brain-like computation has led to the design of a plethora of innovative neuromorphic systems. Individually, spiking neural networks (SNNs), event-driven simulation and digital hardware neuromorphic systems get a lot of attention. Despite the popularity of event-driven SNNs in software, very few digital hardware architectures are found. This is because existing hardware solutions for event management scale badly with the number of events. This paper introduces the structured heap queue, a pipelined digital hardware data structure, and demonstrates its suitability for event management. The structured heap queue scales gracefully with the number of events, allowing the efficient implementation of large scale digital hardware event-driven SNNs. The scaling is linear for memory, logarithmic for logic resources and constant for processing time. The use of the structured heap queue is demonstrated on a field-programmable gate array (FPGA) with an image segmentation experiment and a SNN of 65,536 neurons and 513,184 synapses. Events can be processed at the rate of 1 every 7 clock cycles and a 406×158 pixel image is segmented in 200 ms. Copyright © 2013 Elsevier Ltd. All rights reserved.