Sample records for distributed observer network

  1. A Complex Network Approach to Distributional Semantic Models

    PubMed Central

    Utsumi, Akira

    2015-01-01

    A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models. PMID:26295940

  2. Observability and Estimation of Distributed Space Systems via Local Information-Exchange Networks

    NASA Technical Reports Server (NTRS)

    Rahmani, Amirreza; Mesbahi, Mehran; Fathpour, Nanaz; Hadaegh, Fred Y.

    2008-01-01

    In this work, we develop an approach to formation estimation by explicitly characterizing formation's system-theoretic attributes in terms of the underlying inter-spacecraft information-exchange network. In particular, we approach the formation observer/estimator design by relaxing the accessibility to the global state information by a centralized observer/estimator- and in turn- providing an analysis and synthesis framework for formation observers/estimators that rely on local measurements. The noveltyof our approach hinges upon the explicit examination of the underlying distributed spacecraft network in the realm of guidance, navigation, and control algorithmic analysis and design. The overarching goal of our general research program, some of whose results are reported in this paper, is the development of distributed spacecraft estimation algorithms that are scalable, modular, and robust to variations inthe topology and link characteristics of the formation information exchange network. In this work, we consider the observability of a spacecraft formation from a single observation node and utilize the agreement protocol as a mechanism for observing formation states from local measurements. Specifically, we show how the symmetry structure of the network, characterized in terms of its automorphism group, directly relates to the observability of the corresponding multi-agent system The ramification of this notion of observability over networks is then explored in the context of distributed formation estimation.

  3. Tail-scope: Using friends to estimate heavy tails of degree distributions in large-scale complex networks

    NASA Astrophysics Data System (ADS)

    Eom, Young-Ho; Jo, Hang-Hyun

    2015-05-01

    Many complex networks in natural and social phenomena have often been characterized by heavy-tailed degree distributions. However, due to rapidly growing size of network data and concerns on privacy issues about using these data, it becomes more difficult to analyze complete data sets. Thus, it is crucial to devise effective and efficient estimation methods for heavy tails of degree distributions in large-scale networks only using local information of a small fraction of sampled nodes. Here we propose a tail-scope method based on local observational bias of the friendship paradox. We show that the tail-scope method outperforms the uniform node sampling for estimating heavy tails of degree distributions, while the opposite tendency is observed in the range of small degrees. In order to take advantages of both sampling methods, we devise the hybrid method that successfully recovers the whole range of degree distributions. Our tail-scope method shows how structural heterogeneities of large-scale complex networks can be used to effectively reveal the network structure only with limited local information.

  4. Optimal topology to minimizing congestion in connected communication complex network

    NASA Astrophysics Data System (ADS)

    Benyoussef, M.; Ez-Zahraouy, H.; Benyoussef, A.

    In this paper, a new model of the interdependent complex network is proposed, based on two assumptions that (i) the capacity of a node depends on its degree, and (ii) the traffic load depends on the distribution of the links in the network. Based on these assumptions, the presented model proposes a method of connection not based on the node having a higher degree but on the region containing hubs. It is found that the final network exhibits two kinds of degree distribution behavior, depending on the kind and the way of the connection. This study reveals a direct relation between network structure and traffic flow. It is found that pc the point of transition between the free flow and the congested phase depends on the network structure and the degree distribution. Moreover, this new model provides an improvement in the traffic compared to the results found in a single network. The same behavior of degree distribution found in a BA network and observed in the real world is obtained; except for this model, the transition point between the free phase and congested phase is much higher than the one observed in a network of BA, for both static and dynamic protocols.

  5. Constructing a Watts-Strogatz network from a small-world network with symmetric degree distribution.

    PubMed

    Menezes, Mozart B C; Kim, Seokjin; Huang, Rongbing

    2017-01-01

    Though the small-world phenomenon is widespread in many real networks, it is still challenging to replicate a large network at the full scale for further study on its structure and dynamics when sufficient data are not readily available. We propose a method to construct a Watts-Strogatz network using a sample from a small-world network with symmetric degree distribution. Our method yields an estimated degree distribution which fits closely with that of a Watts-Strogatz network and leads into accurate estimates of network metrics such as clustering coefficient and degree of separation. We observe that the accuracy of our method increases as network size increases.

  6. Observability and Estimation of Distributed Space Systems via Local Information-Exchange Networks

    NASA Technical Reports Server (NTRS)

    Fathpour, Nanaz; Hadaegh, Fred Y.; Mesbahi, Mehran; Rahmani, Amirreza

    2011-01-01

    Spacecraft formation flying involves the coordination of states among multiple spacecraft through relative sensing, inter-spacecraft communication, and control. Most existing formation-flying estimation algorithms can only be supported via highly centralized, all-to-all, static relative sensing. New algorithms are proposed that are scalable, modular, and robust to variations in the topology and link characteristics of the formation exchange network. These distributed algorithms rely on a local information exchange network, relaxing the assumptions on existing algorithms. Distributed space systems rely on a signal transmission network among multiple spacecraft for their operation. Control and coordination among multiple spacecraft in a formation is facilitated via a network of relative sensing and interspacecraft communications. Guidance, navigation, and control rely on the sensing network. This network becomes more complex the more spacecraft are added, or as mission requirements become more complex. The observability of a formation state was observed by a set of local observations from a particular node in the formation. Formation observability can be parameterized in terms of the matrices appearing in the formation dynamics and observation matrices. An agreement protocol was used as a mechanism for observing formation states from local measurements. An agreement protocol is essentially an unforced dynamic system whose trajectory is governed by the interconnection geometry and initial condition of each node, with a goal of reaching a common value of interest. The observability of the interconnected system depends on the geometry of the network, as well as the position of the observer relative to the topology. For the first time, critical GN&C (guidance, navigation, and control estimation) subsystems are synthesized by bringing the contribution of the spacecraft information-exchange network to the forefront of algorithmic analysis and design. The result is a formation estimation algorithm that is modular and robust to variations in the topology and link properties of the underlying formation network.

  7. Correlations in star networks: from Bell inequalities to network inequalities

    NASA Astrophysics Data System (ADS)

    Tavakoli, Armin; Olivier Renou, Marc; Gisin, Nicolas; Brunner, Nicolas

    2017-07-01

    The problem of characterizing classical and quantum correlations in networks is considered. Contrary to the usual Bell scenario, where distant observers share a physical system emitted by one common source, a network features several independent sources, each distributing a physical system to a subset of observers. In the quantum setting, the observers can perform joint measurements on initially independent systems, which may lead to strong correlations across the whole network. In this work, we introduce a technique to systematically map a Bell inequality to a family of Bell-type inequalities bounding classical correlations on networks in a star-configuration. Also, we show that whenever a given Bell inequality can be violated by some entangled state ρ, then all the corresponding network inequalities can be violated by considering many copies of ρ distributed in the star network. The relevance of these ideas is illustrated by applying our method to a specific multi-setting Bell inequality. We derive the corresponding network inequalities, and study their quantum violations.

  8. Estimating interevent time distributions from finite observation periods in communication networks

    NASA Astrophysics Data System (ADS)

    Kivelä, Mikko; Porter, Mason A.

    2015-11-01

    A diverse variety of processes—including recurrent disease episodes, neuron firing, and communication patterns among humans—can be described using interevent time (IET) distributions. Many such processes are ongoing, although event sequences are only available during a finite observation window. Because the observation time window is more likely to begin or end during long IETs than during short ones, the analysis of such data is susceptible to a bias induced by the finite observation period. In this paper, we illustrate how this length bias is born and how it can be corrected without assuming any particular shape for the IET distribution. To do this, we model event sequences using stationary renewal processes, and we formulate simple heuristics for determining the severity of the bias. To illustrate our results, we focus on the example of empirical communication networks, which are temporal networks that are constructed from communication events. The IET distributions of such systems guide efforts to build models of human behavior, and the variance of IETs is very important for estimating the spreading rate of information in networks of temporal interactions. We analyze several well-known data sets from the literature, and we find that the resulting bias can lead to systematic underestimates of the variance in the IET distributions and that correcting for the bias can lead to qualitatively different results for the tails of the IET distributions.

  9. Gene regulatory and signaling networks exhibit distinct topological distributions of motifs

    NASA Astrophysics Data System (ADS)

    Ferreira, Gustavo Rodrigues; Nakaya, Helder Imoto; Costa, Luciano da Fontoura

    2018-04-01

    The biological processes of cellular decision making and differentiation involve a plethora of signaling pathways and gene regulatory circuits. These networks in turn exhibit a multitude of motifs playing crucial parts in regulating network activity. Here we compare the topological placement of motifs in gene regulatory and signaling networks and observe that it suggests different evolutionary strategies in motif distribution for distinct cellular subnetworks.

  10. Network discovery with DCM

    PubMed Central

    Friston, Karl J.; Li, Baojuan; Daunizeau, Jean; Stephan, Klaas E.

    2011-01-01

    This paper is about inferring or discovering the functional architecture of distributed systems using Dynamic Causal Modelling (DCM). We describe a scheme that recovers the (dynamic) Bayesian dependency graph (connections in a network) using observed network activity. This network discovery uses Bayesian model selection to identify the sparsity structure (absence of edges or connections) in a graph that best explains observed time-series. The implicit adjacency matrix specifies the form of the network (e.g., cyclic or acyclic) and its graph-theoretical attributes (e.g., degree distribution). The scheme is illustrated using functional magnetic resonance imaging (fMRI) time series to discover functional brain networks. Crucially, it can be applied to experimentally evoked responses (activation studies) or endogenous activity in task-free (resting state) fMRI studies. Unlike conventional approaches to network discovery, DCM permits the analysis of directed and cyclic graphs. Furthermore, it eschews (implausible) Markovian assumptions about the serial independence of random fluctuations. The scheme furnishes a network description of distributed activity in the brain that is optimal in the sense of having the greatest conditional probability, relative to other networks. The networks are characterised in terms of their connectivity or adjacency matrices and conditional distributions over the directed (and reciprocal) effective connectivity between connected nodes or regions. We envisage that this approach will provide a useful complement to current analyses of functional connectivity for both activation and resting-state studies. PMID:21182971

  11. Distributed Position-Based Consensus of Second-Order Multiagent Systems With Continuous/Intermittent Communication.

    PubMed

    Song, Qiang; Liu, Fang; Wen, Guanghui; Cao, Jinde; Yang, Xinsong

    2017-04-24

    This paper considers the position-based consensus in a network of agents with double-integrator dynamics and directed topology. Two types of distributed observer algorithms are proposed to solve the consensus problem by utilizing continuous and intermittent position measurements, respectively, where each observer does not interact with any other observers. For the case of continuous communication between network agents, some convergence conditions are derived for reaching consensus in the network with a single constant delay or multiple time-varying delays on the basis of the eigenvalue analysis and the descriptor method. When the network agents can only obtain intermittent position data from local neighbors at discrete time instants, the consensus in the network without time delay or with nonuniform delays is investigated by using the Wirtinger's inequality and the delayed-input approach. Numerical examples are given to illustrate the theoretical analysis.

  12. Empirical Reference Distributions for Networks of Different Size

    PubMed Central

    Smith, Anna; Calder, Catherine A.; Browning, Christopher R.

    2016-01-01

    Network analysis has become an increasingly prevalent research tool across a vast range of scientific fields. Here, we focus on the particular issue of comparing network statistics, i.e. graph-level measures of network structural features, across multiple networks that differ in size. Although “normalized” versions of some network statistics exist, we demonstrate via simulation why direct comparison is often inappropriate. We consider normalizing network statistics relative to a simple fully parameterized reference distribution and demonstrate via simulation how this is an improvement over direct comparison, but still sometimes problematic. We propose a new adjustment method based on a reference distribution constructed as a mixture model of random graphs which reflect the dependence structure exhibited in the observed networks. We show that using simple Bernoulli models as mixture components in this reference distribution can provide adjusted network statistics that are relatively comparable across different network sizes but still describe interesting features of networks, and that this can be accomplished at relatively low computational expense. Finally, we apply this methodology to a collection of ecological networks derived from the Los Angeles Family and Neighborhood Survey activity location data. PMID:27721556

  13. Characterizing short-term stability for Boolean networks over any distribution of transfer functions

    DOE PAGES

    Seshadhri, C.; Smith, Andrew M.; Vorobeychik, Yevgeniy; ...

    2016-07-05

    Here we present a characterization of short-term stability of random Boolean networks under arbitrary distributions of transfer functions. Given any distribution of transfer functions for a random Boolean network, we present a formula that decides whether short-term chaos (damage spreading) will happen. We provide a formal proof for this formula, and empirically show that its predictions are accurate. Previous work only works for special cases of balanced families. Finally, it has been observed that these characterizations fail for unbalanced families, yet such families are widespread in real biological networks.

  14. Perspectives for Distributed Observations of Near-Earth Space Using a Russian-Cuban Observatory

    NASA Astrophysics Data System (ADS)

    Bisikalo, D. V.; Savanov, I. S.; Naroenkov, S. A.; Nalivkin, M. A.; Shugarov, A. S.; Bakhtigaraev, N. S.; Levkina, P. A.; Ibragimov, M. A.; Kil'pio, E. Yu.; Sachkov, M. E.; Kartashova, A. P.; Fateeva, A. M.; Uratsuka, Marta R. Rodriguez; Estrada, Ramses Zaldivar; Diaz, Antonio Alonsa; Rodríguez, Omar Pons; Figuera, Fidel Hernandes; Garcia, Maritza Garcia

    2018-06-01

    The creation of a specialized network of large, wide-angle telescopes for distributed observations of near-Earth space using a Russian-Cuban Observatory is considered. An extremely important goal of routine monitoring of near-Earth and near-Sun space is warding off threats with both natural and technogenic origins. Natural threats are associated with asteroids or comets, and technogenic threats with man-made debris in near-Earth space. A modern network of ground-based optical instruments designed to ward off such threats must: (a) have a global and, if possible, uniform geographic distribution, (b) be suitable for wide-angle, high-accuracy precision survey observations, and (c) be created and operated within a single network-oriented framework. Experience at the Institute of Astronomy on the development of one-meter-class wide-angle telescopes and elements of a super-wide-angle telescope cluster is applied to determine preferences for the composition of each node of such a network. The efficiency of distributed observations in attaining maximally accurate predictions of the motions of potentially dangerous celestial bodies as they approach the Earth and in observations of space debris and man-made satellites is estimated. The first estimates of astroclimatic conditions at the proposed site of the future Russian-Cuban Observatory in the mountains of the Sierra del Rosario Biosphere Reserve are obtained. Special attention is given to the possible use of the network to carry out a wide range of astrophysical studies, including optical support for the localization of gravitational waves and other transient events.

  15. Competitive cluster growth in complex networks.

    PubMed

    Moreira, André A; Paula, Demétrius R; Costa Filho, Raimundo N; Andrade, José S

    2006-06-01

    In this work we propose an idealized model for competitive cluster growth in complex networks. Each cluster can be thought of as a fraction of a community that shares some common opinion. Our results show that the cluster size distribution depends on the particular choice for the topology of the network of contacts among the agents. As an application, we show that the cluster size distributions obtained when the growth process is performed on hierarchical networks, e.g., the Apollonian network, have a scaling form similar to what has been observed for the distribution of a number of votes in an electoral process. We suggest that this similarity may be due to the fact that social networks involved in the electoral process may also possess an underlining hierarchical structure.

  16. Stability of synchrony against local intermittent fluctuations in tree-like power grids

    NASA Astrophysics Data System (ADS)

    Auer, Sabine; Hellmann, Frank; Krause, Marie; Kurths, Jürgen

    2017-12-01

    90% of all Renewable Energy Power in Germany is installed in tree-like distribution grids. Intermittent power fluctuations from such sources introduce new dynamics into the lower grid layers. At the same time, distributed resources will have to contribute to stabilize the grid against these fluctuations in the future. In this paper, we model a system of distributed resources as oscillators on a tree-like, lossy power grid and its ability to withstand desynchronization from localized intermittent renewable infeed. We find a remarkable interplay of the network structure and the position of the node at which the fluctuations are fed in. An important precondition for our findings is the presence of losses in distribution grids. Then, the most network central node splits the network into branches with different influence on network stability. Troublemakers, i.e., nodes at which fluctuations are especially exciting the grid, tend to be downstream branches with high net power outflow. For low coupling strength, we also find branches of nodes vulnerable to fluctuations anywhere in the network. These network regions can be predicted at high confidence using an eigenvector based network measure taking the turbulent nature of perturbations into account. While we focus here on tree-like networks, the observed effects also appear, albeit less pronounced, for weakly meshed grids. On the other hand, the observed effects disappear for lossless power grids often studied in the complex system literature.

  17. Fracture size and transmissivity correlations: Implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size

    NASA Astrophysics Data System (ADS)

    Hyman, J. D.; Aldrich, G.; Viswanathan, H.; Makedonska, N.; Karra, S.

    2016-08-01

    We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semicorrelation, and noncorrelation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected so that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same. We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. These observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.

  18. Fracture size and transmissivity correlations: Implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size

    NASA Astrophysics Data System (ADS)

    Hyman, J.; Aldrich, G. A.; Viswanathan, H. S.; Makedonska, N.; Karra, S.

    2016-12-01

    We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semi-correlation, and non-correlation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected so that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same.We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. These observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.

  19. Synaptic dynamics and neuronal network connectivity are reflected in the distribution of times in Up states.

    PubMed

    Dao Duc, Khanh; Parutto, Pierre; Chen, Xiaowei; Epsztein, Jérôme; Konnerth, Arthur; Holcman, David

    2015-01-01

    The dynamics of neuronal networks connected by synaptic dynamics can sustain long periods of depolarization that can last for hundreds of milliseconds such as Up states recorded during sleep or anesthesia. Yet the underlying mechanism driving these periods remain unclear. We show here within a mean-field model that the residence time of the neuronal membrane potential in cortical Up states does not follow a Poissonian law, but presents several peaks. Furthermore, the present modeling approach allows extracting some information about the neuronal network connectivity from the time distribution histogram. Based on a synaptic-depression model, we find that these peaks, that can be observed in histograms of patch-clamp recordings are not artifacts of electrophysiological measurements, but rather are an inherent property of the network dynamics. Analysis of the equations reveals a stable focus located close to the unstable limit cycle, delimiting a region that defines the Up state. The model further shows that the peaks observed in the Up state time distribution are due to winding around the focus before escaping from the basin of attraction. Finally, we use in vivo recordings of intracellular membrane potential and we recover from the peak distribution, some information about the network connectivity. We conclude that it is possible to recover the network connectivity from the distribution of times that the neuronal membrane voltage spends in Up states.

  20. Motif formation and industry specific topologies in the Japanese business firm network

    NASA Astrophysics Data System (ADS)

    Maluck, Julian; Donner, Reik V.; Takayasu, Hideki; Takayasu, Misako

    2017-05-01

    Motifs and roles are basic quantities for the characterization of interactions among 3-node subsets in complex networks. In this work, we investigate how the distribution of 3-node motifs can be influenced by modifying the rules of an evolving network model while keeping the statistics of simpler network characteristics, such as the link density and the degree distribution, invariant. We exemplify this problem for the special case of the Japanese Business Firm Network, where a well-studied and relatively simple yet realistic evolving network model is available, and compare the resulting motif distribution in the real-world and simulated networks. To better approximate the motif distribution of the real-world network in the model, we introduce both subgraph dependent and global additional rules. We find that a specific rule that allows only for the merging process between nodes with similar link directionality patterns reduces the observed excess of densely connected motifs with bidirectional links. Our study improves the mechanistic understanding of motif formation in evolving network models to better describe the characteristic features of real-world networks with a scale-free topology.

  1. Correlated Sources in Distributed Networks--Data Transmission, Common Information Characterization and Inferencing

    ERIC Educational Resources Information Center

    Liu, Wei

    2011-01-01

    Correlation is often present among observations in a distributed system. This thesis deals with various design issues when correlated data are observed at distributed terminals, including: communicating correlated sources over interference channels, characterizing the common information among dependent random variables, and testing the presence of…

  2. Coverage dependent molecular assembly of anthraquinone on Au(111)

    NASA Astrophysics Data System (ADS)

    DeLoach, Andrew S.; Conrad, Brad R.; Einstein, T. L.; Dougherty, Daniel B.

    2017-11-01

    A scanning tunneling microscopy study of anthraquinone (AQ) on the Au(111) surface shows that the molecules self-assemble into several structures depending on the local surface coverage. At high coverages, a close-packed saturated monolayer is observed, while at low coverages, mobile surface molecules coexist with stable chiral hexamer clusters. At intermediate coverages, a disordered 2D porous network interlinking close-packed islands is observed in contrast to the giant honeycomb networks observed for the same molecule on Cu(111). This difference verifies the predicted extreme sensitivity [J. Wyrick et al., Nano Lett. 11, 2944 (2011)] of the pore network to small changes in the surface electronic structure. Quantitative analysis of the 2D pore network reveals that the areas of the vacancy islands are distributed log-normally. Log-normal distributions are typically associated with the product of random variables (multiplicative noise), and we propose that the distribution of pore sizes for AQ on Au(111) originates from random linear rate constants for molecules to either desorb from the surface or detach from the region of a nucleated pore.

  3. Coverage dependent molecular assembly of anthraquinone on Au(111).

    PubMed

    DeLoach, Andrew S; Conrad, Brad R; Einstein, T L; Dougherty, Daniel B

    2017-11-14

    A scanning tunneling microscopy study of anthraquinone (AQ) on the Au(111) surface shows that the molecules self-assemble into several structures depending on the local surface coverage. At high coverages, a close-packed saturated monolayer is observed, while at low coverages, mobile surface molecules coexist with stable chiral hexamer clusters. At intermediate coverages, a disordered 2D porous network interlinking close-packed islands is observed in contrast to the giant honeycomb networks observed for the same molecule on Cu(111). This difference verifies the predicted extreme sensitivity [J. Wyrick et al., Nano Lett. 11, 2944 (2011)] of the pore network to small changes in the surface electronic structure. Quantitative analysis of the 2D pore network reveals that the areas of the vacancy islands are distributed log-normally. Log-normal distributions are typically associated with the product of random variables (multiplicative noise), and we propose that the distribution of pore sizes for AQ on Au(111) originates from random linear rate constants for molecules to either desorb from the surface or detach from the region of a nucleated pore.

  4. A Bayesian connectivity-based approach to constructing probabilistic gene regulatory networks.

    PubMed

    Zhou, Xiaobo; Wang, Xiaodong; Pal, Ranadip; Ivanov, Ivan; Bittner, Michael; Dougherty, Edward R

    2004-11-22

    We have hypothesized that the construction of transcriptional regulatory networks using a method that optimizes connectivity would lead to regulation consistent with biological expectations. A key expectation is that the hypothetical networks should produce a few, very strong attractors, highly similar to the original observations, mimicking biological state stability and determinism. Another central expectation is that, since it is expected that the biological control is distributed and mutually reinforcing, interpretation of the observations should lead to a very small number of connection schemes. We propose a fully Bayesian approach to constructing probabilistic gene regulatory networks (PGRNs) that emphasizes network topology. The method computes the possible parent sets of each gene, the corresponding predictors and the associated probabilities based on a nonlinear perceptron model, using a reversible jump Markov chain Monte Carlo (MCMC) technique, and an MCMC method is employed to search the network configurations to find those with the highest Bayesian scores to construct the PGRN. The Bayesian method has been used to construct a PGRN based on the observed behavior of a set of genes whose expression patterns vary across a set of melanoma samples exhibiting two very different phenotypes with respect to cell motility and invasiveness. Key biological features have been faithfully reflected in the model. Its steady-state distribution contains attractors that are either identical or very similar to the states observed in the data, and many of the attractors are singletons, which mimics the biological propensity to stably occupy a given state. Most interestingly, the connectivity rules for the most optimal generated networks constituting the PGRN are remarkably similar, as would be expected for a network operating on a distributed basis, with strong interactions between the components.

  5. The Ability of Atmospheric Data to Reduce Disagreements in Wetland Methane Flux Estimates over North America

    NASA Astrophysics Data System (ADS)

    Miller, S. M.; Andrews, A. E.; Benmergui, J. S.; Commane, R.; Dlugokencky, E. J.; Janssens-Maenhout, G.; Melton, J. R.; Michalak, A. M.; Sweeney, C.; Worthy, D. E. J.

    2015-12-01

    Existing estimates of methane fluxes from wetlands differ in both magnitude and distribution across North America. We discuss seven different bottom-up methane estimates in the context of atmospheric methane data collected across the US and Canada. In the first component of this study, we explore whether the observation network can even detect a methane pattern from wetlands. We find that the observation network can identify a methane pattern from Canadian wetlands but not reliably from US wetlands. Over Canada, the network can even identify spatial patterns at multi-provence scales. Over the US, by contrast, anthropogenic emissions and modeling errors obscure atmospheric patterns from wetland fluxes. In the second component of the study, we then use these observations to reconcile disagreements in the magnitude, seasonal cycle, and spatial distribution of existing estimates. Most existing estimates predict fluxes that are too large with a seasonal cycle that is too narrow. A model known as LPJ-Bern has a spatial distribution most consistent with atmospheric observations. By contrast, a spatially-constant model outperforms the distribution of most existing flux estimates across Canada. The results presented here provide several pathways to reduce disagreements among existing wetland flux estimates across North America.

  6. Learning Bayesian Networks from Correlated Data

    NASA Astrophysics Data System (ADS)

    Bae, Harold; Monti, Stefano; Montano, Monty; Steinberg, Martin H.; Perls, Thomas T.; Sebastiani, Paola

    2016-05-01

    Bayesian networks are probabilistic models that represent complex distributions in a modular way and have become very popular in many fields. There are many methods to build Bayesian networks from a random sample of independent and identically distributed observations. However, many observational studies are designed using some form of clustered sampling that introduces correlations between observations within the same cluster and ignoring this correlation typically inflates the rate of false positive associations. We describe a novel parameterization of Bayesian networks that uses random effects to model the correlation within sample units and can be used for structure and parameter learning from correlated data without inflating the Type I error rate. We compare different learning metrics using simulations and illustrate the method in two real examples: an analysis of genetic and non-genetic factors associated with human longevity from a family-based study, and an example of risk factors for complications of sickle cell anemia from a longitudinal study with repeated measures.

  7. Fracture size and transmissivity correlations: Implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size

    DOE PAGES

    Hyman, Jeffrey De'Haven; Aldrich, Garrett Allen; Viswanathan, Hari S.; ...

    2016-08-01

    We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semicorrelation, and noncorrelation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected somore » that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same. We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. Lastly, these observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.« less

  8. Fracture size and transmissivity correlations: Implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyman, Jeffrey De'Haven; Aldrich, Garrett Allen; Viswanathan, Hari S.

    We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semicorrelation, and noncorrelation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected somore » that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same. We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. Lastly, these observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.« less

  9. Synaptic Impairment and Robustness of Excitatory Neuronal Networks with Different Topologies

    PubMed Central

    Mirzakhalili, Ehsan; Gourgou, Eleni; Booth, Victoria; Epureanu, Bogdan

    2017-01-01

    Synaptic deficiencies are a known hallmark of neurodegenerative diseases, but the diagnosis of impaired synapses on the cellular level is not an easy task. Nonetheless, changes in the system-level dynamics of neuronal networks with damaged synapses can be detected using techniques that do not require high spatial resolution. This paper investigates how the structure/topology of neuronal networks influences their dynamics when they suffer from synaptic loss. We study different neuronal network structures/topologies by specifying their degree distributions. The modes of the degree distribution can be used to construct networks that consist of rich clubs and resemble small world networks, as well. We define two dynamical metrics to compare the activity of networks with different structures: persistent activity (namely, the self-sustained activity of the network upon removal of the initial stimulus) and quality of activity (namely, percentage of neurons that participate in the persistent activity of the network). Our results show that synaptic loss affects the persistent activity of networks with bimodal degree distributions less than it affects random networks. The robustness of neuronal networks enhances when the distance between the modes of the degree distribution increases, suggesting that the rich clubs of networks with distinct modes keep the whole network active. In addition, a tradeoff is observed between the quality of activity and the persistent activity. For a range of distributions, both of these dynamical metrics are considerably high for networks with bimodal degree distribution compared to random networks. We also propose three different scenarios of synaptic impairment, which may correspond to different pathological or biological conditions. Regardless of the network structure/topology, results demonstrate that synaptic loss has more severe effects on the activity of the network when impairments are correlated with the activity of the neurons. PMID:28659765

  10. Confining the angular distribution of terrestrial gamma ray flash emission

    NASA Astrophysics Data System (ADS)

    Gjesteland, T.; Østgaard, N.; Collier, A. B.; Carlson, B. E.; Cohen, M. B.; Lehtinen, N. G.

    2011-11-01

    Terrestrial gamma ray flashes (TGFs) are bremsstrahlung emissions from relativistic electrons accelerated in electric fields associated with thunder storms, with photon energies up to at least 40 MeV, which sets the lowest estimate of the total potential of 40 MV. The electric field that produces TGFs will be reflected by the initial angular distribution of the TGF emission. Here we present the first constraints on the TGF emission cone based on accurately geolocated TGFs. The source lightning discharges associated with TGFs detected by RHESSI are determined from the Atmospheric Weather Electromagnetic System for Observation, Modeling, and Education (AWESOME) network and the World Wide Lightning Location Network (WWLLN). The distribution of the observation angles for 106 TGFs are compared to Monte Carlo simulations. We find that TGF emissions within a half angle >30° are consistent with the distributions of observation angle derived from the networks. In addition, 36 events occurring before 2006 are used for spectral analysis. The energy spectra are binned according to observation angle. The result is a significant softening of the TGF energy spectrum for large (>40°) observation angles, which is consistent with a TGF emission half angle (<40°). The softening is due to Compton scattering which reduces the photon energies.

  11. Scaling and correlations in three bus-transport networks of China

    NASA Astrophysics Data System (ADS)

    Xu, Xinping; Hu, Junhui; Liu, Feng; Liu, Lianshou

    2007-01-01

    We report the statistical properties of three bus-transport networks (BTN) in three different cities of China. These networks are composed of a set of bus lines and stations serviced by these. Network properties, including the degree distribution, clustering and average path length are studied in different definitions of network topology. We explore scaling laws and correlations that may govern intrinsic features of such networks. Besides, we create a weighted network representation for BTN with lines mapped to nodes and number of common stations to weights between lines. In such a representation, the distributions of degree, strength and weight are investigated. A linear behavior between strength and degree s(k)∼k is also observed.

  12. Distributed Observer Network (DON), Version 3.0, User's Guide

    NASA Technical Reports Server (NTRS)

    Mazzone, Rebecca A.; Conroy, Michael P.

    2015-01-01

    The Distributed Observer Network (DON) is a data presentation tool developed by the National Aeronautics and Space Administration (NASA) to distribute and publish simulation results. Leveraging the display capabilities inherent in modern gaming technology, DON places users in a fully navigable 3-D environment containing graphical models and allows the users to observe how those models evolve and interact over time in a given scenario. Each scenario is driven with data that has been generated by authoritative NASA simulation tools and exported in accordance with a published data interface specification. This decoupling of the data from the source tool enables DON to faithfully display a simulator's results and ensure that every simulation stakeholder will view the exact same information every time.

  13. Development of a pore network simulation model to study nonaqueous phase liquid dissolution

    USGS Publications Warehouse

    Dillard, Leslie A.; Blunt, Martin J.

    2000-01-01

    A pore network simulation model was developed to investigate the fundamental physics of nonequilibrium nonaqueous phase liquid (NAPL) dissolution. The network model is a lattice of cubic chambers and rectangular tubes that represent pore bodies and pore throats, respectively. Experimental data obtained by Powers [1992] were used to develop and validate the model. To ensure the network model was representative of a real porous medium, the pore size distribution of the network was calibrated by matching simulated and experimental drainage and imbibition capillary pressure‐saturation curves. The predicted network residual styrene blob‐size distribution was nearly identical to the observed distribution. The network model reproduced the observed hydraulic conductivity and produced relative permeability curves that were representative of a poorly consolidated sand. Aqueous‐phase transport was represented by applying the equation for solute flux to the network tubes and solving for solute concentrations in the network chambers. Complete mixing was found to be an appropriate approximation for calculation of chamber concentrations. Mass transfer from NAPL blobs was represented using a corner diffusion model. Predicted results of solute concentration versus Peclet number and of modified Sherwood number versus Peclet number for the network model compare favorably with experimental data for the case in which NAPL blob dissolution was negligible. Predicted results of normalized effluent concentration versus pore volume for the network were similar to the experimental data for the case in which NAPL blob dissolution occurred with time.

  14. Locating inefficient links in a large-scale transportation network

    NASA Astrophysics Data System (ADS)

    Sun, Li; Liu, Like; Xu, Zhongzhi; Jie, Yang; Wei, Dong; Wang, Pu

    2015-02-01

    Based on data from geographical information system (GIS) and daily commuting origin destination (OD) matrices, we estimated the distribution of traffic flow in the San Francisco road network and studied Braess's paradox in a large-scale transportation network with realistic travel demand. We measured the variation of total travel time Δ T when a road segment is closed, and found that | Δ T | follows a power-law distribution if Δ T < 0 or Δ T > 0. This implies that most roads have a negligible effect on the efficiency of the road network, while the failure of a few crucial links would result in severe travel delays, and closure of a few inefficient links would counter-intuitively reduce travel costs considerably. Generating three theoretical networks, we discovered that the heterogeneously distributed travel demand may be the origin of the observed power-law distributions of | Δ T | . Finally, a genetic algorithm was used to pinpoint inefficient link clusters in the road network. We found that closing specific road clusters would further improve the transportation efficiency.

  15. In Abundance: Networked Participatory Practices as Scholarship

    ERIC Educational Resources Information Center

    Stewart, Bonnie E.

    2015-01-01

    In an era of knowledge abundance, scholars have the capacity to distribute and share ideas and artifacts via digital networks, yet networked scholarship often remains unrecognized within institutional spheres of influence. Using ethnographic methods including participant observation, interviews, and document analysis, this study investigates…

  16. Optimal Interpolation scheme to generate reference crop evapotranspiration

    NASA Astrophysics Data System (ADS)

    Tomas-Burguera, Miquel; Beguería, Santiago; Vicente-Serrano, Sergio; Maneta, Marco

    2018-05-01

    We used an Optimal Interpolation (OI) scheme to generate a reference crop evapotranspiration (ETo) grid, forcing meteorological variables, and their respective error variance in the Iberian Peninsula for the period 1989-2011. To perform the OI we used observational data from the Spanish Meteorological Agency (AEMET) and outputs from a physically-based climate model. To compute ETo we used five OI schemes to generate grids for the five observed climate variables necessary to compute ETo using the FAO-recommended form of the Penman-Monteith equation (FAO-PM). The granularity of the resulting grids are less sensitive to variations in the density and distribution of the observational network than those generated by other interpolation methods. This is because our implementation of the OI method uses a physically-based climate model as prior background information about the spatial distribution of the climatic variables, which is critical for under-observed regions. This provides temporal consistency in the spatial variability of the climatic fields. We also show that increases in the density and improvements in the distribution of the observational network reduces substantially the uncertainty of the climatic and ETo estimates. Finally, a sensitivity analysis of observational uncertainties and network densification suggests the existence of a trade-off between quantity and quality of observations.

  17. Preserved Network Metrics across Translated Texts

    NASA Astrophysics Data System (ADS)

    Cabatbat, Josephine Jill T.; Monsanto, Jica P.; Tapang, Giovanni A.

    2014-09-01

    Co-occurrence language networks based on Bible translations and the Universal Declaration of Human Rights (UDHR) translations in different languages were constructed and compared with random text networks. Among the considered network metrics, the network size, N, the normalized betweenness centrality (BC), and the average k-nearest neighbors, knn, were found to be the most preserved across translations. Moreover, similar frequency distributions of co-occurring network motifs were observed for translated texts networks.

  18. Identifying Flow Networks in a Karstified Aquifer by Application of the Cellular Automata-Based Deterministic Inversion Method (Lez Aquifer, France)

    NASA Astrophysics Data System (ADS)

    Fischer, P.; Jardani, A.; Wang, X.; Jourde, H.; Lecoq, N.

    2017-12-01

    The distributed modeling of flow paths within karstic and fractured fields remains a complex task because of the high dependence of the hydraulic responses to the relative locations between observational boreholes and interconnected fractures and karstic conduits that control the main flow of the hydrosystem. The inverse problem in a distributed model is one alternative approach to interpret the hydraulic test data by mapping the karstic networks and fractured areas. In this work, we developed a Bayesian inversion approach, the Cellular Automata-based Deterministic Inversion (CADI) algorithm to infer the spatial distribution of hydraulic properties in a structurally constrained model. This method distributes hydraulic properties along linear structures (i.e., flow conduits) and iteratively modifies the structural geometry of this conduit network to progressively match the observed hydraulic data to the modeled ones. As a result, this method produces a conductivity model that is composed of a discrete conduit network embedded in the background matrix, capable of producing the same flow behavior as the investigated hydrologic system. The method is applied to invert a set of multiborehole hydraulic tests collected from a hydraulic tomography experiment conducted at the Terrieu field site in the Lez aquifer, Southern France. The emergent model shows a high consistency to field observation of hydraulic connections between boreholes. Furthermore, it provides a geologically realistic pattern of flow conduits. This method is therefore of considerable value toward an enhanced distributed modeling of the fractured and karstified aquifers.

  19. Network dysfunction predicts speech production after left hemisphere stroke.

    PubMed

    Geranmayeh, Fatemeh; Leech, Robert; Wise, Richard J S

    2016-03-09

    To investigate the role of multiple distributed brain networks, including the default mode, fronto-temporo-parietal, and cingulo-opercular networks, which mediate domain-general and task-specific processes during speech production after aphasic stroke. We conducted an observational functional MRI study to investigate the effects of a previous left hemisphere stroke on functional connectivity within and between distributed networks as patients described pictures. Study design included various baseline tasks, and we compared results to those of age-matched healthy participants performing the same tasks. We used independent component and psychophysiological interaction analyses. Although activity within individual networks was not predictive of speech production, relative activity between networks was a predictor of both within-scanner and out-of-scanner language performance, over and above that predicted from lesion volume, age, sex, and years of education. Specifically, robust functional imaging predictors were the differential activity between the default mode network and both the left and right fronto-temporo-parietal networks, respectively activated and deactivated during speech. We also observed altered between-network functional connectivity of these networks in patients during speech production. Speech production is dependent on complex interactions among widely distributed brain networks, indicating that residual speech production after stroke depends on more than the restoration of local domain-specific functions. Our understanding of the recovery of function following focal lesions is not adequately captured by consideration of ipsilesional or contralesional brain regions taking over lost domain-specific functions, but is perhaps best considered as the interaction between what remains of domain-specific networks and domain-general systems that regulate behavior. © 2016 American Academy of Neurology.

  20. Food-web structure and network theory: The role of connectance and size

    PubMed Central

    Dunne, Jennifer A.; Williams, Richard J.; Martinez, Neo D.

    2002-01-01

    Networks from a wide range of physical, biological, and social systems have been recently described as “small-world” and “scale-free.” However, studies disagree whether ecological networks called food webs possess the characteristic path lengths, clustering coefficients, and degree distributions required for membership in these classes of networks. Our analysis suggests that the disagreements are based on selective use of relatively few food webs, as well as analytical decisions that obscure important variability in the data. We analyze a broad range of 16 high-quality food webs, with 25–172 nodes, from a variety of aquatic and terrestrial ecosystems. Food webs generally have much higher complexity, measured as connectance (the fraction of all possible links that are realized in a network), and much smaller size than other networks studied, which have important implications for network topology. Our results resolve prior conflicts by demonstrating that although some food webs have small-world and scale-free structure, most do not if they exceed a relatively low level of connectance. Although food-web degree distributions do not display a universal functional form, observed distributions are systematically related to network connectance and size. Also, although food webs often lack small-world structure because of low clustering, we identify a continuum of real-world networks including food webs whose ratios of observed to random clustering coefficients increase as a power–law function of network size over 7 orders of magnitude. Although food webs are generally not small-world, scale-free networks, food-web topology is consistent with patterns found within those classes of networks. PMID:12235364

  1. Network dysfunction predicts speech production after left hemisphere stroke

    PubMed Central

    Leech, Robert; Wise, Richard J.S.

    2016-01-01

    Objective: To investigate the role of multiple distributed brain networks, including the default mode, fronto-temporo-parietal, and cingulo-opercular networks, which mediate domain-general and task-specific processes during speech production after aphasic stroke. Methods: We conducted an observational functional MRI study to investigate the effects of a previous left hemisphere stroke on functional connectivity within and between distributed networks as patients described pictures. Study design included various baseline tasks, and we compared results to those of age-matched healthy participants performing the same tasks. We used independent component and psychophysiological interaction analyses. Results: Although activity within individual networks was not predictive of speech production, relative activity between networks was a predictor of both within-scanner and out-of-scanner language performance, over and above that predicted from lesion volume, age, sex, and years of education. Specifically, robust functional imaging predictors were the differential activity between the default mode network and both the left and right fronto-temporo-parietal networks, respectively activated and deactivated during speech. We also observed altered between-network functional connectivity of these networks in patients during speech production. Conclusions: Speech production is dependent on complex interactions among widely distributed brain networks, indicating that residual speech production after stroke depends on more than the restoration of local domain-specific functions. Our understanding of the recovery of function following focal lesions is not adequately captured by consideration of ipsilesional or contralesional brain regions taking over lost domain-specific functions, but is perhaps best considered as the interaction between what remains of domain-specific networks and domain-general systems that regulate behavior. PMID:26962070

  2. Long-term observations of tropospheric particle number size distributions and equivalent black carbon mass concentrations in the German Ultrafine Aerosol Network (GUAN)

    NASA Astrophysics Data System (ADS)

    Birmili, W.; Weinhold, K.; Merkel, M.; Rasch, F.; Sonntag, A.; Wiedensohler, A.; Bastian, S.; Schladitz, A.; Löschau, G.; Cyrys, J.; Pitz, M.; Gu, J.; Kusch, T.; Flentje, H.; Quass, U.; Kaminski, H.; Kuhlbusch, T. A. J.; Meinhardt, F.; Schwerin, A.; Bath, O.; Ries, L.; Wirtz, K.; Fiebig, M.

    2015-11-01

    The German Ultrafine Aerosol Network (GUAN) is a cooperative atmospheric observation network, which aims at improving the scientific understanding of aerosol-related effects in the troposphere. The network addresses research questions dedicated to both, climate and health related effects. GUAN's core activity has been the continuous collection of tropospheric particle number size distributions and black carbon mass concentrations at seventeen observation sites in Germany. These sites cover various environmental settings including urban traffic, urban background, rural background, and Alpine mountains. In association with partner projects, GUAN has implemented a high degree of harmonisation of instrumentation, operating procedures, and data evaluation procedures. The quality of the measurement data is assured by laboratory intercomparisons as well as on-site comparisons with reference instruments. This paper describes the measurement sites, instrumentation, quality assurance and data evaluation procedures in the network as well as the EBAS repository, where the data sets can be obtained (doi:10.5072/guan).

  3. Long-term observations of tropospheric particle number size distributions and equivalent black carbon mass concentrations in the German Ultrafine Aerosol Network (GUAN)

    NASA Astrophysics Data System (ADS)

    Birmili, Wolfram; Weinhold, Kay; Rasch, Fabian; Sonntag, André; Sun, Jia; Merkel, Maik; Wiedensohler, Alfred; Bastian, Susanne; Schladitz, Alexander; Löschau, Gunter; Cyrys, Josef; Pitz, Mike; Gu, Jianwei; Kusch, Thomas; Flentje, Harald; Quass, Ulrich; Kaminski, Heinz; Kuhlbusch, Thomas A. J.; Meinhardt, Frank; Schwerin, Andreas; Bath, Olaf; Ries, Ludwig; Gerwig, Holger; Wirtz, Klaus; Fiebig, Markus

    2016-08-01

    The German Ultrafine Aerosol Network (GUAN) is a cooperative atmospheric observation network, which aims at improving the scientific understanding of aerosol-related effects in the troposphere. The network addresses research questions dedicated to both climate- and health-related effects. GUAN's core activity has been the continuous collection of tropospheric particle number size distributions and black carbon mass concentrations at 17 observation sites in Germany. These sites cover various environmental settings including urban traffic, urban background, rural background, and Alpine mountains. In association with partner projects, GUAN has implemented a high degree of harmonisation of instrumentation, operating procedures, and data evaluation procedures. The quality of the measurement data is assured by laboratory intercomparisons as well as on-site comparisons with reference instruments. This paper describes the measurement sites, instrumentation, quality assurance, and data evaluation procedures in the network as well as the EBAS repository, where the data sets can be obtained (doi:10.5072/guan).

  4. Cooperative Adaptive Output Regulation for Second-Order Nonlinear Multiagent Systems With Jointly Connected Switching Networks.

    PubMed

    Liu, Wei; Huang, Jie

    2018-03-01

    This paper studies the cooperative global robust output regulation problem for a class of heterogeneous second-order nonlinear uncertain multiagent systems with jointly connected switching networks. The main contributions consist of the following three aspects. First, we generalize the result of the adaptive distributed observer from undirected jointly connected switching networks to directed jointly connected switching networks. Second, by performing a new coordinate and input transformation, we convert our problem into the cooperative global robust stabilization problem of a more complex augmented system via the distributed internal model principle. Third, we solve the stabilization problem by a distributed state feedback control law. Our result is illustrated by the leader-following consensus problem for a group of Van der Pol oscillators.

  5. A multilayer network analysis of hashtags in twitter via co-occurrence and semantic links

    NASA Astrophysics Data System (ADS)

    Türker, Ilker; Sulak, Eyüb Ekmel

    2018-02-01

    Complex network studies, as an interdisciplinary framework, span a large variety of subjects including social media. In social networks, several mechanisms generate miscellaneous structures like friendship networks, mention networks, tag networks, etc. Focusing on tag networks (namely, hashtags in twitter), we made a two-layer analysis of tag networks from a massive dataset of Twitter entries. The first layer is constructed by converting the co-occurrences of these tags in a single entry (tweet) into links, while the second layer is constructed converting the semantic relations of the tags into links. We observed that the universal properties of the real networks like small-world property, clustering and power-law distributions in various network parameters are also evident in the multilayer network of hashtags. Moreover, we outlined that co-occurrences of hashtags in tweets are mostly coupled with semantic relations, whereas a small number of semantically unrelated, therefore random links reduce node separation and network diameter in the co-occurrence network layer. Together with the degree distributions, the power-law consistencies of degree difference, edge weight and cosine similarity distributions in both layers are also appealing forms of Zipf’s law evident in nature.

  6. Physics textbooks from the viewpoint of network structures

    NASA Astrophysics Data System (ADS)

    Králiková, Petra; Teleki, Aba

    2017-01-01

    We can observe self-organized networks all around us. These networks are, in general, scale invariant networks described by the Bianconi-Barabasi model. The self-organized networks (networks formed naturally when feedback acts on the system) show certain universality. These networks, in simplified models, have scale invariant distribution (Pareto distribution type I) and parameter α has value between 2 and 5. The textbooks are extremely important in the learning process and from this reason we studied physics textbook at the level of sentences and physics terms (bipartite network). The nodes represent physics terms, sentences, and pictures, tables, connected by links (by physics terms and transitional words and transitional phrases). We suppose that learning process are more robust and goes faster and easier if the physics textbook has a structure similar to structures of self-organized networks.

  7. Frailty effects in networks: comparison and identification of individual heterogeneity versus preferential attachment in evolving networks

    PubMed Central

    de Blasio, Birgitte Freiesleben; Seierstad, Taral Guldahl; Aalen, Odd O

    2011-01-01

    Preferential attachment is a proportionate growth process in networks, where nodes receive new links in proportion to their current degree. Preferential attachment is a popular generative mechanism to explain the widespread observation of power-law-distributed networks. An alternative explanation for the phenomenon is a randomly grown network with large individual variation in growth rates among the nodes (frailty). We derive analytically the distribution of individual rates, which will reproduce the connectivity distribution that is obtained from a general preferential attachment process (Yule process), and the structural differences between the two types of graphs are examined by simulations. We present a statistical test to distinguish the two generative mechanisms from each other and we apply the test to both simulated data and two real data sets of scientific citation and sexual partner networks. The findings from the latter analyses argue for frailty effects as an important mechanism underlying the dynamics of complex networks. PMID:21572513

  8. Improving the knowledge about dissolved oxygen and chlorophyll variability at ESTOC by using autonomous vehicles.

    NASA Astrophysics Data System (ADS)

    Cianca, A.; Caudet, E.; Vega, D.; Barrera, C.; Hernandez Brito, J.

    2016-02-01

    The European Station for Time Series in the Ocean, Canary Islands "ESTOC" is located in the Eastern Subtropical North Atlantic Gyre (29'10ºN, 15'30ºW). ESTOC started operations in 1994 based on a monthly ship-based sampling, in addition to hydrographic and sediment trap moorings. Since 2002, ESTOC is part of the European network for deep sea ocean observatories through several projects, among others ANIMATE (Atlantic Network of Interdisciplinary Moorings and Time-series for Europe), EuroSITES (European Ocean Observatory Network) and Fixed point Open Ocean Observatory network (FixO3). The main purpose of these projects was to improve the time-resolution of the biogeochemical measurements through moored biogeochemical sensors. Additionally, ESTOC is included in the Marine-Maritime observational network of the Macaronesian region, which is supported by the European overseas territories programs since 2009. This network aims to increase the quantity and quality of marine environmental observations. The goal is to understand phenomena which impact in the environment, and consequently at the socio-economy of the region to attempt their prediction. With this purpose, ESTOC has included the use of autonomous vehicles "glider" in order to increase the observational resolution and, by comparison with the parallel observational programs, to study the biogeochemical processes at different time scale resolutions. This study investigates the time variability of the dissolved oxygen and chlorophyll distributions in the water column focusing on the diel cycle, looking at the relevance of this variability in the already known seasonal distributions. Our interest is assessing net community production and remineralization rates through the use of oxygen variations, establishing the relationship between the DO anomalies values and those from the chlorophyll distribution in the water column.

  9. Synchronization and spatiotemporal patterns in coupled phase oscillators on a weighted planar network

    NASA Astrophysics Data System (ADS)

    Kagawa, Yuki; Takamatsu, Atsuko

    2009-04-01

    To reveal the relation between network structures found in two-dimensional biological systems, such as protoplasmic tube networks in the plasmodium of true slime mold, and spatiotemporal oscillation patterns emerged on the networks, we constructed coupled phase oscillators on weighted planar networks and investigated their dynamics. Results showed that the distribution of edge weights in the networks strongly affects (i) the propensity for global synchronization and (ii) emerging ratios of oscillation patterns, such as traveling and concentric waves, even if the total weight is fixed. In-phase locking, traveling wave, and concentric wave patterns were, respectively, observed most frequently in uniformly weighted, center weighted treelike, and periphery weighted ring-shaped networks. Controlling the global spatiotemporal patterns with the weight distribution given by the local weighting (coupling) rules might be useful in biological network systems including the plasmodial networks and neural networks in the brain.

  10. Investigating Cell Criticality

    NASA Astrophysics Data System (ADS)

    Serra, R.; Villani, M.; Damiani, C.; Graudenzi, A.; Ingrami, P.; Colacci, A.

    Random Boolean networks provide a way to give a precise meaning to the notion that living beings are in a critical state. Some phenomena which are observed in real biological systems (distribution of "avalanches" in gene knock-out experiments) can be modeled using random Boolean networks, and the results can be analytically proven to depend upon the Derrida parameter, which also determines whether the network is critical. By comparing observed and simulated data one can then draw inferences about the criticality of biological cells, although with some care because of the limited number of experimental observations. The relationship between the criticality of a single network and that of a set of interacting networks, which simulate a tissue or a bacterial colony, is also analyzed by computer simulations.

  11. Visualizing Collagen Network Within Human and Rhesus Monkey Vocal Folds Using Polarized Light Microscopy

    PubMed Central

    Julias, Margaret; Riede, Tobias; Cook, Douglas

    2014-01-01

    Objectives Collagen fiber content and orientation affect the viscoelastic properties of the vocal folds, determining oscillation characteristics during speech and other vocalization. The investigation and reconstruction of the collagen network in vocal folds remains a challenge, because the collagen network requires at least micron-scale resolution. In this study, we used polarized light microscopy to investigate the distribution and alignment of collagen fibers within the vocal folds. Methods Data were collected in sections of human and rhesus monkey (Macaca mulatta) vocal folds cut at 3 different angles and stained with picrosirius red. Results Statistically significant differences were found between different section angles, implying that more than one section angle is required to capture the network’s complexity. In the human vocal folds, the collagen fiber distribution continuously varied across the lamina propria (medial to lateral). Distinct differences in birefringence distribution were observed between the species. For the human vocal folds, high birefringence was observed near the thyroarytenoid muscle and near the epithelium. However, in the rhesus monkey vocal folds, high birefringence was observed near the epithelium, and lower birefringence was seen near the thyroarytenoid muscle. Conclusions The differences between the collagen networks in human and rhesus monkey vocal folds provide a morphological basis for differences in viscoelastic properties between species. PMID:23534129

  12. Discriminating topology in galaxy distributions using network analysis

    NASA Astrophysics Data System (ADS)

    Hong, Sungryong; Coutinho, Bruno C.; Dey, Arjun; Barabási, Albert-L.; Vogelsberger, Mark; Hernquist, Lars; Gebhardt, Karl

    2016-07-01

    The large-scale distribution of galaxies is generally analysed using the two-point correlation function. However, this statistic does not capture the topology of the distribution, and it is necessary to resort to higher order correlations to break degeneracies. We demonstrate that an alternate approach using network analysis can discriminate between topologically different distributions that have similar two-point correlations. We investigate two galaxy point distributions, one produced by a cosmological simulation and the other by a Lévy walk. For the cosmological simulation, we adopt the redshift z = 0.58 slice from Illustris and select galaxies with stellar masses greater than 108 M⊙. The two-point correlation function of these simulated galaxies follows a single power law, ξ(r) ˜ r-1.5. Then, we generate Lévy walks matching the correlation function and abundance with the simulated galaxies. We find that, while the two simulated galaxy point distributions have the same abundance and two-point correlation function, their spatial distributions are very different; most prominently, filamentary structures, absent in Lévy fractals. To quantify these missing topologies, we adopt network analysis tools and measure diameter, giant component, and transitivity from networks built by a conventional friends-of-friends recipe with various linking lengths. Unlike the abundance and two-point correlation function, these network quantities reveal a clear separation between the two simulated distributions; therefore, the galaxy distribution simulated by Illustris is not a Lévy fractal quantitatively. We find that the described network quantities offer an efficient tool for discriminating topologies and for comparing observed and theoretical distributions.

  13. Impact of observational incompleteness on the structural properties of protein interaction networks

    NASA Astrophysics Data System (ADS)

    Kuhnt, Mathias; Glauche, Ingmar; Greiner, Martin

    2007-01-01

    The observed structure of protein interaction networks is corrupted by many false positive/negative links. This observational incompleteness is abstracted as random link removal and a specific, experimentally motivated (spoke) link rearrangement. Their impact on the structural properties of gene-duplication-and-mutation network models is studied. For the degree distribution a curve collapse is found, showing no sensitive dependence on the link removal/rearrangement strengths and disallowing a quantitative extraction of model parameters. The spoke link rearrangement process moves other structural observables, like degree correlations, cluster coefficient and motif frequencies, closer to their counterparts extracted from the yeast data. This underlines the importance to take a precise modeling of the observational incompleteness into account when network structure models are to be quantitatively compared to data.

  14. Highly dynamic animal contact network and implications on disease transmission

    PubMed Central

    Chen, Shi; White, Brad J.; Sanderson, Michael W.; Amrine, David E.; Ilany, Amiyaal; Lanzas, Cristina

    2014-01-01

    Contact patterns among hosts are considered as one of the most critical factors contributing to unequal pathogen transmission. Consequently, networks have been widely applied in infectious disease modeling. However most studies assume static network structure due to lack of accurate observation and appropriate analytic tools. In this study we used high temporal and spatial resolution animal position data to construct a high-resolution contact network relevant to infectious disease transmission. The animal contact network aggregated at hourly level was highly variable and dynamic within and between days, for both network structure (network degree distribution) and individual rank of degree distribution in the network (degree order). We integrated network degree distribution and degree order heterogeneities with a commonly used contact-based, directly transmitted disease model to quantify the effect of these two sources of heterogeneity on the infectious disease dynamics. Four conditions were simulated based on the combination of these two heterogeneities. Simulation results indicated that disease dynamics and individual contribution to new infections varied substantially among these four conditions under both parameter settings. Changes in the contact network had a greater effect on disease dynamics for pathogens with smaller basic reproduction number (i.e. R0 < 2). PMID:24667241

  15. Pileup Mitigation with Machine Learning (PUMML)

    NASA Astrophysics Data System (ADS)

    Komiske, Patrick T.; Metodiev, Eric M.; Nachman, Benjamin; Schwartz, Matthew D.

    2017-12-01

    Pileup involves the contamination of the energy distribution arising from the primary collision of interest (leading vertex) by radiation from soft collisions (pileup). We develop a new technique for removing this contamination using machine learning and convolutional neural networks. The network takes as input the energy distribution of charged leading vertex particles, charged pileup particles, and all neutral particles and outputs the energy distribution of particles coming from leading vertex alone. The PUMML algorithm performs remarkably well at eliminating pileup distortion on a wide range of simple and complex jet observables. We test the robustness of the algorithm in a number of ways and discuss how the network can be trained directly on data.

  16. An observer-based compensator for distributed delays

    NASA Technical Reports Server (NTRS)

    Luck, Rogelio; Ray, Asok

    1990-01-01

    This paper presents an algorithm for compensating delays that are distributed between the sensor(s), controller and actuator(s) within a control loop. This observer-based algorithm is specially suited to compensation of network-induced delays in integrated communication and control systems. The robustness of the algorithm relative to plant model uncertainties has been examined.

  17. Distribution of shortest path lengths in a class of node duplication network models

    NASA Astrophysics Data System (ADS)

    Steinbock, Chanania; Biham, Ofer; Katzav, Eytan

    2017-09-01

    We present analytical results for the distribution of shortest path lengths (DSPL) in a network growth model which evolves by node duplication (ND). The model captures essential properties of the structure and growth dynamics of social networks, acquaintance networks, and scientific citation networks, where duplication mechanisms play a major role. Starting from an initial seed network, at each time step a random node, referred to as a mother node, is selected for duplication. Its daughter node is added to the network, forming a link to the mother node, and with probability p to each one of its neighbors. The degree distribution of the resulting network turns out to follow a power-law distribution, thus the ND network is a scale-free network. To calculate the DSPL we derive a master equation for the time evolution of the probability Pt(L =ℓ ) , ℓ =1 ,2 ,⋯ , where L is the distance between a pair of nodes and t is the time. Finding an exact analytical solution of the master equation, we obtain a closed form expression for Pt(L =ℓ ) . The mean distance 〈L〉 t and the diameter Δt are found to scale like lnt , namely, the ND network is a small-world network. The variance of the DSPL is also found to scale like lnt . Interestingly, the mean distance and the diameter exhibit properties of a small-world network, rather than the ultrasmall-world network behavior observed in other scale-free networks, in which 〈L〉 t˜lnlnt .

  18. Scaling theory for information networks.

    PubMed

    Moses, Melanie E; Forrest, Stephanie; Davis, Alan L; Lodder, Mike A; Brown, James H

    2008-12-06

    Networks distribute energy, materials and information to the components of a variety of natural and human-engineered systems, including organisms, brains, the Internet and microprocessors. Distribution networks enable the integrated and coordinated functioning of these systems, and they also constrain their design. The similar hierarchical branching networks observed in organisms and microprocessors are striking, given that the structure of organisms has evolved via natural selection, while microprocessors are designed by engineers. Metabolic scaling theory (MST) shows that the rate at which networks deliver energy to an organism is proportional to its mass raised to the 3/4 power. We show that computational systems are also characterized by nonlinear network scaling and use MST principles to characterize how information networks scale, focusing on how MST predicts properties of clock distribution networks in microprocessors. The MST equations are modified to account for variation in the size and density of transistors and terminal wires in microprocessors. Based on the scaling of the clock distribution network, we predict a set of trade-offs and performance properties that scale with chip size and the number of transistors. However, there are systematic deviations between power requirements on microprocessors and predictions derived directly from MST. These deviations are addressed by augmenting the model to account for decentralized flow in some microprocessor networks (e.g. in logic networks). More generally, we hypothesize a set of constraints between the size, power and performance of networked information systems including transistors on chips, hosts on the Internet and neurons in the brain.

  19. Heterogeneous Data Fusion Method to Estimate Travel Time Distributions in Congested Road Networks

    PubMed Central

    Lam, William H. K.; Li, Qingquan

    2017-01-01

    Travel times in congested urban road networks are highly stochastic. Provision of travel time distribution information, including both mean and variance, can be very useful for travelers to make reliable path choice decisions to ensure higher probability of on-time arrival. To this end, a heterogeneous data fusion method is proposed to estimate travel time distributions by fusing heterogeneous data from point and interval detectors. In the proposed method, link travel time distributions are first estimated from point detector observations. The travel time distributions of links without point detectors are imputed based on their spatial correlations with links that have point detectors. The estimated link travel time distributions are then fused with path travel time distributions obtained from the interval detectors using Dempster-Shafer evidence theory. Based on fused path travel time distribution, an optimization technique is further introduced to update link travel time distributions and their spatial correlations. A case study was performed using real-world data from Hong Kong and showed that the proposed method obtained accurate and robust estimations of link and path travel time distributions in congested road networks. PMID:29210978

  20. Heterogeneous Data Fusion Method to Estimate Travel Time Distributions in Congested Road Networks.

    PubMed

    Shi, Chaoyang; Chen, Bi Yu; Lam, William H K; Li, Qingquan

    2017-12-06

    Travel times in congested urban road networks are highly stochastic. Provision of travel time distribution information, including both mean and variance, can be very useful for travelers to make reliable path choice decisions to ensure higher probability of on-time arrival. To this end, a heterogeneous data fusion method is proposed to estimate travel time distributions by fusing heterogeneous data from point and interval detectors. In the proposed method, link travel time distributions are first estimated from point detector observations. The travel time distributions of links without point detectors are imputed based on their spatial correlations with links that have point detectors. The estimated link travel time distributions are then fused with path travel time distributions obtained from the interval detectors using Dempster-Shafer evidence theory. Based on fused path travel time distribution, an optimization technique is further introduced to update link travel time distributions and their spatial correlations. A case study was performed using real-world data from Hong Kong and showed that the proposed method obtained accurate and robust estimations of link and path travel time distributions in congested road networks.

  1. The correlation of metrics in complex networks with applications in functional brain networks

    NASA Astrophysics Data System (ADS)

    Li, C.; Wang, H.; de Haan, W.; Stam, C. J.; Van Mieghem, P.

    2011-11-01

    An increasing number of network metrics have been applied in network analysis. If metric relations were known better, we could more effectively characterize networks by a small set of metrics to discover the association between network properties/metrics and network functioning. In this paper, we investigate the linear correlation coefficients between widely studied network metrics in three network models (Bárabasi-Albert graphs, Erdös-Rényi random graphs and Watts-Strogatz small-world graphs) as well as in functional brain networks of healthy subjects. The metric correlations, which we have observed and theoretically explained, motivate us to propose a small representative set of metrics by including only one metric from each subset of mutually strongly dependent metrics. The following contributions are considered important. (a) A network with a given degree distribution can indeed be characterized by a small representative set of metrics. (b) Unweighted networks, which are obtained from weighted functional brain networks with a fixed threshold, and Erdös-Rényi random graphs follow a similar degree distribution. Moreover, their metric correlations and the resultant representative metrics are similar as well. This verifies the influence of degree distribution on metric correlations. (c) Most metric correlations can be explained analytically. (d) Interestingly, the most studied metrics so far, the average shortest path length and the clustering coefficient, are strongly correlated and, thus, redundant. Whereas spectral metrics, though only studied recently in the context of complex networks, seem to be essential in network characterizations. This representative set of metrics tends to both sufficiently and effectively characterize networks with a given degree distribution. In the study of a specific network, however, we have to at least consider the representative set so that important network properties will not be neglected.

  2. Random walks on activity-driven networks with attractiveness

    NASA Astrophysics Data System (ADS)

    Alessandretti, Laura; Sun, Kaiyuan; Baronchelli, Andrea; Perra, Nicola

    2017-05-01

    Virtually all real-world networks are dynamical entities. In social networks, the propensity of nodes to engage in social interactions (activity) and their chances to be selected by active nodes (attractiveness) are heterogeneously distributed. Here, we present a time-varying network model where each node and the dynamical formation of ties are characterized by these two features. We study how these properties affect random-walk processes unfolding on the network when the time scales describing the process and the network evolution are comparable. We derive analytical solutions for the stationary state and the mean first-passage time of the process, and we study cases informed by empirical observations of social networks. Our work shows that previously disregarded properties of real social systems, such as heterogeneous distributions of activity and attractiveness as well as the correlations between them, substantially affect the dynamical process unfolding on the network.

  3. Quantifying randomness in real networks

    NASA Astrophysics Data System (ADS)

    Orsini, Chiara; Dankulov, Marija M.; Colomer-de-Simón, Pol; Jamakovic, Almerima; Mahadevan, Priya; Vahdat, Amin; Bassler, Kevin E.; Toroczkai, Zoltán; Boguñá, Marián; Caldarelli, Guido; Fortunato, Santo; Krioukov, Dmitri

    2015-10-01

    Represented as graphs, real networks are intricate combinations of order and disorder. Fixing some of the structural properties of network models to their values observed in real networks, many other properties appear as statistical consequences of these fixed observables, plus randomness in other respects. Here we employ the dk-series, a complete set of basic characteristics of the network structure, to study the statistical dependencies between different network properties. We consider six real networks--the Internet, US airport network, human protein interactions, technosocial web of trust, English word network, and an fMRI map of the human brain--and find that many important local and global structural properties of these networks are closely reproduced by dk-random graphs whose degree distributions, degree correlations and clustering are as in the corresponding real network. We discuss important conceptual, methodological, and practical implications of this evaluation of network randomness, and release software to generate dk-random graphs.

  4. Models, Entropy and Information of Temporal Social Networks

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Karsai, Márton; Bianconi, Ginestra

    Temporal social networks are characterized by heterogeneous duration of contacts, which can either follow a power-law distribution, such as in face-to-face interactions, or a Weibull distribution, such as in mobile-phone communication. Here we model the dynamics of face-to-face interaction and mobile phone communication by a reinforcement dynamics, which explains the data observed in these different types of social interactions. We quantify the information encoded in the dynamics of these networks by the entropy of temporal networks. Finally, we show evidence that human dynamics is able to modulate the information present in social network dynamics when it follows circadian rhythms and when it is interfacing with a new technology such as the mobile-phone communication technology.

  5. A Unified Framework for Complex Networks with Degree Trichotomy Based on Markov Chains.

    PubMed

    Hui, David Shui Wing; Chen, Yi-Chao; Zhang, Gong; Wu, Weijie; Chen, Guanrong; Lui, John C S; Li, Yingtao

    2017-06-16

    This paper establishes a Markov chain model as a unified framework for describing the evolution processes in complex networks. The unique feature of the proposed model is its capability in addressing the formation mechanism that can reflect the "trichotomy" observed in degree distributions, based on which closed-form solutions can be derived. Important special cases of the proposed unified framework are those classical models, including Poisson, Exponential, Power-law distributed networks. Both simulation and experimental results demonstrate a good match of the proposed model with real datasets, showing its superiority over the classical models. Implications of the model to various applications including citation analysis, online social networks, and vehicular networks design, are also discussed in the paper.

  6. RESIF Seismology Datacentre : Recently Released Data and New Services. Computing with Dense Seisimic Networks Data.

    NASA Astrophysics Data System (ADS)

    Volcke, P.; Pequegnat, C.; Grunberg, M.; Lecointre, A.; Bzeznik, B.; Wolyniec, D.; Engels, F.; Maron, C.; Cheze, J.; Pardo, C.; Saurel, J. M.; André, F.

    2015-12-01

    RESIF is a nationwide french project aimed at building a high quality observation system to observe and understand the inner earth. RESIF deals with permanent seismic networks data as well as mobile networks data, including dense/semi-dense arrays. RESIF project is distributed among different nodes providing qualified data to the main datacentre in Université Grenoble Alpes, France. Data control and qualification is performed by each individual nodes : the poster will provide some insights on RESIF broadband seismic component data quality control. We will then present data that has been recently made publicly available. Data is distributed through worldwide FDSN and european EIDA standards protocols. A new web portal is now opened to explore and download seismic data and metadata. The RESIF datacentre is also now connected to Grenoble University High Performance Computing (HPC) facility : a typical use-case will be presented using iRODS technologies. The use of dense observation networks is increasing, bringing challenges in data growth and handling : we will present an example where HDF5 data format was used as an alternative to usual seismology data formats.

  7. Optical and Radar Measurements of the Meteor Speed Distribution

    NASA Technical Reports Server (NTRS)

    Moorhead, A. V.; Brown, P. G.; Campbell-Brown, M. D.; Kingery, A.; Cooke, W. J.

    2016-01-01

    The observed meteor speed distribution provides information on the underlying orbital distribution of Earth-intersecting meteoroids. It also affects spacecraft risk assessments; faster meteors do greater damage to spacecraft surfaces. Although radar meteor networks have measured the meteor speed distribution numerous times, the shape of the de-biased speed distribution varies widely from study to study. Optical characterizations of the meteoroid speed distribution are fewer in number, and in some cases the original data is no longer available. Finally, the level of uncertainty in these speed distributions is rarely addressed. In this work, we present the optical meteor speed distribution extracted from the NASA and SOMN allsky networks [1, 2] and from the Canadian Automated Meteor Observatory (CAMO) [3]. We also revisit the radar meteor speed distribution observed by the Canadian Meteor Orbit Radar (CMOR) [4]. Together, these data span the range of meteoroid sizes that can pose a threat to spacecraft. In all cases, we present our bias corrections and incorporate the uncertainty in these corrections into uncertainties in our de-biased speed distribution. Finally, we compare the optical and radar meteor speed distributions and discuss the implications for meteoroid environment models.

  8. Distributing french seismologic data through the RESIF green IT datacentre

    NASA Astrophysics Data System (ADS)

    Volcke, P.; Gueguen, P.; Pequegnat, C.; Le Tanou, J.; Enderle, G.; Berthoud, F.

    2012-12-01

    RESIF is a nationwide french project aimed at building an excellent quality system to observe and understand the inner earth. The ultimate goal is to create a network throughout mainland France comprising 750 seismometers and geodetic measurement instruments, 250 of which will be mobile to enable the observation network to be focused on specific investigation subjects and geographic locations. This project includes the implementation of a data distribution centre hosting seismologic and geodetic data. This datacentre is operated by the Université Joseph Fourier, Grenoble, France. In the context of building the necessary computing infrastructure, the Université Joseph Fourier became the first french university earning the status of "Participant" for the European Union "Code of Conduct for Data Centres". The University commits to energy reporting and implementing best practices for energy efficiency, in a cost effective manner, without hampering mission critical functions. In this context, data currently hosted at the RESIF datacentre include data from french broadband permanent network, strong motion permanent network, and mobile seismological network. These data are freely accessible as realtime streams and continuous validated data, along with instrumental metadata, delivered using widely known formats. Futur developments include tight integration with local super-computing ressources, and setting up modern distribution systems like webservices.

  9. Gossip and Distributed Kalman Filtering: Weak Consensus Under Weak Detectability

    NASA Astrophysics Data System (ADS)

    Kar, Soummya; Moura, José M. F.

    2011-04-01

    The paper presents the gossip interactive Kalman filter (GIKF) for distributed Kalman filtering for networked systems and sensor networks, where inter-sensor communication and observations occur at the same time-scale. The communication among sensors is random; each sensor occasionally exchanges its filtering state information with a neighbor depending on the availability of the appropriate network link. We show that under a weak distributed detectability condition: 1. the GIKF error process remains stochastically bounded, irrespective of the instability properties of the random process dynamics; and 2. the network achieves \\emph{weak consensus}, i.e., the conditional estimation error covariance at a (uniformly) randomly selected sensor converges in distribution to a unique invariant measure on the space of positive semi-definite matrices (independent of the initial state.) To prove these results, we interpret the filtered states (estimates and error covariances) at each node in the GIKF as stochastic particles with local interactions. We analyze the asymptotic properties of the error process by studying as a random dynamical system the associated switched (random) Riccati equation, the switching being dictated by a non-stationary Markov chain on the network graph.

  10. AstroNet: A Tool Set for Simultaneous, Multi-Site Observations of Astronomical Objects

    NASA Technical Reports Server (NTRS)

    Chakrabarti, Supriya

    1995-01-01

    Earth-based, fully automatic "robotic" telescopes have been in routine operation for a number of years. As their number grows and their distribution becomes global, increasing attention is being given to forming networks of various sorts that will allow them, as a group, to make observations 24 hours a day in both hemispheres. We have suggested that telescopes based in space be part of this network. We further suggested that any telescope on this network be capable of asking, almost in real time, that other robotic telescopes perform support observations for them. When a target of opportunity required support observations, the system would determine which telescope(s) in the network would be most appropriate to make the observations and formulate a request to do so. Because the network would be comprised of telescopes located in widely distributed regions, this system would guarantee continuity of observations This report summarizes our efforts under this contract. We proposed to develop a set of data collection and display tools to aid simultaneous observation of astronomical targets from a number of observing sites. We planned to demonstrate the usefulness of this toolset for simultaneous multi-site observation of astronomical targets. Possible candidates or the proposed demonstration included the Extreme Ultraviolet Explorer (EUVE), International Ultraviolet Explorer (IUE), and ALEXIS, sounding rocket experiments. Ground-based observatories operated by the University of California, Berkeley, the Jet Propulsion Laboratory, and Fairborn Observatory in Mesa, Arizona were to be used to demonstrate the proposed concept. Although the demonstration was to have involved astronomical investigations, the tools were to have been applicable to a large number of scientific disciplines. The software tools and systems developed as a result of the work were to have been made available to the scientific community.

  11. The effect of individual variation on the structure and function of interaction networks in harvester ants

    PubMed Central

    Pinter-Wollman, Noa; Wollman, Roy; Guetz, Adam; Holmes, Susan; Gordon, Deborah M.

    2011-01-01

    Social insects exhibit coordinated behaviour without central control. Local interactions among individuals determine their behaviour and regulate the activity of the colony. Harvester ants are recruited for outside work, using networks of brief antennal contacts, in the nest chamber closest to the nest exit: the entrance chamber. Here, we combine empirical observations, image analysis and computer simulations to investigate the structure and function of the interaction network in the entrance chamber. Ant interactions were distributed heterogeneously in the chamber, with an interaction hot-spot at the entrance leading further into the nest. The distribution of the total interactions per ant followed a right-skewed distribution, indicating the presence of highly connected individuals. Numbers of ant encounters observed positively correlated with the duration of observation. Individuals varied in interaction frequency, even after accounting for the duration of observation. An ant's interaction frequency was explained by its path shape and location within the entrance chamber. Computer simulations demonstrate that variation among individuals in connectivity accelerates information flow to an extent equivalent to an increase in the total number of interactions. Individual variation in connectivity, arising from variation among ants in location and spatial behaviour, creates interaction centres, which may expedite information flow. PMID:21490001

  12. Distributed Synchronization in Networks of Agent Systems With Nonlinearities and Random Switchings.

    PubMed

    Tang, Yang; Gao, Huijun; Zou, Wei; Kurths, Jürgen

    2013-02-01

    In this paper, the distributed synchronization problem of networks of agent systems with controllers and nonlinearities subject to Bernoulli switchings is investigated. Controllers and adaptive updating laws injected in each vertex of networks depend on the state information of its neighborhood. Three sets of Bernoulli stochastic variables are introduced to describe the occurrence probabilities of distributed adaptive controllers, updating laws and nonlinearities, respectively. By the Lyapunov functions method, we show that the distributed synchronization of networks composed of agent systems with multiple randomly occurring nonlinearities, multiple randomly occurring controllers, and multiple randomly occurring updating laws can be achieved in mean square under certain criteria. The conditions derived in this paper can be solved by semi-definite programming. Moreover, by mathematical analysis, we find that the coupling strength, the probabilities of the Bernoulli stochastic variables, and the form of nonlinearities have great impacts on the convergence speed and the terminal control strength. The synchronization criteria and the observed phenomena are demonstrated by several numerical simulation examples. In addition, the advantage of distributed adaptive controllers over conventional adaptive controllers is illustrated.

  13. Neural network disturbance observer-based distributed finite-time formation tracking control for multiple unmanned helicopters.

    PubMed

    Wang, Dandan; Zong, Qun; Tian, Bailing; Shao, Shikai; Zhang, Xiuyun; Zhao, Xinyi

    2018-02-01

    The distributed finite-time formation tracking control problem for multiple unmanned helicopters is investigated in this paper. The control object is to maintain the positions of follower helicopters in formation with external interferences. The helicopter model is divided into a second order outer-loop subsystem and a second order inner-loop subsystem based on multiple-time scale features. Using radial basis function neural network (RBFNN) technique, we first propose a novel finite-time multivariable neural network disturbance observer (FMNNDO) to estimate the external disturbance and model uncertainty, where the neural network (NN) approximation errors can be dynamically compensated by adaptive law. Next, based on FMNNDO, a distributed finite-time formation tracking controller and a finite-time attitude tracking controller are designed using the nonsingular fast terminal sliding mode (NFTSM) method. In order to estimate the second derivative of the virtual desired attitude signal, a novel finite-time sliding mode integral filter is designed. Finally, Lyapunov analysis and multiple-time scale principle ensure the realization of control goal in finite-time. The effectiveness of the proposed FMNNDO and controllers are then verified by numerical simulations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Extracting spatial information from networks with low-order eigenvectors

    NASA Astrophysics Data System (ADS)

    Cucuringu, Mihai; Blondel, Vincent D.; Van Dooren, Paul

    2013-03-01

    We consider the problem of inferring meaningful spatial information in networks from incomplete information on the connection intensity between the nodes of the network. We consider two spatially distributed networks: a population migration flow network within the US, and a network of mobile phone calls between cities in Belgium. For both networks we use the eigenvectors of the Laplacian matrix constructed from the link intensities to obtain informative visualizations and capture natural geographical subdivisions. We observe that some low-order eigenvectors localize very well and seem to reveal small geographically cohesive regions that match remarkably well with political and administrative boundaries. We discuss possible explanations for this observation by describing diffusion maps and localized eigenfunctions. In addition, we discuss a possible connection with the weighted graph cut problem, and provide numerical evidence supporting the idea that lower-order eigenvectors point out local cuts in the network. However, we do not provide a formal and rigorous justification for our observations.

  15. Observations and analysis of self-similar branching topology in glacier networks

    USGS Publications Warehouse

    Bahr, D.B.; Peckham, S.D.

    1996-01-01

    Glaciers, like rivers, have a branching structure which can be characterized by topological trees or networks. Probability distributions of various topological quantities in the networks are shown to satisfy the criterion for self-similarity, a symmetry structure which might be used to simplify future models of glacier dynamics. Two analytical methods of describing river networks, Shreve's random topology model and deterministic self-similar trees, are applied to the six glaciers of south central Alaska studied in this analysis. Self-similar trees capture the topological behavior observed for all of the glaciers, and most of the networks are also reasonably approximated by Shreve's theory. Copyright 1996 by the American Geophysical Union.

  16. Transmural variation in elastin fiber orientation distribution in the arterial wall.

    PubMed

    Yu, Xunjie; Wang, Yunjie; Zhang, Yanhang

    2018-01-01

    The complex three-dimensional elastin network is a major load-bearing extracellular matrix (ECM) component of an artery. Despite the reported anisotropic behavior of arterial elastin network, it is usually treated as an isotropic material in constitutive models. Our recent multiphoton microscopy study reported a relatively uniform elastin fiber orientation distribution in porcine thoracic aorta when imaging from the intima side (Chow et al., 2014). However it is questionable whether the fiber orientation distribution obtained from a small depth is representative of the elastin network structure in the arterial wall, especially when developing structure-based constitutive models. To date, the structural basis for the anisotropic mechanical behavior of elastin is still not fully understood. In this study, we examined the transmural variation in elastin fiber orientation distribution in porcine thoracic aorta and its association with elastin anisotropy. Using multi-photon microscopy, we observed that the elastin fibers orientation changes from a relatively uniform distribution in regions close to the luminal surface to a more circumferential distribution in regions that dominate the media, then to a longitudinal distribution in regions close to the outer media. Planar biaxial tensile test was performed to characterize the anisotropic behavior of elastin network. A new structure-based constitutive model of elastin network was developed to incorporate the transmural variation in fiber orientation distribution. The new model well captures the anisotropic mechanical behavior of elastin network under both equi- and nonequi-biaxial loading and showed improvements in both fitting and predicting capabilities when compared to a model that only considers the fiber orientation distribution from the intima side. We submit that the transmural variation in fiber orientation distribution is important in characterizing the anisotropic mechanical behavior of elastin network and should be considered in constitutive modeling of an artery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Spatial Variability of Co On The Scale of The Street According To Street Morphology, Car Traffic and Local Climate In Paris

    NASA Astrophysics Data System (ADS)

    Quenol, H.; Bridier, S.; Beltrando, G.; Frangi, J. P.

    The purpose of this study is to observe CO distribution on street level according to variations of car traffic, weather situation and street morphology. The experimentation use an electronical CO sensor connected to a data logger. Two kinds of observations are carried out : - measurements along an itinerary from the n´ butte de Montmartre z to the n´ Seine z highlights the spatial variability of CO distribution according to car traffic and weather characteristics (radiativ, advectiv, cloudy, rainy) ; - measurements in fixed stations underlines the differences in concentration according the situation (in or out of buildings) and according to level of the vertical measure (from 1.5 to 10 m). This approach of pollution distribution at the street and the district scale is made possible by using low cost sensors. They allow an very fine approach of CO distribution by multiplying measurements points. All of these data are integrated in a GIS with a DEM, a cartography of building implantation and width of the streets. This study shows that the CO concentration is in relation to street morphology (width, height, topography), intensity of car traffic and local meteorology (breezes and wind channeled by street network). This method leads to the constitution of a mobil network used to produce data on horizontal and vertical CO distribution inside the n´ meshs z of the present network of pollution observation.

  18. Distributed k-Means Algorithm and Fuzzy c-Means Algorithm for Sensor Networks Based on Multiagent Consensus Theory.

    PubMed

    Qin, Jiahu; Fu, Weiming; Gao, Huijun; Zheng, Wei Xing

    2016-03-03

    This paper is concerned with developing a distributed k-means algorithm and a distributed fuzzy c-means algorithm for wireless sensor networks (WSNs) where each node is equipped with sensors. The underlying topology of the WSN is supposed to be strongly connected. The consensus algorithm in multiagent consensus theory is utilized to exchange the measurement information of the sensors in WSN. To obtain a faster convergence speed as well as a higher possibility of having the global optimum, a distributed k-means++ algorithm is first proposed to find the initial centroids before executing the distributed k-means algorithm and the distributed fuzzy c-means algorithm. The proposed distributed k-means algorithm is capable of partitioning the data observed by the nodes into measure-dependent groups which have small in-group and large out-group distances, while the proposed distributed fuzzy c-means algorithm is capable of partitioning the data observed by the nodes into different measure-dependent groups with degrees of membership values ranging from 0 to 1. Simulation results show that the proposed distributed algorithms can achieve almost the same results as that given by the centralized clustering algorithms.

  19. The topology of large Open Connectome networks for the human brain.

    PubMed

    Gastner, Michael T; Ódor, Géza

    2016-06-07

    The structural human connectome (i.e. the network of fiber connections in the brain) can be analyzed at ever finer spatial resolution thanks to advances in neuroimaging. Here we analyze several large data sets for the human brain network made available by the Open Connectome Project. We apply statistical model selection to characterize the degree distributions of graphs containing up to nodes and edges. A three-parameter generalized Weibull (also known as a stretched exponential) distribution is a good fit to most of the observed degree distributions. For almost all networks, simple power laws cannot fit the data, but in some cases there is statistical support for power laws with an exponential cutoff. We also calculate the topological (graph) dimension D and the small-world coefficient σ of these networks. While σ suggests a small-world topology, we found that D < 4 showing that long-distance connections provide only a small correction to the topology of the embedding three-dimensional space.

  20. The topology of large Open Connectome networks for the human brain

    NASA Astrophysics Data System (ADS)

    Gastner, Michael T.; Ódor, Géza

    2016-06-01

    The structural human connectome (i.e. the network of fiber connections in the brain) can be analyzed at ever finer spatial resolution thanks to advances in neuroimaging. Here we analyze several large data sets for the human brain network made available by the Open Connectome Project. We apply statistical model selection to characterize the degree distributions of graphs containing up to nodes and edges. A three-parameter generalized Weibull (also known as a stretched exponential) distribution is a good fit to most of the observed degree distributions. For almost all networks, simple power laws cannot fit the data, but in some cases there is statistical support for power laws with an exponential cutoff. We also calculate the topological (graph) dimension D and the small-world coefficient σ of these networks. While σ suggests a small-world topology, we found that D < 4 showing that long-distance connections provide only a small correction to the topology of the embedding three-dimensional space.

  1. Controllability and observability analysis for vertex domination centrality in directed networks

    NASA Astrophysics Data System (ADS)

    Wang, Bingbo; Gao, Lin; Gao, Yong; Deng, Yue; Wang, Yu

    2014-06-01

    Topological centrality is a significant measure for characterising the relative importance of a node in a complex network. For directed networks that model dynamic processes, however, it is of more practical importance to quantify a vertex's ability to dominate (control or observe) the state of other vertices. In this paper, based on the determination of controllable and observable subspaces under the global minimum-cost condition, we introduce a novel direction-specific index, domination centrality, to assess the intervention capabilities of vertices in a directed network. Statistical studies demonstrate that the domination centrality is, to a great extent, encoded by the underlying network's degree distribution and that most network positions through which one can intervene in a system are vertices with high domination centrality rather than network hubs. To analyse the interaction and functional dependence between vertices when they are used to dominate a network, we define the domination similarity and detect significant functional modules in glossary and metabolic networks through clustering analysis. The experimental results provide strong evidence that our indices are effective and practical in accurately depicting the structure of directed networks.

  2. Controllability and observability analysis for vertex domination centrality in directed networks

    PubMed Central

    Wang, Bingbo; Gao, Lin; Gao, Yong; Deng, Yue; Wang, Yu

    2014-01-01

    Topological centrality is a significant measure for characterising the relative importance of a node in a complex network. For directed networks that model dynamic processes, however, it is of more practical importance to quantify a vertex's ability to dominate (control or observe) the state of other vertices. In this paper, based on the determination of controllable and observable subspaces under the global minimum-cost condition, we introduce a novel direction-specific index, domination centrality, to assess the intervention capabilities of vertices in a directed network. Statistical studies demonstrate that the domination centrality is, to a great extent, encoded by the underlying network's degree distribution and that most network positions through which one can intervene in a system are vertices with high domination centrality rather than network hubs. To analyse the interaction and functional dependence between vertices when they are used to dominate a network, we define the domination similarity and detect significant functional modules in glossary and metabolic networks through clustering analysis. The experimental results provide strong evidence that our indices are effective and practical in accurately depicting the structure of directed networks. PMID:24954137

  3. Flood quantile estimation at ungauged sites by Bayesian networks

    NASA Astrophysics Data System (ADS)

    Mediero, L.; Santillán, D.; Garrote, L.

    2012-04-01

    Estimating flood quantiles at a site for which no observed measurements are available is essential for water resources planning and management. Ungauged sites have no observations about the magnitude of floods, but some site and basin characteristics are known. The most common technique used is the multiple regression analysis, which relates physical and climatic basin characteristic to flood quantiles. Regression equations are fitted from flood frequency data and basin characteristics at gauged sites. Regression equations are a rigid technique that assumes linear relationships between variables and cannot take the measurement errors into account. In addition, the prediction intervals are estimated in a very simplistic way from the variance of the residuals in the estimated model. Bayesian networks are a probabilistic computational structure taken from the field of Artificial Intelligence, which have been widely and successfully applied to many scientific fields like medicine and informatics, but application to the field of hydrology is recent. Bayesian networks infer the joint probability distribution of several related variables from observations through nodes, which represent random variables, and links, which represent causal dependencies between them. A Bayesian network is more flexible than regression equations, as they capture non-linear relationships between variables. In addition, the probabilistic nature of Bayesian networks allows taking the different sources of estimation uncertainty into account, as they give a probability distribution as result. A homogeneous region in the Tagus Basin was selected as case study. A regression equation was fitted taking the basin area, the annual maximum 24-hour rainfall for a given recurrence interval and the mean height as explanatory variables. Flood quantiles at ungauged sites were estimated by Bayesian networks. Bayesian networks need to be learnt from a huge enough data set. As observational data are reduced, a stochastic generator of synthetic data was developed. Synthetic basin characteristics were randomised, keeping the statistical properties of observed physical and climatic variables in the homogeneous region. The synthetic flood quantiles were stochastically generated taking the regression equation as basis. The learnt Bayesian network was validated by the reliability diagram, the Brier Score and the ROC diagram, which are common measures used in the validation of probabilistic forecasts. Summarising, the flood quantile estimations through Bayesian networks supply information about the prediction uncertainty as a probability distribution function of discharges is given as result. Therefore, the Bayesian network model has application as a decision support for water resources and planning management.

  4. A proposal of optimal sampling design using a modularity strategy

    NASA Astrophysics Data System (ADS)

    Simone, A.; Giustolisi, O.; Laucelli, D. B.

    2016-08-01

    In real water distribution networks (WDNs) are present thousands nodes and optimal placement of pressure and flow observations is a relevant issue for different management tasks. The planning of pressure observations in terms of spatial distribution and number is named sampling design and it was faced considering model calibration. Nowadays, the design of system monitoring is a relevant issue for water utilities e.g., in order to manage background leakages, to detect anomalies and bursts, to guarantee service quality, etc. In recent years, the optimal location of flow observations related to design of optimal district metering areas (DMAs) and leakage management purposes has been faced considering optimal network segmentation and the modularity index using a multiobjective strategy. Optimal network segmentation is the basis to identify network modules by means of optimal conceptual cuts, which are the candidate locations of closed gates or flow meters creating the DMAs. Starting from the WDN-oriented modularity index, as a metric for WDN segmentation, this paper proposes a new way to perform the sampling design, i.e., the optimal location of pressure meters, using newly developed sampling-oriented modularity index. The strategy optimizes the pressure monitoring system mainly based on network topology and weights assigned to pipes according to the specific technical tasks. A multiobjective optimization minimizes the cost of pressure meters while maximizing the sampling-oriented modularity index. The methodology is presented and discussed using the Apulian and Exnet networks.

  5. Noisy scale-free networks

    NASA Astrophysics Data System (ADS)

    Scholz, Jan; Dejori, Mathäus; Stetter, Martin; Greiner, Martin

    2005-05-01

    The impact of observational noise on the analysis of scale-free networks is studied. Various noise sources are modeled as random link removal, random link exchange and random link addition. Emphasis is on the resulting modifications for the node-degree distribution and for a functional ranking based on betweenness centrality. The implications for estimated gene-expressed networks for childhood acute lymphoblastic leukemia are discussed.

  6. Three-dimensional spatial modeling of spines along dendritic networks in human cortical pyramidal neurons

    PubMed Central

    Larrañaga, Pedro; Benavides-Piccione, Ruth; Fernaud-Espinosa, Isabel; DeFelipe, Javier; Bielza, Concha

    2017-01-01

    We modeled spine distribution along the dendritic networks of pyramidal neurons in both basal and apical dendrites. To do this, we applied network spatial analysis because spines can only lie on the dendritic shaft. We expanded the existing 2D computational techniques for spatial analysis along networks to perform a 3D network spatial analysis. We analyzed five detailed reconstructions of adult human pyramidal neurons of the temporal cortex with a total of more than 32,000 spines. We confirmed that there is a spatial variation in spine density that is dependent on the distance to the cell body in all dendrites. Considering the dendritic arborizations of each pyramidal cell as a group of instances of the same observation (the neuron), we used replicated point patterns together with network spatial analysis for the first time to search for significant differences in the spine distribution of basal dendrites between different cells and between all the basal and apical dendrites. To do this, we used a recent variant of Ripley’s K function defined to work along networks. The results showed that there were no significant differences in spine distribution along basal arbors of the same neuron and along basal arbors of different pyramidal neurons. This suggests that dendritic spine distribution in basal dendritic arbors adheres to common rules. However, we did find significant differences in spine distribution along basal versus apical networks. Therefore, not only do apical and basal dendritic arborizations have distinct morphologies but they also obey different rules of spine distribution. Specifically, the results suggested that spines are more clustered along apical than in basal dendrites. Collectively, the results further highlighted that synaptic input information processing is different between these two dendritic domains. PMID:28662210

  7. Three-dimensional spatial modeling of spines along dendritic networks in human cortical pyramidal neurons.

    PubMed

    Anton-Sanchez, Laura; Larrañaga, Pedro; Benavides-Piccione, Ruth; Fernaud-Espinosa, Isabel; DeFelipe, Javier; Bielza, Concha

    2017-01-01

    We modeled spine distribution along the dendritic networks of pyramidal neurons in both basal and apical dendrites. To do this, we applied network spatial analysis because spines can only lie on the dendritic shaft. We expanded the existing 2D computational techniques for spatial analysis along networks to perform a 3D network spatial analysis. We analyzed five detailed reconstructions of adult human pyramidal neurons of the temporal cortex with a total of more than 32,000 spines. We confirmed that there is a spatial variation in spine density that is dependent on the distance to the cell body in all dendrites. Considering the dendritic arborizations of each pyramidal cell as a group of instances of the same observation (the neuron), we used replicated point patterns together with network spatial analysis for the first time to search for significant differences in the spine distribution of basal dendrites between different cells and between all the basal and apical dendrites. To do this, we used a recent variant of Ripley's K function defined to work along networks. The results showed that there were no significant differences in spine distribution along basal arbors of the same neuron and along basal arbors of different pyramidal neurons. This suggests that dendritic spine distribution in basal dendritic arbors adheres to common rules. However, we did find significant differences in spine distribution along basal versus apical networks. Therefore, not only do apical and basal dendritic arborizations have distinct morphologies but they also obey different rules of spine distribution. Specifically, the results suggested that spines are more clustered along apical than in basal dendrites. Collectively, the results further highlighted that synaptic input information processing is different between these two dendritic domains.

  8. A Statistical Framework for Microbial Source Attribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velsko, S P; Allen, J E; Cunningham, C T

    2009-04-28

    This report presents a general approach to inferring transmission and source relationships among microbial isolates from their genetic sequences. The outbreak transmission graph (also called the transmission tree or transmission network) is the fundamental structure which determines the statistical distributions relevant to source attribution. The nodes of this graph are infected individuals or aggregated sub-populations of individuals in which transmitted bacteria or viruses undergo clonal expansion, leading to a genetically heterogeneous population. Each edge of the graph represents a transmission event in which one or a small number of bacteria or virions infects another node thus increasing the size ofmore » the transmission network. Recombination and re-assortment events originate in nodes which are common to two distinct networks. In order to calculate the probability that one node was infected by another, given the observed genetic sequences of microbial isolates sampled from them, we require two fundamental probability distributions. The first is the probability of obtaining the observed mutational differences between two isolates given that they are separated by M steps in a transmission network. The second is the probability that two nodes sampled randomly from an outbreak transmission network are separated by M transmission events. We show how these distributions can be obtained from the genetic sequences of isolates obtained by sampling from past outbreaks combined with data from contact tracing studies. Realistic examples are drawn from the SARS outbreak of 2003, the FMDV outbreak in Great Britain in 2001, and HIV transmission cases. The likelihood estimators derived in this report, and the underlying probability distribution functions required to calculate them possess certain compelling general properties in the context of microbial forensics. These include the ability to quantify the significance of a sequence 'match' or 'mismatch' between two isolates; the ability to capture non-intuitive effects of network structure on inferential power, including the 'small world' effect; the insensitivity of inferences to uncertainties in the underlying distributions; and the concept of rescaling, i.e. ability to collapse sub-networks into single nodes and examine transmission inferences on the rescaled network.« less

  9. An observer-based compensator for distributed delays in integrated control systems

    NASA Technical Reports Server (NTRS)

    Luck, Rogelio; Ray, Asok

    1989-01-01

    This paper presents an algorithm for compensation of delays that are distributed within a control loop. The observer-based algorithm is especially suitable for compensating network-induced delays that are likely to occur in integrated control systems of the future generation aircraft. The robustness of the algorithm relative to uncertainties in the plant model have been examined.

  10. A probabilistic dynamic energy model for ad-hoc wireless sensors network with varying topology

    NASA Astrophysics Data System (ADS)

    Al-Husseini, Amal

    In this dissertation we investigate the behavior of Wireless Sensor Networks (WSNs) from the degree distribution and evolution perspective. In specific, we focus on implementation of a scale-free degree distribution topology for energy efficient WSNs. WSNs is an emerging technology that finds its applications in different areas such as environment monitoring, agricultural crop monitoring, forest fire monitoring, and hazardous chemical monitoring in war zones. This technology allows us to collect data without human presence or intervention. Energy conservation/efficiency is one of the major issues in prolonging the active life WSNs. Recently, many energy aware and fault tolerant topology control algorithms have been presented, but there is dearth of research focused on energy conservation/efficiency of WSNs. Therefore, we study energy efficiency and fault-tolerance in WSNs from the degree distribution and evolution perspective. Self-organization observed in natural and biological systems has been directly linked to their degree distribution. It is widely known that scale-free distribution bestows robustness, fault-tolerance, and access efficiency to system. Fascinated by these properties, we propose two complex network theoretic self-organizing models for adaptive WSNs. In particular, we focus on adopting the Barabasi and Albert scale-free model to fit into the constraints and limitations of WSNs. We developed simulation models to conduct numerical experiments and network analysis. The main objective of studying these models is to find ways to reducing energy usage of each node and balancing the overall network energy disrupted by faulty communication among nodes. The first model constructs the wireless sensor network relative to the degree (connectivity) and remaining energy of every individual node. We observed that it results in a scale-free network structure which has good fault tolerance properties in face of random node failures. The second model considers additional constraints on the maximum degree of each node as well as the energy consumption relative to degree changes. This gives more realistic results from a dynamical network perspective. It results in balanced network-wide energy consumption. The results show that networks constructed using the proposed approach have good properties for different centrality measures. The outcomes of the presented research are beneficial to building WSN control models with greater self-organization properties which leads to optimal energy consumption.

  11. A simple model of global cascades on random networks

    NASA Astrophysics Data System (ADS)

    Watts, Duncan J.

    2002-04-01

    The origin of large but rare cascades that are triggered by small initial shocks is a phenomenon that manifests itself as diversely as cultural fads, collective action, the diffusion of norms and innovations, and cascading failures in infrastructure and organizational networks. This paper presents a possible explanation of this phenomenon in terms of a sparse, random network of interacting agents whose decisions are determined by the actions of their neighbors according to a simple threshold rule. Two regimes are identified in which the network is susceptible to very large cascadesherein called global cascadesthat occur very rarely. When cascade propagation is limited by the connectivity of the network, a power law distribution of cascade sizes is observed, analogous to the cluster size distribution in standard percolation theory and avalanches in self-organized criticality. But when the network is highly connected, cascade propagation is limited instead by the local stability of the nodes themselves, and the size distribution of cascades is bimodal, implying a more extreme kind of instability that is correspondingly harder to anticipate. In the first regime, where the distribution of network neighbors is highly skewed, it is found that the most connected nodes are far more likely than average nodes to trigger cascades, but not in the second regime. Finally, it is shown that heterogeneity plays an ambiguous role in determining a system's stability: increasingly heterogeneous thresholds make the system more vulnerable to global cascades; but an increasingly heterogeneous degree distribution makes it less vulnerable.

  12. VLBI2010: Networks and Observing Strategies

    NASA Technical Reports Server (NTRS)

    Petrachenko, Bill; Corey, Brian; Himwich, Ed; Ma, Chopo; Malkin, Zinovy; Niell, Arthur; Shaffer, David; Vandenberg, Nancy

    2004-01-01

    The Observing Strategies Sub-group of IVS's Working Group 3 has been tasked with producing a vision for the following aspects of geodetic VLBI: antenna-network structure and observing strategies; source strength/structure/distribution; frequency bands, RFI; and field system and scheduling. These are high level considerations that have far reaching impact since they significantly influence performance potential and also constrain requirements for a number of other \\VG3 sub-groups. The paper will present the status of the sub-group's work on these topics.

  13. EARLINET observations of the Eyjafjallajökull ash plume over Europe

    NASA Astrophysics Data System (ADS)

    Pappalardo, Gelsomina; Amodeo, Aldo; Ansmann, Albert; Apituley, Arnoud; Alados Arboledas, Lucas; Balis, Dimitris; Böckmann, Christine; Chaikovsky, Anatoli; Comeron, Adolfo; D'Amico, Giuseppe; De Tomasi, Ferdinando; Freudenthaler, Volker; Giannakaki, Elina; Giunta, Aldo; Grigorov, Ivan; Gustafsson, Ove; Gross, Silke; Haeffelin, Martial; Iarlori, Marco; Kinne, Stefan; Linné, Holger; Madonna, Fabio; Mamouri, Rodanthi; Mattis, Ina; McAuliffe, Michael; Molero, Francisco; Mona, Lucia; Müller, Detlef; Mitev, Valentin; Nicolae, Doina; Papayannis, Alexandros; Perrone, Maria Rita; Pietruczuk, Aleksander; Pujadas, Manuel; Putaud, Jean-Philippe; Ravetta, Francois; Rizi, Vincenzo; Serikov, Ilya; Sicard, Michael; Simeonov, Valentin; Spinelli, Nicola; Stebel, Kerstin; Trickl, Thomas; Wandinger, Ulla; Wang, Xuan; Wagner, Frank; Wiegner, Matthias

    2010-10-01

    EARLINET, the European Aerosol Research Lidar NETwork, established in 2000, is the first coordinated lidar network for tropospheric aerosol study on the continental scale. The network activity is based on scheduled measurements, a rigorous quality assurance program addressing both instruments and evaluation algorithms, and a standardised data exchange format. At present, the network includes 27 lidar stations distributed over Europe. EARLINET performed almost continuous measurements since 15 April 2010 in order to follow the evolution of the volcanic plume generated from the eruption of the Eyjafjallajökull volcano, providing the 4-dimensional distribution of the volcanic ash plume over Europe. During the 15-30 April period, volcanic particles were detected over Central Europe over a wide range of altitudes, from 10 km down to the local planetary boundary layer (PBL). Until 19 April, the volcanic plume transport toward South Europe was nearly completely blocked by the Alps. After 19 April volcanic particles were transported to the south and the southeast of Europe. Descending aerosol layers were typically observed all over Europe and intrusion of particles into the PBL was observed at almost each lidar site that was affected by the volcanic plume. A second event was observed over Portugal and Spain (6 May) and then over Italy on 9 May 2010. The volcanic plume was then observed again over Southern Germany on 11 May 2010.

  14. An efficient coordination protocol for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Paruchuri, Vamsi; Durresi, Arjan; Durresi, Mimoza; Barolli, Leonard

    2005-10-01

    Backbones infrastructures in wireless sensor networks reduce the communication overhead and energy consumption. In this paper, we present BackBone Routing (BBR), a fully distributed protocol for construction and rotation of backbone networks. BBR reduces energy consumption without significantly diminishing the capacity or connectivity of the network. Another key feature of BBR is its energy balancing nature by distributing the role of being Backbone Node among all the nodes. BBR builds on the observation that when a region of a shared-channel wireless network has a sufficient density of nodes, only a small number of them need be on at any time to forward traffic for active connections. Improvement in system lifetime due to BBR increases as the ratio of idle-to-sleep energy consumption increases, and increases as the density of the network increases. Our experiments show that BBR is more efficient in saving energy and extending network life without deteriorating network performance when compared with geographical shortest path routing.

  15. Spatiotemporal responses of dengue fever transmission to the road network in an urban area.

    PubMed

    Li, Qiaoxuan; Cao, Wei; Ren, Hongyan; Ji, Zhonglin; Jiang, Huixian

    2018-07-01

    Urbanization is one of the important factors leading to the spread of dengue fever. Recently, some studies found that the road network as an urbanization factor affects the distribution and spread of dengue epidemic, but the study of relationship between the distribution of dengue epidemic and road network is limited, especially in highly urbanized areas. This study explores the temporal and spatial spread characteristics of dengue fever in the distribution of road network by observing a dengue epidemic in the southern Chinese cities. Geographic information technology is used to extract the spatial location of cases and explore the temporal and spatial changes of dengue epidemic and its spatial relationship with road network. The results showed that there was a significant "severe" period in the temporal change of dengue epidemic situation, and the cases were mainly concentrated in the vicinity of narrow roads, the spread of the epidemic mainly along the high-density road network area. These results show that high-density road network is an important factor to the direction and scale of dengue epidemic. This information may be helpful to the development of related epidemic prevention and control strategies. Copyright © 2018. Published by Elsevier B.V.

  16. EARLINET: towards an advanced sustainable European aerosol lidar network

    NASA Astrophysics Data System (ADS)

    Pappalardo, G.; Amodeo, A.; Apituley, A.; Comeron, A.; Freudenthaler, V.; Linné, H.; Ansmann, A.; Bösenberg, J.; D'Amico, G.; Mattis, I.; Mona, L.; Wandinger, U.; Amiridis, V.; Alados-Arboledas, L.; Nicolae, D.; Wiegner, M.

    2014-08-01

    The European Aerosol Research Lidar Network, EARLINET, was founded in 2000 as a research project for establishing a quantitative, comprehensive, and statistically significant database for the horizontal, vertical, and temporal distribution of aerosols on a continental scale. Since then EARLINET has continued to provide the most extensive collection of ground-based data for the aerosol vertical distribution over Europe. This paper gives an overview of the network's main developments since 2000 and introduces the dedicated EARLINET special issue, which reports on the present innovative and comprehensive technical solutions and scientific results related to the use of advanced lidar remote sensing techniques for the study of aerosol properties as developed within the network in the last 13 years. Since 2000, EARLINET has developed greatly in terms of number of stations and spatial distribution: from 17 stations in 10 countries in 2000 to 27 stations in 16 countries in 2013. EARLINET has developed greatly also in terms of technological advances with the spread of advanced multiwavelength Raman lidar stations in Europe. The developments for the quality assurance strategy, the optimization of instruments and data processing, and the dissemination of data have contributed to a significant improvement of the network towards a more sustainable observing system, with an increase in the observing capability and a reduction of operational costs. Consequently, EARLINET data have already been extensively used for many climatological studies, long-range transport events, Saharan dust outbreaks, plumes from volcanic eruptions, and for model evaluation and satellite data validation and integration. Future plans are aimed at continuous measurements and near-real-time data delivery in close cooperation with other ground-based networks, such as in the ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) www.actris.net, and with the modeling and satellite community, linking the research community with the operational world, with the aim of establishing of the atmospheric part of the European component of the integrated global observing system.

  17. MAGIC: Model and Graphic Information Converter

    NASA Technical Reports Server (NTRS)

    Herbert, W. C.

    2009-01-01

    MAGIC is a software tool capable of converting highly detailed 3D models from an open, standard format, VRML 2.0/97, into the proprietary DTS file format used by the Torque Game Engine from GarageGames. MAGIC is used to convert 3D simulations from authoritative sources into the data needed to run the simulations in NASA's Distributed Observer Network. The Distributed Observer Network (DON) is a simulation presentation tool built by NASA to facilitate the simulation sharing requirements of the Data Presentation and Visualization effort within the Constellation Program. DON is built on top of the Torque Game Engine (TGE) and has chosen TGE's Dynamix Three Space (DTS) file format to represent 3D objects within simulations.

  18. Statistical self-similarity of width function maxima with implications to floods

    USGS Publications Warehouse

    Veitzer, S.A.; Gupta, V.K.

    2001-01-01

    Recently a new theory of random self-similar river networks, called the RSN model, was introduced to explain empirical observations regarding the scaling properties of distributions of various topologic and geometric variables in natural basins. The RSN model predicts that such variables exhibit statistical simple scaling, when indexed by Horton-Strahler order. The average side tributary structure of RSN networks also exhibits Tokunaga-type self-similarity which is widely observed in nature. We examine the scaling structure of distributions of the maximum of the width function for RSNs for nested, complete Strahler basins by performing ensemble simulations. The maximum of the width function exhibits distributional simple scaling, when indexed by Horton-Strahler order, for both RSNs and natural river networks extracted from digital elevation models (DEMs). We also test a powerlaw relationship between Horton ratios for the maximum of the width function and drainage areas. These results represent first steps in formulating a comprehensive physical statistical theory of floods at multiple space-time scales for RSNs as discrete hierarchical branching structures. ?? 2001 Published by Elsevier Science Ltd.

  19. Eco-hydrological Wireless Sensor Network and upscaling method research in the Heihe River Basin, China

    NASA Astrophysics Data System (ADS)

    Jin, Rui; kang, Jian

    2017-04-01

    Wireless Sensor Networks are recognized as one of most important near-surface components of GEOSS (Global Earth Observation System of Systems), with flourish development of low-cost, robust and integrated data loggers and sensors. A nested eco-hydrological wireless sensor network (EHWSN) was installed in the up- and middle-reaches of the Heihe River Basin, operated to obtain multi-scale observation of soil moisture, soil temperature and land surface temperature from 2012 till now. The spatial distribution of EHWSN was optimally designed based on the geo-statistical theory, with the aim to capture the spatial variations and temporal dynamics of soil moisture and soil temperature, and to produce ground truth at grid scale for validating the related remote sensing products and model simulation in the heterogeneous land surface. In terms of upscaling research, we have developed a set of method to aggregate multi-point WSN observations to grid scale ( 1km), including regression kriging estimation to utilize multi-resource remote sensing auxiliary information, block kriging with homogeneous measurement errors, and bayesian-based upscaling algorithm that utilizes MODIS-derived apparent thermal inertia. All the EHWSN observation are organized as datasets to be freely published at http://westdc.westgis.ac.cn/hiwater. EHWSN integrates distributed observation nodes to achieve an automated, intelligent and remote-controllable network that provides superior integrated, standardized and automated observation capabilities for hydrological and ecological processes research at the basin scale.

  20. T-LECS: The Control Software System for MOIRCS

    NASA Astrophysics Data System (ADS)

    Yoshikawa, T.; Omata, K.; Konishi, M.; Ichikawa, T.; Suzuki, R.; Tokoku, C.; Katsuno, Y.; Nishimura, T.

    2006-07-01

    MOIRCS (Multi-Object Infrared Camera and Spectrograph) is a new instrument for the Subaru Telescope. We present the system design of the control software system for MOIRCS, named T-LECS (Tohoku University - Layered Electronic Control System). T-LECS is a PC-Linux based network distributed system. Two PCs equipped with the focal plane array system operate two HAWAII2 detectors, respectively, and another PC is used for user interfaces and a database server. Moreover, these PCs control various devices for observations distributed on a TCP/IP network. T-LECS has three interfaces; interfaces to the devices and two user interfaces. One of the user interfaces is to the integrated observation control system (Subaru Observation Software System) for observers, and another one provides the system developers the direct access to the devices of MOIRCS. In order to help the communication between these interfaces, we employ an SQL database system.

  1. Modeling the diffusion of complex innovations as a process of opinion formation through social networks.

    PubMed

    Assenova, Valentina A

    2018-01-01

    Complex innovations- ideas, practices, and technologies that hold uncertain benefits for potential adopters-often vary in their ability to diffuse in different communities over time. To explain why, I develop a model of innovation adoption in which agents engage in naïve (DeGroot) learning about the value of an innovation within their social networks. Using simulations on Bernoulli random graphs, I examine how adoption varies with network properties and with the distribution of initial opinions and adoption thresholds. The results show that: (i) low-density and high-asymmetry networks produce polarization in influence to adopt an innovation over time, (ii) increasing network density and asymmetry promote adoption under a variety of opinion and threshold distributions, and (iii) the optimal levels of density and asymmetry in networks depend on the distribution of thresholds: networks with high density (>0.25) and high asymmetry (>0.50) are optimal for maximizing diffusion when adoption thresholds are right-skewed (i.e., barriers to adoption are low), but networks with low density (<0.01) and low asymmetry (<0.25) are optimal when thresholds are left-skewed. I draw on data from a diffusion field experiment to predict adoption over time and compare the results to observed outcomes.

  2. Influence of reciprocal edges on degree distribution and degree correlations

    NASA Astrophysics Data System (ADS)

    Zlatić, Vinko; Štefančić, Hrvoje

    2009-07-01

    Reciprocal edges represent the lowest-order cycle possible to find in directed graphs without self-loops. Representing also a measure of feedback between vertices, it is interesting to understand how reciprocal edges influence other properties of complex networks. In this paper, we focus on the influence of reciprocal edges on vertex degree distribution and degree correlations. We show that there is a fundamental difference between properties observed on the static network compared to the properties of networks, which are obtained by simple evolution mechanism driven by reciprocity. We also present a way to statistically infer the portion of reciprocal edges, which can be explained as a consequence of feedback process on the static network. In the rest of the paper, the influence of reciprocal edges on a model of growing network is also presented. It is shown that our model of growing network nicely interpolates between Barabási-Albert (BA) model for undirected and the BA model for directed networks.

  3. On the contributions of topological features to transcriptional regulatory network robustness

    PubMed Central

    2012-01-01

    Background Because biological networks exhibit a high-degree of robustness, a systemic understanding of their architecture and function requires an appraisal of the network design principles that confer robustness. In this project, we conduct a computational study of the contribution of three degree-based topological properties (transcription factor-target ratio, degree distribution, cross-talk suppression) and their combinations on the robustness of transcriptional regulatory networks. We seek to quantify the relative degree of robustness conferred by each property (and combination) and also to determine the extent to which these properties alone can explain the robustness observed in transcriptional networks. Results To study individual properties and their combinations, we generated synthetic, random networks that retained one or more of the three properties with values derived from either the yeast or E. coli gene regulatory networks. Robustness of these networks were estimated through simulation. Our results indicate that the combination of the three properties we considered explains the majority of the structural robustness observed in the real transcriptional networks. Surprisingly, scale-free degree distribution is, overall, a minor contributor to robustness. Instead, most robustness is gained through topological features that limit the complexity of the overall network and increase the transcription factor subnetwork sparsity. Conclusions Our work demonstrates that (i) different types of robustness are implemented by different topological aspects of the network and (ii) size and sparsity of the transcription factor subnetwork play an important role for robustness induction. Our results are conserved across yeast and E Coli, which suggests that the design principles examined are present within an array of living systems. PMID:23194062

  4. Event-triggered output feedback control for distributed networked systems.

    PubMed

    Mahmoud, Magdi S; Sabih, Muhammad; Elshafei, Moustafa

    2016-01-01

    This paper addresses the problem of output-feedback communication and control with event-triggered framework in the context of distributed networked control systems. The design problem of the event-triggered output-feedback control is proposed as a linear matrix inequality (LMI) feasibility problem. The scheme is developed for the distributed system where only partial states are available. In this scheme, a subsystem uses local observers and share its information to its neighbors only when the subsystem's local error exceeds a specified threshold. The developed method is illustrated by using a coupled cart example from the literature. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Evaluation on surface current observing network of high frequency ground wave radars in the Gulf of Thailand

    NASA Astrophysics Data System (ADS)

    Yin, Xunqiang; Shi, Junqiang; Qiao, Fangli

    2018-05-01

    Due to the high cost of ocean observation system, the scientific design of observation network becomes much important. The current network of the high frequency radar system in the Gulf of Thailand has been studied using a three-dimensional coastal ocean model. At first, the observations from current radars have been assimilated into this coastal model and the forecast results have improved due to the data assimilation. But the results also show that further optimization of the observing network is necessary. And then, a series of experiments were carried out to assess the performance of the existing high frequency ground wave radar surface current observation system. The simulated surface current data in three regions were assimilated sequentially using an efficient ensemble Kalman filter data assimilation scheme. The experimental results showed that the coastal surface current observation system plays a positive role in improving the numerical simulation of the currents. Compared with the control experiment without assimilation, the simulation precision of surface and subsurface current had been improved after assimilated the surface currents observed at current networks. However, the improvement for three observing regions was quite different and current observing network in the Gulf of Thailand is not effective and a further optimization is required. Based on these evaluations, a manual scheme has been designed by discarding the redundant and inefficient locations and adding new stations where the performance after data assimilation is still low. For comparison, an objective scheme based on the idea of data assimilation has been obtained. Results show that all the two schemes of observing network perform better than the original network and optimal scheme-based data assimilation is much superior to the manual scheme that based on the evaluation of original observing network in the Gulf of Thailand. The distributions of the optimal network of radars could be a useful guidance for future design of observing system in this region.

  6. Self Calibrated Wireless Distributed Environmental Sensory Networks

    PubMed Central

    Fishbain, Barak; Moreno-Centeno, Erick

    2016-01-01

    Recent advances in sensory and communication technologies have made Wireless Distributed Environmental Sensory Networks (WDESN) technically and economically feasible. WDESNs present an unprecedented tool for studying many environmental processes in a new way. However, the WDESNs’ calibration process is a major obstacle in them becoming the common practice. Here, we present a new, robust and efficient method for aggregating measurements acquired by an uncalibrated WDESN, and producing accurate estimates of the observed environmental variable’s true levels rendering the network as self-calibrated. The suggested method presents novelty both in group-decision-making and in environmental sensing as it offers a most valuable tool for distributed environmental monitoring data aggregation. Applying the method on an extensive real-life air-pollution dataset showed markedly more accurate results than the common practice and the state-of-the-art. PMID:27098279

  7. Episodic memory in aspects of large-scale brain networks

    PubMed Central

    Jeong, Woorim; Chung, Chun Kee; Kim, June Sic

    2015-01-01

    Understanding human episodic memory in aspects of large-scale brain networks has become one of the central themes in neuroscience over the last decade. Traditionally, episodic memory was regarded as mostly relying on medial temporal lobe (MTL) structures. However, recent studies have suggested involvement of more widely distributed cortical network and the importance of its interactive roles in the memory process. Both direct and indirect neuro-modulations of the memory network have been tried in experimental treatments of memory disorders. In this review, we focus on the functional organization of the MTL and other neocortical areas in episodic memory. Task-related neuroimaging studies together with lesion studies suggested that specific sub-regions of the MTL are responsible for specific components of memory. However, recent studies have emphasized that connectivity within MTL structures and even their network dynamics with other cortical areas are essential in the memory process. Resting-state functional network studies also have revealed that memory function is subserved by not only the MTL system but also a distributed network, particularly the default-mode network (DMN). Furthermore, researchers have begun to investigate memory networks throughout the entire brain not restricted to the specific resting-state network (RSN). Altered patterns of functional connectivity (FC) among distributed brain regions were observed in patients with memory impairments. Recently, studies have shown that brain stimulation may impact memory through modulating functional networks, carrying future implications of a novel interventional therapy for memory impairment. PMID:26321939

  8. Distributed memory approaches for robotic neural controllers

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1990-01-01

    The suitability is explored of two varieties of distributed memory neutral networks as trainable controllers for a simulated robotics task. The task requires that two cameras observe an arbitrary target point in space. Coordinates of the target on the camera image planes are passed to a neural controller which must learn to solve the inverse kinematics of a manipulator with one revolute and two prismatic joints. Two new network designs are evaluated. The first, radial basis sparse distributed memory (RBSDM), approximates functional mappings as sums of multivariate gaussians centered around previously learned patterns. The second network types involved variations of Adaptive Vector Quantizers or Self Organizing Maps. In these networks, random N dimensional points are given local connectivities. They are then exposed to training patterns and readjust their locations based on a nearest neighbor rule. Both approaches are tested based on their ability to interpolate manipulator joint coordinates for simulated arm movement while simultaneously performing stereo fusion of the camera data. Comparisons are made with classical k-nearest neighbor pattern recognition techniques.

  9. Aerosol Measurements by the Globally Distributed Micro Pulse Lidar Network

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Welton, Judd; Campbell, James; Berkoff, Tim; Starr, David (Technical Monitor)

    2001-01-01

    Full time measurements of the vertical distribution of aerosol are now being acquired at a number of globally distributed MP (micro pulse) lidar sites. The MP lidar systems provide full time profiling of all significant cloud and aerosol to the limit of signal attenuation from compact, eye safe instruments. There are currently eight sites in operation and over a dozen planned. At all sited there are also passive aerosol and radiation measurements supporting the lidar data. Four of the installations are at Atmospheric Radiation Measurement program sites. The network operation includes instrument operation and calibration and the processing of aerosol measurements with standard retrievals and data products from the network sites. Data products include optical thickness and extinction cross section profiles. Application of data is to supplement satellite aerosol measurements and to provide a climatology of the height distribution of aerosol. The height distribution of aerosol is important for aerosol transport and the direct scattering and absorption of shortwave radiation in the atmosphere. Current satellite and other data already provide a great amount of information on aerosol distribution, but no passive technique can adequately resolve the height profile of aerosol. The Geoscience Laser Altimeter System (GLAS) is an orbital lidar to be launched in early 2002. GLAS will provide global measurements of the height distribution of aerosol. The MP lidar network will provide ground truth and analysis support for GLAS and other NASA Earth Observing System data. The instruments, sites, calibration procedures and standard data product algorithms for the MPL network will be described.

  10. Graph analysis of cell clusters forming vascular networks

    NASA Astrophysics Data System (ADS)

    Alves, A. P.; Mesquita, O. N.; Gómez-Gardeñes, J.; Agero, U.

    2018-03-01

    This manuscript describes the experimental observation of vasculogenesis in chick embryos by means of network analysis. The formation of the vascular network was observed in the area opaca of embryos from 40 to 55 h of development. In the area opaca endothelial cell clusters self-organize as a primitive and approximately regular network of capillaries. The process was observed by bright-field microscopy in control embryos and in embryos treated with Bevacizumab (Avastin), an antibody that inhibits the signalling of the vascular endothelial growth factor (VEGF). The sequence of images of the vascular growth were thresholded, and used to quantify the forming network in control and Avastin-treated embryos. This characterization is made by measuring vessels density, number of cell clusters and the largest cluster density. From the original images, the topology of the vascular network was extracted and characterized by means of the usual network metrics such as: the degree distribution, average clustering coefficient, average short path length and assortativity, among others. This analysis allows to monitor how the largest connected cluster of the vascular network evolves in time and provides with quantitative evidence of the disruptive effects that Avastin has on the tree structure of vascular networks.

  11. Determinants of Sexual Network Structure and Their Impact on Cumulative Network Measures

    PubMed Central

    Schmid, Boris V.; Kretzschmar, Mirjam

    2012-01-01

    There are four major quantities that are measured in sexual behavior surveys that are thought to be especially relevant for the performance of sexual network models in terms of disease transmission. These are (i) the cumulative distribution of lifetime number of partners, (ii) the distribution of partnership durations, (iii) the distribution of gap lengths between partnerships, and (iv) the number of recent partners. Fitting a network model to these quantities as measured in sexual behavior surveys is expected to result in a good description of Chlamydia trachomatis transmission in terms of the heterogeneity of the distribution of infection in the population. Here we present a simulation model of a sexual contact network, in which we explored the role of behavioral heterogeneity of simulated individuals on the ability of the model to reproduce population-level sexual survey data from the Netherlands and UK. We find that a high level of heterogeneity in the ability of individuals to acquire and maintain (additional) partners strongly facilitates the ability of the model to accurately simulate the powerlaw-like distribution of the lifetime number of partners, and the age at which these partnerships were accumulated, as surveyed in actual sexual contact networks. Other sexual network features, such as the gap length between partnerships and the partnership duration, could–at the current level of detail of sexual survey data against which they were compared–be accurately modeled by a constant value (for transitional concurrency) and by exponential distributions (for partnership duration). Furthermore, we observe that epidemiological measures on disease prevalence in survey data can be used as a powerful tool for building accurate sexual contact networks, as these measures provide information on the level of mixing between individuals of different levels of sexual activity in the population, a parameter that is hard to acquire through surveying individuals. PMID:22570594

  12. Ability of the current global observing network to constrain N2O sources and sinks

    NASA Astrophysics Data System (ADS)

    Millet, D. B.; Wells, K. C.; Chaliyakunnel, S.; Griffis, T. J.; Henze, D. K.; Bousserez, N.

    2014-12-01

    The global observing network for atmospheric N2O combines flask and in-situ measurements at ground stations with sustained and campaign-based aircraft observations. In this talk we apply a new global model of N2O (based on GEOS-Chem) and its adjoint to assess the strengths and weaknesses of this network for quantifying N2O emissions. We employ an ensemble of pseudo-observation analyses to evaluate the relative constraints provided by ground-based (surface, tall tower) and airborne (HIPPO, CARIBIC) observations, and the extent to which variability (e.g. associated with pulsing or seasonality of emissions) not captured by the a priori inventory can bias the inferred fluxes. We find that the ground-based and HIPPO datasets each provide a stronger constraint on the distribution of global emissions than does the CARIBIC dataset on its own. Given appropriate initial conditions, we find that our inferred surface fluxes are insensitive to model errors in the stratospheric loss rate of N2O over the timescale of our analysis (2 years); however, the same is not necessarily true for model errors in stratosphere-troposphere exchange. Finally, we examine the a posteriori error reduction distribution to identify priority locations for future N2O measurements.

  13. New patterns in human biogeography revealed by networks of contacts between linguistic groups.

    PubMed

    Capitán, José A; Bock Axelsen, Jacob; Manrubia, Susanna

    2015-03-07

    Human languages differ broadly in abundance and are distributed highly unevenly on the Earth. In many qualitative and quantitative aspects, they strongly resemble biodiversity distributions. An intriguing and previously unexplored issue is the architecture of the neighbouring relationships between human linguistic groups. Here we construct and characterize these networks of contacts and show that they represent a new kind of spatial network with uncommon structural properties. Remarkably, language networks share a meaningful property with food webs: both are quasi-interval graphs. In food webs, intervality is linked to the existence of a niche space of low dimensionality; in language networks, we show that the unique relevant variable is the area occupied by the speakers of a language. By means of a range model analogous to niche models in ecology, we show that a geometric restriction of perimeter covering by neighbouring linguistic domains explains the structural patterns observed. Our findings may be of interest in the development of models for language dynamics or regarding the propagation of cultural innovations. In relation to species distribution, they pose the question of whether the spatial features of species ranges share architecture, and eventually generating mechanism, with the distribution of human linguistic groups. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Classroom Peer Relationships and Behavioral Engagement in Elementary School: The Role of Social Network Equity

    PubMed Central

    Cappella, Elise; Kim, Ha Yeon; Neal, Jennifer W.; Jackson, Daisy R.

    2014-01-01

    Applying social capital and systems theories of social processes, we examine the role of the classroom peer context in the behavioral engagement of low-income students (N = 80) in urban elementary school classrooms (N = 22). Systematic child observations were conducted to assess behavioral engagement among second to fifth graders in the fall and spring of the same school year. Classroom observations, teacher and child questionnaires, and social network data were collected in the fall. Confirming prior research, results from multilevel models indicate that students with more behavioral difficulties or less academic motivation in the fall were less behaviorally engaged in the spring. Extending prior research, classrooms with more equitably distributed and interconnected social ties—social network equity—had more behaviorally engaged students in the spring, especially in classrooms with higher levels of observed organization (i.e., effective management of behavior, time, and attention). Moreover, social network equity attenuated the negative relation between student behavioral difficulties and behavioral engagement, suggesting that students with behavioral difficulties were less disengaged in classrooms with more equitably distributed and interconnected social ties. Findings illuminate the need to consider classroom peer contexts in future research and intervention focused on the behavioral engagement of students in urban elementary schools. PMID:24081319

  15. Inference of scale-free networks from gene expression time series.

    PubMed

    Daisuke, Tominaga; Horton, Paul

    2006-04-01

    Quantitative time-series observation of gene expression is becoming possible, for example by cell array technology. However, there are no practical methods with which to infer network structures using only observed time-series data. As most computational models of biological networks for continuous time-series data have a high degree of freedom, it is almost impossible to infer the correct structures. On the other hand, it has been reported that some kinds of biological networks, such as gene networks and metabolic pathways, may have scale-free properties. We hypothesize that the architecture of inferred biological network models can be restricted to scale-free networks. We developed an inference algorithm for biological networks using only time-series data by introducing such a restriction. We adopt the S-system as the network model, and a distributed genetic algorithm to optimize models to fit its simulated results to observed time series data. We have tested our algorithm on a case study (simulated data). We compared optimization under no restriction, which allows for a fully connected network, and under the restriction that the total number of links must equal that expected from a scale free network. The restriction reduced both false positive and false negative estimation of the links and also the differences between model simulation and the given time-series data.

  16. Analyzing Distributional Learning of Phonemic Categories in Unsupervised Deep Neural Networks

    PubMed Central

    Räsänen, Okko; Nagamine, Tasha; Mesgarani, Nima

    2017-01-01

    Infants’ speech perception adapts to the phonemic categories of their native language, a process assumed to be driven by the distributional properties of speech. This study investigates whether deep neural networks (DNNs), the current state-of-the-art in distributional feature learning, are capable of learning phoneme-like representations of speech in an unsupervised manner. We trained DNNs with unlabeled and labeled speech and analyzed the activations of each layer with respect to the phones in the input segments. The analyses reveal that the emergence of phonemic invariance in DNNs is dependent on the availability of phonemic labeling of the input during the training. No increased phonemic selectivity of the hidden layers was observed in the purely unsupervised networks despite successful learning of low-dimensional representations for speech. This suggests that additional learning constraints or more sophisticated models are needed to account for the emergence of phone-like categories in distributional learning operating on natural speech. PMID:29359204

  17. Evaluating multiple determinants of the structure of plant-animal mutualistic networks.

    PubMed

    Vázquez, Diego P; Chacoff, Natacha P; Cagnolo, Luciano

    2009-08-01

    The structure of mutualistic networks is likely to result from the simultaneous influence of neutrality and the constraints imposed by complementarity in species phenotypes, phenologies, spatial distributions, phylogenetic relationships, and sampling artifacts. We develop a conceptual and methodological framework to evaluate the relative contributions of these potential determinants. Applying this approach to the analysis of a plant-pollinator network, we show that information on relative abundance and phenology suffices to predict several aggregate network properties (connectance, nestedness, interaction evenness, and interaction asymmetry). However, such information falls short of predicting the detailed network structure (the frequency of pairwise interactions), leaving a large amount of variation unexplained. Taken together, our results suggest that both relative species abundance and complementarity in spatiotemporal distribution contribute substantially to generate observed network patters, but that this information is by no means sufficient to predict the occurrence and frequency of pairwise interactions. Future studies could use our methodological framework to evaluate the generality of our findings in a representative sample of study systems with contrasting ecological conditions.

  18. Neutral Community Dynamics and the Evolution of Species Interactions.

    PubMed

    Coelho, Marco Túlio P; Rangel, Thiago F

    2018-04-01

    A contemporary goal in ecology is to determine the ecological and evolutionary processes that generate recurring structural patterns in mutualistic networks. One of the great challenges is testing the capacity of neutral processes to replicate observed patterns in ecological networks, since the original formulation of the neutral theory lacks trophic interactions. Here, we develop a stochastic-simulation neutral model adding trophic interactions to the neutral theory of biodiversity. Without invoking ecological differences among individuals of different species, and assuming that ecological interactions emerge randomly, we demonstrate that a spatially explicit multitrophic neutral model is able to capture the recurrent structural patterns of mutualistic networks (i.e., degree distribution, connectance, nestedness, and phylogenetic signal of species interactions). Nonrandom species distribution, caused by probabilistic events of migration and speciation, create nonrandom network patterns. These findings have broad implications for the interpretation of niche-based processes as drivers of ecological networks, as well as for the integration of network structures with demographic stochasticity.

  19. Statistical Analysis of Bus Networks in India

    PubMed Central

    2016-01-01

    In this paper, we model the bus networks of six major Indian cities as graphs in L-space, and evaluate their various statistical properties. While airline and railway networks have been extensively studied, a comprehensive study on the structure and growth of bus networks is lacking. In India, where bus transport plays an important role in day-to-day commutation, it is of significant interest to analyze its topological structure and answer basic questions on its evolution, growth, robustness and resiliency. Although the common feature of small-world property is observed, our analysis reveals a wide spectrum of network topologies arising due to significant variation in the degree-distribution patterns in the networks. We also observe that these networks although, robust and resilient to random attacks are particularly degree-sensitive. Unlike real-world networks, such as Internet, WWW and airline, that are virtual, bus networks are physically constrained. Our findings therefore, throw light on the evolution of such geographically and constrained networks that will help us in designing more efficient bus networks in the future. PMID:27992590

  20. Neuronal avalanches of a self-organized neural network with active-neuron-dominant structure.

    PubMed

    Li, Xiumin; Small, Michael

    2012-06-01

    Neuronal avalanche is a spontaneous neuronal activity which obeys a power-law distribution of population event sizes with an exponent of -3/2. It has been observed in the superficial layers of cortex both in vivo and in vitro. In this paper, we analyze the information transmission of a novel self-organized neural network with active-neuron-dominant structure. Neuronal avalanches can be observed in this network with appropriate input intensity. We find that the process of network learning via spike-timing dependent plasticity dramatically increases the complexity of network structure, which is finally self-organized to be active-neuron-dominant connectivity. Both the entropy of activity patterns and the complexity of their resulting post-synaptic inputs are maximized when the network dynamics are propagated as neuronal avalanches. This emergent topology is beneficial for information transmission with high efficiency and also could be responsible for the large information capacity of this network compared with alternative archetypal networks with different neural connectivity.

  1. Effects of global financial crisis on network structure in a local stock market

    NASA Astrophysics Data System (ADS)

    Nobi, Ashadun; Maeng, Seong Eun; Ha, Gyeong Gyun; Lee, Jae Woo

    2014-08-01

    This study considers the effects of the 2008 global financial crisis on threshold networks of a local Korean financial market around the time of the crisis. Prices of individual stocks belonging to KOSPI 200 (Korea Composite Stock Price Index 200) are considered for three time periods, namely before, during, and after the crisis. Threshold networks are constructed from fully connected cross-correlation networks, and thresholds of cross-correlation coefficients are assigned to obtain threshold networks. At the high threshold, only one large cluster consisting of firms in the financial sector, heavy industry, and construction is observed during the crisis. However, before and after the crisis, there are several fragmented clusters belonging to various sectors. The power law of the degree distribution in threshold networks is observed within the limited range of thresholds. Threshold networks are fatter during the crisis than before or after the crisis. The clustering coefficient of the threshold network follows the power law in the scaling range.

  2. Role of Distance-Based Routing in Traffic Dynamics on Mobile Networks

    NASA Astrophysics Data System (ADS)

    Yang, Han-Xin; Wang, Wen-Xu

    2013-06-01

    Despite of intensive investigations on transportation dynamics taking place on complex networks with fixed structures, a deep understanding of networks consisting of mobile nodes is challenging yet, especially the lacking of insight into the effects of routing strategies on transmission efficiency. We introduce a distance-based routing strategy for networks of mobile agents toward enhancing the network throughput and the transmission efficiency. We study the transportation capacity and delivering time of data packets associated with mobility and communication ability. Interestingly, we find that the transportation capacity is optimized at moderate moving speed, which is quite different from random routing strategy. In addition, both continuous and discontinuous transitions from free flow to congestions are observed. Degree distributions are explored in order to explain the enhancement of network throughput and other observations. Our work is valuable toward understanding complex transportation dynamics and designing effective routing protocols.

  3. Two years of LCOGT operations: the challenges of a global observatory

    NASA Astrophysics Data System (ADS)

    Volgenau, Nikolaus; Boroson, Todd

    2016-07-01

    With 18 telescopes distributed over 6 sites, and more telescopes being added in 2016, Las Cumbres Observatory Global Telescope Network is a unique resource for timedomain astronomy. The Network's continuous coverage of the night sky, and the optimization of the observing schedule over all sites simultaneously, have enabled LCOGTusers to produce significant science results. However, practical challenges to maximizing the Network's science output remain. The Network began providing observations for members of its Science Collaboration and other partners in May 2014. In the two years since then, LCOGT has made a number of improvements to increase the Network's science yield. We also now have two years' experience monitoring observatory performance; effective monitoring of an observatory that spans the globe is a complex enterprise. Here, we describe some of LCOGT's efforts to monitor the Network, assess the quality of science data, and improve communication with our users.

  4. Distributed Acoustic Sensing (DAS) Data for Periodic Hydraulic Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Thomas; Becker, Matthew

    California State University Long Beach evaluated hydraulic connectivity among geothermal wells using Periodic Hydraulic Testing (PHT) and Distributed Acoustic Sensing (DAS). The principal was to create a pressure signal in one well and observe the responding pressure signals in one or more observation wells to assess the permeability and storage of the fracture network that connects the two wells. DAS measured strain at mHz frequency in monitoring wells in response to PHT.

  5. Slow, bursty dynamics as a consequence of quenched network topologies

    NASA Astrophysics Data System (ADS)

    Ådor, Géza

    2014-04-01

    Bursty dynamics of agents is shown to appear at criticality or in extended Griffiths phases, even in case of Poisson processes. I provide numerical evidence for a power-law type of intercommunication time distributions by simulating the contact process and the susceptible-infected-susceptible model. This observation suggests that in the case of nonstationary bursty systems, the observed non-Poissonian behavior can emerge as a consequence of an underlying hidden Poissonian network process, which is either critical or exhibits strong rare-region effects. On the contrary, in time-varying networks, rare-region effects do not cause deviation from the mean-field behavior, and heterogeneity-induced burstyness is absent.

  6. Slow, bursty dynamics as a consequence of quenched network topologies.

    PubMed

    Ódor, Géza

    2014-04-01

    Bursty dynamics of agents is shown to appear at criticality or in extended Griffiths phases, even in case of Poisson processes. I provide numerical evidence for a power-law type of intercommunication time distributions by simulating the contact process and the susceptible-infected-susceptible model. This observation suggests that in the case of nonstationary bursty systems, the observed non-Poissonian behavior can emerge as a consequence of an underlying hidden Poissonian network process, which is either critical or exhibits strong rare-region effects. On the contrary, in time-varying networks, rare-region effects do not cause deviation from the mean-field behavior, and heterogeneity-induced burstyness is absent.

  7. An open data repository for steady state analysis of a 100-node electricity distribution network with moderate connection of renewable energy sources.

    PubMed

    Lazarou, Stavros; Vita, Vasiliki; Ekonomou, Lambros

    2018-02-01

    The data of this article represent a real electricity distribution network on twenty kilovolts (20 kV) at medium voltage level of the Hellenic electricity distribution system [1]. This network has been chosen as suitable for smart grid analysis. It demonstrates moderate penetration of renewable sources and it has capability in part of time for reverse power flows. It is suitable for studies of load aggregation, storage, demand response. It represents a rural line of fifty-five kilometres (55 km) total length, a typical length for this type. It serves forty-five (45) medium to low voltage transformers and twenty-four (24) connections to photovoltaic plants. The total installed load capacity is twelve mega-volt-ampere (12 MVA), however the maximum observed load is lower. The data are ready to perform load flow simulation on Matpower [2] for the maximum observed load power on the half production for renewables. The simulation results and processed data for creating the source code are also provided on the database available at http://dx.doi.org/10.7910/DVN/1I6MKU.

  8. Neural network-based distributed attitude coordination control for spacecraft formation flying with input saturation.

    PubMed

    Zou, An-Min; Kumar, Krishna Dev

    2012-07-01

    This brief considers the attitude coordination control problem for spacecraft formation flying when only a subset of the group members has access to the common reference attitude. A quaternion-based distributed attitude coordination control scheme is proposed with consideration of the input saturation and with the aid of the sliding-mode observer, separation principle theorem, Chebyshev neural networks, smooth projection algorithm, and robust control technique. Using graph theory and a Lyapunov-based approach, it is shown that the distributed controller can guarantee the attitude of all spacecraft to converge to a common time-varying reference attitude when the reference attitude is available only to a portion of the group of spacecraft. Numerical simulations are presented to demonstrate the performance of the proposed distributed controller.

  9. Opinion formation and distribution in a bounded-confidence model on various networks

    NASA Astrophysics Data System (ADS)

    Meng, X. Flora; Van Gorder, Robert A.; Porter, Mason A.

    2018-02-01

    In the social, behavioral, and economic sciences, it is important to predict which individual opinions eventually dominate in a large population, whether there will be a consensus, and how long it takes for a consensus to form. Such ideas have been studied heavily both in physics and in other disciplines, and the answers depend strongly both on how one models opinions and on the network structure on which opinions evolve. One model that was created to study consensus formation quantitatively is the Deffuant model, in which the opinion distribution of a population evolves via sequential random pairwise encounters. To consider heterogeneity of interactions in a population along with social influence, we study the Deffuant model on various network structures (deterministic synthetic networks, random synthetic networks, and social networks constructed from Facebook data). We numerically simulate the Deffuant model and conduct regression analyses to investigate the dependence of the time to reach steady states on various model parameters, including a confidence bound for opinion updates, the number of participating entities, and their willingness to compromise. We find that network structure and parameter values both have important effects on the convergence time and the number of steady-state opinion groups. For some network architectures, we observe that the relationship between the convergence time and model parameters undergoes a transition at a critical value of the confidence bound. For some networks, the steady-state opinion distribution also changes from consensus to multiple opinion groups at this critical value.

  10. Functional Topology of Evolving Urban Drainage Networks

    NASA Astrophysics Data System (ADS)

    Yang, Soohyun; Paik, Kyungrock; McGrath, Gavan S.; Urich, Christian; Krueger, Elisabeth; Kumar, Praveen; Rao, P. Suresh C.

    2017-11-01

    We investigated the scaling and topology of engineered urban drainage networks (UDNs) in two cities, and further examined UDN evolution over decades. UDN scaling was analyzed using two power law scaling characteristics widely employed for river networks: (1) Hack's law of length (L)-area (A) [L∝Ah] and (2) exceedance probability distribution of upstream contributing area (δ) [P>(A≥δ>)˜aδ-ɛ]. For the smallest UDNs (<2 km2), length-area scales linearly (h ˜ 1), but power law scaling (h ˜ 0.6) emerges as the UDNs grow. While P>(A≥δ>) plots for river networks are abruptly truncated, those for UDNs display exponential tempering [P>(A≥δ>)=aδ-ɛexp⁡>(-cδ>)]. The tempering parameter c decreases as the UDNs grow, implying that the distribution evolves in time to resemble those for river networks. However, the power law exponent ɛ for large UDNs tends to be greater than the range reported for river networks. Differences in generative processes and engineering design constraints contribute to observed differences in the evolution of UDNs and river networks, including subnet heterogeneity and nonrandom branching.

  11. Coevolutionary, coexisting learning and teaching agents model for prisoner’s dilemma games enhancing cooperation with assortative heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Tanimoto, Jun

    2013-07-01

    Unlike other natural network systems, assortativity can be observed in most human social networks, although it has been reported that a social dilemma situation represented by the prisoner’s dilemma favors dissortativity to enhance cooperation. We established a new coevolutionary model for both agents’ strategy and network topology, where teaching and learning agents coexist. Remarkably, this model enables agents’ enhancing cooperation more than a learners-only model on a time-frozen scale-free network and produces an underlying assortative network with a fair degree of power-law distribution. The model may imply how and why assortative networks are adaptive in human society.

  12. Effects of substrate network topologies on competition dynamics

    NASA Astrophysics Data System (ADS)

    Lee, Sang Hoon; Jeong, Hawoong

    2006-08-01

    We study a competition dynamics, based on the minority game, endowed with various substrate network structures. We observe the effects of the network topologies by investigating the volatility of the system and the structure of follower networks. The topology of substrate structures significantly influences the system efficiency represented by the volatility and such substrate networks are shown to amplify the herding effect and cause inefficiency in most cases. The follower networks emerging from the leadership structure show a power-law incoming degree distribution. This study shows the emergence of scale-free structures of leadership in the minority game and the effects of the interaction among players on the networked version of the game.

  13. Kinetic signature of fractal-like filament networks formed by orientational linear epitaxy.

    PubMed

    Hwang, Wonmuk; Eryilmaz, Esma

    2014-07-11

    We study a broad class of epitaxial assembly of filament networks on lattice surfaces. Over time, a scale-free behavior emerges with a 2.5-3 power-law exponent in filament length distribution. Partitioning between the power-law and exponential behaviors in a network can be used to find the stage and kinetic parameters of the assembly process. To analyze real-world networks, we develop a computer program that measures the network architecture in experimental images. Application to triaxial networks of collagen fibrils shows quantitative agreement with our model. Our unifying approach can be used for characterizing and controlling the network formation that is observed across biological and nonbiological systems.

  14. Towards an integrated EU data system within AtlantOS project

    NASA Astrophysics Data System (ADS)

    Pouliquen, Sylvie; Harscoat, Valerie; Waldmann, Christoph; Koop-Jakobsen, ketill

    2017-04-01

    The H2020 AtlantOS project started in June 2015 and aims to optimise and enhance the Integrated Atlantic Ocean Observing Systems (IAOOS). One goal is to ensure that data from different and diverse in-situ observing networks are readily accessible and useable to the wider community, international ocean science community and other stakeholders in this field. To achieve that, the strategy is to move towards an integrated data system within AtlantOS that harmonises work flows, data processing and distribution across the in-situ observing network systems, and integrates in-situ observations in existing European and international data infrastructures (Copernicus marine service, SeaDataNet NODCs, EMODnet, OBIS, GEOSS) so called Integrators. The targeted integrated system will deal with data management challenges for efficient and reliable data service to users: • Quality control commons for heterogeneous and nearly real time data • Standardisation of mandatory metadata for efficient data exchange • Interoperability of network and integrator data management systems Presently the situation is that the data acquired by the different in situ observing networks contributing to the AtlantOS project are processed and distributed using different methodologies and means. Depending on the network data management organization, the data are either processed following recommendations elaborated y the network teams and accessible through a unique portal (FTP or Web), or are processed by individual scientific researchers and made available through National Data Centres or directly at institution level. Some datasets are available through Integrators, such as Copernicus or EMODnet, but connected through ad-hoc links. To facilitate the access to the Atlantic observations and avoid "mixing pears with apples", it has been necessary to agree on (1) the EOVs list and definition across the Networks, (2) a minimum set of common vocabularies for metadata and data description to be used by all the Networks, and (3) a minimum level of Near Real Time Quality Control Procedures for selected EOVs. Then a data exchange backbone has been defined and is being setting up to facilitate discovery, viewing and downloading by the users. Some tools will be recommended to help Network plugging their data on this backbone and facilitate integration in the Integrators. Finally, existing services to the users for data discovery, viewing and downloading will be enhanced to ease access to existing observations. An initial working phase relying on existing international standards and protocols, involving data providers, both Networks and Integrators, and dealing with data harmonisation and integration objectives, has led to agreements and recommendations .The setup phase has started, both on Networks and Integrators sides, to adapt the existing systems in order to move toward this integrated EU data system within AtlantOS as well as collaboration with international partners arpound the ATlantic Ocean.

  15. Evolution of Linux operating system network

    NASA Astrophysics Data System (ADS)

    Xiao, Guanping; Zheng, Zheng; Wang, Haoqin

    2017-01-01

    Linux operating system (LOS) is a sophisticated man-made system and one of the most ubiquitous operating systems. However, there is little research on the structure and functionality evolution of LOS from the prospective of networks. In this paper, we investigate the evolution of the LOS network. 62 major releases of LOS ranging from versions 1.0 to 4.1 are modeled as directed networks in which functions are denoted by nodes and function calls are denoted by edges. It is found that the size of the LOS network grows almost linearly, while clustering coefficient monotonically decays. The degree distributions are almost the same: the out-degree follows an exponential distribution while both in-degree and undirected degree follow power-law distributions. We further explore the functionality evolution of the LOS network. It is observed that the evolution of functional modules is shown as a sequence of seven events (changes) succeeding each other, including continuing, growth, contraction, birth, splitting, death and merging events. By means of a statistical analysis of these events in the top 4 largest components (i.e., arch, drivers, fs and net), it is shown that continuing, growth and contraction events occupy more than 95% events. Our work exemplifies a better understanding and describing of the dynamics of LOS evolution.

  16. Stream Width Dynamics in a Small Headwater Catchment

    NASA Astrophysics Data System (ADS)

    Barefoot, E. A.; Pavelsky, T.; Allen, G. H.; Zimmer, M. A.; McGlynn, B. L.

    2016-12-01

    Changing streamflow conditions cause small, ephemeral and intermittent stream networks to expand and contract, while simultaneously driving widening and narrowing of streams. The resulting dynamic surface area of ephemeral streams impacts critical hydrological and biogeochemical processes, including air-water gas exchange, solute transport, and sediment transport. Despite the importance of these dynamics, to our knowledge there exists no complete study of how stream widths vary throughout an entire catchment in response to changing streamflow conditions. Here we present the first characterization of how variable hydrologic conditions impact the distribution of stream widths in a 48 ha headwater catchment in the Stony Creek Research Watershed, NC, USA. We surveyed stream widths longitudinally every 5 m on 12 occasions over a range of stream discharge from 7 L/s to 128 L/s at the catchment outlet. We hypothesize that the shape and location of the stream width distribution are driven by the action of two interrelated mechanisms, network extension and at-a-station widening, both of which increase with discharge. We observe that during very low flow conditions, network extension more significantly influences distribution location, and during high flow conditions stream widening is the dominant driver. During moderate flows, we observe an approximately 1 cm rightward shift in the distribution peak with every additional 10 L/s of increased discharge, which we attribute to a greater impact of at-a-station widening on distribution location. Aside from this small shift, the qualitative location and shape of the stream width distribution are largely invariant with changing streamflow. We suggest that the basic characteristics of stream width distributions constitute an equilibrium between the two described mechanisms across variable hydrologic conditions.

  17. Emergence of scale-free close-knit friendship structure in online social networks.

    PubMed

    Cui, Ai-Xiang; Zhang, Zi-Ke; Tang, Ming; Hui, Pak Ming; Fu, Yan

    2012-01-01

    Although the structural properties of online social networks have attracted much attention, the properties of the close-knit friendship structures remain an important question. Here, we mainly focus on how these mesoscale structures are affected by the local and global structural properties. Analyzing the data of four large-scale online social networks reveals several common structural properties. It is found that not only the local structures given by the indegree, outdegree, and reciprocal degree distributions follow a similar scaling behavior, the mesoscale structures represented by the distributions of close-knit friendship structures also exhibit a similar scaling law. The degree correlation is very weak over a wide range of the degrees. We propose a simple directed network model that captures the observed properties. The model incorporates two mechanisms: reciprocation and preferential attachment. Through rate equation analysis of our model, the local-scale and mesoscale structural properties are derived. In the local-scale, the same scaling behavior of indegree and outdegree distributions stems from indegree and outdegree of nodes both growing as the same function of the introduction time, and the reciprocal degree distribution also shows the same power-law due to the linear relationship between the reciprocal degree and in/outdegree of nodes. In the mesoscale, the distributions of four closed triples representing close-knit friendship structures are found to exhibit identical power-laws, a behavior attributed to the negligible degree correlations. Intriguingly, all the power-law exponents of the distributions in the local-scale and mesoscale depend only on one global parameter, the mean in/outdegree, while both the mean in/outdegree and the reciprocity together determine the ratio of the reciprocal degree of a node to its in/outdegree. Structural properties of numerical simulated networks are analyzed and compared with each of the four real networks. This work helps understand the interplay between structures on different scales in online social networks.

  18. Emergence of Scale-Free Close-Knit Friendship Structure in Online Social Networks

    PubMed Central

    Cui, Ai-Xiang; Zhang, Zi-Ke; Tang, Ming; Hui, Pak Ming; Fu, Yan

    2012-01-01

    Although the structural properties of online social networks have attracted much attention, the properties of the close-knit friendship structures remain an important question. Here, we mainly focus on how these mesoscale structures are affected by the local and global structural properties. Analyzing the data of four large-scale online social networks reveals several common structural properties. It is found that not only the local structures given by the indegree, outdegree, and reciprocal degree distributions follow a similar scaling behavior, the mesoscale structures represented by the distributions of close-knit friendship structures also exhibit a similar scaling law. The degree correlation is very weak over a wide range of the degrees. We propose a simple directed network model that captures the observed properties. The model incorporates two mechanisms: reciprocation and preferential attachment. Through rate equation analysis of our model, the local-scale and mesoscale structural properties are derived. In the local-scale, the same scaling behavior of indegree and outdegree distributions stems from indegree and outdegree of nodes both growing as the same function of the introduction time, and the reciprocal degree distribution also shows the same power-law due to the linear relationship between the reciprocal degree and in/outdegree of nodes. In the mesoscale, the distributions of four closed triples representing close-knit friendship structures are found to exhibit identical power-laws, a behavior attributed to the negligible degree correlations. Intriguingly, all the power-law exponents of the distributions in the local-scale and mesoscale depend only on one global parameter, the mean in/outdegree, while both the mean in/outdegree and the reciprocity together determine the ratio of the reciprocal degree of a node to its in/outdegree. Structural properties of numerical simulated networks are analyzed and compared with each of the four real networks. This work helps understand the interplay between structures on different scales in online social networks. PMID:23272067

  19. Simulation of a Lunar Surface Base Power Distribution Network for the Constellation Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Mintz, Toby; Maslowski, Edward A.; Colozza, Anthony; McFarland, Willard; Prokopius, Kevin P.; George, Patrick J.; Hussey, Sam W.

    2010-01-01

    The Lunar Surface Power Distribution Network Study team worked to define, breadboard, build and test an electrical power distribution system consistent with NASA's goal of providing electrical power to sustain life and power equipment used to explore the lunar surface. A testbed was set up to simulate the connection of different power sources and loads together to form a mini-grid and gain an understanding of how the power systems would interact. Within the power distribution scheme, each power source contributes to the grid in an independent manner without communication among the power sources and without a master-slave scenario. The grid consisted of four separate power sources and the accompanying power conditioning equipment. Overall system design and testing was performed. The tests were performed to observe the output and interaction of the different power sources as some sources are added and others are removed from the grid connection. The loads on the system were also varied from no load to maximum load to observe the power source interactions.

  20. Regional and local variations in atmospheric aerosols using ground-based sun photometry during Distributed Regional Aerosol Gridded Observation Networks (DRAGON) in 2012

    NASA Astrophysics Data System (ADS)

    Sano, Itaru; Mukai, Sonoyo; Nakata, Makiko; Holben, Brent N.

    2016-11-01

    Aerosol mass concentrations are affected by local emissions as well as long-range transboundary (LRT) aerosols. This work investigates regional and local variations of aerosols based on Distributed Regional Aerosol Gridded Observation Networks (DRAGON). We constructed DRAGON-Japan and DRAGON-Osaka in spring of 2012. The former network covers almost all of Japan in order to obtain aerosol information in regional scale over Japanese islands. It was determined from the DRAGON-Japan campaign that the values of aerosol optical thickness (AOT) decrease from west to east during an aerosol episode. In fact, the highest AOT was recorded at Fukue Island at the western end of the network, and the value was much higher than that of urban areas. The latter network (DRAGON-Osaka) was set as a dense instrument network in the megalopolis of Osaka, with a population of 12 million, to better understand local aerosol dynamics in urban areas. AOT was further measured with a mobile sun photometer attached to a car. This transect information showed that aerosol concentrations rapidly changed in time and space together when most of the Osaka area was covered with moderate LRT aerosols. The combined use of the dense instrument network (DRAGON-Osaka) and high-frequency measurements provides the motion of aerosol advection, which coincides with the wind vector around the layer between 700 and 850 hPa as provided by the reanalysis data of the National Centers for Environmental Prediction (NCEP).

  1. Regional and Local Variations in Atmospheric Aerosols Using Ground-Based Sun Photometry During Distributed Regional Aerosol Gridded Observation Networks (DRAGON) in 2012

    NASA Technical Reports Server (NTRS)

    Sano, Itaru; Mukai, Sonoyo; Nakata, Makiko; Holben, Brent N.

    2016-01-01

    Aerosol mass concentrations are affected by local emissions as well as long-range transboundary (LRT) aerosols. This work investigates regional and local variations of aerosols based on Distributed Regional Aerosol Gridded Observation Networks (DRAGON).We constructed DRAGON-Japan and DRAGON-Osaka in spring of 2012. The former network covers almost all of Japan in order to obtain aerosol information in regional scale over Japanese islands. It was determined from the DRAGON-Japan campaign that the values of aerosol optical thickness (AOT) decrease from west to east during an aerosol episode. In fact, the highest AOT was recorded at Fukue Island at the western end of the network, and the value was much higher than that of urban areas. The latter network (DRAGON-Osaka) was set as a dense instrument network in the megalopolis of Osaka, with a population of 12 million, to better understand local aerosol dynamics in urban areas. AOT was further measured with a mobile sun photometer attached to a car. This transect information showed that aerosol concentrations rapidly changed in time and space together when most of the Osaka area was covered with moderate LRT aerosols. The combined use of the dense instrument network (DRAGON-Osaka) and high-frequency measurements provides the motion of aerosol advection, which coincides with the wind vector around the layer between 700 and 850 hPa as provided by the reanalysis data of the National Centers for Environmental Prediction (NCEP).

  2. Towards a Community Environmental Observation Network

    NASA Astrophysics Data System (ADS)

    Mertl, Stefan; Lettenbichler, Anton

    2014-05-01

    The Community Environmental Observation Network (CEON) is dedicated to the development of a free sensor network to collect and distribute environmental data (e.g. ground shaking, climate parameters). The data collection will be done with contributions from citizens, research institutions and public authorities like communities or schools. This will lead to a large freely available data base which can be used for public information, research, the arts,..... To start a free sensor network, the most important step is to provide easy access to free data collection and -distribution tools. The initial aims of the project CEON are dedicated to the development of these tools. A high quality data logger based on open hardware and free software is developed and a software suite of already existing free software for near-real time data communication and data distribution over the Internet will be assembled. Foremost, the development focuses on the collection of data related to the deformation of the earth (such as ground shaking, surface displacement of mass movements and glaciers) and the collection of climate data. The extent to other measurements will be considered in the design. The data logger is built using open hardware prototyping platforms like BeagleBone Black and Arduino. Main features of the data logger are: a 24Bit analog-to-digital converter; a GPS module for time reference and positioning; wireless mesh networking using Optimized Link State Routing; near real-time data transmission and communication; and near real-time differential GNSS positioning using the RTKLIB software. The project CEON is supported by the Internet Foundation Austria (IPA) within the NetIdee 2013 call.

  3. From Many to Many More: Instant Interoperability Through the Integrated Ocean Observing System Data Assembly Center

    NASA Astrophysics Data System (ADS)

    Burnett, W.; Bouchard, R.; Hervey, R.; Crout, R.; Luke, R.

    2008-12-01

    As the Integrated Ocean Observing System (IOOS) Data Assembly Center (DAC), NOAA's National Data Buoy Center (NDBC) collects data from many ocean observing systems, quality controls the data, and distributes them nationally and internationally. The DAC capabilities provide instant interoperability of any ocean observatory with the national and international agencies responsible for critical forecasts and warnings and with the national media. This interoperability is an important milestone in an observing system's designation as an operational system. Data collection begins with NDBC's own observing systems - Meteorological and Oceanographic Buoys and Coastal Stations, the Tropical Atmosphere Ocean Array, and the NOAA tsunameter network. Leveraging the data management functions that support NDBC systems, the DAC can support data partners including ocean observations from IOOS Regional Observing Systems, the meteorological observations from the National Water Level Observing Network, meteorological and oceanographic observations from the National Estuarine Research Reserve System, Integrated Coral Observing Network, merchant ship observations from the Voluntary Observing Ship program, and ocean current measurements from oil and gas platforms in the Gulf of Mexico and from Coastal HF Radars. The DAC monitors and quality controls IOOS Partner data alerting the data provider to outages and quality discrepancies. After performing automated and manual quality control procedures, the DAC prepares the observations for distribution. The primary means of data distribution is in standard World Meteorological Organization alphanumeric coded messages distributed via the Global Telecommunications System, NOAAPort, and Family of Services. Observing systems provide their data via ftp to an NDBC server using a simple XML. The DAC also posts data in real-time to the NDBC webpages in columnar text format and data plots that maritime interests (e.g., surfing, fishing, boating) widely use. The webpage text feeds the Dial-A-Buoy capability that reads the latest data from webpages and the latest NWS forecast for the station to a user via telephone. The DAC also operates a DODS/OPenDAP server to provide data in netCDF. Recently the DAC implemented the NOAA IOOS Data Integration Framework, which facilitates the exchange of data between IOOS Regional Observing Systems by standardizing data exchange formats and incorporating needed metadata for the correct application of the data. The DAC has become an OceanSITES Global Data Assembly Center - part of the Initial Global Observing System for Climate. Supported by the NOAA IOOS Program, the DAC provides round-the-clock monitoring, quality control, and data distribution to ensure that its IOOS Partners can conduct operations that meet the NOAA definition of: Sustained, systematic, reliable, and robust mission activities with an institutional commitment to deliver appropriate, cost-effective products and services.

  4. Kappa Cygnids (KCG) by TV observation results

    NASA Astrophysics Data System (ADS)

    Shiba, Yasuo

    2017-12-01

    The kappa Cygnids (KCG) and its nearby region were researched by using Japanese automatic TV observation network (SonotaCo network) results for 2007-2016. KCG in 2007 and 2014 were observed with an enhancement of eight times as many meteors than ordinary years at solar longitude 145 degrees. Also the 2013 KCG were enhanced with three times the number of meteors recorded than ordinary years at solar longitude 135 degrees. In years of observed enhanced KCG (2007, 2013, 2014) luminous magnitudes were brighter than in ordinary years. The 2007 and 2014 KCG radiant distributions were similar but shifted 5 degrees to the north in 2013. The 2013 KCG orbital elements were systematically different from 2007 and 2014. If a continuous meteoroid distribution in the solar system causes the enhanced KCG, it is suggested that a distorted `swarm' has been constructed. The annual KCG radiant distribution and distributions of every orbital element have some peaks which indicate a complex meteor shower. Luminous trajectory altitudes in years of observed enhanced KCG were higher than the annual KCG height. August Draconids (AUD) is an annual meteor shower, many meteors of which are decided to also belong to KCG by using the criterion, but each meteor shower is independent because they have different characteristics. AUD radiants on the celestial sphere drift to the west and form an arc lasting till the end of September. I recommend to create a standard to decide for two meteor showers whether they are truly two meteor showers or not.

  5. Using geomorphological variables to predict the spatial distribution of plant species in agricultural drainage networks

    PubMed Central

    Bailly, Jean-Stéphane; Vinatier, Fabrice

    2018-01-01

    To optimize ecosystem services provided by agricultural drainage networks (ditches) in headwater catchments, we need to manage the spatial distribution of plant species living in these networks. Geomorphological variables have been shown to be important predictors of plant distribution in other ecosystems because they control the water regime, the sediment deposition rates and the sun exposure in the ditches. Whether such variables may be used to predict plant distribution in agricultural drainage networks is unknown. We collected presence and absence data for 10 herbaceous plant species in a subset of a network of drainage ditches (35 km long) within a Mediterranean agricultural catchment. We simulated their spatial distribution with GLM and Maxent model using geomorphological variables and distance to natural lands and roads. Models were validated using k-fold cross-validation. We then compared the mean Area Under the Curve (AUC) values obtained for each model and other metrics issued from the confusion matrices between observed and predicted variables. Based on the results of all metrics, the models were efficient at predicting the distribution of seven species out of ten, confirming the relevance of geomorphological variables and distance to natural lands and roads to explain the occurrence of plant species in this Mediterranean catchment. In particular, the importance of the landscape geomorphological variables, ie the importance of the geomorphological features encompassing a broad environment around the ditch, has been highlighted. This suggests that agro-ecological measures for managing ecosystem services provided by ditch plants should focus on the control of the hydrological and sedimentological connectivity at the catchment scale. For example, the density of the ditch network could be modified or the spatial distribution of vegetative filter strips used for sediment trapping could be optimized. In addition, the vegetative filter strips could constitute new seed bank sources for species that are affected by the distance to natural lands and roads. PMID:29360857

  6. Inverse modelling of fluvial sediment connectivity identifies characteristics and spatial distribution of sediment sources in a large river network.

    NASA Astrophysics Data System (ADS)

    Schmitt, R. J. P.; Bizzi, S.; Kondolf, G. M.; Rubin, Z.; Castelletti, A.

    2016-12-01

    Field and laboratory evidence indicates that the spatial distribution of transport in both alluvial and bedrock rivers is an adaptation to sediment supply. Sediment supply, in turn, depends on spatial distribution and properties (e.g., grain sizes and supply rates) of individual sediment sources. Analyzing the distribution of transport capacity in a river network could hence clarify the spatial distribution and properties of sediment sources. Yet, challenges include a) identifying magnitude and spatial distribution of transport capacity for each of multiple grain sizes being simultaneously transported, and b) estimating source grain sizes and supply rates, both at network scales. Herein, we approach the problem of identifying the spatial distribution of sediment sources and the resulting network sediment fluxes in a major, poorly monitored tributary (80,000 km2) of the Mekong. Therefore, we apply the CASCADE modeling framework (Schmitt et al. (2016)). CASCADE calculates transport capacities and sediment fluxes for multiple grainsizes on the network scale based on remotely-sensed morphology and modelled hydrology. CASCADE is run in an inverse Monte Carlo approach for 7500 random initializations of source grain sizes. In all runs, supply of each source is inferred from the minimum downstream transport capacity for the source grain size. Results for each realization are compared to sparse available sedimentary records. Only 1 % of initializations reproduced the sedimentary record. Results for these realizations revealed a spatial pattern in source supply rates, grain sizes, and network sediment fluxes that correlated well with map-derived patterns in lithology and river-morphology. Hence, we propose that observable river hydro-morphology contains information on upstream source properties that can be back-calculated using an inverse modeling approach. Such an approach could be coupled to more detailed models of hillslope processes in future to derive integrated models of hillslope production and fluvial transport processes, which is particularly useful to identify sediment provenance in poorly monitored river basins.

  7. Using geomorphological variables to predict the spatial distribution of plant species in agricultural drainage networks.

    PubMed

    Rudi, Gabrielle; Bailly, Jean-Stéphane; Vinatier, Fabrice

    2018-01-01

    To optimize ecosystem services provided by agricultural drainage networks (ditches) in headwater catchments, we need to manage the spatial distribution of plant species living in these networks. Geomorphological variables have been shown to be important predictors of plant distribution in other ecosystems because they control the water regime, the sediment deposition rates and the sun exposure in the ditches. Whether such variables may be used to predict plant distribution in agricultural drainage networks is unknown. We collected presence and absence data for 10 herbaceous plant species in a subset of a network of drainage ditches (35 km long) within a Mediterranean agricultural catchment. We simulated their spatial distribution with GLM and Maxent model using geomorphological variables and distance to natural lands and roads. Models were validated using k-fold cross-validation. We then compared the mean Area Under the Curve (AUC) values obtained for each model and other metrics issued from the confusion matrices between observed and predicted variables. Based on the results of all metrics, the models were efficient at predicting the distribution of seven species out of ten, confirming the relevance of geomorphological variables and distance to natural lands and roads to explain the occurrence of plant species in this Mediterranean catchment. In particular, the importance of the landscape geomorphological variables, ie the importance of the geomorphological features encompassing a broad environment around the ditch, has been highlighted. This suggests that agro-ecological measures for managing ecosystem services provided by ditch plants should focus on the control of the hydrological and sedimentological connectivity at the catchment scale. For example, the density of the ditch network could be modified or the spatial distribution of vegetative filter strips used for sediment trapping could be optimized. In addition, the vegetative filter strips could constitute new seed bank sources for species that are affected by the distance to natural lands and roads.

  8. Fault detection and diagnosis for non-Gaussian stochastic distribution systems with time delays via RBF neural networks.

    PubMed

    Yi, Qu; Zhan-ming, Li; Er-chao, Li

    2012-11-01

    A new fault detection and diagnosis (FDD) problem via the output probability density functions (PDFs) for non-gausian stochastic distribution systems (SDSs) is investigated. The PDFs can be approximated by radial basis functions (RBFs) neural networks. Different from conventional FDD problems, the measured information for FDD is the output stochastic distributions and the stochastic variables involved are not confined to Gaussian ones. A (RBFs) neural network technique is proposed so that the output PDFs can be formulated in terms of the dynamic weighings of the RBFs neural network. In this work, a nonlinear adaptive observer-based fault detection and diagnosis algorithm is presented by introducing the tuning parameter so that the residual is as sensitive as possible to the fault. Stability and Convergency analysis is performed in fault detection and fault diagnosis analysis for the error dynamic system. At last, an illustrated example is given to demonstrate the efficiency of the proposed algorithm, and satisfactory results have been obtained. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Jiang, Huaiguang; Tan, Jin

    This paper proposes an event-driven approach for reconfiguring distribution systems automatically. Specifically, an optimal synchrophasor sensor placement (OSSP) is used to reduce the number of synchrophasor sensors while keeping the whole system observable. Then, a wavelet-based event detection and location approach is used to detect and locate the event, which performs as a trigger for network reconfiguration. With the detected information, the system is then reconfigured using the hierarchical decentralized approach to seek for the new optimal topology. In this manner, whenever an event happens the distribution network can be reconfigured automatically based on the real-time information that is observablemore » and detectable.« less

  10. Dynamical origins of the community structure of an online multi-layer society

    NASA Astrophysics Data System (ADS)

    Klimek, Peter; Diakonova, Marina; Eguíluz, Víctor M.; San Miguel, Maxi; Thurner, Stefan

    2016-08-01

    Social structures emerge as a result of individuals managing a variety of different social relationships. Societies can be represented as highly structured dynamic multiplex networks. Here we study the dynamical origins of the specific community structures of a large-scale social multiplex network of a human society that interacts in a virtual world of a massive multiplayer online game. There we find substantial differences in the community structures of different social actions, represented by the various layers in the multiplex network. Community sizes distributions are either fat-tailed or appear to be centered around a size of 50 individuals. To understand these observations we propose a voter model that is built around the principle of triadic closure. It explicitly models the co-evolution of node- and link-dynamics across different layers of the multiplex network. Depending on link and node fluctuation probabilities, the model exhibits an anomalous shattered fragmentation transition, where one layer fragments from one large component into many small components. The observed community size distributions are in good agreement with the predicted fragmentation in the model. This suggests that several detailed features of the fragmentation in societies can be traced back to the triadic closure processes.

  11. Improving weather modeling in South America through IDD-Brasil

    NASA Astrophysics Data System (ADS)

    Chagas, G. O.

    2007-05-01

    The IDD-Brasil constitutes of an international collaboration among Universidade Federal do Rio de Janeiro (LPM/UFRJ), Centro de Previsão de Tempo e Estudos Climáticos (CPTEC/INPE) and the Unidata Program Center (Unidata/UCAR), which connects several universities and research centers across the Americas in a network to share real-time hydro meteorological data. Using this network as a new path to deliver and acquire observational data, IDD-Brazil participants are capable of receiving observational data from GTS (Global Telecommunication System), locally ingested data from several automatic weather stations networks (mesonets) from INPE, the entire array of METAR and SYNOP observations, and several model outputs and satellite imagery. During recent years Numerical Models have been used constantly, especially in mesoscale research, but the lack of a dense observational network in South America leads to several constraints during the data assimilation and model validation. Since the IDD-Brasil offers an improved and simple method to have new datasets readily accessible, it has been used continuously as a new manner to distribute surface observations that are not currently available in GTS, such as several mesonets in Brazil that account for an increase in data density. Through the usage of data ingested in IDD-Brasil as guess fields it is possible to study how the assimilation in several global models frequently used as initial conditions for mesoscale simulations can be affected, since in certain areas in Brazil the density of data nearly doubles if compared to GTS. Therefore it is also possible to better validate the results generated in mesoscale simulations, in view of the fact that the network has an improved spatial distribution. It is expected that the increase of locally held numerical model output from South American institutions in IDD- Brasil leads to an increased awareness of the need to constantly validate these results with observational data, thus improving mesoscale research.

  12. Identifying early-warning signals of critical transitions with strong noise by dynamical network markers

    PubMed Central

    Liu, Rui; Chen, Pei; Aihara, Kazuyuki; Chen, Luonan

    2015-01-01

    Identifying early-warning signals of a critical transition for a complex system is difficult, especially when the target system is constantly perturbed by big noise, which makes the traditional methods fail due to the strong fluctuations of the observed data. In this work, we show that the critical transition is not traditional state-transition but probability distribution-transition when the noise is not sufficiently small, which, however, is a ubiquitous case in real systems. We present a model-free computational method to detect the warning signals before such transitions. The key idea behind is a strategy: “making big noise smaller” by a distribution-embedding scheme, which transforms the data from the observed state-variables with big noise to their distribution-variables with small noise, and thus makes the traditional criteria effective because of the significantly reduced fluctuations. Specifically, increasing the dimension of the observed data by moment expansion that changes the system from state-dynamics to probability distribution-dynamics, we derive new data in a higher-dimensional space but with much smaller noise. Then, we develop a criterion based on the dynamical network marker (DNM) to signal the impending critical transition using the transformed higher-dimensional data. We also demonstrate the effectiveness of our method in biological, ecological and financial systems. PMID:26647650

  13. The Buildup of a Scale-free Photospheric Magnetic Network

    NASA Astrophysics Data System (ADS)

    Thibault, K.; Charbonneau, P.; Crouch, A. D.

    2012-10-01

    We use a global Monte Carlo simulation of the formation of the solar photospheric magnetic network to investigate the origin of the scale invariance characterizing magnetic flux concentrations visible on high-resolution magnetograms. The simulations include spatially and temporally homogeneous injection of small-scale magnetic elements over the whole photosphere, as well as localized episodic injection associated with the emergence and decay of active regions. Network elements form in response to cumulative pairwise aggregation or cancellation of magnetic elements, undergoing a random walk on the sphere and advected on large spatial scales by differential rotation and a poleward meridional flow. The resulting size distribution of simulated network elements is in very good agreement with observational inferences. We find that the fractal index and size distribution of network elements are determined primarily by these post-emergence surface mechanisms, and carry little or no memory of the scales at which magnetic flux is injected in the simulation. Implications for models of dynamo action in the Sun are briefly discussed.

  14. Mining protein-protein interaction networks: denoising effects

    NASA Astrophysics Data System (ADS)

    Marras, Elisabetta; Capobianco, Enrico

    2009-01-01

    A typical instrument to pursue analysis in complex network studies is the analysis of the statistical distributions. They are usually computed for measures which characterize network topology, and are aimed at capturing both structural and dynamics aspects. Protein-protein interaction networks (PPIN) have also been studied through several measures. It is in general observed that a power law is expected to characterize scale-free networks. However, mixing the original noise cover with outlying information and other system-dependent fluctuations makes the empirical detection of the power law a difficult task. As a result the uncertainty level increases when looking at the observed sample; in particular, one may wonder whether the computed features may be sufficient to explain the interactome. We then address noise problems by implementing both decomposition and denoising techniques that reduce the impact of factors known to affect the accuracy of power law detection.

  15. The "Majority Illusion" in Social Networks

    PubMed Central

    Lerman, Kristina; Yan, Xiaoran; Wu, Xin-Zeng

    2016-01-01

    Individual’s decisions, from what product to buy to whether to engage in risky behavior, often depend on the choices, behaviors, or states of other people. People, however, rarely have global knowledge of the states of others, but must estimate them from the local observations of their social contacts. Network structure can significantly distort individual’s local observations. Under some conditions, a state that is globally rare in a network may be dramatically over-represented in the local neighborhoods of many individuals. This effect, which we call the “majority illusion,” leads individuals to systematically overestimate the prevalence of that state, which may accelerate the spread of social contagions. We develop a statistical model that quantifies this effect and validate it with measurements in synthetic and real-world networks. We show that the illusion is exacerbated in networks with a heterogeneous degree distribution and disassortative structure. PMID:26886112

  16. Lognormal kriging for the assessment of reliability in groundwater quality control observation networks

    USGS Publications Warehouse

    Candela, L.; Olea, R.A.; Custodio, E.

    1988-01-01

    Groundwater quality observation networks are examples of discontinuous sampling on variables presenting spatial continuity and highly skewed frequency distributions. Anywhere in the aquifer, lognormal kriging provides estimates of the variable being sampled and a standard error of the estimate. The average and the maximum standard error within the network can be used to dynamically improve the network sampling efficiency or find a design able to assure a given reliability level. The approach does not require the formulation of any physical model for the aquifer or any actual sampling of hypothetical configurations. A case study is presented using the network monitoring salty water intrusion into the Llobregat delta confined aquifer, Barcelona, Spain. The variable chloride concentration used to trace the intrusion exhibits sudden changes within short distances which make the standard error fairly invariable to changes in sampling pattern and to substantial fluctuations in the number of wells. ?? 1988.

  17. Epidemics on adaptive networks with geometric constraints

    NASA Astrophysics Data System (ADS)

    Shaw, Leah; Schwartz, Ira

    2008-03-01

    When a population is faced with an epidemic outbreak, individuals may modify their social behavior to avoid exposure to the disease. Recent work has considered models in which the contact network is rewired dynamically so that susceptibles avoid contact with infectives. We consider extensions in which the rewiring is subject to constraints that preserve key properties of the social network structure. Constraining to a fixed degree distribution destroys previously observed bistable behavior. The most effective rewiring strategy is found to depend on the spreading rate.

  18. Corona graphs as a model of small-world networks

    NASA Astrophysics Data System (ADS)

    Lv, Qian; Yi, Yuhao; Zhang, Zhongzhi

    2015-11-01

    We introduce recursive corona graphs as a model of small-world networks. We investigate analytically the critical characteristics of the model, including order and size, degree distribution, average path length, clustering coefficient, and the number of spanning trees, as well as Kirchhoff index. Furthermore, we study the spectra for the adjacency matrix and the Laplacian matrix for the model. We obtain explicit results for all the quantities of the recursive corona graphs, which are similar to those observed in real-life networks.

  19. The Most Remote Point Method for the Site Selection of the Future VGOS Network

    NASA Astrophysics Data System (ADS)

    Hase, Hayo; Pedreros, Felipe

    2014-12-01

    The VLBI Global Observing System (VGOS) will be part of the Global Geodetic Observing System (GGOS) and will consist of globally well distributed geodetic observatories. The most remote point (MRP) method is used to identify gaps in the network geometry. In each iteration step the identified most remote points are assumed to become new observatory sites improving the homogeneity of the global network. New locations for VGOS observatories have been found in La Plata, Tahiti, O'Higgins, Galapagos, Colombo, and Syowa. This contribution is an excerpt of a work published in Journal of Geodesy (DOI: 10.1007/s00190-014-0731-y) covering the site selection for the GGOS.%

  20. Distribution of polarization-entangled photonpairs produced via spontaneous parametric down-conversion within a local-area fiber network: theoretical model and experiment.

    PubMed

    Lim, Han Chuen; Yoshizawa, Akio; Tsuchida, Hidemi; Kikuchi, Kazuro

    2008-09-15

    We present a theoretical model for the distribution of polarization-entangled photon-pairs produced via spontaneous parametric down-conversion within a local-area fiber network. This model allows an entanglement distributor who plays the role of a service provider to determine the photon-pair generation rate giving highest two-photon interference fringe visibility for any pair of users, when given user-specific parameters. Usefulness of this model is illustrated in an example and confirmed in an experiment, where polarization-entangled photon-pairs are distributed over 82 km and 132 km of dispersion-managed optical fiber. Experimentally observed visibilities and entanglement fidelities are in good agreement with theoretically predicted values.

  1. Mapping Power Law Distributions in Digital Health Social Networks: Methods, Interpretations, and Practical Implications.

    PubMed

    van Mierlo, Trevor; Hyatt, Douglas; Ching, Andrew T

    2015-06-25

    Social networks are common in digital health. A new stream of research is beginning to investigate the mechanisms of digital health social networks (DHSNs), how they are structured, how they function, and how their growth can be nurtured and managed. DHSNs increase in value when additional content is added, and the structure of networks may resemble the characteristics of power laws. Power laws are contrary to traditional Gaussian averages in that they demonstrate correlated phenomena. The objective of this study is to investigate whether the distribution frequency in four DHSNs can be characterized as following a power law. A second objective is to describe the method used to determine the comparison. Data from four DHSNs—Alcohol Help Center (AHC), Depression Center (DC), Panic Center (PC), and Stop Smoking Center (SSC)—were compared to power law distributions. To assist future researchers and managers, the 5-step methodology used to analyze and compare datasets is described. All four DHSNs were found to have right-skewed distributions, indicating the data were not normally distributed. When power trend lines were added to each frequency distribution, R(2) values indicated that, to a very high degree, the variance in post frequencies can be explained by actor rank (AHC .962, DC .975, PC .969, SSC .95). Spearman correlations provided further indication of the strength and statistical significance of the relationship (AHC .987. DC .967, PC .983, SSC .993, P<.001). This is the first study to investigate power distributions across multiple DHSNs, each addressing a unique condition. Results indicate that despite vast differences in theme, content, and length of existence, DHSNs follow properties of power laws. The structure of DHSNs is important as it gives insight to researchers and managers into the nature and mechanisms of network functionality. The 5-step process undertaken to compare actor contribution patterns can be replicated in networks that are managed by other organizations, and we conjecture that patterns observed in this study could be found in other DHSNs. Future research should analyze network growth over time and examine the characteristics and survival rates of superusers.

  2. The most remote point method for the site selection of the future GGOS network

    NASA Astrophysics Data System (ADS)

    Hase, Hayo; Pedreros, Felipe

    2014-10-01

    The Global Geodetic Observing System (GGOS) proposes 30-40 geodetic observatories as global infrastructure for the most accurate reference frame to monitor the global change. To reach this goal, several geodetic observatories have upgrade plans to become GGOS stations. Most initiatives are driven by national institutions following national interests. From a global perspective, the site distribution remains incomplete and the initiatives to improve this are up until now insufficient. This article is a contribution to answer the question on where to install new GGOS observatories and where to add observation techniques to existing observatories. It introduces the iterative most remote point (MRP) method for filling in the largest gaps in existing technique-specific networks. A spherical version of the Voronoi-diagram is used to pick the optimal location of the new observatory, but practical concerns determine its realistic location. Once chosen, the process is iterated. A quality and a homogeneity parameter of global networks measure the progress of improving the homogeneity of the global site distribution. This method is applied to the global networks of VGOS, and VGOS co-located with SLR to derive some clues about where additional observatory sites or additional observation techniques at existing observatories will improve the GGOS network configuration. With only six additional VGOS-stations, the homogeneity of the global VGOS-network could be significantly improved by more than . From the presented analysis, 25 known or new co-located VGOS and SLR sites are proposed as the future GGOS backbone: Colombo, Easter Island, Fairbanks, Fortaleza, Galapagos, GGAO, Hartebeesthoek, Honiara, Ibadan, Kokee Park, La Plata, Mauritius, McMurdo, Metsahövi, Ny Alesund, Riyadh, San Diego, Santa Maria, Shanghai, Syowa, Tahiti, Tristan de Cunha, Warkworth, Wettzell, and Yarragadee.

  3. Zero Pearson coefficient for strongly correlated growing trees

    NASA Astrophysics Data System (ADS)

    Dorogovtsev, S. N.; Ferreira, A. L.; Goltsev, A. V.; Mendes, J. F. F.

    2010-03-01

    We obtained Pearson’s coefficient of strongly correlated recursive networks growing by preferential attachment of every new vertex by m edges. We found that the Pearson coefficient is exactly zero in the infinite network limit for the recursive trees (m=1) . If the number of connections of new vertices exceeds one (m>1) , then the Pearson coefficient in the infinite networks equals zero only when the degree distribution exponent γ does not exceed 4. We calculated the Pearson coefficient for finite networks and observed a slow power-law-like approach to an infinite network limit. Our findings indicate that Pearson’s coefficient strongly depends on size and details of networks, which makes this characteristic virtually useless for quantitative comparison of different networks.

  4. Zero Pearson coefficient for strongly correlated growing trees.

    PubMed

    Dorogovtsev, S N; Ferreira, A L; Goltsev, A V; Mendes, J F F

    2010-03-01

    We obtained Pearson's coefficient of strongly correlated recursive networks growing by preferential attachment of every new vertex by m edges. We found that the Pearson coefficient is exactly zero in the infinite network limit for the recursive trees (m=1). If the number of connections of new vertices exceeds one (m>1), then the Pearson coefficient in the infinite networks equals zero only when the degree distribution exponent gamma does not exceed 4. We calculated the Pearson coefficient for finite networks and observed a slow power-law-like approach to an infinite network limit. Our findings indicate that Pearson's coefficient strongly depends on size and details of networks, which makes this characteristic virtually useless for quantitative comparison of different networks.

  5. A trade-off between local and distributed information processing associated with remote episodic versus semantic memory.

    PubMed

    Heisz, Jennifer J; Vakorin, Vasily; Ross, Bernhard; Levine, Brian; McIntosh, Anthony R

    2014-01-01

    Episodic memory and semantic memory produce very different subjective experiences yet rely on overlapping networks of brain regions for processing. Traditional approaches for characterizing functional brain networks emphasize static states of function and thus are blind to the dynamic information processing within and across brain regions. This study used information theoretic measures of entropy to quantify changes in the complexity of the brain's response as measured by magnetoencephalography while participants listened to audio recordings describing past personal episodic and general semantic events. Personal episodic recordings evoked richer subjective mnemonic experiences and more complex brain responses than general semantic recordings. Critically, we observed a trade-off between the relative contribution of local versus distributed entropy, such that personal episodic recordings produced relatively more local entropy whereas general semantic recordings produced relatively more distributed entropy. Changes in the relative contributions of local and distributed entropy to the total complexity of the system provides a potential mechanism that allows the same network of brain regions to represent cognitive information as either specific episodes or more general semantic knowledge.

  6. Virtual Sensor Web Architecture

    NASA Astrophysics Data System (ADS)

    Bose, P.; Zimdars, A.; Hurlburt, N.; Doug, S.

    2006-12-01

    NASA envisions the development of smart sensor webs, intelligent and integrated observation network that harness distributed sensing assets, their associated continuous and complex data sets, and predictive observation processing mechanisms for timely, collaborative hazard mitigation and enhanced science productivity and reliability. This paper presents Virtual Sensor Web Infrastructure for Collaborative Science (VSICS) Architecture for sustained coordination of (numerical and distributed) model-based processing, closed-loop resource allocation, and observation planning. VSICS's key ideas include i) rich descriptions of sensors as services based on semantic markup languages like OWL and SensorML; ii) service-oriented workflow composition and repair for simple and ensemble models; event-driven workflow execution based on event-based and distributed workflow management mechanisms; and iii) development of autonomous model interaction management capabilities providing closed-loop control of collection resources driven by competing targeted observation needs. We present results from initial work on collaborative science processing involving distributed services (COSEC framework) that is being extended to create VSICS.

  7. Mechanical Network in Titin Immunoglobulin from Force Distribution Analysis

    PubMed Central

    Wilmanns, Matthias; Gräter, Frauke

    2009-01-01

    The role of mechanical force in cellular processes is increasingly revealed by single molecule experiments and simulations of force-induced transitions in proteins. How the applied force propagates within proteins determines their mechanical behavior yet remains largely unknown. We present a new method based on molecular dynamics simulations to disclose the distribution of strain in protein structures, here for the newly determined high-resolution crystal structure of I27, a titin immunoglobulin (IG) domain. We obtain a sparse, spatially connected, and highly anisotropic mechanical network. This allows us to detect load-bearing motifs composed of interstrand hydrogen bonds and hydrophobic core interactions, including parts distal to the site to which force was applied. The role of the force distribution pattern for mechanical stability is tested by in silico unfolding of I27 mutants. We then compare the observed force pattern to the sparse network of coevolved residues found in this family. We find a remarkable overlap, suggesting the force distribution to reflect constraints for the evolutionary design of mechanical resistance in the IG family. The force distribution analysis provides a molecular interpretation of coevolution and opens the road to the study of the mechanism of signal propagation in proteins in general. PMID:19282960

  8. Resource acquisition, distribution and end-use efficiencies and the growth of industrial society

    NASA Astrophysics Data System (ADS)

    Jarvis, A. J.; Jarvis, S. J.; Hewitt, C. N.

    2015-10-01

    A key feature of the growth of industrial society is the acquisition of increasing quantities of resources from the environment and their distribution for end-use. With respect to energy, the growth of industrial society appears to have been near-exponential for the last 160 years. We provide evidence that indicates that the global distribution of resources that underpins this growth may be facilitated by the continual development and expansion of near-optimal directed networks (roads, railways, flight paths, pipelines, cables etc.). However, despite this continual striving for optimisation, the distribution efficiencies of these networks must decline over time as they expand due to path lengths becoming longer and more tortuous. Therefore, to maintain long-term exponential growth the physical limits placed on the distribution networks appear to be counteracted by innovations deployed elsewhere in the system, namely at the points of acquisition and end-use of resources. We postulate that the maintenance of the growth of industrial society, as measured by global energy use, at the observed rate of ~ 2.4 % yr-1 stems from an implicit desire to optimise patterns of energy use over human working lifetimes.

  9. Global network structure of dominance hierarchy of ant workers.

    PubMed

    Shimoji, Hiroyuki; Abe, Masato S; Tsuji, Kazuki; Masuda, Naoki

    2014-10-06

    Dominance hierarchy among animals is widespread in various species and believed to serve to regulate resource allocation within an animal group. Unlike small groups, however, detection and quantification of linear hierarchy in large groups of animals are a difficult task. Here, we analyse aggression-based dominance hierarchies formed by worker ants in Diacamma sp. as large directed networks. We show that the observed dominance networks are perfect or approximate directed acyclic graphs, which are consistent with perfect linear hierarchy. The observed networks are also sparse and random but significantly different from networks generated through thinning of the perfect linear tournament (i.e. all individuals are linearly ranked and dominance relationship exists between every pair of individuals). These results pertain to global structure of the networks, which contrasts with the previous studies inspecting frequencies of different types of triads. In addition, the distribution of the out-degree (i.e. number of workers that the focal worker attacks), not in-degree (i.e. number of workers that attack the focal worker), of each observed network is right-skewed. Those having excessively large out-degrees are located near the top, but not the top, of the hierarchy. We also discuss evolutionary implications of the discovered properties of dominance networks. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  10. Global network structure of dominance hierarchy of ant workers

    PubMed Central

    Shimoji, Hiroyuki; Abe, Masato S.; Tsuji, Kazuki; Masuda, Naoki

    2014-01-01

    Dominance hierarchy among animals is widespread in various species and believed to serve to regulate resource allocation within an animal group. Unlike small groups, however, detection and quantification of linear hierarchy in large groups of animals are a difficult task. Here, we analyse aggression-based dominance hierarchies formed by worker ants in Diacamma sp. as large directed networks. We show that the observed dominance networks are perfect or approximate directed acyclic graphs, which are consistent with perfect linear hierarchy. The observed networks are also sparse and random but significantly different from networks generated through thinning of the perfect linear tournament (i.e. all individuals are linearly ranked and dominance relationship exists between every pair of individuals). These results pertain to global structure of the networks, which contrasts with the previous studies inspecting frequencies of different types of triads. In addition, the distribution of the out-degree (i.e. number of workers that the focal worker attacks), not in-degree (i.e. number of workers that attack the focal worker), of each observed network is right-skewed. Those having excessively large out-degrees are located near the top, but not the top, of the hierarchy. We also discuss evolutionary implications of the discovered properties of dominance networks. PMID:25100318

  11. Power-law tail probabilities of drainage areas in river basins

    USGS Publications Warehouse

    Veitzer, S.A.; Troutman, B.M.; Gupta, V.K.

    2003-01-01

    The significance of power-law tail probabilities of drainage areas in river basins was discussed. The convergence to a power law was not observed for all underlying distributions, but for a large class of statistical distributions with specific limiting properties. The article also discussed about the scaling properties of topologic and geometric network properties in river basins.

  12. Ground-based instruments of the PWING project to investigate dynamics of the inner magnetosphere at subauroral latitudes as a part of the ERG-ground coordinated observation network

    NASA Astrophysics Data System (ADS)

    Shiokawa, Kazuo; Katoh, Yasuo; Hamaguchi, Yoshiyuki; Yamamoto, Yuka; Adachi, Takumi; Ozaki, Mitsunori; Oyama, Shin-Ichiro; Nosé, Masahito; Nagatsuma, Tsutomu; Tanaka, Yoshimasa; Otsuka, Yuichi; Miyoshi, Yoshizumi; Kataoka, Ryuho; Takagi, Yuki; Takeshita, Yuhei; Shinbori, Atsuki; Kurita, Satoshi; Hori, Tomoaki; Nishitani, Nozomu; Shinohara, Iku; Tsuchiya, Fuminori; Obana, Yuki; Suzuki, Shin; Takahashi, Naoko; Seki, Kanako; Kadokura, Akira; Hosokawa, Keisuke; Ogawa, Yasunobu; Connors, Martin; Michael Ruohoniemi, J.; Engebretson, Mark; Turunen, Esa; Ulich, Thomas; Manninen, Jyrki; Raita, Tero; Kero, Antti; Oksanen, Arto; Back, Marko; Kauristie, Kirsti; Mattanen, Jyrki; Baishev, Dmitry; Kurkin, Vladimir; Oinats, Alexey; Pashinin, Alexander; Vasilyev, Roman; Rakhmatulin, Ravil; Bristow, William; Karjala, Marty

    2017-11-01

    The plasmas (electrons and ions) in the inner magnetosphere have wide energy ranges from electron volts to mega-electron volts (MeV). These plasmas rotate around the Earth longitudinally due to the gradient and curvature of the geomagnetic field and by the co-rotation motion with timescales from several tens of hours to less than 10 min. They interact with plasma waves at frequencies of mHz to kHz mainly in the equatorial plane of the magnetosphere, obtain energies up to MeV, and are lost into the ionosphere. In order to provide the global distribution and quantitative evaluation of the dynamical variation of these plasmas and waves in the inner magnetosphere, the PWING project (study of dynamical variation of particles and waves in the inner magnetosphere using ground-based network observations, http://www.isee.nagoya-u.ac.jp/dimr/PWING/) has been carried out since April 2016. This paper describes the stations and instrumentation of the PWING project. We operate all-sky airglow/aurora imagers, 64-Hz sampling induction magnetometers, 40-kHz sampling loop antennas, and 64-Hz sampling riometers at eight stations at subauroral latitudes ( 60° geomagnetic latitude) in the northern hemisphere, as well as 100-Hz sampling EMCCD cameras at three stations. These stations are distributed longitudinally in Canada, Iceland, Finland, Russia, and Alaska to obtain the longitudinal distribution of plasmas and waves in the inner magnetosphere. This PWING longitudinal network has been developed as a part of the ERG (Arase)-ground coordinated observation network. The ERG (Arase) satellite was launched on December 20, 2016, and has been in full operation since March 2017. We will combine these ground network observations with the ERG (Arase) satellite and global modeling studies. These comprehensive datasets will contribute to the investigation of dynamical variation of particles and waves in the inner magnetosphere, which is one of the most important research topics in recent space physics, and the outcome of our research will improve safe and secure use of geospace around the Earth.[Figure not available: see fulltext.

  13. Observer-based consensus of networked thrust-propelled vehicles with directed graphs.

    PubMed

    Cang, Weiye; Li, Zhongkui; Wang, Hanlei

    2017-11-01

    In this paper, we investigate the consensus problem for networked underactuated thrust-propelled vehicles (TPVs) interacting on directed graphs. We propose distributed observer-based consensus protocols, which avoid the reliance on the measurements of translational velocities and accelerations. Using the input-output analysis, we present necessary and sufficient conditions to ensure that the observer-based protocols can achieve consensus for both the cases without and with constant communication delays, provided that the communication graph contains a directed spanning tree. Simulation examples are finally provided to illustrate the effectiveness of the control schemes. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. On the structural properties of small-world networks with range-limited shortcut links

    NASA Astrophysics Data System (ADS)

    Jia, Tao; Kulkarni, Rahul V.

    2013-12-01

    We explore a new variant of Small-World Networks (SWNs), in which an additional parameter (r) sets the length scale over which shortcuts are uniformly distributed. When r=0 we have an ordered network, whereas r=1 corresponds to the original Watts-Strogatz SWN model. These limited range SWNs have a similar degree distribution and scaling properties as the original SWN model. We observe the small-world phenomenon for r≪1, indicating that global shortcuts are not necessary for the small-world effect. For limited range SWNs, the average path length changes nonmonotonically with system size, whereas for the original SWN model it increases monotonically. We propose an expression for the average path length for limited range SWNs based on numerical simulations and analytical approximations.

  15. Integrating Data Distribution and Data Assimilation Between the OOI CI and the NOAA DIF

    NASA Astrophysics Data System (ADS)

    Meisinger, M.; Arrott, M.; Clemesha, A.; Farcas, C.; Farcas, E.; Im, T.; Schofield, O.; Krueger, I.; Klacansky, I.; Orcutt, J.; Peach, C.; Chave, A.; Raymer, D.; Vernon, F.

    2008-12-01

    The Ocean Observatories Initiative (OOI) is an NSF funded program to establish the ocean observing infrastructure of the 21st century benefiting research and education. It is currently approaching final design and promises to deliver cyber and physical observatory infrastructure components as well as substantial core instrumentation to study environmental processes of the ocean at various scales, from coastal shelf-slope exchange processes to the deep ocean. The OOI's data distribution network lies at the heart of its cyber- infrastructure, which enables a multitude of science and education applications, ranging from data analysis, to processing, visualization and ontology supported query and mediation. In addition, it fundamentally supports a class of applications exploiting the knowledge gained from analyzing observational data for objective-driven ocean observing applications, such as automatically triggered response to episodic environmental events and interactive instrument tasking and control. The U.S. Department of Commerce through NOAA operates the Integrated Ocean Observing System (IOOS) providing continuous data in various formats, rates and scales on open oceans and coastal waters to scientists, managers, businesses, governments, and the public to support research and inform decision-making. The NOAA IOOS program initiated development of the Data Integration Framework (DIF) to improve management and delivery of an initial subset of ocean observations with the expectation of achieving improvements in a select set of NOAA's decision-support tools. Both OOI and NOAA through DIF collaborate on an effort to integrate the data distribution, access and analysis needs of both programs. We present details and early findings from this collaboration; one part of it is the development of a demonstrator combining web-based user access to oceanographic data through ERDDAP, efficient science data distribution, and scalable, self-healing deployment in a cloud computing environment. ERDDAP is a web-based front-end application integrating oceanographic data sources of various formats, for instance CDF data files as aggregated through NcML or presented using a THREDDS server. The OOI-designed data distribution network provides global traffic management and computational load balancing for observatory resources; it makes use of the OpenDAP Data Access Protocol (DAP) for efficient canonical science data distribution over the network. A cloud computing strategy is the basis for scalable, self-healing organization of an observatory's computing and storage resources, independent of the physical location and technical implementation of these resources.

  16. Distributed state-space generation of discrete-state stochastic models

    NASA Technical Reports Server (NTRS)

    Ciardo, Gianfranco; Gluckman, Joshua; Nicol, David

    1995-01-01

    High-level formalisms such as stochastic Petri nets can be used to model complex systems. Analysis of logical and numerical properties of these models of ten requires the generation and storage of the entire underlying state space. This imposes practical limitations on the types of systems which can be modeled. Because of the vast amount of memory consumed, we investigate distributed algorithms for the generation of state space graphs. The distributed construction allows us to take advantage of the combined memory readily available on a network of workstations. The key technical problem is to find effective methods for on-the-fly partitioning, so that the state space is evenly distributed among processors. In this paper we report on the implementation of a distributed state-space generator that may be linked to a number of existing system modeling tools. We discuss partitioning strategies in the context of Petri net models, and report on performance observed on a network of workstations, as well as on a distributed memory multi-computer.

  17. NASA Earth Observing System Data and Information System (EOSDIS): A U.S. Network of Data Centers Serving Earth Science Data: A Network Member of ICSU WDS

    NASA Technical Reports Server (NTRS)

    Behnke, Jeanne; Ramapriyan, H. K. " Rama"

    2016-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been in operation since August 1994, and serving a diverse user community around the world with Earth science data from satellites, aircraft, field campaigns and research investigations. The ESDIS Project, responsible for EOSDIS is a Network Member of the International Council for Sciences (ICSU) World Data System (WDS). Nine of the 12 Distributed Active Archive Centers (DAACs), which are part of EOSDIS, are Regular Members of the ICSUWDS. This poster presents the EOSDIS mission objectives, key characteristics of the DAACs that make them world class Earth science data centers, successes, challenges and best practices of EOSDIS focusing on the years 2014-2016, and illustrates some highlights of accomplishments of EOSDIS. The highlights include: high customer satisfaction, growing archive and distribution volumes, exponential growth in number of products distributed to users around the world, unified metadata model and common metadata repository, flexibility provided to uses by supporting data transformations to suit their applications, near-real-time capabilities to support various operational and research applications, and full resolution image browse capabilities to help users select data of interest. The poster also illustrates how the ESDIS Project is actively involved in several US and international data system organizations.

  18. Information spreading in Delay Tolerant Networks based on nodes' behaviors

    NASA Astrophysics Data System (ADS)

    Wu, Yahui; Deng, Su; Huang, Hongbin

    2014-07-01

    Information spreading in DTNs (Delay Tolerant Networks) adopts a store-carry-forward method, and nodes receive the message from others directly. However, it is hard to judge whether the information is safe in this communication mode. In this case, a node may observe other nodes' behaviors. At present, there is no theoretical model to describe the varying rule of the nodes' trusting level. In addition, due to the uncertainty of the connectivity in DTN, a node is hard to get the global state of the network. Therefore, a rational model about the node's trusting level should be a function of the node's own observing result. For example, if a node finds k nodes carrying a message, it may trust the information with probability p(k). This paper does not explore the real distribution of p(k), but instead presents a unifying theoretical framework to evaluate the performance of the information spreading in above case. This framework is an extension of the traditional SI (susceptible-infected) model, and is useful when p(k) conforms to any distribution. Simulations based on both synthetic and real motion traces show the accuracy of the framework. Finally, we explore the impact of the nodes' behaviors based on certain special distributions through numerical results.

  19. 'Distributed health literacy': longitudinal qualitative analysis of the roles of health literacy mediators and social networks of people living with a long-term health condition.

    PubMed

    Edwards, Michelle; Wood, Fiona; Davies, Myfanwy; Edwards, Adrian

    2015-10-01

    The role of one's social network in the process of becoming health literate is not well understood. We aim to explain the 'distributed' nature of health literacy and how people living with a long-term condition draw on their social network for support with health literacy-related tasks such as managing their condition, interacting with health professionals and making decisions about their health. This paper reports a longitudinal qualitative interview and observation study of the development and practice of health literacy in people with long-term health conditions, living in South Wales, UK. Participants were recruited from health education groups (n = 14) and community education venues (n = 4). The 44 interview transcripts were analysed using the 'Framework' approach. Health literacy was distributed through family and social networks, and participants often drew on the health literacy skills of others to seek, understand and use health information. Those who passed on their health literacy skills acted as health literacy mediators and supported participants in becoming more health literate about their condition. The distribution of health literacy supported participants to manage their health, become more active in health-care decision-making processes, communicate with health professionals and come to terms with living with a long-term condition. Participants accessed health literacy mediators through personal and community networks. Distributed health literacy is a potential resource for managing one's health, communicating with health professionals and making health decisions. © 2013 John Wiley & Sons Ltd.

  20. Predicting Diameter Distributions of Longleaf Pine Plantations: A Comparison Between Artificial Neural Networks and Other Accepted Methodologies

    Treesearch

    Daniel J. Leduc; Thomas G. Matney; Keith L. Belli; V. Clark Baldwin

    2001-01-01

    Artificial neural networks (NN) are becoming a popular estimation tool. Because they require no assumptions about the form of a fitting function, they can free the modeler from reliance on parametric approximating functions that may or may not satisfactorily fit the observed data. To date there have been few applications in forestry science, but as better NN software...

  1. A hierarchical framework for investigating epiphyte assemblages: networks, meta-communities, and scale.

    PubMed

    Burns, K C; Zotz, G

    2010-02-01

    Epiphytes are an important component of many forested ecosystems, yet our understanding of epiphyte communities lags far behind that of terrestrial-based plant communities. This discrepancy is exacerbated by the lack of a theoretical context to assess patterns in epiphyte community structure. We attempt to fill this gap by developing an analytical framework to investigate epiphyte assemblages, which we then apply to a data set on epiphyte distributions in a Panamanian rain forest. On a coarse scale, interactions between epiphyte species and host tree species can be viewed as bipartite networks, similar to pollination and seed dispersal networks. On a finer scale, epiphyte communities on individual host trees can be viewed as meta-communities, or suites of local epiphyte communities connected by dispersal. Similar analytical tools are typically employed to investigate species interaction networks and meta-communities, thus providing a unified analytical framework to investigate coarse-scale (network) and fine-scale (meta-community) patterns in epiphyte distributions. Coarse-scale analysis of the Panamanian data set showed that most epiphyte species interacted with fewer host species than expected by chance. Fine-scale analyses showed that epiphyte species richness on individual trees was lower than null model expectations. Therefore, epiphyte distributions were clumped at both scales, perhaps as a result of dispersal limitations. Scale-dependent patterns in epiphyte species composition were observed. Epiphyte-host networks showed evidence of negative co-occurrence patterns, which could arise from adaptations among epiphyte species to avoid competition for host species, while most epiphyte meta-communities were distributed at random. Application of our "meta-network" analytical framework in other locales may help to identify general patterns in the structure of epiphyte assemblages and their variation in space and time.

  2. Remote observing with NASA's Deep Space Network

    NASA Astrophysics Data System (ADS)

    Kuiper, T. B. H.; Majid, W. A.; Martinez, S.; Garcia-Miro, C.; Rizzo, J. R.

    2012-09-01

    The Deep Space Network (DSN) communicates with spacecraft as far away as the boundary between the Solar System and the interstellar medium. To make this possible, large sensitive antennas at Canberra, Australia, Goldstone, California, and Madrid, Spain, provide for constant communication with interplanetary missions. We describe the procedures for radioastronomical observations using this network. Remote access to science monitor and control computers by authorized observers is provided by two-factor authentication through a gateway at the Jet Propulsion Laboratory (JPL) in Pasadena. To make such observations practical, we have devised schemes based on SSH tunnels and distributed computing. At the very minimum, one can use SSH tunnels and VNC (Virtual Network Computing, a remote desktop software suite) to control the science hosts within the DSN Flight Operations network. In this way we have controlled up to three telescopes simultaneously. However, X-window updates can be slow and there are issues involving incompatible screen sizes and multi-screen displays. Consequently, we are now developing SSH tunnel-based schemes in which instrument control and monitoring, and intense data processing, are done on-site by the remote DSN hosts while data manipulation and graphical display are done at the observer's host. We describe our approaches to various challenges, our experience with what worked well and lessons learned, and directions for future development.

  3. Revealing physical interaction networks from statistics of collective dynamics

    PubMed Central

    Nitzan, Mor; Casadiego, Jose; Timme, Marc

    2017-01-01

    Revealing physical interactions in complex systems from observed collective dynamics constitutes a fundamental inverse problem in science. Current reconstruction methods require access to a system’s model or dynamical data at a level of detail often not available. We exploit changes in invariant measures, in particular distributions of sampled states of the system in response to driving signals, and use compressed sensing to reveal physical interaction networks. Dynamical observations following driving suffice to infer physical connectivity even if they are temporally disordered, are acquired at large sampling intervals, and stem from different experiments. Testing various nonlinear dynamic processes emerging on artificial and real network topologies indicates high reconstruction quality for existence as well as type of interactions. These results advance our ability to reveal physical interaction networks in complex synthetic and natural systems. PMID:28246630

  4. An overview of mesoscale aerosol processes, comparisons, and validation studies from DRAGON networks

    NASA Astrophysics Data System (ADS)

    Holben, Brent N.; Kim, Jhoon; Sano, Itaru; Mukai, Sonoyo; Eck, Thomas F.; Giles, David M.; Schafer, Joel S.; Sinyuk, Aliaksandr; Slutsker, Ilya; Smirnov, Alexander; Sorokin, Mikhail; Anderson, Bruce E.; Che, Huizheng; Choi, Myungje; Crawford, James H.; Ferrare, Richard A.; Garay, Michael J.; Jeong, Ukkyo; Kim, Mijin; Kim, Woogyung; Knox, Nichola; Li, Zhengqiang; Lim, Hwee S.; Liu, Yang; Maring, Hal; Nakata, Makiko; Pickering, Kenneth E.; Piketh, Stuart; Redemann, Jens; Reid, Jeffrey S.; Salinas, Santo; Seo, Sora; Tan, Fuyi; Tripathi, Sachchida N.; Toon, Owen B.; Xiao, Qingyang

    2018-01-01

    Over the past 24 years, the AErosol RObotic NETwork (AERONET) program has provided highly accurate remote-sensing characterization of aerosol optical and physical properties for an increasingly extensive geographic distribution including all continents and many oceanic island and coastal sites. The measurements and retrievals from the AERONET global network have addressed satellite and model validation needs very well, but there have been challenges in making comparisons to similar parameters from in situ surface and airborne measurements. Additionally, with improved spatial and temporal satellite remote sensing of aerosols, there is a need for higher spatial-resolution ground-based remote-sensing networks. An effort to address these needs resulted in a number of field campaign networks called Distributed Regional Aerosol Gridded Observation Networks (DRAGONs) that were designed to provide a database for in situ and remote-sensing comparison and analysis of local to mesoscale variability in aerosol properties. This paper describes the DRAGON deployments that will continue to contribute to the growing body of research related to meso- and microscale aerosol features and processes. The research presented in this special issue illustrates the diversity of topics that has resulted from the application of data from these networks.

  5. Modality-Spanning Deficits in Attention-Deficit/Hyperactivity Disorder in Functional Networks, Gray Matter, and White Matter

    PubMed Central

    Kessler, Daniel; Angstadt, Michael; Welsh, Robert C.

    2014-01-01

    Previous neuroimaging investigations in attention-deficit/hyperactivity disorder (ADHD) have separately identified distributed structural and functional deficits, but interconnections between these deficits have not been explored. To unite these modalities in a common model, we used joint independent component analysis, a multivariate, multimodal method that identifies cohesive components that span modalities. Based on recent network models of ADHD, we hypothesized that altered relationships between large-scale networks, in particular, default mode network (DMN) and task-positive networks (TPNs), would co-occur with structural abnormalities in cognitive regulation regions. For 756 human participants in the ADHD-200 sample, we produced gray and white matter volume maps with voxel-based morphometry, as well as whole-brain functional connectomes. Joint independent component analysis was performed, and the resulting transmodal components were tested for differential expression in ADHD versus healthy controls. Four components showed greater expression in ADHD. Consistent with our a priori hypothesis, we observed reduced DMN-TPN segregation co-occurring with structural abnormalities in dorsolateral prefrontal cortex and anterior cingulate cortex, two important cognitive control regions. We also observed altered intranetwork connectivity in DMN, dorsal attention network, and visual network, with co-occurring distributed structural deficits. There was strong evidence of spatial correspondence across modalities: For all four components, the impact of the respective component on gray matter at a region strongly predicted the impact on functional connectivity at that region. Overall, our results demonstrate that ADHD involves multiple, cohesive modality spanning deficits, each one of which exhibits strong spatial overlap in the pattern of structural and functional alterations. PMID:25505309

  6. Coordinated and uncoordinated optimization of networks

    NASA Astrophysics Data System (ADS)

    Brede, Markus

    2010-06-01

    In this paper, we consider spatial networks that realize a balance between an infrastructure cost (the cost of wire needed to connect the network in space) and communication efficiency, measured by average shortest path length. A global optimization procedure yields network topologies in which this balance is optimized. These are compared with network topologies generated by a competitive process in which each node strives to optimize its own cost-communication balance. Three phases are observed in globally optimal configurations for different cost-communication trade offs: (i) regular small worlds, (ii) starlike networks, and (iii) trees with a center of interconnected hubs. In the latter regime, i.e., for very expensive wire, power laws in the link length distributions P(w)∝w-α are found, which can be explained by a hierarchical organization of the networks. In contrast, in the local optimization process the presence of sharp transitions between different network regimes depends on the dimension of the underlying space. Whereas for d=∞ sharp transitions between fully connected networks, regular small worlds, and highly cliquish periphery-core networks are found, for d=1 sharp transitions are absent and the power law behavior in the link length distribution persists over a much wider range of link cost parameters. The measured power law exponents are in agreement with the hypothesis that the locally optimized networks consist of multiple overlapping suboptimal hierarchical trees.

  7. A combined geostatistical-optimization model for the optimal design of a groundwater quality monitoring network

    NASA Astrophysics Data System (ADS)

    Kolosionis, Konstantinos; Papadopoulou, Maria P.

    2017-04-01

    Monitoring networks provide essential information for water resources management especially in areas with significant groundwater exploitation due to extensive agricultural activities. In this work, a simulation-optimization framework is developed based on heuristic optimization methodologies and geostatistical modeling approaches to obtain an optimal design for a groundwater quality monitoring network. Groundwater quantity and quality data obtained from 43 existing observation locations at 3 different hydrological periods in Mires basin in Crete, Greece will be used in the proposed framework in terms of Regression Kriging to develop the spatial distribution of nitrates concentration in the aquifer of interest. Based on the existing groundwater quality mapping, the proposed optimization tool will determine a cost-effective observation wells network that contributes significant information to water managers and authorities. The elimination of observation wells that add little or no beneficial information to groundwater level and quality mapping of the area can be obtain using estimations uncertainty and statistical error metrics without effecting the assessment of the groundwater quality. Given the high maintenance cost of groundwater monitoring networks, the proposed tool could used by water regulators in the decision-making process to obtain a efficient network design that is essential.

  8. Percolation of spatially constrained Erdős-Rényi networks with degree correlations.

    PubMed

    Schmeltzer, C; Soriano, J; Sokolov, I M; Rüdiger, S

    2014-01-01

    Motivated by experiments on activity in neuronal cultures [ J. Soriano, M. Rodríguez Martínez, T. Tlusty and E. Moses Proc. Natl. Acad. Sci. 105 13758 (2008)], we investigate the percolation transition and critical exponents of spatially embedded Erdős-Rényi networks with degree correlations. In our model networks, nodes are randomly distributed in a two-dimensional spatial domain, and the connection probability depends on Euclidian link length by a power law as well as on the degrees of linked nodes. Generally, spatial constraints lead to higher percolation thresholds in the sense that more links are needed to achieve global connectivity. However, degree correlations favor or do not favor percolation depending on the connectivity rules. We employ two construction methods to introduce degree correlations. In the first one, nodes stay homogeneously distributed and are connected via a distance- and degree-dependent probability. We observe that assortativity in the resulting network leads to a decrease of the percolation threshold. In the second construction methods, nodes are first spatially segregated depending on their degree and afterwards connected with a distance-dependent probability. In this segregated model, we find a threshold increase that accompanies the rising assortativity. Additionally, when the network is constructed in a disassortative way, we observe that this property has little effect on the percolation transition.

  9. Long-term monitoring of blazars - the DWARF network

    NASA Astrophysics Data System (ADS)

    Backes, Michael; Biland, Adrian; Boller, Andrea; Braun, Isabel; Bretz, Thomas; Commichau, Sebastian; Commichau, Volker; Dorner, Daniela; von Gunten, Hanspeter; Gendotti, Adamo; Grimm, Oliver; Hildebrand, Dorothée; Horisberger, Urs; Krähenbühl, Thomas; Kranich, Daniel; Lustermann, Werner; Mannheim, Karl; Neise, Dominik; Pauss, Felicitas; Renker, Dieter; Rhode, Wolfgang; Rissi, Michael; Rollke, Sebastian; Röser, Ulf; Stark, Luisa Sabrina; Stucki, Jean-Pierre; Viertel, Gert; Vogler, Patrick; Weitzel, Quirin

    The variability of the very high energy (VHE) emission from blazars seems to be connected with the feeding and propagation of relativistic jets and with their origin in supermassive black hole binaries. The key to understanding their properties is measuring well-sampled gamma-ray lightcurves, revealing the typical source behavior unbiased by prior knowledge from other wavebands. Using ground-based gamma-ray observatories with exposures limited by dark-time, a global network of several telescopes is needed to carry out fulltime measurements. Obviously, such observations are time-consuming and, therefore, cannot be carried out with the present state of the art instruments. The DWARF telescope on the Canary Island of La Palma is dedicated to monitoring observations. It is currently being set up, employing a costefficient and robotic design. Part of this project is the future construction of a distributed network of small telescopes. The physical motivation of VHE long-term monitoring will be outlined in detail and the perspective for a network for 24/7 observations will be presented.

  10. Cortical Dynamics in Presence of Assemblies of Densely Connected Weight-Hub Neurons

    PubMed Central

    Setareh, Hesam; Deger, Moritz; Petersen, Carl C. H.; Gerstner, Wulfram

    2017-01-01

    Experimental measurements of pairwise connection probability of pyramidal neurons together with the distribution of synaptic weights have been used to construct randomly connected model networks. However, several experimental studies suggest that both wiring and synaptic weight structure between neurons show statistics that differ from random networks. Here we study a network containing a subset of neurons which we call weight-hub neurons, that are characterized by strong inward synapses. We propose a connectivity structure for excitatory neurons that contain assemblies of densely connected weight-hub neurons, while the pairwise connection probability and synaptic weight distribution remain consistent with experimental data. Simulations of such a network with generalized integrate-and-fire neurons display regular and irregular slow oscillations akin to experimentally observed up/down state transitions in the activity of cortical neurons with a broad distribution of pairwise spike correlations. Moreover, stimulation of a model network in the presence or absence of assembly structure exhibits responses similar to light-evoked responses of cortical layers in optogenetically modified animals. We conclude that a high connection probability into and within assemblies of excitatory weight-hub neurons, as it likely is present in some but not all cortical layers, changes the dynamics of a layer of cortical microcircuitry significantly. PMID:28690508

  11. Prioritized Degree Distribution in Wireless Sensor Networks with a Network Coded Data Collection Method

    PubMed Central

    Wan, Jan; Xiong, Naixue; Zhang, Wei; Zhang, Qinchao; Wan, Zheng

    2012-01-01

    The reliability of wireless sensor networks (WSNs) can be greatly affected by failures of sensor nodes due to energy exhaustion or the influence of brutal external environment conditions. Such failures seriously affect the data persistence and collection efficiency. Strategies based on network coding technology for WSNs such as LTCDS can improve the data persistence without mass redundancy. However, due to the bad intermediate performance of LTCDS, a serious ‘cliff effect’ may appear during the decoding period, and source data are hard to recover from sink nodes before sufficient encoded packets are collected. In this paper, the influence of coding degree distribution strategy on the ‘cliff effect’ is observed and the prioritized data storage and dissemination algorithm PLTD-ALPHA is presented to achieve better data persistence and recovering performance. With PLTD-ALPHA, the data in sensor network nodes present a trend that their degree distribution increases along with the degree level predefined, and the persistent data packets can be submitted to the sink node according to its degree in order. Finally, the performance of PLTD-ALPHA is evaluated and experiment results show that PLTD-ALPHA can greatly improve the data collection performance and decoding efficiency, while data persistence is not notably affected. PMID:23235451

  12. Analysis of an algorithm for distributed recognition and accountability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, C.; Frincke, D.A.; Goan, T. Jr.

    1993-08-01

    Computer and network systems are available to attacks. Abandoning the existing huge infrastructure of possibly-insecure computer and network systems is impossible, and replacing them by totally secure systems may not be feasible or cost effective. A common element in many attacks is that a single user will often attempt to intrude upon multiple resources throughout a network. Detecting the attack can become significantly easier by compiling and integrating evidence of such intrusion attempts across the network rather than attempting to assess the situation from the vantage point of only a single host. To solve this problem, we suggest an approachmore » for distributed recognition and accountability (DRA), which consists of algorithms which ``process,`` at a central location, distributed and asynchronous ``reports`` generated by computers (or a subset thereof) throughout the network. Our highest-priority objectives are to observe ways by which an individual moves around in a network of computers, including changing user names to possibly hide his/her true identity, and to associate all activities of multiple instance of the same individual to the same network-wide user. We present the DRA algorithm and a sketch of its proof under an initial set of simplifying albeit realistic assumptions. Later, we relax these assumptions to accommodate pragmatic aspects such as missing or delayed ``reports,`` clock slew, tampered ``reports,`` etc. We believe that such algorithms will have widespread applications in the future, particularly in intrusion-detection system.« less

  13. Scale-free networks which are highly assortative but not small world

    NASA Astrophysics Data System (ADS)

    Small, Michael; Xu, Xiaoke; Zhou, Jin; Zhang, Jie; Sun, Junfeng; Lu, Jun-An

    2008-06-01

    Uncorrelated scale-free networks are necessarily small world (and, in fact, smaller than small world). Nonetheless, for scale-free networks with correlated degree distribution this may not be the case. We describe a mechanism to generate highly assortative scale-free networks which are not small world. We show that it is possible to generate scale-free networks, with arbitrary degree exponent γ>1 , such that the average distance between nodes in the network is large. To achieve this, nodes are not added to the network with preferential attachment. Instead, we greedily optimize the assortativity of the network. The network generation scheme is physically motivated, and we show that the recently observed global network of Avian Influenza outbreaks arises through a mechanism similar to what we present here. Simulations show that this network exhibits very similar physical characteristics (very high assortativity, clustering, and path length).

  14. Distributed Telescope Networks in the Era of Network-Centric Astronomy

    NASA Astrophysics Data System (ADS)

    Solomos, N. H.

    2010-07-01

    In parallel with the world-wide demand for pushing our observational limits (increasingly larger telescope collecting power (ELTs) on the ground, most advanced technology satellites in space), we nowadays realize rapid rising of interest for the construction and deployment of a technologically advanced meta-network or Heterogeneous Telescope Network (hereafter HTN). The HTN is a Network of networks of telescopes and each node of it, consists of an inhomogeneous ensemble of different telescopes, sharing one common feature: the incorporation of a high degree of automation. The rationale behind this new tool, is that crucial astrophysical problems could be tackled very soon from the world-wide spread variety of well equipped autonomous telescopes working as a single instrument. In the full version of this paper, the research potential and future prospects of worldwide networked telescopic systems, is reviewed in the framework of current progress in Astrophysics. It is concluded that the research horizons of HTNs are very broad and the associated technology is currently in a maturity level that permits deployment. An extended interoperability-establishment initiative, involving telescopes of both hemispheres, based on accepted standards, appears a matter of priority. Observatories with infrastructure -of any size-, maintaining computerized telescope facilities, could respond to the challenge, devote part of their resources to the HTN and, in return, receive the rewards of shared resources, observing flexibility, optimized observing performance and the very high observing efficiency of a telescopic meta-network in facilitating competitive front line research.

  15. Multi-phenomenology Observation Network Evaluation Tool'' (MONET)

    NASA Astrophysics Data System (ADS)

    Oltrogge, D.; North, P.; Vallado, D.

    2014-09-01

    Evaluating overall performance of an SSA "system-of-systems" observational network collecting against thousands of Resident Space Objects (RSO) is very difficult for typical tasking or scheduling-based analysis tools. This is further complicated by networks that have a wide variety of sensor types and phenomena, to include optical, radar and passive RF types, each having unique resource, ops tempo, competing customer and detectability constraints. We present details of the Multi-phenomenology Observation Network Evaluation Tool (MONET), which circumvents these difficulties by assessing the ideal performance of such a network via a digitized supply-vs-demand approach. Cells of each sensors supply time are distributed among RSO targets of interest to determine the average performance of the network against that set of RSO targets. Orbit Determination heuristics are invoked to represent observation quantity and geometry notionally required to obtain the desired orbit estimation quality. To feed this approach, we derive the detectability and collection rate performance of optical, radar and passive RF sensor physical and performance characteristics. We then prioritize the selected RSO targets according to object size, active/inactive status, orbit regime, and/or other considerations. Finally, the OD-derived tracking demands of each RSO of interest are levied against remaining sensor supply until either (a) all sensor time is exhausted; or (b) the list of RSO targets is exhausted. The outputs from MONET include overall network performance metrics delineated by sensor type, objects and orbits tracked, along with likely orbit accuracies which might result from the conglomerate network tracking.

  16. Comprehensive evaluation index system of total supply capability in distribution network

    NASA Astrophysics Data System (ADS)

    Zhang, Linyao; Wu, Guilian; Yang, Jingyuan; Jia, Shuangrui; Zhang, Wei; Sun, Weiqing

    2018-01-01

    Aiming at the lack of a comprehensive evaluation of the distribution network, based on the existing distribution network evaluation index system, combined with the basic principles of constructing the evaluation index, put forward a new evaluation index system of distribution network capacity. This paper is mainly based on the total supply capability of the distribution network, combining single index and various factors, into a multi-evaluation index of the distribution network, thus forming a reasonable index system, and various indicators of rational quantification make the evaluation results more intuitive. In order to have a comprehensive judgment of distribution network, this paper uses weights to analyse the importance of each index, verify the rationality of the index system through the example, it is proved that the rationality of the index system, so as to guide the direction of distribution network planning.

  17. Okayama optical polarimetry and spectroscopy system (OOPS) II. Network-transparent control software.

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Kurakami, T.; Shimizu, Y.; Yutani, M.

    Control system of the OOPS (Okayama Optical Polarimetry and Spectroscopy system) is designed to integrate several instruments whose controllers are distributed over a network; the OOPS instrument, a CCD camera and data acquisition unit, the 91 cm telescope, an autoguider, a weather monitor, and an image display tool SAOimage. With the help of message-based communication, the control processes cooperate with related processes to perform an astronomical observation under supervising control by a scheduler process. A logger process collects status data of all the instruments to distribute them to related processes upon request. Software structure of each process is described.

  18. Curvature and temperature of complex networks.

    PubMed

    Krioukov, Dmitri; Papadopoulos, Fragkiskos; Vahdat, Amin; Boguñá, Marián

    2009-09-01

    We show that heterogeneous degree distributions in observed scale-free topologies of complex networks can emerge as a consequence of the exponential expansion of hidden hyperbolic space. Fermi-Dirac statistics provides a physical interpretation of hyperbolic distances as energies of links. The hidden space curvature affects the heterogeneity of the degree distribution, while clustering is a function of temperature. We embed the internet into the hyperbolic plane and find a remarkable congruency between the embedding and our hyperbolic model. Besides proving our model realistic, this embedding may be used for routing with only local information, which holds significant promise for improving the performance of internet routing.

  19. Variable synaptic strengths controls the firing rate distribution in feedforward neural networks.

    PubMed

    Ly, Cheng; Marsat, Gary

    2018-02-01

    Heterogeneity of firing rate statistics is known to have severe consequences on neural coding. Recent experimental recordings in weakly electric fish indicate that the distribution-width of superficial pyramidal cell firing rates (trial- and time-averaged) in the electrosensory lateral line lobe (ELL) depends on the stimulus, and also that network inputs can mediate changes in the firing rate distribution across the population. We previously developed theoretical methods to understand how two attributes (synaptic and intrinsic heterogeneity) interact and alter the firing rate distribution in a population of integrate-and-fire neurons with random recurrent coupling. Inspired by our experimental data, we extend these theoretical results to a delayed feedforward spiking network that qualitatively capture the changes of firing rate heterogeneity observed in in-vivo recordings. We demonstrate how heterogeneous neural attributes alter firing rate heterogeneity, accounting for the effect with various sensory stimuli. The model predicts how the strength of the effective network connectivity is related to intrinsic heterogeneity in such delayed feedforward networks: the strength of the feedforward input is positively correlated with excitability (threshold value for spiking) when firing rate heterogeneity is low and is negatively correlated with excitability with high firing rate heterogeneity. We also show how our theory can be used to predict effective neural architecture. We demonstrate that neural attributes do not interact in a simple manner but rather in a complex stimulus-dependent fashion to control neural heterogeneity and discuss how it can ultimately shape population codes.

  20. Cooperative Learning for Distributed In-Network Traffic Classification

    NASA Astrophysics Data System (ADS)

    Joseph, S. B.; Loo, H. R.; Ismail, I.; Andromeda, T.; Marsono, M. N.

    2017-04-01

    Inspired by the concept of autonomic distributed/decentralized network management schemes, we consider the issue of information exchange among distributed network nodes to network performance and promote scalability for in-network monitoring. In this paper, we propose a cooperative learning algorithm for propagation and synchronization of network information among autonomic distributed network nodes for online traffic classification. The results show that network nodes with sharing capability perform better with a higher average accuracy of 89.21% (sharing data) and 88.37% (sharing clusters) compared to 88.06% for nodes without cooperative learning capability. The overall performance indicates that cooperative learning is promising for distributed in-network traffic classification.

  1. Variability in the microcanonical cascades parameters among gauges of urban precipitation monitoring network

    NASA Astrophysics Data System (ADS)

    Licznar, Paweł; Rupp, David; Adamowski, Witold

    2013-04-01

    In the fall of 2008, Municipal Water Supply and Sewerage Company (MWSSC) in Warsaw began operating the first large precipitation monitoring network dedicated to urban hydrology in Poland. The process of establishing the network as well as the preliminary phase of its operation, raised a number of questions concerning optimal gauge location and density and revealed the urgent need for new data processing techniques. When considering the full-field precipitation as input to hydrodynamic models of stormwater and combined sewage systems, standard processing techniques developed previously for single gauges and concentrating mainly on the analysis of maximum rainfall rates and intensity-duration-frequency (IDF) curves development were found inadequate. We used a multifractal rainfall modeling framework based on microcanonical multiplicative random cascades to analyze properties of Warsaw precipitation. We calculated breakdown coefficients (BDC) for the hierarchy of timescales from λ=1 (5-min) up to λ=128 (1280-min) for all 25 gauges in the network. At small timescales histograms of BDCs were strongly deformed due to the recording precision of rainfall amounts. A randomization procedure statistically removed the artifacts due to precision errors in the original series. At large timescales BDC values were sparse due to relatively short period of observations (2008-2011). An algorithm with a moving window was proposed to increase the number of BDC values at large timescales and to smooth their histograms. The resulting empirical BDC histograms were modeled by a theoretical "2N-B" distribution, which combined 2 separate normal (N) distributions and one beta (B) distribution. A clear evolution of BDC histograms from a 2N-B distribution for small timescales to a N-B distributions for intermediate timescales and finally to a single beta distributions for large timescales was observed for all gauges. Cluster analysis revealed close patterns of BDC distributions among almost all gauges and timescales with exception of two gauges located at the city limits (one gauge was located on the Okęcie airport). We evaluated the performance of the microcanonical cascades at disaggregating 1280-min (quasi daily precipitation totals) into 5-min rainfall data for selected gauges. Synthetic time series were analyzed with respect to their intermittency and variability of rainfall intensities and compared to observational series. We showed that microcanonical cascades models could be used in practice for generating synthetic rainfall time series suitable as input to urban hydrology models in Warsaw.

  2. Examining the Suitability of a Sparse In Situ Soil Moisture Monitoring Network for Assimilation into a Spatially Distributed Hydrologic Model

    NASA Astrophysics Data System (ADS)

    De Vleeschouwer, N.; Verhoest, N.; Pauwels, V. R. N.

    2015-12-01

    The continuous monitoring of soil moisture in a permanent network can yield an interesting data product for use in hydrological data assimilation. Major advantages of in situ observations compared to remote sensing products are the potential vertical extent of the measurements, the finer temporal resolution of the observation time series, the smaller impact of land cover variability on the observation bias, etc. However, two major disadvantages are the typical small integration volume of in situ measurements and the often large spacing between monitoring locations. This causes only a small part of the modelling domain to be directly observed. Furthermore, the spatial configuration of the monitoring network is typically temporally non-dynamic. Therefore two questions can be raised. Do spatially sparse in situ soil moisture observations contain a sufficient data representativeness to successfully assimilate them into the largely unobserved spatial extent of a distributed hydrological model? And if so, how is this assimilation best performed? Consequently two important factors that can influence the success of assimilating in situ monitored soil moisture are the spatial configuration of the monitoring network and the applied assimilation algorithm. In this research the influence of those factors is examined by means of synthetic data-assimilation experiments. The study area is the ± 100 km² catchment of the Bellebeek in Flanders, Belgium. The influence of the spatial configuration is examined by varying the amount of locations and their position in the landscape. The latter is performed using several techniques including temporal stability analysis and clustering. Furthermore the observation depth is considered by comparing assimilation of surface layer (5 cm) and deeper layer (50 cm) observations. The impact of the assimilation algorithm is assessed by comparing the performance obtained with two well-known algorithms: Newtonian nudging and the Ensemble Kalman Filter.

  3. Empirical Modeling of the Plasmasphere Dynamics Using Neural Networks

    NASA Astrophysics Data System (ADS)

    Zhelavskaya, I. S.; Shprits, Y.; Spasojevic, M.

    2017-12-01

    We present a new empirical model for reconstructing the global dynamics of the cold plasma density distribution based only on solar wind data and geomagnetic indices. Utilizing the density database obtained using the NURD (Neural-network-based Upper hybrid Resonance Determination) algorithm for the period of October 1, 2012 - July 1, 2016, in conjunction with solar wind data and geomagnetic indices, we develop a neural network model that is capable of globally reconstructing the dynamics of the cold plasma density distribution for 2 ≤ L ≤ 6 and all local times. We validate and test the model by measuring its performance on independent datasets withheld from the training set and by comparing the model predicted global evolution with global images of He+ distribution in the Earth's plasmasphere from the IMAGE Extreme UltraViolet (EUV) instrument. We identify the parameters that best quantify the plasmasphere dynamics by training and comparing multiple neural networks with different combinations of input parameters (geomagnetic indices, solar wind data, and different durations of their time history). We demonstrate results of both local and global plasma density reconstruction. This study illustrates how global dynamics can be reconstructed from local in-situ observations by using machine learning techniques.

  4. Next Generation NASA Initiative for Space Geodesy

    NASA Technical Reports Server (NTRS)

    Merkowitz, S. M.; Desai, S.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry J. F.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    Space geodesy measurement requirements have become more and more stringent as our understanding of the physical processes and our modeling techniques have improved. In addition, current and future spacecraft will have ever-increasing measurement capability and will lead to increasingly sophisticated models of changes in the Earth system. Ground-based space geodesy networks with enhanced measurement capability will be essential to meeting these oncoming requirements and properly interpreting the sate1!ite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation ofthe observed geophysical signals. These requirements have been articulated by the Global Geodetic Observing System (GGOS). The NASA Space Geodesy Project (SGP) is developing a prototype core site as the basis for a next generation Space Geodetic Network (SGN) that would be NASA's contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Each of the sites in the SGN would include co-located, state of-the-art systems from all four space geodetic observing techniques (GNSS, SLR, VLBI, and DORIS). The prototype core site is being developed at NASA's Geophysical and Astronomical Observatory at Goddard Space Flight Center. The project commenced in 2011 and is scheduled for completion in late 2013. In January 2012, two multiconstellation GNSS receivers, GODS and GODN, were established at the prototype site as part of the local geodetic network. Development and testing are also underway on the next generation SLR and VLBI systems along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vector ties, and network design studies are being performed to define the appropriate number and distribution of these next generation space geodetic core sites that are required to achieve the driving ITRF requirements. We present the status of this prototype next generation space geodetic core site, results from the analysis of data from the established geodetic stations, and results from the ongoing network design studies.

  5. Survey: National Environmental Satellite Service

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The national Environmental Satellite Service (NESS) receives data at periodic intervals from satellites of the Synchronous Meteorological Satellite/Geostationary Operational Environmental Satellite series and from the Improved TIROS (Television Infrared Observational Satellite) Operational Satellite. Within the conterminous United States, direct readout and processed products are distributed to users over facsimile networks from a central processing and data distribution facility. In addition, the NESS Satellite Field Stations analyze, interpret, and distribute processed geostationary satellite products to regional weather service activities.

  6. Multi-time-step ahead daily and hourly intermittent reservoir inflow prediction by artificial intelligent techniques using lumped and distributed data

    NASA Astrophysics Data System (ADS)

    Jothiprakash, V.; Magar, R. B.

    2012-07-01

    SummaryIn this study, artificial intelligent (AI) techniques such as artificial neural network (ANN), Adaptive neuro-fuzzy inference system (ANFIS) and Linear genetic programming (LGP) are used to predict daily and hourly multi-time-step ahead intermittent reservoir inflow. To illustrate the applicability of AI techniques, intermittent Koyna river watershed in Maharashtra, India is chosen as a case study. Based on the observed daily and hourly rainfall and reservoir inflow various types of time-series, cause-effect and combined models are developed with lumped and distributed input data. Further, the model performance was evaluated using various performance criteria. From the results, it is found that the performances of LGP models are found to be superior to ANN and ANFIS models especially in predicting the peak inflows for both daily and hourly time-step. A detailed comparison of the overall performance indicated that the combined input model (combination of rainfall and inflow) performed better in both lumped and distributed input data modelling. It was observed that the lumped input data models performed slightly better because; apart from reducing the noise in the data, the better techniques and their training approach, appropriate selection of network architecture, required inputs, and also training-testing ratios of the data set. The slight poor performance of distributed data is due to large variations and lesser number of observed values.

  7. Abnormal brain synchrony in Down Syndrome☆

    PubMed Central

    Anderson, Jeffrey S.; Nielsen, Jared A.; Ferguson, Michael A.; Burback, Melissa C.; Cox, Elizabeth T.; Dai, Li; Gerig, Guido; Edgin, Jamie O.; Korenberg, Julie R.

    2013-01-01

    Down Syndrome is the most common genetic cause for intellectual disability, yet the pathophysiology of cognitive impairment in Down Syndrome is unknown. We compared fMRI scans of 15 individuals with Down Syndrome to 14 typically developing control subjects while they viewed 50 min of cartoon video clips. There was widespread increased synchrony between brain regions, with only a small subset of strong, distant connections showing underconnectivity in Down Syndrome. Brain regions showing negative correlations were less anticorrelated and were among the most strongly affected connections in the brain. Increased correlation was observed between all of the distributed brain networks studied, with the strongest internetwork correlation in subjects with the lowest performance IQ. A functional parcellation of the brain showed simplified network structure in Down Syndrome organized by local connectivity. Despite increased interregional synchrony, intersubject correlation to the cartoon stimuli was lower in Down Syndrome, indicating that increased synchrony had a temporal pattern that was not in response to environmental stimuli, but idiosyncratic to each Down Syndrome subject. Short-range, increased synchrony was not observed in a comparison sample of 447 autism vs. 517 control subjects from the Autism Brain Imaging Exchange (ABIDE) collection of resting state fMRI data, and increased internetwork synchrony was only observed between the default mode and attentional networks in autism. These findings suggest immature development of connectivity in Down Syndrome with impaired ability to integrate information from distant brain regions into coherent distributed networks. PMID:24179822

  8. Realizations of highly heterogeneous collagen networks via stochastic reconstruction for micromechanical analysis of tumor cell invasion

    NASA Astrophysics Data System (ADS)

    Nan, Hanqing; Liang, Long; Chen, Guo; Liu, Liyu; Liu, Ruchuan; Jiao, Yang

    2018-03-01

    Three-dimensional (3D) collective cell migration in a collagen-based extracellular matrix (ECM) is among one of the most significant topics in developmental biology, cancer progression, tissue regeneration, and immune response. Recent studies have suggested that collagen-fiber mediated force transmission in cellularized ECM plays an important role in stress homeostasis and regulation of collective cellular behaviors. Motivated by the recent in vitro observation that oriented collagen can significantly enhance the penetration of migrating breast cancer cells into dense Matrigel which mimics the intravasation process in vivo [Han et al. Proc. Natl. Acad. Sci. USA 113, 11208 (2016), 10.1073/pnas.1610347113], we devise a procedure for generating realizations of highly heterogeneous 3D collagen networks with prescribed microstructural statistics via stochastic optimization. Specifically, a collagen network is represented via the graph (node-bond) model and the microstructural statistics considered include the cross-link (node) density, valence distribution, fiber (bond) length distribution, as well as fiber orientation distribution. An optimization problem is formulated in which the objective function is defined as the squared difference between a set of target microstructural statistics and the corresponding statistics for the simulated network. Simulated annealing is employed to solve the optimization problem by evolving an initial network via random perturbations to generate realizations of homogeneous networks with randomly oriented fibers, homogeneous networks with aligned fibers, heterogeneous networks with a continuous variation of fiber orientation along a prescribed direction, as well as a binary system containing a collagen region with aligned fibers and a dense Matrigel region with randomly oriented fibers. The generation and propagation of active forces in the simulated networks due to polarized contraction of an embedded ellipsoidal cell and a small group of cells are analyzed by considering a nonlinear fiber model incorporating strain hardening upon large stretching and buckling upon compression. Our analysis shows that oriented fibers can significantly enhance long-range force transmission in the network. Moreover, in the oriented-collagen-Matrigel system, the forces generated by a polarized cell in collagen can penetrate deeply into the Matrigel region. The stressed Matrigel fibers could provide contact guidance for the migrating cell cells, and thus enhance their penetration into Matrigel. This suggests a possible mechanism for the observed enhanced intravasation by oriented collagen.

  9. Consumers don’t play dice, influence of social networks and advertisements

    NASA Astrophysics Data System (ADS)

    Groot, Robert D.

    2006-05-01

    Empirical data of supermarket sales show stylised facts that are similar to stock markets, with a broad (truncated) Lévy distribution of weekly sales differences in the baseline sales [R.D. Groot, Physica A 353 (2005) 501]. To investigate the cause of this, the influence of social interactions and advertisements are studied in an agent-based model of consumers in a social network. The influence of network topology was varied by using a small-world network, a random network and a Barabási-Albert network. The degree to which consumers value the opinion of their peers was also varied. On a small-world and random network we find a phase transition between an open market and a locked-in market that is similar to condensation in liquids. At the critical point, fluctuations become large and buying behaviour is strongly correlated. However, on the small world network the noise distribution at the critical point is Gaussian, and critical slowing down occurs which is not observed in supermarket sales. On a scale-free network, the model shows a transition between a gas-like phase and a glassy state, but at the transition point the noise amplitude is much larger than what is seen in supermarket sales. To explore the role of advertisements, a model is studied where imprints are placed on the minds of consumers that ripen when a decision for a product is made. The correct distribution of weekly sales returns follows naturally from this model, as well as the noise amplitude, the correlation time and cross-correlation of sales fluctuations. For particular parameter values, simulated sales correlation shows power-law decay in time. The model predicts that social interaction helps to prevent aversion, and that products are viewed more positively when their consumption rate is higher.

  10. Electroluminescence from single-wall carbon nanotube network transistors.

    PubMed

    Adam, E; Aguirre, C M; Marty, L; St-Antoine, B C; Meunier, F; Desjardins, P; Ménard, D; Martel, R

    2008-08-01

    The electroluminescence (EL) properties from single-wall carbon nanotube network field-effect transistors (NNFETs) and small bundle carbon nanotube field effect transistors (CNFETs) are studied using spectroscopy and imaging in the near-infrared (NIR). At room temperature, NNFETs produce broad (approximately 180 meV) and structured NIR spectra, while they are narrower (approximately 80 meV) for CNFETs. EL emission from NNFETs is located in the vicinity of the minority carrier injecting contact (drain) and the spectrum of the emission is red shifted with respect to the corresponding absorption spectrum. A phenomenological model based on a Fermi-Dirac distribution of carriers in the nanotube network reproduces the spectral features observed. This work supports bipolar (electron-hole) current recombination as the main mechanism of emission and highlights the drastic influence of carrier distribution on the optoelectronic properties of carbon nanotube films.

  11. Analysis of neuronal cells of dissociated primary culture on high-density CMOS electrode array

    PubMed Central

    Matsuda, Eiko; Mita, Takeshi; Hubert, Julien; Bakkum, Douglas; Frey, Urs; Hierlemann, Andreas; Takahashi, Hirokazu; Ikegami, Takashi

    2017-01-01

    Spontaneous development of neuronal cells was recorded around 4–34 days in vitro (DIV) with high-density CMOS array, which enables detailed study of the spatio-temporal activity of neuronal culture. We used the CMOS array to characterize the evolution of the inter-spike interval (ISI) distribution from putative single neurons, and estimate the network structure based on transfer entropy analysis, where each node corresponds to a single neuron. We observed that the ISI distributions gradually obeyed the power law with maturation of the network. The amount of information transferred between neurons increased at the early stage of development, but decreased as the network matured. These results suggest that both ISI and transfer entropy were very useful for characterizing the dynamic development of cultured neural cells over a few weeks. PMID:24109870

  12. Modular decomposition of metabolic reaction networks based on flux analysis and pathway projection.

    PubMed

    Yoon, Jeongah; Si, Yaguang; Nolan, Ryan; Lee, Kyongbum

    2007-09-15

    The rational decomposition of biochemical networks into sub-structures has emerged as a useful approach to study the design of these complex systems. A biochemical network is characterized by an inhomogeneous connectivity distribution, which gives rise to several organizational features, including modularity. To what extent the connectivity-based modules reflect the functional organization of the network remains to be further explored. In this work, we examine the influence of physiological perturbations on the modular organization of cellular metabolism. Modules were characterized for two model systems, liver and adipocyte primary metabolism, by applying an algorithm for top-down partition of directed graphs with non-uniform edge weights. The weights were set by the engagement of the corresponding reactions as expressed by the flux distribution. For the base case of the fasted rat liver, three modules were found, carrying out the following biochemical transformations: ketone body production, glucose synthesis and transamination. This basic organization was further modified when different flux distributions were applied that describe the liver's metabolic response to whole body inflammation. For the fully mature adipocyte, only a single module was observed, integrating all of the major pathways needed for lipid storage. Weaker levels of integration between the pathways were found for the early stages of adipocyte differentiation. Our results underscore the inhomogeneous distribution of both connectivity and connection strengths, and suggest that global activity data such as the flux distribution can be used to study the organizational flexibility of cellular metabolism. Supplementary data are available at Bioinformatics online.

  13. Anti-islanding Protection of Distributed Generation Using Rate of Change of Impedance

    NASA Astrophysics Data System (ADS)

    Shah, Pragnesh; Bhalja, Bhavesh

    2013-08-01

    Distributed Generation (DG), which is interlinked with distribution system, has inevitable effect on distribution system. Integrating DG with the utility network demands an anti-islanding scheme to protect the system. Failure to trip islanded generators can lead to problems such as threats to personnel safety, out-of-phase reclosing, and degradation of power quality. In this article, a new method for anti-islanding protection based on impedance monitoring of distribution network is carried out in presence of DG. The impedance measured between two phases is used to derive the rate of change of impedance (dz/dt), and its peak values are used for final trip decision. Test data are generated using PSCAD/EMTDC software package and the performance of the proposed method is evaluated in MatLab software. The simulation results show the effectiveness of the proposed scheme as it is capable to detect islanding condition accurately. Subsequently, it is also observed that the proposed scheme does not mal-operate during other disturbances such as short circuit and switching event.

  14. Optimization of water-level monitoring networks in the eastern Snake River Plain aquifer using a kriging-based genetic algorithm method

    USGS Publications Warehouse

    Fisher, Jason C.

    2013-01-01

    Long-term groundwater monitoring networks can provide essential information for the planning and management of water resources. Budget constraints in water resource management agencies often mean a reduction in the number of observation wells included in a monitoring network. A network design tool, distributed as an R package, was developed to determine which wells to exclude from a monitoring network because they add little or no beneficial information. A kriging-based genetic algorithm method was used to optimize the monitoring network. The algorithm was used to find the set of wells whose removal leads to the smallest increase in the weighted sum of the (1) mean standard error at all nodes in the kriging grid where the water table is estimated, (2) root-mean-squared-error between the measured and estimated water-level elevation at the removed sites, (3) mean standard deviation of measurements across time at the removed sites, and (4) mean measurement error of wells in the reduced network. The solution to the optimization problem (the best wells to retain in the monitoring network) depends on the total number of wells removed; this number is a management decision. The network design tool was applied to optimize two observation well networks monitoring the water table of the eastern Snake River Plain aquifer, Idaho; these networks include the 2008 Federal-State Cooperative water-level monitoring network (Co-op network) with 166 observation wells, and the 2008 U.S. Geological Survey-Idaho National Laboratory water-level monitoring network (USGS-INL network) with 171 wells. Each water-level monitoring network was optimized five times: by removing (1) 10, (2) 20, (3) 40, (4) 60, and (5) 80 observation wells from the original network. An examination of the trade-offs associated with changes in the number of wells to remove indicates that 20 wells can be removed from the Co-op network with a relatively small degradation of the estimated water table map, and 40 wells can be removed from the USGS-INL network before the water table map degradation accelerates. The optimal network designs indicate the robustness of the network design tool. Observation wells were removed from high well-density areas of the network while retaining the spatial pattern of the existing water-table map.

  15. Public Transport Systems in Poland: From Bialystok to Zielona Góra by Bus and Tram Using Universal Statistics of Complex Networks

    NASA Astrophysics Data System (ADS)

    Sienkiewicz, J.; Holyst, J. A.

    2005-05-01

    We have examined a topology of 21 public transport networks in Poland. Our data exhibit several universal features in considered systems when they are analyzed from the point of view of evolving networks. Depending on the assumed definition of a network topology the degree distribution can follow a power law p(k) ˜ k-γ or can be described by an exponential function p(k) ˜ exp (-α k). In the first case one observes that mean distances between two nodes are a linear function of logarithms of their degrees product.

  16. Altered Network Oscillations and Functional Connectivity Dynamics in Children Born Very Preterm.

    PubMed

    Moiseev, Alexander; Doesburg, Sam M; Herdman, Anthony T; Ribary, Urs; Grunau, Ruth E

    2015-09-01

    Structural brain connections develop atypically in very preterm children, and altered functional connectivity is also evident in fMRI studies. Such alterations in brain network connectivity are associated with cognitive difficulties in this population. Little is known, however, about electrophysiological interactions among specific brain networks in children born very preterm. In the present study, we recorded magnetoencephalography while very preterm children and full-term controls performed a visual short-term memory task. Regions expressing task-dependent activity changes were identified using beamformer analysis, and inter-regional phase synchrony was calculated. Very preterm children expressed altered regional recruitment in distributed networks of brain areas, across standard physiological frequency ranges including the theta, alpha, beta and gamma bands. Reduced oscillatory synchrony was observed among task-activated brain regions in very preterm children, particularly for connections involving areas critical for executive abilities, including middle frontal gyrus. These findings suggest that inability to recruit neurophysiological activity and interactions in distributed networks including frontal regions may contribute to difficulties in cognitive development in children born very preterm.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Huys, Otti, E-mail: otti.dhuys@phy.duke.edu; Haynes, Nicholas D.; Lohmann, Johannes

    Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delaysmore » between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.« less

  18. The Astrophysical Multimessenger Observatory Network (AMON)

    NASA Technical Reports Server (NTRS)

    Smith. M. W. E.; Fox, D. B.; Cowen, D. F.; Meszaros, P.; Tesic, G.; Fixelle, J.; Bartos, I.; Sommers, P.; Ashtekar, Abhay; Babu, G. Jogesh; hide

    2013-01-01

    We summarize the science opportunity, design elements, current and projected partner observatories, and anticipated science returns of the Astrophysical Multimessenger Observatory Network (AMON). AMON will link multiple current and future high-energy, multimessenger, and follow-up observatories together into a single network, enabling near real-time coincidence searches for multimessenger astrophysical transients and their electromagnetic counterparts. Candidate and high-confidence multimessenger transient events will be identified, characterized, and distributed as AMON alerts within the network and to interested external observers, leading to follow-up observations across the electromagnetic spectrum. In this way, AMON aims to evoke the discovery of multimessenger transients from within observatory subthreshold data streams and facilitate the exploitation of these transients for purposes of astronomy and fundamental physics. As a central hub of global multimessenger science, AMON will also enable cross-collaboration analyses of archival datasets in search of rare or exotic astrophysical phenomena.

  19. Distribution of shallow very low frequency earthquakes in the eastern Nankai trough influenced by a subducted oceanic ridge: Results from cluster analysis applied to ocean bottom seismographs

    NASA Astrophysics Data System (ADS)

    To, A.; Obana, K.; Araki, E.

    2016-12-01

    The activity of very low frequency earthquakes (VLFEs) in the shallow accretionary prism of the eastern Nankai trough has been observed frequently in the past. In this study, we investigated the distribution of VLFEs that occurred in October 2015, which were recorded by an array of broadband ocean bottom seismometers (BBOBSs) of DONET1 network. The size of the network is much wider (>80 km) compared to previous BBOBS networks that were used for close-in observations of VLFEs; therefore the new dataset provides a broader overview of the VLFE distribution of this region. We first located the detected events using conventional methods such as the envelope correlation method. However, the results seemed to be largely scattered due to noise and the effect of 3D structures that could not be properly handled. Then, we introduced hierarchal clustering analysis, based on measured travel time patterns among stations obtained for each event. The analyses enabled the assessment of relative locations among events. Finally, the locations of event-clusters were estimated, instead of individual events, so that the obtained locations seemed less scattered. The obtained results indicate that the VLFE distribution is strongly influenced by a subducted ridge (Park et al., 2003) that exists beneath the northeastern side of the DONET1 network. Though the VLFEs are distributed from an area near the outer ridge toward the trench axis in the region with a smooth plate boundary, they are clustered at a shallow depth near the outer ridge in the region of the rough plate boundary. The VLFEs are clustered on the landward side of the peak of the subducted ridge; this could be explained by an elevated pore pressure in the region caused by the low-permeability oceanic ridge that may clog the up-dip pathway of the fluid along the decollement zone. The along-strike variation of the stress state, inferred from the VLFE distribution, should be an important factor in assessing the strain release pattern and the regional variation of the tsunamigenic potential in the shallow plate boundary.

  20. Spatial properties of snow cover in the Upper Merced River Basin: implications for a distributed snow measurement network

    NASA Astrophysics Data System (ADS)

    Bouffon, T.; Rice, R.; Bales, R.

    2006-12-01

    The spatial distributions of snow water equivalent (SWE) and snow depth within a 1, 4, and 16 km2 grid element around two automated snow pillows in a forested and open- forested region of the Upper Merced River Basin (2,800 km2) of Yosemite National Park were characterized using field observations and analyzed using binary regression trees. Snow surveys occurred at the forested site during the accumulation and ablation seasons, while at the open-forest site a survey was performed only during the accumulation season. An average of 130 snow depth and 7 snow density measurements were made on each survey, within the 4 km2 grid. Snow depth was distributed using binary regression trees and geostatistical methods using the physiographic parameters (e.g. elevation, slope, vegetation, aspect). Results in the forest region indicate that the snow pillow overestimated average SWE within the 1, 4, and 16 km2 areas by 34 percent during ablation, but during accumulation the snow pillow provides a good estimate of the modeled mean SWE grid value, however it is suspected that the snow pillow was underestimating SWE. However, at the open forest site, during accumulation, the snow pillow was 28 percent greater than the mean modeled grid element. In addition, the binary regression trees indicate that the independent variables of vegetation, slope, and aspect are the most influential parameters of snow depth distribution. The binary regression tree and multivariate linear regression models explain about 60 percent of the initial variance for snow depth and 80 percent for density, respectively. This short-term study provides motivation and direction for the installation of a distributed snow measurement network to fill the information gap in basin-wide SWE and snow depth measurements. Guided by these results, a distributed snow measurement network was installed in the Fall 2006 at Gin Flat in the Upper Merced River Basin with the specific objective of measuring accumulation and ablation across topographic variables with the aim of providing guidance for future larger scale observation network designs.

  1. Distributed Bayesian Computation and Self-Organized Learning in Sheets of Spiking Neurons with Local Lateral Inhibition

    PubMed Central

    Bill, Johannes; Buesing, Lars; Habenschuss, Stefan; Nessler, Bernhard; Maass, Wolfgang; Legenstein, Robert

    2015-01-01

    During the last decade, Bayesian probability theory has emerged as a framework in cognitive science and neuroscience for describing perception, reasoning and learning of mammals. However, our understanding of how probabilistic computations could be organized in the brain, and how the observed connectivity structure of cortical microcircuits supports these calculations, is rudimentary at best. In this study, we investigate statistical inference and self-organized learning in a spatially extended spiking network model, that accommodates both local competitive and large-scale associative aspects of neural information processing, under a unified Bayesian account. Specifically, we show how the spiking dynamics of a recurrent network with lateral excitation and local inhibition in response to distributed spiking input, can be understood as sampling from a variational posterior distribution of a well-defined implicit probabilistic model. This interpretation further permits a rigorous analytical treatment of experience-dependent plasticity on the network level. Using machine learning theory, we derive update rules for neuron and synapse parameters which equate with Hebbian synaptic and homeostatic intrinsic plasticity rules in a neural implementation. In computer simulations, we demonstrate that the interplay of these plasticity rules leads to the emergence of probabilistic local experts that form distributed assemblies of similarly tuned cells communicating through lateral excitatory connections. The resulting sparse distributed spike code of a well-adapted network carries compressed information on salient input features combined with prior experience on correlations among them. Our theory predicts that the emergence of such efficient representations benefits from network architectures in which the range of local inhibition matches the spatial extent of pyramidal cells that share common afferent input. PMID:26284370

  2. Spectral analysis of Chinese language: Co-occurrence networks from four literary genres

    NASA Astrophysics Data System (ADS)

    Liang, Wei; Chen, Guanrong

    2016-05-01

    The eigenvalues and eigenvectors of the adjacency matrix of a network contain essential information about its topology. For each of the Chinese language co-occurrence networks constructed from four literary genres, i.e., essay, popular science article, news report, and novel, it is found that the largest eigenvalue depends on the network size N, the number of edges, the average shortest path length, and the clustering coefficient. Moreover, it is found that their node-degree distributions all follow a power-law. The number of different eigenvalues, Nλ, is found numerically to increase in the manner of Nλ ∝ log N for novel and Nλ ∝ N for the other three literary genres. An ;M; shape or a triangle-like distribution appears in their spectral densities. The eigenvector corresponding to the largest eigenvalue is mostly localized to a node with the largest degree. For the above observed phenomena, mathematical analysis is provided with interpretation from a linguistic perspective.

  3. Fishing in the Amazonian forest: a gendered social network puzzle

    PubMed Central

    Díaz-Reviriego, I.; Fernández-Llamazares, Á.; Howard, P.L; Molina, JL; Reyes-García, V

    2016-01-01

    We employ social network analysis (SNA) to describe the structure of subsistence fishing social networks and to explore the relation between fishers’ emic perceptions of fishing expertise and their position in networks. Participant observation and quantitative methods were employed among the Tsimane’ Amerindians of the Bolivian Amazonia. A multiple regression quadratic assignment procedure was used to explore the extent to which gender, kinship, and age homophilies influence the formation of fishing networks. Logistic regressions were performed to determine the association between the fishers’ expertise, their socio-demographic identities, and network centrality. We found that fishing networks are gendered and that there is a positive association between fishers’ expertise and centrality in networks, an association that is more striking for women than for men. We propose that a social network perspective broadens understanding of the relations that shape the intracultural distribution of fishing expertise as well as natural resource access and use. PMID:28479670

  4. Fishing in the Amazonian forest: a gendered social network puzzle.

    PubMed

    Díaz-Reviriego, I; Fernández-Llamazares, Á; Howard, P L; Molina, J L; Reyes-García, V

    2017-01-01

    We employ social network analysis (SNA) to describe the structure of subsistence fishing social networks and to explore the relation between fishers' emic perceptions of fishing expertise and their position in networks. Participant observation and quantitative methods were employed among the Tsimane' Amerindians of the Bolivian Amazonia. A multiple regression quadratic assignment procedure was used to explore the extent to which gender, kinship, and age homophilies influence the formation of fishing networks. Logistic regressions were performed to determine the association between the fishers' expertise, their socio-demographic identities, and network centrality. We found that fishing networks are gendered and that there is a positive association between fishers' expertise and centrality in networks, an association that is more striking for women than for men. We propose that a social network perspective broadens understanding of the relations that shape the intracultural distribution of fishing expertise as well as natural resource access and use.

  5. Synaptic plasticity and neuronal refractory time cause scaling behaviour of neuronal avalanches

    NASA Astrophysics Data System (ADS)

    Michiels van Kessenich, L.; de Arcangelis, L.; Herrmann, H. J.

    2016-08-01

    Neuronal avalanches measured in vitro and in vivo in different cortical networks consistently exhibit power law behaviour for the size and duration distributions with exponents typical for a mean field self-organized branching process. These exponents are also recovered in neuronal network simulations implementing various neuronal dynamics on different network topologies. They can therefore be considered a very robust feature of spontaneous neuronal activity. Interestingly, this scaling behaviour is also observed on regular lattices in finite dimensions, which raises the question about the origin of the mean field behavior observed experimentally. In this study we provide an answer to this open question by investigating the effect of activity dependent plasticity in combination with the neuronal refractory time in a neuronal network. Results show that the refractory time hinders backward avalanches forcing a directed propagation. Hebbian plastic adaptation plays the role of sculpting these directed avalanche patterns into the topology of the network slowly changing it into a branched structure where loops are marginal.

  6. Synaptic plasticity and neuronal refractory time cause scaling behaviour of neuronal avalanches.

    PubMed

    Michiels van Kessenich, L; de Arcangelis, L; Herrmann, H J

    2016-08-18

    Neuronal avalanches measured in vitro and in vivo in different cortical networks consistently exhibit power law behaviour for the size and duration distributions with exponents typical for a mean field self-organized branching process. These exponents are also recovered in neuronal network simulations implementing various neuronal dynamics on different network topologies. They can therefore be considered a very robust feature of spontaneous neuronal activity. Interestingly, this scaling behaviour is also observed on regular lattices in finite dimensions, which raises the question about the origin of the mean field behavior observed experimentally. In this study we provide an answer to this open question by investigating the effect of activity dependent plasticity in combination with the neuronal refractory time in a neuronal network. Results show that the refractory time hinders backward avalanches forcing a directed propagation. Hebbian plastic adaptation plays the role of sculpting these directed avalanche patterns into the topology of the network slowly changing it into a branched structure where loops are marginal.

  7. Twitter web-service for soft agent reporting in persistent surveillance systems

    NASA Astrophysics Data System (ADS)

    Rababaah, Haroun; Shirkhodaie, Amir

    2010-04-01

    Persistent surveillance is an intricate process requiring monitoring, gathering, processing, tracking, and characterization of many spatiotemporal events occurring concurrently. Data associated with events can be readily attained by networking of hard (physical) sensors. Sensors may have homogeneous or heterogeneous (hybrid) sensing modalities with different communication bandwidth requirements. Complimentary to hard sensors are human observers or "soft sensors" that can report occurrences of evolving events via different communication devices (e.g., texting, cell phones, emails, instant messaging, etc.) to the command control center. However, networking of human observers in ad-hoc way is rather a difficult task. In this paper, we present a Twitter web-service for soft agent reporting in persistent surveillance systems (called Web-STARS). The objective of this web-service is to aggregate multi-source human observations in hybrid sensor networks rapidly. With availability of Twitter social network, such a human networking concept can not only be realized for large scale persistent surveillance systems (PSS), but also, it can be employed with proper interfaces to expedite rapid events reporting by human observers. The proposed technique is particularly suitable for large-scale persistent surveillance systems with distributed soft and hard sensor networks. The efficiency and effectiveness of the proposed technique is measured experimentally by conducting several simulated persistent surveillance scenarios. It is demonstrated that by fusion of information from hard and soft agents improves understanding of common operating picture and enhances situational awareness.

  8. A fuzzy adaptive network approach to parameter estimation in cases where independent variables come from an exponential distribution

    NASA Astrophysics Data System (ADS)

    Dalkilic, Turkan Erbay; Apaydin, Aysen

    2009-11-01

    In a regression analysis, it is assumed that the observations come from a single class in a data cluster and the simple functional relationship between the dependent and independent variables can be expressed using the general model; Y=f(X)+[epsilon]. However; a data cluster may consist of a combination of observations that have different distributions that are derived from different clusters. When faced with issues of estimating a regression model for fuzzy inputs that have been derived from different distributions, this regression model has been termed the [`]switching regression model' and it is expressed with . Here li indicates the class number of each independent variable and p is indicative of the number of independent variables [J.R. Jang, ANFIS: Adaptive-network-based fuzzy inference system, IEEE Transaction on Systems, Man and Cybernetics 23 (3) (1993) 665-685; M. Michel, Fuzzy clustering and switching regression models using ambiguity and distance rejects, Fuzzy Sets and Systems 122 (2001) 363-399; E.Q. Richard, A new approach to estimating switching regressions, Journal of the American Statistical Association 67 (338) (1972) 306-310]. In this study, adaptive networks have been used to construct a model that has been formed by gathering obtained models. There are methods that suggest the class numbers of independent variables heuristically. Alternatively, in defining the optimal class number of independent variables, the use of suggested validity criterion for fuzzy clustering has been aimed. In the case that independent variables have an exponential distribution, an algorithm has been suggested for defining the unknown parameter of the switching regression model and for obtaining the estimated values after obtaining an optimal membership function, which is suitable for exponential distribution.

  9. A unifying view of synchronization for data assimilation in complex nonlinear networks

    NASA Astrophysics Data System (ADS)

    Abarbanel, Henry D. I.; Shirman, Sasha; Breen, Daniel; Kadakia, Nirag; Rey, Daniel; Armstrong, Eve; Margoliash, Daniel

    2017-12-01

    Networks of nonlinear systems contain unknown parameters and dynamical degrees of freedom that may not be observable with existing instruments. From observable state variables, we want to estimate the connectivity of a model of such a network and determine the full state of the model at the termination of a temporal observation window during which measurements transfer information to a model of the network. The model state at the termination of a measurement window acts as an initial condition for predicting the future behavior of the network. This allows the validation (or invalidation) of the model as a representation of the dynamical processes producing the observations. Once the model has been tested against new data, it may be utilized as a predictor of responses to innovative stimuli or forcing. We describe a general framework for the tasks involved in the "inverse" problem of determining properties of a model built to represent measured output from physical, biological, or other processes when the measurements are noisy, the model has errors, and the state of the model is unknown when measurements begin. This framework is called statistical data assimilation and is the best one can do in estimating model properties through the use of the conditional probability distributions of the model state variables, conditioned on observations. There is a very broad arena of applications of the methods described. These include numerical weather prediction, properties of nonlinear electrical circuitry, and determining the biophysical properties of functional networks of neurons. Illustrative examples will be given of (1) estimating the connectivity among neurons with known dynamics in a network of unknown connectivity, and (2) estimating the biophysical properties of individual neurons in vitro taken from a functional network underlying vocalization in songbirds.

  10. Urban-scale mapping of PM2.5 distribution via data fusion between high-density sensor network and MODIS Aerosol Optical Depth

    NASA Astrophysics Data System (ADS)

    Ba, Yu Tao; xian Liu, Bao; Sun, Feng; Wang, Li hua; Tang, Yu jia; Zhang, Da wei

    2017-04-01

    High-resolution mapping of PM2.5 is the prerequisite for precise analytics and subsequent anti-pollution interventions. Considering the large variances of particulate distribution, urban-scale mapping is challenging either with ground-based fixed stations, with satellites or via models. In this study, a dynamic fusion method between high-density sensor network and MODIS Aerosol Optical Depth (AOD) was introduced. The sensor network was deployed in Beijing ( > 1000 fixed monitors across 16000 km2 area) to provide raw observations with high temporal resolution (sampling interval < 1 hour), high spatial resolution in flat areas ( < 1 km), and low spatial resolution in mountainous areas ( > 5 km). The MODIS AOD was calibrated to provide distribution map with low temporal resolution (daily) and moderate spatial resolution ( = 3 km). By encoding the data quality and defects (e.g. could, reflectance, abnormal), a hybrid interpolation procedure with cross-validation generated PM2.5 distribution with both high temporal and spatial resolution. Several no-pollutant and high-pollution periods were tested to validate the proposed fusion method for capturing the instantaneous patterns of PM2.5 emission.

  11. Seasonal change of topology and resilience of ecological networks in wetlandscapes

    NASA Astrophysics Data System (ADS)

    Bin, Kim; Park, Jeryang

    2017-04-01

    Wetlands distributed in a landscape provide various ecosystem services including habitat for flora and fauna, hydrologic controls, and biogeochemical processes. Hydrologic regime of each wetland at a given landscape varies by hydro-climatic and geological conditions as well as the bathymetry, forming a certain pattern in the wetland area distribution and spatial organization. However, its large-scale pattern also changes over time as this wetland complex is subject to stochastic hydro-climatic forcing in various temporal scales. Consequently, temporal variation in the spatial structure of wetlands inevitably affects the dispersal ability of species depending on those wetlands as habitat. Here, we numerically show (1) the spatiotemporal variation of wetlandscapes by forcing seasonally changing stochastic rainfall and (2) the corresponding ecological networks which either deterministically or stochastically forming the dispersal ranges. We selected four vernal pool regions with distinct climate conditions in California. The results indicate that the spatial structure of wetlands in a landscape by measuring the wetland area frequency distribution changes by seasonal hydro-climatic condition but eventually recovers to the initial state. However, the corresponding ecological networks, which the structure and function change by the change of distances between wetlands, and measured by degree distribution and network efficiency, may not recover to the initial state especially in the regions with high seasonal dryness index. Moreover, we observed that the changes in both the spatial structure of wetlands in a landscape and the corresponding ecological networks exhibit hysteresis over seasons. Our analysis indicates that the hydrologic and ecological resilience of a wetlandcape may be low in a dry region with seasonal hydro-climatic forcing. Implications of these results for modelling ecological networks depending on hydrologic systems especially for conservation purposes are discussed.

  12. A Percolation Model for Fracking

    NASA Astrophysics Data System (ADS)

    Norris, J. Q.; Turcotte, D. L.; Rundle, J. B.

    2014-12-01

    Developments in fracking technology have enabled the recovery of vast reserves of oil and gas; yet, there is very little publicly available scientific research on fracking. Traditional reservoir simulator models for fracking are computationally expensive, and require many hours on a supercomputer to simulate a single fracking treatment. We have developed a computationally inexpensive percolation model for fracking that can be used to understand the processes and risks associated with fracking. In our model, a fluid is injected from a single site and a network of fractures grows from the single site. The fracture network grows in bursts, the failure of a relatively strong bond followed by the failure of a series of relatively weak bonds. These bursts display similarities to micro seismic events observed during a fracking treatment. The bursts follow a power-law (Gutenburg-Richter) frequency-size distribution and have growth rates similar to observed earthquake moment rates. These are quantifiable features that can be compared to observed microseismicity to help understand the relationship between observed microseismicity and the underlying fracture network.

  13. Mechanisms of Decreased Moisture Uptake in ortho- Methylated Di(Cyanate Esters)

    DTIC Science & Technology

    2014-10-01

    Distribution A: Approved for public release; distribution is unlimited. 1 Mechanisms of Decreased Moisture Uptake in ortho- Methylated Di(Cyanate...when analogous networks containing a single methyl group ortho- to each aryl- cyanurate linkage were prepared by reduction and acid-catalyzed coupling...of salicylic acid followed by treatment with cyanogen bromide and subsequent cyclotrimerization. The differences in water uptake were observed

  14. Analysis of critical operating conditions for LV distribution networks with microgrids

    NASA Astrophysics Data System (ADS)

    Zehir, M. A.; Batman, A.; Sonmez, M. A.; Font, A.; Tsiamitros, D.; Stimoniaris, D.; Kollatou, T.; Bagriyanik, M.; Ozdemir, A.; Dialynas, E.

    2016-11-01

    Increase in the penetration of Distributed Generation (DG) in distribution networks, raises the risk of voltage limit violations while contributing to line losses. Especially in low voltage (LV) distribution networks (secondary distribution networks), impacts of active power flows on the bus voltages and on the network losses are more dominant. As network operators must meet regulatory limitations, they have to take into account the most critical operating conditions in their systems. In this study, it is aimed to present the impact of the worst operation cases of LV distribution networks comprising microgrids. Simulation studies are performed on a field data-based virtual test-bed. The simulations are repeated for several cases consisting different microgrid points of connection with different network loading and microgrid supply/demand conditions.

  15. Optimal Design for Placements of Tsunami Observing Systems to Accurately Characterize the Inducing Earthquake

    NASA Astrophysics Data System (ADS)

    Mulia, Iyan E.; Gusman, Aditya Riadi; Satake, Kenji

    2017-12-01

    Recently, there are numerous tsunami observation networks deployed in several major tsunamigenic regions. However, guidance on where to optimally place the measurement devices is limited. This study presents a methodological approach to select strategic observation locations for the purpose of tsunami source characterizations, particularly in terms of the fault slip distribution. Initially, we identify favorable locations and determine the initial number of observations. These locations are selected based on extrema of empirical orthogonal function (EOF) spatial modes. To further improve the accuracy, we apply an optimization algorithm called a mesh adaptive direct search to remove redundant measurement locations from the EOF-generated points. We test the proposed approach using multiple hypothetical tsunami sources around the Nankai Trough, Japan. The results suggest that the optimized observation points can produce more accurate fault slip estimates with considerably less number of observations compared to the existing tsunami observation networks.

  16. CAN A NANOFLARE MODEL OF EXTREME-ULTRAVIOLET IRRADIANCES DESCRIBE THE HEATING OF THE SOLAR CORONA?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajfirouze, E.; Safari, H.

    2012-01-10

    Nanoflares, the basic units of impulsive energy release, may produce much of the solar background emission. Extrapolation of the energy frequency distribution of observed microflares, which follows a power law to lower energies, can give an estimation of the importance of nanoflares for heating the solar corona. If the power-law index is greater than 2, then the nanoflare contribution is dominant. We model a time series of extreme-ultraviolet emission radiance as random flares with a power-law exponent of the flare event distribution. The model is based on three key parameters: the flare rate, the flare duration, and the power-law exponentmore » of the flare intensity frequency distribution. We use this model to simulate emission line radiance detected in 171 A, observed by Solar Terrestrial Relation Observatory/Extreme-Ultraviolet Imager and Solar Dynamics Observatory/Atmospheric Imaging Assembly. The observed light curves are matched with simulated light curves using an Artificial Neural Network, and the parameter values are determined across the active region, quiet Sun, and coronal hole. The damping rate of nanoflares is compared with the radiative losses cooling time. The effect of background emission, data cadence, and network sensitivity on the key parameters of the model is studied. Most of the observed light curves have a power-law exponent, {alpha}, greater than the critical value 2. At these sites, nanoflare heating could be significant.« less

  17. Microseism Source Distribution Observed from Ireland

    NASA Astrophysics Data System (ADS)

    Craig, David; Bean, Chris; Donne, Sarah; Le Pape, Florian; Möllhoff, Martin

    2017-04-01

    Ocean generated microseisms (OGM) are recorded globally with similar spectral features observed everywhere. The generation mechanism for OGM and their subsequent propagation to continental regions has led to their use as a proxy for sea-state characteristics. Also many modern seismological methods make use of OGM signals. For example, the Earth's crust and upper mantle can be imaged using ``ambient noise tomography``. For many of these methods an understanding of the source distribution is necessary to properly interpret the results. OGM recorded on near coastal seismometers are known to be related to the local ocean wavefield. However, contributions from more distant sources may also be present. This is significant for studies attempting to use OGM as a proxy for sea-state characteristics such as significant wave height. Ireland has a highly energetic ocean wave climate and is close to one of the major source regions for OGM. This provides an ideal location to study an OGM source region in detail. Here we present the source distribution observed from seismic arrays in Ireland. The region is shown to consist of several individual source areas. These source areas show some frequency dependence and generally occur at or near the continental shelf edge. We also show some preliminary results from an off-shore OBS network to the North-West of Ireland. The OBS network includes instruments on either side of the shelf and should help interpret the array observations.

  18. Development of Integration Framework for Sensor Network and Satellite Image based on OGC Web Services

    NASA Astrophysics Data System (ADS)

    Ninsawat, Sarawut; Yamamoto, Hirokazu; Kamei, Akihide; Nakamura, Ryosuke; Tsuchida, Satoshi; Maeda, Takahisa

    2010-05-01

    With the availability of network enabled sensing devices, the volume of information being collected by networked sensors has increased dramatically in recent years. Over 100 physical, chemical and biological properties can be sensed using in-situ or remote sensing technology. A collection of these sensor nodes forms a sensor network, which is easily deployable to provide a high degree of visibility into real-world physical processes as events unfold. The sensor observation network could allow gathering of diverse types of data at greater spatial and temporal resolution, through the use of wired or wireless network infrastructure, thus real-time or near-real time data from sensor observation network allow researchers and decision-makers to respond speedily to events. However, in the case of environmental monitoring, only a capability to acquire in-situ data periodically is not sufficient but also the management and proper utilization of data also need to be careful consideration. It requires the implementation of database and IT solutions that are robust, scalable and able to interoperate between difference and distributed stakeholders to provide lucid, timely and accurate update to researchers, planners and citizens. The GEO (Global Earth Observation) Grid is primarily aiming at providing an e-Science infrastructure for the earth science community. The GEO Grid is designed to integrate various kinds of data related to the earth observation using the grid technology, which is developed for sharing data, storage, and computational powers of high performance computing, and is accessible as a set of services. A comprehensive web-based system for integrating field sensor and data satellite image based on various open standards of OGC (Open Geospatial Consortium) specifications has been developed. Web Processing Service (WPS), which is most likely the future direction of Web-GIS, performs the computation of spatial data from distributed data sources and returns the outcome in a standard format. The interoperability capabilities and Service Oriented Architecture (SOA) of web services allow incorporating between sensor network measurement available from Sensor Observation Service (SOS) and satellite remote sensing data from Web Mapping Service (WMS) as distributed data sources for WPS. Various applications have been developed to demonstrate the efficacy of integrating heterogeneous data source. For example, the validation of the MODIS aerosol products (MOD08_D3, the Level-3 MODIS Atmosphere Daily Global Product) by ground-based measurements using the sunphotometer (skyradiometer, Prede POM-02) installed at Phenological Eyes Network (PEN) sites in Japan. Furthermore, the web-based framework system for studying a relationship between calculated Vegetation Index from MODIS satellite image surface reflectance (MOD09GA, the Surface Reflectance Daily L2G Global 1km and 500m Product) and Gross Primary Production (GPP) field measurement at flux tower site in Thailand and Japan has been also developed. The success of both applications will contribute to maximize data utilization and improve accuracy of information by validate MODIS satellite products using high degree of accuracy and temporal measurement of field measurement data.

  19. MPL-net at ARM Sites

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Welton, E. J.; Campbell, J. R.; Berkoff, T. A.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The NASA MPL-net project goal is consistent data products of the vertical distribution of clouds and aerosol from globally distributed lidar observation sites. The four ARM micro pulse lidars are a basis of the network to consist of over twelve sites. The science objective is ground truth for global satellite retrievals and accurate vertical distribution information in combination with surface radiation measurements for aerosol and cloud models. The project involves improvement in instruments and data processing and cooperation with ARM and other partners.

  20. Evaluation of the U.S. Geological Survey Ground-Water Data-Collection Program in Hawaii, 1992

    USGS Publications Warehouse

    Anthony, Stephen S.

    1997-01-01

    In 1992, the U.S. Geological Survey ground-water data-collection program in the State of Hawaii consisted of 188 wells distributed among the islands of Oahu, Kauai, Maui, Molokai, and Hawaii. Water-level and water-quality (temperature, specific conductance, and chloride concentration) data were collected from observation wells, deep monitoring wells that penetrate the zone of transition between freshwater and saltwater, free-flowing wells, and pumped wells. The objective of the program was to collect sufficient spatial and temporal data to define seasonal and long-term changes in ground-water levels and chloride concentrations induced by natural and human-made stresses for different climatic and hydrogeologic settings. Wells needed to meet this objective can be divided into two types of networks: (1) a water-management network to determine the response of ground-water flow systems to human-induced stresses, such as pumpage, and (2) a baseline network to determine the response of ground-water flow systems to natural stresses for different climatic and hydrogeologic settings. Maps showing the distribution and magnitude of pumpage and the distribution of proposed pumped wells are presented to identify areas in need of water-management networks. Wells in the 1992 U.S. Geological Survey ground-water data-collection program were classified as either water-management or baseline network wells. In addition, locations where additional water-management network wells are needed for water-level and water-quality data were identified.

  1. Physics, stability, and dynamics of supply networks

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk; Lämmer, Stefan; Seidel, Thomas; Šeba, Pétr; Płatkowski, Tadeusz

    2004-12-01

    We show how to treat supply networks as physical transport problems governed by balance equations and equations for the adaptation of production speeds. Although the nonlinear behavior is different, the linearized set of coupled differential equations is formally related to those of mechanical or electrical oscillator networks. Supply networks possess interesting features due to their complex topology and directed links. We derive analytical conditions for absolute and convective instabilities. The empirically observed “bullwhip effect” in supply chains is explained as a form of convective instability based on resonance effects. Moreover, it is generalized to arbitrary supply networks. Their related eigenvalues are usually complex, depending on the network structure (even without loops). Therefore, their generic behavior is characterized by damped or growing oscillations. We also show that regular distribution networks possess two negative eigenvalues only, but perturbations generate a spectrum of complex eigenvalues.

  2. Universal distribution of component frequencies in biological and technological systems

    PubMed Central

    Pang, Tin Yau; Maslov, Sergei

    2013-01-01

    Bacterial genomes and large-scale computer software projects both consist of a large number of components (genes or software packages) connected via a network of mutual dependencies. Components can be easily added or removed from individual systems, and their use frequencies vary over many orders of magnitude. We study this frequency distribution in genomes of ∼500 bacterial species and in over 2 million Linux computers and find that in both cases it is described by the same scale-free power-law distribution with an additional peak near the tail of the distribution corresponding to nearly universal components. We argue that the existence of a power law distribution of frequencies of components is a general property of any modular system with a multilayered dependency network. We demonstrate that the frequency of a component is positively correlated with its dependency degree given by the total number of upstream components whose operation directly or indirectly depends on the selected component. The observed frequency/dependency degree distributions are reproduced in a simple mathematically tractable model introduced and analyzed in this study. PMID:23530195

  3. Sensing network for electromagnetic fields generated by seismic activities

    NASA Astrophysics Data System (ADS)

    Gershenzon, Naum I.; Bambakidis, Gust; Ternovskiy, Igor V.

    2014-06-01

    The sensors network is becoming prolific and play now increasingly more important role in acquiring and processing information. Cyber-Physical Systems are focusing on investigation of integrated systems that includes sensing, networking, and computations. The physics of the seismic measurement and electromagnetic field measurement requires special consideration how to design electromagnetic field measurement networks for both research and detection earthquakes and explosions along with the seismic measurement networks. In addition, the electromagnetic sensor network itself could be designed and deployed, as a research tool with great deal of flexibility, the placement of the measuring nodes must be design based on systematic analysis of the seismic-electromagnetic interaction. In this article, we review the observations of the co-seismic electromagnetic field generated by earthquakes and man-made sources such as vibrations and explosions. The theoretical investigation allows the distribution of sensor nodes to be optimized and could be used to support existing geological networks. The placement of sensor nodes have to be determined based on physics of electromagnetic field distribution above the ground level. The results of theoretical investigations of seismo-electromagnetic phenomena are considered in Section I. First, we compare the relative contribution of various types of mechano-electromagnetic mechanisms and then analyze in detail the calculation of electromagnetic fields generated by piezomagnetic and electrokinetic effects.

  4. Venusian channels and valleys - Distribution and volcanological implications

    NASA Technical Reports Server (NTRS)

    Komatsu, Goro; Baker, Victor R.; Gulick, Virginia C.; Parker, Timothy J.

    1993-01-01

    An updated map is presented which shows the distribution of more than 200 channels and valleys on Venus. A large number of channels are concentrated in equatorial regions characterized by highlands, rift and fracture zones, an associated volcanic features. Many channels associated with flow deposits are similar to typical terrestrial lava drainage channels. They are associated with a wide range of volcanic edifices. More than half of the sinuous rilles are associated with coronae, coronalike features, or arachnoids. Corona volcanism driven by mantle plume events may explain this association. Many valley network are observed in highlands and in association with coronae, coronalike features, or arachnoids. This indicates that highlands and coronae provided fractures and flow-viscosity lavas, both of which seem to be required for network formation by lava sapping processes. Canali-type channels have a unique distribution limited to some plains regions.

  5. Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model

    PubMed Central

    Farinella, Matteo; Ruedt, Daniel T.; Gleeson, Padraig; Lanore, Frederic; Silver, R. Angus

    2014-01-01

    In vivo, cortical pyramidal cells are bombarded by asynchronous synaptic input arising from ongoing network activity. However, little is known about how such ‘background’ synaptic input interacts with nonlinear dendritic mechanisms. We have modified an existing model of a layer 5 (L5) pyramidal cell to explore how dendritic integration in the apical dendritic tuft could be altered by the levels of network activity observed in vivo. Here we show that asynchronous background excitatory input increases neuronal gain and extends both temporal and spatial integration of stimulus-evoked synaptic input onto the dendritic tuft. Addition of fast and slow inhibitory synaptic conductances, with properties similar to those from dendritic targeting interneurons, that provided a ‘balanced’ background configuration, partially counteracted these effects, suggesting that inhibition can tune spatio-temporal integration in the tuft. Excitatory background input lowered the threshold for NMDA receptor-mediated dendritic spikes, extended their duration and increased the probability of additional regenerative events occurring in neighbouring branches. These effects were also observed in a passive model where all the non-synaptic voltage-gated conductances were removed. Our results show that glutamate-bound NMDA receptors arising from ongoing network activity can provide a powerful spatially distributed nonlinear dendritic conductance. This may enable L5 pyramidal cells to change their integrative properties as a function of local network activity, potentially allowing both clustered and spatially distributed synaptic inputs to be integrated over extended timescales. PMID:24763087

  6. Network harness: bundles of routes in public transport networks

    NASA Astrophysics Data System (ADS)

    Berche, B.; von Ferber, C.; Holovatch, T.

    2009-12-01

    Public transport routes sharing the same grid of streets and tracks are often found to proceed in parallel along shorter or longer sequences of stations. Similar phenomena are observed in other networks built with space consuming links such as cables, vessels, pipes, neurons, etc. In the case of public transport networks (PTNs) this behavior may be easily worked out on the basis of sequences of stations serviced by each route. To quantify this behavior we use the recently introduced notion of network harness. It is described by the harness distribution P(r, s): the number of sequences of s consecutive stations that are serviced by r parallel routes. For certain PTNs that we have analyzed we observe that the harness distribution may be described by power laws. These power laws indicate a certain level of organization and planning which may be driven by the need to minimize the costs of infrastructure and secondly by the fact that points of interest tend to be clustered in certain locations of a city. This effect may be seen as a result of the strong interdependence of the evolutions of both the city and its PTN. To further investigate the significance of the empirical results we have studied one- and two-dimensional models of randomly placed routes modeled by different types of walks. While in one dimension an analytic treatment was successful, the two dimensional case was studied by simulations showing that the empirical results for real PTNs deviate significantly from those expected for randomly placed routes.

  7. Scaling Laws of Discrete-Fracture-Network Models

    NASA Astrophysics Data System (ADS)

    Philippe, D.; Olivier, B.; Caroline, D.; Jean-Raynald, D.

    2006-12-01

    The statistical description of fracture networks through scale still remains a concern for geologists, considering the complexity of fracture networks. A challenging task of the last 20-years studies has been to find a solid and rectifiable rationale to the trivial observation that fractures exist everywhere and at all sizes. The emergence of fractal models and power-law distributions quantifies this fact, and postulates in some ways that small-scale fractures are genetically linked to their larger-scale relatives. But the validation of these scaling concepts still remains an issue considering the unreachable amount of information that would be necessary with regards to the complexity of natural fracture networks. Beyond the theoretical interest, a scaling law is a basic and necessary ingredient of Discrete-Fracture-Network models (DFN) that are used for many environmental and industrial applications (groundwater resources, mining industry, assessment of the safety of deep waste disposal sites, ..). Indeed, such a function is necessary to assemble scattered data, taken at different scales, into a unified scaling model, and to interpolate fracture densities between observations. In this study, we discuss some important issues related to scaling laws of DFN: - We first describe a complete theoretical and mathematical framework that takes account of both the fracture- size distribution and the fracture clustering through scales (fractal dimension). - We review the scaling laws that have been obtained, and we discuss the ability of fracture datasets to really constrain the parameters of the DFN model. - And finally we discuss the limits of scaling models.

  8. Voltage regulation in distribution networks with distributed generation

    NASA Astrophysics Data System (ADS)

    Blažič, B.; Uljanić, B.; Papič, I.

    2012-11-01

    The paper deals with the topic of voltage regulation in distribution networks with relatively high distributed energy resources (DER) penetration. The problem of voltage rise is described and different options for voltage regulation are given. The influence of DER on voltage profile and the effectiveness of the investigated solutions are evaluated by means of simulation in DIgSILENT. The simulated network is an actual distribution network in Slovenia with a relatively high penetration of distributed generation. Recommendations for voltage control in networks with DER penetration are given at the end.

  9. Distribution of shortest cycle lengths in random networks

    NASA Astrophysics Data System (ADS)

    Bonneau, Haggai; Hassid, Aviv; Biham, Ofer; Kühn, Reimer; Katzav, Eytan

    2017-12-01

    We present analytical results for the distribution of shortest cycle lengths (DSCL) in random networks. The approach is based on the relation between the DSCL and the distribution of shortest path lengths (DSPL). We apply this approach to configuration model networks, for which analytical results for the DSPL were obtained before. We first calculate the fraction of nodes in the network which reside on at least one cycle. Conditioning on being on a cycle, we provide the DSCL over ensembles of configuration model networks with degree distributions which follow a Poisson distribution (Erdős-Rényi network), degenerate distribution (random regular graph), and a power-law distribution (scale-free network). The mean and variance of the DSCL are calculated. The analytical results are found to be in very good agreement with the results of computer simulations.

  10. Application of SQL database to the control system of MOIRCS

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Tomohiro; Omata, Koji; Konishi, Masahiro; Ichikawa, Takashi; Suzuki, Ryuji; Tokoku, Chihiro; Uchimoto, Yuka Katsuno; Nishimura, Tetsuo

    2006-06-01

    MOIRCS (Multi-Object Infrared Camera and Spectrograph) is a new instrument for the Subaru telescope. In order to perform observations of near-infrared imaging and spectroscopy with cold slit mask, MOIRCS contains many device components, which are distributed on an Ethernet LAN. Two PCs wired to the focal plane array electronics operate two HAWAII2 detectors, respectively, and other two PCs are used for integrated control and quick data reduction, respectively. Though most of the devices (e.g., filter and grism turrets, slit exchange mechanism for spectroscopy) are controlled via RS232C interface, they are accessible from TCP/IP connection using TCP/IP to RS232C converters. Moreover, other devices are also connected to the Ethernet LAN. This network distributed structure provides flexibility of hardware configuration. We have constructed an integrated control system for such network distributed hardwares, named T-LECS (Tohoku University - Layered Electronic Control System). T-LECS has also network distributed software design, applying TCP/IP socket communication to interprocess communication. In order to help the communication between the device interfaces and the user interfaces, we defined three layers in T-LECS; an external layer for user interface applications, an internal layer for device interface applications, and a communication layer, which connects two layers above. In the communication layer, we store the data of the system to an SQL database server; they are status data, FITS header data, and also meta data such as device configuration data and FITS configuration data. We present our software system design and the database schema to manage observations of MOIRCS with Subaru.

  11. Active distribution network planning considering linearized system loss

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Wang, Mingqiang; Xu, Hao

    2018-02-01

    In this paper, various distribution network planning techniques with DGs are reviewed, and a new distribution network planning method is proposed. It assumes that the location of DGs and the topology of the network are fixed. The proposed model optimizes the capacities of DG and the optimal distribution line capacity simultaneously by a cost/benefit analysis and the benefit is quantified by the reduction of the expected interruption cost. Besides, the network loss is explicitly analyzed in the paper. For simplicity, the network loss is appropriately simplified as a quadratic function of difference of voltage phase angle. Then it is further piecewise linearized. In this paper, a piecewise linearization technique with different segment lengths is proposed. To validate its effectiveness and superiority, the proposed distribution network planning model with elaborate linearization technique is tested on the IEEE 33-bus distribution network system.

  12. The DRAGON scale concept and results for remote sensing of aerosol properties

    NASA Astrophysics Data System (ADS)

    Holben, B. N.; Eck, T. F.; Schafer, J.; Giles, D. M.; Kim, J.; Sano, I.; Mukai, S.; Kim, Y. J.; Reid, J. S.; Pickering, K. E.; Crawford, J. H.; Smirnov, A.; Sinyuk, A.; Slutsker, I.; Sorokin, M.; Rodriguez, J.; Liew, S.; Trevino, N.; Lim, H.; Lefer, B. L.; Nadkarni, R.; Macke, A.; Kinne, S. A.; Anderson, B. E.; Russell, P. B.; Maring, H. B.; Welton, E. J.; da Silva, A.; Toon, O. B.; Redemann, J.

    2013-12-01

    Aerosol processes occur at microscales but are typically observed and reported at continental to global scales. Often observable aerosol processes that have significant anthropogenic impact occur on spatial scales of tens to a few hundred km, representative of convective cloud processing, urban/megacity sources, anthropogenic burning and natural wildfires, dry lakebed dust sources etc. Historically remote sensing of aerosols has relied on relatively coarse temporal and spatial resolution satellite observations or high temporal resolution point observations from ground-based monitoring sites from networks such as AERONET, SKYNET, MPLNET and many other surface observation platforms. Airborne remote and in situ observations combined with assimilation models were/are to be the mesoscale link between the ground- and space-based RS scales. However clearly the in situ and ground-based RS characterizations of aerosols require a convergence of thought, parameterization and actual scale measurements in order to advance this goal. This has been served by periodic multidisciplinary field campaigns yet only recently has a concerted effort been made to establish these ground-based networks in an effort to capture the mesoscale processes through measurement programs such as DISCOVER AQ and NASA AERONET's effort to foster such measurements and analysis through the Distributed Regional Aerosol Gridded Observation Networks (DRAGON), short term meso-networks, with partners in Asia and Europe and N. America. This talk will review the historical need for such networks and discuss some of the results and in some cases unexpected findings from the eight DRAGON campaigns conducted the last several years. Emphasis will be placed on the most recent DISCOVER AQ campaign conducted in Houston TX and the synergism with a regional to global network plan through the SEAC4RS US campaign.

  13. Coupling effects on turning points of infectious diseases epidemics in scale-free networks.

    PubMed

    Kim, Kiseong; Lee, Sangyeon; Lee, Doheon; Lee, Kwang Hyung

    2017-05-31

    Pandemic is a typical spreading phenomenon that can be observed in the human society and is dependent on the structure of the social network. The Susceptible-Infective-Recovered (SIR) model describes spreading phenomena using two spreading factors; contagiousness (β) and recovery rate (γ). Some network models are trying to reflect the social network, but the real structure is difficult to uncover. We have developed a spreading phenomenon simulator that can input the epidemic parameters and network parameters and performed the experiment of disease propagation. The simulation result was analyzed to construct a new marker VRTP distribution. We also induced the VRTP formula for three of the network mathematical models. We suggest new marker VRTP (value of recovered on turning point) to describe the coupling between the SIR spreading and the Scale-free (SF) network and observe the aspects of the coupling effects with the various of spreading and network parameters. We also derive the analytic formulation of VRTP in the fully mixed model, the configuration model, and the degree-based model respectively in the mathematical function form for the insights on the relationship between experimental simulation and theoretical consideration. We discover the coupling effect between SIR spreading and SF network through devising novel marker VRTP which reflects the shifting effect and relates to entropy.

  14. Objectified quantification of uncertainties in Bayesian atmospheric inversions

    NASA Astrophysics Data System (ADS)

    Berchet, A.; Pison, I.; Chevallier, F.; Bousquet, P.; Bonne, J.-L.; Paris, J.-D.

    2015-05-01

    Classical Bayesian atmospheric inversions process atmospheric observations and prior emissions, the two being connected by an observation operator picturing mainly the atmospheric transport. These inversions rely on prescribed errors in the observations, the prior emissions and the observation operator. When data pieces are sparse, inversion results are very sensitive to the prescribed error distributions, which are not accurately known. The classical Bayesian framework experiences difficulties in quantifying the impact of mis-specified error distributions on the optimized fluxes. In order to cope with this issue, we rely on recent research results to enhance the classical Bayesian inversion framework through a marginalization on a large set of plausible errors that can be prescribed in the system. The marginalization consists in computing inversions for all possible error distributions weighted by the probability of occurrence of the error distributions. The posterior distribution of the fluxes calculated by the marginalization is not explicitly describable. As a consequence, we carry out a Monte Carlo sampling based on an approximation of the probability of occurrence of the error distributions. This approximation is deduced from the well-tested method of the maximum likelihood estimation. Thus, the marginalized inversion relies on an automatic objectified diagnosis of the error statistics, without any prior knowledge about the matrices. It robustly accounts for the uncertainties on the error distributions, contrary to what is classically done with frozen expert-knowledge error statistics. Some expert knowledge is still used in the method for the choice of an emission aggregation pattern and of a sampling protocol in order to reduce the computation cost. The relevance and the robustness of the method is tested on a case study: the inversion of methane surface fluxes at the mesoscale with virtual observations on a realistic network in Eurasia. Observing system simulation experiments are carried out with different transport patterns, flux distributions and total prior amounts of emitted methane. The method proves to consistently reproduce the known "truth" in most cases, with satisfactory tolerance intervals. Additionally, the method explicitly provides influence scores and posterior correlation matrices. An in-depth interpretation of the inversion results is then possible. The more objective quantification of the influence of the observations on the fluxes proposed here allows us to evaluate the impact of the observation network on the characterization of the surface fluxes. The explicit correlations between emission aggregates reveal the mis-separated regions, hence the typical temporal and spatial scales the inversion can analyse. These scales are consistent with the chosen aggregation patterns.

  15. The Local Structure of Globalization. The Network Dynamics of Foreign Direct Investments in the International Electricity Industry

    NASA Astrophysics Data System (ADS)

    Koskinen, Johan; Lomi, Alessandro

    2013-05-01

    We study the evolution of the network of foreign direct investment (FDI) in the international electricity industry during the period 1994-2003. We assume that the ties in the network of investment relations between countries are created and deleted in continuous time, according to a conditional Gibbs distribution. This assumption allows us to take simultaneously into account the aggregate predictions of the well-established gravity model of international trade as well as local dependencies between network ties connecting the countries in our sample. According to the modified version of the gravity model that we specify, the probability of observing an investment tie between two countries depends on the mass of the economies involved, their physical distance, and the tendency of the network to self-organize into local configurations of network ties. While the limiting distribution of the data generating process is an exponential random graph model, we do not assume the system to be in equilibrium. We find evidence of the effects of the standard gravity model of international trade on evolution of the global FDI network. However, we also provide evidence of significant dyadic and extra-dyadic dependencies between investment ties that are typically ignored in available research. We show that local dependencies between national electricity industries are sufficient for explaining global properties of the network of foreign direct investments. We also show, however, that network dependencies vary significantly over time giving rise to a time-heterogeneous localized process of network evolution.

  16. Percolation dans des reseaux realistes de nanostructures de carbone

    NASA Astrophysics Data System (ADS)

    Simoneau, Louis-Philippe

    Carbon nanotubes have very interesting mechanical and electrical properties for various applications in electronics. They are highly resistant to deformation and can be excellent conductors or semiconductors. However, manipulating individual nanotubes to build structured devices remains very difficult. There is no method for controlling all of the electrical properties, the orientation and the spatial positioning of a large number of nanotubes. The fabrication of disordered networks of nanotubes is much easier, and these systems have a good electrical conductivity which makes them very interesting, especially as materials of transparent and flexible electrodes. There are three main methods of production used to make networks of nanotubes: the solution deposition, the direct growth on substrate and the embedding in a polymer matrix. The solution deposition method can form networks of various densities on a variety of substrates, the direct growth of nanotubes allows the creation of very clean networks on substrates such as SiO2, and the embedding in a polymer matrix can give composite volumes containing varying amounts of nanotubes. Many parameters such as the length of the tubes, their orientation or their tortuosity influence the properties of these networks and the presence of structural disorder complicates the understanding of their interactions. Predicting the properties of a network, such as conductivity, from a few characteristics such as size and density of the tubes can be difficult. This task becomes even more complex if one wants to identify the parameters that will optimize the performance of a device containing the material. We chose to address the carbon nanotube networks problem by developing a series of computer simulation tools that are mainly based on the Monte Carlo method. We take into account a large number of parameters to describe the characteristics of the networks, which allows for a more reliable representation of real networks as well as versatility in the choice of network components that can be simulated. The tools we have developed, grouped together in the RPH-HPN software Reseaux percolatifs hybrides - Hybrid Percolation Networks, construct random networks, detect contact between the tubes, translate the systems to equivalent electrical circuits and calculate global properties. An infinity of networks can have the same basic characteristics (size, diameter, etc.) and therefore the properties of a particular random network are not necessarily representative of the average properties of all networks. To obtain those general properties, we simulate a large number of random networks with the same basic characteristics and the average of the quantities is determined. The network constituent elements can be spheres, rods or snakes. The use of such geometries for network elements makes contact detection simple and quick, and more faithfully reproduce the form of carbon nanotubes. We closely monitor the geometrical and electrical properties of these elements through stochastic distributions of our choice. We can choose the length, diameter, orientation, chirality, tortuosity and impenetrable nature of the elements in order to properly reproduce real networks characteristics. We have considered statistical distribution functions that are rectangular, Gaussian, and Lorentzian, but all other distributions that can be expressed mathematically can also be envisioned. During the creation of a particular network, we generate the elements one by one. Each of their properties is sampled from a preselected distribution. Efficient algorithms used in various fields were adapted to our needs to manage the detection of contacts, clusters and percolation. In addition, we model more realistic contact between rigid nanotubes using an original method used to create the network that does not require a relaxation phase. Finally, we use Kirchhoff's laws to solve the equivalent electrical circuit conventionally. First, we evaluated the impact of a simplification widely used in other nanotube networks simulations studies. Values of the contact resistance at the junction between two nanotubes that are reported in the literature vary over a wide range, while almost all the simulations use a unique value for this parameter. Therefore, we assessed the effect of the presence of various stochastic distributions of contact resistances on the electrical properties of the networks. To do this, we used the experimental results of our collaborators in order to reproduce them by simulation. Our results show that, despite the existence of a wide range of contact resistance values, the nature of the statistical distribution has little impact on the conductivity obtained by simulation. Use of a single value for all connections of a network gives a total conductivity comparable to the experimental conductivity, and similar to that obtained using Gaussian, Lorentzian and uniform rectangular distributions. In fact, the dominant factor is not the type of distribution used to represent the resistance, but the central value of the distribution. Furthermore, we showed by studying bimodal distributions that the presence of lower resistance paths, even in small proportion, can rapidly increase the conductivity of the network. However, the type of stochastic distribution used to sample the spatial orientation of the nanotubes has a significant impact. We observed different behaviors for each of the three forms of distribution of orientation angles that we studied. In each case, a different distribution width maximize the conductivity of the networks. To optimize the conductivity, this distribution width, which is actually the deviation from the main direction, should in general be narrow. The formation of conductive paths is greatly enhanced in the presence of a majority of tubes closely aligned with the conduction direction and a small portion of tubes randomly aligned. The portion of misaligned tubes strongly contributes to the connectivity of nanotubes network by linking several clusters of aligned tubes. In order to increase the realism of our simulations, we also studied the influence of the interpenetrability of nanotubes on the electrical properties of networks. To do this, we describe the nanotubes with mutually impenetrable rigid cores that are surrounded by permeable shells. Thus, by varying the radius of the rigid cores, we have shown that a decrease in the interpenetrability of the nanotubes can increase the conductivity of the networks up to five orders of magnitude. We attribute this increase in conductivity to a greater connectivity of the nanotubes in the network. The more tubes are impenetrable, the more they push back against each other, and the better is the spreading of connected clusters in space. The second parameter on which we focused to improve the realism is the tortuosity of the nanotubes. We investigated the electrical properties of networks where the nanotubes are segmented into ten sections joined end to end. The angle between two consecutive segments is sampled from a uniform rectangular distribution and the variation of the bounds of this distribution allows us to vary the general tortuosity of the network. We observe that the more the tubes are tortuous, the higher the percolation threshold is, and the lower is the total conductivity. This can be nearly two orders of magnitude lower for networks with twisted tubes. We further note that the increase of the percolation threshold is attenuated when the wavy nanotubes have rigid cores. As part of our project, we have developed tools that, to the best of our knowledge, offer the best physical representation of nanotubes in a network of carbon nanotubes to date. This allowed us to study networks of complex geometries and measure the importance of the statistical distributions of parameters in optimizing the conductivity of networks. We have also established that the rigid tube-tube contacts and the nanotube tortuosity have strong impacts on the percolation threshold and conductivity. This work has demonstrated the importance of modeling for the understanding and the adequate description of complex processes, and the development needed to accurately reproduce the behavior of real systems. These tools can now be used to guide the creation of nanotube networks with targeted properties, and also to explore even more complex systems containing for example mixtures of nanotubes and quantum dots.

  17. SIR model on a dynamical network and the endemic state of an infectious disease

    NASA Astrophysics Data System (ADS)

    Dottori, M.; Fabricius, G.

    2015-09-01

    In this work we performed a numerical study of an epidemic model that mimics the endemic state of whooping cough in the pre-vaccine era. We considered a stochastic SIR model on dynamical networks that involve local and global contacts among individuals and analysed the influence of the network properties on the characterization of the quasi-stationary state. We computed probability density functions (PDF) for infected fraction of individuals and found that they are well fitted by gamma functions, excepted the tails of the distributions that are q-exponentials. We also computed the fluctuation power spectra of infective time series for different networks. We found that network effects can be partially absorbed by rescaling the rate of infective contacts of the model. An explicit relation between the effective transmission rate of the disease and the correlation of susceptible individuals with their infective nearest neighbours was obtained. This relation quantifies the known screening of infective individuals observed in these networks. We finally discuss the goodness and limitations of the SIR model with homogeneous mixing and parameters taken from epidemiological data to describe the dynamic behaviour observed in the networks studied.

  18. Integrity of the yeast mitochondrial genome, but not its distribution and inheritance, relies on mitochondrial fission and fusion

    PubMed Central

    Osman, Christof; Noriega, Thomas R.; Okreglak, Voytek; Fung, Jennifer C.; Walter, Peter

    2015-01-01

    Mitochondrial DNA (mtDNA) is essential for mitochondrial and cellular function. In Saccharomyces cerevisiae, mtDNA is organized in nucleoprotein structures termed nucleoids, which are distributed throughout the mitochondrial network and are faithfully inherited during the cell cycle. How the cell distributes and inherits mtDNA is incompletely understood although an involvement of mitochondrial fission and fusion has been suggested. We developed a LacO-LacI system to noninvasively image mtDNA dynamics in living cells. Using this system, we found that nucleoids are nonrandomly spaced within the mitochondrial network and observed the spatiotemporal events involved in mtDNA inheritance. Surprisingly, cells deficient in mitochondrial fusion and fission distributed and inherited mtDNA normally, pointing to alternative pathways involved in these processes. We identified such a mechanism, where we observed fission-independent, but F-actin–dependent, tip generation that was linked to the positioning of mtDNA to the newly generated tip. Although mitochondrial fusion and fission were dispensable for mtDNA distribution and inheritance, we show through a combination of genetics and next-generation sequencing that their absence leads to an accumulation of mitochondrial genomes harboring deleterious structural variations that cluster at the origins of mtDNA replication, thus revealing crucial roles for mitochondrial fusion and fission in maintaining the integrity of the mitochondrial genome. PMID:25730886

  19. Observations of brine drainage networks and microstructure of first-year sea ice

    NASA Astrophysics Data System (ADS)

    Cole, D. M.; Shapiro, L. H.

    1998-09-01

    Brine drainage networks and the microstructure of first-year sea ice have been examined at two locations near Barrow, northern Alaska. A method for obtaining full-depth sections of ice sheets up to 1.8 m thick is presented and shown to provide information on the spatial distribution and geometry of brine drainage networks on a scale of meters. A number of such sections from the two test sites are presented which reveal a greater variety of main channel and side branch configurations than is typically observed in ice grown in the laboratory. Vertical and horizontal micrographs and thin section photographs were obtained in November 1993, and March and May 1994 at a test site in the relatively protected Elson Lagoon. The resulting time series of photographic records provide detailed information on the size, shape, and spatial distribution of the brine- and gas-filled inclusions and a means to quantify their size and shape changes with time. An example of the changes with time in inclusion sizes and aspect ratios in the vertical and horizontal directions for a depth of 0.2 m, with a given thermal history is also presented.

  20. Generation of Global Geodetic Networks for GGOS

    NASA Astrophysics Data System (ADS)

    MacMillan, Daniel; Pavlis, Erricos C.; Kuzmicz-Cieslak, Magda; Koenig, Daniel

    2016-12-01

    We simulated future networks of VLBI+SLR sites to assess their performance. The objective is to build a global network of geographically well distributed, co-located next-generation sites from each of the space geodetic techniques. The network is being designed to meet the GGOS terrestrial reference frame goals of 1 mm in accuracy and 0.1 mm/yr in stability. We simulated the next generation networks that should be available in five years and in ten years to assess the likelihood that these networks will meet the reference frame goals. Simulations were based on the expectation that 17 broadband VLBI stations will be available in five years and 27 stations in ten years. We also consider the improvement resulting from expanding the network by six additional VLBI sites to improve the global distribution of the network. In the simulations, the networks will operate continuously, but we account for station downtime for maintenance or because of bad weather. We ran SLR+VLBI combination TRF solutions, where site ties were used to connect the two networks in the same way as in combination solutions with observed data. The strengths of VLBI and SLR allows them to provide the necessary reference frame accuracy in scale, geocenter, and orientation. With the +10-year extended network operating for ten years, simulations indicate that scale, origin, and orientation accuracies will be at the level of 0.02 ppb, 0.2 mm, and 6 μas. Combining the +5-year and +10-year network realizations will provide better estimates of accuracy and estimates of stability.

  1. Convergence Rate Analysis of Distributed Gossip (Linear Parameter) Estimation: Fundamental Limits and Tradeoffs

    NASA Astrophysics Data System (ADS)

    Kar, Soummya; Moura, José M. F.

    2011-08-01

    The paper considers gossip distributed estimation of a (static) distributed random field (a.k.a., large scale unknown parameter vector) observed by sparsely interconnected sensors, each of which only observes a small fraction of the field. We consider linear distributed estimators whose structure combines the information \\emph{flow} among sensors (the \\emph{consensus} term resulting from the local gossiping exchange among sensors when they are able to communicate) and the information \\emph{gathering} measured by the sensors (the \\emph{sensing} or \\emph{innovations} term.) This leads to mixed time scale algorithms--one time scale associated with the consensus and the other with the innovations. The paper establishes a distributed observability condition (global observability plus mean connectedness) under which the distributed estimates are consistent and asymptotically normal. We introduce the distributed notion equivalent to the (centralized) Fisher information rate, which is a bound on the mean square error reduction rate of any distributed estimator; we show that under the appropriate modeling and structural network communication conditions (gossip protocol) the distributed gossip estimator attains this distributed Fisher information rate, asymptotically achieving the performance of the optimal centralized estimator. Finally, we study the behavior of the distributed gossip estimator when the measurements fade (noise variance grows) with time; in particular, we consider the maximum rate at which the noise variance can grow and still the distributed estimator being consistent, by showing that, as long as the centralized estimator is consistent, the distributed estimator remains consistent.

  2. Evaluation model of distribution network development based on ANP and grey correlation analysis

    NASA Astrophysics Data System (ADS)

    Ma, Kaiqiang; Zhan, Zhihong; Zhou, Ming; Wu, Qiang; Yan, Jun; Chen, Genyong

    2018-06-01

    The existing distribution network evaluation system cannot scientifically and comprehensively reflect the distribution network development status. Furthermore, the evaluation model is monotonous and it is not suitable for horizontal analysis of many regional power grids. For these reason, this paper constructs a set of universal adaptability evaluation index system and model of distribution network development. Firstly, distribution network evaluation system is set up by power supply capability, power grid structure, technical equipment, intelligent level, efficiency of the power grid and development benefit of power grid. Then the comprehensive weight of indices is calculated by combining the AHP with the grey correlation analysis. Finally, the index scoring function can be obtained by fitting the index evaluation criterion to the curve, and then using the multiply plus operator to get the result of sample evaluation. The example analysis shows that the model can reflect the development of distribution network and find out the advantages and disadvantages of distribution network development. Besides, the model provides suggestions for the development and construction of distribution network.

  3. Inferring epidemiological parameters from phylogenetic information for the HIV-1 epidemic among MSM

    NASA Astrophysics Data System (ADS)

    Quax, Rick; van de Vijver, David A. M. C.; Frentz, Dineke; Sloot, Peter M. A.

    2013-09-01

    The HIV-1 epidemic in Europe is primarily sustained by a dynamic topology of sexual interactions among MSM who have individual immune systems and behavior. This epidemiological process shapes the phylogeny of the virus population. Both fields of epidemic modeling and phylogenetics have a long history, however it remains difficult to use phylogenetic data to infer epidemiological parameters such as the structure of the sexual network and the per-act infectiousness. This is because phylogenetic data is necessarily incomplete and ambiguous. Here we show that the cluster-size distribution indeed contains information about epidemiological parameters using detailed numberical experiments. We simulate the HIV epidemic among MSM many times using the Monte Carlo method with all parameter values and their ranges taken from literature. For each simulation and the corresponding set of parameter values we calculate the likelihood of reproducing an observed cluster-size distribution. The result is an estimated likelihood distribution of all parameters from the phylogenetic data, in particular the structure of the sexual network, the per-act infectiousness, and the risk behavior reduction upon diagnosis. These likelihood distributions encode the knowledge provided by the observed cluster-size distrbution, which we quantify using information theory. Our work suggests that the growing body of genetic data of patients can be exploited to understand the underlying epidemiological process.

  4. The 2014-2015 warming anomaly in the Southern California Current System observed by underwater gliders

    NASA Astrophysics Data System (ADS)

    Zaba, Katherine D.; Rudnick, Daniel L.

    2016-02-01

    Large-scale patterns of positive temperature anomalies persisted throughout the surface waters of the North Pacific Ocean during 2014-2015. In the Southern California Current System, measurements by our sustained network of underwater gliders reveal the coastal effects of the recent warming. Regional upper ocean temperature anomalies were greatest since the initiation of the glider network in 2006. Additional observed physical anomalies included a depressed thermocline, high stratification, and freshening; induced biological consequences included changes in the vertical distribution of chlorophyll fluorescence. Contemporaneous surface heat flux and wind strength perturbations suggest that local anomalous atmospheric forcing caused the unusual oceanic conditions.

  5. Benchmarking Measures of Network Controllability on Canonical Graph Models

    NASA Astrophysics Data System (ADS)

    Wu-Yan, Elena; Betzel, Richard F.; Tang, Evelyn; Gu, Shi; Pasqualetti, Fabio; Bassett, Danielle S.

    2018-03-01

    The control of networked dynamical systems opens the possibility for new discoveries and therapies in systems biology and neuroscience. Recent theoretical advances provide candidate mechanisms by which a system can be driven from one pre-specified state to another, and computational approaches provide tools to test those mechanisms in real-world systems. Despite already having been applied to study network systems in biology and neuroscience, the practical performance of these tools and associated measures on simple networks with pre-specified structure has yet to be assessed. Here, we study the behavior of four control metrics (global, average, modal, and boundary controllability) on eight canonical graphs (including Erdős-Rényi, regular, small-world, random geometric, Barábasi-Albert preferential attachment, and several modular networks) with different edge weighting schemes (Gaussian, power-law, and two nonparametric distributions from brain networks, as examples of real-world systems). We observe that differences in global controllability across graph models are more salient when edge weight distributions are heavy-tailed as opposed to normal. In contrast, differences in average, modal, and boundary controllability across graph models (as well as across nodes in the graph) are more salient when edge weight distributions are less heavy-tailed. Across graph models and edge weighting schemes, average and modal controllability are negatively correlated with one another across nodes; yet, across graph instances, the relation between average and modal controllability can be positive, negative, or nonsignificant. Collectively, these findings demonstrate that controllability statistics (and their relations) differ across graphs with different topologies and that these differences can be muted or accentuated by differences in the edge weight distributions. More generally, our numerical studies motivate future analytical efforts to better understand the mathematical underpinnings of the relationship between graph topology and control, as well as efforts to design networks with specific control profiles.

  6. Probing the water distribution in porous model sands with two immiscible fluids: A nuclear magnetic resonance micro-imaging study

    NASA Astrophysics Data System (ADS)

    Lee, Bum Han; Lee, Sung Keun

    2017-10-01

    The effect of the structural heterogeneity of porous networks on the water distribution in porous media, initially saturated with immiscible fluid followed by increasing durations of water injection, remains one of the important problems in hydrology. The relationship among convergence rates (i.e., the rate of fluid saturation with varying injection time) and the macroscopic properties and structural parameters of porous media have been anticipated. Here, we used nuclear magnetic resonance (NMR) micro-imaging to obtain images (down to ∼50 μm resolution) of the distribution of water injected for varying durations into porous networks that were initially saturated with silicone oil. We then established the relationships among the convergence rates, structural parameters, and transport properties of porous networks. The volume fraction of the water phase increases as the water injection duration increases. The 3D images of the water distributions for silica gel samples are similar to those of the glass bead samples. The changes in water saturation (and the accompanying removal of silicone oil) and the variations in the volume fraction, specific surface area, and cube-counting fractal dimension of the water phase fit well with the single-exponential recovery function { f (t) = a [ 1 -exp (- λt) ] } . The asymptotic values (a, i.e., saturated value) of the properties of the volume fraction, specific surface area, and cube-counting fractal dimension of the glass bead samples were greater than those for the silica gel samples primarily because of the intrinsic differences in the porous networks and local distribution of the pore size and connectivity. The convergence rates of all of the properties are inversely proportional to the entropy length and permeability. Despite limitations of the current study, such as insufficient resolution and uncertainty for the estimated parameters due to sparsely selected short injection times, the observed trends highlight the first analyses of the cube-counting fractal dimension (and other structural properties) and convergence rates in porous networks consisting of two fluid components. These results indicate that the convergence rates correlate with the geometric factor that characterizes the porous networks and transport property of the porous networks.

  7. Packets Distributing Evolutionary Algorithm Based on PSO for Ad Hoc Network

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Feng

    2018-03-01

    Wireless communication network has such features as limited bandwidth, changeful channel and dynamic topology, etc. Ad hoc network has lots of difficulties in accessing control, bandwidth distribution, resource assign and congestion control. Therefore, a wireless packets distributing Evolutionary algorithm based on PSO (DPSO)for Ad Hoc Network is proposed. Firstly, parameters impact on performance of network are analyzed and researched to obtain network performance effective function. Secondly, the improved PSO Evolutionary Algorithm is used to solve the optimization problem from local to global in the process of network packets distributing. The simulation results show that the algorithm can ensure fairness and timeliness of network transmission, as well as improve ad hoc network resource integrated utilization efficiency.

  8. Analysis on Voltage Profile of Distribution Network with Distributed Generation

    NASA Astrophysics Data System (ADS)

    Shao, Hua; Shi, Yujie; Yuan, Jianpu; An, Jiakun; Yang, Jianhua

    2018-02-01

    Penetration of distributed generation has some impacts on a distribution network in load flow, voltage profile, reliability, power loss and so on. After the impacts and the typical structures of the grid-connected distributed generation are analyzed, the back/forward sweep method of the load flow calculation of the distribution network is modelled including distributed generation. The voltage profiles of the distribution network affected by the installation location and the capacity of distributed generation are thoroughly investigated and simulated. The impacts on the voltage profiles are summarized and some suggestions to the installation location and the capacity of distributed generation are given correspondingly.

  9. Linking Microstructural Changes to Bulk Behavior in Shear Disordered Matter

    NASA Astrophysics Data System (ADS)

    Blair, Daniel

    Soft and biological materials often exhibit disordered and heterogeneous microstructure. In most cases, the transmission and distribution of stresses through these complex materials reflects their inherent heterogeneity. Through the combination of rheology and 4D imaging we can directly alter and quantify the connection between microstructure and local stresses. We subject soft and biological materials to precise shear deformations while measuring real space information about the distribution and redistribution of the applied stress.In this talk, I will focus on the flow behavior of two distinct but related disordered materials; a flowing compressed emulsion above its yield stress and a strained collagen network. In the emulsion system, I will present experimental and computational results on the dynamical response, at the level of individual droplets, that directly links the particle motion and deformation to the rheology. I will also present results that utilize boundary stress microscopy to quantify the spatial distribution of surface stresses that arise from sheared in-vitro collagen networks. I will outline our main conclusions which is that the strain stiffening behavior observed in collagen networks can be parameterized by a single characteristic strain and associated stress. This characteristic rheological signature seems to describe both the strain stiffening regime and network yielding. NSF DMR: 0847490.

  10. Building AN International Polar Data Coordination Network

    NASA Astrophysics Data System (ADS)

    Pulsifer, P. L.; Yarmey, L.; Manley, W. F.; Gaylord, A. G.; Tweedie, C. E.

    2013-12-01

    In the spirit of the World Data Center system developed to manage data resulting from the International Geophysical Year of 1957-58, the International Polar Year 2007-2009 (IPY) resulted in significant progress towards establishing an international polar data management network. However, a sustained international network is still evolving. In this paper we argue that the fundamental building blocks for such a network exist and that the time is right to move forward. We focus on the Arctic component of such a network with linkages to Antarctic network building activities. A review of an important set of Network building blocks is presented: i) the legacy of the IPY data and information service; ii) global data management services with a polar component (e.g. World Data System); iii) regional systems (e.g. Arctic Observing Viewer; iv) nationally focused programs (e.g. Arctic Observing Viewer, Advanced Cooperative Arctic Data and Information Service, Polar Data Catalogue, Inuit Knowledge Centre); v) programs focused on the local (e.g. Exchange for Local Observations and Knowledge of the Arctic, Geomatics and Cartographic Research Centre). We discuss current activities and results with respect to three priority areas needed to establish a strong and effective Network. First, a summary of network building activities reports on a series of productive meetings, including the Arctic Observing Summit and the Polar Data Forum, that have resulted in a core set of Network nodes and participants and a refined vision for the Network. Second, we recognize that interoperability for information sharing fundamentally relies on the creation and adoption of community-based data description standards and data delivery mechanisms. There is a broad range of interoperability frameworks and specifications available; however, these need to be adapted for polar community needs. Progress towards Network interoperability is reviewed, and a prototype distributed data systems is demonstrated. We discuss remaining challenges. Lastly, to establish a sustainable Arctic Data Coordination Network (ADCN) as part of a broader polar Network will require adequate continued resources. We conclude by outlining proposed business models for the emerging Arctic Data Coordination Network and a broader polar Network.

  11. Improved classification of drainage networks using junction angles and secondary tributary lengths

    NASA Astrophysics Data System (ADS)

    Jung, Kichul; Marpu, Prashanth R.; Ouarda, Taha B. M. J.

    2015-06-01

    River networks in different regions have distinct characteristics generated by geological processes. These differences enable classification of drainage networks using several measures with many features of the networks. In this study, we propose a new approach that only uses the junction angles with secondary tributary lengths to directly classify different network types. This methodology is based on observations on 50 predefined channel networks. The cumulative distributions of secondary tributary lengths for different ranges of junction angles are used to obtain the descriptive values that are defined using a power-law representation. The averages of the values for the known networks are used to represent the classes, and any unclassified network can be classified based on the similarity of the representative values to those of the known classes. The methodology is applied to 10 networks in the United Arab Emirates and Oman and five networks in the USA, and the results are validated using the classification obtained with other methods.

  12. Superfluid-like turbulence in cosmology

    NASA Technical Reports Server (NTRS)

    Gradwohl, Ben-Ami

    1991-01-01

    A network of vortices in a superfluid system exhibits turbulent behavior. It is argued that the universe may have experienced such a phase of superfluid-like turbulence due to the existence of a coherent state with non-topological charge and a network of global strings. The unique feature of a distribution of turbulent domains is that it can yield non-gravitationally induced large-scale coherent velocities. It may be difficult, however, to relate these velocities to the observed large-scale bulk motion.

  13. Elastic properties of compressed emulsions

    NASA Astrophysics Data System (ADS)

    Jorjadze, Ivane; Brujic, Jasna

    2012-02-01

    Visualizing the packing of a dense emulsion in 3D as a function of the external pressure allows us to characterize the geometry and the local stress distribution inside this jammed system. We first test the scaling laws of the pressure and average coordination number over two orders of magnitude in density. We find deviations from theoretical exponents due to the non-affine motion of the particles. Second, we observe that the distribution of forces changes from a broad exponential at the jamming point to a narrower Gaussian-like distribution under high compression. Finally, we calculate the density of states from the measured force network in the approximation of a harmonic potential. Close to jamming, the number of low frequency modes is high, while the application of pressure shifts the distribution to higher frequencies, indicative of a rigid network. The confocal images reveal the structural features associated with the low frequency modes, as well as their localization within the packing. These data are then compared with published results from numerical simulations.

  14. U.S. stock market interaction network as learned by the Boltzmann machine

    DOE PAGES

    Borysov, Stanislav S.; Roudi, Yasser; Balatsky, Alexander V.

    2015-12-07

    Here, we study historical dynamics of joint equilibrium distribution of stock returns in the U.S. stock market using the Boltzmann distribution model being parametrized by external fields and pairwise couplings. Within Boltzmann learning framework for statistical inference, we analyze historical behavior of the parameters inferred using exact and approximate learning algorithms. Since the model and inference methods require use of binary variables, effect of this mapping of continuous returns to the discrete domain is studied. The presented results show that binarization preserves the correlation structure of the market. Properties of distributions of external fields and couplings as well as themore » market interaction network and industry sector clustering structure are studied for different historical dates and moving window sizes. We demonstrate that the observed positive heavy tail in distribution of couplings is related to the sparse clustering structure of the market. We also show that discrepancies between the model’s parameters might be used as a precursor of financial instabilities.« less

  15. Firm profitability and the network of organizational capabilities

    NASA Astrophysics Data System (ADS)

    Wagner, Friedrich; Milaković, Mishael; Alfarano, Simone

    2010-11-01

    A Laplace distribution for firm profit rates (or returns on assets) can be obtained through the sum of many independent shocks if the number of shocks is Poisson distributed. Interpreting this as a linear chain of events, we generalize the process to a hierarchical network structure. The hierarchical model reproduces the observed distributional patterns of firm profitability, which crucially depend on the life span of firms. While the profit rates of long-lived firms obey a symmetric Laplacian, short-lived firms display a different behavior depending on whether they are capable of generating positive profits or not. Successful short-lived firms exhibit a symmetric yet more leptokurtic pdf than long-lived firms. Our model suggests that these firms are more dynamic in their organizational capabilities, but on average also face more risk than long-lived firms. Finally, short-lived firms that fail to generate positive profits have the most leptokurtic distribution among the three classes, and on average lose slightly more than their total assets within a year.

  16. A Coalitional Game for Distributed Inference in Sensor Networks With Dependent Observations

    NASA Astrophysics Data System (ADS)

    He, Hao; Varshney, Pramod K.

    2016-04-01

    We consider the problem of collaborative inference in a sensor network with heterogeneous and statistically dependent sensor observations. Each sensor aims to maximize its inference performance by forming a coalition with other sensors and sharing information within the coalition. It is proved that the inference performance is a nondecreasing function of the coalition size. However, in an energy constrained network, the energy consumption of inter-sensor communication also increases with increasing coalition size, which discourages the formation of the grand coalition (the set of all sensors). In this paper, the formation of non-overlapping coalitions with statistically dependent sensors is investigated under a specific communication constraint. We apply a game theoretical approach to fully explore and utilize the information contained in the spatial dependence among sensors to maximize individual sensor performance. Before formulating the distributed inference problem as a coalition formation game, we first quantify the gain and loss in forming a coalition by introducing the concepts of diversity gain and redundancy loss for both estimation and detection problems. These definitions, enabled by the statistical theory of copulas, allow us to characterize the influence of statistical dependence among sensor observations on inference performance. An iterative algorithm based on merge-and-split operations is proposed for the solution and the stability of the proposed algorithm is analyzed. Numerical results are provided to demonstrate the superiority of our proposed game theoretical approach.

  17. Composing Music with Complex Networks

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofan; Tse, Chi K.; Small, Michael

    In this paper we study the network structure in music and attempt to compose music artificially. Networks are constructed with nodes and edges corresponding to musical notes and their co-occurrences. We analyze sample compositions from Bach, Mozart, Chopin, as well as other types of music including Chinese pop music. We observe remarkably similar properties in all networks constructed from the selected compositions. Power-law exponents of degree distributions, mean degrees, clustering coefficients, mean geodesic distances, etc. are reported. With the network constructed, music can be created by using a biased random walk algorithm, which begins with a randomly chosen note and selects the subsequent notes according to a simple set of rules that compares the weights of the edges, weights of the nodes, and/or the degrees of nodes. The newly created music from complex networks will be played in the presentation.

  18. International migration network: Topology and modeling

    NASA Astrophysics Data System (ADS)

    Fagiolo, Giorgio; Mastrorillo, Marina

    2013-07-01

    This paper studies international migration from a complex-network perspective. We define the international migration network (IMN) as the weighted-directed graph where nodes are world countries and links account for the stock of migrants originated in a given country and living in another country at a given point in time. We characterize the binary and weighted architecture of the network and its evolution over time in the period 1960-2000. We find that the IMN is organized around a modular structure with a small-world binary pattern displaying disassortativity and high clustering, with power-law distributed weighted-network statistics. We also show that a parsimonious gravity model of migration can account for most of observed IMN topological structure. Overall, our results suggest that socioeconomic, geographical, and political factors are more important than local-network properties in shaping the structure of the IMN.

  19. Empirical evaluation of neutral interactions in host-parasite networks.

    PubMed

    Canard, E F; Mouquet, N; Mouillot, D; Stanko, M; Miklisova, D; Gravel, D

    2014-04-01

    While niche-based processes have been invoked extensively to explain the structure of interaction networks, recent studies propose that neutrality could also be of great importance. Under the neutral hypothesis, network structure would simply emerge from random encounters between individuals and thus would be directly linked to species abundance. We investigated the impact of species abundance distributions on qualitative and quantitative metrics of 113 host-parasite networks. We analyzed the concordance between neutral expectations and empirical observations at interaction, species, and network levels. We found that species abundance accurately predicts network metrics at all levels. Despite host-parasite systems being constrained by physiology and immunology, our results suggest that neutrality could also explain, at least partially, their structure. We hypothesize that trait matching would determine potential interactions between species, while abundance would determine their realization.

  20. International migration network: topology and modeling.

    PubMed

    Fagiolo, Giorgio; Mastrorillo, Marina

    2013-07-01

    This paper studies international migration from a complex-network perspective. We define the international migration network (IMN) as the weighted-directed graph where nodes are world countries and links account for the stock of migrants originated in a given country and living in another country at a given point in time. We characterize the binary and weighted architecture of the network and its evolution over time in the period 1960-2000. We find that the IMN is organized around a modular structure with a small-world binary pattern displaying disassortativity and high clustering, with power-law distributed weighted-network statistics. We also show that a parsimonious gravity model of migration can account for most of observed IMN topological structure. Overall, our results suggest that socioeconomic, geographical, and political factors are more important than local-network properties in shaping the structure of the IMN.

  1. Fault detection and diagnosis using neural network approaches

    NASA Technical Reports Server (NTRS)

    Kramer, Mark A.

    1992-01-01

    Neural networks can be used to detect and identify abnormalities in real-time process data. Two basic approaches can be used, the first based on training networks using data representing both normal and abnormal modes of process behavior, and the second based on statistical characterization of the normal mode only. Given data representative of process faults, radial basis function networks can effectively identify failures. This approach is often limited by the lack of fault data, but can be facilitated by process simulation. The second approach employs elliptical and radial basis function neural networks and other models to learn the statistical distributions of process observables under normal conditions. Analytical models of failure modes can then be applied in combination with the neural network models to identify faults. Special methods can be applied to compensate for sensor failures, to produce real-time estimation of missing or failed sensors based on the correlations codified in the neural network.

  2. Feasibility of Using Distributed Wireless Mesh Networks for Medical Emergency Response

    PubMed Central

    Braunstein, Brian; Trimble, Troy; Mishra, Rajesh; Manoj, B. S.; Rao, Ramesh; Lenert, Leslie

    2006-01-01

    Achieving reliable, efficient data communications networks at a disaster site is a difficult task. Network paradigms, such as Wireless Mesh Network (WMN) architectures, form one exemplar for providing high-bandwidth, scalable data communication for medical emergency response activity. WMNs are created by self-organized wireless nodes that use multi-hop wireless relaying for data transfer. In this paper, we describe our experience using a mesh network architecture we developed for homeland security and medical emergency applications. We briefly discuss the architecture and present the traffic behavioral observations made by a client-server medical emergency application tested during a large-scale homeland security drill. We present our traffic measurements, describe lessons learned, and offer functional requirements (based on field testing) for practical 802.11 mesh medical emergency response networks. With certain caveats, the results suggest that 802.11 mesh networks are feasible and scalable systems for field communications in disaster settings. PMID:17238308

  3. Scaling of global input-output networks

    NASA Astrophysics Data System (ADS)

    Liang, Sai; Qi, Zhengling; Qu, Shen; Zhu, Ji; Chiu, Anthony S. F.; Jia, Xiaoping; Xu, Ming

    2016-06-01

    Examining scaling patterns of networks can help understand how structural features relate to the behavior of the networks. Input-output networks consist of industries as nodes and inter-industrial exchanges of products as links. Previous studies consider limited measures for node strengths and link weights, and also ignore the impact of dataset choice. We consider a comprehensive set of indicators in this study that are important in economic analysis, and also examine the impact of dataset choice, by studying input-output networks in individual countries and the entire world. Results show that Burr, Log-Logistic, Log-normal, and Weibull distributions can better describe scaling patterns of global input-output networks. We also find that dataset choice has limited impacts on the observed scaling patterns. Our findings can help examine the quality of economic statistics, estimate missing data in economic statistics, and identify key nodes and links in input-output networks to support economic policymaking.

  4. Impacts on the Voltage Profile of DC Distribution Network with DG Access

    NASA Astrophysics Data System (ADS)

    Tu, J. J.; Yin, Z. D.

    2017-07-01

    With the development of electronic, more and more distributed generations (DGs) access into grid and cause the research fever of direct current (DC) distribution network. Considering distributed generation (DG) location and capacity have great impacts on voltage profile, so use IEEE9 and IEEE33 typical circuit as examples, with DGs access in centralized and decentralized mode, to compare voltage profile in alternating and direct current (AC/DC) distribution network. Introducing the voltage change ratio as an evaluation index, so gets the general results on voltage profile of DC distributed network with DG access. Simulation shows that, in the premise of reasonable location and capacity, DC distribution network is more suitable for DG access.

  5. Behavioral and Network Origins of Wealth Inequality: Insights from a Virtual World

    PubMed Central

    Fuchs, Benedikt; Thurner, Stefan

    2014-01-01

    Almost universally, wealth is not distributed uniformly within societies or economies. Even though wealth data have been collected in various forms for centuries, the origins for the observed wealth-disparity and social inequality are not yet fully understood. Especially the impact and connections of human behavior on wealth could so far not be inferred from data. Here we study wealth data from the virtual economy of the massive multiplayer online game (MMOG) Pardus. This data not only contains every player's wealth at every point in time, but also all actions over a timespan of almost a decade. We find that wealth distributions in the virtual world are very similar to those in Western countries. In particular we find an approximate exponential distribution for low wealth levels and a power-law tail for high levels. The Gini index is found to be , which is close to the indices of many Western countries. We find that wealth-increase rates depend on the time when players entered the game. Players that entered the game early on tend to have remarkably higher wealth-increase rates than those who joined later. Studying the players' positions within their social networks, we find that the local position in the trade network is most relevant for wealth. Wealthy people have high in- and out-degrees in the trade network, relatively low nearest-neighbor degrees, and low clustering coefficients. Wealthy players have many mutual friendships and are socially well respected by others, but spend more time on business than on socializing. Wealthy players have few personal enemies, but show animosity towards players that behave as public enemies. We find that players that are not organized within social groups are significantly poorer on average. We observe that “political” status and wealth go hand in hand. PMID:25153072

  6. Behavioral and network origins of wealth inequality: insights from a virtual world.

    PubMed

    Fuchs, Benedikt; Thurner, Stefan

    2014-01-01

    Almost universally, wealth is not distributed uniformly within societies or economies. Even though wealth data have been collected in various forms for centuries, the origins for the observed wealth-disparity and social inequality are not yet fully understood. Especially the impact and connections of human behavior on wealth could so far not be inferred from data. Here we study wealth data from the virtual economy of the massive multiplayer online game (MMOG) Pardus. This data not only contains every player's wealth at every point in time, but also all actions over a timespan of almost a decade. We find that wealth distributions in the virtual world are very similar to those in Western countries. In particular we find an approximate exponential distribution for low wealth levels and a power-law tail for high levels. The Gini index is found to be g = 0.65, which is close to the indices of many Western countries. We find that wealth-increase rates depend on the time when players entered the game. Players that entered the game early on tend to have remarkably higher wealth-increase rates than those who joined later. Studying the players' positions within their social networks, we find that the local position in the trade network is most relevant for wealth. Wealthy people have high in- and out-degrees in the trade network, relatively low nearest-neighbor degrees, and low clustering coefficients. Wealthy players have many mutual friendships and are socially well respected by others, but spend more time on business than on socializing. Wealthy players have few personal enemies, but show animosity towards players that behave as public enemies. We find that players that are not organized within social groups are significantly poorer on average. We observe that "political" status and wealth go hand in hand.

  7. Research on key technology of planning and design for AC/DC hybrid distribution network

    NASA Astrophysics Data System (ADS)

    Shen, Yu; Wu, Guilian; Zheng, Huan; Deng, Junpeng; Shi, Pengjia

    2018-04-01

    With the increasing demand of DC generation and DC load, the development of DC technology, AC and DC distribution network integrating will become an important form of future distribution network. In this paper, the key technology of planning and design for AC/DC hybrid distribution network is proposed, including the selection of AC and DC voltage series, the design of typical grid structure and the comprehensive evaluation method of planning scheme. The research results provide some ideas and directions for the future development of AC/DC hybrid distribution network.

  8. A novel method for correcting scanline-observational bias of discontinuity orientation

    PubMed Central

    Huang, Lei; Tang, Huiming; Tan, Qinwen; Wang, Dingjian; Wang, Liangqing; Ez Eldin, Mutasim A. M.; Li, Changdong; Wu, Qiong

    2016-01-01

    Scanline observation is known to introduce an angular bias into the probability distribution of orientation in three-dimensional space. In this paper, numerical solutions expressing the functional relationship between the scanline-observational distribution (in one-dimensional space) and the inherent distribution (in three-dimensional space) are derived using probability theory and calculus under the independence hypothesis of dip direction and dip angle. Based on these solutions, a novel method for obtaining the inherent distribution (also for correcting the bias) is proposed, an approach which includes two procedures: 1) Correcting the cumulative probabilities of orientation according to the solutions, and 2) Determining the distribution of the corrected orientations using approximation methods such as the one-sample Kolmogorov-Smirnov test. The inherent distribution corrected by the proposed method can be used for discrete fracture network (DFN) modelling, which is applied to such areas as rockmass stability evaluation, rockmass permeability analysis, rockmass quality calculation and other related fields. To maximize the correction capacity of the proposed method, the observed sample size is suggested through effectiveness tests for different distribution types, dispersions and sample sizes. The performance of the proposed method and the comparison of its correction capacity with existing methods are illustrated with two case studies. PMID:26961249

  9. SONG China project - participating in the global network

    NASA Astrophysics Data System (ADS)

    Deng, Licai; Xin, Yu; Zhang, Xiaobin; Li, Yan; Jiang, Xiaojun; Wang, Guomin; Wang, Kun; Zhou, Jilin; Yan, Zhengzhou; Luo, Zhiquan

    2013-01-01

    SONG (Stellar Observations Network Goup) is a low-cost ground based international collaboration aimed at two cutting edge problems in contemporary astrophysics in the time-domain: 1) Direct diagnostics of the internal structure of stars and 2) looking for and studying extra solar planets, possibly in the habitable zone. The general plan is to set up a network of 1m telescopes uniformly distributed in geographic latitude (in both hemispheres). China jointed the collaboration (initiated by Danish astronomers) at the very beginning. In addition to SONG's original plan (http://song.phys.au.dk), the Chinese team proposed a parallel photometry subnet work in the northern hemisphere, namely 50BiN (50cm Binocular Network, previously known as mini-SONG), to enable a large field photometric capability for the network, therefore maximising the potential of the network platform. The network will be able to produce nearly continuous time series observations of a number of selected objects with high resolution spectroscopy (SONG) and accurate photometry (50BiN), and to produce ultra-high accuracy photometry in dense field to look for micro-lensing events caused by planetary systems. This project has great synergy with Chinese Astronomical activities in Antarctica (Dome A), and other similar networks (e.g. LCOGT). The plan and current status of the project are overviewed in this poster.

  10. optGpSampler: an improved tool for uniformly sampling the solution-space of genome-scale metabolic networks.

    PubMed

    Megchelenbrink, Wout; Huynen, Martijn; Marchiori, Elena

    2014-01-01

    Constraint-based models of metabolic networks are typically underdetermined, because they contain more reactions than metabolites. Therefore the solutions to this system do not consist of unique flux rates for each reaction, but rather a space of possible flux rates. By uniformly sampling this space, an estimated probability distribution for each reaction's flux in the network can be obtained. However, sampling a high dimensional network is time-consuming. Furthermore, the constraints imposed on the network give rise to an irregularly shaped solution space. Therefore more tailored, efficient sampling methods are needed. We propose an efficient sampling algorithm (called optGpSampler), which implements the Artificial Centering Hit-and-Run algorithm in a different manner than the sampling algorithm implemented in the COBRA Toolbox for metabolic network analysis, here called gpSampler. Results of extensive experiments on different genome-scale metabolic networks show that optGpSampler is up to 40 times faster than gpSampler. Application of existing convergence diagnostics on small network reconstructions indicate that optGpSampler converges roughly ten times faster than gpSampler towards similar sampling distributions. For networks of higher dimension (i.e. containing more than 500 reactions), we observed significantly better convergence of optGpSampler and a large deviation between the samples generated by the two algorithms. optGpSampler for Matlab and Python is available for non-commercial use at: http://cs.ru.nl/~wmegchel/optGpSampler/.

  11. New approaches to model and study social networks

    NASA Astrophysics Data System (ADS)

    Lind, P. G.; Herrmann, H. J.

    2007-07-01

    We describe and develop three recent novelties in network research which are particularly useful for studying social systems. The first one concerns the discovery of some basic dynamical laws that enable the emergence of the fundamental features observed in social networks, namely the nontrivial clustering properties, the existence of positive degree correlations and the subdivision into communities. To reproduce all these features, we describe a simple model of mobile colliding agents, whose collisions define the connections between the agents which are the nodes in the underlying network, and develop some analytical considerations. The second point addresses the particular feature of clustering and its relationship with global network measures, namely with the distribution of the size of cycles in the network. Since in social bipartite networks it is not possible to measure the clustering from standard procedures, we propose an alternative clustering coefficient that can be used to extract an improved normalized cycle distribution in any network. Finally, the third point addresses dynamical processes occurring on networks, namely when studying the propagation of information in them. In particular, we focus on the particular features of gossip propagation which impose some restrictions in the propagation rules. To this end we introduce a quantity, the spread factor, which measures the average maximal fraction of nearest neighbours which get in contact with the gossip, and find the striking result that there is an optimal non-trivial number of friends for which the spread factor is minimized, decreasing the danger of being gossiped about.

  12. Comparison of aerosol volume size distributions retrieved from ground-based remote sensing measurements with those from an optical particle counter on the ground

    NASA Astrophysics Data System (ADS)

    Kim, B.; Choi, Y.; Ghim, Y.

    2013-12-01

    Both Cimel CE-318 sunphotometer and POM-02 skyradiometer were operated for around 15 months starting from March 2012 as a part of the DRAGON (Distributed Regional Aerosol Gridded Observation Networks) campaign. These two instruments were collocated at the Hankuk_UFS (Hankuk University of Foreign Studies) site of AERONET (AErosol RObotic NETwork,) and the YGN (Yongin) site of SKYNET (SKYradiometer NETwork). We have also measured the particle concentration on the ground using an optical particle counter (Grimm Model 1.108) since the beginning of this year. The measurement site (37.02 °N, 127.16 °E, 167 m above sea level) is located about 35 km southeast of downtown Seoul. We compare the volume size distributions from sunphotometer, skyradiometer, and optical particle counter for the former part of this year. In the retrieval process, AERONET assumes 22 bins for 0.05-15 μm while SKYNET assumes 20 bins for 0.01-20 μm. The optical particle counter measures the particle number concentrations between 0.25 and 32 μm in 31 bins. Since the measurement intervals are different between instruments, we compare the distributions when the measurement time coincides within 5 minutes as well as mean distributions from the instruments. We examine the differences in mode radii and volume concentrations of fine and coarse mode aerosols between instruments.

  13. The noisy voter model on complex networks.

    PubMed

    Carro, Adrián; Toral, Raúl; San Miguel, Maxi

    2016-04-20

    We propose a new analytical method to study stochastic, binary-state models on complex networks. Moving beyond the usual mean-field theories, this alternative approach is based on the introduction of an annealed approximation for uncorrelated networks, allowing to deal with the network structure as parametric heterogeneity. As an illustration, we study the noisy voter model, a modification of the original voter model including random changes of state. The proposed method is able to unfold the dependence of the model not only on the mean degree (the mean-field prediction) but also on more complex averages over the degree distribution. In particular, we find that the degree heterogeneity--variance of the underlying degree distribution--has a strong influence on the location of the critical point of a noise-induced, finite-size transition occurring in the model, on the local ordering of the system, and on the functional form of its temporal correlations. Finally, we show how this latter point opens the possibility of inferring the degree heterogeneity of the underlying network by observing only the aggregate behavior of the system as a whole, an issue of interest for systems where only macroscopic, population level variables can be measured.

  14. Calibration of water distribution network of the Ramnagar zone in Nagpur City using online pressure and flow data

    NASA Astrophysics Data System (ADS)

    Jadhao, Ramrao D.; Gupta, Rajesh

    2018-03-01

    Calibration of hydraulic model of a water distribution network is required to match the model results of flows and pressures with those obtained in the field. This is a challenging task considering the involvement of a large number of parameters. Having more precise data helps in reducing time and results in better calibration as shown herein with a case study of one hydraulic zone served from the Ramnagar Ground Service Reservoir in Nagpur City. Flow and pressure values for the entire day were obtained through data loggers. Network details regarding pipe lengths, diameters, installation year and material were obtained with the largest possible accuracy. Locations of consumers on the network were noted and average nodal consumptions were obtained from the billing records. The non-revenue water losses were uniformly allocated to all junctions. Valve positions and their operating status were noted from the field and used. The pipe roughness coefficients were adjusted to match the model values with field values of pressures at observation nodes by minimizing the sum of square of difference between them. This paper aims at describing the entire process from collection of the required data to the calibration of the network.

  15. Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata

    PubMed Central

    Chen, Yangzhou; Guo, Yuqi; Wang, Ying

    2017-01-01

    In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research. PMID:28353664

  16. Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata.

    PubMed

    Chen, Yangzhou; Guo, Yuqi; Wang, Ying

    2017-03-29

    In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research.

  17. Analysis of residual chlorine in simple drinking water distribution system with intermittent water supply

    NASA Astrophysics Data System (ADS)

    Goyal, Roopali V.; Patel, H. M.

    2015-09-01

    Knowledge of residual chlorine concentration at various locations in drinking water distribution system is essential final check to the quality of water supplied to the consumers. This paper presents a methodology to find out the residual chlorine concentration at various locations in simple branch network by integrating the hydraulic and water quality model using first-order chlorine decay equation with booster chlorination nodes for intermittent water supply. The explicit equations are developed to compute the residual chlorine in network with a long distribution pipe line at critical nodes. These equations are applicable to Indian conditions where intermittent water supply is the most common system of water supply. It is observed that in intermittent water supply, the residual chlorine at farthest node is sensitive to water supply hours and travelling time of chlorine. Thus, the travelling time of chlorine can be considered to justify the requirement of booster chlorination for intermittent water supply.

  18. Asynchronous transfer mode link performance over ground networks

    NASA Technical Reports Server (NTRS)

    Chow, E. T.; Markley, R. W.

    1993-01-01

    The results of an experiment to determine the feasibility of using asynchronous transfer mode (ATM) technology to support advanced spacecraft missions that require high-rate ground communications and, in particular, full-motion video are reported. Potential nodes in such a ground network include Deep Space Network (DSN) antenna stations, the Jet Propulsion Laboratory, and a set of national and international end users. The experiment simulated a lunar microrover, lunar lander, the DSN ground communications system, and distributed science users. The users were equipped with video-capable workstations. A key feature was an optical fiber link between two high-performance workstations equipped with ATM interfaces. Video was also transmitted through JPL's institutional network to a user 8 km from the experiment. Variations in video depending on the networks and computers were observed, the results are reported.

  19. Generalized priority-queue network dynamics: Impact of team and hierarchy

    NASA Astrophysics Data System (ADS)

    Cho, Won-Kuk; Min, Byungjoon; Goh, K.-I.; Kim, I.-M.

    2010-06-01

    We study the effect of team and hierarchy on the waiting-time dynamics of priority-queue networks. To this end, we introduce generalized priority-queue network models incorporating interaction rules based on team-execution and hierarchy in decision making, respectively. It is numerically found that the waiting-time distribution exhibits a power law for long waiting times in both cases, yet with different exponents depending on the team size and the position of queue nodes in the hierarchy, respectively. The observed power-law behaviors have in many cases a corresponding single or pairwise-interacting queue dynamics, suggesting that the pairwise interaction may constitute a major dynamic consequence in the priority-queue networks. It is also found that the reciprocity of influence is a relevant factor for the priority-queue network dynamics.

  20. A study of the Immune Epitope Database for some fungi species using network topological indices.

    PubMed

    Vázquez-Prieto, Severo; Paniagua, Esperanza; Solana, Hugo; Ubeira, Florencio M; González-Díaz, Humberto

    2017-08-01

    In the last years, the encryption of system structure information with different network topological indices has been a very active field of research. In the present study, we assembled for the first time a complex network using data obtained from the Immune Epitope Database for fungi species, and we then considered the general topology, the node degree distribution, and the local structure of this network. We also calculated eight node centrality measures for the observed network and compared it with three theoretical models. In view of the results obtained, we may expect that the present approach can become a valuable tool to explore the complexity of this database, as well as for the storage, manipulation, comparison, and retrieval of information contained therein.

  1. Cyclic subway networks are less risky in metropolises

    NASA Astrophysics Data System (ADS)

    Xiao, Ying; Zhang, Hai-Tao; Xu, Bowen; Zhu, Tao; Chen, Guanrong; Chen, Duxin

    2018-02-01

    Subways are crucial in modern transportation systems of metropolises. To quantitatively evaluate the potential risks of subway networks suffered from natural disasters or deliberate attacks, real data from seven Chinese subway systems are collected and their population distributions and anti-risk capabilities are analyzed. Counterintuitively, it is found that transfer stations with large numbers of connections are not the most crucial, but the stations and lines with large betweenness centrality are essential, if subway networks are being attacked. It is also found that cycles reduce such correlations due to the existence of alternative paths. To simulate the data-based observations, a network model is proposed to characterize the dynamics of subway systems under various intensities of attacks on stations and lines. This study sheds some light onto risk assessment of subway networks in metropolitan cities.

  2. La Serra d'Almos (Tarragona): an example of phenological data rescue and preservation in Catalonia

    NASA Astrophysics Data System (ADS)

    Busto, Montserrat; Cunillera, Jordi; de Yzaguirre, Xavi; Borrell, Josep

    2016-04-01

    The interruption of important phenological series and the progressive disappearance of phenological observations in Catalonia led the Meteorological Service of Catalonia (SMC) to design and impulse a new phenological network promoted by the Climate Change Unit of this Met Service. The "Fenocat" network was born in March 2013, and currently has around fifty observers distributed throughout Catalonia that observe plants, birds and butterflies. We are providing data from different plant phenophases to PEP725 database. Besides this new phenological network (Fenocat), one of the aims of SMC is to rescue and preserve historical data from different observation points in Catalonia. We show in this poster the example of rescue and preservation of phenological data from la Serra d'Almos (in Tivissa, near Tarragona, Catalonia, NE Iberian Peninsula), an observation series that began in 1973. After digitalization process and quality control tasks, we show preliminary results of this phenological series, and we compare them with those of similar European series. We show the evolution trends for different observed species, such as almond tree (Prunus dulcis), hazel (Corylus avellana), plum (Prunus domestica), olive tree (Olea europea), apple tree (Malus domestica) or vineyard (Vitis vinifera).

  3. Functional brain networks develop from a "local to distributed" organization.

    PubMed

    Fair, Damien A; Cohen, Alexander L; Power, Jonathan D; Dosenbach, Nico U F; Church, Jessica A; Miezin, Francis M; Schlaggar, Bradley L; Petersen, Steven E

    2009-05-01

    The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI), graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks defined in earlier studies. As we have previously reported, we find, across development, a trend toward 'segregation' (a general decrease in correlation strength) between regions close in anatomical space and 'integration' (an increased correlation strength) between selected regions distant in space. The generalization of these earlier trends across multiple networks suggests that this is a general developmental principle for changes in functional connectivity that would extend to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical emphasis in children to a more "distributed" architecture in young adults. We argue that this "local to distributed" developmental characterization has important implications for understanding the development of neural systems underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths) are similar in child and adult graphs, with both showing "small-world"-like properties, while community detection by modularity optimization reveals stable communities within the graphs that are clearly different between young children and young adults. These observations suggest that early school age children and adults both have relatively efficient systems that may solve similar information processing problems in divergent ways.

  4. Entropy-based heavy tailed distribution transformation and visual analytics for monitoring massive network traffic

    NASA Astrophysics Data System (ADS)

    Han, Keesook J.; Hodge, Matthew; Ross, Virginia W.

    2011-06-01

    For monitoring network traffic, there is an enormous cost in collecting, storing, and analyzing network traffic datasets. Data mining based network traffic analysis has a growing interest in the cyber security community, but is computationally expensive for finding correlations between attributes in massive network traffic datasets. To lower the cost and reduce computational complexity, it is desirable to perform feasible statistical processing on effective reduced datasets instead of on the original full datasets. Because of the dynamic behavior of network traffic, traffic traces exhibit mixtures of heavy tailed statistical distributions or overdispersion. Heavy tailed network traffic characterization and visualization are important and essential tasks to measure network performance for the Quality of Services. However, heavy tailed distributions are limited in their ability to characterize real-time network traffic due to the difficulty of parameter estimation. The Entropy-Based Heavy Tailed Distribution Transformation (EHTDT) was developed to convert the heavy tailed distribution into a transformed distribution to find the linear approximation. The EHTDT linearization has the advantage of being amenable to characterize and aggregate overdispersion of network traffic in realtime. Results of applying the EHTDT for innovative visual analytics to real network traffic data are presented.

  5. Radiative Effects of Carbonaceous and Inorganic Aerosols over California during CalNex and CARES: Observations versus Model Predictions

    NASA Astrophysics Data System (ADS)

    Vinoj, V.; Fast, J. D.; Liu, Y.

    2012-12-01

    Aerosols have been identified to be a major contributor to the uncertainty in understanding the present climate. Most of this uncertainty arises due to the lack of knowledge of their micro-physical and chemical properties as well as how to adequately represent their spatial and temporal distributions. Increased process level understanding can be achieved through carefully designed field campaigns and experiments. These measurements can be used to elucidate the aerosol properties, mixing, transport and transformation within the atmosphere and also to validate and improve models that include meteorology-aerosol-chemistry interactions. In the present study, the WRF-Chem model is used to simulate the evolution of carbonaceous and inorganic aerosols and their impact on radiation during May and June of 2010 over California when two field campaigns took place: the California Nexus Experiment (CalNex) and Carbonaceous Aerosol and Radiative Effects Study (CARES). We merged CalNex and CARES data along with data from operational networks such as, California Air Resources Board (CARB's) air quality monitoring network, the Interagency Monitoring of Protected Visual Environments (IMPROVE) network, the AErosol RObotic NETwork (AERONET), and satellites into a common dataset for the Aerosol Modeling Test bed. The resulting combined dataset is used to rigorously evaluate the model simulation of aerosol mass, size distribution, composition, and optical properties needed to understand uncertainties that could affect regional variations in aerosol radiative forcing. The model reproduced many of the diurnal, multi-day, and spatial variations of aerosols as seen in the measurements. However, regionally the performance varied with reasonably good agreement with observations around Los Angeles and Sacramento and poor agreement with observations in the vicinity of Bakersfield (although predictions aloft were much better). Some aerosol species (sulfate and nitrate) were better represented than others (organic matter, black carbon) at many locations. The model also reproduced the observed transport of sea-salt by intrusions of marine air from the Bay Area to Sacramento. The vertical distribution of aerosols was simulated reasonably as evidenced from comparison with observed profiles from the High Spectral Resolution Lidar (HSRL) on the NASA B-200 aircraft, although the values in the boundary layer were too high at times. Consistent with the bias in aerosol mass, the simulated column aerosol optical depths at the AERONET and field campaign sites were often too high. Comparisons between observed and predicted aerosol optical depth and single scattering albedo will be presented. Using aerosol observations as a constraint, we will present the radiative effect of simulated aerosols and its sensitivity to the uncertainties in predicted aerosol properties.

  6. Distributed rewiring model for complex networking: The effect of local rewiring rules on final structural properties.

    PubMed

    López Chavira, Magali Alexander; Marcelín-Jiménez, Ricardo

    2017-01-01

    The study of complex networks has become an important subject over the last decades. It has been shown that these structures have special features, such as their diameter, or their average path length, which in turn are the explanation of some functional properties in a system such as its fault tolerance, its fragility before attacks, or the ability to support routing procedures. In the present work, we study some of the forces that help a network to evolve to the point where structural properties are settled. Although our work is mainly focused on the possibility of applying our ideas to Information and Communication Technologies systems, we consider that our results may contribute to understanding different scenarios where complex networks have become an important modeling tool. Using a discrete event simulator, we get each node to discover the shortcuts that may connect it with regions away from its local environment. Based on this partial knowledge, each node can rewire some of its links, which allows modifying the topology of the entire underlying graph to achieve new structural properties. We proposed a distributed rewiring model that creates networks with features similar to those found in complex networks. Although each node acts in a distributed way and seeking to reduce only the trajectories of its packets, we observed a decrease of diameter and an increase in clustering coefficient in the global structure compared to the initial graph. Furthermore, we can find different final structures depending on slight changes in the local rewiring rules.

  7. Organization of the secure distributed computing based on multi-agent system

    NASA Astrophysics Data System (ADS)

    Khovanskov, Sergey; Rumyantsev, Konstantin; Khovanskova, Vera

    2018-04-01

    Nowadays developing methods for distributed computing is received much attention. One of the methods of distributed computing is using of multi-agent systems. The organization of distributed computing based on the conventional network computers can experience security threats performed by computational processes. Authors have developed the unified agent algorithm of control system of computing network nodes operation. Network PCs is used as computing nodes. The proposed multi-agent control system for the implementation of distributed computing allows in a short time to organize using of the processing power of computers any existing network to solve large-task by creating a distributed computing. Agents based on a computer network can: configure a distributed computing system; to distribute the computational load among computers operated agents; perform optimization distributed computing system according to the computing power of computers on the network. The number of computers connected to the network can be increased by connecting computers to the new computer system, which leads to an increase in overall processing power. Adding multi-agent system in the central agent increases the security of distributed computing. This organization of the distributed computing system reduces the problem solving time and increase fault tolerance (vitality) of computing processes in a changing computing environment (dynamic change of the number of computers on the network). Developed a multi-agent system detects cases of falsification of the results of a distributed system, which may lead to wrong decisions. In addition, the system checks and corrects wrong results.

  8. Prisoner's dilemma on scale-free networks

    NASA Astrophysics Data System (ADS)

    Gallos, Lazaros

    2005-07-01

    In this work, we study via computer simulations the spatial prisoner's dilemma (PD) game for the general case where the distribution of the connections between the individuals playing the game obeys a power law. This distribution has been shown to describe many aspects of social acquaintances, while the PD game is a powerful tool for studying mutual trust and cooperation among individuals. We study this model under different conditions, such as varying degree of connectivity and payoff value. Depending on the exact conditions of the game, we observe a plethora of behaviors for the percentage of cooperating agents. For example, the same network may settle in an equilibrium configuration of either low or high percentage of cooperators, or induce a transition between these two regimes.

  9. Noise-sustained synchronization between electrically coupled FitzHugh-Nagumo networks

    NASA Astrophysics Data System (ADS)

    Cascallares, Guadalupe; Sánchez, Alejandro D.; dell'Erba, Matías G.; Izús, Gonzalo G.

    2015-09-01

    We investigate the capability of electrical synapses to transmit the noise-sustained network activity from one network to another. The particular setup we consider is two identical rings with excitable FitzHugh-Nagumo cell dynamics and nearest-neighbor antiphase intra-ring coupling, electrically coupled between corresponding nodes. The whole system is submitted to independent local additive Gaussian white noises with common intensity η, but only one ring is externally forced by a global adiabatic subthreshold harmonic signal. We then seek conditions for a particular noise level to promote synchronized stable firing patterns. By running numerical integrations with increasing η, we observe the excitation activity to become spatiotemporally self-organized, until η is so strong that spoils sync between networks for a given value of the electric coupling strength. By means of a four-cell model and calculating the stationary probability distribution, we obtain a (signal-dependent) non-equilibrium potential landscape which explains qualitatively the observed regimes, and whose barrier heights give a good estimate of the optimal noise intensity for the sync between networks.

  10. Incorporating atmospheric uncertainties into estimates of the detection capability of the IMS infrasound network

    NASA Astrophysics Data System (ADS)

    Le Pichon, Alexis; Ceranna, Lars; Taillepied, Doriane

    2015-04-01

    To monitor compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), a dedicated network is being deployed. Multi-year observations recorded by the International Monitoring System (IMS) infrasound network confirm that its detection capability is highly variable in space and time. Today, numerical modeling techniques provide a basis to better understand the role of different factors describing the source and the atmosphere that influence propagation predictions. Previous studies estimated the radiated source energy from remote observations using frequency dependent attenuation relation and state-of-the-art specifications of the stratospheric wind. In order to account for a realistic description of the dynamic structure of the atmosphere, model predictions are further enhanced by wind and temperature error distributions as measured in the framework of the ARISE project (http://arise-project.eu/). In the context of the future verification of the CTBT, these predictions quantify uncertainties in the spatial and temporal variability of the IMS infrasound network performance in higher resolution, and will be helpful for the design and prioritizing maintenance of any arbitrary infrasound monitoring network.

  11. Incorporating atmospheric uncertainties into estimates of the detection capability of the IMS infrasound network

    NASA Astrophysics Data System (ADS)

    Le Pichon, Alexis; Blanc, Elisabeth; Rüfenacht, Rolf; Kämpfer, Niklaus; Keckhut, Philippe; Hauchecorne, Alain; Ceranna, Lars; Pilger, Christoph; Ross, Ole

    2014-05-01

    To monitor compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), a dedicated network is being deployed. Multi-year observations recorded by the International Monitoring System (IMS) infrasound network confirm that its detection capability is highly variable in space and time. Today, numerical modeling techniques provide a basis to better understand the role of different factors describing the source and the atmosphere that influence propagation predictions. Previous studies estimated the radiated source energy from remote observations using frequency dependent attenuation relation and state-of-the-art specifications of the stratospheric wind. In order to account for a realistic description of the dynamic structure of the atmosphere, model predictions are further enhanced by wind and temperature error distributions as measured in the framework of the ARISE project (http://arise-project.eu/). In the context of the future verification of the CTBT, these predictions quantify uncertainties in the spatial and temporal variability of the IMS infrasound network performance in higher resolution, and will be helpful for the design and prioritizing maintenance of any arbitrary infrasound monitoring network.

  12. The impact of cost and network topology on urban mobility: a study of public bicycle usage in 2 U.S. cities.

    PubMed

    Jurdak, Raja

    2013-01-01

    Understanding the drivers of urban mobility is vital for epidemiology, urban planning, and communication networks. Human movements have so far been studied by observing people's positions in a given space and time, though most recent models only implicitly account for expected costs and returns for movements. This paper explores the explicit impact of cost and network topology on mobility dynamics, using data from 2 city-wide public bicycle share systems in the USA. User mobility is characterized through the distribution of trip durations, while network topology is characterized through the pairwise distances between stations and the popularity of stations and routes. Despite significant differences in station density and physical layout between the 2 cities, trip durations follow remarkably similar distributions that exhibit cost sensitive trends around pricing point boundaries, particularly with long-term users of the system. Based on the results, recommendations for dynamic pricing and incentive schemes are provided to positively influence mobility patterns and guide improved planning and management of public bicycle systems to increase uptake.

  13. Naming games in two-dimensional and small-world-connected random geometric networks.

    PubMed

    Lu, Qiming; Korniss, G; Szymanski, B K

    2008-01-01

    We investigate a prototypical agent-based model, the naming game, on two-dimensional random geometric networks. The naming game [Baronchelli, J. Stat. Mech.: Theory Exp. (2006) P06014] is a minimal model, employing local communications that captures the emergence of shared communication schemes (languages) in a population of autonomous semiotic agents. Implementing the naming games with local broadcasts on random geometric graphs, serves as a model for agreement dynamics in large-scale, autonomously operating wireless sensor networks. Further, it captures essential features of the scaling properties of the agreement process for spatially embedded autonomous agents. Among the relevant observables capturing the temporal properties of the agreement process, we investigate the cluster-size distribution and the distribution of the agreement times, both exhibiting dynamic scaling. We also present results for the case when a small density of long-range communication links are added on top of the random geometric graph, resulting in a "small-world"-like network and yielding a significantly reduced time to reach global agreement. We construct a finite-size scaling analysis for the agreement times in this case.

  14. Loopless nontrapping invasion-percolation model for fracking.

    PubMed

    Norris, J Quinn; Turcotte, Donald L; Rundle, John B

    2014-02-01

    Recent developments in hydraulic fracturing (fracking) have enabled the recovery of large quantities of natural gas and oil from old, low-permeability shales. These developments include a change from low-volume, high-viscosity fluid injection to high-volume, low-viscosity injection. The injected fluid introduces distributed damage that provides fracture permeability for the extraction of the gas and oil. In order to model this process, we utilize a loopless nontrapping invasion percolation previously introduced to model optimal polymers in a strongly disordered medium and for determining minimum energy spanning trees on a lattice. We performed numerical simulations on a two-dimensional square lattice and find significant differences from other percolation models. Additionally, we find that the growing fracture network satisfies both Horton-Strahler and Tokunaga network statistics. As with other invasion percolation models, our model displays burst dynamics, in which the cluster extends rapidly into a connected region. We introduce an alternative definition of bursts to be a consecutive series of opened bonds whose strengths are all below a specified value. Using this definition of bursts, we find good agreement with a power-law frequency-area distribution. These results are generally consistent with the observed distribution of microseismicity observed during a high-volume frack.

  15. Distributed Sensing for Quickest Change Detection of Point Radiation Sources

    DTIC Science & Technology

    2017-02-01

    point occurs simultaneously at all sensor nodes, thus neglecting signal propagation delays. For nuclear radiation , the observation period, which is on... nuclear radiation using a sensor network,” in Homeland Security (HST), 2012 IEEE Conference on Technologies for. IEEE, 2012, pp. 648–653. [8] G. Lorden...Distributed Sensing for Quickest Change Detection of Point Radiation Sources Gene T. Whipps⋆† Emre Ertin† Randolph L. Moses† †The Ohio State

  16. Design of a national distributed health data network.

    PubMed

    Maro, Judith C; Platt, Richard; Holmes, John H; Strom, Brian L; Hennessy, Sean; Lazarus, Ross; Brown, Jeffrey S

    2009-09-01

    A distributed health data network is a system that allows secure remote analysis of separate data sets, each comprising a different medical organization's or health plan's records. Distributed health data networks are currently being planned that could cover millions of people, permitting studies of comparative clinical effectiveness, best practices, diffusion of medical technologies, and quality of care. These networks could also support assessment of medical product safety and other public health needs. Distributed network technologies allow data holders to control all uses of their data, which overcomes many practical obstacles related to confidentiality, regulation, and proprietary interests. Some of the challenges and potential methods of operation of a multipurpose, multi-institutional distributed health data network are described.

  17. Dyadic Interactions in Service Encounter: Bayesian SEM Approach

    NASA Astrophysics Data System (ADS)

    Sagan, Adam; Kowalska-Musiał, Magdalena

    Dyadic interactions are an important aspects in service encounters. They may be observed in B2B distribution channels, professional services, buying centers, family decision making or WOM communications. The networks consist of dyadic bonds that form dense but weak ties among the actors.

  18. The North Alabama Severe Thunderstorm Observations, Research, and Monitoring Network (STORMnet)

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.; Blakeslee, R.; Christian, H.; Boccippio, D.; Koshak, W.; Bailey, J.; Hall, J.; Bateman, M.; McCaul, E.; Buechler, D.; hide

    2002-01-01

    The Severe Thunderstorm Observations, Research, and Monitoring network (STORMnet) became operational in 2001 as a test bed to infuse new science and technologies into the severe and hazardous weather forecasting and warning process. STORMnet is collaboration among NASA scientists, National Weather Service (NWS) forecasters, emergency managers and other partners. STORMnet integrates total lightning observations from a ten-station 3-D VHF regional lightning mapping array, the National Lightning Detection Network (NLDN), real-time regional NEXRAD Doppler radar, satellite visible and infrared imagers, and a mobile atmospheric profiling system to characterize storms and their evolution. The storm characteristics and life-cycle trending are accomplished in real-time through the second generation Lightning Imaging Sensor Demonstration and Display (LISDAD II), a distributed processing system with a JAVA-based display application that allows anyone, anywhere to track individual storm histories within the Tennessee Valley region of north Alabama and Tennessee, a region of the southeastern U.S. well known for abundant severe weather.

  19. Reciprocity and the Emergence of Power Laws in Social Networks

    NASA Astrophysics Data System (ADS)

    Schnegg, Michael

    Research in network science has shown that many naturally occurring and technologically constructed networks are scale free, that means a power law degree distribution emerges from a growth model in which each new node attaches to the existing network with a probability proportional to its number of links (= degree). Little is known about whether the same principles of local attachment and global properties apply to societies as well. Empirical evidence from six ethnographic case studies shows that complex social networks have significantly lower scaling exponents γ ~ 1 than have been assumed in the past. Apparently humans do not only look for the most prominent players to play with. Moreover cooperation in humans is characterized through reciprocity, the tendency to give to those from whom one has received in the past. Both variables — reciprocity and the scaling exponent — are negatively correlated (r = -0.767, sig = 0.075). If we include this effect in simulations of growing networks, degree distributions emerge that are much closer to those empirically observed. While the proportion of nodes with small degrees decreases drastically as we introduce reciprocity, the scaling exponent is more robust and changes only when a relatively large proportion of attachment decisions follow this rule. If social networks are less scale free than previously assumed this has far reaching implications for policy makers, public health programs and marketing alike.

  20. Distributed Observer Network

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA s advanced visual simulations are essential for analyses associated with life cycle planning, design, training, testing, operations, and evaluation. Kennedy Space Center, in particular, uses simulations for ground services and space exploration planning in an effort to reduce risk and costs while improving safety and performance. However, it has been difficult to circulate and share the results of simulation tools among the field centers, and distance and travel expenses have made timely collaboration even harder. In response, NASA joined with Valador Inc. to develop the Distributed Observer Network (DON), a collaborative environment that leverages game technology to bring 3-D simulations to conventional desktop and laptop computers. DON enables teams of engineers working on design and operations to view and collaborate on 3-D representations of data generated by authoritative tools. DON takes models and telemetry from these sources and, using commercial game engine technology, displays the simulation results in a 3-D visual environment. Multiple widely dispersed users, working individually or in groups, can view and analyze simulation results on desktop and laptop computers in real time.

  1. Evidence for a Functional Hierarchy of Association Networks.

    PubMed

    Choi, Eun Young; Drayna, Garrett K; Badre, David

    2018-05-01

    Patient lesion and neuroimaging studies have identified a rostral-to-caudal functional gradient in the lateral frontal cortex (LFC) corresponding to higher-order (complex or abstract) to lower-order (simple or concrete) cognitive control. At the same time, monkey anatomical and human functional connectivity studies show that frontal regions are reciprocally connected with parietal and temporal regions, forming parallel and distributed association networks. Here, we investigated the link between the functional gradient of LFC regions observed during control tasks and the parallel, distributed organization of association networks. Whole-brain fMRI task activity corresponding to four orders of hierarchical control [Badre, D., & D'Esposito, M. Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. Journal of Cognitive Neuroscience, 19, 2082-2099, 2007] was compared with a resting-state functional connectivity MRI estimate of cortical networks [Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 1125-1165, 2011]. Critically, at each order of control, activity in the LFC and parietal cortex overlapped onto a common association network that differed between orders. These results are consistent with a functional organization based on separable association networks that are recruited during hierarchical control. Furthermore, corticostriatal functional connectivity MRI showed that, consistent with their participation in functional networks, rostral-to-caudal LFC and caudal-to-rostral parietal regions had similar, order-specific corticostriatal connectivity that agreed with a striatal gating model of hierarchical rule use. Our results indicate that hierarchical cognitive control is subserved by parallel and distributed association networks, together forming multiple localized functional gradients in different parts of association cortex. As such, association networks, while connectionally organized in parallel, may be functionally organized in a hierarchy via dynamic interaction with the striatum.

  2. Evaluating the effect of internal aperture variability on transport in kilometer scale discrete fracture networks

    DOE PAGES

    Makedonska, Nataliia; Hyman, Jeffrey D.; Karra, Satish; ...

    2016-08-01

    The apertures of natural fractures in fractured rock are highly heterogeneous. However, in-fracture aperture variability is often neglected in flow and transport modeling and individual fractures are assumed to have uniform aperture distribution. The relative importance of in-fracture variability in flow and transport modeling within kilometer-scale fracture networks has been under debate for a long time, since the flow in each single fracture is controlled not only by in-fracture variability but also by boundary conditions. Computational limitations have previously prohibited researchers from investigating the relative importance of in-fracture variability in flow and transport modeling within large-scale fracture networks. We addressmore » this question by incorporating internal heterogeneity of individual fractures into flow simulations within kilometer scale three-dimensional fracture networks, where fracture intensity, P 32 (ratio between total fracture area and domain volume) is between 0.027 and 0.031 [1/m]. The recently developed discrete fracture network (DFN) simulation capability, dfnWorks, is used to generate kilometer scale DFNs that include in-fracture aperture variability represented by a stationary log-normal stochastic field with various correlation lengths and variances. The Lagrangian transport parameters, non-reacting travel time, , and cumulative retention, , are calculated along particles streamlines. As a result, it is observed that due to local flow channeling early particle travel times are more sensitive to in-fracture aperture variability than the tails of travel time distributions, where no significant effect of the in-fracture aperture variations and spatial correlation length is observed.« less

  3. Evaluating the effect of internal aperture variability on transport in kilometer scale discrete fracture networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makedonska, Nataliia; Hyman, Jeffrey D.; Karra, Satish

    The apertures of natural fractures in fractured rock are highly heterogeneous. However, in-fracture aperture variability is often neglected in flow and transport modeling and individual fractures are assumed to have uniform aperture distribution. The relative importance of in-fracture variability in flow and transport modeling within kilometer-scale fracture networks has been under debate for a long time, since the flow in each single fracture is controlled not only by in-fracture variability but also by boundary conditions. Computational limitations have previously prohibited researchers from investigating the relative importance of in-fracture variability in flow and transport modeling within large-scale fracture networks. We addressmore » this question by incorporating internal heterogeneity of individual fractures into flow simulations within kilometer scale three-dimensional fracture networks, where fracture intensity, P 32 (ratio between total fracture area and domain volume) is between 0.027 and 0.031 [1/m]. The recently developed discrete fracture network (DFN) simulation capability, dfnWorks, is used to generate kilometer scale DFNs that include in-fracture aperture variability represented by a stationary log-normal stochastic field with various correlation lengths and variances. The Lagrangian transport parameters, non-reacting travel time, , and cumulative retention, , are calculated along particles streamlines. As a result, it is observed that due to local flow channeling early particle travel times are more sensitive to in-fracture aperture variability than the tails of travel time distributions, where no significant effect of the in-fracture aperture variations and spatial correlation length is observed.« less

  4. Proactive routing mutation against stealthy Distributed Denial of Service attacks: metrics, modeling, and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Qi; Al-Shaer, Ehab; Chatterjee, Samrat

    The Infrastructure Distributed Denial of Service (IDDoS) attacks continue to be one of the most devastating challenges facing cyber systems. The new generation of IDDoS attacks exploit the inherent weakness of cyber infrastructure including deterministic nature of routes, skew distribution of flows, and Internet ossification to discover the network critical links and launch highly stealthy flooding attacks that are not observable at the victim end. In this paper, first, we propose a new metric to quantitatively measure the potential susceptibility of any arbitrary target server or domain to stealthy IDDoS attacks, and es- timate the impact of such susceptibility onmore » enterprises. Second, we develop a proactive route mutation technique to minimize the susceptibility to these attacks by dynamically changing the flow paths periodically to invalidate the adversary knowledge about the network and avoid targeted critical links. Our proposed approach actively changes these network paths while satisfying security and qualify of service requirements. We present an integrated approach of proactive route mutation that combines both infrastructure-based mutation that is based on reconfiguration of switches and routers, and middle-box approach that uses an overlay of end-point proxies to construct a virtual network path free of critical links to reach a destination. We implemented the proactive path mutation technique on a Software Defined Network using the OpendDaylight controller to demonstrate a feasible deployment of this approach. Our evaluation validates the correctness, effectiveness, and scalability of the proposed approaches.« less

  5. An ACOR-Based Multi-Objective WSN Deployment Example for Lunar Surveying.

    PubMed

    López-Matencio, Pablo

    2016-02-06

    Wireless sensor networks (WSNs) can gather in situ real data measurements and work unattended for long periods, even in remote, rough places. A critical aspect of WSN design is node placement, as this determines sensing capacities, network connectivity, network lifetime and, in short, the whole operational capabilities of the WSN. This paper proposes and studies a new node placement algorithm that focus on these aspects. As a motivating example, we consider a network designed to describe the distribution of helium-3 (³He), a potential enabling element for fusion reactors, on the Moon. ³He is abundant on the Moon's surface, and knowledge of its distribution is essential for future harvesting purposes. Previous data are inconclusive, and there is general agreement that on-site measurements, obtained over a long time period, are necessary to better understand the mechanisms involved in the distribution of this element on the Moon. Although a mission of this type is extremely complex, it allows us to illustrate the main challenges involved in a multi-objective WSN placement problem, i.e., selection of optimal observation sites and maximization of the lifetime of the network. To tackle optimization, we use a recent adaptation of the ant colony optimization (ACOR) metaheuristic, extended to continuous domains. Solutions are provided in the form of a Pareto frontier that shows the optimal equilibria. Moreover, we compared our scheme with the four-directional placement (FDP) heuristic, which was outperformed in all cases.

  6. The ANTARES observation network

    NASA Astrophysics Data System (ADS)

    Dogliotti, Ana I.; Ulloa, Osvaldo; Muller-Karger, Frank; Hu, Chuanmin; Murch, Brock; Taylor, Charles; Yuras, Gabriel; Kampel, Milton; Lutz, Vivian; Gaeta, Salvador; Gagliardini, Domingo A.; Garcia, Carlos A. E.; Klein, Eduardo; Helbling, Walter; Varela, Ramon; Barbieri, Elena; Negri, Ruben; Frouin, Robert; Sathyendranath, Shubha; Platt, Trevor

    2005-08-01

    The ANTARES network seeks to understand the variability of the coastal environment on a continental scale and the local, regional, and global factors and processes that effect this change. The focus are coastal zones of South America and the Caribbean Sea. The initial approach includes developing time series of in situ and satellite-based environmental observations in coastal and oceanic regions. The network is constituted by experts that seek to exchange ideas, develop an infrastructure for mutual logistical and knowledge support, and link in situ time series of observations located around the Americas with real-time and historical satellite-derived time series of relevant products. A major objective is to generate information that will be distributed publicly and openly in the service of coastal ocean research, resource management, science-based policy making and education in the Americas. As a first stage, the network has linked oceanographic time series located in Argentina, Brazil, Chile and Venezuela. The group has also developed an online tool to examine satellite data collected with sensors such as NASA's MODIS. Specifically, continental-scale high-resolution (1 km) maps of chlorophyll and of sea surface temperature are generated and served daily over the web according to specifications of users within the ANTARES network. Other satellite-derived variables will be added as support for the network is solidified. ANTARES serves data and offers simple analysis tools that anyone can use with the ultimate goal of improving coastal assessments, management and policies.

  7. Percolation Theory and Modern Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Norris, J. Q.; Turcotte, D. L.; Rundle, J. B.

    2015-12-01

    During the past few years, we have been developing a percolation model for fracking. This model provides a powerful tool for understanding the growth and properties of the complex fracture networks generated during a modern high volume hydraulic fracture stimulations of tight shale reservoirs. The model can also be used to understand the interaction between the growing fracture network and natural reservoir features such as joint sets and faults. Additionally, the model produces a power-law distribution of bursts which can easily be compared to observed microseismicity.

  8. The Value of Information in Distributed Decision Networks

    DTIC Science & Technology

    2016-03-04

    formulation, and then we describe the various results at- tained. 1 Mathematical description of Distributed Decision Network un- der Information...Constraints We now define a mathematical framework for networks. Let G = (V,E) be an undirected random network (graph) drawn from a known distribution pG, 1

  9. The role of the interaction network in the emergence of diversity of behavior

    PubMed Central

    Tabacof, Pedro; Von Zuben, Fernando J.

    2017-01-01

    How can systems in which individuals’ inner workings are very similar to each other, as neural networks or ant colonies, produce so many qualitatively different behaviors, giving rise to roles and specialization? In this work, we bring new perspectives to this question by focusing on the underlying network that defines how individuals in these systems interact. We applied a genetic algorithm to optimize rules and connections of cellular automata in order to solve the density classification task, a classical problem used to study emergent behaviors in decentralized computational systems. The networks used were all generated by the introduction of shortcuts in an originally regular topology, following the small-world model. Even though all cells follow the exact same rules, we observed the existence of different classes of cells’ behaviors in the best cellular automata found—most cells were responsible for memory and others for integration of information. Through the analysis of structural measures and patterns of connections (motifs) in successful cellular automata, we observed that the distribution of shortcuts between distant regions and the speed in which a cell can gather information from different parts of the system seem to be the main factors for the specialization we observed, demonstrating how heterogeneity in a network can create heterogeneity of behavior. PMID:28234962

  10. Working memory activation of neural networks in the elderly as a function of information processing phase and task complexity.

    PubMed

    Charroud, Céline; Steffener, Jason; Le Bars, Emmanuelle; Deverdun, Jérémy; Bonafe, Alain; Abdennour, Meriem; Portet, Florence; Molino, François; Stern, Yaakov; Ritchie, Karen; Menjot de Champfleur, Nicolas; Akbaraly, Tasnime N

    2015-11-01

    Changes in working memory are sensitive indicators of both normal and pathological brain aging and associated disability. The present study aims to further understanding of working memory in normal aging using a large cohort of healthy elderly in order to examine three separate phases of information processing in relation to changes in task load activation. Using covariance analysis, increasing and decreasing neural activation was observed on fMRI in response to a delayed item recognition task in 337 cognitively healthy elderly persons as part of the CRESCENDO (Cognitive REServe and Clinical ENDOphenotypes) study. During three phases of the task (stimulation, retention, probe), increased activation was observed with increasing task load in bilateral regions of the prefrontal cortex, parietal lobule, cingulate gyrus, insula and in deep gray matter nuclei, suggesting an involvement of central executive and salience networks. Decreased activation associated with increasing task load was observed during the stimulation phase, in bilateral temporal cortex, parietal lobule, cingulate gyrus and prefrontal cortex. This spatial distribution of decreased activation is suggestive of the default mode network. These findings support the hypothesis of an increased activation in salience and central executive networks and a decreased activation in default mode network concomitant to increasing task load. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Optimization of rainfall networks using information entropy and temporal variability analysis

    NASA Astrophysics Data System (ADS)

    Wang, Wenqi; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Liu, Jiufu; Zou, Ying; He, Ruimin

    2018-04-01

    Rainfall networks are the most direct sources of precipitation data and their optimization and evaluation are essential and important. Information entropy can not only represent the uncertainty of rainfall distribution but can also reflect the correlation and information transmission between rainfall stations. Using entropy this study performs optimization of rainfall networks that are of similar size located in two big cities in China, Shanghai (in Yangtze River basin) and Xi'an (in Yellow River basin), with respect to temporal variability analysis. Through an easy-to-implement greedy ranking algorithm based on the criterion called, Maximum Information Minimum Redundancy (MIMR), stations of the networks in the two areas (each area is further divided into two subareas) are ranked during sliding inter-annual series and under different meteorological conditions. It is found that observation series with different starting days affect the ranking, alluding to the temporal variability during network evaluation. We propose a dynamic network evaluation framework for considering temporal variability, which ranks stations under different starting days with a fixed time window (1-year, 2-year, and 5-year). Therefore, we can identify rainfall stations which are temporarily of importance or redundancy and provide some useful suggestions for decision makers. The proposed framework can serve as a supplement for the primary MIMR optimization approach. In addition, during different periods (wet season or dry season) the optimal network from MIMR exhibits differences in entropy values and the optimal network from wet season tended to produce higher entropy values. Differences in spatial distribution of the optimal networks suggest that optimizing the rainfall network for changing meteorological conditions may be more recommended.

  12. Network meta-analysis of disconnected networks: How dangerous are random baseline treatment effects?

    PubMed

    Béliveau, Audrey; Goring, Sarah; Platt, Robert W; Gustafson, Paul

    2017-12-01

    In network meta-analysis, the use of fixed baseline treatment effects (a priori independent) in a contrast-based approach is regularly preferred to the use of random baseline treatment effects (a priori dependent). That is because, often, there is not a need to model baseline treatment effects, which carry the risk of model misspecification. However, in disconnected networks, fixed baseline treatment effects do not work (unless extra assumptions are made), as there is not enough information in the data to update the prior distribution on the contrasts between disconnected treatments. In this paper, we investigate to what extent the use of random baseline treatment effects is dangerous in disconnected networks. We take 2 publicly available datasets of connected networks and disconnect them in multiple ways. We then compare the results of treatment comparisons obtained from a Bayesian contrast-based analysis of each disconnected network using random normally distributed and exchangeable baseline treatment effects to those obtained from a Bayesian contrast-based analysis of their initial connected network using fixed baseline treatment effects. For the 2 datasets considered, we found that the use of random baseline treatment effects in disconnected networks was appropriate. Because those datasets were not cherry-picked, there should be other disconnected networks that would benefit from being analyzed using random baseline treatment effects. However, there is also a risk for the normality and exchangeability assumption to be inappropriate in other datasets even though we have not observed this situation in our case study. We provide code, so other datasets can be investigated. Copyright © 2017 John Wiley & Sons, Ltd.

  13. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study.

    PubMed

    Hoefsloot, Wouter; van Ingen, Jakko; Andrejak, Claire; Angeby, Kristian; Bauriaud, Rosine; Bemer, Pascale; Beylis, Natalie; Boeree, Martin J; Cacho, Juana; Chihota, Violet; Chimara, Erica; Churchyard, Gavin; Cias, Raquel; Daza, Rosa; Daley, Charles L; Dekhuijzen, P N Richard; Domingo, Diego; Drobniewski, Francis; Esteban, Jaime; Fauville-Dufaux, Maryse; Folkvardsen, Dorte Bek; Gibbons, Noel; Gómez-Mampaso, Enrique; Gonzalez, Rosa; Hoffmann, Harald; Hsueh, Po-Ren; Indra, Alexander; Jagielski, Tomasz; Jamieson, Frances; Jankovic, Mateja; Jong, Eefje; Keane, Joseph; Koh, Wo-Jung; Lange, Berit; Leao, Sylvia; Macedo, Rita; Mannsåker, Turid; Marras, Theodore K; Maugein, Jeannette; Milburn, Heather J; Mlinkó, Tamas; Morcillo, Nora; Morimoto, Kozo; Papaventsis, Dimitrios; Palenque, Elia; Paez-Peña, Mar; Piersimoni, Claudio; Polanová, Monika; Rastogi, Nalin; Richter, Elvira; Ruiz-Serrano, Maria Jesus; Silva, Anabela; da Silva, M Pedro; Simsek, Hulya; van Soolingen, Dick; Szabó, Nora; Thomson, Rachel; Tórtola Fernandez, Teresa; Tortoli, Enrico; Totten, Sarah E; Tyrrell, Greg; Vasankari, Tuula; Villar, Miguel; Walkiewicz, Renata; Winthrop, Kevin L; Wagner, Dirk

    2013-12-01

    A significant knowledge gap exists concerning the geographical distribution of nontuberculous mycobacteria (NTM) isolation worldwide. To provide a snapshot of NTM species distribution, global partners in the NTM-Network European Trials Group (NET) framework (www.ntm-net.org), a branch of the Tuberculosis Network European Trials Group (TB-NET), provided identification results of the total number of patients in 2008 in whom NTM were isolated from pulmonary samples. From these data, we visualised the relative distribution of the different NTM found per continent and per country. We received species identification data for 20 182 patients, from 62 laboratories in 30 countries across six continents. 91 different NTM species were isolated. Mycobacterium avium complex (MAC) bacteria predominated in most countries, followed by M. gordonae and M. xenopi. Important differences in geographical distribution of MAC species as well as M. xenopi, M. kansasii and rapid-growing mycobacteria were observed. This snapshot demonstrates that the species distribution among NTM isolates from pulmonary specimens in the year 2008 differed by continent and differed by country within these continents. These differences in species distribution may partly determine the frequency and manifestations of pulmonary NTM disease in each geographical location.

  14. An Observing System Simulation Experiment Approach to Meteorological Network Assessment

    NASA Astrophysics Data System (ADS)

    Abbasnezhadi, K.; Rasmussen, P. F.; Stadnyk, T.; Boluwade, A.

    2016-12-01

    A proper knowledge of the spatiotemporal distribution of rainfall is important in order to conduct a mindful investigation of water movement and storage throughout a catchment. Currently, the most accurate precipitation information available for the remote Boreal ecozones of northern Manitoba is coming from the Canadian Precipitation Analysis (CaPA) data assimilation system. Throughout the Churchill River Basin (CRB), CaPA still does not have the proper skill due to the limited number of weather stations. A new approach to experimental network design was investigated based on the concept of Observing System Simulation Experiment (OSSE). The OSSE-based network assessment procedure which simulates the CaPA system provides a scientific and hydrologically significant tool to assess the sensitivity of CaPA precipitation analysis to observation network density throughout the CRB. To simulate CaPA system, synthetic background and station data were simulated, respectively, by adding spatially uncorrelated and correlated Gaussian noises to an assumingly true daily weather field synthesized by a gridded precipitation generator which simulates CaPA data. Given the true reference field on one hand, and a set of pseudo-CaPA analyses associated with different network realizations on the other hand, a WATFLOOD hydrological model was employed to compare the modeled runoff. The simulations showed that as network density increases, the accuracy of CaPA precipitation products improves up to a certain limit beyond which adding more stations to the network does not result in further accuracy.

  15. Importance of small-degree nodes in assortative networks with degree-weight correlations

    NASA Astrophysics Data System (ADS)

    Ma, Sijuan; Feng, Ling; Monterola, Christopher Pineda; Lai, Choy Heng

    2017-10-01

    It has been known that assortative network structure plays an important role in spreading dynamics for unweighted networks. Yet its influence on weighted networks is not clear, in particular when weight is strongly correlated with the degrees of the nodes as we empirically observed in Twitter. Here we use the self-consistent probability method and revised nonperturbative heterogenous mean-field theory method to investigate this influence on both susceptible-infective-recovered (SIR) and susceptible-infective-susceptible (SIS) spreading dynamics. Both our simulation and theoretical results show that while the critical threshold is not significantly influenced by the assortativity, the prevalence in the supercritical regime shows a crossover under different degree-weight correlations. In particular, unlike the case of random mixing networks, in assortative networks, the negative degree-weight correlation leads to higher prevalence in their spreading beyond the critical transmissivity than that of the positively correlated. In addition, the previously observed inhibition effect on spreading velocity by assortative structure is not apparent in negatively degree-weight correlated networks, while it is enhanced for that of the positively correlated. Detailed investigation into the degree distribution of the infected nodes reveals that small-degree nodes play essential roles in the supercritical phase of both SIR and SIS spreadings. Our results have direct implications in understanding viral information spreading over online social networks and epidemic spreading over contact networks.

  16. A Multi-level Fuzzy Evaluation Method for Smart Distribution Network Based on Entropy Weight

    NASA Astrophysics Data System (ADS)

    Li, Jianfang; Song, Xiaohui; Gao, Fei; Zhang, Yu

    2017-05-01

    Smart distribution network is considered as the future trend of distribution network. In order to comprehensive evaluate smart distribution construction level and give guidance to the practice of smart distribution construction, a multi-level fuzzy evaluation method based on entropy weight is proposed. Firstly, focus on both the conventional characteristics of distribution network and new characteristics of smart distribution network such as self-healing and interaction, a multi-level evaluation index system which contains power supply capability, power quality, economy, reliability and interaction is established. Then, a combination weighting method based on Delphi method and entropy weight method is put forward, which take into account not only the importance of the evaluation index in the experts’ subjective view, but also the objective and different information from the index values. Thirdly, a multi-level evaluation method based on fuzzy theory is put forward. Lastly, an example is conducted based on the statistical data of some cites’ distribution network and the evaluation method is proved effective and rational.

  17. Representativeness of four precipitation observational networks of China

    NASA Astrophysics Data System (ADS)

    Ren, Yuyu; Ren, Guoyu

    2012-08-01

    Four precipitation observational networks with varied station densities are maintained in China. They are: the Global Climate Observation System (GCOS) Surface Network (GSN), the national Reference Climate Network (RCN), the national Basic Meteorological Network (BMN), and the national Ordinary Meteorological Network (OMN). The GSN, RCN, BMN, and the merged network of RCN and BMN (R&B) have been widely used in climatology and climate change studies. In this paper, the impact of the usage of different networks on the precipitation climatology of China is evaluated by using the merged dataset of All Station Network (ASN) as a benchmark. The results show that all networks can capture the main features of the country average precipitation and its changing trends. The differences of average annual precipitation of the various networks from that of the ASN are less than 50 mm (⩽ 10%). All networks can successfully detect the rising trend of the average annual precipitation during 1961-2009, with the R&B exhibiting the best representativeness (only 2.90% relative difference) and the GSN the poorest (39.77%). As to the change trends of country average monthly precipitation, the networks can be ranked in descending order as R&B (1.27%), RCN (2.35%), BMN (4.17%), and GSN (7.46%), and larger relative differences appear from August to November. The networks produce quite consistent spatial patterns of annual precipitation change trends, and all show an increasing trend of precipitation in Northwest and Southeast China, and a decreasing trend in North China, Northeast China, and parts of central China. However, the representativeness of the BMN and R&B are better in annual and seasonal precipitation trends, in spite of the fact that they are still far from satisfactory. The relative differences of trends in some months and regions even reach more than 50%. The results also show that the representativeness of the RCN for country average precipitation is higher than that of the BMN because the RCN has a more homogeneous distribution of stations.

  18. Network architecture test-beds as platforms for ubiquitous computing.

    PubMed

    Roscoe, Timothy

    2008-10-28

    Distributed systems research, and in particular ubiquitous computing, has traditionally assumed the Internet as a basic underlying communications substrate. Recently, however, the networking research community has come to question the fundamental design or 'architecture' of the Internet. This has been led by two observations: first, that the Internet as it stands is now almost impossible to evolve to support new functionality; and second, that modern applications of all kinds now use the Internet rather differently, and frequently implement their own 'overlay' networks above it to work around its perceived deficiencies. In this paper, I discuss recent academic projects to allow disruptive change to the Internet architecture, and also outline a radically different view of networking for ubiquitous computing that such proposals might facilitate.

  19. Information Weighted Consensus for Distributed Estimation in Vision Networks

    ERIC Educational Resources Information Center

    Kamal, Ahmed Tashrif

    2013-01-01

    Due to their high fault-tolerance, ease of installation and scalability to large networks, distributed algorithms have recently gained immense popularity in the sensor networks community, especially in computer vision. Multi-target tracking in a camera network is one of the fundamental problems in this domain. Distributed estimation algorithms…

  20. Opinion formation driven by PageRank node influence on directed networks

    NASA Astrophysics Data System (ADS)

    Eom, Young-Ho; Shepelyansky, Dima L.

    2015-10-01

    We study a two states opinion formation model driven by PageRank node influence and report an extensive numerical study on how PageRank affects collective opinion formations in large-scale empirical directed networks. In our model the opinion of a node can be updated by the sum of its neighbor nodes' opinions weighted by the node influence of the neighbor nodes at each step. We consider PageRank probability and its sublinear power as node influence measures and investigate evolution of opinion under various conditions. First, we observe that all networks reach steady state opinion after a certain relaxation time. This time scale is decreasing with the heterogeneity of node influence in the networks. Second, we find that our model shows consensus and non-consensus behavior in steady state depending on types of networks: Web graph, citation network of physics articles, and LiveJournal social network show non-consensus behavior while Wikipedia article network shows consensus behavior. Third, we find that a more heterogeneous influence distribution leads to a more uniform opinion state in the cases of Web graph, Wikipedia, and Livejournal. However, the opposite behavior is observed in the citation network. Finally we identify that a small number of influential nodes can impose their own opinion on significant fraction of other nodes in all considered networks. Our study shows that the effects of heterogeneity of node influence on opinion formation can be significant and suggests further investigations on the interplay between node influence and collective opinion in networks.

  1. Mapping sub-surface geostrophic currents from altimetry and a fleet of gliders

    NASA Astrophysics Data System (ADS)

    Alvarez, A.; Chiggiato, J.; Schroeder, K.

    2013-04-01

    Integrating the observations gathered by different platforms into a unique physical picture of the environment is a fundamental aspect of networked ocean observing systems. These are constituted by a spatially distributed set of sensors and platforms that simultaneously monitor a given ocean region. Remote sensing from satellites is an integral part of present ocean observing systems. Due to their autonomy, mobility and controllability, underwater gliders are envisioned to play a significant role in the development of networked ocean observatories. Exploiting synergism between remote sensing and underwater gliders is expected to result on a better characterization of the marine environment than using these observational sources individually. This study investigates a methodology to estimate the three dimensional distribution of geostrophic currents resulting from merging satellite altimetry and in situ samples gathered by a fleet of Slocum gliders. Specifically, the approach computes the volumetric or three dimensional distribution of absolute dynamic height (ADH) that minimizes the total energy of the system while being close to in situ observations and matching the absolute dynamic topography (ADT) observed from satellite at the sea surface. A three dimensional finite element technique is employed to solve the minimization problem. The methodology is validated making use of the dataset collected during the field experiment called Rapid Environmental Picture-2010 (REP-10) carried out by the NATO Undersea Research Center-NURC during August 2010. A marine region off-shore La Spezia (northwest coast of Italy) was sampled by a fleet of three coastal Slocum gliders. Results indicate that the geostrophic current field estimated from gliders and altimetry significantly improves the estimates obtained using only the data gathered by the glider fleet.

  2. Research and Design of the Three-tier Distributed Network Management System Based on COM / COM + and DNA

    NASA Astrophysics Data System (ADS)

    Liang, Likai; Bi, Yushen

    Considered on the distributed network management system's demand of high distributives, extensibility and reusability, a framework model of Three-tier distributed network management system based on COM/COM+ and DNA is proposed, which adopts software component technology and N-tier application software framework design idea. We also give the concrete design plan of each layer of this model. Finally, we discuss the internal running process of each layer in the distributed network management system's framework model.

  3. Ground-Based Network and Supersite Observations to Complement and Enrich EOS Research

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.

    2011-01-01

    Since 1997 NASA has been successfully launching a series of satellites - the Earth Observing System (EOS) - to intensively study, and gain a better understanding of, the Earth as an integrated system. Space-borne remote sensing observations, however, are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite datasets. Through numerous participations, particularly but not limited to the EOS remote-sensing/retrieval and validation projects over the years, NASA/GSFC has developed and continuously refined ground-based networks and mobile observatories that proved to be vital in providing high temporal measurements, which complement and enrich the satellite observations. These are: the AERO NET (AErosol RObotic NETwork) a federation of ground-based globally distributed network of spectral sun-sky photometers; the MPLNET (Micro-Pulse Lidar NETwork, a similarly organized network of micro-pulse lidar systems measuring aerosol and cloud vertical structure continuously; and the SMART-COMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere, mobile observatories, a suite of spectral radiometers and in-situ probes acquiring supersite measurements. Most MPLNET sites are collocated with those of AERONET, and both networks always support the deployment of SMART-COMMIT worldwide. These data products follow the data structure of EOS conventions: Level-0, instrument archived raw data; Level-1 (or 1.5), real-time data with no (or limited) quality assurance; Level-2, not real high temporal and spectral resolutions. In this talk, we will present NASA/GSFC groundbased facilities, serving as network or supersite observations, which have been playing key roles in major international research projects over diverse aerosol regimes to complement and enrich the EOS scientific research.

  4. A simple model of bipartite cooperation for ecological and organizational networks.

    PubMed

    Saavedra, Serguei; Reed-Tsochas, Felix; Uzzi, Brian

    2009-01-22

    In theoretical ecology, simple stochastic models that satisfy two basic conditions about the distribution of niche values and feeding ranges have proved successful in reproducing the overall structural properties of real food webs, using species richness and connectance as the only input parameters. Recently, more detailed models have incorporated higher levels of constraint in order to reproduce the actual links observed in real food webs. Here, building on previous stochastic models of consumer-resource interactions between species, we propose a highly parsimonious model that can reproduce the overall bipartite structure of cooperative partner-partner interactions, as exemplified by plant-animal mutualistic networks. Our stochastic model of bipartite cooperation uses simple specialization and interaction rules, and only requires three empirical input parameters. We test the bipartite cooperation model on ten large pollination data sets that have been compiled in the literature, and find that it successfully replicates the degree distribution, nestedness and modularity of the empirical networks. These properties are regarded as key to understanding cooperation in mutualistic networks. We also apply our model to an extensive data set of two classes of company engaged in joint production in the garment industry. Using the same metrics, we find that the network of manufacturer-contractor interactions exhibits similar structural patterns to plant-animal pollination networks. This surprising correspondence between ecological and organizational networks suggests that the simple rules of cooperation that generate bipartite networks may be generic, and could prove relevant in many different domains, ranging from biological systems to human society.

  5. Extracting Message Inter-Departure Time Distributions from the Human Electroencephalogram

    PubMed Central

    Mišić, Bratislav; Vakorin, Vasily A.; Kovačević, Nataša; Paus, Tomáš; McIntosh, Anthony R.

    2011-01-01

    The complex connectivity of the cerebral cortex is a topic of much study, yet the link between structure and function is still unclear. The processing capacity and throughput of information at individual brain regions remains an open question and one that could potentially bridge these two aspects of neural organization. The rate at which information is emitted from different nodes in the network and how this output process changes under different external conditions are general questions that are not unique to neuroscience, but are of interest in multiple classes of telecommunication networks. In the present study we show how some of these questions may be addressed using tools from telecommunications research. An important system statistic for modeling and performance evaluation of distributed communication systems is the time between successive departures of units of information at each node in the network. We describe a method to extract and fully characterize the distribution of such inter-departure times from the resting-state electroencephalogram (EEG). We show that inter-departure times are well fitted by the two-parameter Gamma distribution. Moreover, they are not spatially or neurophysiologically trivial and instead are regionally specific and sensitive to the presence of sensory input. In both the eyes-closed and eyes-open conditions, inter-departure time distributions were more dispersed over posterior parietal channels, close to regions which are known to have the most dense structural connectivity. The biggest differences between the two conditions were observed at occipital sites, where inter-departure times were significantly more variable in the eyes-open condition. Together, these results suggest that message departure times are indicative of network traffic and capture a novel facet of neural activity. PMID:21673866

  6. Integration of Reference Frames Using VLBI

    NASA Technical Reports Server (NTRS)

    Ma, Chopo; Smith, David E. (Technical Monitor)

    2001-01-01

    Very Long Baseline Interferometry (VLBI) has the unique potential to integrate the terrestrial and celestial reference frames through simultaneous estimation of positions and velocities of approx. 40 active VLBI stations and a similar number of stations/sites with sufficient historical data, the position and position stability of approx. 150 well-observed extragalactic radio sources and another approx. 500 sources distributed fairly uniformly on the sky, and the time series of the five parameters that specify the relative orientation of the two frames. The full realization of this potential is limited by a number of factors including the temporal and spatial distribution of the stations, uneven distribution of observations over the sources and the sky, variations in source structure, modeling of the solid/fluid Earth and troposphere, logistical restrictions on the daily observing network size, and differing strategies for optimizing analysis for TRF, for CRF and for EOP. The current status of separately optimized and integrated VLBI analysis will be discussed.

  7. Distributed neural network control for adaptive synchronization of uncertain dynamical multiagent systems.

    PubMed

    Peng, Zhouhua; Wang, Dan; Zhang, Hongwei; Sun, Gang

    2014-08-01

    This paper addresses the leader-follower synchronization problem of uncertain dynamical multiagent systems with nonlinear dynamics. Distributed adaptive synchronization controllers are proposed based on the state information of neighboring agents. The control design is developed for both undirected and directed communication topologies without requiring the accurate model of each agent. This result is further extended to the output feedback case where a neighborhood observer is proposed based on relative output information of neighboring agents. Then, distributed observer-based synchronization controllers are derived and a parameter-dependent Riccati inequality is employed to prove the stability. This design has a favorable decouple property between the observer and the controller designs for nonlinear multiagent systems. For both cases, the developed controllers guarantee that the state of each agent synchronizes to that of the leader with bounded residual errors. Two illustrative examples validate the efficacy of the proposed methods.

  8. Fault tolerance of artificial neural networks with applications in critical systems

    NASA Technical Reports Server (NTRS)

    Protzel, Peter W.; Palumbo, Daniel L.; Arras, Michael K.

    1992-01-01

    This paper investigates the fault tolerance characteristics of time continuous recurrent artificial neural networks (ANN) that can be used to solve optimization problems. The principle of operations and performance of these networks are first illustrated by using well-known model problems like the traveling salesman problem and the assignment problem. The ANNs are then subjected to 13 simultaneous 'stuck at 1' or 'stuck at 0' faults for network sizes of up to 900 'neurons'. The effects of these faults is demonstrated and the cause for the observed fault tolerance is discussed. An application is presented in which a network performs a critical task for a real-time distributed processing system by generating new task allocations during the reconfiguration of the system. The performance degradation of the ANN under the presence of faults is investigated by large-scale simulations, and the potential benefits of delegating a critical task to a fault tolerant network are discussed.

  9. Two-population dynamics in a growing network model

    NASA Astrophysics Data System (ADS)

    Ivanova, Kristinka; Iordanov, Ivan

    2012-02-01

    We introduce a growing network evolution model with nodal attributes. The model describes the interactions between potentially violent V and non-violent N agents who have different affinities in establishing connections within their own population versus between the populations. The model is able to generate all stable triads observed in real social systems. In the framework of rate equations theory, we employ the mean-field approximation to derive analytical expressions of the degree distribution and the local clustering coefficient for each type of nodes. Analytical derivations agree well with numerical simulation results. The assortativity of the potentially violent network qualitatively resembles the connectivity pattern in terrorist networks that was recently reported. The assortativity of the network driven by aggression shows clearly different behavior than the assortativity of the networks with connections of non-aggressive nature in agreement with recent empirical results of an online social system.

  10. Developing neuronal networks: Self-organized criticality predicts the future

    NASA Astrophysics Data System (ADS)

    Pu, Jiangbo; Gong, Hui; Li, Xiangning; Luo, Qingming

    2013-01-01

    Self-organized criticality emerged in neural activity is one of the key concepts to describe the formation and the function of developing neuronal networks. The relationship between critical dynamics and neural development is both theoretically and experimentally appealing. However, whereas it is well-known that cortical networks exhibit a rich repertoire of activity patterns at different stages during in vitro maturation, dynamical activity patterns through the entire neural development still remains unclear. Here we show that a series of metastable network states emerged in the developing and ``aging'' process of hippocampal networks cultured from dissociated rat neurons. The unidirectional sequence of state transitions could be only observed in networks showing power-law scaling of distributed neuronal avalanches. Our data suggest that self-organized criticality may guide spontaneous activity into a sequential succession of homeostatically-regulated transient patterns during development, which may help to predict the tendency of neural development at early ages in the future.

  11. Weighted networks as randomly reinforced urn processes

    NASA Astrophysics Data System (ADS)

    Caldarelli, Guido; Chessa, Alessandro; Crimaldi, Irene; Pammolli, Fabio

    2013-02-01

    We analyze weighted networks as randomly reinforced urn processes, in which the edge-total weights are determined by a reinforcement mechanism. We develop a statistical test and a procedure based on it to study the evolution of networks over time, detecting the “dominance” of some edges with respect to the others and then assessing if a given instance of the network is taken at its steady state or not. Distance from the steady state can be considered as a measure of the relevance of the observed properties of the network. Our results are quite general, in the sense that they are not based on a particular probability distribution or functional form of the random weights. Moreover, the proposed tool can be applied also to dense networks, which have received little attention by the network community so far, since they are often problematic. We apply our procedure in the context of the International Trade Network, determining a core of “dominant edges.”

  12. Cortical network architecture for context processing in primate brain

    PubMed Central

    Chao, Zenas C; Nagasaka, Yasuo; Fujii, Naotaka

    2015-01-01

    Context is information linked to a situation that can guide behavior. In the brain, context is encoded by sensory processing and can later be retrieved from memory. How context is communicated within the cortical network in sensory and mnemonic forms is unknown due to the lack of methods for high-resolution, brain-wide neuronal recording and analysis. Here, we report the comprehensive architecture of a cortical network for context processing. Using hemisphere-wide, high-density electrocorticography, we measured large-scale neuronal activity from monkeys observing videos of agents interacting in situations with different contexts. We extracted five context-related network structures including a bottom-up network during encoding and, seconds later, cue-dependent retrieval of the same network with the opposite top-down connectivity. These findings show that context is represented in the cortical network as distributed communication structures with dynamic information flows. This study provides a general methodology for recording and analyzing cortical network neuronal communication during cognition. DOI: http://dx.doi.org/10.7554/eLife.06121.001 PMID:26416139

  13. Modeling the coevolution of topology and traffic on weighted technological networks

    NASA Astrophysics Data System (ADS)

    Xie, Yan-Bo; Wang, Wen-Xu; Wang, Bing-Hong

    2007-02-01

    For many technological networks, the network structures and the traffic taking place on them mutually interact. The demands of traffic increment spur the evolution and growth of the networks to maintain their normal and efficient functioning. In parallel, a change of the network structure leads to redistribution of the traffic. In this paper, we perform an extensive numerical and analytical study, extending results of Wang [Phys. Rev. Lett. 94, 188702 (2005)]. By introducing a general strength-coupling interaction driven by the traffic increment between any pair of vertices, our model generates networks of scale-free distributions of strength, weight, and degree. In particular, the obtained nonlinear correlation between vertex strength and degree, and the disassortative property demonstrate that the model is capable of characterizing weighted technological networks. Moreover, the generated graphs possess both dense clustering structures and an anticorrelation between vertex clustering and degree, which are widely observed in real-world networks. The corresponding theoretical predictions are well consistent with simulation results.

  14. Weight-elimination neural networks applied to coronary surgery mortality prediction.

    PubMed

    Ennett, Colleen M; Frize, Monique

    2003-06-01

    The objective was to assess the effectiveness of the weight-elimination cost function in improving classification performance of artificial neural networks (ANNs) and to observe how changing the a priori distribution of the training set affects network performance. Backpropagation feedforward ANNs with and without weight-elimination estimated mortality for coronary artery surgery patients. The ANNs were trained and tested on cases with 32 input variables describing the patient's medical history; the output variable was in-hospital mortality (mortality rates: training 3.7%, test 3.8%). Artificial training sets with mortality rates of 20%, 50%, and 80% were created to observe the impact of training with a higher-than-normal prevalence. When the results were averaged, weight-elimination networks achieved higher sensitivity rates than those without weight-elimination. Networks trained on higher-than-normal prevalence achieved higher sensitivity rates at the cost of lower specificity and correct classification. The weight-elimination cost function can improve the classification performance when the network is trained with a higher-than-normal prevalence. A network trained with a moderately high artificial mortality rate (artificial mortality rate of 20%) can improve the sensitivity of the model without significantly affecting other aspects of the model's performance. The ANN mortality model achieved comparable performance as additive and statistical models for coronary surgery mortality estimation in the literature.

  15. Structural diversity effects of multilayer networks on the threshold of interacting epidemics

    NASA Astrophysics Data System (ADS)

    Wang, Weihong; Chen, MingMing; Min, Yong; Jin, Xiaogang

    2016-02-01

    Foodborne diseases always spread through multiple vectors (e.g. fresh vegetables and fruits) and reveal that multilayer network could spread fatal pathogen with complex interactions. In this paper, first, we use a "top-down analysis framework that depends on only two distributions to describe a random multilayer network with any number of layers. These two distributions are the overlaid degree distribution and the edge-type distribution of the multilayer network. Second, based on the two distributions, we adopt three indicators of multilayer network diversity to measure the correlation between network layers, including network richness, likeness, and evenness. The network richness is the number of layers forming the multilayer network. The network likeness is the degree of different layers sharing the same edge. The network evenness is the variance of the number of edges in every layer. Third, based on a simple epidemic model, we analyze the influence of network diversity on the threshold of interacting epidemics with the coexistence of collaboration and competition. Our work extends the "top-down" analysis framework to deal with the more complex epidemic situation and more diversity indicators and quantifies the trade-off between thresholds of inter-layer collaboration and intra-layer transmission.

  16. Generating high-accuracy urban distribution map for short-term change monitoring based on convolutional neural network by utilizing SAR imagery

    NASA Astrophysics Data System (ADS)

    Iino, Shota; Ito, Riho; Doi, Kento; Imaizumi, Tomoyuki; Hikosaka, Shuhei

    2017-10-01

    In the developing countries, urban areas are expanding rapidly. With the rapid developments, a short term monitoring of urban changes is important. A constant observation and creation of urban distribution map of high accuracy and without noise pollution are the key issues for the short term monitoring. SAR satellites are highly suitable for day or night and regardless of atmospheric weather condition observations for this type of study. The current study highlights the methodology of generating high-accuracy urban distribution maps derived from the SAR satellite imagery based on Convolutional Neural Network (CNN), which showed the outstanding results for image classification. Several improvements on SAR polarization combinations and dataset construction were performed for increasing the accuracy. As an additional data, Digital Surface Model (DSM), which are useful to classify land cover, were added to improve the accuracy. From the obtained result, high-accuracy urban distribution map satisfying the quality for short-term monitoring was generated. For the evaluation, urban changes were extracted by taking the difference of urban distribution maps. The change analysis with time series of imageries revealed the locations of urban change areas for short-term. Comparisons with optical satellites were performed for validating the results. Finally, analysis of the urban changes combining X-band, L-band and C-band SAR satellites was attempted to increase the opportunity of acquiring satellite imageries. Further analysis will be conducted as future work of the present study

  17. Shallow landsliding, root reinforcement, and the spatial distribution of trees in the Oregon Coast Range

    USGS Publications Warehouse

    Roering, J.J.; Schmidt, K.M.; Stock, J.D.; Dietrich, W.E.; Montgomery, D.R.

    2003-01-01

    The influence of root reinforcement on shallow landsliding has been well established through mechanistic and empirical studies, yet few studies have examined how local vegetative patterns influence slope stability. Because root networks spread outward from trees, the species, size, and spacing of trees should influence the spatial distribution of root strength. We documented the distribution and characteristics of trees adjacent to 32 shallow landslides that occurred during 1996 in the Oregon Coast Range. Although broadly classified as a conifer-dominated forest, we observed sparse coniferous and abundant hardwood trees near landslide scars in an industrial forest (Mapleton) that experienced widespread burning in the 19th century. In industrial forests that were burned, selectively harvested, and not replanted (Elliott State Forest), swordfern was ubiquitous near landslides, and we observed similar numbers of live conifer and hardwood trees proximal to landslide scarps. We demonstrate that root strength quantified in landslide scarps and soil pits correlates with a geometry-based index of root network contribution derived from mapping the size, species, condition, and spacing of local trees, indicating that root strength can be predicted by mapping the distribution and characteristics of trees on potentially unstable slopes. In our study sites, landslides tend to occur in areas of reduced root strength, suggesting that to make site-specific predictions of landslide occurrence slope stability analyses must account for the diversity and distribution of vegetation in potentially unstable terrain.

  18. Distributed Detection with Collisions in a Random, Single-Hop Wireless Sensor Network

    DTIC Science & Technology

    2013-05-26

    public release; distribution is unlimited. Distributed detection with collisions in a random, single-hop wireless sensor network The views, opinions...1274 2 ABSTRACT Distributed detection with collisions in a random, single-hop wireless sensor network Report Title We consider the problem of... WIRELESS SENSOR NETWORK Gene T. Whipps?† Emre Ertin† Randolph L. Moses† ?U.S. Army Research Laboratory, Adelphi, MD 20783 †The Ohio State University

  19. The evolution of cooperation on geographical networks

    NASA Astrophysics Data System (ADS)

    Li, Yixiao; Wang, Yi; Sheng, Jichuan

    2017-11-01

    We study evolutionary public goods game on geographical networks, i.e., complex networks which are located on a geographical plane. The geographical feature effects in two ways: In one way, the geographically-induced network structure influences the overall evolutionary dynamics, and, in the other way, the geographical length of an edge influences the cost when the two players at the two ends interact. For the latter effect, we design a new cost function of cooperators, which simply assumes that the longer the distance between two players, the higher cost the cooperator(s) of them have to pay. In this study, network substrates are generated by a previous spatial network model with a cost-benefit parameter controlling the network topology. Our simulations show that the greatest promotion of cooperation is achieved in the intermediate regime of the parameter, in which empirical estimates of various railway networks fall. Further, we investigate how the distribution of edges' geographical costs influences the evolutionary dynamics and consider three patterns of the distribution: an approximately-equal distribution, a diverse distribution, and a polarized distribution. For normal geographical networks which are generated using intermediate values of the cost-benefit parameter, a diverse distribution hinders the evolution of cooperation, whereas a polarized distribution lowers the threshold value of the amplification factor for cooperation in public goods game. These results are helpful for understanding the evolution of cooperation on real-world geographical networks.

  20. Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network

    NASA Astrophysics Data System (ADS)

    Sprovieri, Francesca; Pirrone, Nicola; Bencardino, Mariantonia; D'Amore, Francesco; Carbone, Francesco; Cinnirella, Sergio; Mannarino, Valentino; Landis, Matthew; Ebinghaus, Ralf; Weigelt, Andreas; Brunke, Ernst-Günther; Labuschagne, Casper; Martin, Lynwill; Munthe, John; Wängberg, Ingvar; Artaxo, Paulo; Morais, Fernando; Barbosa, Henrique de Melo Jorge; Brito, Joel; Cairns, Warren; Barbante, Carlo; Diéguez, María del Carmen; Garcia, Patricia Elizabeth; Dommergue, Aurélien; Angot, Helene; Magand, Olivier; Skov, Henrik; Horvat, Milena; Kotnik, Jože; Read, Katie Alana; Mendes Neves, Luis; Gawlik, Bernd Manfred; Sena, Fabrizio; Mashyanov, Nikolay; Obolkin, Vladimir; Wip, Dennis; Feng, Xin Bin; Zhang, Hui; Fu, Xuewu; Ramachandran, Ramesh; Cossa, Daniel; Knoery, Joël; Marusczak, Nicolas; Nerentorp, Michelle; Norstrom, Claus

    2016-09-01

    Long-term monitoring of data of ambient mercury (Hg) on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS) project was funded by the European Commission (http://www.gmos.eu) and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010-2015), analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.

  1. On the Determination of Poisson Statistics for Haystack Radar Observations of Orbital Debris

    NASA Technical Reports Server (NTRS)

    Stokely, Christopher L.; Benbrook, James R.; Horstman, Matt

    2007-01-01

    A convenient and powerful method is used to determine if radar detections of orbital debris are observed according to Poisson statistics. This is done by analyzing the time interval between detection events. For Poisson statistics, the probability distribution of the time interval between events is shown to be an exponential distribution. This distribution is a special case of the Erlang distribution that is used in estimating traffic loads on telecommunication networks. Poisson statistics form the basis of many orbital debris models but the statistical basis of these models has not been clearly demonstrated empirically until now. Interestingly, during the fiscal year 2003 observations with the Haystack radar in a fixed staring mode, there are no statistically significant deviations observed from that expected with Poisson statistics, either independent or dependent of altitude or inclination. One would potentially expect some significant clustering of events in time as a result of satellite breakups, but the presence of Poisson statistics indicates that such debris disperse rapidly with respect to Haystack's very narrow radar beam. An exception to Poisson statistics is observed in the months following the intentional breakup of the Fengyun satellite in January 2007.

  2. Software-Enabled Distributed Network Governance: The PopMedNet Experience.

    PubMed

    Davies, Melanie; Erickson, Kyle; Wyner, Zachary; Malenfant, Jessica; Rosen, Rob; Brown, Jeffrey

    2016-01-01

    The expanded availability of electronic health information has led to increased interest in distributed health data research networks. The distributed research network model leaves data with and under the control of the data holder. Data holders, network coordinating centers, and researchers have distinct needs and challenges within this model. The concerns of network stakeholders are addressed in the design and governance models of the PopMedNet software platform. PopMedNet features include distributed querying, customizable workflows, and auditing and search capabilities. Its flexible role-based access control system enables the enforcement of varying governance policies. Four case studies describe how PopMedNet is used to enforce network governance models. Trust is an essential component of a distributed research network and must be built before data partners may be willing to participate further. The complexity of the PopMedNet system must be managed as networks grow and new data, analytic methods, and querying approaches are developed. The PopMedNet software platform supports a variety of network structures, governance models, and research activities through customizable features designed to meet the needs of network stakeholders.

  3. The Application of Observational Practice and Educational Networking in Simulation-Based and Distributed Medical Education Contexts.

    PubMed

    Welsher, Arthur; Rojas, David; Khan, Zain; VanderBeek, Laura; Kapralos, Bill; Grierson, Lawrence E M

    2018-02-01

    Research has revealed that individuals can improve technical skill performance by viewing demonstrations modeled by either expert or novice performers. These findings support the development of video-based observational practice communities that augment simulation-based skill education and connect geographically distributed learners. This study explores the experimental replicability of the observational learning effect when demonstrations are sampled from a community of distributed learners and serves as a context for understanding learner experiences within this type of training protocol. Participants from 3 distributed medical campuses engaged in a simulation-based learning study of the elliptical excision in which they completed a video-recorded performance before being assigned to 1 of 3 groups for a 2-week observational practice intervention. One group observed expert demonstrations, another observed novice demonstrations, and the third observed a combination of both. Participants returned for posttesting immediately and 1 month after the intervention. Participants also engaged in interviews regarding their perceptions of the usability and relevance of video-based observational practice to clinical education. Checklist (P < 0.0001) and global rating (P < 0.0001) measures indicate that participants, regardless of group assignment, improved after the intervention and after a 1-month retention period. Analyses revealed no significant differences between groups. Qualitative analyses indicate that participants perceived the observational practice platform to be usable, relevant, and potentially improved with enhanced feedback delivery. Video-based observational practice involving expert and/or novice demonstrations enhances simulation-based skill learning in a group of geographically distributed trainees. These findings support the use of Internet-mediated observational learning communities in distributed and simulation-based medical education contexts.

  4. Integrated modeling of storm drain and natural channel networks for real-time flash flood forecasting in large urban areas

    NASA Astrophysics Data System (ADS)

    Habibi, H.; Norouzi, A.; Habib, A.; Seo, D. J.

    2016-12-01

    To produce accurate predictions of flooding in urban areas, it is necessary to model both natural channel and storm drain networks. While there exist many urban hydraulic models of varying sophistication, most of them are not practical for real-time application for large urban areas. On the other hand, most distributed hydrologic models developed for real-time applications lack the ability to explicitly simulate storm drains. In this work, we develop a storm drain model that can be coupled with distributed hydrologic models such as the National Weather Service Hydrology Laboratory's Distributed Hydrologic Model, for real-time flash flood prediction in large urban areas to improve prediction and to advance the understanding of integrated response of natural channels and storm drains to rainfall events of varying magnitude and spatiotemporal extent in urban catchments of varying sizes. The initial study area is the Johnson Creek Catchment (40.1 km2) in the City of Arlington, TX. For observed rainfall, the high-resolution (500 m, 1 min) precipitation data from the Dallas-Fort Worth Demonstration Network of the Collaborative Adaptive Sensing of the Atmosphere radars is used.

  5. Between giant oscillations and uniform distribution of droplets: The role of varying lumen of channels in microfluidic networks.

    PubMed

    Cybulski, Olgierd; Jakiela, Slawomir; Garstecki, Piotr

    2015-12-01

    The simplest microfluidic network (a loop) comprises two parallel channels with a common inlet and a common outlet. Recent studies that assumed a constant cross section of the channels along their length have shown that the sequence of droplets entering the left (L) or right (R) arm of the loop can present either a uniform distribution of choices (e.g., RLRLRL...) or long sequences of repeated choices (RRR...LLL), with all the intermediate permutations being dynamically equivalent and virtually equally probable to be observed. We use experiments and computer simulations to show that even small variation of the cross section along channels completely shifts the dynamics either into the strong preference for highly grouped patterns (RRR...LLL) that generate system-size oscillations in flow or just the opposite-to patterns that distribute the droplets homogeneously between the arms of the loop. We also show the importance of noise in the process of self-organization of the spatiotemporal patterns of droplets. Our results provide guidelines for rational design of systems that reproducibly produce either grouped or homogeneous sequences of droplets flowing in microfluidic networks.

  6. The association of drinking water treatment and distribution network disturbances with Health Call Centre contacts for gastrointestinal illness symptoms.

    PubMed

    Malm, Annika; Axelsson, Gösta; Barregard, Lars; Ljungqvist, Jakob; Forsberg, Bertil; Bergstedt, Olof; Pettersson, Thomas J R

    2013-09-01

    There are relatively few studies on the association between disturbances in drinking water services and symptoms of gastrointestinal (GI) illness. Health Call Centres data concerning GI illness may be a useful source of information. This study investigates if there is an increased frequency of contacts with the Health Call Centre (HCC) concerning gastrointestinal symptoms at times when there is a risk of impaired water quality due to disturbances at water works or the distribution network. The study was conducted in Gothenburg, a Swedish city with 0.5 million inhabitants with a surface water source of drinking water and two water works. All HCC contacts due to GI symptoms (diarrhoea, vomiting or abdominal pain) were recorded for a three-year period, including also sex, age, and geocoded location of residence. The number of contacts with the HCC in the affected geographical areas were recorded during eight periods of disturbances in the water works (e.g. short stops of chlorine dosing), six periods of large disturbances in the distribution network (e.g. pumping station failure or pipe breaks with major consequences), and 818 pipe break and leak repairs over a three-year period. For each period of disturbance the observed number of calls was compared with the number of calls during a control period without disturbances in the same geographical area. In total about 55, 000 calls to the HCC due to GI symptoms were recorded over the three-year period, 35 per 1000 inhabitants and year, but much higher (>200) for children <3 yrs of age. There was no statistically significant increase in calls due to GI illness during or after disturbances at the water works or in the distribution network. Our results indicate that GI symptoms due to disturbances in water works or the distribution network are rare. The number of serious failures was, however limited, and further studies are needed to be able to assess the risk of GI illness in such cases. The technique of using geocoded HCC data together with geocoded records of disturbances in the drinking water network was feasible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. 75 FR 9343 - Nomenclature Change Relating to the Network Distribution Center Transition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... POSTAL SERVICE 39 CFR Parts 111 and 121 Nomenclature Change Relating to the Network Distribution... (BMC) to network distribution centers (NDC), by replacing all text references to ``BMC'' with ``NDC...: Background: The BMC network was established in the 1970s to process Parcel Post[supreg], Bound Printed Matter...

  8. The effect of microscopic friction and size distributions on conditional probability distributions in soft particle packings

    NASA Astrophysics Data System (ADS)

    Saitoh, Kuniyasu; Magnanimo, Vanessa; Luding, Stefan

    2017-10-01

    Employing two-dimensional molecular dynamics (MD) simulations of soft particles, we study their non-affine responses to quasi-static isotropic compression where the effects of microscopic friction between the particles in contact and particle size distributions are examined. To quantify complicated restructuring of force-chain networks under isotropic compression, we introduce the conditional probability distributions (CPDs) of particle overlaps such that a master equation for distribution of overlaps in the soft particle packings can be constructed. From our MD simulations, we observe that the CPDs are well described by q-Gaussian distributions, where we find that the correlation for the evolution of particle overlaps is suppressed by microscopic friction, while it significantly increases with the increase of poly-dispersity.

  9. Phenology for science, resource management, decision making, and education

    USGS Publications Warehouse

    Nolan, V.P.; Weltzin, J.F.

    2011-01-01

    Fourth USA National Phenology Network (USA-NPN) Research Coordination Network (RCN) Annual Meeting and Stakeholders Workshop; Milwaukee, Wisconsin, 21-22 September 2010; Phenology, the study of recurring plant and animal life cycle events, is rapidly emerging as a fundamental approach for understanding how ecological systems respond to environmental variation and climate change. The USA National Phenology Network (USA-NPN; http://www.usanpn.org) is a large-scale network of governmental and nongovernmental organizations, academic institutions, resource management agencies, and tribes. The network is dedicated to conducting and promoting repeated and integrated plant and animal phenological observations, identifying linkages with other relevant biological and physical data sources, and developing and distributing the tools to analyze these data at local to national scales. The primary goal of the USA-NPN is to improve the ability of decision makers to design strategies for climate adaptation.

  10. Phenology for Science, Resource Management, Decision Making, and Education

    NASA Astrophysics Data System (ADS)

    Nolan, Vivian P.; Weltzin, Jake F.

    2011-01-01

    Fourth USA National Phenology Network (USA-NPN) Research Coordination Network (RCN) Annual Meeting and Stakeholders Workshop; Milwaukee, Wisconsin, 21-22 September 2010; Phenology, the study of recurring plant and animal life cycle events, is rapidly emerging as a fundamental approach for understanding how ecological systems respond to environmental variation and climate change. The USA National Phenology Network (USA-NPN; http://www.usanpn.org) is a large-scale network of governmental and nongovernmental organizations, academic institutions, resource management agencies, and tribes. The network is dedicated to conducting and promoting repeated and integrated plant and animal phenological observations, identifying linkages with other relevant biological and physical data sources, and developing and distributing the tools to analyze these data at local to national scales. The primary goal of the USA-NPN is to improve the ability of decision makers to design strategies for climate adaptation.

  11. Structure and dynamics of stock market in times of crisis

    NASA Astrophysics Data System (ADS)

    Zhao, Longfeng; Li, Wei; Cai, Xu

    2016-02-01

    Daily correlations among 322 S&P 500 constituent stocks are investigated by means of correlation-based (CB) network. By using the heterogeneous time scales, we identify global expansion and local clustering market behaviors during crises, which are mainly caused by community splits and inter-sector edge number decreases. The CB networks display distinctive community and sector structures. Graph edit distance is applied to capturing the dynamics of CB networks in which drastic structure reconfigurations can be observed during crisis periods. Edge statistics reveal the power-law nature of edges' duration time distribution. Despite the networks' strong structural changes during crises, we still find some long-duration edges that serve as the backbone of the stock market. Finally the dynamical change of network structure has shown its capability in predicting the implied volatility index (VIX).

  12. Planning of distributed generation in distribution network based on improved particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Li, Jinze; Qu, Zhi; He, Xiaoyang; Jin, Xiaoming; Li, Tie; Wang, Mingkai; Han, Qiu; Gao, Ziji; Jiang, Feng

    2018-02-01

    Large-scale access of distributed power can improve the current environmental pressure, at the same time, increasing the complexity and uncertainty of overall distribution system. Rational planning of distributed power can effectively improve the system voltage level. To this point, the specific impact on distribution network power quality caused by the access of typical distributed power was analyzed and from the point of improving the learning factor and the inertia weight, an improved particle swarm optimization algorithm (IPSO) was proposed which could solve distributed generation planning for distribution network to improve the local and global search performance of the algorithm. Results show that the proposed method can well reduce the system network loss and improve the economic performance of system operation with distributed generation.

  13. Spatial Distribution Characteristics of Healthcare Facilities in Nanjing: Network Point Pattern Analysis and Correlation Analysis.

    PubMed

    Ni, Jianhua; Qian, Tianlu; Xi, Changbai; Rui, Yikang; Wang, Jiechen

    2016-08-18

    The spatial distribution of urban service facilities is largely constrained by the road network. In this study, network point pattern analysis and correlation analysis were used to analyze the relationship between road network and healthcare facility distribution. The weighted network kernel density estimation method proposed in this study identifies significant differences between the outside and inside areas of the Ming city wall. The results of network K-function analysis show that private hospitals are more evenly distributed than public hospitals, and pharmacy stores tend to cluster around hospitals along the road network. After computing the correlation analysis between different categorized hospitals and street centrality, we find that the distribution of these hospitals correlates highly with the street centralities, and that the correlations are higher with private and small hospitals than with public and large hospitals. The comprehensive analysis results could help examine the reasonability of existing urban healthcare facility distribution and optimize the location of new healthcare facilities.

  14. A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks.

    PubMed

    Lautenschlager, Karin; Hwang, Chiachi; Liu, Wen-Tso; Boon, Nico; Köster, Oliver; Vrouwenvelder, Hans; Egli, Thomas; Hammes, Frederik

    2013-06-01

    Biological stability of drinking water implies that the concentration of bacterial cells and composition of the microbial community should not change during distribution. In this study, we used a multi-parametric approach that encompasses different aspects of microbial water quality including microbial growth potential, microbial abundance, and microbial community composition, to monitor biological stability in drinking water of the non-chlorinated distribution system of Zürich. Drinking water was collected directly after treatment from the reservoir and in the network at several locations with varied average hydraulic retention times (6-52 h) over a period of four months, with a single repetition two years later. Total cell concentrations (TCC) measured with flow cytometry remained remarkably stable at 9.5 (± 0.6) × 10(4) cells/ml from water in the reservoir throughout most of the distribution network, and during the whole time period. Conventional microbial methods like heterotrophic plate counts, the concentration of adenosine tri-phosphate, total organic carbon and assimilable organic carbon remained also constant. Samples taken two years apart showed more than 80% similarity for the microbial communities analysed with denaturing gradient gel electrophoresis and 454 pyrosequencing. Only the two sampling locations with the longest water retention times were the exceptions and, so far for unknown reasons, recorded a slight but significantly higher TCC (1.3 (± 0.1) × 10(5) cells/ml) compared to the other locations. This small change in microbial abundance detected by flow cytometry was also clearly observed in a shift in the microbial community profiles to a higher abundance of members from the Comamonadaceae (60% vs. 2% at other locations). Conventional microbial detection methods were not able to detect changes as observed with flow cytometric cell counts and microbial community analysis. Our findings demonstrate that the multi-parametric approach used provides a powerful and sensitive tool to assess and evaluate biological stability and microbial processes in drinking water distribution systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Complex Network Theory Applied to the Growth of Kuala Lumpur's Public Urban Rail Transit Network.

    PubMed

    Ding, Rui; Ujang, Norsidah; Hamid, Hussain Bin; Wu, Jianjun

    2015-01-01

    Recently, the number of studies involving complex network applications in transportation has increased steadily as scholars from various fields analyze traffic networks. Nonetheless, research on rail network growth is relatively rare. This research examines the evolution of the Public Urban Rail Transit Networks of Kuala Lumpur (PURTNoKL) based on complex network theory and covers both the topological structure of the rail system and future trends in network growth. In addition, network performance when facing different attack strategies is also assessed. Three topological network characteristics are considered: connections, clustering and centrality. In PURTNoKL, we found that the total number of nodes and edges exhibit a linear relationship and that the average degree stays within the interval [2.0488, 2.6774] with heavy-tailed distributions. The evolutionary process shows that the cumulative probability distribution (CPD) of degree and the average shortest path length show good fit with exponential distribution and normal distribution, respectively. Moreover, PURTNoKL exhibits clear cluster characteristics; most of the nodes have a 2-core value, and the CPDs of the centrality's closeness and betweenness follow a normal distribution function and an exponential distribution, respectively. Finally, we discuss four different types of network growth styles and the line extension process, which reveal that the rail network's growth is likely based on the nodes with the biggest lengths of the shortest path and that network protection should emphasize those nodes with the largest degrees and the highest betweenness values. This research may enhance the networkability of the rail system and better shape the future growth of public rail networks.

  16. Multiple-Ring Digital Communication Network

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold

    1992-01-01

    Optical-fiber digital communication network to support data-acquisition and control functions of electric-power-distribution networks. Optical-fiber links of communication network follow power-distribution routes. Since fiber crosses open power switches, communication network includes multiple interconnected loops with occasional spurs. At each intersection node is needed. Nodes of communication network include power-distribution substations and power-controlling units. In addition to serving data acquisition and control functions, each node acts as repeater, passing on messages to next node(s). Multiple-ring communication network operates on new AbNET protocol and features fiber-optic communication.

  17. Novel method for fog monitoring using cellular networks infrastructures

    NASA Astrophysics Data System (ADS)

    David, N.; Alpert, P.; Messer, H.

    2012-08-01

    A major detrimental effect of fog is visibility limitation which can result in serious transportation accidents, traffic delays and therefore economic damage. Existing monitoring techniques including satellites, transmissometers and human observers - suffer from low spatial resolution, high cost or lack of precision when measuring near ground level. Here we show a novel technique for fog monitoring using wireless communication systems. Communication networks widely deploy commercial microwave links across the terrain at ground level. Operating at frequencies of tens of GHz they are affected by fog and are, effectively, an existing, spatially world-wide distributed sensor network that can provide crucial information about fog concentration and visibility. Fog monitoring potential is demonstrated for a heavy fog event that took place in Israel. The correlation between transmissomters and human eye observations to the visibility estimates from the nearby microwave links was found to be 0.53 and 0.61, respectively. These values indicate the high potential of the proposed method.

  18. [Immunohistochemical observation on keratin filaments of cultured tumor cells by ABC staining].

    PubMed

    Wang, J; Yang, F

    1991-06-01

    Avidin-Biotin Peroxidase complex technique, ABV staining, was employed by using monoclonal anti-keratin antibody HK2 in this study. The organization and dynamics of keratins in both interphase and mitotic T56 and HeLa cells were analysed. We also observed the effects of microtubule (MT) and microfilament (MF) inhibitors, colchicine and cytochalasin B, on the organization of keratin filaments in T56 and HeLa cells. The results showed that a significant alteration in the structural organization and distribution of keratin filaments occurred during mitosis, and an extensive rearrangement of keratin networks of the two cell lines was induced in interphase after the MT and MF were disrupted by combined treatment with the two drugs, colchicine and cytochalasin B; the keratin networks turned into a star-like lattice rapidly within 1-2h. Neither colchicine nor cytochalasin B alone elicited significant organizational change in the keratin networks of the two cell lines.

  19. Proximity Networks and Epidemics

    NASA Astrophysics Data System (ADS)

    Guclu, Hasan; Toroczkai, Zoltán

    2007-03-01

    We presented the basis of a framework to account for the dynamics of contacts in epidemic processes, through the notion of dynamic proximity graphs. By varying the integration time-parameter T, which is the period of infectivity one can give a simple account for some of the differences in the observed contact networks for different diseases, such as smallpox, or AIDS. Our simplistic model also seems to shed some light on the shape of the degree distribution of the measured people-people contact network from the EPISIM data. We certainly do not claim that the simplistic graph integration model above is a good model for dynamic contact graphs. It only contains the essential ingredients for such processes to produce a qualitative agreement with some observations. We expect that further refinements and extensions to this picture, in particular deriving the link-probabilities in the dynamic proximity graph from more realistic contact dynamics should improve the agreement between models and data.

  20. Multi-Relational Characterization of Dynamic Social Network Communities

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Ru; Sundaram, Hari; Kelliher, Aisling

    The emergence of the mediated social web - a distributed network of participants creating rich media content and engaging in interactive conversations through Internet-based communication technologies - has contributed to the evolution of powerful social, economic and cultural change. Online social network sites and blogs, such as Facebook, Twitter, Flickr and LiveJournal, thrive due to their fundamental sense of "community". The growth of online communities offers both opportunities and challenges for researchers and practitioners. Participation in online communities has been observed to influence people's behavior in diverse ways ranging from financial decision-making to political choices, suggesting the rich potential for diverse applications. However, although studies on the social web have been extensive, discovering communities from online social media remains challenging, due to the interdisciplinary nature of this subject. In this article, we present our recent work on characterization of communities in online social media using computational approaches grounded on the observations from social science.

  1. Flexible modulation of network connectivity related to cognition in Alzheimer's disease.

    PubMed

    McLaren, Donald G; Sperling, Reisa A; Atri, Alireza

    2014-10-15

    Functional neuroimaging tools, such as fMRI methods, may elucidate the neural correlates of clinical, behavioral, and cognitive performance. Most functional imaging studies focus on regional task-related activity or resting state connectivity rather than how changes in functional connectivity across conditions and tasks are related to cognitive and behavioral performance. To investigate the promise of characterizing context-dependent connectivity-behavior relationships, this study applies the method of generalized psychophysiological interactions (gPPI) to assess the patterns of associative-memory-related fMRI hippocampal functional connectivity in Alzheimer's disease (AD) associated with performance on memory and other cognitively demanding neuropsychological tests and clinical measures. Twenty-four subjects with mild AD dementia (ages 54-82, nine females) participated in a face-name paired-associate encoding memory study. Generalized PPI analysis was used to estimate the connectivity between the hippocampus and the whole brain during encoding. The difference in hippocampal-whole brain connectivity between encoding novel and encoding repeated face-name pairs was used in multiple-regression analyses as an independent predictor for 10 behavioral, neuropsychological and clinical tests. The analysis revealed connectivity-behavior relationships that were distributed, dynamically overlapping, and task-specific within and across intrinsic networks; hippocampal-whole brain connectivity-behavior relationships were not isolated to single networks, but spanned multiple brain networks. Importantly, these spatially distributed performance patterns were unique for each measure. In general, out-of-network behavioral associations with encoding novel greater than repeated face-name pairs hippocampal-connectivity were observed in the default-mode network, while correlations with encoding repeated greater than novel face-name pairs hippocampal-connectivity were observed in the executive control network (p<0.05, cluster corrected). Psychophysiological interactions revealed significantly more extensive and robust associations between paired-associate encoding task-dependent hippocampal-whole brain connectivity and performance on memory and behavioral/clinical measures than previously revealed by standard activity-behavior analysis. Compared to resting state and task-activation methods, gPPI analyses may be more sensitive to reveal additional complementary information regarding subtle within- and between-network relations. The patterns of robust correlations between hippocampal-whole brain connectivity and behavioral measures identified here suggest that there are 'coordinated states' in the brain; that the dynamic range of these states is related to behavior and cognition; and that these states can be observed and quantified, even in individuals with mild AD. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Outlier Detection in Urban Air Quality Sensor Networks.

    PubMed

    van Zoest, V M; Stein, A; Hoek, G

    2018-01-01

    Low-cost urban air quality sensor networks are increasingly used to study the spatio-temporal variability in air pollutant concentrations. Recently installed low-cost urban sensors, however, are more prone to result in erroneous data than conventional monitors, e.g., leading to outliers. Commonly applied outlier detection methods are unsuitable for air pollutant measurements that have large spatial and temporal variations as occur in urban areas. We present a novel outlier detection method based upon a spatio-temporal classification, focusing on hourly NO 2 concentrations. We divide a full year's observations into 16 spatio-temporal classes, reflecting urban background vs. urban traffic stations, weekdays vs. weekends, and four periods per day. For each spatio-temporal class, we detect outliers using the mean and standard deviation of the normal distribution underlying the truncated normal distribution of the NO 2 observations. Applying this method to a low-cost air quality sensor network in the city of Eindhoven, the Netherlands, we found 0.1-0.5% of outliers. Outliers could reflect measurement errors or unusual high air pollution events. Additional evaluation using expert knowledge is needed to decide on treatment of the identified outliers. We conclude that our method is able to detect outliers while maintaining the spatio-temporal variability of air pollutant concentrations in urban areas.

  3. Service Oriented Architecture for Wireless Sensor Networks in Agriculture

    NASA Astrophysics Data System (ADS)

    Sawant, S. A.; Adinarayana, J.; Durbha, S. S.; Tripathy, A. K.; Sudharsan, D.

    2012-08-01

    Rapid advances in Wireless Sensor Network (WSN) for agricultural applications has provided a platform for better decision making for crop planning and management, particularly in precision agriculture aspects. Due to the ever-increasing spread of WSNs there is a need for standards, i.e. a set of specifications and encodings to bring multiple sensor networks on common platform. Distributed sensor systems when brought together can facilitate better decision making in agricultural domain. The Open Geospatial Consortium (OGC) through Sensor Web Enablement (SWE) provides guidelines for semantic and syntactic standardization of sensor networks. In this work two distributed sensing systems (Agrisens and FieldServer) were selected to implement OGC SWE standards through a Service Oriented Architecture (SOA) approach. Online interoperable data processing was developed through SWE components such as Sensor Model Language (SensorML) and Sensor Observation Service (SOS). An integrated web client was developed to visualize the sensor observations and measurements that enables the retrieval of crop water resources availability and requirements in a systematic manner for both the sensing devices. Further, the client has also the ability to operate in an interoperable manner with any other OGC standardized WSN systems. The study of WSN systems has shown that there is need to augment the operations / processing capabilities of SOS in order to understand about collected sensor data and implement the modelling services. Also, the very low cost availability of WSN systems in future, it is possible to implement the OGC standardized SWE framework for agricultural applications with open source software tools.

  4. A growth model for directed complex networks with power-law shape in the out-degree distribution

    PubMed Central

    Esquivel-Gómez, J.; Stevens-Navarro, E.; Pineda-Rico, U.; Acosta-Elias, J.

    2015-01-01

    Many growth models have been published to model the behavior of real complex networks. These models are able to reproduce several of the topological properties of such networks. However, in most of these growth models, the number of outgoing links (i.e., out-degree) of nodes added to the network is constant, that is all nodes in the network are born with the same number of outgoing links. In other models, the resultant out-degree distribution decays as a poisson or an exponential distribution. However, it has been found that in real complex networks, the out-degree distribution decays as a power-law. In order to obtain out-degree distribution with power-law behavior some models have been proposed. This work introduces a new model that allows to obtain out-degree distributions that decay as a power-law with an exponent in the range from 0 to 1. PMID:25567141

  5. An extreme events laboratory to provide network centric collaborative situation assessment and decision making

    NASA Astrophysics Data System (ADS)

    Panulla, Brian J.; More, Loretta D.; Shumaker, Wade R.; Jones, Michael D.; Hooper, Robert; Vernon, Jeffrey M.; Aungst, Stanley G.

    2009-05-01

    Rapid improvements in communications infrastructure and sophistication of commercial hand-held devices provide a major new source of information for assessing extreme situations such as environmental crises. In particular, ad hoc collections of humans can act as "soft sensors" to augment data collected by traditional sensors in a net-centric environment (in effect, "crowd-sourcing" observational data). A need exists to understand how to task such soft sensors, characterize their performance and fuse the data with traditional data sources. In order to quantitatively study such situations, as well as study distributed decision-making, we have developed an Extreme Events Laboratory (EEL) at The Pennsylvania State University. This facility provides a network-centric, collaborative situation assessment and decision-making capability by supporting experiments involving human observers, distributed decision making and cognition, and crisis management. The EEL spans the information chain from energy detection via sensors, human observations, signal and image processing, pattern recognition, statistical estimation, multi-sensor data fusion, visualization and analytics, and modeling and simulation. The EEL command center combines COTS and custom collaboration tools in innovative ways, providing capabilities such as geo-spatial visualization and dynamic mash-ups of multiple data sources. This paper describes the EEL and several on-going human-in-the-loop experiments aimed at understanding the new collective observation and analysis landscape.

  6. Thermospheric Airglow Perturbations in the Upper Atmosphere Caused by Hurricane Harvey

    NASA Astrophysics Data System (ADS)

    Bhatt, A.; Kendall, E. A.

    2017-12-01

    The Midlatitude Allsky imaging Network for Geophysical Observations (MANGO) consists of seven allsky imagers distributed across the United States recording observations of large-scale airglow perturbations. The imagers are filtered at 630 nm, a forbidden oxygen line, in order to record the predominant source of airglow at 250 km altitude. While the ubiquitous airglow layer is challenging to observe when under uniform conditions, waves in the upper atmosphere cause ripples in the airglow layer which can easily be imaged by appropriate instrumentation. MANGO is the first network to record perturbations in the airglow layer on a continent-size scale. Large and Mid-scale Traveling Ionospheric Disturbances (LSTIDs and MSTIDs) are recorded that are caused by auroral forcing, mountain turbulence, and tidal variations. On August 25, airglow perturbations centered on the Hurricane Harvey path were observed by MANGO. These images and connections to other complimentary data sets such as GPS will be presented.

  7. The Role of Graphlets in Viral Processes on Networks

    NASA Astrophysics Data System (ADS)

    Khorshidi, Samira; Al Hasan, Mohammad; Mohler, George; Short, Martin B.

    2018-05-01

    Predicting the evolution of viral processes on networks is an important problem with applications arising in biology, the social sciences, and the study of the Internet. In existing works, mean-field analysis based upon degree distribution is used for the prediction of viral spreading across networks of different types. However, it has been shown that degree distribution alone fails to predict the behavior of viruses on some real-world networks and recent attempts have been made to use assortativity to address this shortcoming. In this paper, we show that adding assortativity does not fully explain the variance in the spread of viruses for a number of real-world networks. We propose using the graphlet frequency distribution in combination with assortativity to explain variations in the evolution of viral processes across networks with identical degree distribution. Using a data-driven approach by coupling predictive modeling with viral process simulation on real-world networks, we show that simple regression models based on graphlet frequency distribution can explain over 95% of the variance in virality on networks with the same degree distribution but different network topologies. Our results not only highlight the importance of graphlets but also identify a small collection of graphlets which may have the highest influence over the viral processes on a network.

  8. Comprehensive evaluation of impacts of distributed generation integration in distribution network

    NASA Astrophysics Data System (ADS)

    Peng, Sujiang; Zhou, Erbiao; Ji, Fengkun; Cao, Xinhui; Liu, Lingshuang; Liu, Zifa; Wang, Xuyang; Cai, Xiaoyu

    2018-04-01

    All Distributed generation (DG) as the supplement to renewable energy centralized utilization, is becoming the focus of development direction of renewable energy utilization. With the increasing proportion of DG in distribution network, the network power structure, power flow distribution, operation plans and protection are affected to some extent. According to the main impacts of DG, a comprehensive evaluation model of distributed network with DG is proposed in this paper. A comprehensive evaluation index system including 7 aspects, along with their corresponding index calculation method is established for quantitative analysis. The indices under different access capacity of DG in distribution network are calculated based on the IEEE RBTS-Bus 6 system and the evaluation result is calculated by analytic hierarchy process (AHP). The proposed model and method are verified effective and validity through case study.

  9. Magnetic pattern at supergranulation scale: the void size distribution

    NASA Astrophysics Data System (ADS)

    Berrilli, F.; Scardigli, S.; Del Moro, D.

    2014-08-01

    The large-scale magnetic pattern observed in the photosphere of the quiet Sun is dominated by the magnetic network. This network, created by photospheric magnetic fields swept into convective downflows, delineates the boundaries of large-scale cells of overturning plasma and exhibits "voids" in magnetic organization. These voids include internetwork fields, which are mixed-polarity sparse magnetic fields that populate the inner part of network cells. To single out voids and to quantify their intrinsic pattern we applied a fast circle-packing-based algorithm to 511 SOHO/MDI high-resolution magnetograms acquired during the unusually long solar activity minimum between cycles 23 and 24. The computed void distribution function shows a quasi-exponential decay behavior in the range 10-60 Mm. The lack of distinct flow scales in this range corroborates the hypothesis of multi-scale motion flows at the solar surface. In addition to the quasi-exponential decay, we have found that the voids depart from a simple exponential decay at about 35 Mm.

  10. Decoupling function and anatomy in atlases of functional connectivity patterns: language mapping in tumor patients.

    PubMed

    Langs, Georg; Sweet, Andrew; Lashkari, Danial; Tie, Yanmei; Rigolo, Laura; Golby, Alexandra J; Golland, Polina

    2014-12-01

    In this paper we construct an atlas that summarizes functional connectivity characteristics of a cognitive process from a population of individuals. The atlas encodes functional connectivity structure in a low-dimensional embedding space that is derived from a diffusion process on a graph that represents correlations of fMRI time courses. The functional atlas is decoupled from the anatomical space, and thus can represent functional networks with variable spatial distribution in a population. In practice the atlas is represented by a common prior distribution for the embedded fMRI signals of all subjects. We derive an algorithm for fitting this generative model to the observed data in a population. Our results in a language fMRI study demonstrate that the method identifies coherent and functionally equivalent regions across subjects. The method also successfully maps functional networks from a healthy population used as a training set to individuals whose language networks are affected by tumors. Copyright © 2014. Published by Elsevier Inc.

  11. Research of the self-healing technologies in the optical communication network of distribution automation

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Zhong, Guoxin

    2018-03-01

    Optical communication network is the mainstream technique of the communication networks for distribution automation, and self-healing technologies can improve the in reliability of the optical communication networks significantly. This paper discussed the technical characteristics and application scenarios of several network self-healing technologies in the access layer, the backbone layer and the core layer of the optical communication networks for distribution automation. On the base of the contrastive analysis, this paper gives an application suggestion of these self-healing technologies.

  12. Strategy on energy saving reconstruction of distribution networks based on life cycle cost

    NASA Astrophysics Data System (ADS)

    Chen, Xiaofei; Qiu, Zejing; Xu, Zhaoyang; Xiao, Chupeng

    2017-08-01

    Because the actual distribution network reconstruction project funds are often limited, the cost-benefit model and the decision-making method are crucial for distribution network energy saving reconstruction project. From the perspective of life cycle cost (LCC), firstly the research life cycle is determined for the energy saving reconstruction of distribution networks with multi-devices. Then, a new life cycle cost-benefit model for energy-saving reconstruction of distribution network is developed, in which the modification schemes include distribution transformers replacement, lines replacement and reactive power compensation. In the operation loss cost and maintenance cost area, the operation cost model considering the influence of load season characteristics and the maintenance cost segmental model of transformers are proposed. Finally, aiming at the highest energy saving profit per LCC, a decision-making method is developed while considering financial and technical constraints as well. The model and method are applied to a real distribution network reconstruction, and the results prove that the model and method are effective.

  13. Topology Counts: Force Distributions in Circular Spring Networks.

    PubMed

    Heidemann, Knut M; Sageman-Furnas, Andrew O; Sharma, Abhinav; Rehfeldt, Florian; Schmidt, Christoph F; Wardetzky, Max

    2018-02-09

    Filamentous polymer networks govern the mechanical properties of many biological materials. Force distributions within these networks are typically highly inhomogeneous, and, although the importance of force distributions for structural properties is well recognized, they are far from being understood quantitatively. Using a combination of probabilistic and graph-theoretical techniques, we derive force distributions in a model system consisting of ensembles of random linear spring networks on a circle. We show that characteristic quantities, such as the mean and variance of the force supported by individual springs, can be derived explicitly in terms of only two parameters: (i) average connectivity and (ii) number of nodes. Our analysis shows that a classical mean-field approach fails to capture these characteristic quantities correctly. In contrast, we demonstrate that network topology is a crucial determinant of force distributions in an elastic spring network. Our results for 1D linear spring networks readily generalize to arbitrary dimensions.

  14. Epidemic extinction paths in complex networks

    NASA Astrophysics Data System (ADS)

    Hindes, Jason; Schwartz, Ira B.

    2017-05-01

    We study the extinction of long-lived epidemics on finite complex networks induced by intrinsic noise. Applying analytical techniques to the stochastic susceptible-infected-susceptible model, we predict the distribution of large fluctuations, the most probable or optimal path through a network that leads to a disease-free state from an endemic state, and the average extinction time in general configurations. Our predictions agree with Monte Carlo simulations on several networks, including synthetic weighted and degree-distributed networks with degree correlations, and an empirical high school contact network. In addition, our approach quantifies characteristic scaling patterns for the optimal path and distribution of large fluctuations, both near and away from the epidemic threshold, in networks with heterogeneous eigenvector centrality and degree distributions.

  15. Epidemic extinction paths in complex networks.

    PubMed

    Hindes, Jason; Schwartz, Ira B

    2017-05-01

    We study the extinction of long-lived epidemics on finite complex networks induced by intrinsic noise. Applying analytical techniques to the stochastic susceptible-infected-susceptible model, we predict the distribution of large fluctuations, the most probable or optimal path through a network that leads to a disease-free state from an endemic state, and the average extinction time in general configurations. Our predictions agree with Monte Carlo simulations on several networks, including synthetic weighted and degree-distributed networks with degree correlations, and an empirical high school contact network. In addition, our approach quantifies characteristic scaling patterns for the optimal path and distribution of large fluctuations, both near and away from the epidemic threshold, in networks with heterogeneous eigenvector centrality and degree distributions.

  16. Research on social communication network evolution based on topology potential distribution

    NASA Astrophysics Data System (ADS)

    Zhao, Dongjie; Jiang, Jian; Li, Deyi; Zhang, Haisu; Chen, Guisheng

    2011-12-01

    Aiming at the problem of social communication network evolution, first, topology potential is introduced to measure the local influence among nodes in networks. Second, from the perspective of topology potential distribution the method of network evolution description based on topology potential distribution is presented, which takes the artificial intelligence with uncertainty as basic theory and local influence among nodes as essentiality. Then, a social communication network is constructed by enron email dataset, the method presented is used to analyze the characteristic of the social communication network evolution and some useful conclusions are got, implying that the method is effective, which shows that topology potential distribution can effectively describe the characteristic of sociology and detect the local changes in social communication network.

  17. Coordination, Data Management and Enhancement of the International Arctic Buoy Programme (IABP), A US Interagency Arctic Buoy Programme (USIABP) Contribution to the IABP

    DTIC Science & Technology

    2012-09-30

    International Arctic Buoy Programme ( IABP ) A US Interagency Arctic Buoy Programme (USIABP) contribution to the IABP Dr. Ignatius G. Rigor Polar...observations of surface meteorology and ice motion. These observations are assimilated into Numerical Weather Prediction (NWP) models that are used to...distribution of sea ice. Over the Arctic Ocean, this fundamental observing network is maintained by the IABP , and is a critical component of the

  18. Properties of four real world collaboration--competition networks

    NASA Astrophysics Data System (ADS)

    Fu, Chun-Hua; Xu, Xiu-Lian; He, Da-Ren

    2009-03-01

    Our research group has empirically investigated 9 real world collaboration networks and 25 real world cooperation-competition networks. Among the 34 real world systems, all the 9 real world collaboration networks and 6 real world cooperation-competition networks show the unimodal act-size distribution and the shifted power law distribution of degree and act-degree. We have proposed a collaboration network evolution model for an explanation of the rules [1]. The other 14 real world cooperation-competition networks show that the act-size distributions are not unimodal; instead, they take qualitatively the same shifted power law forms as the degree and act-degree distributions. The properties of four systems (the main land movie film network, Beijing restaurant network, 2004 Olympic network, and Tao-Bao notebook computer sale network) are reported in detail as examples. Via a numerical simulation, we show that the new rule can still be explained by the above-mentioned model. [1] H. Chang, B. B. Su, et al. Phsica A, 2007, 383: 687-702.

  19. Operational Data Quality Assessment of the Combined PBO, TLALOCNet and COCONet Real-Time GNSS Networks

    NASA Astrophysics Data System (ADS)

    Hodgkinson, K. M.; Mencin, D.; Fox, O.; Walls, C. P.; Mann, D.; Blume, F.; Berglund, H. T.; Phillips, D.; Meertens, C. M.; Mattioli, G. S.

    2015-12-01

    The GAGE facility, managed by UNAVCO, currently operates a network of ~460, real-time, high-rate GNSS stations (RT-GNSS). The majority of these RT stations are part of the Earthscope PBO network, which spans the western US Pacific North-American plate boundary. Approximately 50 are distributed throughout the Mexico and Caribbean region funded by the TLALOCNet and COCONet projects. The entire network is processed in real-time at UNAVCO using Precise Point Positioning (PPP). The real-time streams are freely available to all and user demand has grown almost exponentially since 2010. Data usage is multidisciplinary, including tectonic and volcanic deformation studies, meteorological applications, atmospheric science research in addition to use by national, state and commercial entities. 21 RT-GNSS sites in California now include 200-sps accelerometers for the development of Earthquake Early Warning systems. All categories of users of real-time streams have similar requirements, reliable, low-latency, high-rate, and complete data sets. To meet these requirements, UNAVCO tracks the latency and completeness of the incoming raw observations and also is developing tools to monitor the quality of the processed data streams. UNAVCO is currently assessing the precision, accuracy and latency of solutions from various PPP software packages. Also under review are the data formats UNAVCO distributes; for example, the PPP solutions are currently distributed in NMEA format, but other formats such as SEED or GeoJSON may be preferred by different user groups to achieve specific mission objectives. In this presentation we will share our experiences of the challenges involved in the data operations of a continental-scale, multi-project, real-time GNSS network, summarize the network's performance in terms of latency and completeness, and present the comparisons of PPP solutions using different PPP processing techniques.

  20. Robust quantum network architectures and topologies for entanglement distribution

    NASA Astrophysics Data System (ADS)

    Das, Siddhartha; Khatri, Sumeet; Dowling, Jonathan P.

    2018-01-01

    Entanglement distribution is a prerequisite for several important quantum information processing and computing tasks, such as quantum teleportation, quantum key distribution, and distributed quantum computing. In this work, we focus on two-dimensional quantum networks based on optical quantum technologies using dual-rail photonic qubits for the building of a fail-safe quantum internet. We lay out a quantum network architecture for entanglement distribution between distant parties using a Bravais lattice topology, with the technological constraint that quantum repeaters equipped with quantum memories are not easily accessible. We provide a robust protocol for simultaneous entanglement distribution between two distant groups of parties on this network. We also discuss a memory-based quantum network architecture that can be implemented on networks with an arbitrary topology. We examine networks with bow-tie lattice and Archimedean lattice topologies and use percolation theory to quantify the robustness of the networks. In particular, we provide figures of merit on the loss parameter of the optical medium that depend only on the topology of the network and quantify the robustness of the network against intermittent photon loss and intermittent failure of nodes. These figures of merit can be used to compare the robustness of different network topologies in order to determine the best topology in a given real-world scenario, which is critical in the realization of the quantum internet.

  1. A decentralized mechanism for improving the functional robustness of distribution networks.

    PubMed

    Shi, Benyun; Liu, Jiming

    2012-10-01

    Most real-world distribution systems can be modeled as distribution networks, where a commodity can flow from source nodes to sink nodes through junction nodes. One of the fundamental characteristics of distribution networks is the functional robustness, which reflects the ability of maintaining its function in the face of internal or external disruptions. In view of the fact that most distribution networks do not have any centralized control mechanisms, we consider the problem of how to improve the functional robustness in a decentralized way. To achieve this goal, we study two important problems: 1) how to formally measure the functional robustness, and 2) how to improve the functional robustness of a network based on the local interaction of its nodes. First, we derive a utility function in terms of network entropy to characterize the functional robustness of a distribution network. Second, we propose a decentralized network pricing mechanism, where each node need only communicate with its distribution neighbors by sending a "price" signal to its upstream neighbors and receiving "price" signals from its downstream neighbors. By doing so, each node can determine its outflows by maximizing its own payoff function. Our mathematical analysis shows that the decentralized pricing mechanism can produce results equivalent to those of an ideal centralized maximization with complete information. Finally, to demonstrate the properties of our mechanism, we carry out a case study on the U.S. natural gas distribution network. The results validate the convergence and effectiveness of our mechanism when comparing it with an existing algorithm.

  2. Hopping in the Crowd to Unveil Network Topology.

    PubMed

    Asllani, Malbor; Carletti, Timoteo; Di Patti, Francesca; Fanelli, Duccio; Piazza, Francesco

    2018-04-13

    We introduce a nonlinear operator to model diffusion on a complex undirected network under crowded conditions. We show that the asymptotic distribution of diffusing agents is a nonlinear function of the nodes' degree and saturates to a constant value for sufficiently large connectivities, at variance with standard diffusion in the absence of excluded-volume effects. Building on this observation, we define and solve an inverse problem, aimed at reconstructing the a priori unknown connectivity distribution. The method gathers all the necessary information by repeating a limited number of independent measurements of the asymptotic density at a single node, which can be chosen randomly. The technique is successfully tested against both synthetic and real data and is also shown to estimate with great accuracy the total number of nodes.

  3. Hopping in the Crowd to Unveil Network Topology

    NASA Astrophysics Data System (ADS)

    Asllani, Malbor; Carletti, Timoteo; Di Patti, Francesca; Fanelli, Duccio; Piazza, Francesco

    2018-04-01

    We introduce a nonlinear operator to model diffusion on a complex undirected network under crowded conditions. We show that the asymptotic distribution of diffusing agents is a nonlinear function of the nodes' degree and saturates to a constant value for sufficiently large connectivities, at variance with standard diffusion in the absence of excluded-volume effects. Building on this observation, we define and solve an inverse problem, aimed at reconstructing the a priori unknown connectivity distribution. The method gathers all the necessary information by repeating a limited number of independent measurements of the asymptotic density at a single node, which can be chosen randomly. The technique is successfully tested against both synthetic and real data and is also shown to estimate with great accuracy the total number of nodes.

  4. An improved AVC strategy applied in distributed wind power system

    NASA Astrophysics Data System (ADS)

    Zhao, Y. N.; Liu, Q. H.; Song, S. Y.; Mao, W.

    2016-08-01

    Traditional AVC strategy is mainly used in wind farm and only concerns about grid connection point, which is not suitable for distributed wind power system. Therefore, this paper comes up with an improved AVC strategy applied in distributed wind power system. The strategy takes all nodes of distribution network into consideration and chooses the node having the most serious voltage deviation as control point to calculate the reactive power reference. In addition, distribution principles can be divided into two conditions: when wind generators access to network on single node, the reactive power reference is distributed according to reactive power capacity; when wind generators access to network on multi-node, the reference is distributed according to sensitivity. Simulation results show the correctness and reliability of the strategy. Compared with traditional control strategy, the strategy described in this paper can make full use of generators reactive power output ability according to the distribution network voltage condition and improve the distribution network voltage level effectively.

  5. Final Report - Cloud-Based Management Platform for Distributed, Multi-Domain Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Pulak; Mukherjee, Biswanath

    2017-11-03

    In this Department of Energy (DOE) Small Business Innovation Research (SBIR) Phase II project final report, Ennetix presents the development of a solution for end-to-end monitoring, analysis, and visualization of network performance for distributed networks. This solution benefits enterprises of all sizes, operators of distributed and federated networks, and service providers.

  6. Neural networks and MIMD-multiprocessors

    NASA Technical Reports Server (NTRS)

    Vanhala, Jukka; Kaski, Kimmo

    1990-01-01

    Two artificial neural network models are compared. They are the Hopfield Neural Network Model and the Sparse Distributed Memory model. Distributed algorithms for both of them are designed and implemented. The run time characteristics of the algorithms are analyzed theoretically and tested in practice. The storage capacities of the networks are compared. Implementations are done using a distributed multiprocessor system.

  7. Autonomous telemetry system by using mobile networks for a long-term seismic observation

    NASA Astrophysics Data System (ADS)

    Hirahara, S.; Uchida, N.; Nakajima, J.

    2012-04-01

    When a large earthquake occurs, it is important to know the detailed distribution of aftershocks immediately after the main shock for the estimation of the fault plane. The large amount of seismic data is also required to determine the three-dimensional seismic velocity structure around the focal area. We have developed an autonomous telemetry system using mobile networks, which is specialized for aftershock observations. Because the newly developed system enables a quick installation and real-time data transmission by using mobile networks, we can construct a dense online seismic network even in mountain areas where conventional wired networks are not available. This system is equipped with solar panels that charge lead-acid battery, and enables a long-term seismic observation without maintenance. Furthermore, this system enables a continuous observation at low costs with flat-rate or prepaid Internet access. We have tried to expand coverage areas of mobile communication and back up Internet access by configuring plural mobile carriers. A micro server embedded with Linux consists of automatic control programs of the Internet connection and data transmission. A status monitoring and remote maintenance are available via the Internet. In case of a communication failure, an internal storage can back up data for two years. The power consumption of communication device ranges from 2.5 to 4.0 W. With a 50 Ah lead-acid battery, this system continues to record data for four days if the battery charging by solar panels is temporarily unavailable.

  8. Relations between Spatial Distribution, Social Affiliations and Dominance Hierarchy in a Semi-Free Mandrill Population

    PubMed Central

    Naud, Alexandre; Chailleux, Eloise; Kestens, Yan; Bret, Céline; Desjardins, Dominic; Petit, Odile; Ngoubangoye, Barthélémy; Sueur, Cédric

    2016-01-01

    Although there exist advantages to group-living in comparison to a solitary lifestyle, costs and gains of group-living may be unequally distributed among group members. Predation risk, vigilance levels and food intake may be unevenly distributed across group spatial geometry and certain within-group spatial positions may be more or less advantageous depending on the spatial distribution of these factors. In species characterized with dominance hierarchy, high-ranking individuals are commonly observed in advantageous spatial position. However, in complex social systems, individuals can develop affiliative relationships that may balance the effect of dominance relationships in individual's spatial distribution. The objective of the present study is to investigate how the group spatial distribution of a semi-free ranging colony of Mandrills relates to its social organization. Using spatial observations in an area surrounding the feeding zone, we tested the three following hypothesis: (1) does dominance hierarchy explain being observed in proximity or far from a food patch? (2) Do affiliative associations also explain being observed in proximity or far from a food patch? (3) Do the differences in rank in the group hierarchy explain being co-observed in proximity of a food patch? Our results showed that high-ranking individuals were more observed in proximity of the feeding zone while low-ranking individuals were more observed at the boundaries of the observation area. Furthermore, we observed that affiliative relationships were also associated with individual spatial distributions and explain more of the total variance of the spatial distribution in comparison with dominance hierarchy. Finally, we found that individuals observed at a same moment in proximity of the feeding zone were more likely to be distant in the hierarchy while controlling for maternal kinship, age and sex similarity. This study brings some elements about how affiliative networks and dominance hierarchy are related to spatial positions in primates. PMID:27199845

  9. Relations between Spatial Distribution, Social Affiliations and Dominance Hierarchy in a Semi-Free Mandrill Population.

    PubMed

    Naud, Alexandre; Chailleux, Eloise; Kestens, Yan; Bret, Céline; Desjardins, Dominic; Petit, Odile; Ngoubangoye, Barthélémy; Sueur, Cédric

    2016-01-01

    Although there exist advantages to group-living in comparison to a solitary lifestyle, costs and gains of group-living may be unequally distributed among group members. Predation risk, vigilance levels and food intake may be unevenly distributed across group spatial geometry and certain within-group spatial positions may be more or less advantageous depending on the spatial distribution of these factors. In species characterized with dominance hierarchy, high-ranking individuals are commonly observed in advantageous spatial position. However, in complex social systems, individuals can develop affiliative relationships that may balance the effect of dominance relationships in individual's spatial distribution. The objective of the present study is to investigate how the group spatial distribution of a semi-free ranging colony of Mandrills relates to its social organization. Using spatial observations in an area surrounding the feeding zone, we tested the three following hypothesis: (1) does dominance hierarchy explain being observed in proximity or far from a food patch? (2) Do affiliative associations also explain being observed in proximity or far from a food patch? (3) Do the differences in rank in the group hierarchy explain being co-observed in proximity of a food patch? Our results showed that high-ranking individuals were more observed in proximity of the feeding zone while low-ranking individuals were more observed at the boundaries of the observation area. Furthermore, we observed that affiliative relationships were also associated with individual spatial distributions and explain more of the total variance of the spatial distribution in comparison with dominance hierarchy. Finally, we found that individuals observed at a same moment in proximity of the feeding zone were more likely to be distant in the hierarchy while controlling for maternal kinship, age and sex similarity. This study brings some elements about how affiliative networks and dominance hierarchy are related to spatial positions in primates.

  10. Can Computational Sediment Transport Models Reproduce the Observed Variability of Channel Networks in Modern Deltas?

    NASA Astrophysics Data System (ADS)

    Nesvold, E.; Mukerji, T.

    2017-12-01

    River deltas display complex channel networks that can be characterized through the framework of graph theory, as shown by Tejedor et al. (2015). Deltaic patterns may also be useful in a Bayesian approach to uncertainty quantification of the subsurface, but this requires a prior distribution of the networks of ancient deltas. By considering subaerial deltas, one can at least obtain a snapshot in time of the channel network spectrum across deltas. In this study, the directed graph structure is semi-automatically extracted from satellite imagery using techniques from statistical processing and machine learning. Once the network is labeled with vertices and edges, spatial trends and width and sinuosity distributions can also be found easily. Since imagery is inherently 2D, computational sediment transport models can serve as a link between 2D network structure and 3D depositional elements; the numerous empirical rules and parameters built into such models makes it necessary to validate the output with field data. For this purpose we have used a set of 110 modern deltas, with average water discharge ranging from 10 - 200,000 m3/s, as a benchmark for natural variability. Both graph theoretic and more general distributions are established. A key question is whether it is possible to reproduce this deltaic network spectrum with computational models. Delft3D was used to solve the shallow water equations coupled with sediment transport. The experimental setup was relatively simple; incoming channelized flow onto a tilted plane, with varying wave and tidal energy, sediment types and grain size distributions, river discharge and a few other input parameters. Each realization was run until a delta had fully developed: between 50 and 500 years (with a morphology acceleration factor). It is shown that input parameters should not be sampled independently from the natural ranges, since this may result in deltaic output that falls well outside the natural spectrum. Since we are interested in studying the patterns occurring in nature, ideas are proposed for how to sample computer realizations that match this distribution. By establishing a link between surface based patterns from the field with the associated subsurface structure from physics-based models, this is a step towards a fully Bayesian workflow in subsurface simulation.

  11. Detecting surface runoff location in a small catchment using distributed and simple observation method

    NASA Astrophysics Data System (ADS)

    Dehotin, Judicaël; Breil, Pascal; Braud, Isabelle; de Lavenne, Alban; Lagouy, Mickaël; Sarrazin, Benoît

    2015-06-01

    Surface runoff is one of the hydrological processes involved in floods, pollution transfer, soil erosion and mudslide. Many models allow the simulation and the mapping of surface runoff and erosion hazards. Field observations of this hydrological process are not common although they are crucial to evaluate surface runoff models and to investigate or assess different kinds of hazards linked to this process. In this study, a simple field monitoring network is implemented to assess the relevance of a surface runoff susceptibility mapping method. The network is based on spatially distributed observations (nine different locations in the catchment) of soil water content and rainfall events. These data are analyzed to determine if surface runoff occurs. Two surface runoff mechanisms are considered: surface runoff by saturation of the soil surface horizon and surface runoff by infiltration excess (also called hortonian runoff). The monitoring strategy includes continuous records of soil surface water content and rainfall with a 5 min time step. Soil infiltration capacity time series are calculated using field soil water content and in situ measurements of soil hydraulic conductivity. Comparison of soil infiltration capacity and rainfall intensity time series allows detecting the occurrence of surface runoff by infiltration-excess. Comparison of surface soil water content with saturated water content values allows detecting the occurrence of surface runoff by saturation of the soil surface horizon. Automatic records were complemented with direct field observations of surface runoff in the experimental catchment after each significant rainfall event. The presented observation method allows the identification of fast and short-lived surface runoff processes at a small spatial and temporal resolution in natural conditions. The results also highlight the relationship between surface runoff and factors usually integrated in surface runoff mapping such as topography, rainfall parameters, soil or land cover. This study opens interesting prospects for the use of spatially distributed measurement for surface runoff detection, spatially distributed hydrological models implementation and validation at a reasonable cost.

  12. Distributed controller clustering in software defined networks.

    PubMed

    Abdelaziz, Ahmed; Fong, Ang Tan; Gani, Abdullah; Garba, Usman; Khan, Suleman; Akhunzada, Adnan; Talebian, Hamid; Choo, Kim-Kwang Raymond

    2017-01-01

    Software Defined Networking (SDN) is an emerging promising paradigm for network management because of its centralized network intelligence. However, the centralized control architecture of the software-defined networks (SDNs) brings novel challenges of reliability, scalability, fault tolerance and interoperability. In this paper, we proposed a novel clustered distributed controller architecture in the real setting of SDNs. The distributed cluster implementation comprises of multiple popular SDN controllers. The proposed mechanism is evaluated using a real world network topology running on top of an emulated SDN environment. The result shows that the proposed distributed controller clustering mechanism is able to significantly reduce the average latency from 8.1% to 1.6%, the packet loss from 5.22% to 4.15%, compared to distributed controller without clustering running on HP Virtual Application Network (VAN) SDN and Open Network Operating System (ONOS) controllers respectively. Moreover, proposed method also shows reasonable CPU utilization results. Furthermore, the proposed mechanism makes possible to handle unexpected load fluctuations while maintaining a continuous network operation, even when there is a controller failure. The paper is a potential contribution stepping towards addressing the issues of reliability, scalability, fault tolerance, and inter-operability.

  13. Multiplex networks in metropolitan areas: generic features and local effects.

    PubMed

    Strano, Emanuele; Shai, Saray; Dobson, Simon; Barthelemy, Marc

    2015-10-06

    Most large cities are spanned by more than one transportation system. These different modes of transport have usually been studied separately: it is however important to understand the impact on urban systems of coupling different modes and we report in this paper an empirical analysis of the coupling between the street network and the subway for the two large metropolitan areas of London and New York. We observe a similar behaviour for network quantities related to quickest paths suggesting the existence of generic mechanisms operating beyond the local peculiarities of the specific cities studied. An analysis of the betweenness centrality distribution shows that the introduction of underground networks operate as a decentralizing force creating congestion in places located at the end of underground lines. Also, we find that increasing the speed of subways is not always beneficial and may lead to unwanted uneven spatial distributions of accessibility. In fact, for London—but not for New York—there is an optimal subway speed in terms of global congestion. These results show that it is crucial to consider the full, multimodal, multilayer network aspects of transportation systems in order to understand the behaviour of cities and to avoid possible negative side-effects of urban planning decisions. © 2015 The Author(s).

  14. Towards Smart Grid Dynamic Ratings

    NASA Astrophysics Data System (ADS)

    Cheema, Jamal; Clark, Adrian; Kilimnik, Justin; Pavlovski, Chris; Redman, David; Vu, Maria

    2011-08-01

    The energy distribution industry is giving greater attention to smart grid solutions as a means for increasing the capabilities, efficiency and reliability of the electrical power network. The smart grid makes use of intelligent monitoring and control devices throughout the distribution network to report on electrical properties such as voltage, current and power, as well as raising network alarms and events. A further aspect of the smart grid embodies the dynamic rating of electrical assets of the network. This fundamentally involves a rating of the load current capacity of electrical assets including feeders, transformers and switches. The mainstream approach to rate assets is to apply the vendor plate rating, which often under utilizes assets, or in some cases over utilizes when environmental conditions reduce the effective rated capacity, potentially reducing lifetime. Using active intelligence we have developed a rating system that rates assets in real time based upon several events. This allows for a far more efficient and reliable electrical grid that is able to extend further the life and reliability of the electrical network. In this paper we describe our architecture, the observations made during development and live deployment of the solution into operation. We also illustrate how this solution blends with the smart grid by proposing a dynamic rating system for the smart grid.

  15. Multiplex networks in metropolitan areas: generic features and local effects

    PubMed Central

    Strano, Emanuele; Shai, Saray; Dobson, Simon; Barthelemy, Marc

    2015-01-01

    Most large cities are spanned by more than one transportation system. These different modes of transport have usually been studied separately: it is however important to understand the impact on urban systems of coupling different modes and we report in this paper an empirical analysis of the coupling between the street network and the subway for the two large metropolitan areas of London and New York. We observe a similar behaviour for network quantities related to quickest paths suggesting the existence of generic mechanisms operating beyond the local peculiarities of the specific cities studied. An analysis of the betweenness centrality distribution shows that the introduction of underground networks operate as a decentralizing force creating congestion in places located at the end of underground lines. Also, we find that increasing the speed of subways is not always beneficial and may lead to unwanted uneven spatial distributions of accessibility. In fact, for London—but not for New York—there is an optimal subway speed in terms of global congestion. These results show that it is crucial to consider the full, multimodal, multilayer network aspects of transportation systems in order to understand the behaviour of cities and to avoid possible negative side-effects of urban planning decisions. PMID:26400198

  16. Dynamic Network Drivers of Seizure Generation, Propagation and Termination in Human Neocortical Epilepsy

    PubMed Central

    Khambhati, Ankit N.; Davis, Kathryn A.; Oommen, Brian S.; Chen, Stephanie H.; Lucas, Timothy H.; Litt, Brian; Bassett, Danielle S.

    2015-01-01

    The epileptic network is characterized by pathologic, seizure-generating ‘foci’ embedded in a web of structural and functional connections. Clinically, seizure foci are considered optimal targets for surgery. However, poor surgical outcome suggests a complex relationship between foci and the surrounding network that drives seizure dynamics. We developed a novel technique to objectively track seizure states from dynamic functional networks constructed from intracranial recordings. Each dynamical state captures unique patterns of network connections that indicate synchronized and desynchronized hubs of neural populations. Our approach suggests that seizures are generated when synchronous relationships near foci work in tandem with rapidly changing desynchronous relationships from the surrounding epileptic network. As seizures progress, topographical and geometrical changes in network connectivity strengthen and tighten synchronous connectivity near foci—a mechanism that may aid seizure termination. Collectively, our observations implicate distributed cortical structures in seizure generation, propagation and termination, and may have practical significance in determining which circuits to modulate with implantable devices. PMID:26680762

  17. Strong Sporadic E Occurrence Detected by Ground-Based GNSS

    NASA Astrophysics Data System (ADS)

    Sun, Wenjie; Ning, Baiqi; Yue, Xinan; Li, Guozhu; Hu, Lianhuan; Chang, Shoumin; Lan, Jiaping; Zhu, Zhengping; Zhao, Biqiang; Lin, Jian

    2018-04-01

    The ionospheric sporadic E (Es) layer has significant impact on radio wave propagation. The traditional techniques employed for Es layer observation, for example, ionosondes, are not dense enough to resolve the morphology and dynamics of Es layer in spatial distribution. The ground-based Global Navigation Satellite Systems (GNSS) technique is expected to shed light on the understanding of regional strong Es occurrence, owing to the facts that the critical frequency (foEs) of strong Es structure is usually high enough to cause pulse-like disturbances in GNSS total electron content (TEC), and a large number of GNSS receivers have been deployed all over the world. Based on the Chinese ground-based GNSS networks, including the Crustal Movement Observation Network of China and the Beidou Ionospheric Observation Network, a large-scale strong Es event was observed in the middle latitude of China. The strong Es shown as a band-like structure in the southwest-northeast direction extended more than 1,000 km. By making a comparative analysis of Es occurrences identified from the simultaneous observations by ionosondes and GNSS TEC receivers over China middle latitude statistically, we found that GNSS TEC can be well employed to observe strong Es occurrence with a threshold value of foEs, 14 MHz.

  18. Air Temperature Distribution Measurement Using Asynchronous-Type Sound Probe

    NASA Astrophysics Data System (ADS)

    Katano, Yosuke; Wakatsuki, Naoto; Mizutani, Koichi

    2009-07-01

    In conventional temperature measurement using a sound probe, the operation beginnings of two acoustic sensors must be completely synchronized to measure time of flight (TOF), tf, because the precision of synchronization determines TOF measurement accuracy. A wireless local area network (LAN) is convenient for constructing a sensing grid; however, it causes a fluctuation in the delay of millisecond order. Therefore, it cannot provide sufficient precision for synchronizing acoustic sensors. In previous studies, synchronization was achieved by a trigger line using a coaxial cable; however, the cable reduces the flexibility of a wireless sensing grid especially in larger-scale measurement. In this study, an asynchronous-type sound probe is devised to compensate for the effect of the delay of millisecond order caused by the network. The validity of the probe was examined, and the air temperature distribution was measured using this means. A matrix method is employed to obtain the distribution. Similar results were observed using both asynchronous-type sound probes and thermocouples. This shows the validity of the use of a sensing grid with an asynchronous-type sound probe for temperature distribution measurement even if the trigger line is omitted.

  19. Hydraulic head estimation at unobserved locations: Approximating the distribution of the absolute error based on geologic interpretations

    NASA Astrophysics Data System (ADS)

    Langousis, Andreas; Kaleris, Vassilios; Xeygeni, Vagia; Magkou, Foteini

    2017-04-01

    Assessing the availability of groundwater reserves at a regional level, requires accurate and robust hydraulic head estimation at multiple locations of an aquifer. To that extent, one needs groundwater observation networks that can provide sufficient information to estimate the hydraulic head at unobserved locations. The density of such networks is largely influenced by the spatial distribution of the hydraulic conductivity in the aquifer, and it is usually determined through trial-and-error, by solving the groundwater flow based on a properly selected set of alternative but physically plausible geologic structures. In this work, we use: 1) dimensional analysis, and b) a pulse-based stochastic model for simulation of synthetic aquifer structures, to calculate the distribution of the absolute error in hydraulic head estimation as a function of the standardized distance from the nearest measuring locations. The resulting distributions are proved to encompass all possible small-scale structural dependencies, exhibiting characteristics (bounds, multi-modal features etc.) that can be explained using simple geometric arguments. The obtained results are promising, pointing towards the direction of establishing design criteria based on large-scale geologic maps.

  20. Distributed intelligent monitoring and reporting facilities

    NASA Astrophysics Data System (ADS)

    Pavlou, George; Mykoniatis, George; Sanchez-P, Jorge-A.

    1996-06-01

    Distributed intelligent monitoring and reporting facilities are of paramount importance in both service and network management as they provide the capability to monitor quality of service and utilization parameters and notify degradation so that corrective action can be taken. By intelligent, we refer to the capability of performing the monitoring tasks in a way that has the smallest possible impact on the managed network, facilitates the observation and summarization of information according to a number of criteria and in its most advanced form and permits the specification of these criteria dynamically to suit the particular policy in hand. In addition, intelligent monitoring facilities should minimize the design and implementation effort involved in such activities. The ISO/ITU Metric, Summarization and Performance management functions provide models that only partially satisfy the above requirements. This paper describes our extensions to the proposed models to support further capabilities, with the intention to eventually lead to fully dynamically defined monitoring policies. The concept of distributing intelligence is also discussed, including the consideration of security issues and the applicability of the model in ODP-based distributed processing environments.

  1. Wealth distribution on complex networks

    NASA Astrophysics Data System (ADS)

    Ichinomiya, Takashi

    2012-12-01

    We study the wealth distribution of the Bouchaud-Mézard model on complex networks. It is known from numerical simulations that this distribution depends on the topology of the network; however, no one has succeeded in explaining it. Using “adiabatic” and “independent” assumptions along with the central-limit theorem, we derive equations that determine the probability distribution function. The results are compared to those of simulations for various networks. We find good agreement between our theory and the simulations, except for the case of Watts-Strogatz networks with a low rewiring rate due to the breakdown of independent assumption.

  2. Potential Use of a Bayesian Network for Discriminating Flash Type from Future GOES-R Geostationary Lightning Mapper (GLM) data

    NASA Technical Reports Server (NTRS)

    Solakiewiz, Richard; Koshak, William

    2008-01-01

    Continuous monitoring of the ratio of cloud flashes to ground flashes may provide a better understanding of thunderstorm dynamics, intensification, and evolution, and it may be useful in severe weather warning. The National Lighting Detection Network TM (NLDN) senses ground flashes with exceptional detection efficiency and accuracy over most of the continental United States. A proposed Geostationary Lightning Mapper (GLM) aboard the Geostationary Operational Environmental Satellite (GOES-R) will look at the western hemisphere, and among the lightning data products to be made available will be the fundamental optical flash parameters for both cloud and ground flashes: radiance, area, duration, number of optical groups, and number of optical events. Previous studies have demonstrated that the optical flash parameter statistics of ground and cloud lightning, which are observable from space, are significantly different. This study investigates a Bayesian network methodology for discriminating lightning flash type (ground or cloud) using the lightning optical data and ancillary GOES-R data. A Directed Acyclic Graph (DAG) is set up with lightning as a "root" and data observed by GLM as the "leaves." This allows for a direct calculation of the joint probability distribution function for the lighting type and radiance, area, etc. Initially, the conditional probabilities that will be required can be estimated from the Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD) together with NLDN data. Directly manipulating the joint distribution will yield the conditional probability that a lightning flash is a ground flash given the evidence, which consists of the observed lightning optical data [and possibly cloud data retrieved from the GOES-R Advanced Baseline Imager (ABI) in a more mature Bayesian network configuration]. Later, actual GLM and NLDN data can be used to refine the estimates of the conditional probabilities used in the model; i.e., the Bayesian network is a learning network. Methods for efficient calculation of the conditional probabilities (e.g., an algorithm using junction trees), finding data conflicts, goodness of fit, and dealing with missing data will also be addressed.

  3. Network Events on Multiple Space and Time Scales in Cultured Neural Networks and in a Stochastic Rate Model

    PubMed Central

    Gigante, Guido; Deco, Gustavo; Marom, Shimon; Del Giudice, Paolo

    2015-01-01

    Cortical networks, in-vitro as well as in-vivo, can spontaneously generate a variety of collective dynamical events such as network spikes, UP and DOWN states, global oscillations, and avalanches. Though each of them has been variously recognized in previous works as expression of the excitability of the cortical tissue and the associated nonlinear dynamics, a unified picture of the determinant factors (dynamical and architectural) is desirable and not yet available. Progress has also been partially hindered by the use of a variety of statistical measures to define the network events of interest. We propose here a common probabilistic definition of network events that, applied to the firing activity of cultured neural networks, highlights the co-occurrence of network spikes, power-law distributed avalanches, and exponentially distributed ‘quasi-orbits’, which offer a third type of collective behavior. A rate model, including synaptic excitation and inhibition with no imposed topology, synaptic short-term depression, and finite-size noise, accounts for all these different, coexisting phenomena. We find that their emergence is largely regulated by the proximity to an oscillatory instability of the dynamics, where the non-linear excitable behavior leads to a self-amplification of activity fluctuations over a wide range of scales in space and time. In this sense, the cultured network dynamics is compatible with an excitation-inhibition balance corresponding to a slightly sub-critical regime. Finally, we propose and test a method to infer the characteristic time of the fatigue process, from the observed time course of the network’s firing rate. Unlike the model, possessing a single fatigue mechanism, the cultured network appears to show multiple time scales, signalling the possible coexistence of different fatigue mechanisms. PMID:26558616

  4. Social power, conflict policing, and the role of subordination signals in rhesus macaque society

    PubMed Central

    Beisner, Brianne A.; Hannibal, Darcy L.; Finn, Kelly R.; Fushing, Hsieh; McCowan, Brenda

    2017-01-01

    Objectives Policing is a conflict-limiting mechanism observed in many primate species. It is thought to require a skewed distribution of social power for some individuals to have sufficiently high social power to stop others’ fights, yet social power has not been examined in most species with policing behavior. We examined networks of subordination signals as a source of social power that permits policing behavior in rhesus macaques. Materials and Methods For each of seven captive groups of rhesus macaques, we (a) examined the structure of subordination signal networks and used GLMs to examine the relationship between (b) pairwise dominance certainty and subordination network pathways and (c) policing frequency and social power (group-level convergence in subordination signaling pathways). Results Networks of subordination signals had perfect linear transitivity, and pairs connected by both direct and indirect pathways of signals had more certain dominance relationships than pairs with no such network connection. Social power calculated using both direct and indirect network pathways showed a heavy-tailed distribution and positively predicted conflict policing. Conclusions Our results empirically substantiate that subordination signaling is associated with greater dominance relationship certainty and further show that pairs who signal rarely (or not at all) may use information from others’ signaling interactions to infer or reaffirm the relative certainty of their own relationships. We argue that the network of formal dominance relationships is central to societal stability because it is important for relationship stability and also supports the additional stabilizing mechanism of policing. PMID:26801956

  5. Social power, conflict policing, and the role of subordination signals in rhesus macaque society.

    PubMed

    Beisner, Brianne A; Hannibal, Darcy L; Finn, Kelly R; Fushing, Hsieh; McCowan, Brenda

    2016-05-01

    Policing is a conflict-limiting mechanism observed in many primate species. It is thought to require a skewed distribution of social power for some individuals to have sufficiently high social power to stop others' fights, yet social power has not been examined in most species with policing behavior. We examined networks of subordination signals as a source of social power that permits policing behavior in rhesus macaques. For each of seven captive groups of rhesus macaques, we (a) examined the structure of subordination signal networks and used GLMs to examine the relationship between (b) pairwise dominance certainty and subordination network pathways and (c) policing frequency and social power (group-level convergence in subordination signaling pathways). Networks of subordination signals had perfect linear transitivity, and pairs connected by both direct and indirect pathways of signals had more certain dominance relationships than pairs with no such network connection. Social power calculated using both direct and indirect network pathways showed a heavy-tailed distribution and positively predicted conflict policing. Our results empirically substantiate that subordination signaling is associated with greater dominance relationship certainty and further show that pairs who signal rarely (or not at all) may use information from others' signaling interactions to infer or reaffirm the relative certainty of their own relationships. We argue that the network of formal dominance relationships is central to societal stability because it is important for relationship stability and also supports the additional stabilizing mechanism of policing. © 2016 Wiley Periodicals, Inc.

  6. RTDS-Based Design and Simulation of Distributed P-Q Power Resources in Smart Grid

    NASA Astrophysics Data System (ADS)

    Taylor, Zachariah David

    In this Thesis, we propose to utilize a battery system together with its power electronics interfaces and bidirectional charger as a distributed P-Q resource in power distribution networks. First, we present an optimization-based approach to operate such distributed P-Q resources based on the characteristics of the battery and charger system as well as the features and needs of the power distribution network. Then, we use the RTDS Simulator, which is an industry-standard simulation tool of power systems, to develop two RTDS-based design approaches. The first design is based on an ideal four-quadrant distributed P-Q power resource. The second design is based on a detailed four-quadrant distributed P-Q power resource that is developed using power electronics components. The hardware and power electronics circuitry as well as the control units are explained for the second design. After that, given the two-RTDS designs, we conducted extensive RTDS simulations to assess the performance of the designed distributed P-Q Power Resource in an IEEE 13 bus test system. We observed that the proposed design can noticeably improve the operational performance of the power distribution grid in at least four key aspects: reducing power loss, active power peak load shaving at substation, reactive power peak load shaving at substation, and voltage regulation. We examine these performance measures across three design cases: Case 1: There is no P-Q Power Resource available on the power distribution network. Case 2: The installed P-Q Power Resource only supports active power, i.e., it only utilizes its battery component. Case 3: The installed P-Q Power Resource supports both active and reactive power, i.e., it utilizes both its battery component and its power electronics charger component. In the end, we present insightful interpretations on the simulation results and suggest some future works.

  7. Irregular synchronous activity in stochastically-coupled networks of integrate-and-fire neurons.

    PubMed

    Lin, J K; Pawelzik, K; Ernst, U; Sejnowski, T J

    1998-08-01

    We investigate the spatial and temporal aspects of firing patterns in a network of integrate-and-fire neurons arranged in a one-dimensional ring topology. The coupling is stochastic and shaped like a Mexican hat with local excitation and lateral inhibition. With perfect precision in the couplings, the attractors of activity in the network occur at every position in the ring. Inhomogeneities in the coupling break the translational invariance of localized attractors and lead to synchronization within highly active as well as weakly active clusters. The interspike interval variability is high, consistent with recent observations of spike time distributions in visual cortex. The robustness of our results is demonstrated with more realistic simulations on a network of McGregor neurons which model conductance changes and after-hyperpolarization potassium currents.

  8. Applications of CCSDS recommendations to Integrated Ground Data Systems (IGDS)

    NASA Technical Reports Server (NTRS)

    Mizuta, Hiroshi; Martin, Daniel; Kato, Hatsuhiko; Ihara, Hirokazu

    1993-01-01

    This paper describes an application of the CCSDS Principle Network (CPH) service model to communications network elements of a postulated Integrated Ground Data System (IGDS). Functions are drawn principally from COSMICS (Cosmic Information and Control System), an integrated space control infrastructure, and the Earth Observing System Data and Information System (EOSDIS) Core System (ECS). From functional requirements, this paper derives a set of five communications network partitions which, taken together, support proposed space control infrastructures and data distribution systems. Our functional analysis indicates that the five network partitions derived in this paper should effectively interconnect the users, centers, processors, and other architectural elements of an IGDS. This paper illustrates a useful application of the CCSDS (Consultive Committee for Space Data Systems) Recommendations to ground data system development.

  9. Minimizing communication cost among distributed controllers in software defined networks

    NASA Astrophysics Data System (ADS)

    Arlimatti, Shivaleela; Elbreiki, Walid; Hassan, Suhaidi; Habbal, Adib; Elshaikh, Mohamed

    2016-08-01

    Software Defined Networking (SDN) is a new paradigm to increase the flexibility of today's network by promising for a programmable network. The fundamental idea behind this new architecture is to simplify network complexity by decoupling control plane and data plane of the network devices, and by making the control plane centralized. Recently controllers have distributed to solve the problem of single point of failure, and to increase scalability and flexibility during workload distribution. Even though, controllers are flexible and scalable to accommodate more number of network switches, yet the problem of intercommunication cost between distributed controllers is still challenging issue in the Software Defined Network environment. This paper, aims to fill the gap by proposing a new mechanism, which minimizes intercommunication cost with graph partitioning algorithm, an NP hard problem. The methodology proposed in this paper is, swapping of network elements between controller domains to minimize communication cost by calculating communication gain. The swapping of elements minimizes inter and intra communication cost among network domains. We validate our work with the OMNeT++ simulation environment tool. Simulation results show that the proposed mechanism minimizes the inter domain communication cost among controllers compared to traditional distributed controllers.

  10. Conservation of high-flux backbone in alternate optimal and near-optimal flux distributions of metabolic networks.

    PubMed

    Samal, Areejit

    2008-12-01

    Constraint-based flux balance analysis (FBA) has proven successful in predicting the flux distribution of metabolic networks in diverse environmental conditions. FBA finds one of the alternate optimal solutions that maximizes the biomass production rate. Almaas et al. have shown that the flux distribution follows a power law, and it is possible to associate with most metabolites two reactions which maximally produce and consume a given metabolite, respectively. This observation led to the concept of high-flux backbone (HFB) in metabolic networks. In previous work, the HFB has been computed using a particular optima obtained using FBA. In this paper, we investigate the conservation of HFB of a particular solution for a given medium across different alternate optima and near-optima in metabolic networks of E. coli and S. cerevisiae. Using flux variability analysis (FVA), we propose a method to determine reactions that are guaranteed to be in HFB regardless of alternate solutions. We find that the HFB of a particular optima is largely conserved across alternate optima in E. coli, while it is only moderately conserved in S. cerevisiae. However, the HFB of a particular near-optima shows a large variation across alternate near-optima in both organisms. We show that the conserved set of reactions in HFB across alternate near-optima has a large overlap with essential reactions and reactions which are both uniquely consuming (UC) and uniquely producing (UP). Our findings suggest that the structure of the metabolic network admits a high degree of redundancy and plasticity in near-optimal flow patterns enhancing system robustness for a given environmental condition.

  11. A distributed lumped active all-pass network configuration.

    NASA Technical Reports Server (NTRS)

    Huelsman, L. P.; Raghunath, S.

    1972-01-01

    In this correspondence a new and interesting distributed lumped active network configuration that realizes an all-pass network function is described. A design chart for determining the values of the network elements is included.

  12. Heterogeneity in the Fault Damage Zone: a Field Study on the Borrego Fault, B.C., Mexico

    NASA Astrophysics Data System (ADS)

    Ostermeijer, G.; Mitchell, T. M.; Dorsey, M. T.; Browning, J.; Rockwell, T. K.; Aben, F. M.; Fletcher, J. M.; Brantut, N.

    2017-12-01

    The nature and distribution of damage around faults, and its impacts on fault zone properties has been a hot topic of research over the past decade. Understanding the mechanisms that control the formation of off fault damage can shed light on the processes during the seismic cycle, and the nature of fault zone development. Recent published work has identified three broad zones of damage around most faults based on the type, intensity, and extent of fracturing; Tip, Wall, and Linking damage. Although these zones are able to adequately characterise the general distribution of damage, little has been done to identify the nature of damage heterogeneity within those zones, often simplifying the distribution to fit log-normal linear decay trends. Here, we attempt to characterise the distribution of fractures that make up the wall damage around seismogenic faults. To do so, we investigate an extensive two dimensional fracture network exposed on a river cut platform along the Borrego Fault, BC, Mexico, 5m wide, and extending 20m from the fault core into the damage zone. High resolution fracture mapping of the outcrop, covering scales ranging three orders of magnitude (cm to m), has allowed for detailed observations of the 2D damage distribution within the fault damage zone. Damage profiles were obtained along several 1D transects perpendicular to the fault and micro-damage was examined from thin-sections at various locations around the outcrop for comparison. Analysis of the resulting fracture network indicates heterogeneities in damage intensity at decimetre scales resulting from a patchy distribution of high and low intensity corridors and clusters. Such patchiness may contribute to inconsistencies in damage zone widths defined along 1D transects and the observed variability of fracture densities around decay trends. How this distribution develops with fault maturity and the scaling of heterogeneities above and below the observed range will likely play a key role in understanding the evolution of fault damage, it's feedback into the seismic cycle, and impact on fluid migration in fault zones. The dataset from the Borrego Fault offers a unique opportunity to study the distribution of fault damage in-situ, and provide field observations towards improving fault zone models.

  13. A Mobile Sensor Network System for Monitoring of Unfriendly Environments.

    PubMed

    Song, Guangming; Zhou, Yaoxin; Ding, Fei; Song, Aiguo

    2008-11-14

    Observing microclimate changes is one of the most popular applications of wireless sensor networks. However, some target environments are often too dangerous or inaccessible to humans or large robots and there are many challenges for deploying and maintaining wireless sensor networks in those unfriendly environments. This paper presents a mobile sensor network system for solving this problem. The system architecture, the mobile node design, the basic behaviors and advanced network capabilities have been investigated respectively. A wheel-based robotic node architecture is proposed here that can add controlled mobility to wireless sensor networks. A testbed including some prototype nodes has also been created for validating the basic functions of the proposed mobile sensor network system. Motion performance tests have been done to get the positioning errors and power consumption model of the mobile nodes. Results of the autonomous deployment experiment show that the mobile nodes can be distributed evenly into the previously unknown environments. It provides powerful support for network deployment and maintenance and can ensure that the sensor network will work properly in unfriendly environments.

  14. Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and Navigation Support

    DTIC Science & Technology

    2014-09-30

    underwater acoustic communication technologies for autonomous distributed underwater networks , through innovative signal processing, coding, and...4. TITLE AND SUBTITLE Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and...coding: 3) OFDM modulated dynamic coded cooperation in underwater acoustic channels; 3 Localization, Networking , and Testbed: 4) On-demand

  15. State updating of a distributed hydrological model with Ensemble Kalman Filtering: Effects of updating frequency and observation network density on forecast accuracy

    NASA Astrophysics Data System (ADS)

    Rakovec, O.; Weerts, A.; Hazenberg, P.; Torfs, P.; Uijlenhoet, R.

    2012-12-01

    This paper presents a study on the optimal setup for discharge assimilation within a spatially distributed hydrological model (Rakovec et al., 2012a). The Ensemble Kalman filter (EnKF) is employed to update the grid-based distributed states of such an hourly spatially distributed version of the HBV-96 model. By using a physically based model for the routing, the time delay and attenuation are modelled more realistically. The discharge and states at a given time step are assumed to be dependent on the previous time step only (Markov property). Synthetic and real world experiments are carried out for the Upper Ourthe (1600 km2), a relatively quickly responding catchment in the Belgian Ardennes. The uncertain precipitation model forcings were obtained using a time-dependent multivariate spatial conditional simulation method (Rakovec et al., 2012b), which is further made conditional on preceding simulations. We assess the impact on the forecasted discharge of (1) various sets of the spatially distributed discharge gauges and (2) the filtering frequency. The results show that the hydrological forecast at the catchment outlet is improved by assimilating interior gauges. This augmentation of the observation vector improves the forecast more than increasing the updating frequency. In terms of the model states, the EnKF procedure is found to mainly change the pdfs of the two routing model storages, even when the uncertainty in the discharge simulations is smaller than the defined observation uncertainty. Rakovec, O., Weerts, A. H., Hazenberg, P., Torfs, P. J. J. F., and Uijlenhoet, R.: State updating of a distributed hydrological model with Ensemble Kalman Filtering: effects of updating frequency and observation network density on forecast accuracy, Hydrol. Earth Syst. Sci. Discuss., 9, 3961-3999, doi:10.5194/hessd-9-3961-2012, 2012a. Rakovec, O., Hazenberg, P., Torfs, P. J. J. F., Weerts, A. H., and Uijlenhoet, R.: Generating spatial precipitation ensembles: impact of temporal correlation structure, Hydrol. Earth Syst. Sci. Discuss., 9, 3087-3127, doi:10.5194/hessd-9-3087-2012, 2012b.

  16. Bias correction of temperature produced by the Community Climate System Model using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Moghim, S.; Hsu, K.; Bras, R. L.

    2013-12-01

    General Circulation Models (GCMs) are used to predict circulation and energy transfers between the atmosphere and the land. It is known that these models produce biased results that will have impact on their uses. This work proposes a new method for bias correction: the equidistant cumulative distribution function-artificial neural network (EDCDFANN) procedure. The method uses artificial neural networks (ANNs) as a surrogate model to estimate bias-corrected temperature, given an identification of the system derived from GCM models output variables. A two-layer feed forward neural network is trained with observations during a historical period and then the adjusted network can be used to predict bias-corrected temperature for future periods. To capture the extreme values this method is combined with the equidistant CDF matching method (EDCDF, Li et al. 2010). The proposed method is tested with the Community Climate System Model (CCSM3) outputs using air and skin temperature, specific humidity, shortwave and longwave radiation as inputs to the ANN. This method decreases the mean square error and increases the spatial correlation between the modeled temperature and the observed one. The results indicate the EDCDFANN has potential to remove the biases of the model outputs.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Ching-Yen; Shepelev, Aleksey; Qiu, Charlie

    With an increased number of Electric Vehicles (EVs) on the roads, charging infrastructure is gaining an ever-more important role in simultaneously meeting the needs of the local distribution grid and of EV users. This paper proposes a mesh network RFID system for user identification and charging authorization as part of a smart charging infrastructure providing charge monitoring and control. The Zigbee-based mesh network RFID provides a cost-efficient solution to identify and authorize vehicles for charging and would allow EV charging to be conducted effectively while observing grid constraints and meeting the needs of EV drivers

  18. A deterministic width function model

    NASA Astrophysics Data System (ADS)

    Puente, C. E.; Sivakumar, B.

    Use of a deterministic fractal-multifractal (FM) geometric method to model width functions of natural river networks, as derived distributions of simple multifractal measures via fractal interpolating functions, is reported. It is first demonstrated that the FM procedure may be used to simulate natural width functions, preserving their most relevant features like their overall shape and texture and their observed power-law scaling on their power spectra. It is then shown, via two natural river networks (Racoon and Brushy creeks in the United States), that the FM approach may also be used to closely approximate existing width functions.

  19. Network based approaches reveal clustering in protein point patterns

    NASA Astrophysics Data System (ADS)

    Parker, Joshua; Barr, Valarie; Aldridge, Joshua; Samelson, Lawrence E.; Losert, Wolfgang

    2014-03-01

    Recent advances in super-resolution imaging have allowed for the sub-diffraction measurement of the spatial location of proteins on the surfaces of T-cells. The challenge is to connect these complex point patterns to the internal processes and interactions, both protein-protein and protein-membrane. We begin analyzing these patterns by forming a geometric network amongst the proteins and looking at network measures, such the degree distribution. This allows us to compare experimentally observed patterns to models. Specifically, we find that the experimental patterns differ from heterogeneous Poisson processes, highlighting an internal clustering structure. Further work will be to compare our results to simulated protein-protein interactions to determine clustering mechanisms.

  20. Tsunami simulation method initiated from waveforms observed by ocean bottom pressure sensors for real-time tsunami forecast; Applied for 2011 Tohoku Tsunami

    NASA Astrophysics Data System (ADS)

    Tanioka, Yuichiro

    2017-04-01

    After tsunami disaster due to the 2011 Tohoku-oki great earthquake, improvement of the tsunami forecast has been an urgent issue in Japan. National Institute of Disaster Prevention is installing a cable network system of earthquake and tsunami observation (S-NET) at the ocean bottom along the Japan and Kurile trench. This cable system includes 125 pressure sensors (tsunami meters) which are separated by 30 km. Along the Nankai trough, JAMSTEC already installed and operated the cable network system of seismometers and pressure sensors (DONET and DONET2). Those systems are the most dense observation network systems on top of source areas of great underthrust earthquakes in the world. Real-time tsunami forecast has depended on estimation of earthquake parameters, such as epicenter, depth, and magnitude of earthquakes. Recently, tsunami forecast method has been developed using the estimation of tsunami source from tsunami waveforms observed at the ocean bottom pressure sensors. However, when we have many pressure sensors separated by 30km on top of the source area, we do not need to estimate the tsunami source or earthquake source to compute tsunami. Instead, we can initiate a tsunami simulation from those dense tsunami observed data. Observed tsunami height differences with a time interval at the ocean bottom pressure sensors separated by 30 km were used to estimate tsunami height distribution at a particular time. In our new method, tsunami numerical simulation was initiated from those estimated tsunami height distribution. In this paper, the above method is improved and applied for the tsunami generated by the 2011 Tohoku-oki great earthquake. Tsunami source model of the 2011 Tohoku-oki great earthquake estimated using observed tsunami waveforms, coseimic deformation observed by GPS and ocean bottom sensors by Gusman et al. (2012) is used in this study. The ocean surface deformation is computed from the source model and used as an initial condition of tsunami simulation. By assuming that this computed tsunami is a real tsunami and observed at ocean bottom sensors, new tsunami simulation is carried out using the above method. The station distribution (each station is separated by 15 min., about 30 km) observed tsunami waveforms which were actually computed from the source model. Tsunami height distributions are estimated from the above method at 40, 80, and 120 seconds after the origin time of the earthquake. The Near-field Tsunami Inundation forecast method (Gusman et al. 2014) was used to estimate the tsunami inundation along the Sanriku coast. The result shows that the observed tsunami inundation was well explained by those estimated inundation. This also shows that it takes about 10 minutes to estimate the tsunami inundation from the origin time of the earthquake. This new method developed in this paper is very effective for a real-time tsunami forecast.

  1. Distributed Processing System for Restoration of Electric Power Distribution Network Using Two-Layered Contract Net Protocol

    NASA Astrophysics Data System (ADS)

    Kodama, Yu; Hamagami, Tomoki

    Distributed processing system for restoration of electric power distribution network using two-layered CNP is proposed. The goal of this study is to develop the restoration system which adjusts to the future power network with distributed generators. The state of the art of this study is that the two-layered CNP is applied for the distributed computing environment in practical use. The two-layered CNP has two classes of agents, named field agent and operating agent in the network. In order to avoid conflicts of tasks, operating agent controls privilege for managers to send the task announcement messages in CNP. This technique realizes the coordination between agents which work asynchronously in parallel with others. Moreover, this study implements the distributed processing system using a de-fact standard multi-agent framework, JADE(Java Agent DEvelopment framework). This study conducts the simulation experiments of power distribution network restoration and compares the proposed system with the previous system. We confirmed the results show effectiveness of the proposed system.

  2. High Voltage Distribution System (HVDS) as a better system compared to Low Voltage Distribution System (LVDS) applied at Medan city power network

    NASA Astrophysics Data System (ADS)

    Dinzi, R.; Hamonangan, TS; Fahmi, F.

    2018-02-01

    In the current distribution system, a large-capacity distribution transformer supplies loads to remote locations. The use of 220/380 V network is nowadays less common compared to 20 kV network. This results in losses due to the non-optimal distribution transformer, which neglected the load location, poor consumer profile, and large power losses along the carrier. This paper discusses how high voltage distribution systems (HVDS) can be a better system used in distribution networks than the currently used distribution system (Low Voltage Distribution System, LVDS). The proposed change of the system into the new configuration is done by replacing a large-capacity distribution transformer with some smaller-capacity distribution transformers and installed them in positions that closest to the load. The use of high voltage distribution systems will result in better voltage profiles and fewer power losses. From the non-technical side, the annual savings and payback periods on high voltage distribution systems will also be the advantage.

  3. Empirical research on complex networks modeling of combat SoS based on data from real war-game, Part I: Statistical characteristics

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Kou, Yingxin; Li, Zhanwu; Xu, An; Wu, Cheng

    2018-01-01

    We build a complex networks model of combat System-of-Systems (SoS) based on empirical data from a real war-game, this model is a combination of command & control (C2) subnetwork, sensors subnetwork, influencers subnetwork and logistical support subnetwork, each subnetwork has idiographic components and statistical characteristics. The C2 subnetwork is the core of whole combat SoS, it has a hierarchical structure with no modularity, of which robustness is strong enough to maintain normal operation after any two nodes is destroyed; the sensors subnetwork and influencers subnetwork are like sense organ and limbs of whole combat SoS, they are both flat modular networks of which degree distribution obey GEV distribution and power-law distribution respectively. The communication network is the combination of all subnetworks, it is an assortative Small-World network with core-periphery structure, the Intelligence & Communication Stations/Command Center integrated with C2 nodes in the first three level act as the hub nodes in communication network, and all the fourth-level C2 nodes, sensors, influencers and logistical support nodes have communication capability, they act as the periphery nodes in communication network, its degree distribution obeys exponential distribution in the beginning, Gaussian distribution in the middle, and power-law distribution in the end, and its path length obeys GEV distribution. The betweenness centrality distribution, closeness centrality distribution and eigenvector centrality are also been analyzed to measure the vulnerability of nodes.

  4. Research on the framework and key technologies of panoramic visualization for smart distribution network

    NASA Astrophysics Data System (ADS)

    Du, Jian; Sheng, Wanxing; Lin, Tao; Lv, Guangxian

    2018-05-01

    Nowadays, the smart distribution network has made tremendous progress, and the business visualization becomes even more significant and indispensable. Based on the summarization of traditional visualization technologies and demands of smart distribution network, a panoramic visualization application is proposed in this paper. The overall architecture, integrated architecture and service architecture of panoramic visualization application is firstly presented. Then, the architecture design and main functions of panoramic visualization system are elaborated in depth. In addition, the key technologies related to the application is discussed briefly. At last, two typical visualization scenarios in smart distribution network, which are risk warning and fault self-healing, proves that the panoramic visualization application is valuable for the operation and maintenance of the distribution network.

  5. Filamentous actin organization in the unfertilized sea urchin egg cortex.

    PubMed

    Henson, J H; Begg, D A

    1988-06-01

    We have investigated the organization of filamentous actin in the cortex of unfertilized eggs of the sea urchins Strongylocentrotus purpuratus and Lytechinus variegatus. Rhodamine phalloidin and anti-actin immunofluorescent staining of isolated cortices reveal a punctate pattern of fluorescent sources. Comparison of this pattern with SEM images of microvillar morphology and distribution indicates that filamentous actin in the cortex is predominantly localized in the microvilli. Thin-section TEM and quick-freeze deep-etch ultrastructure of isolated cortices demonstrates that this microvillar-associated actin is in a novel organizational state composed of very short filaments arranged in a tight network and that these filament networks form mounds that extend beyond the plane of the plasma membrane. Actin filaments within the networks do not exhibit free ends and make end-on attachments with the membrane only within the region of the evaginating microvilli. Myosin S-1 dissociable crosslinks, 2-3 nm in diameter, are observed between network filaments and between network filaments and the membrane. A second population of long, individual actin filaments is observed in close lateral association with the plasma membrane and frequently complexes with the microvillar actin networks. The filamentous actin of the unfertilized egg cortex may participate in establishing the mechanical properties of the egg surface and may function in nucleating the assembly of cortical actin following fertilization.

  6. Connectopathy in Autism Spectrum Disorders: A Review of Evidence from Visual Evoked Potentials and Diffusion Magnetic Resonance Imaging

    PubMed Central

    Yamasaki, Takao; Maekawa, Toshihiko; Fujita, Takako; Tobimatsu, Shozo

    2017-01-01

    Individuals with autism spectrum disorder (ASD) show superior performance in processing fine details; however, they often exhibit impairments of gestalt face, global motion perception, and visual attention as well as core social deficits. Increasing evidence has suggested that social deficits in ASD arise from abnormal functional and structural connectivities between and within distributed cortical networks that are recruited during social information processing. Because the human visual system is characterized by a set of parallel, hierarchical, multistage network systems, we hypothesized that the altered connectivity of visual networks contributes to social cognition impairment in ASD. In the present review, we focused on studies of altered connectivity of visual and attention networks in ASD using visual evoked potentials (VEPs), event-related potentials (ERPs), and diffusion tensor imaging (DTI). A series of VEP, ERP, and DTI studies conducted in our laboratory have demonstrated complex alterations (impairment and enhancement) of visual and attention networks in ASD. Recent data have suggested that the atypical visual perception observed in ASD is caused by altered connectivity within parallel visual pathways and attention networks, thereby contributing to the impaired social communication observed in ASD. Therefore, we conclude that the underlying pathophysiological mechanism of ASD constitutes a “connectopathy.” PMID:29170625

  7. Theta rhythm-like bidirectional cycling dynamics of living neuronal networks in vitro.

    PubMed

    Gladkov, Arseniy; Grinchuk, Oleg; Pigareva, Yana; Mukhina, Irina; Kazantsev, Victor; Pimashkin, Alexey

    2018-01-01

    The phenomena of synchronization, rhythmogenesis and coherence observed in brain networks are believed to be a dynamic substrate for cognitive functions such as learning and memory. However, researchers are still debating whether the rhythmic activity emerges from the network morphology that developed during neurogenesis or as a result of neuronal dynamics achieved under certain conditions. In the present study, we observed self-organized spiking activity that converged to long, complex and rhythmically repeated superbursts in neural networks formed by mature hippocampal cultures with a high cellular density. The superburst lasted for tens of seconds and consisted of hundreds of short (50-100 ms) small bursts with a high spiking rate of 139.0 ± 78.6 Hz that is associated with high-frequency oscillations in the hippocampus. In turn, the bursting frequency represents a theta rhythm (11.2 ± 1.5 Hz). The distribution of spikes within the bursts was non-random, representing a set of well-defined spatio-temporal base patterns or motifs. The long superburst was classified into two types. Each type was associated with a unique direction of spike propagation and, hence, was encoded by a binary sequence with random switching between the two "functional" states. The precisely structured bidirectional rhythmic activity that developed in self-organizing cultured networks was quite similar to the activity observed in the in vivo experiments.

  8. Ocean Observatories Initiative (OOI): Status of Design, Capabilities, and Implementation

    NASA Astrophysics Data System (ADS)

    Brasseur, L. H.; Banahan, S.; Cowles, T.

    2009-05-01

    The National Science Foundation's (NSF) Ocean Observatories Initiative (OOI) will implement the construction and operation of an interactive, integrated ocean observing network. This research- driven, multi-scale network will provide the broad ocean science community with access to advanced technology to enable studies of fundamental ocean processes. The OOI will afford observations at coastal, regional, and global scales on timeframes of milliseconds to decades in support of investigations into climate variability, ocean ecosystems, biogeochemical processes, coastal ocean dynamics, circulation and mixing dynamics, fluid-rock interactions, and the sub-seafloor biosphere. The elements of the OOI include arrays of fixed and re-locatable moorings, autonomous underwater vehicles, and cabled seafloor nodes. All assets combined, the OOI network will provide data from over 45 distinct types of sensors, comprising over 800 total sensors distributed in the Pacific and Atlantic oceans. These core sensors for the OOI were determined through a formal process of science requirements development. This core sensor array will be integrated through a system-wide cyberinfrastructure allowing for remote control of instruments, adaptive sampling, and near-real time access to data. Implementation of the network will stimulate new avenues of research and the development of new infrastructure, instrumentation, and sensor technologies. The OOI is funded by the NSF and managed by the Consortium for Ocean Leadership which focuses on the science, technology, education, and outreach for an emerging network of ocean observing systems.

  9. Mesoscopic model of actin-based propulsion.

    PubMed

    Zhu, Jie; Mogilner, Alex

    2012-01-01

    Two theoretical models dominate current understanding of actin-based propulsion: microscopic polymerization ratchet model predicts that growing and writhing actin filaments generate forces and movements, while macroscopic elastic propulsion model suggests that deformation and stress of growing actin gel are responsible for the propulsion. We examine both experimentally and computationally the 2D movement of ellipsoidal beads propelled by actin tails and show that neither of the two models can explain the observed bistability of the orientation of the beads. To explain the data, we develop a 2D hybrid mesoscopic model by reconciling these two models such that individual actin filaments undergoing nucleation, elongation, attachment, detachment and capping are embedded into the boundary of a node-spring viscoelastic network representing the macroscopic actin gel. Stochastic simulations of this 'in silico' actin network show that the combined effects of the macroscopic elastic deformation and microscopic ratchets can explain the observed bistable orientation of the actin-propelled ellipsoidal beads. To test the theory further, we analyze observed distribution of the curvatures of the trajectories and show that the hybrid model's predictions fit the data. Finally, we demonstrate that the model can explain both concave-up and concave-down force-velocity relations for growing actin networks depending on the characteristic time scale and network recoil. To summarize, we propose that both microscopic polymerization ratchets and macroscopic stresses of the deformable actin network are responsible for the force and movement generation.

  10. Ensembles of Spiking Neurons with Noise Support Optimal Probabilistic Inference in a Dynamically Changing Environment

    PubMed Central

    Legenstein, Robert; Maass, Wolfgang

    2014-01-01

    It has recently been shown that networks of spiking neurons with noise can emulate simple forms of probabilistic inference through “neural sampling”, i.e., by treating spikes as samples from a probability distribution of network states that is encoded in the network. Deficiencies of the existing model are its reliance on single neurons for sampling from each random variable, and the resulting limitation in representing quickly varying probabilistic information. We show that both deficiencies can be overcome by moving to a biologically more realistic encoding of each salient random variable through the stochastic firing activity of an ensemble of neurons. The resulting model demonstrates that networks of spiking neurons with noise can easily track and carry out basic computational operations on rapidly varying probability distributions, such as the odds of getting rewarded for a specific behavior. We demonstrate the viability of this new approach towards neural coding and computation, which makes use of the inherent parallelism of generic neural circuits, by showing that this model can explain experimentally observed firing activity of cortical neurons for a variety of tasks that require rapid temporal integration of sensory information. PMID:25340749

  11. Distributed health data networks: a practical and preferred approach to multi-institutional evaluations of comparative effectiveness, safety, and quality of care.

    PubMed

    Brown, Jeffrey S; Holmes, John H; Shah, Kiran; Hall, Ken; Lazarus, Ross; Platt, Richard

    2010-06-01

    Comparative effectiveness research, medical product safety evaluation, and quality measurement will require the ability to use electronic health data held by multiple organizations. There is no consensus about whether to create regional or national combined (eg, "all payer") databases for these purposes, or distributed data networks that leave most Protected Health Information and proprietary data in the possession of the original data holders. Demonstrate functions of a distributed research network that supports research needs and also address data holders concerns about participation. Key design functions included strong local control of data uses and a centralized web-based querying interface. We implemented a pilot distributed research network and evaluated the design considerations, utility for research, and the acceptability to data holders of methods for menu-driven querying. We developed and tested a central, web-based interface with supporting network software. Specific functions assessed include query formation and distribution, query execution and review, and aggregation of results. This pilot successfully evaluated temporal trends in medication use and diagnoses at 5 separate sites, demonstrating some of the possibilities of using a distributed research network. The pilot demonstrated the potential utility of the design, which addressed the major concerns of both users and data holders. No serious obstacles were identified that would prevent development of a fully functional, scalable network. Distributed networks are capable of addressing nearly all anticipated uses of routinely collected electronic healthcare data. Distributed networks would obviate the need for centralized databases, thus avoiding numerous obstacles.

  12. GCN capabilities and status, and the incorporation of LIGO/Virgo

    NASA Astrophysics Data System (ADS)

    Barthelmy, Scott

    2016-03-01

    The Gamma-ray Coordinates Network / Transient Astronomy Network (GCN/TAN) is a single-point source for all transient astronomy notification. It collects the astrophysical transients from the missions (space-based and nearly all ground-based), puts them into a standard format, and distributes them to whomever wants to receive them. This is all done autonomously (completely autonomous within GCN/TAN, and almost always autonomously within the producer end of operations). This automation means minimal time delays (<0.1 sec within GCN for VOEvent and binary socket-based distribution methods, and typically a few sec for email-based which is dependent on the internet email protocol and the number of hops, both of which are out of the control of GCN/TAN). The LIGO-VIRGO Collaboration (LVC) Notices are now implemented in the GCN/TAN system. During the proprietary phase, the recipients must have an MoU with LVC and LVC must authorize GCN to distribute LVC Notices to each given MoU follow-up observer. In addition to Notices, there are the GCN Circulars, which are prose-style reports of follow-up observations made and results obtains. During the LVC Proprietary phase there are also the GCN LVC Circulars, which also require authorization from LVC to join the LVC Circulars.

  13. Distribution and abundance of phytobenthic communities: Implications for connectivity and ecosystem functioning in a Black Sea Marine Protected Area

    NASA Astrophysics Data System (ADS)

    Berov, Dimitar; Todorova, Valentina; Dimitrov, Lubomir; Rinde, Eli; Karamfilov, Ventzislav

    2018-01-01

    The distribution and abundance of macroalgal communities in a Marine Protected Area (MPA) along the Bulgarian Black Sea coast were mapped and quantified, with particular focus on the previously unstudied P. crispa lower-infralittoral communities on Ostrea edulis biogenic reefs. Data from high resolution geophysical substrate mapping were combined with benthic community observations from georeferenced benthic photographic surveys and sampling. Multivariate analysis identified four distinct assemblages of lower-infralittoral macroalgal communities at depths between 10 and 17 m, dominated by Phyllophora crispa, Apoglossum ruscifoluim, Zanardinia typus and Gelidium spp. Maxent software analysis showed distinct preferences of the identified communities to areas with specific ranges of depth, inclination and curvature, with P. crispa more frequently occurring on vertical oyster biogenic reef structures. By combining production rates from literature, biomass measurements and the produced habitat maps, the highest proportion of primary production and DOC release was shown for the upper infralittoral Cystoseira barbata and Cystoseira bosphorica, followed by the production of the lower-infralittoral macroalgae. The observed distribution of P. crispa within the studied MPA was related to the network of Natura 2000 maritime MPAs along the Bulgarian Black Sea coast, which indicated that the connectivity of the populations of the species within the established network is insufficient within this cell of ecosystem functioning.

  14. The concept of entropy in landscape evolution

    USGS Publications Warehouse

    Leopold, Luna Bergere; Langbein, Walter Basil

    1962-01-01

    The concept of entropy is expressed in terms of probability of various states. Entropy treats of the distribution of energy. The principle is introduced that the most probable condition exists when energy in a river system is as uniformly distributed as may be permitted by physical constraints. From these general considerations equations for the longitudinal profiles of rivers are derived that are mathematically comparable to those observed in the field. The most probable river profiles approach the condition in which the downstream rate of production of entropy per unit mass is constant. Hydraulic equations are insufficient to determine the velocity, depths, and slopes of rivers that are themselves authors of their own hydraulic geometries. A solution becomes possible by introducing the concept that the distribution of energy tends toward the most probable. This solution leads to a theoretical definition of the hydraulic geometry of river channels that agrees closely with field observations. The most probable state for certain physical systems can also be illustrated by random-walk models. Average longitudinal profiles and drainage networks were so derived and these have the properties implied by the theory. The drainage networks derived from random walks have some of the principal properties demonstrated by the Horton analysis; specifically, the logarithms of stream length and stream numbers are proportional to stream order.

  15. Human brain networks function in connectome-specific harmonic waves.

    PubMed

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-21

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call 'connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory-inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation-inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness.

  16. Effect of network topology on the evolutionary ultimatum game based on the net-profit decision

    NASA Astrophysics Data System (ADS)

    Ye, Shun-Qiang; Wang, Lu; Jones, Michael C.; Ye, Ye; Wang, Meng; Xie, Neng-Gang

    2016-04-01

    The ubiquity of altruist behavior amongst humans has long been a significant puzzle in the social sciences. Ultimatum game has proved to be a useful tool for explaining altruistic behavior among selfish individuals. In an ultimatum game where alternating roles exist, we suppose that players make their decisions based on the net profit of their own. In this paper, we specify a player's strategy with two parameters: offer level α ∈ [ 0,1) and net profit acceptance level β ∈ [ - 1,1). By Monte Carlo simulation, we analyze separately the effect of the size of the neighborhood, the small-world property and the heterogeneity of the degree distributions of the networks. Results show that compared with results observed for homogeneous networks, heterogeneous networks lead to more rational outcomes. Moreover, network structure has no effect on the evolution of kindness level, so moderate kindness is adaptable to any social groups and organizations.

  17. Traffic on complex networks: Towards understanding global statistical properties from microscopic density fluctuations

    NASA Astrophysics Data System (ADS)

    Tadić, Bosiljka; Thurner, Stefan; Rodgers, G. J.

    2004-03-01

    We study the microscopic time fluctuations of traffic load and the global statistical properties of a dense traffic of particles on scale-free cyclic graphs. For a wide range of driving rates R the traffic is stationary and the load time series exhibits antipersistence due to the regulatory role of the superstructure associated with two hub nodes in the network. We discuss how the superstructure affects the functioning of the network at high traffic density and at the jamming threshold. The degree of correlations systematically decreases with increasing traffic density and eventually disappears when approaching a jamming density Rc. Already before jamming we observe qualitative changes in the global network-load distributions and the particle queuing times. These changes are related to the occurrence of temporary crises in which the network-load increases dramatically, and then slowly falls back to a value characterizing free flow.

  18. [Effects of road construction on regional vegetation types].

    PubMed

    Liu, Shi-Liang; Liu, Qi; Wang, Cong; Yang, Jue-Jie; Deng, Li

    2013-05-01

    As a regional artificial disturbance component, road exerts great effects on vegetation types, and plays a substantial role in defining vegetation distribution to a certain extent. Aiming at the tropical rainforest degradation and artificial forest expansion in Yunnan Province of Southwest China, this paper analyzed the effects of road network extension on regional vegetation types. In the Province, different classes of roads had different effects on the vegetation types, but no obvious regularity was observed in the effects on the patch areas of different vegetation types due to the great variations of road length and affected distance. However, the vegetation patch number was more affected by lower class roads because of their wide distribution. As for different vegetation types, the vegetations on cultivated land were most affected by roads, followed by Castanopsis hystrix and Schima wallichii forests. Road network formation contributed most to the vegetation fragmentation, and there existed significant correlations between the human disturbance factors including village- and road distributions.

  19. On Prolonging Network Lifetime through Load-Similar Node Deployment in Wireless Sensor Networks

    PubMed Central

    Li, Qiao-Qin; Gong, Haigang; Liu, Ming; Yang, Mei; Zheng, Jun

    2011-01-01

    This paper is focused on the study of the energy hole problem in the Progressive Multi-hop Rotational Clustered (PMRC)-structure, a highly scalable wireless sensor network (WSN) architecture. Based on an analysis on the traffic load distribution in PMRC-based WSNs, we propose a novel load-similar node distribution strategy combined with the Minimum Overlapping Layers (MOL) scheme to address the energy hole problem in PMRC-based WSNs. In this strategy, sensor nodes are deployed in the network area according to the load distribution. That is, more nodes shall be deployed in the range where the average load is higher, and then the loads among different areas in the sensor network tend to be balanced. Simulation results demonstrate that the load-similar node distribution strategy prolongs network lifetime and reduces the average packet latency in comparison with existing nonuniform node distribution and uniform node distribution strategies. Note that, besides the PMRC structure, the analysis model and the proposed load-similar node distribution strategy are also applicable to other multi-hop WSN structures. PMID:22163809

  20. A Hierarchical Modeling for Reactive Power Optimization With Joint Transmission and Distribution Networks by Curve Fitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Tao; Li, Cheng; Huang, Can

    Here, in order to solve the reactive power optimization with joint transmission and distribution networks, a hierarchical modeling method is proposed in this paper. It allows the reactive power optimization of transmission and distribution networks to be performed separately, leading to a master–slave structure and improves traditional centralized modeling methods by alleviating the big data problem in a control center. Specifically, the transmission-distribution-network coordination issue of the hierarchical modeling method is investigated. First, a curve-fitting approach is developed to provide a cost function of the slave model for the master model, which reflects the impacts of each slave model. Second,more » the transmission and distribution networks are decoupled at feeder buses, and all the distribution networks are coordinated by the master reactive power optimization model to achieve the global optimality. Finally, numerical results on two test systems verify the effectiveness of the proposed hierarchical modeling and curve-fitting methods.« less

  1. A Hierarchical Modeling for Reactive Power Optimization With Joint Transmission and Distribution Networks by Curve Fitting

    DOE PAGES

    Ding, Tao; Li, Cheng; Huang, Can; ...

    2017-01-09

    Here, in order to solve the reactive power optimization with joint transmission and distribution networks, a hierarchical modeling method is proposed in this paper. It allows the reactive power optimization of transmission and distribution networks to be performed separately, leading to a master–slave structure and improves traditional centralized modeling methods by alleviating the big data problem in a control center. Specifically, the transmission-distribution-network coordination issue of the hierarchical modeling method is investigated. First, a curve-fitting approach is developed to provide a cost function of the slave model for the master model, which reflects the impacts of each slave model. Second,more » the transmission and distribution networks are decoupled at feeder buses, and all the distribution networks are coordinated by the master reactive power optimization model to achieve the global optimality. Finally, numerical results on two test systems verify the effectiveness of the proposed hierarchical modeling and curve-fitting methods.« less

  2. Nondeducibility-Based Analysis of Cyber-Physical Systems

    NASA Astrophysics Data System (ADS)

    Gamage, Thoshitha; McMillin, Bruce

    Controlling information flow in a cyber-physical system (CPS) is challenging because cyber domain decisions and actions manifest themselves as visible changes in the physical domain. This paper presents a nondeducibility-based observability analysis for CPSs. In many CPSs, the capacity of a low-level (LL) observer to deduce high-level (HL) actions ranges from limited to none. However, a collaborative set of observers strategically located in a network may be able to deduce all the HL actions. This paper models a distributed power electronics control device network using a simple DC circuit in order to understand the effect of multiple observers in a CPS. The analysis reveals that the number of observers required to deduce all the HL actions in a system increases linearly with the number of configurable units. A simple definition of nondeducibility based on the uniqueness of low-level projections is also presented. This definition is used to show that a system with two security domain levels could be considered “nondeducibility secure” if no unique LL projections exist.

  3. Calculating a checksum with inactive networking components in a computing system

    DOEpatents

    Aho, Michael E; Chen, Dong; Eisley, Noel A; Gooding, Thomas M; Heidelberger, Philip; Tauferner, Andrew T

    2014-12-16

    Calculating a checksum utilizing inactive networking components in a computing system, including: identifying, by a checksum distribution manager, an inactive networking component, wherein the inactive networking component includes a checksum calculation engine for computing a checksum; sending, to the inactive networking component by the checksum distribution manager, metadata describing a block of data to be transmitted by an active networking component; calculating, by the inactive networking component, a checksum for the block of data; transmitting, to the checksum distribution manager from the inactive networking component, the checksum for the block of data; and sending, by the active networking component, a data communications message that includes the block of data and the checksum for the block of data.

  4. Calculating a checksum with inactive networking components in a computing system

    DOEpatents

    Aho, Michael E; Chen, Dong; Eisley, Noel A; Gooding, Thomas M; Heidelberger, Philip; Tauferner, Andrew T

    2015-01-27

    Calculating a checksum utilizing inactive networking components in a computing system, including: identifying, by a checksum distribution manager, an inactive networking component, wherein the inactive networking component includes a checksum calculation engine for computing a checksum; sending, to the inactive networking component by the checksum distribution manager, metadata describing a block of data to be transmitted by an active networking component; calculating, by the inactive networking component, a checksum for the block of data; transmitting, to the checksum distribution manager from the inactive networking component, the checksum for the block of data; and sending, by the active networking component, a data communications message that includes the block of data and the checksum for the block of data.

  5. Complex Network Simulation of Forest Network Spatial Pattern in Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Zeng, Y.

    2017-09-01

    Forest network-construction uses for the method and model with the scale-free features of complex network theory based on random graph theory and dynamic network nodes which show a power-law distribution phenomenon. The model is suitable for ecological disturbance by larger ecological landscape Pearl River Delta consistent recovery. Remote sensing and GIS spatial data are available through the latest forest patches. A standard scale-free network node distribution model calculates the area of forest network's power-law distribution parameter value size; The recent existing forest polygons which are defined as nodes can compute the network nodes decaying index value of the network's degree distribution. The parameters of forest network are picked up then make a spatial transition to GIS real world models. Hence the connection is automatically generated by minimizing the ecological corridor by the least cost rule between the near nodes. Based on scale-free network node distribution requirements, select the number compared with less, a huge point of aggregation as a future forest planning network's main node, and put them with the existing node sequence comparison. By this theory, the forest ecological projects in the past avoid being fragmented, scattered disorderly phenomena. The previous regular forest networks can be reduced the required forest planting costs by this method. For ecological restoration of tropical and subtropical in south China areas, it will provide an effective method for the forest entering city project guidance and demonstration with other ecological networks (water, climate network, etc.) for networking a standard and base datum.

  6. LOTOS: A Proposed Lower Tropospheric Observing System from the Land Surface through the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Cohn, S. A.; Lee, W. C.; Carbone, R. E.; Oncley, S.; Brown, W. O. J.; Spuler, S.; Horst, T. W.

    2015-12-01

    Advances in sensor capabilities, but also in electronics, optics, RF communication, and off-the-grid power are enabling new measurement paradigms. NCAR's Earth Observing Laboratory (EOL) is considering new sensors, new deployment modes, and integrated observing strategies to address challenges in understanding within the atmospheric boundary layer and the underlying coupling to the land surface. Our vision is of a network of deployable observing sites, each with a suite of complementary instruments that measure surface-atmosphere exchange, and the state and evolution of the boundary layer. EOL has made good progress on distributed surface energy balance and flux stations, and on boundary layer remote sensing of wind and water vapor, all suitable for deployments of combined instruments and as network of such sites. We will present the status of the CentNet surface network development, the 449-MHz modular wind profiler, and a water vapor and temperature profiling differential absorption lidar (DIAL) under development. We will further present a concept for a test bed to better understand the value of these and other possible instruments in forming an instrument suite flexible for multiple research purposes.

  7. Mean-field equations for neuronal networks with arbitrary degree distributions.

    PubMed

    Nykamp, Duane Q; Friedman, Daniel; Shaker, Sammy; Shinn, Maxwell; Vella, Michael; Compte, Albert; Roxin, Alex

    2017-04-01

    The emergent dynamics in networks of recurrently coupled spiking neurons depends on the interplay between single-cell dynamics and network topology. Most theoretical studies on network dynamics have assumed simple topologies, such as connections that are made randomly and independently with a fixed probability (Erdös-Rényi network) (ER) or all-to-all connected networks. However, recent findings from slice experiments suggest that the actual patterns of connectivity between cortical neurons are more structured than in the ER random network. Here we explore how introducing additional higher-order statistical structure into the connectivity can affect the dynamics in neuronal networks. Specifically, we consider networks in which the number of presynaptic and postsynaptic contacts for each neuron, the degrees, are drawn from a joint degree distribution. We derive mean-field equations for a single population of homogeneous neurons and for a network of excitatory and inhibitory neurons, where the neurons can have arbitrary degree distributions. Through analysis of the mean-field equations and simulation of networks of integrate-and-fire neurons, we show that such networks have potentially much richer dynamics than an equivalent ER network. Finally, we relate the degree distributions to so-called cortical motifs.

  8. Mean-field equations for neuronal networks with arbitrary degree distributions

    NASA Astrophysics Data System (ADS)

    Nykamp, Duane Q.; Friedman, Daniel; Shaker, Sammy; Shinn, Maxwell; Vella, Michael; Compte, Albert; Roxin, Alex

    2017-04-01

    The emergent dynamics in networks of recurrently coupled spiking neurons depends on the interplay between single-cell dynamics and network topology. Most theoretical studies on network dynamics have assumed simple topologies, such as connections that are made randomly and independently with a fixed probability (Erdös-Rényi network) (ER) or all-to-all connected networks. However, recent findings from slice experiments suggest that the actual patterns of connectivity between cortical neurons are more structured than in the ER random network. Here we explore how introducing additional higher-order statistical structure into the connectivity can affect the dynamics in neuronal networks. Specifically, we consider networks in which the number of presynaptic and postsynaptic contacts for each neuron, the degrees, are drawn from a joint degree distribution. We derive mean-field equations for a single population of homogeneous neurons and for a network of excitatory and inhibitory neurons, where the neurons can have arbitrary degree distributions. Through analysis of the mean-field equations and simulation of networks of integrate-and-fire neurons, we show that such networks have potentially much richer dynamics than an equivalent ER network. Finally, we relate the degree distributions to so-called cortical motifs.

  9. Modeling complexity in engineered infrastructure system: Water distribution network as an example

    NASA Astrophysics Data System (ADS)

    Zeng, Fang; Li, Xiang; Li, Ke

    2017-02-01

    The complex topology and adaptive behavior of infrastructure systems are driven by both self-organization of the demand and rigid engineering solutions. Therefore, engineering complex systems requires a method balancing holism and reductionism. To model the growth of water distribution networks, a complex network model was developed following the combination of local optimization rules and engineering considerations. The demand node generation is dynamic and follows the scaling law of urban growth. The proposed model can generate a water distribution network (WDN) similar to reported real-world WDNs on some structural properties. Comparison with different modeling approaches indicates that a realistic demand node distribution and co-evolvement of demand node and network are important for the simulation of real complex networks. The simulation results indicate that the efficiency of water distribution networks is exponentially affected by the urban growth pattern. On the contrary, the improvement of efficiency by engineering optimization is limited and relatively insignificant. The redundancy and robustness, on another aspect, can be significantly improved through engineering methods.

  10. Benford’s Distribution in Complex Networks

    PubMed Central

    Morzy, Mikołaj; Kajdanowicz, Tomasz; Szymański, Bolesław K.

    2016-01-01

    Many collections of numbers do not have a uniform distribution of the leading digit, but conform to a very particular pattern known as Benford’s distribution. This distribution has been found in numerous areas such as accounting data, voting registers, census data, and even in natural phenomena. Recently it has been reported that Benford’s law applies to online social networks. Here we introduce a set of rigorous tests for adherence to Benford’s law and apply it to verification of this claim, extending the scope of the experiment to various complex networks and to artificial networks created by several popular generative models. Our findings are that neither for real nor for artificial networks there is sufficient evidence for common conformity of network structural properties with Benford’s distribution. We find very weak evidence suggesting that three measures, degree centrality, betweenness centrality and local clustering coefficient, could adhere to Benford’s law for scalefree networks but only for very narrow range of their parameters. PMID:27748398

  11. Playing distributed two-party quantum games on quantum networks

    NASA Astrophysics Data System (ADS)

    Liu, Bo-Yang; Dai, Hong-Yi; Zhang, Ming

    2017-12-01

    This paper investigates quantum games between two remote players on quantum networks. We propose two schemes for distributed remote quantum games: the client-server scheme based on states transmission between nodes of the network and the peer-to-peer scheme devised upon remote quantum operations. Following these schemes, we construct two designs of the distributed prisoners' dilemma game on quantum entangling networks, where concrete methods are employed for teleportation and nonlocal two-qubits unitary gates, respectively. It seems to us that the requirement for playing distributed quantum games on networks is still an open problem. We explore this problem by comparing and characterizing the two schemes from the viewpoints of network structures, quantum and classical operations, experimental realization and simplification.

  12. The Military Theater Distribution Network Design Problem

    DTIC Science & Technology

    2015-03-26

    The Military Theater Distribution Network Design Problem THESIS MARCH 2015 Robert R. Craig, MAJ, USA AFIT-ENS-MS-15-M-137 DEPARTMENT OF THE AIR FORCE...subject to copyright protection in the United States. AFIT-ENS-MS-15-M-137 THE MILITARY THEATER DISTRIBUTION NETWORK DESIGN PROBLEM THESIS Presented...B.S., M.S. MAJ, USA MARCH 2015 DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENS-MS-15-M-137 THE MILITARY THEATER

  13. Source Localization in Wireless Sensor Networks with Randomly Distributed Elements under Multipath Propagation Conditions

    DTIC Science & Technology

    2009-03-01

    IN WIRELESS SENSOR NETWORKS WITH RANDOMLY DISTRIBUTED ELEMENTS UNDER MULTIPATH PROPAGATION CONDITIONS by Georgios Tsivgoulis March 2009...COVERED Engineer’s Thesis 4. TITLE Source Localization in Wireless Sensor Networks with Randomly Distributed Elements under Multipath Propagation...the non-line-of-sight information. 15. NUMBER OF PAGES 111 14. SUBJECT TERMS Wireless Sensor Network , Direction of Arrival, DOA, Random

  14. Low-cost, high-density sensor network for urban emission monitoring: BEACO2N

    NASA Astrophysics Data System (ADS)

    Kim, J.; Shusterman, A.; Lieschke, K.; Newman, C.; Cohen, R. C.

    2017-12-01

    In urban environments, air quality is spatially and temporally heterogeneous as diverse emission sources create a high degree of variability even at the neighborhood scale. Conventional air quality monitoring relies on continuous measurements with limited spatial resolution or passive sampling with high-density and low temporal resolution. Either approach averages the air quality information over space or time and hinders our attempts to understand emissions, chemistry, and human exposure in the near-field of emission sources. To better capture the true spatio-temporal heterogeneity of urban conditions, we have deployed a low-cost, high-density air quality monitoring network in San Francisco Bay Area distributed at 2km horizontal spacing. The BErkeley Atmospheric CO2 Observation Network (BEACO2N) consists of approximately 50 sensor nodes, measuring CO2, CO, NO, NO2, O­3, and aerosol. Here we describe field-based calibration approaches that are consistent with the low-cost strategy of the monitoring network. Observations that allow inference of emission factors and identification of specific local emission sources will also be presented.

  15. Degree and wealth distribution in a network induced by wealth

    NASA Astrophysics Data System (ADS)

    Lee, Gyemin; Kim, Gwang Il

    2007-09-01

    A network induced by wealth is a social network model in which wealth induces individuals to participate as nodes, and every node in the network produces and accumulates wealth utilizing its links. More specifically, at every time step a new node is added to the network, and a link is created between one of the existing nodes and the new node. Innate wealth-producing ability is randomly assigned to every new node, and the node to be connected to the new node is chosen randomly, with odds proportional to the accumulated wealth of each existing node. Analyzing this network using the mean value and continuous flow approaches, we derive a relation between the conditional expectations of the degree and the accumulated wealth of each node. From this relation, we show that the degree distribution of the network induced by wealth is scale-free. We also show that the wealth distribution has a power-law tail and satisfies the 80/20 rule. We also show that, over the whole range, the cumulative wealth distribution exhibits the same topological characteristics as the wealth distributions of several networks based on the Bouchaud-Mèzard model, even though the mechanism for producing wealth is quite different in our model. Further, we show that the cumulative wealth distribution for the poor and middle class seems likely to follow by a log-normal distribution, while for the richest, the cumulative wealth distribution has a power-law behavior.

  16. Dirichlet Process Gaussian-mixture model: An application to localizing coalescing binary neutron stars with gravitational-wave observations

    NASA Astrophysics Data System (ADS)

    Del Pozzo, W.; Berry, C. P. L.; Ghosh, A.; Haines, T. S. F.; Singer, L. P.; Vecchio, A.

    2018-06-01

    We reconstruct posterior distributions for the position (sky area and distance) of a simulated set of binary neutron-star gravitational-waves signals observed with Advanced LIGO and Advanced Virgo. We use a Dirichlet Process Gaussian-mixture model, a fully Bayesian non-parametric method that can be used to estimate probability density functions with a flexible set of assumptions. The ability to reliably reconstruct the source position is important for multimessenger astronomy, as recently demonstrated with GW170817. We show that for detector networks comparable to the early operation of Advanced LIGO and Advanced Virgo, typical localization volumes are ˜104-105 Mpc3 corresponding to ˜102-103 potential host galaxies. The localization volume is a strong function of the network signal-to-noise ratio, scaling roughly ∝ϱnet-6. Fractional localizations improve with the addition of further detectors to the network. Our Dirichlet Process Gaussian-mixture model can be adopted for localizing events detected during future gravitational-wave observing runs, and used to facilitate prompt multimessenger follow-up.

  17. Results and evaluation of a pilot primary monitoring network, San Francisco Bay, California, 1978

    USGS Publications Warehouse

    Bradford, W.L.; Iwatsubo, R.T.

    1980-01-01

    A primary monitoring network of 12 stations, with measurements at 1-meter depth intervals every 2 weeks during periods of high inflow from the Sacramento-San Joaquin River delta, and every 4-6 weeks during seasonal low delta inflows, appears adequate to observe major changes in ambient water quality in San Francisco Bay. A 1-year study tested the network operation and determined that analysis of the data could demonstrate the major changes in salinity, temperature, and light-attenuation distributions known to occur, based on earlier research, in response to variations of delta inflow and to other physical processes. Observations of eddies at two stations, of the influence of water from a river flooding in the extreme south bay, and of difference in salinity and temperature laterally across the entrance to the south bay are all new but are consistent with existing models. The pH, dissolved oxygen, and light-attenuation measurements, while adequate to observe small-scale vertical variations, are not sufficiently sensitive to detect the effects of phytoplankton blooms. (USGS)

  18. IEEE 342 Node Low Voltage Networked Test System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Kevin P.; Phanivong, Phillippe K.; Lacroix, Jean-Sebastian

    The IEEE Distribution Test Feeders provide a benchmark for new algorithms to the distribution analyses community. The low voltage network test feeder represents a moderate size urban system that is unbalanced and highly networked. This is the first distribution test feeder developed by the IEEE that contains unbalanced networked components. The 342 node Low Voltage Networked Test System includes many elements that may be found in a networked system: multiple 13.2kV primary feeders, network protectors, a 120/208V grid network, and multiple 277/480V spot networks. This paper presents a brief review of the history of low voltage networks and how theymore » evolved into the modern systems. This paper will then present a description of the 342 Node IEEE Low Voltage Network Test System and power flow results.« less

  19. On the spatial distribution of decameter‒scale subauroral ionospheric irregularities observed by SuperDARN radars

    NASA Astrophysics Data System (ADS)

    Larquier, S.; Ponomarenko, P.; Ribeiro, A. J.; Ruohoniemi, J. M.; Baker, J. B. H.; Sterne, K. T.; Lester, M.

    2013-08-01

    The midlatitude Super Dual Auroral Radar Network (SuperDARN) radars regularly observe nighttime low‒velocity Sub‒Auroral Ionospheric Scatter (SAIS) from decameter‒scale ionospheric density irregularities during quiet geomagnetic conditions. To establish the origin of the density irregularities responsible for low‒velocity SAIS, it is necessary to distinguish between the effects of high frequency (HF) propagation and irregularity occurrence itself on the observed backscatter distribution. We compare range, azimuth, and elevation data from the Blackstone SuperDARN radar with modeling results from ray tracing coupled with the International Reference Ionosphere assuming a uniform irregularity distribution. The observed and modeled distributions are shown to be very similar. The spatial distribution of backscattering is consistent with the requirement that HF rays propagate nearly perpendicular to the geomagnetic field lines (aspect angle ≤1°). For the first time, the irregularities responsible for low‒velocity SAIS are determined to extend between 200 and 300 km altitude, validating previous assumptions that low‒velocity SAIS is an F‒region phenomenon. We find that the limited spatial extent of this category of ionospheric backscatter within SuperDARN radars' fields‒of‒view is a consequence of HF propagation effects and the finite vertical extent of the scattering irregularities. We conclude that the density irregularities responsible for low‒velocity SAIS are widely distributed horizontally within the midlatitude ionosphere but are confined to the bottom‒side F‒region.

  20. Dual-band beacon experiment over Southeast Asia for ionospheric irregularity analysis

    NASA Astrophysics Data System (ADS)

    Watthanasangmechai, K.; Yamamoto, M.; Saito, A.; Saito, S.; Maruyama, T.; Tsugawa, T.; Nishioka, M.

    2013-12-01

    An experiment of dual-band beacon over Southeast Asia was started in March 2012 in order to capture and analyze ionospheric irregularities in equatorial region. Five GNU Radio Beacon Receivers (GRBRs) were aligned along 100 degree geographic longitude. The distances between the stations reach more than 500 km. The field of view of this observational network covers +/- 20 degree geomagnetic latitude including the geomagnetic equator. To capture ionospheric irregularities, the absolute TEC estimation technique was developed. The two-station method (Leitinger et al., 1975) is generally accepted as a suitable method to estimate TEC offsets of dual-band beacon experiment. However, the distances between the stations directly affect on the robustness of the technique. In Southeast Asia, the observational network is too sparse to attain a benefit of the classic two-station method. Moreover, the least-squares approch used in the two-station method tries too much to adjust the small scales of the TEC distribution which are the local minima. We thus propose a new technique to estimate the TEC offsets with the supporting data from absolute GPS-TEC from local GPS receivers and the ionospheric height from local ionosondes. The key of the proposed technique is to utilize the brute-force technique with weighting function to find the TEC offset set that yields a global minimum of RMSE in whole parameter space. The weight is not necessary when the TEC distribution is smooth, while it significantly improves the TEC estimation during the ESF events. As a result, the latitudinal TEC shows double-hump distribution because of the Equatorial Ionization Anomaly (EIA). In additions, the 100km-scale fluctuations from an Equatorial Spread F (ESF) are captured at night time in equinox seasons. The plausible linkage of the meridional wind with triggering of ESF is under invatigating and will be presented. The proposed method is successful to estimate the latitudinal TEC distribution from dual-band frequency beacon data for the sparse observational network in Southeast Asia which may be useful for other equatorial sectors like Affrican region as well.

  1. Distributed Network and Multiprocessing Minicomputer State-of-the-Art Capabilities.

    ERIC Educational Resources Information Center

    Theis, Douglas J.

    An examination of the capabilities of minicomputers and midicomputers now on the market reveals two basic items which users should evaluate when selecting computers for their own applications: distributed networking systems and multiprocessing architectures. Variables which should be considered in evaluating a distributed networking system…

  2. NASA's Next Generation Space Geodesy Program

    NASA Technical Reports Server (NTRS)

    Pearlman, M. R.; Frey, H. V.; Gross, R. S.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry J. F.; Merkowitz, S. M.; Noll, C. E.; Pavilis, E. C.; hide

    2012-01-01

    Requirements for the ITRF have increased dramatically since the 1980s. The most stringent requirement comes from critical sea level monitoring programs: a global accuracy of 1.0 mm, and 0.1mm/yr stability, a factor of 10 to 20 beyond current capability. Other requirements for the ITRF coming from ice mass change, ground motion, and mass transport studies are similar. Current and future satellite missions will have ever-increasing measurement capability and will lead to increasingly sophisticated models of these and other changes in the Earth system. Ground space geodesy networks with enhanced measurement capability will be essential to meeting the ITRF requirements and properly interpreting the satellite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation of the observed geophysical signals. NASA has embarked on a Space Geodesy Program with a long-range goal to build, deploy and operate a next generation NASA Space Geodetic Network (SGN). The plan is to build integrated, multi-technique next-generation space geodetic observing systems as the core contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Phase 1 of this project has been funded to (1) Establish and demonstrate a next-generation prototype integrated Space Geodetic Station at Goddard s Geophysical and Astronomical Observatory (GGAO), including next-generation SLR and VLBI systems along with modern GNSS and DORIS; (2) Complete ongoing Network Design Studies that describe the appropriate number and distribution of next-generation Space Geodetic Stations for an improved global network; (3) Upgrade analysis capability to handle the next-generation data; (4) Implement a modern survey system to measure inter-technique vectors for co-location; and (5) Develop an Implementation Plan to build, deploy and operate a next-generation integrated NASA SGN that will serve as NASA s contribution to the international global geodetic network. An envisioned Phase 2 (which is not currently funded) would include the replication of up to ten such stations to be deployed either as integrated units or as a complement to already in-place components provided by other organizations. This talk will give an update on the activities underway and the plans for completion.

  3. NASA's Next Generation Space Geodesy Program

    NASA Technical Reports Server (NTRS)

    Merkowitz, S. M.; Desai, S. D.; Gross, R. S.; Hillard, L. M.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    Requirements for the ITRF have increased dramatically since the 1980s. The most stringent requirement comes from critical sea level monitoring programs: a global accuracy of 1.0 mm, and 0.1mm/yr stability, a factor of 10 to 20 beyond current capability. Other requirements for the ITRF coming from ice mass change, ground motion, and mass transport studies are similar. Current and future satellite missions will have ever-increasing measurement capability and will lead to increasingly sophisticated models of these and other changes in the Earth system. Ground space geodesy networks with enhanced measurement capability will be essential to meeting the ITRF requirements and properly interpreting the satellite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation of the observed geophysical signals. NASA has embarked on a Space Geodesy Program with a long-range goal to build, deploy and operate a next generation NASA Space Geodetic Network (SGN). The plan is to build integrated, multi-technique next-generation space geodetic observing systems as the core contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Phase 1 of this project has been funded to (1) Establish and demonstrate a next-generation prototype integrated Space Geodetic Station at Goddard's Geophysical and Astronomical Observatory (GGAO), including next-generation SLR and VLBI systems along with modern GNSS and DORIS; (2) Complete ongoing Network Design Studies that describe the appropriate number and distribution of next-generation Space Geodetic Stations for an improved global network; (3) Upgrade analysis capability to handle the next-generation data; (4) Implement a modern survey system to measure inter-technique vectors for co-location; and (5) Develop an Implementation Plan to build, deploy and operate a next-generation integrated NASA SGN that will serve as NASA's contribution to the international global geodetic network. An envisioned Phase 2 (which is not currently funded) would include the replication of up to ten such stations to be deployed either as integrated units or as a complement to already in-place components provided by other organizations. This talk will give an update on the activities underway and the plans for completion.

  4. Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: a resting-state functional MRI study.

    PubMed

    Liang, Xia; Wang, Jinhui; Yan, Chaogan; Shu, Ni; Xu, Ke; Gong, Gaolang; He, Yong

    2012-01-01

    Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI) has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not been systematically examined. Here, we investigated the influences of correlation metric choice (Pearson's correlation versus partial correlation), global signal presence (regressed or not) and frequency band selection [slow-5 (0.01-0.027 Hz) versus slow-4 (0.027-0.073 Hz)] on the topological properties of both binary and weighted brain networks derived from them, and we employed test-retest (TRT) analyses for further guidance on how to choose the "best" network modeling strategy from the reliability perspective. Our results show significant differences in global network metrics associated with both correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks derived from Pearson's correlation versus partial correlation. TRT analysis revealed that the reliability of both global and local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed for Pearson's-correlation-based brain networks without global signal removal (WOGR-PEAR). The nodal reliability exhibited a spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT reliability in Pearson's-correlation-based brain networks. Moreover, we found that there were significant frequency-related differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027-0.073 Hz band exhibited greater reliability than those in the 0.01-0.027 Hz band. Taken together, our results provide direct evidence regarding the influences of correlation metrics and specific preprocessing choices on both the global and nodal topological properties of functional brain networks. This study also has important implications for how to choose reliable analytical schemes in brain network studies.

  5. Distributed controller clustering in software defined networks

    PubMed Central

    Gani, Abdullah; Akhunzada, Adnan; Talebian, Hamid; Choo, Kim-Kwang Raymond

    2017-01-01

    Software Defined Networking (SDN) is an emerging promising paradigm for network management because of its centralized network intelligence. However, the centralized control architecture of the software-defined networks (SDNs) brings novel challenges of reliability, scalability, fault tolerance and interoperability. In this paper, we proposed a novel clustered distributed controller architecture in the real setting of SDNs. The distributed cluster implementation comprises of multiple popular SDN controllers. The proposed mechanism is evaluated using a real world network topology running on top of an emulated SDN environment. The result shows that the proposed distributed controller clustering mechanism is able to significantly reduce the average latency from 8.1% to 1.6%, the packet loss from 5.22% to 4.15%, compared to distributed controller without clustering running on HP Virtual Application Network (VAN) SDN and Open Network Operating System (ONOS) controllers respectively. Moreover, proposed method also shows reasonable CPU utilization results. Furthermore, the proposed mechanism makes possible to handle unexpected load fluctuations while maintaining a continuous network operation, even when there is a controller failure. The paper is a potential contribution stepping towards addressing the issues of reliability, scalability, fault tolerance, and inter-operability. PMID:28384312

  6. Globalizing Lessons Learned from Regional-scale Observatories

    NASA Astrophysics Data System (ADS)

    Glenn, S. M.

    2016-02-01

    The Mid Atlantic Regional Association Coastal Ocean Observing System (MARACOOS) has accumulated a decade of experience designing, building and operating a Regional Coastal Ocean Observing System for the U.S. Integrated Ocean Observing System (IOOS). MARACOOS serves societal goals and supports scientific discovery at the scale of a Large Marine Ecosystem (LME). Societal themes include maritime safety, ecosystem decision support, coastal inundation, water quality and offshore energy. Scientific results that feed back on societal goals with better products include improved understanding of seasonal transport pathways and their impact on phytoplankton blooms and hypoxia, seasonal evolution of the subsurface Mid Atlantic Cold Pool and its impact on fisheries, biogeochemical transformations in coastal plumes, coastal ocean evolution and impact on hurricane intensities, and storm sediment transport pathways. As the global ocean observing requirements grow to support additional societal needs for information on fisheries and aquaculture, ocean acidification and deoxygenation, water quality and offshore development, global observing will necessarily evolve to include more coastal observations and forecast models at the scale of the world's many LMEs. Here we describe our efforts to share lessons learned between the observatory operators at the regional-scale of the LMEs. Current collaborators are spread across Europe, and also include Korea, Indonesia, Australia, Brazil and South Africa. Specific examples include the development of a world standard QA/QC approach for HF Radar data that will foster the sharing of data between countries, basin-scale underwater glider missions between internationally-distributed glider ports to developed a shared understanding of operations and an ongoing evaluation of the global ocean models in which the regional models for the LME will be nested, and joint training programs to develop the distributed teams of scientists and technicians required to support the global network. Globalization includes the development of international networks to coordinate activities, such as the Global HF Radar network supported by GEO, the global Everyone's Glider Organization supported by WMO and IOC, and the need for professional training supported by MTS.

  7. NEON terrestrial field observations: designing continental scale, standardized sampling

    Treesearch

    R. H. Kao; C.M. Gibson; R. E. Gallery; C. L. Meier; D. T. Barnett; K. M. Docherty; K. K. Blevins; P. D. Travers; E. Azuaje; Y. P. Springer; K. M. Thibault; V. J. McKenzie; M. Keller; L. F. Alves; E. L. S. Hinckley; J. Parnell; D. Schimel

    2012-01-01

    Rapid changes in climate and land use and the resulting shifts in species distributions and ecosystem functions have motivated the development of the National Ecological Observatory Network (NEON). Integrating across spatial scales from ground sampling to remote sensing, NEON will provide data for users to address ecological responses to changes in climate, land use,...

  8. Structured networks support sparse traveling waves in rodent somatosensory cortex.

    PubMed

    Moldakarimov, Samat; Bazhenov, Maxim; Feldman, Daniel E; Sejnowski, Terrence J

    2018-05-15

    Neurons responding to different whiskers are spatially intermixed in the superficial layer 2/3 (L2/3) of the rodent barrel cortex, where a single whisker deflection activates a sparse, distributed neuronal population that spans multiple cortical columns. How the superficial layer of the rodent barrel cortex is organized to support such distributed sensory representations is not clear. In a computer model, we tested the hypothesis that sensory representations in L2/3 of the rodent barrel cortex are formed by activity propagation horizontally within L2/3 from a site of initial activation. The model explained the observed properties of L2/3 neurons, including the low average response probability in the majority of responding L2/3 neurons, and the existence of a small subset of reliably responding L2/3 neurons. Sparsely propagating traveling waves similar to those observed in L2/3 of the rodent barrel cortex occurred in the model only when a subnetwork of strongly connected neurons was immersed in a much larger network of weakly connected neurons.

  9. A data delivery system for IMOS, the Australian Integrated Marine Observing System

    NASA Astrophysics Data System (ADS)

    Proctor, R.; Roberts, K.; Ward, B. J.

    2010-09-01

    The Integrated Marine Observing System (IMOS, www.imos.org.au), an AUD 150 m 7-year project (2007-2013), is a distributed set of equipment and data-information services which, among many applications, collectively contribute to meeting the needs of marine climate research in Australia. The observing system provides data in the open oceans around Australia out to a few thousand kilometres as well as the coastal oceans through 11 facilities which effectively observe and measure the 4-dimensional ocean variability, and the physical and biological response of coastal and shelf seas around Australia. Through a national science rationale IMOS is organized as five regional nodes (Western Australia - WAIMOS, South Australian - SAIMOS, Tasmania - TASIMOS, New SouthWales - NSWIMOS and Queensland - QIMOS) surrounded by an oceanic node (Blue Water and Climate). Operationally IMOS is organized as 11 facilities (Argo Australia, Ships of Opportunity, Southern Ocean Automated Time Series Observations, Australian National Facility for Ocean Gliders, Autonomous Underwater Vehicle Facility, Australian National Mooring Network, Australian Coastal Ocean Radar Network, Australian Acoustic Tagging and Monitoring System, Facility for Automated Intelligent Monitoring of Marine Systems, eMarine Information Infrastructure and Satellite Remote Sensing) delivering data. IMOS data is freely available to the public. The data, a combination of near real-time and delayed mode, are made available to researchers through the electronic Marine Information Infrastructure (eMII). eMII utilises the Australian Academic Research Network (AARNET) to support a distributed database on OPeNDAP/THREDDS servers hosted by regional computing centres. IMOS instruments are described through the OGC Specification SensorML and where-ever possible data is in CF compliant netCDF format. Metadata, conforming to standard ISO 19115, is automatically harvested from the netCDF files and the metadata records catalogued in the OGC GeoNetwork Metadata Entry and Search Tool (MEST). Data discovery, access and download occur via web services through the IMOS Ocean Portal (http://imos.aodn.org.au) and tools for the display and integration of near real-time data are in development.

  10. Characterizing the topology of probabilistic biological networks.

    PubMed

    Todor, Andrei; Dobra, Alin; Kahveci, Tamer

    2013-01-01

    Biological interactions are often uncertain events, that may or may not take place with some probability. This uncertainty leads to a massive number of alternative interaction topologies for each such network. The existing studies analyze the degree distribution of biological networks by assuming that all the given interactions take place under all circumstances. This strong and often incorrect assumption can lead to misleading results. In this paper, we address this problem and develop a sound mathematical basis to characterize networks in the presence of uncertain interactions. Using our mathematical representation, we develop a method that can accurately describe the degree distribution of such networks. We also take one more step and extend our method to accurately compute the joint-degree distributions of node pairs connected by edges. The number of possible network topologies grows exponentially with the number of uncertain interactions. However, the mathematical model we develop allows us to compute these degree distributions in polynomial time in the number of interactions. Our method works quickly even for entire protein-protein interaction (PPI) networks. It also helps us find an adequate mathematical model using MLE. We perform a comparative study of node-degree and joint-degree distributions in two types of biological networks: the classical deterministic networks and the more flexible probabilistic networks. Our results confirm that power-law and log-normal models best describe degree distributions for both probabilistic and deterministic networks. Moreover, the inverse correlation of degrees of neighboring nodes shows that, in probabilistic networks, nodes with large number of interactions prefer to interact with those with small number of interactions more frequently than expected. We also show that probabilistic networks are more robust for node-degree distribution computation than the deterministic ones. all the data sets used, the software implemented and the alignments found in this paper are available at http://bioinformatics.cise.ufl.edu/projects/probNet/.

  11. Multi-scale modularity and motif distributional effect in metabolic networks.

    PubMed

    Gao, Shang; Chen, Alan; Rahmani, Ali; Zeng, Jia; Tan, Mehmet; Alhajj, Reda; Rokne, Jon; Demetrick, Douglas; Wei, Xiaohui

    2016-01-01

    Metabolism is a set of fundamental processes that play important roles in a plethora of biological and medical contexts. It is understood that the topological information of reconstructed metabolic networks, such as modular organization, has crucial implications on biological functions. Recent interpretations of modularity in network settings provide a view of multiple network partitions induced by different resolution parameters. Here we ask the question: How do multiple network partitions affect the organization of metabolic networks? Since network motifs are often interpreted as the super families of evolved units, we further investigate their impact under multiple network partitions and investigate how the distribution of network motifs influences the organization of metabolic networks. We studied Homo sapiens, Saccharomyces cerevisiae and Escherichia coli metabolic networks; we analyzed the relationship between different community structures and motif distribution patterns. Further, we quantified the degree to which motifs participate in the modular organization of metabolic networks.

  12. Rapid self-organised initiation of ad hoc sensor networks close above the percolation threshold

    NASA Astrophysics Data System (ADS)

    Korsnes, Reinert

    2010-07-01

    This work shows potentials for rapid self-organisation of sensor networks where nodes collaborate to relay messages to a common data collecting unit (sink node). The study problem is, in the sense of graph theory, to find a shortest path tree spanning a weighted graph. This is a well-studied problem where for example Dijkstra’s algorithm provides a solution for non-negative edge weights. The present contribution shows by simulation examples that simple modifications of known distributed approaches here can provide significant improvements in performance. Phase transition phenomena, which are known to take place in networks close to percolation thresholds, may explain these observations. An initial method, which here serves as reference, assumes the sink node starts organisation of the network (tree) by transmitting a control message advertising its availability for its neighbours. These neighbours then advertise their current cost estimate for routing a message to the sink. A node which in this way receives a message implying an improved route to the sink, advertises its new finding and remembers which neighbouring node the message came from. This activity proceeds until there are no more improvements to advertise to neighbours. The result is a tree network for cost effective transmission of messages to the sink (root). This distributed approach has potential for simple improvements which are of interest when minimisation of storage and communication of network information are a concern. Fast organisation of the network takes place when the number k of connections for each node ( degree) is close above its critical value for global network percolation and at the same time there is a threshold for the nodes to decide to advertise network route updates.

  13. MaxEnt analysis of a water distribution network in Canberra, ACT, Australia

    NASA Astrophysics Data System (ADS)

    Waldrip, Steven H.; Niven, Robert K.; Abel, Markus; Schlegel, Michael; Noack, Bernd R.

    2015-01-01

    A maximum entropy (MaxEnt) method is developed to infer the state of a pipe flow network, for situations in which there is insufficient information to form a closed equation set. This approach substantially extends existing deterministic methods for the analysis of engineered flow networks (e.g. Newton's method or the Hardy Cross scheme). The network is represented as an undirected graph structure, in which the uncertainty is represented by a continuous relative entropy on the space of internal and external flow rates. The head losses (potential differences) on the network are treated as dependent variables, using specified pipe-flow resistance functions. The entropy is maximised subject to "observable" constraints on the mean values of certain flow rates and/or potential differences, and also "physical" constraints arising from the frictional properties of each pipe and from Kirchhoff's nodal and loop laws. A numerical method is developed in Matlab for solution of the integral equation system, based on multidimensional quadrature. Several nonlinear resistance functions (e.g. power-law and Colebrook) are investigated, necessitating numerical solution of the implicit Lagrangian by a double iteration scheme. The method is applied to a 1123-node, 1140-pipe water distribution network for the suburb of Torrens in the Australian Capital Territory, Australia, using network data supplied by water authority ACTEW Corporation Limited. A number of different assumptions are explored, including various network geometric representations, prior probabilities and constraint settings, yielding useful predictions of network demand and performance. We also propose this methodology be used in conjunction with in-flow monitoring systems, to obtain better inferences of user consumption without large investments in monitoring equipment and maintenance.

  14. Comparison between global financial crisis and local stock disaster on top of Chinese stock network

    NASA Astrophysics Data System (ADS)

    Xia, Lisi; You, Daming; Jiang, Xin; Guo, Quantong

    2018-01-01

    The science of complex network theory can be usefully applied in many important fields, one of which is the finance. In these practical cases, a massive dataset can be represented as a very large network with certain attributes associated with its nodes and edges. As one of the most important components of financial market, stock market has been attracting more and more attention. In this paper, we propose a threshold model to build Chinese stock market networks and study the topological properties of these networks. To be specific, we compare the effects of different crises, namely the 2008 global crisis and the stock market disaster in 2015, on the threshold networks. Prices of the stocks belonging to the Shanghai and Shenzhen 300 index are considered for three periods: the global crisis, common period and the stock market disaster. We find the probability distribution of the cross-correlations of the stocks during the stock market disaster is fatter than that of others. Besides, the thresholds of cross-correlations are assigned to obtain the threshold networks and the power-law of degree distribution in these networks are observed in a certain range of threshold values. The networks during the stock market disaster also appear to have larger mean degree and modularity, which reveals the strong correlations among these stock prices. Our findings to some extent crosscheck the liquidity shortage reason which is believed to result in the outbreak of the stock market disaster. Moreover, we hope that this paper could give us a deeper understanding of the market's behavior and also lead to interesting future research about the problems of modern finance theory.

  15. Towards real-time assimilation of crowdsourced observations in hydrological modeling

    NASA Astrophysics Data System (ADS)

    Mazzoleni, Maurizio; Verlaan, Martin; Alfonso, Leonardo; Norbiato, Daniele; Monego, Martina; Ferri, Michele; Solomatine, Dimitri

    2016-04-01

    The continued technological advances have stimulated the spread of low-cost sensors that can be used by citizens to provide crowdsourced observations (CO) of different hydrological variables. An example of such low-cost sensors is a staff gauge connected to a QR code on which people can read the water level indication and send the measurement via a mobile phone application. The goal of this study is to assess the combined effect of the assimilation of CO coming from a distributed network of low-cost sensors, and the existing streamflow observations from physical sensors, on the performance of a semi-distributed hydrological model. The methodology is applied to the Bacchiglione catchment, North East of Italy, where an early warning system is used by the Alto Adriatico Water Authority to issue forecasted water level along the river network which cross important cities such as Vicenza and Padua. In this study, forecasted precipitation values are used as input in the hydrological model to estimate the simulated streamflow hydrograph used as boundary condition for the hydraulic model. Observed precipitation values are used to generate realistic synthetic streamflow values with various characteristics of arrival frequency and accuracy, to simulate CO coming at irregular time steps. These observations are assimilated into the semi-distributed model using a Kalman filter based method. The results of this study show that CO, asynchronous in time and with variable accuracy, can still improve flood prediction when integrated in hydrological models. When both physical and low-cost sensors are located at the same places, the assimilation of CO gives the same model improvement than the assimilation of physical observations only for high number of non-intermittent sensors. However, the integration of observations from low-cost sensors and single physical sensors can improve the flood prediction even when small a number of intermittent CO are available. This study is part of the FP7 European Project WeSenseIt Citizen Water Observatory (www.http://wesenseit.eu/).

  16. Reflectivity retrieval in a networked radar environment

    NASA Astrophysics Data System (ADS)

    Lim, Sanghun

    Monitoring of precipitation using a high-frequency radar system such as X-band is becoming increasingly popular due to its lower cost compared to its counterpart at S-band. Networks of meteorological radar systems at higher frequencies are being pursued for targeted applications such as coverage over a city or a small basin. However, at higher frequencies, the impact of attenuation due to precipitation needs to be resolved for successful implementation. In this research, new attenuation correction algorithms are introduced to compensate the attenuation impact due to rain medium. In order to design X-band radar systems as well as evaluate algorithm development, it is useful to have simultaneous X-band observation with and without the impact of path attenuation. One way to obtain that data set is through theoretical models. Methodologies for generating realistic range profiles of radar variables at attenuating frequencies such as X-band for rain medium are presented here. Fundamental microphysical properties of precipitation, namely size and shape distribution information, are used to generate realistic profiles of X-band starting with S-band observations. Conditioning the simulation from S-band radar measurements maintains the natural distribution of microphysical parameters associated with rainfall. In this research, data taken by the CSU-CHILL radar and the National Center for Atmospheric Research S-POL radar are used to simulate X-band radar variables. Three procedures to simulate the radar variables at X-band and sample applications are presented. A new attenuation correction algorithm based on profiles of reflectivity, differential reflectivity, and differential propagation phase shift is presented. A solution for specific attenuation retrieval in rain medium is proposed that solves the integral equations for reflectivity and differential reflectivity with cumulative differential propagation phase shift constraint. The conventional rain profiling algorithms that connect reflectivity and specific attenuation can retrieve specific attenuation values along the radar path assuming a constant intercept parameter of the normalized drop size distribution. However, in convective storms, the drop size distribution parameters can have significant variation along the path. In this research, a dual-polarization rain profiling algorithm for horizontal-looking radars incorporating reflectivity as well as differential reflectivity profiles is developed. The dual-polarization rain profiling algorithm has been evaluated with X-band radar observations simulated from drop size distribution derived from high-resolution S-band measurements collected by the CSU-CHILL radar. The analysis shows that the dual-polarization rain profiling algorithm provides significant improvement over the current algorithms. A methodology for reflectivity and attenuation retrieval for rain medium in a networked radar environment is described. Electromagnetic waves backscattered from a common volume in networked radar systems are attenuated differently along the different paths. A solution for the specific attenuation distribution is proposed by solving the integral equation for reflectivity. The set of governing integral equations describing the backscatter and propagation of common resolution volume are solved simultaneously with constraints on total path attenuation. The proposed algorithm is evaluated based on simulated X-band radar observations synthesized from S-band measurements collected by the CSU-CHILL radar. Retrieved reflectivity and specific attenuation using the proposed method show good agreement with simulated reflectivity and specific attenuation.

  17. Origin of Peer Influence in Social Networks

    NASA Astrophysics Data System (ADS)

    Pinheiro, Flávio L.; Santos, Marta D.; Santos, Francisco C.; Pacheco, Jorge M.

    2014-03-01

    Social networks pervade our everyday lives: we interact, influence, and are influenced by our friends and acquaintances. With the advent of the World Wide Web, large amounts of data on social networks have become available, allowing the quantitative analysis of the distribution of information on them, including behavioral traits and fads. Recent studies of correlations among members of a social network, who exhibit the same trait, have shown that individuals influence not only their direct contacts but also friends' friends, up to a network distance extending beyond their closest peers. Here, we show how such patterns of correlations between peers emerge in networked populations. We use standard models (yet reflecting intrinsically different mechanisms) of information spreading to argue that empirically observed patterns of correlation among peers emerge naturally from a wide range of dynamics, being essentially independent of the type of information, on how it spreads, and even on the class of underlying network that interconnects individuals. Finally, we show that the sparser and clustered the network, the more far reaching the influence of each individual will be.

  18. Future global SLR network evolution and its impact on the terrestrial reference frame

    NASA Astrophysics Data System (ADS)

    Kehm, Alexander; Bloßfeld, Mathis; Pavlis, Erricos C.; Seitz, Florian

    2018-06-01

    Satellite laser ranging (SLR) is an important technique that contributes to the determination of terrestrial geodetic reference frames, especially to the realization of the origin and the scale of global networks. One of the major limiting factors of SLR-derived reference frame realizations is the datum accuracy which significantly suffers from the current global SLR station distribution. In this paper, the impact of a potential future development of the SLR network on the estimated datum parameters is investigated. The current status of the SLR network is compared to a simulated potential future network featuring additional stations improving the global network geometry. In addition, possible technical advancements resulting in a higher amount of observations are taken into account as well. As a result, we find that the network improvement causes a decrease in the scatter of the network translation parameters of up to 24%, and up to 20% for the scale, whereas the technological improvement causes a reduction in the scatter of up to 27% for the translations and up to 49% for the scale. The Earth orientation parameters benefit by up to 15% from both effects.

  19. Method and apparatus for reducing the harmonic currents in alternating-current distribution networks

    DOEpatents

    Beverly, Leon H.; Hance, Richard D.; Kristalinski, Alexandr L.; Visser, Age T.

    1996-01-01

    An improved apparatus and method reduce the harmonic content of AC line and neutral line currents in polyphase AC source distribution networks. The apparatus and method employ a polyphase Zig-Zag transformer connected between the AC source distribution network and a load. The apparatus and method also employs a mechanism for increasing the source neutral impedance of the AC source distribution network. This mechanism can consist of a choke installed in the neutral line between the AC source and the Zig-Zag transformer.

  20. Method and apparatus for reducing the harmonic currents in alternating-current distribution networks

    DOEpatents

    Beverly, L.H.; Hance, R.D.; Kristalinski, A.L.; Visser, A.T.

    1996-11-19

    An improved apparatus and method reduce the harmonic content of AC line and neutral line currents in polyphase AC source distribution networks. The apparatus and method employ a polyphase Zig-Zag transformer connected between the AC source distribution network and a load. The apparatus and method also employs a mechanism for increasing the source neutral impedance of the AC source distribution network. This mechanism can consist of a choke installed in the neutral line between the AC source and the Zig-Zag transformer. 23 figs.

Top