Sample records for distributed optimization approach

  1. Optimal cost design of water distribution networks using a decomposition approach

    NASA Astrophysics Data System (ADS)

    Lee, Ho Min; Yoo, Do Guen; Sadollah, Ali; Kim, Joong Hoon

    2016-12-01

    Water distribution network decomposition, which is an engineering approach, is adopted to increase the efficiency of obtaining the optimal cost design of a water distribution network using an optimization algorithm. This study applied the source tracing tool in EPANET, which is a hydraulic and water quality analysis model, to the decomposition of a network to improve the efficiency of the optimal design process. The proposed approach was tested by carrying out the optimal cost design of two water distribution networks, and the results were compared with other optimal cost designs derived from previously proposed optimization algorithms. The proposed decomposition approach using the source tracing technique enables the efficient decomposition of an actual large-scale network, and the results can be combined with the optimal cost design process using an optimization algorithm. This proves that the final design in this study is better than those obtained with other previously proposed optimization algorithms.

  2. Analytical and Computational Properties of Distributed Approaches to MDO

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia M.; Lewis, Robert Michael

    2000-01-01

    Historical evolution of engineering disciplines and the complexity of the MDO problem suggest that disciplinary autonomy is a desirable goal in formulating and solving MDO problems. We examine the notion of disciplinary autonomy and discuss the analytical properties of three approaches to formulating and solving MDO problems that achieve varying degrees of autonomy by distributing the problem along disciplinary lines. Two of the approaches-Optimization by Linear Decomposition and Collaborative Optimization-are based on bi-level optimization and reflect what we call a structural perspective. The third approach, Distributed Analysis Optimization, is a single-level approach that arises from what we call an algorithmic perspective. The main conclusion of the paper is that disciplinary autonomy may come at a price: in the bi-level approaches, the system-level constraints introduced to relax the interdisciplinary coupling and enable disciplinary autonomy can cause analytical and computational difficulties for optimization algorithms. The single-level alternative we discuss affords a more limited degree of autonomy than that of the bi-level approaches, but without the computational difficulties of the bi-level methods. Key Words: Autonomy, bi-level optimization, distributed optimization, multidisciplinary optimization, multilevel optimization, nonlinear programming, problem integration, system synthesis

  3. An extension of the directed search domain algorithm to bilevel optimization

    NASA Astrophysics Data System (ADS)

    Wang, Kaiqiang; Utyuzhnikov, Sergey V.

    2017-08-01

    A method is developed for generating a well-distributed Pareto set for the upper level in bilevel multiobjective optimization. The approach is based on the Directed Search Domain (DSD) algorithm, which is a classical approach for generation of a quasi-evenly distributed Pareto set in multiobjective optimization. The approach contains a double-layer optimizer designed in a specific way under the framework of the DSD method. The double-layer optimizer is based on bilevel single-objective optimization and aims to find a unique optimal Pareto solution rather than generate the whole Pareto frontier on the lower level in order to improve the optimization efficiency. The proposed bilevel DSD approach is verified on several test cases, and a relevant comparison against another classical approach is made. It is shown that the approach can generate a quasi-evenly distributed Pareto set for the upper level with relatively low time consumption.

  4. Detailed study on the statistical properties of optimized phase distribution in focusing light through turbid media

    NASA Astrophysics Data System (ADS)

    Zhang, Xicheng; Fang, Longjie; Zuo, Haoyi; Du, Jinglei; Gao, Fuhua; Pang, Lin

    2018-07-01

    It is studied in detail that whether the optimized phase distributions obtained from different approaches have relations in focusing light through turbid media. A view is proposed that there exists a strong correlation among the optimized phase distributions from different approaches. The numeric simulations and experiments indicate that the larger the number of segments is, the greater the correlation coefficient of optimized phase distributions from different approaches will be. This study might give an important insight into the essence of focusing light through turbid media by phase modulation.

  5. A Collaborative Neurodynamic Approach to Multiple-Objective Distributed Optimization.

    PubMed

    Yang, Shaofu; Liu, Qingshan; Wang, Jun

    2018-04-01

    This paper is concerned with multiple-objective distributed optimization. Based on objective weighting and decision space decomposition, a collaborative neurodynamic approach to multiobjective distributed optimization is presented. In the approach, a system of collaborative neural networks is developed to search for Pareto optimal solutions, where each neural network is associated with one objective function and given constraints. Sufficient conditions are derived for ascertaining the convergence to a Pareto optimal solution of the collaborative neurodynamic system. In addition, it is proved that each connected subsystem can generate a Pareto optimal solution when the communication topology is disconnected. Then, a switching-topology-based method is proposed to compute multiple Pareto optimal solutions for discretized approximation of Pareto front. Finally, simulation results are discussed to substantiate the performance of the collaborative neurodynamic approach. A portfolio selection application is also given.

  6. Coordinated Optimization of Distributed Energy Resources and Smart Loads in Distribution Systems: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Rui; Zhang, Yingchen

    2016-08-01

    Distributed energy resources (DERs) and smart loads have the potential to provide flexibility to the distribution system operation. A coordinated optimization approach is proposed in this paper to actively manage DERs and smart loads in distribution systems to achieve the optimal operation status. A three-phase unbalanced Optimal Power Flow (OPF) problem is developed to determine the output from DERs and smart loads with respect to the system operator's control objective. This paper focuses on coordinating PV systems and smart loads to improve the overall voltage profile in distribution systems. Simulations have been carried out in a 12-bus distribution feeder andmore » results illustrate the superior control performance of the proposed approach.« less

  7. Coordinated Optimization of Distributed Energy Resources and Smart Loads in Distribution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Rui; Zhang, Yingchen

    2016-11-14

    Distributed energy resources (DERs) and smart loads have the potential to provide flexibility to the distribution system operation. A coordinated optimization approach is proposed in this paper to actively manage DERs and smart loads in distribution systems to achieve the optimal operation status. A three-phase unbalanced Optimal Power Flow (OPF) problem is developed to determine the output from DERs and smart loads with respect to the system operator's control objective. This paper focuses on coordinating PV systems and smart loads to improve the overall voltage profile in distribution systems. Simulations have been carried out in a 12-bus distribution feeder andmore » results illustrate the superior control performance of the proposed approach.« less

  8. Distributed Cooperative Optimal Control for Multiagent Systems on Directed Graphs: An Inverse Optimal Approach.

    PubMed

    Zhang, Huaguang; Feng, Tao; Yang, Guang-Hong; Liang, Hongjing

    2015-07-01

    In this paper, the inverse optimal approach is employed to design distributed consensus protocols that guarantee consensus and global optimality with respect to some quadratic performance indexes for identical linear systems on a directed graph. The inverse optimal theory is developed by introducing the notion of partial stability. As a result, the necessary and sufficient conditions for inverse optimality are proposed. By means of the developed inverse optimal theory, the necessary and sufficient conditions are established for globally optimal cooperative control problems on directed graphs. Basic optimal cooperative design procedures are given based on asymptotic properties of the resulting optimal distributed consensus protocols, and the multiagent systems can reach desired consensus performance (convergence rate and damping rate) asymptotically. Finally, two examples are given to illustrate the effectiveness of the proposed methods.

  9. Load Forecasting Based Distribution System Network Reconfiguration -- A Distributed Data-Driven Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Zhang, Yingchen; Muljadi, Eduard

    In this paper, a short-term load forecasting approach based network reconfiguration is proposed in a parallel manner. Specifically, a support vector regression (SVR) based short-term load forecasting approach is designed to provide an accurate load prediction and benefit the network reconfiguration. Because of the nonconvexity of the three-phase balanced optimal power flow, a second-order cone program (SOCP) based approach is used to relax the optimal power flow problem. Then, the alternating direction method of multipliers (ADMM) is used to compute the optimal power flow in distributed manner. Considering the limited number of the switches and the increasing computation capability, themore » proposed network reconfiguration is solved in a parallel way. The numerical results demonstrate the feasible and effectiveness of the proposed approach.« less

  10. DG Planning with Amalgamation of Operational and Reliability Considerations

    NASA Astrophysics Data System (ADS)

    Battu, Neelakanteshwar Rao; Abhyankar, A. R.; Senroy, Nilanjan

    2016-04-01

    Distributed Generation has been playing a vital role in dealing issues related to distribution systems. This paper presents an approach which provides policy maker with a set of solutions for DG placement to optimize reliability and real power loss of the system. Optimal location of a Distributed Generator is evaluated based on performance indices derived for reliability index and real power loss. The proposed approach is applied on a 15-bus radial distribution system and a 18-bus radial distribution system with conventional and wind distributed generators individually.

  11. Optimal Water-Power Flow Problem: Formulation and Distributed Optimal Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall-Anese, Emiliano; Zhao, Changhong; Zamzam, Admed S.

    This paper formalizes an optimal water-power flow (OWPF) problem to optimize the use of controllable assets across power and water systems while accounting for the couplings between the two infrastructures. Tanks and pumps are optimally managed to satisfy water demand while improving power grid operations; {for the power network, an AC optimal power flow formulation is augmented to accommodate the controllability of water pumps.} Unfortunately, the physics governing the operation of the two infrastructures and coupling constraints lead to a nonconvex (and, in fact, NP-hard) problem; however, after reformulating OWPF as a nonconvex, quadratically-constrained quadratic problem, a feasible point pursuit-successivemore » convex approximation approach is used to identify feasible and optimal solutions. In addition, a distributed solver based on the alternating direction method of multipliers enables water and power operators to pursue individual objectives while respecting the couplings between the two networks. The merits of the proposed approach are demonstrated for the case of a distribution feeder coupled with a municipal water distribution network.« less

  12. Pumping strategies for management of a shallow water table: The value of the simulation-optimization approach

    USGS Publications Warehouse

    Barlow, P.M.; Wagner, B.J.; Belitz, K.

    1996-01-01

    The simulation-optimization approach is used to identify ground-water pumping strategies for control of the shallow water table in the western San Joaquin Valley, California, where shallow ground water threatens continued agricultural productivity. The approach combines the use of ground-water flow simulation with optimization techniques to build on and refine pumping strategies identified in previous research that used flow simulation alone. Use of the combined simulation-optimization model resulted in a 20 percent reduction in the area subject to a shallow water table over that identified by use of the simulation model alone. The simulation-optimization model identifies increasingly more effective pumping strategies for control of the water table as the complexity of the problem increases; that is, as the number of subareas in which pumping is to be managed increases, the simulation-optimization model is better able to discriminate areally among subareas to determine optimal pumping locations. The simulation-optimization approach provides an improved understanding of controls on the ground-water flow system and management alternatives that can be implemented in the valley. In particular, results of the simulation-optimization model indicate that optimal pumping strategies are constrained by the existing distribution of wells between the semiconfined and confined zones of the aquifer, by the distribution of sediment types (and associated hydraulic conductivities) in the western valley, and by the historical distribution of pumping throughout the western valley.

  13. Distributed Optimization Design of Continuous-Time Multiagent Systems With Unknown-Frequency Disturbances.

    PubMed

    Wang, Xinghu; Hong, Yiguang; Yi, Peng; Ji, Haibo; Kang, Yu

    2017-05-24

    In this paper, a distributed optimization problem is studied for continuous-time multiagent systems with unknown-frequency disturbances. A distributed gradient-based control is proposed for the agents to achieve the optimal consensus with estimating unknown frequencies and rejecting the bounded disturbance in the semi-global sense. Based on convex optimization analysis and adaptive internal model approach, the exact optimization solution can be obtained for the multiagent system disturbed by exogenous disturbances with uncertain parameters.

  14. Distribution-Agnostic Stochastic Optimal Power Flow for Distribution Grids: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Kyri; Dall'Anese, Emiliano; Summers, Tyler

    2016-09-01

    This paper outlines a data-driven, distributionally robust approach to solve chance-constrained AC optimal power flow problems in distribution networks. Uncertain forecasts for loads and power generated by photovoltaic (PV) systems are considered, with the goal of minimizing PV curtailment while meeting power flow and voltage regulation constraints. A data- driven approach is utilized to develop a distributionally robust conservative convex approximation of the chance-constraints; particularly, the mean and covariance matrix of the forecast errors are updated online, and leveraged to enforce voltage regulation with predetermined probability via Chebyshev-based bounds. By combining an accurate linear approximation of the AC power flowmore » equations with the distributionally robust chance constraint reformulation, the resulting optimization problem becomes convex and computationally tractable.« less

  15. A combined NLP-differential evolution algorithm approach for the optimization of looped water distribution systems

    NASA Astrophysics Data System (ADS)

    Zheng, Feifei; Simpson, Angus R.; Zecchin, Aaron C.

    2011-08-01

    This paper proposes a novel optimization approach for the least cost design of looped water distribution systems (WDSs). Three distinct steps are involved in the proposed optimization approach. In the first step, the shortest-distance tree within the looped network is identified using the Dijkstra graph theory algorithm, for which an extension is proposed to find the shortest-distance tree for multisource WDSs. In the second step, a nonlinear programming (NLP) solver is employed to optimize the pipe diameters for the shortest-distance tree (chords of the shortest-distance tree are allocated the minimum allowable pipe sizes). Finally, in the third step, the original looped water network is optimized using a differential evolution (DE) algorithm seeded with diameters in the proximity of the continuous pipe sizes obtained in step two. As such, the proposed optimization approach combines the traditional deterministic optimization technique of NLP with the emerging evolutionary algorithm DE via the proposed network decomposition. The proposed methodology has been tested on four looped WDSs with the number of decision variables ranging from 21 to 454. Results obtained show the proposed approach is able to find optimal solutions with significantly less computational effort than other optimization techniques.

  16. Solar Plus: A Holistic Approach to Distributed Solar PV | Solar Research |

    Science.gov Websites

    NREL Plus: A Holistic Approach to Distributed Solar PV Solar Plus: A Holistic Approach to Distributed Solar PV A new NREL report analyzes "solar plus," an emerging approach to distributed solar photovoltaic (PV) deployment that uses energy storage and controllable devices to optimize

  17. Reconfiguration of Smart Distribution Network in the Presence of Renewable DG’s Using GWO Algorithm

    NASA Astrophysics Data System (ADS)

    Siavash, M.; Pfeifer, C.; Rahiminejad, A.; Vahidi, B.

    2017-08-01

    In this paper, the optimal reconfiguration of smart distribution system is performed with the aim of active power loss reduction and voltage stability improvement. The distribution network is considered equipped with wind turbines and solar cells as Renewable DG’s (RDG’s). Because of the presence of smart metering devices, the network state is known accurately at any moment. Based on the network conditions (the amount of load and generation of RDG’s), the optimal configuration of the network is obtained. The optimization problem is solved using a recently introduced method known as Grey Wolf Optimizer (GWO). The proposed approach is applied on 69-bus radial test system and the results of the GWO are compared to those of Particle Swarm Optimization (PSO), and Genetic Algorithm (GA). The results show the effectiveness of the proposed approach and the selected optimization method.

  18. Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen

    In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operatormore » can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.« less

  19. Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen

    In the traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of load forecasting technique can provide accurate prediction of load power that will happen in future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during the longer time period instead of using the snapshot of load at the time when the reconfiguration happens, and thus it can provide information to the distribution systemmore » operator (DSO) to better operate the system reconfiguration to achieve optimal solutions. Thus, this paper proposes a short-term load forecasting based approach for automatically reconfiguring distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with support vector regression (SVR) based forecaster and parallel parameters optimization. And the network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum loss at the future time. The simulation results validate and evaluate the proposed approach.« less

  20. Short-Term Load Forecasting-Based Automatic Distribution Network Reconfiguration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen

    In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operatormore » can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.« less

  1. On Distributed PV Hosting Capacity Estimation, Sensitivity Study, and Improvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Mather, Barry

    This paper first studies the estimated distributed PV hosting capacities of seventeen utility distribution feeders using the Monte Carlo simulation based stochastic analysis, and then analyzes the sensitivity of PV hosting capacity to both feeder and photovoltaic system characteristics. Furthermore, an active distribution network management approach is proposed to maximize PV hosting capacity by optimally switching capacitors, adjusting voltage regulator taps, managing controllable branch switches and controlling smart PV inverters. The approach is formulated as a mixed-integer nonlinear optimization problem and a genetic algorithm is developed to obtain the solution. Multiple simulation cases are studied and the effectiveness of themore » proposed approach on increasing PV hosting capacity is demonstrated.« less

  2. Optimizing Power–Frequency Droop Characteristics of Distributed Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guggilam, Swaroop S.; Zhao, Changhong; Dall Anese, Emiliano

    This paper outlines a procedure to design power-frequency droop slopes for distributed energy resources (DERs) installed in distribution networks to optimally participate in primary frequency response. In particular, the droop slopes are engineered such that DERs respond in proportion to their power ratings and they are not unfairly penalized in power provisioning based on their location in the distribution network. The main contribution of our approach is that a guaranteed level of frequency regulation can be guaranteed at the feeder head, while ensuring that the outputs of individual DERs conform to some well-defined notion of fairness. The approach we adoptmore » leverages an optimization-based perspective and suitable linearizations of the power-flow equations to embed notions of fairness and information regarding the physics of the power flows within the distribution network into the droop slopes. Time-domain simulations from a differential algebraic equation model of the 39-bus New England test-case system augmented with three instances of the IEEE 37-node distribution-network with frequency-sensitive DERs are provided to validate our approach.« less

  3. Optimal route discovery for soft QOS provisioning in mobile ad hoc multimedia networks

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Pan, Feng

    2007-09-01

    In this paper, we propose an optimal routing discovery algorithm for ad hoc multimedia networks whose resource keeps changing, First, we use stochastic models to measure the network resource availability, based on the information about the location and moving pattern of the nodes, as well as the link conditions between neighboring nodes. Then, for a certain multimedia packet flow to be transmitted from a source to a destination, we formulate the optimal soft-QoS provisioning problem as to find the best route that maximize the probability of satisfying its desired QoS requirements in terms of the maximum delay constraints. Based on the stochastic network resource model, we developed three approaches to solve the formulated problem: A centralized approach serving as the theoretical reference, a distributed approach that is more suitable to practical real-time deployment, and a distributed dynamic approach that utilizes the updated time information to optimize the routing for each individual packet. Examples of numerical results demonstrated that using the route discovered by our distributed algorithm in a changing network environment, multimedia applications could achieve better QoS statistically.

  4. Accounting for range uncertainties in the optimization of intensity modulated proton therapy.

    PubMed

    Unkelbach, Jan; Chan, Timothy C Y; Bortfeld, Thomas

    2007-05-21

    Treatment plans optimized for intensity modulated proton therapy (IMPT) may be sensitive to range variations. The dose distribution may deteriorate substantially when the actual range of a pencil beam does not match the assumed range. We present two treatment planning concepts for IMPT which incorporate range uncertainties into the optimization. The first method is a probabilistic approach. The range of a pencil beam is assumed to be a random variable, which makes the delivered dose and the value of the objective function a random variable too. We then propose to optimize the expectation value of the objective function. The second approach is a robust formulation that applies methods developed in the field of robust linear programming. This approach optimizes the worst case dose distribution that may occur, assuming that the ranges of the pencil beams may vary within some interval. Both methods yield treatment plans that are considerably less sensitive to range variations compared to conventional treatment plans optimized without accounting for range uncertainties. In addition, both approaches--although conceptually different--yield very similar results on a qualitative level.

  5. A short-term and high-resolution distribution system load forecasting approach using support vector regression with hybrid parameters optimization

    DOE PAGES

    Jiang, Huaiguang; Zhang, Yingchen; Muljadi, Eduard; ...

    2016-01-01

    This paper proposes an approach for distribution system load forecasting, which aims to provide highly accurate short-term load forecasting with high resolution utilizing a support vector regression (SVR) based forecaster and a two-step hybrid parameters optimization method. Specifically, because the load profiles in distribution systems contain abrupt deviations, a data normalization is designed as the pretreatment for the collected historical load data. Then an SVR model is trained by the load data to forecast the future load. For better performance of SVR, a two-step hybrid optimization algorithm is proposed to determine the best parameters. In the first step of themore » hybrid optimization algorithm, a designed grid traverse algorithm (GTA) is used to narrow the parameters searching area from a global to local space. In the second step, based on the result of the GTA, particle swarm optimization (PSO) is used to determine the best parameters in the local parameter space. After the best parameters are determined, the SVR model is used to forecast the short-term load deviation in the distribution system. The performance of the proposed approach is compared to some classic methods in later sections of the paper.« less

  6. SU-E-T-422: Fast Analytical Beamlet Optimization for Volumetric Intensity-Modulated Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Kenny S K; Lee, Louis K Y; Xing, L

    2015-06-15

    Purpose: To implement a fast optimization algorithm on CPU/GPU heterogeneous computing platform and to obtain an optimal fluence for a given target dose distribution from the pre-calculated beamlets in an analytical approach. Methods: The 2D target dose distribution was modeled as an n-dimensional vector and estimated by a linear combination of independent basis vectors. The basis set was composed of the pre-calculated beamlet dose distributions at every 6 degrees of gantry angle and the cost function was set as the magnitude square of the vector difference between the target and the estimated dose distribution. The optimal weighting of the basis,more » which corresponds to the optimal fluence, was obtained analytically by the least square method. Those basis vectors with a positive weighting were selected for entering into the next level of optimization. Totally, 7 levels of optimization were implemented in the study.Ten head-and-neck and ten prostate carcinoma cases were selected for the study and mapped to a round water phantom with a diameter of 20cm. The Matlab computation was performed in a heterogeneous programming environment with Intel i7 CPU and NVIDIA Geforce 840M GPU. Results: In all selected cases, the estimated dose distribution was in a good agreement with the given target dose distribution and their correlation coefficients were found to be in the range of 0.9992 to 0.9997. Their root-mean-square error was monotonically decreasing and converging after 7 cycles of optimization. The computation took only about 10 seconds and the optimal fluence maps at each gantry angle throughout an arc were quickly obtained. Conclusion: An analytical approach is derived for finding the optimal fluence for a given target dose distribution and a fast optimization algorithm implemented on the CPU/GPU heterogeneous computing environment greatly reduces the optimization time.« less

  7. Optimal Power Flow for Distribution Systems under Uncertain Forecasts: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Baker, Kyri; Summers, Tyler

    2016-12-01

    The paper focuses on distribution systems featuring renewable energy sources and energy storage devices, and develops an optimal power flow (OPF) approach to optimize the system operation in spite of forecasting errors. The proposed method builds on a chance-constrained multi-period AC OPF formulation, where probabilistic constraints are utilized to enforce voltage regulation with a prescribed probability. To enable a computationally affordable solution approach, a convex reformulation of the OPF task is obtained by resorting to i) pertinent linear approximations of the power flow equations, and ii) convex approximations of the chance constraints. Particularly, the approximate chance constraints provide conservative boundsmore » that hold for arbitrary distributions of the forecasting errors. An adaptive optimization strategy is then obtained by embedding the proposed OPF task into a model predictive control framework.« less

  8. Optimization of b-value distribution for biexponential diffusion-weighted MR imaging of normal prostate.

    PubMed

    Jambor, Ivan; Merisaari, Harri; Aronen, Hannu J; Järvinen, Jukka; Saunavaara, Jani; Kauko, Tommi; Borra, Ronald; Pesola, Marko

    2014-05-01

    To determine the optimal b-value distribution for biexponential diffusion-weighted imaging (DWI) of normal prostate using both a computer modeling approach and in vivo measurements. Optimal b-value distributions for the fit of three parameters (fast diffusion Df, slow diffusion Ds, and fraction of fast diffusion f) were determined using Monte-Carlo simulations. The optimal b-value distribution was calculated using four individual optimization methods. Eight healthy volunteers underwent four repeated 3 Tesla prostate DWI scans using both 16 equally distributed b-values and an optimized b-value distribution obtained from the simulations. The b-value distributions were compared in terms of measurement reliability and repeatability using Shrout-Fleiss analysis. Using low noise levels, the optimal b-value distribution formed three separate clusters at low (0-400 s/mm2), mid-range (650-1200 s/mm2), and high b-values (1700-2000 s/mm2). Higher noise levels resulted into less pronounced clustering of b-values. The clustered optimized b-value distribution demonstrated better measurement reliability and repeatability in Shrout-Fleiss analysis compared with 16 equally distributed b-values. The optimal b-value distribution was found to be a clustered distribution with b-values concentrated in the low, mid, and high ranges and was shown to improve the estimation quality of biexponential DWI parameters of in vivo experiments. Copyright © 2013 Wiley Periodicals, Inc.

  9. Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach.

    PubMed

    Duarte, Belmiro P M; Wong, Weng Kee

    2015-08-01

    This paper uses semidefinite programming (SDP) to construct Bayesian optimal design for nonlinear regression models. The setup here extends the formulation of the optimal designs problem as an SDP problem from linear to nonlinear models. Gaussian quadrature formulas (GQF) are used to compute the expectation in the Bayesian design criterion, such as D-, A- or E-optimality. As an illustrative example, we demonstrate the approach using the power-logistic model and compare results in the literature. Additionally, we investigate how the optimal design is impacted by different discretising schemes for the design space, different amounts of uncertainty in the parameter values, different choices of GQF and different prior distributions for the vector of model parameters, including normal priors with and without correlated components. Further applications to find Bayesian D-optimal designs with two regressors for a logistic model and a two-variable generalised linear model with a gamma distributed response are discussed, and some limitations of our approach are noted.

  10. Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach

    PubMed Central

    Duarte, Belmiro P. M.; Wong, Weng Kee

    2014-01-01

    Summary This paper uses semidefinite programming (SDP) to construct Bayesian optimal design for nonlinear regression models. The setup here extends the formulation of the optimal designs problem as an SDP problem from linear to nonlinear models. Gaussian quadrature formulas (GQF) are used to compute the expectation in the Bayesian design criterion, such as D-, A- or E-optimality. As an illustrative example, we demonstrate the approach using the power-logistic model and compare results in the literature. Additionally, we investigate how the optimal design is impacted by different discretising schemes for the design space, different amounts of uncertainty in the parameter values, different choices of GQF and different prior distributions for the vector of model parameters, including normal priors with and without correlated components. Further applications to find Bayesian D-optimal designs with two regressors for a logistic model and a two-variable generalised linear model with a gamma distributed response are discussed, and some limitations of our approach are noted. PMID:26512159

  11. Short-Term State Forecasting-Based Optimal Voltage Regulation in Distribution Systems: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Rui; Jiang, Huaiguang; Zhang, Yingchen

    2017-05-17

    A novel short-term state forecasting-based optimal power flow (OPF) approach for distribution system voltage regulation is proposed in this paper. An extreme learning machine (ELM) based state forecaster is developed to accurately predict system states (voltage magnitudes and angles) in the near future. Based on the forecast system states, a dynamically weighted three-phase AC OPF problem is formulated to minimize the voltage violations with higher penalization on buses which are forecast to have higher voltage violations in the near future. By solving the proposed OPF problem, the controllable resources in the system are optimally coordinated to alleviate the potential severemore » voltage violations and improve the overall voltage profile. The proposed approach has been tested in a 12-bus distribution system and simulation results are presented to demonstrate the performance of the proposed approach.« less

  12. Distributed Optimization for a Class of Nonlinear Multiagent Systems With Disturbance Rejection.

    PubMed

    Wang, Xinghu; Hong, Yiguang; Ji, Haibo

    2016-07-01

    The paper studies the distributed optimization problem for a class of nonlinear multiagent systems in the presence of external disturbances. To solve the problem, we need to achieve the optimal multiagent consensus based on local cost function information and neighboring information and meanwhile to reject local disturbance signals modeled by an exogenous system. With convex analysis and the internal model approach, we propose a distributed optimization controller for heterogeneous and nonlinear agents in the form of continuous-time minimum-phase systems with unity relative degree. We prove that the proposed design can solve the exact optimization problem with rejecting disturbances.

  13. Light intensity distribution optimization for tunnel lamps in different zones of a long tunnel.

    PubMed

    Lai, Wei; Liu, Xianming; Chen, Weimin; Lei, Xiaohua; Cheng, Xingfu

    2014-09-22

    The light distributions in different tunnel zones have different requirements in order to meet the driver's visual system. In this paper, the light intensity distributions of tunnel lamps in different zones of a long tunnel are optimized separately. A common nonlinear optimization approach is proposed to minimize the consuming power as well as satisfy the luminance and glare requirements both on the road surface and on the wall set by International Commission on Illumination (CIE). Compared with that of the reported linear optimization method, the optimization model can save energy from 11% to 57.6% under the same installation conditions.

  14. An optimal autonomous microgrid cluster based on distributed generation droop parameter optimization and renewable energy sources using an improved grey wolf optimizer

    NASA Astrophysics Data System (ADS)

    Moazami Goodarzi, Hamed; Kazemi, Mohammad Hosein

    2018-05-01

    Microgrid (MG) clustering is regarded as an important driver in improving the robustness of MGs. However, little research has been conducted on providing appropriate MG clustering. This article addresses this shortfall. It proposes a novel multi-objective optimization approach for finding optimal clustering of autonomous MGs by focusing on variables such as distributed generation (DG) droop parameters, the location and capacity of DG units, renewable energy sources, capacitors and powerline transmission. Power losses are minimized and voltage stability is improved while virtual cut-set lines with minimum power transmission for clustering MGs are obtained. A novel chaotic grey wolf optimizer (CGWO) algorithm is applied to solve the proposed multi-objective problem. The performance of the approach is evaluated by utilizing a 69-bus MG in several scenarios.

  15. Optimal dynamic control of resources in a distributed system

    NASA Technical Reports Server (NTRS)

    Shin, Kang G.; Krishna, C. M.; Lee, Yann-Hang

    1989-01-01

    The authors quantitatively formulate the problem of controlling resources in a distributed system so as to optimize a reward function and derive optimal control strategies using Markov decision theory. The control variables treated are quite general; they could be control decisions related to system configuration, repair, diagnostics, files, or data. Two algorithms for resource control in distributed systems are derived for time-invariant and periodic environments, respectively. A detailed example to demonstrate the power and usefulness of the approach is provided.

  16. [Application of simulated annealing method and neural network on optimizing soil sampling schemes based on road distribution].

    PubMed

    Han, Zong-wei; Huang, Wei; Luo, Yun; Zhang, Chun-di; Qi, Da-cheng

    2015-03-01

    Taking the soil organic matter in eastern Zhongxiang County, Hubei Province, as a research object, thirteen sample sets from different regions were arranged surrounding the road network, the spatial configuration of which was optimized by the simulated annealing approach. The topographic factors of these thirteen sample sets, including slope, plane curvature, profile curvature, topographic wetness index, stream power index and sediment transport index, were extracted by the terrain analysis. Based on the results of optimization, a multiple linear regression model with topographic factors as independent variables was built. At the same time, a multilayer perception model on the basis of neural network approach was implemented. The comparison between these two models was carried out then. The results revealed that the proposed approach was practicable in optimizing soil sampling scheme. The optimal configuration was capable of gaining soil-landscape knowledge exactly, and the accuracy of optimal configuration was better than that of original samples. This study designed a sampling configuration to study the soil attribute distribution by referring to the spatial layout of road network, historical samples, and digital elevation data, which provided an effective means as well as a theoretical basis for determining the sampling configuration and displaying spatial distribution of soil organic matter with low cost and high efficiency.

  17. Portfolio optimization using median-variance approach

    NASA Astrophysics Data System (ADS)

    Wan Mohd, Wan Rosanisah; Mohamad, Daud; Mohamed, Zulkifli

    2013-04-01

    Optimization models have been applied in many decision-making problems particularly in portfolio selection. Since the introduction of Markowitz's theory of portfolio selection, various approaches based on mathematical programming have been introduced such as mean-variance, mean-absolute deviation, mean-variance-skewness and conditional value-at-risk (CVaR) mainly to maximize return and minimize risk. However most of the approaches assume that the distribution of data is normal and this is not generally true. As an alternative, in this paper, we employ the median-variance approach to improve the portfolio optimization. This approach has successfully catered both types of normal and non-normal distribution of data. With this actual representation, we analyze and compare the rate of return and risk between the mean-variance and the median-variance based portfolio which consist of 30 stocks from Bursa Malaysia. The results in this study show that the median-variance approach is capable to produce a lower risk for each return earning as compared to the mean-variance approach.

  18. Integrating prediction, provenance, and optimization into high energy workflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schram, M.; Bansal, V.; Friese, R. D.

    We propose a novel approach for efficient execution of workflows on distributed resources. The key components of this framework include: performance modeling to quantitatively predict workflow component behavior; optimization-based scheduling such as choosing an optimal subset of resources to meet demand and assignment of tasks to resources; distributed I/O optimizations such as prefetching; and provenance methods for collecting performance data. In preliminary results, these techniques improve throughput on a small Belle II workflow by 20%.

  19. A Scalable and Robust Multi-Agent Approach to Distributed Optimization

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan

    2005-01-01

    Modularizing a large optimization problem so that the solutions to the subproblems provide a good overall solution is a challenging problem. In this paper we present a multi-agent approach to this problem based on aligning the agent objectives with the system objectives, obviating the need to impose external mechanisms to achieve collaboration among the agents. This approach naturally addresses scaling and robustness issues by ensuring that the agents do not rely on the reliable operation of other agents We test this approach in the difficult distributed optimization problem of imperfect device subset selection [Challet and Johnson, 2002]. In this problem, there are n devices, each of which has a "distortion", and the task is to find the subset of those n devices that minimizes the average distortion. Our results show that in large systems (1000 agents) the proposed approach provides improvements of over an order of magnitude over both traditional optimization methods and traditional multi-agent methods. Furthermore, the results show that even in extreme cases of agent failures (i.e., half the agents fail midway through the simulation) the system remains coordinated and still outperforms a failure-free and centralized optimization algorithm.

  20. Aerostructural interaction in a collaborative MDO environment

    NASA Astrophysics Data System (ADS)

    Ciampa, Pier Davide; Nagel, Björn

    2014-10-01

    The work presents an approach for aircraft design and optimization, developed to account for fluid-structure interactions in MDO applications. The approach makes use of a collaborative distributed design environment, and focuses on the influence of multiple physics based aerostructural models, on the overall aircraft synthesis and optimization. The approach is tested for the design of large transportation aircraft.

  1. Optimal design and use of retry in fault tolerant real-time computer systems

    NASA Technical Reports Server (NTRS)

    Lee, Y. H.; Shin, K. G.

    1983-01-01

    A new method to determin an optimal retry policy and for use in retry of fault characterization is presented. An optimal retry policy for a given fault characteristic, which determines the maximum allowable retry durations to minimize the total task completion time was derived. The combined fault characterization and retry decision, in which the characteristics of fault are estimated simultaneously with the determination of the optimal retry policy were carried out. Two solution approaches were developed, one based on the point estimation and the other on the Bayes sequential decision. The maximum likelihood estimators are used for the first approach, and the backward induction for testing hypotheses in the second approach. Numerical examples in which all the durations associated with faults have monotone hazard functions, e.g., exponential, Weibull and gamma distributions are presented. These are standard distributions commonly used for modeling analysis and faults.

  2. A risk-based multi-objective model for optimal placement of sensors in water distribution system

    NASA Astrophysics Data System (ADS)

    Naserizade, Sareh S.; Nikoo, Mohammad Reza; Montaseri, Hossein

    2018-02-01

    In this study, a new stochastic model based on Conditional Value at Risk (CVaR) and multi-objective optimization methods is developed for optimal placement of sensors in water distribution system (WDS). This model determines minimization of risk which is caused by simultaneous multi-point contamination injection in WDS using CVaR approach. The CVaR considers uncertainties of contamination injection in the form of probability distribution function and calculates low-probability extreme events. In this approach, extreme losses occur at tail of the losses distribution function. Four-objective optimization model based on NSGA-II algorithm is developed to minimize losses of contamination injection (through CVaR of affected population and detection time) and also minimize the two other main criteria of optimal placement of sensors including probability of undetected events and cost. Finally, to determine the best solution, Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE), as a subgroup of Multi Criteria Decision Making (MCDM) approach, is utilized to rank the alternatives on the trade-off curve among objective functions. Also, sensitivity analysis is done to investigate the importance of each criterion on PROMETHEE results considering three relative weighting scenarios. The effectiveness of the proposed methodology is examined through applying it to Lamerd WDS in the southwestern part of Iran. The PROMETHEE suggests 6 sensors with suitable distribution that approximately cover all regions of WDS. Optimal values related to CVaR of affected population and detection time as well as probability of undetected events for the best optimal solution are equal to 17,055 persons, 31 mins and 0.045%, respectively. The obtained results of the proposed methodology in Lamerd WDS show applicability of CVaR-based multi-objective simulation-optimization model for incorporating the main uncertainties of contamination injection in order to evaluate extreme value of losses in WDS.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Kyri; Dall'Anese, Emiliano; Summers, Tyler

    This paper outlines a data-driven, distributionally robust approach to solve chance-constrained AC optimal power flow problems in distribution networks. Uncertain forecasts for loads and power generated by photovoltaic (PV) systems are considered, with the goal of minimizing PV curtailment while meeting power flow and voltage regulation constraints. A data- driven approach is utilized to develop a distributionally robust conservative convex approximation of the chance-constraints; particularly, the mean and covariance matrix of the forecast errors are updated online, and leveraged to enforce voltage regulation with predetermined probability via Chebyshev-based bounds. By combining an accurate linear approximation of the AC power flowmore » equations with the distributionally robust chance constraint reformulation, the resulting optimization problem becomes convex and computationally tractable.« less

  4. Technologies to Increase PV Hosting Capacity in Distribution Feeders: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Mather, Barry; Gotseff, Peter

    This paper studies the distributed photovoltaic (PV) hosting capacity in distribution feeders by using the stochastic analysis approach. Multiple scenario simulations are conducted to analyze several factors that affect PV hosting capacity, including the existence of voltage regulator, PV location, the power factor of PV inverter and Volt/VAR control. Based on the conclusions obtained from simulation results, three approaches are then proposed to increase distributed PV hosting capacity, which can be formulated as the optimization problem to obtain the optimal solution. All technologies investigated in this paper utilize only existing assets in the feeder and therefore are implementable for amore » low cost. Additionally, the tool developed for these studies is described.« less

  5. Technologies to Increase PV Hosting Capacity in Distribution Feeders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Mather, Barry; Gotseff, Peter

    This paper studies the distributed photovoltaic (PV) hosting capacity in distribution feeders by using the stochastic analysis approach. Multiple scenario simulations are conducted to analyze several factors that affect PV hosting capacity, including the existence of voltage regulator, PV location, the power factor of PV inverter and Volt/VAR control. Based on the conclusions obtained from simulation results, three approaches are then proposed to increase distributed PV hosting capacity, which can be formulated as the optimization problem to obtain the optimal solution. All technologies investigated in this paper utilize only existing assets in the feeder and therefore are implementable for amore » low cost. Additionally, the tool developed for these studies is described.« less

  6. Optimal placement and sizing of wind / solar based DG sources in distribution system

    NASA Astrophysics Data System (ADS)

    Guan, Wanlin; Guo, Niao; Yu, Chunlai; Chen, Xiaoguang; Yu, Haiyang; Liu, Zhipeng; Cui, Jiapeng

    2017-06-01

    Proper placement and sizing of Distributed Generation (DG) in distribution system can obtain maximum potential benefits. This paper proposes quantum particle swarm algorithm (QPSO) based wind turbine generation unit (WTGU) and photovoltaic (PV) array placement and sizing approach for real power loss reduction and voltage stability improvement of distribution system. Performance modeling of wind and solar generation system are described and classified into PQ\\PQ (V)\\PI type models in power flow. Considering the WTGU and PV based DGs in distribution system is geographical restrictive, the optimal area and DG capacity limits of each bus in the setting area need to be set before optimization, the area optimization method is proposed . The method has been tested on IEEE 33-bus radial distribution systems to demonstrate the performance and effectiveness of the proposed method.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Jiang, Huaiguang; Tan, Jin

    This paper proposes an event-driven approach for reconfiguring distribution systems automatically. Specifically, an optimal synchrophasor sensor placement (OSSP) is used to reduce the number of synchrophasor sensors while keeping the whole system observable. Then, a wavelet-based event detection and location approach is used to detect and locate the event, which performs as a trigger for network reconfiguration. With the detected information, the system is then reconfigured using the hierarchical decentralized approach to seek for the new optimal topology. In this manner, whenever an event happens the distribution network can be reconfigured automatically based on the real-time information that is observablemore » and detectable.« less

  8. An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation.

    PubMed

    Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri

    2016-01-01

    This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.

  9. An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation

    PubMed Central

    Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri

    2016-01-01

    This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality. PMID:26954783

  10. A Comparative Study of Probability Collectives Based Multi-agent Systems and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Huang, Chien-Feng; Wolpert, David H.; Bieniawski, Stefan; Strauss, Charles E. M.

    2005-01-01

    We compare Genetic Algorithms (GA's) with Probability Collectives (PC), a new framework for distributed optimization and control. In contrast to GA's, PC-based methods do not update populations of solutions. Instead they update an explicitly parameterized probability distribution p over the space of solutions. That updating of p arises as the optimization of a functional of p. The functional is chosen so that any p that optimizes it should be p peaked about good solutions. The PC approach works in both continuous and discrete problems. It does not suffer from the resolution limitation of the finite bit length encoding of parameters into GA alleles. It also has deep connections with both game theory and statistical physics. We review the PC approach using its motivation as the information theoretic formulation of bounded rationality for multi-agent systems. It is then compared with GA's on a diverse set of problems. To handle high dimensional surfaces, in the PC method investigated here p is restricted to a product distribution. Each distribution in that product is controlled by a separate agent. The test functions were selected for their difficulty using either traditional gradient descent or genetic algorithms. On those functions the PC-based approach significantly outperforms traditional GA's in both rate of descent, trapping in false minima, and long term optimization.

  11. Spatiotemporal radiotherapy planning using a global optimization approach

    NASA Astrophysics Data System (ADS)

    Adibi, Ali; Salari, Ehsan

    2018-02-01

    This paper aims at quantifying the extent of potential therapeutic gain, measured using biologically effective dose (BED), that can be achieved by altering the radiation dose distribution over treatment sessions in fractionated radiotherapy. To that end, a spatiotemporally integrated planning approach is developed, where the spatial and temporal dose modulations are optimized simultaneously. The concept of equivalent uniform BED (EUBED) is used to quantify and compare the clinical quality of spatiotemporally heterogeneous dose distributions in target and critical structures. This gives rise to a large-scale non-convex treatment-plan optimization problem, which is solved using global optimization techniques. The proposed spatiotemporal planning approach is tested on two stylized cancer cases resembling two different tumor sites and sensitivity analysis is performed for radio-biological and EUBED parameters. Numerical results validate that spatiotemporal plans are capable of delivering a larger BED to the target volume without increasing the BED in critical structures compared to conventional time-invariant plans. In particular, this additional gain is attributed to the irradiation of different regions of the target volume at different treatment sessions. Additionally, the trade-off between the potential therapeutic gain and the number of distinct dose distributions is quantified, which suggests a diminishing marginal gain as the number of dose distributions increases.

  12. Network placement optimization for large-scale distributed system

    NASA Astrophysics Data System (ADS)

    Ren, Yu; Liu, Fangfang; Fu, Yunxia; Zhou, Zheng

    2018-01-01

    The network geometry strongly influences the performance of the distributed system, i.e., the coverage capability, measurement accuracy and overall cost. Therefore the network placement optimization represents an urgent issue in the distributed measurement, even in large-scale metrology. This paper presents an effective computer-assisted network placement optimization procedure for the large-scale distributed system and illustrates it with the example of the multi-tracker system. To get an optimal placement, the coverage capability and the coordinate uncertainty of the network are quantified. Then a placement optimization objective function is developed in terms of coverage capabilities, measurement accuracy and overall cost. And a novel grid-based encoding approach for Genetic algorithm is proposed. So the network placement is optimized by a global rough search and a local detailed search. Its obvious advantage is that there is no need for a specific initial placement. At last, a specific application illustrates this placement optimization procedure can simulate the measurement results of a specific network and design the optimal placement efficiently.

  13. Linear energy transfer incorporated intensity modulated proton therapy optimization

    NASA Astrophysics Data System (ADS)

    Cao, Wenhua; Khabazian, Azin; Yepes, Pablo P.; Lim, Gino; Poenisch, Falk; Grosshans, David R.; Mohan, Radhe

    2018-01-01

    The purpose of this study was to investigate the feasibility of incorporating linear energy transfer (LET) into the optimization of intensity modulated proton therapy (IMPT) plans. Because increased LET correlates with increased biological effectiveness of protons, high LETs in target volumes and low LETs in critical structures and normal tissues are preferred in an IMPT plan. However, if not explicitly incorporated into the optimization criteria, different IMPT plans may yield similar physical dose distributions but greatly different LET, specifically dose-averaged LET, distributions. Conventionally, the IMPT optimization criteria (or cost function) only includes dose-based objectives in which the relative biological effectiveness (RBE) is assumed to have a constant value of 1.1. In this study, we added LET-based objectives for maximizing LET in target volumes and minimizing LET in critical structures and normal tissues. Due to the fractional programming nature of the resulting model, we used a variable reformulation approach so that the optimization process is computationally equivalent to conventional IMPT optimization. In this study, five brain tumor patients who had been treated with proton therapy at our institution were selected. Two plans were created for each patient based on the proposed LET-incorporated optimization (LETOpt) and the conventional dose-based optimization (DoseOpt). The optimized plans were compared in terms of both dose (assuming a constant RBE of 1.1 as adopted in clinical practice) and LET. Both optimization approaches were able to generate comparable dose distributions. The LET-incorporated optimization achieved not only pronounced reduction of LET values in critical organs, such as brainstem and optic chiasm, but also increased LET in target volumes, compared to the conventional dose-based optimization. However, on occasion, there was a need to tradeoff the acceptability of dose and LET distributions. Our conclusion is that the inclusion of LET-dependent criteria in the IMPT optimization could lead to similar dose distributions as the conventional optimization but superior LET distributions in target volumes and normal tissues. This may have substantial advantages in improving tumor control and reducing normal tissue toxicities.

  14. A Hierarchical Modeling for Reactive Power Optimization With Joint Transmission and Distribution Networks by Curve Fitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Tao; Li, Cheng; Huang, Can

    Here, in order to solve the reactive power optimization with joint transmission and distribution networks, a hierarchical modeling method is proposed in this paper. It allows the reactive power optimization of transmission and distribution networks to be performed separately, leading to a master–slave structure and improves traditional centralized modeling methods by alleviating the big data problem in a control center. Specifically, the transmission-distribution-network coordination issue of the hierarchical modeling method is investigated. First, a curve-fitting approach is developed to provide a cost function of the slave model for the master model, which reflects the impacts of each slave model. Second,more » the transmission and distribution networks are decoupled at feeder buses, and all the distribution networks are coordinated by the master reactive power optimization model to achieve the global optimality. Finally, numerical results on two test systems verify the effectiveness of the proposed hierarchical modeling and curve-fitting methods.« less

  15. A Hierarchical Modeling for Reactive Power Optimization With Joint Transmission and Distribution Networks by Curve Fitting

    DOE PAGES

    Ding, Tao; Li, Cheng; Huang, Can; ...

    2017-01-09

    Here, in order to solve the reactive power optimization with joint transmission and distribution networks, a hierarchical modeling method is proposed in this paper. It allows the reactive power optimization of transmission and distribution networks to be performed separately, leading to a master–slave structure and improves traditional centralized modeling methods by alleviating the big data problem in a control center. Specifically, the transmission-distribution-network coordination issue of the hierarchical modeling method is investigated. First, a curve-fitting approach is developed to provide a cost function of the slave model for the master model, which reflects the impacts of each slave model. Second,more » the transmission and distribution networks are decoupled at feeder buses, and all the distribution networks are coordinated by the master reactive power optimization model to achieve the global optimality. Finally, numerical results on two test systems verify the effectiveness of the proposed hierarchical modeling and curve-fitting methods.« less

  16. A Short-Term and High-Resolution System Load Forecasting Approach Using Support Vector Regression with Hybrid Parameters Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang

    This work proposes an approach for distribution system load forecasting, which aims to provide highly accurate short-term load forecasting with high resolution utilizing a support vector regression (SVR) based forecaster and a two-step hybrid parameters optimization method. Specifically, because the load profiles in distribution systems contain abrupt deviations, a data normalization is designed as the pretreatment for the collected historical load data. Then an SVR model is trained by the load data to forecast the future load. For better performance of SVR, a two-step hybrid optimization algorithm is proposed to determine the best parameters. In the first step of themore » hybrid optimization algorithm, a designed grid traverse algorithm (GTA) is used to narrow the parameters searching area from a global to local space. In the second step, based on the result of the GTA, particle swarm optimization (PSO) is used to determine the best parameters in the local parameter space. After the best parameters are determined, the SVR model is used to forecast the short-term load deviation in the distribution system.« less

  17. Optimal design of stimulus experiments for robust discrimination of biochemical reaction networks.

    PubMed

    Flassig, R J; Sundmacher, K

    2012-12-01

    Biochemical reaction networks in the form of coupled ordinary differential equations (ODEs) provide a powerful modeling tool for understanding the dynamics of biochemical processes. During the early phase of modeling, scientists have to deal with a large pool of competing nonlinear models. At this point, discrimination experiments can be designed and conducted to obtain optimal data for selecting the most plausible model. Since biological ODE models have widely distributed parameters due to, e.g. biologic variability or experimental variations, model responses become distributed. Therefore, a robust optimal experimental design (OED) for model discrimination can be used to discriminate models based on their response probability distribution functions (PDFs). In this work, we present an optimal control-based methodology for designing optimal stimulus experiments aimed at robust model discrimination. For estimating the time-varying model response PDF, which results from the nonlinear propagation of the parameter PDF under the ODE dynamics, we suggest using the sigma-point approach. Using the model overlap (expected likelihood) as a robust discrimination criterion to measure dissimilarities between expected model response PDFs, we benchmark the proposed nonlinear design approach against linearization with respect to prediction accuracy and design quality for two nonlinear biological reaction networks. As shown, the sigma-point outperforms the linearization approach in the case of widely distributed parameter sets and/or existing multiple steady states. Since the sigma-point approach scales linearly with the number of model parameter, it can be applied to large systems for robust experimental planning. An implementation of the method in MATLAB/AMPL is available at http://www.uni-magdeburg.de/ivt/svt/person/rf/roed.html. flassig@mpi-magdeburg.mpg.de Supplementary data are are available at Bioinformatics online.

  18. Feedback-Based Projected-Gradient Method for Real-Time Optimization of Aggregations of Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall-Anese, Emiliano; Bernstein, Andrey; Simonetto, Andrea

    This paper develops an online optimization method to maximize operational objectives of distribution-level distributed energy resources (DERs), while adjusting the aggregate power generated (or consumed) in response to services requested by grid operators. The design of the online algorithm is based on a projected-gradient method, suitably modified to accommodate appropriate measurements from the distribution network and the DERs. By virtue of this approach, the resultant algorithm can cope with inaccuracies in the representation of the AC power flows, it avoids pervasive metering to gather the state of noncontrollable resources, and it naturally lends itself to a distributed implementation. Optimality claimsmore » are established in terms of tracking of the solution of a well-posed time-varying convex optimization problem.« less

  19. Feedback-Based Projected-Gradient Method For Real-Time Optimization of Aggregations of Energy Resources: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall-Anese, Emiliano; Bernstein, Andrey; Simonetto, Andrea

    This paper develops an online optimization method to maximize the operational objectives of distribution-level distributed energy resources (DERs) while adjusting the aggregate power generated (or consumed) in response to services requested by grid operators. The design of the online algorithm is based on a projected-gradient method, suitably modified to accommodate appropriate measurements from the distribution network and the DERs. By virtue of this approach, the resultant algorithm can cope with inaccuracies in the representation of the AC power, it avoids pervasive metering to gather the state of noncontrollable resources, and it naturally lends itself to a distributed implementation. Optimality claimsmore » are established in terms of tracking of the solution of a well-posed time-varying optimization problem.« less

  20. Chance-Constrained Day-Ahead Hourly Scheduling in Distribution System Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Zhang, Yingchen; Muljadi, Eduard

    This paper aims to propose a two-step approach for day-ahead hourly scheduling in a distribution system operation, which contains two operation costs, the operation cost at substation level and feeder level. In the first step, the objective is to minimize the electric power purchase from the day-ahead market with the stochastic optimization. The historical data of day-ahead hourly electric power consumption is used to provide the forecast results with the forecasting error, which is presented by a chance constraint and formulated into a deterministic form by Gaussian mixture model (GMM). In the second step, the objective is to minimize themore » system loss. Considering the nonconvexity of the three-phase balanced AC optimal power flow problem in distribution systems, the second-order cone program (SOCP) is used to relax the problem. Then, a distributed optimization approach is built based on the alternating direction method of multiplier (ADMM). The results shows that the validity and effectiveness method.« less

  1. Optimal sensor placement for leak location in water distribution networks using genetic algorithms.

    PubMed

    Casillas, Myrna V; Puig, Vicenç; Garza-Castañón, Luis E; Rosich, Albert

    2013-11-04

    This paper proposes a new sensor placement approach for leak location in water distribution networks (WDNs). The sensor placement problem is formulated as an integer optimization problem. The optimization criterion consists in minimizing the number of non-isolable leaks according to the isolability criteria introduced. Because of the large size and non-linear integer nature of the resulting optimization problem, genetic algorithms (GAs) are used as the solution approach. The obtained results are compared with a semi-exhaustive search method with higher computational effort, proving that GA allows one to find near-optimal solutions with less computational load. Moreover, three ways of increasing the robustness of the GA-based sensor placement method have been proposed using a time horizon analysis, a distance-based scoring and considering different leaks sizes. A great advantage of the proposed methodology is that it does not depend on the isolation method chosen by the user, as long as it is based on leak sensitivity analysis. Experiments in two networks allow us to evaluate the performance of the proposed approach.

  2. Optimal Sensor Placement for Leak Location in Water Distribution Networks Using Genetic Algorithms

    PubMed Central

    Casillas, Myrna V.; Puig, Vicenç; Garza-Castañón, Luis E.; Rosich, Albert

    2013-01-01

    This paper proposes a new sensor placement approach for leak location in water distribution networks (WDNs). The sensor placement problem is formulated as an integer optimization problem. The optimization criterion consists in minimizing the number of non-isolable leaks according to the isolability criteria introduced. Because of the large size and non-linear integer nature of the resulting optimization problem, genetic algorithms (GAs) are used as the solution approach. The obtained results are compared with a semi-exhaustive search method with higher computational effort, proving that GA allows one to find near-optimal solutions with less computational load. Moreover, three ways of increasing the robustness of the GA-based sensor placement method have been proposed using a time horizon analysis, a distance-based scoring and considering different leaks sizes. A great advantage of the proposed methodology is that it does not depend on the isolation method chosen by the user, as long as it is based on leak sensitivity analysis. Experiments in two networks allow us to evaluate the performance of the proposed approach. PMID:24193099

  3. Optimal thresholds for the estimation of area rain-rate moments by the threshold method

    NASA Technical Reports Server (NTRS)

    Short, David A.; Shimizu, Kunio; Kedem, Benjamin

    1993-01-01

    Optimization of the threshold method, achieved by determination of the threshold that maximizes the correlation between an area-average rain-rate moment and the area coverage of rain rates exceeding the threshold, is demonstrated empirically and theoretically. Empirical results for a sequence of GATE radar snapshots show optimal thresholds of 5 and 27 mm/h for the first and second moments, respectively. Theoretical optimization of the threshold method by the maximum-likelihood approach of Kedem and Pavlopoulos (1991) predicts optimal thresholds near 5 and 26 mm/h for lognormally distributed rain rates with GATE-like parameters. The agreement between theory and observations suggests that the optimal threshold can be understood as arising due to sampling variations, from snapshot to snapshot, of a parent rain-rate distribution. Optimal thresholds for gamma and inverse Gaussian distributions are also derived and compared.

  4. Solar Plus: A Holistic Approach to Distributed Solar PV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OShaughnessy, Eric J.; Ardani, Kristen B.; Cutler, Dylan S.

    Solar 'plus' refers to an emerging approach to distributed solar photovoltaic (PV) deployment that uses energy storage and controllable devices to optimize customer economics. The solar plus approach increases customer system value through technologies such as electric batteries, smart domestic water heaters, smart air-conditioner (AC) units, and electric vehicles We use an NREL optimization model to explore the customer-side economics of solar plus under various utility rate structures and net metering rates. We explore optimal solar plus applications in five case studies with different net metering rates and rate structures. The model deploys different configurations of PV, batteries, smart domesticmore » water heaters, and smart AC units in response to different rate structures and customer load profiles. The results indicate that solar plus improves the customer economics of PV and may mitigate some of the negative impacts of evolving rate structures on PV economics. Solar plus may become an increasingly viable model for optimizing PV customer economics in an evolving rate environment.« less

  5. SU-G-TeP3-01: A New Approach for Calculating Variable Relative Biological Effectiveness in IMPT Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, W; Randeniya, K; Grosshans, D

    2016-06-15

    Purpose: To investigate the impact of a new approach for calculating relative biological effectiveness (RBE) in intensity-modulated proton therapy (IMPT) optimization on RBE-weighted dose distributions. This approach includes the nonlinear RBE for the high linear energy transfer (LET) region, which was revealed by recent experiments at our institution. In addition, this approach utilizes RBE data as a function of LET without using dose-averaged LET in calculating RBE values. Methods: We used a two-piece function for calculating RBE from LET. Within the Bragg peak, RBE is linearly correlated to LET. Beyond the Bragg peak, we use a nonlinear (quadratic) RBE functionmore » of LET based on our experimental. The IMPT optimization was devised to incorporate variable RBE by maximizing biological effect (based on the Linear Quadratic model) in tumor and minimizing biological effect in normal tissues. Three glioblastoma patients were retrospectively selected from our institution in this study. For each patient, three optimized IMPT plans were created based on three RBE resolutions, i.e., fixed RBE of 1.1 (RBE-1.1), variable RBE based on linear RBE and LET relationship (RBE-L), and variable RBE based on linear and quadratic relationship (RBE-LQ). The RBE weighted dose distributions of each optimized plan were evaluated in terms of different RBE values, i.e., RBE-1.1, RBE-L and RBE-LQ. Results: The RBE weighted doses recalculated from RBE-1.1 based optimized plans demonstrated an increasing pattern from using RBE-1.1, RBE-L to RBE-LQ consistently for all three patients. The variable RBE (RBE-L and RBE-LQ) weighted dose distributions recalculated from RBE-L and RBE-LQ based optimization were more homogenous within the targets and better spared in the critical structures than the ones recalculated from RBE-1.1 based optimization. Conclusion: We implemented a new approach for RBE calculation and optimization and demonstrated potential benefits of improving tumor coverage and normal sparing in IMPT planning.« less

  6. Chance-Constrained AC Optimal Power Flow for Distribution Systems With Renewables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DallAnese, Emiliano; Baker, Kyri; Summers, Tyler

    This paper focuses on distribution systems featuring renewable energy sources (RESs) and energy storage systems, and presents an AC optimal power flow (OPF) approach to optimize system-level performance objectives while coping with uncertainty in both RES generation and loads. The proposed method hinges on a chance-constrained AC OPF formulation where probabilistic constraints are utilized to enforce voltage regulation with prescribed probability. A computationally more affordable convex reformulation is developed by resorting to suitable linear approximations of the AC power-flow equations as well as convex approximations of the chance constraints. The approximate chance constraints provide conservative bounds that hold for arbitrarymore » distributions of the forecasting errors. An adaptive strategy is then obtained by embedding the proposed AC OPF task into a model predictive control framework. Finally, a distributed solver is developed to strategically distribute the solution of the optimization problems across utility and customers.« less

  7. Simulation and optimization of faceted structure for illumination

    NASA Astrophysics Data System (ADS)

    Liu, Lihong; Engel, Thierry; Flury, Manuel

    2016-04-01

    The re-direction of incoherent light using a surface containing only facets with specific angular values is proposed. A new photometric approach is adopted since the size of each facet is large in comparison with the wavelength. A reflective configuration is employed to avoid the dispersion problems of materials. The irradiance distribution of the reflected beam is determined by the angular position of each facet. In order to obtain the specific irradiance distribution, the angular position of each facet is optimized using Zemax OpticStudio 15 software. A detector is placed in the direction which is perpendicular to the reflected beam. According to the incoherent irradiance distribution on the detector, a merit function needs to be defined to pilot the optimization process. The two dimensional angular position of each facet is defined as a variable which is optimized within a specified varying range. Because the merit function needs to be updated, a macro program is carried out to update this function within Zemax. In order to reduce the complexity of the manual operation, an automatic optimization approach is established. Zemax is in charge of performing the optimization task and sending back the irradiance data to Matlab for further analysis. Several simulation results are given for the verification of the optimization method. The simulation results are compared to those obtained with the LightTools software in order to verify our optimization method.

  8. On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.

    2004-01-01

    Differential Evolution (DE) is a simple and robust evolutionary strategy that has been provEn effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. Several approaches that have proven effective for other evolutionary algorithms are modified and implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for standard test optimization problems and for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Baker, Kyri; Summers, Tyler

    The paper focuses on distribution systems featuring renewable energy sources and energy storage devices, and develops an optimal power flow (OPF) approach to optimize the system operation in spite of forecasting errors. The proposed method builds on a chance-constrained multi-period AC OPF formulation, where probabilistic constraints are utilized to enforce voltage regulation with a prescribed probability. To enable a computationally affordable solution approach, a convex reformulation of the OPF task is obtained by resorting to i) pertinent linear approximations of the power flow equations, and ii) convex approximations of the chance constraints. Particularly, the approximate chance constraints provide conservative boundsmore » that hold for arbitrary distributions of the forecasting errors. An adaptive optimization strategy is then obtained by embedding the proposed OPF task into a model predictive control framework.« less

  10. Water supply pipe dimensioning using hydraulic power dissipation

    NASA Astrophysics Data System (ADS)

    Sreemathy, J. R.; Rashmi, G.; Suribabu, C. R.

    2017-07-01

    Proper sizing of the pipe component of water distribution networks play an important role in the overall design of the any water supply system. Several approaches have been applied for the design of networks from an economical point of view. Traditional optimization techniques and population based stochastic algorithms are widely used to optimize the networks. But the use of these approaches is mostly found to be limited to the research level due to difficulties in understanding by the practicing engineers, design engineers and consulting firms. More over due to non-availability of commercial software related to the optimal design of water distribution system,it forces the practicing engineers to adopt either trial and error or experience-based design. This paper presents a simple approach based on power dissipation in each pipeline as a parameter to design the network economically, but not to the level of global minimum cost.

  11. On Per-Phase Topology Control and Switching in Emerging Distribution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Mousavi, Mirrasoul J.

    This paper presents a new concept and approach for topology control and switching in distribution systems by extending the traditional circuit switching to laterals and single-phase loads. Voltage unbalance and other key performance indicators including voltage magnitudes, line loading, and energy losses are used to characterize and demonstrate the technical value of optimizing system topology on a per-phase basis in response to feeder conditions. The near-optimal per-phase topology control is defined as a series of hierarchical optimization problems. The proposed approach is respectively applied to IEEE 13-bus and 123-bus test systems for demonstration, which included the impact of integrating electricmore » vehicles (EVs) in the test circuit. It is concluded that the proposed approach can be effectively leveraged to improve voltage profiles with electric vehicles, the extent of which depends upon the performance of the base case without EVs.« less

  12. Air data system optimization using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Deshpande, Samir M.; Kumar, Renjith R.; Seywald, Hans; Siemers, Paul M., III

    1992-01-01

    An optimization method for flush-orifice air data system design has been developed using the Genetic Algorithm approach. The optimization of the orifice array minimizes the effect of normally distributed random noise in the pressure readings on the calculation of air data parameters, namely, angle of attack, sideslip angle and freestream dynamic pressure. The optimization method is applied to the design of Pressure Distribution/Air Data System experiment (PD/ADS) proposed for inclusion in the Aeroassist Flight Experiment (AFE). Results obtained by the Genetic Algorithm method are compared to the results obtained by conventional gradient search method.

  13. On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.

    2004-01-01

    Differential Evolution (DE) is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. These approaches are implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.

  14. An optimal control strategy for hybrid actuator systems: Application to an artificial muscle with electric motor assist.

    PubMed

    Ishihara, Koji; Morimoto, Jun

    2018-03-01

    Humans use multiple muscles to generate such joint movements as an elbow motion. With multiple lightweight and compliant actuators, joint movements can also be efficiently generated. Similarly, robots can use multiple actuators to efficiently generate a one degree of freedom movement. For this movement, the desired joint torque must be properly distributed to each actuator. One approach to cope with this torque distribution problem is an optimal control method. However, solving the optimal control problem at each control time step has not been deemed a practical approach due to its large computational burden. In this paper, we propose a computationally efficient method to derive an optimal control strategy for a hybrid actuation system composed of multiple actuators, where each actuator has different dynamical properties. We investigated a singularly perturbed system of the hybrid actuator model that subdivided the original large-scale control problem into smaller subproblems so that the optimal control outputs for each actuator can be derived at each control time step and applied our proposed method to our pneumatic-electric hybrid actuator system. Our method derived a torque distribution strategy for the hybrid actuator by dealing with the difficulty of solving real-time optimal control problems. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  15. Graphical models for optimal power flow

    DOE PAGES

    Dvijotham, Krishnamurthy; Chertkov, Michael; Van Hentenryck, Pascal; ...

    2016-09-13

    Optimal power flow (OPF) is the central optimization problem in electric power grids. Although solved routinely in the course of power grid operations, it is known to be strongly NP-hard in general, and weakly NP-hard over tree networks. In this paper, we formulate the optimal power flow problem over tree networks as an inference problem over a tree-structured graphical model where the nodal variables are low-dimensional vectors. We adapt the standard dynamic programming algorithm for inference over a tree-structured graphical model to the OPF problem. Combining this with an interval discretization of the nodal variables, we develop an approximation algorithmmore » for the OPF problem. Further, we use techniques from constraint programming (CP) to perform interval computations and adaptive bound propagation to obtain practically efficient algorithms. Compared to previous algorithms that solve OPF with optimality guarantees using convex relaxations, our approach is able to work for arbitrary tree-structured distribution networks and handle mixed-integer optimization problems. Further, it can be implemented in a distributed message-passing fashion that is scalable and is suitable for “smart grid” applications like control of distributed energy resources. In conclusion, numerical evaluations on several benchmark networks show that practical OPF problems can be solved effectively using this approach.« less

  16. Optimal transformations leading to normal distributions of positron emission tomography standardized uptake values.

    PubMed

    Scarpelli, Matthew; Eickhoff, Jens; Cuna, Enrique; Perlman, Scott; Jeraj, Robert

    2018-01-30

    The statistical analysis of positron emission tomography (PET) standardized uptake value (SUV) measurements is challenging due to the skewed nature of SUV distributions. This limits utilization of powerful parametric statistical models for analyzing SUV measurements. An ad-hoc approach, which is frequently used in practice, is to blindly use a log transformation, which may or may not result in normal SUV distributions. This study sought to identify optimal transformations leading to normally distributed PET SUVs extracted from tumors and assess the effects of therapy on the optimal transformations. The optimal transformation for producing normal distributions of tumor SUVs was identified by iterating the Box-Cox transformation parameter (λ) and selecting the parameter that maximized the Shapiro-Wilk P-value. Optimal transformations were identified for tumor SUV max distributions at both pre and post treatment. This study included 57 patients that underwent 18 F-fluorodeoxyglucose ( 18 F-FDG) PET scans (publically available dataset). In addition, to test the generality of our transformation methodology, we included analysis of 27 patients that underwent 18 F-Fluorothymidine ( 18 F-FLT) PET scans at our institution. After applying the optimal Box-Cox transformations, neither the pre nor the post treatment 18 F-FDG SUV distributions deviated significantly from normality (P  >  0.10). Similar results were found for 18 F-FLT PET SUV distributions (P  >  0.10). For both 18 F-FDG and 18 F-FLT SUV distributions, the skewness and kurtosis increased from pre to post treatment, leading to a decrease in the optimal Box-Cox transformation parameter from pre to post treatment. There were types of distributions encountered for both 18 F-FDG and 18 F-FLT where a log transformation was not optimal for providing normal SUV distributions. Optimization of the Box-Cox transformation, offers a solution for identifying normal SUV transformations for when the log transformation is insufficient. The log transformation is not always the appropriate transformation for producing normally distributed PET SUVs.

  17. Optimal transformations leading to normal distributions of positron emission tomography standardized uptake values

    NASA Astrophysics Data System (ADS)

    Scarpelli, Matthew; Eickhoff, Jens; Cuna, Enrique; Perlman, Scott; Jeraj, Robert

    2018-02-01

    The statistical analysis of positron emission tomography (PET) standardized uptake value (SUV) measurements is challenging due to the skewed nature of SUV distributions. This limits utilization of powerful parametric statistical models for analyzing SUV measurements. An ad-hoc approach, which is frequently used in practice, is to blindly use a log transformation, which may or may not result in normal SUV distributions. This study sought to identify optimal transformations leading to normally distributed PET SUVs extracted from tumors and assess the effects of therapy on the optimal transformations. Methods. The optimal transformation for producing normal distributions of tumor SUVs was identified by iterating the Box-Cox transformation parameter (λ) and selecting the parameter that maximized the Shapiro-Wilk P-value. Optimal transformations were identified for tumor SUVmax distributions at both pre and post treatment. This study included 57 patients that underwent 18F-fluorodeoxyglucose (18F-FDG) PET scans (publically available dataset). In addition, to test the generality of our transformation methodology, we included analysis of 27 patients that underwent 18F-Fluorothymidine (18F-FLT) PET scans at our institution. Results. After applying the optimal Box-Cox transformations, neither the pre nor the post treatment 18F-FDG SUV distributions deviated significantly from normality (P  >  0.10). Similar results were found for 18F-FLT PET SUV distributions (P  >  0.10). For both 18F-FDG and 18F-FLT SUV distributions, the skewness and kurtosis increased from pre to post treatment, leading to a decrease in the optimal Box-Cox transformation parameter from pre to post treatment. There were types of distributions encountered for both 18F-FDG and 18F-FLT where a log transformation was not optimal for providing normal SUV distributions. Conclusion. Optimization of the Box-Cox transformation, offers a solution for identifying normal SUV transformations for when the log transformation is insufficient. The log transformation is not always the appropriate transformation for producing normally distributed PET SUVs.

  18. Simulation-Driven Design Approach for Design and Optimization of Blankholder

    NASA Astrophysics Data System (ADS)

    Sravan, Tatipala; Suddapalli, Nikshep R.; Johan, Pilthammar; Mats, Sigvant; Christian, Johansson

    2017-09-01

    Reliable design of stamping dies is desired for efficient and safe production. The design of stamping dies are today mostly based on casting feasibility, although it can also be based on criteria for fatigue, stiffness, safety, economy. Current work presents an approach that is built on Simulation Driven Design, enabling Design Optimization to address this issue. A structural finite element model of a stamping die, used to produce doors for Volvo V70/S80 car models, is studied. This die had developed cracks during its usage. To understand the behaviour of stress distribution in the stamping die, structural analysis of the die is conducted and critical regions with high stresses are identified. The results from structural FE-models are compared with analytical calculations pertaining to fatigue properties of the material. To arrive at an optimum design with increased stiffness and lifetime, topology and free-shape optimization are performed. In the optimization routine, identified critical regions of the die are set as design variables. Other optimization variables are set to maintain manufacturability of the resultant stamping die. Thereafter a CAD model is built based on geometrical results from topology and free-shape optimizations. Then the CAD model is subjected to structural analysis to visualize the new stress distribution. This process is iterated until a satisfactory result is obtained. The final results show reduction in stress levels by 70% with a more homogeneous distribution. Even though mass of the die is increased by 17 %, overall, a stiffer die with better lifetime is obtained. Finally, by reflecting on the entire process, a coordinated approach to handle such situations efficiently is presented.

  19. Inverse approaches with lithologic information for a regional groundwater system in southwest Kansas

    USGS Publications Warehouse

    Tsou, Ming‐shu; Perkins, S.P.; Zhan, X.; Whittemore, Donald O.; Zheng, Lingyun

    2006-01-01

    Two practical approaches incorporating lithologic information for groundwater modeling calibration are presented to estimate distributed, cell-based hydraulic conductivity. The first approach is to estimate optimal hydraulic conductivities for geological materials by incorporating thickness distribution of materials into inverse modeling. In the second approach, residuals for the groundwater model solution are minimized according to a globalized Newton method with the aid of a Geographic Information System (GIS) to calculate a cell-wise distribution of hydraulic conductivity. Both approaches honor geologic data and were effective in characterizing the heterogeneity of a regional groundwater modeling system in southwest Kansas. ?? 2005 Elsevier Ltd All rights reserved.

  20. Optimal planning and design of a renewable energy based supply system for microgrids

    DOE PAGES

    Hafez, Omar; Bhattacharya, Kankar

    2012-03-03

    This paper presents a technique for optimal planning and design of hybrid renewable energy systems for microgrid applications. The Distributed Energy Resources Customer Adoption Model (DER-CAM) is used to determine the optimal size and type of distributed energy resources (DERs) and their operating schedules for a sample utility distribution system. Using the DER-CAM results, an evaluation is performed to evaluate the electrical performance of the distribution circuit if the DERs selected by the DER-CAM optimization analyses are incorporated. Results of analyses regarding the economic benefits of utilizing the optimal locations identified for the selected DER within the system are alsomore » presented. The actual Brookhaven National Laboratory (BNL) campus electrical network is used as an example to show the effectiveness of this approach. The results show that these technical and economic analyses of hybrid renewable energy systems are essential for the efficient utilization of renewable energy resources for microgird applications.« less

  1. Optimizing decentralized production-distribution planning problem in a multi-period supply chain network under uncertainty

    NASA Astrophysics Data System (ADS)

    Nourifar, Raheleh; Mahdavi, Iraj; Mahdavi-Amiri, Nezam; Paydar, Mohammad Mahdi

    2017-09-01

    Decentralized supply chain management is found to be significantly relevant in today's competitive markets. Production and distribution planning is posed as an important optimization problem in supply chain networks. Here, we propose a multi-period decentralized supply chain network model with uncertainty. The imprecision related to uncertain parameters like demand and price of the final product is appropriated with stochastic and fuzzy numbers. We provide mathematical formulation of the problem as a bi-level mixed integer linear programming model. Due to problem's convolution, a structure to solve is developed that incorporates a novel heuristic algorithm based on Kth-best algorithm, fuzzy approach and chance constraint approach. Ultimately, a numerical example is constructed and worked through to demonstrate applicability of the optimization model. A sensitivity analysis is also made.

  2. New estimation architecture for multisensor data fusion

    NASA Astrophysics Data System (ADS)

    Covino, Joseph M.; Griffiths, Barry E.

    1991-07-01

    This paper describes a novel method of hierarchical asynchronous distributed filtering called the Net Information Approach (NIA). The NIA is a Kalman-filter-based estimation scheme for spatially distributed sensors which must retain their local optimality yet require a nearly optimal global estimate. The key idea of the NIA is that each local sensor-dedicated filter tells the global filter 'what I've learned since the last local-to-global transmission,' whereas in other estimation architectures the local-to-global transmission consists of 'what I think now.' An algorithm based on this idea has been demonstrated on a small-scale target-tracking problem with many encouraging results. Feasibility of this approach was demonstrated by comparing NIA performance to an optimal centralized Kalman filter (lower bound) via Monte Carlo simulations.

  3. Aerodynamic design using numerical optimization

    NASA Technical Reports Server (NTRS)

    Murman, E. M.; Chapman, G. T.

    1983-01-01

    The procedure of using numerical optimization methods coupled with computational fluid dynamic (CFD) codes for the development of an aerodynamic design is examined. Several approaches that replace wind tunnel tests, develop pressure distributions and derive designs, or fulfill preset design criteria are presented. The method of Aerodynamic Design by Numerical Optimization (ADNO) is described and illustrated with examples.

  4. A distributed approach to the OPF problem

    NASA Astrophysics Data System (ADS)

    Erseghe, Tomaso

    2015-12-01

    This paper presents a distributed approach to optimal power flow (OPF) in an electrical network, suitable for application in a future smart grid scenario where access to resource and control is decentralized. The non-convex OPF problem is solved by an augmented Lagrangian method, similar to the widely known ADMM algorithm, with the key distinction that penalty parameters are constantly increased. A (weak) assumption on local solver reliability is required to always ensure convergence. A certificate of convergence to a local optimum is available in the case of bounded penalty parameters. For moderate sized networks (up to 300 nodes, and even in the presence of a severe partition of the network), the approach guarantees a performance very close to the optimum, with an appreciably fast convergence speed. The generality of the approach makes it applicable to any (convex or non-convex) distributed optimization problem in networked form. In the comparison with the literature, mostly focused on convex SDP approximations, the chosen approach guarantees adherence to the reference problem, and it also requires a smaller local computational complexity effort.

  5. Robust stochastic optimization for reservoir operation

    NASA Astrophysics Data System (ADS)

    Pan, Limeng; Housh, Mashor; Liu, Pan; Cai, Ximing; Chen, Xin

    2015-01-01

    Optimal reservoir operation under uncertainty is a challenging engineering problem. Application of classic stochastic optimization methods to large-scale problems is limited due to computational difficulty. Moreover, classic stochastic methods assume that the estimated distribution function or the sample inflow data accurately represents the true probability distribution, which may be invalid and the performance of the algorithms may be undermined. In this study, we introduce a robust optimization (RO) approach, Iterative Linear Decision Rule (ILDR), so as to provide a tractable approximation for a multiperiod hydropower generation problem. The proposed approach extends the existing LDR method by accommodating nonlinear objective functions. It also provides users with the flexibility of choosing the accuracy of ILDR approximations by assigning a desired number of piecewise linear segments to each uncertainty. The performance of the ILDR is compared with benchmark policies including the sampling stochastic dynamic programming (SSDP) policy derived from historical data. The ILDR solves both the single and multireservoir systems efficiently. The single reservoir case study results show that the RO method is as good as SSDP when implemented on the original historical inflows and it outperforms SSDP policy when tested on generated inflows with the same mean and covariance matrix as those in history. For the multireservoir case study, which considers water supply in addition to power generation, numerical results show that the proposed approach performs as well as in the single reservoir case study in terms of optimal value and distributional robustness.

  6. Jig-Shape Optimization of a Low-Boom Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2018-01-01

    A simple approach for optimizing the jig-shape is proposed in this study. This simple approach is based on an unconstrained optimization problem and applied to a low-boom supersonic aircraft. In this study, the jig-shape optimization is performed using the two-step approach. First, starting design variables are computed using the least-squares surface fitting technique. Next, the jig-shape is further tuned using a numerical optimization procedure based on an in-house object-oriented optimization tool. During the numerical optimization procedure, a design jig-shape is determined by the baseline jig-shape and basis functions. A total of 12 symmetric mode shapes of the cruise-weight configuration, rigid pitch shape, rigid left and right stabilator rotation shapes, and a residual shape are selected as sixteen basis functions. After three optimization runs, the trim shape error distribution is improved, and the maximum trim shape error of 0.9844 inches of the starting configuration becomes 0.00367 inch by the end of the third optimization run.

  7. Coupled Multi-Disciplinary Optimization for Structural Reliability and Affordability

    NASA Technical Reports Server (NTRS)

    Abumeri, Galib H.; Chamis, Christos C.

    2003-01-01

    A computational simulation method is presented for Non-Deterministic Multidisciplinary Optimization of engine composite materials and structures. A hypothetical engine duct made with ceramic matrix composites (CMC) is evaluated probabilistically in the presence of combined thermo-mechanical loading. The structure is tailored by quantifying the uncertainties in all relevant design variables such as fabrication, material, and loading parameters. The probabilistic sensitivities are used to select critical design variables for optimization. In this paper, two approaches for non-deterministic optimization are presented. The non-deterministic minimization of combined failure stress criterion is carried out by: (1) performing probabilistic evaluation first and then optimization and (2) performing optimization first and then probabilistic evaluation. The first approach shows that the optimization feasible region can be bounded by a set of prescribed probability limits and that the optimization follows the cumulative distribution function between those limits. The second approach shows that the optimization feasible region is bounded by 0.50 and 0.999 probabilities.

  8. A robust optimization model for distribution and evacuation in the disaster response phase

    NASA Astrophysics Data System (ADS)

    Fereiduni, Meysam; Shahanaghi, Kamran

    2017-03-01

    Natural disasters, such as earthquakes, affect thousands of people and can cause enormous financial loss. Therefore, an efficient response immediately following a natural disaster is vital to minimize the aforementioned negative effects. This research paper presents a network design model for humanitarian logistics which will assist in location and allocation decisions for multiple disaster periods. At first, a single-objective optimization model is presented that addresses the response phase of disaster management. This model will help the decision makers to make the most optimal choices in regard to location, allocation, and evacuation simultaneously. The proposed model also considers emergency tents as temporary medical centers. To cope with the uncertainty and dynamic nature of disasters, and their consequences, our multi-period robust model considers the values of critical input data in a set of various scenarios. Second, because of probable disruption in the distribution infrastructure (such as bridges), the Monte Carlo simulation is used for generating related random numbers and different scenarios; the p-robust approach is utilized to formulate the new network. The p-robust approach can predict possible damages along pathways and among relief bases. We render a case study of our robust optimization approach for Tehran's plausible earthquake in region 1. Sensitivity analysis' experiments are proposed to explore the effects of various problem parameters. These experiments will give managerial insights and can guide DMs under a variety of conditions. Then, the performances of the "robust optimization" approach and the "p-robust optimization" approach are evaluated. Intriguing results and practical insights are demonstrated by our analysis on this comparison.

  9. A Reduced Order Model of the Linearized Incompressible Navier-Strokes Equations for the Sensor/Actuator Placement Problem

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.

    2000-01-01

    A reduced order modeling approach of the Navier-Stokes equations is presented for the design of a distributed optimal feedback kernel. This approach is based oil a Krylov subspace method where significant modes of the flow are captured in the model This model is then used in all optimal feedback control design where sensing and actuation is performed oil tile entire flow field. This control design approach yields all optimal feedback kernel which provides insight into the placement of sensors and actuators in the flow field. As all evaluation of this approach, a two-dimensional shear layer and driven cavity flow are investigated.

  10. Optimal Operation of Energy Storage in Power Transmission and Distribution

    NASA Astrophysics Data System (ADS)

    Akhavan Hejazi, Seyed Hossein

    In this thesis, we investigate optimal operation of energy storage units in power transmission and distribution grids. At transmission level, we investigate the problem where an investor-owned independently-operated energy storage system seeks to offer energy and ancillary services in the day-ahead and real-time markets. We specifically consider the case where a significant portion of the power generated in the grid is from renewable energy resources and there exists significant uncertainty in system operation. In this regard, we formulate a stochastic programming framework to choose optimal energy and reserve bids for the storage units that takes into account the fluctuating nature of the market prices due to the randomness in the renewable power generation availability. At distribution level, we develop a comprehensive data set to model various stochastic factors on power distribution networks, with focus on networks that have high penetration of electric vehicle charging load and distributed renewable generation. Furthermore, we develop a data-driven stochastic model for energy storage operation at distribution level, where the distribution of nodal voltage and line power flow are modelled as stochastic functions of the energy storage unit's charge and discharge schedules. In particular, we develop new closed-form stochastic models for such key operational parameters in the system. Our approach is analytical and allows formulating tractable optimization problems. Yet, it does not involve any restricting assumption on the distribution of random parameters, hence, it results in accurate modeling of uncertainties. By considering the specific characteristics of random variables, such as their statistical dependencies and often irregularly-shaped probability distributions, we propose a non-parametric chance-constrained optimization approach to operate and plan energy storage units in power distribution girds. In the proposed stochastic optimization, we consider uncertainty from various elements, such as solar photovoltaic , electric vehicle chargers, and residential baseloads, in the form of discrete probability functions. In the last part of this thesis we address some other resources and concepts for enhancing the operation of power distribution and transmission systems. In particular, we proposed a new framework to determine the best sites, sizes, and optimal payment incentives under special contracts for committed-type DG projects to offset distribution network investment costs. In this framework, the aim is to allocate DGs such that the profit gained by the distribution company is maximized while each DG unit's individual profit is also taken into account to assure that private DG investment remains economical.

  11. Distributed Generation Planning using Peer Enhanced Multi-objective Teaching-Learning based Optimization in Distribution Networks

    NASA Astrophysics Data System (ADS)

    Selvam, Kayalvizhi; Vinod Kumar, D. M.; Siripuram, Ramakanth

    2017-04-01

    In this paper, an optimization technique called peer enhanced teaching learning based optimization (PeTLBO) algorithm is used in multi-objective problem domain. The PeTLBO algorithm is parameter less so it reduced the computational burden. The proposed peer enhanced multi-objective based TLBO (PeMOTLBO) algorithm has been utilized to find a set of non-dominated optimal solutions [distributed generation (DG) location and sizing in distribution network]. The objectives considered are: real power loss and the voltage deviation subjected to voltage limits and maximum penetration level of DG in distribution network. Since the DG considered is capable of injecting real and reactive power to the distribution network the power factor is considered as 0.85 lead. The proposed peer enhanced multi-objective optimization technique provides different trade-off solutions in order to find the best compromise solution a fuzzy set theory approach has been used. The effectiveness of this proposed PeMOTLBO is tested on IEEE 33-bus and Indian 85-bus distribution system. The performance is validated with Pareto fronts and two performance metrics (C-metric and S-metric) by comparing with robust multi-objective technique called non-dominated sorting genetic algorithm-II and also with the basic TLBO.

  12. Quantification of Uncertainty in the Flood Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Kasiapillai Sudalaimuthu, K.; He, J.; Swami, D.

    2017-12-01

    Flood frequency analysis (FFA) is usually carried out for planning and designing of water resources and hydraulic structures. Owing to the existence of variability in sample representation, selection of distribution and estimation of distribution parameters, the estimation of flood quantile has been always uncertain. Hence, suitable approaches must be developed to quantify the uncertainty in the form of prediction interval as an alternate to deterministic approach. The developed framework in the present study to include uncertainty in the FFA discusses a multi-objective optimization approach to construct the prediction interval using ensemble of flood quantile. Through this approach, an optimal variability of distribution parameters is identified to carry out FFA. To demonstrate the proposed approach, annual maximum flow data from two gauge stations (Bow river at Calgary and Banff, Canada) are used. The major focus of the present study was to evaluate the changes in magnitude of flood quantiles due to the recent extreme flood event occurred during the year 2013. In addition, the efficacy of the proposed method was further verified using standard bootstrap based sampling approaches and found that the proposed method is reliable in modeling extreme floods as compared to the bootstrap methods.

  13. Improved Test Planning and Analysis Through the Use of Advanced Statistical Methods

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.; Maxwell, Katherine A.; Glass, David E.; Vaughn, Wallace L.; Barger, Weston; Cook, Mylan

    2016-01-01

    The goal of this work is, through computational simulations, to provide statistically-based evidence to convince the testing community that a distributed testing approach is superior to a clustered testing approach for most situations. For clustered testing, numerous, repeated test points are acquired at a limited number of test conditions. For distributed testing, only one or a few test points are requested at many different conditions. The statistical techniques of Analysis of Variance (ANOVA), Design of Experiments (DOE) and Response Surface Methods (RSM) are applied to enable distributed test planning, data analysis and test augmentation. The D-Optimal class of DOE is used to plan an optimally efficient single- and multi-factor test. The resulting simulated test data are analyzed via ANOVA and a parametric model is constructed using RSM. Finally, ANOVA can be used to plan a second round of testing to augment the existing data set with new data points. The use of these techniques is demonstrated through several illustrative examples. To date, many thousands of comparisons have been performed and the results strongly support the conclusion that the distributed testing approach outperforms the clustered testing approach.

  14. Unified control/structure design and modeling research

    NASA Technical Reports Server (NTRS)

    Mingori, D. L.; Gibson, J. S.; Blelloch, P. A.; Adamian, A.

    1986-01-01

    To demonstrate the applicability of the control theory for distributed systems to large flexible space structures, research was focused on a model of a space antenna which consists of a rigid hub, flexible ribs, and a mesh reflecting surface. The space antenna model used is discussed along with the finite element approximation of the distributed model. The basic control problem is to design an optimal or near-optimal compensator to suppress the linear vibrations and rigid-body displacements of the structure. The application of an infinite dimensional Linear Quadratic Gaussian (LQG) control theory to flexible structure is discussed. Two basic approaches for robustness enhancement were investigated: loop transfer recovery and sensitivity optimization. A third approach synthesized from elements of these two basic approaches is currently under development. The control driven finite element approximation of flexible structures is discussed. Three sets of finite element basic vectors for computing functional control gains are compared. The possibility of constructing a finite element scheme to approximate the infinite dimensional Hamiltonian system directly, instead of indirectly is discussed.

  15. A systematic approach to designing reliable VV optimization methodology: assessment of internal validity of echocardiographic, electrocardiographic and haemodynamic optimization of cardiac resynchronization therapy.

    PubMed

    Kyriacou, Andreas; Li Kam Wa, Matthew E; Pabari, Punam A; Unsworth, Beth; Baruah, Resham; Willson, Keith; Peters, Nicholas S; Kanagaratnam, Prapa; Hughes, Alun D; Mayet, Jamil; Whinnett, Zachary I; Francis, Darrel P

    2013-08-10

    In atrial fibrillation (AF), VV optimization of biventricular pacemakers can be examined in isolation. We used this approach to evaluate internal validity of three VV optimization methods by three criteria. Twenty patients (16 men, age 75 ± 7) in AF were optimized, at two paced heart rates, by LVOT VTI (flow), non-invasive arterial pressure, and ECG (minimizing QRS duration). Each optimization method was evaluated for: singularity (unique peak of function), reproducibility of optimum, and biological plausibility of the distribution of optima. The reproducibility (standard deviation of the difference, SDD) of the optimal VV delay was 10 ms for pressure, versus 8 ms (p=ns) for QRS and 34 ms (p<0.01) for flow. Singularity of optimum was 85% for pressure, 63% for ECG and 45% for flow (Chi(2)=10.9, p<0.005). The distribution of pressure optima was biologically plausible, with 80% LV pre-excited (p=0.007). The distributions of ECG (55% LV pre-excitation) and flow (45% LV pre-excitation) optima were no different to random (p=ns). The pressure-derived optimal VV delay is unaffected by the paced rate: SDD between slow and fast heart rate is 9 ms, no different from the reproducibility SDD at both heart rates. Using non-invasive arterial pressure, VV delay optimization by parabolic fitting is achievable with good precision, satisfying all 3 criteria of internal validity. VV optimum is unaffected by heart rate. Neither QRS minimization nor LVOT VTI satisfy all validity criteria, and therefore seem weaker candidate modalities for VV optimization. AF, unlinking interventricular from atrioventricular delay, uniquely exposes resynchronization concepts to experimental scrutiny. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. The genomic structure: proof of the role of non-coding DNA.

    PubMed

    Bouaynaya, Nidhal; Schonfeld, Dan

    2006-01-01

    We prove that the introns play the role of a decoy in absorbing mutations in the same way hollow uninhabited structures are used by the military to protect important installations. Our approach is based on a probability of error analysis, where errors are mutations which occur in the exon sequences. We derive the optimal exon length distribution, which minimizes the probability of error in the genome. Furthermore, to understand how can Nature generate the optimal distribution, we propose a diffusive random walk model for exon generation throughout evolution. This model results in an alpha stable exon length distribution, which is asymptotically equivalent to the optimal distribution. Experimental results show that both distributions accurately fit the real data. Given that introns also drive biological evolution by increasing the rate of unequal crossover between genes, we conclude that the role of introns is to maintain a genius balance between stability and adaptability in eukaryotic genomes.

  17. A robust hybrid fuzzy-simulated annealing-intelligent water drops approach for tuning a distribution static compensator nonlinear controller in a distribution system

    NASA Astrophysics Data System (ADS)

    Bagheri Tolabi, Hajar; Hosseini, Rahil; Shakarami, Mahmoud Reza

    2016-06-01

    This article presents a novel hybrid optimization approach for a nonlinear controller of a distribution static compensator (DSTATCOM). The DSTATCOM is connected to a distribution system with the distributed generation units. The nonlinear control is based on partial feedback linearization. Two proportional-integral-derivative (PID) controllers regulate the voltage and track the output in this control system. In the conventional scheme, the trial-and-error method is used to determine the PID controller coefficients. This article uses a combination of a fuzzy system, simulated annealing (SA) and intelligent water drops (IWD) algorithms to optimize the parameters of the controllers. The obtained results reveal that the response of the optimized controlled system is effectively improved by finding a high-quality solution. The results confirm that using the tuning method based on the fuzzy-SA-IWD can significantly decrease the settling and rising times, the maximum overshoot and the steady-state error of the voltage step response of the DSTATCOM. The proposed hybrid tuning method for the partial feedback linearizing (PFL) controller achieved better regulation of the direct current voltage for the capacitor within the DSTATCOM. Furthermore, in the event of a fault the proposed controller tuned by the fuzzy-SA-IWD method showed better performance than the conventional controller or the PFL controller without optimization by the fuzzy-SA-IWD method with regard to both fault duration and clearing times.

  18. Ecosystem Services Approaches to Restoring a Sustainable Chesapeake Bay and its Tributary Watersheds

    EPA Science Inventory

    Within this set of reports and papers, the authors developed an optimization framework to examine how incorporating selected co-benefits (carbon sequestration, recreation/hunting, air quality) of nutrient reductions alters their optimal distribution in the watershed. They used th...

  19. Optimized growth and reorientation of anisotropic material based on evolution equations

    NASA Astrophysics Data System (ADS)

    Jantos, Dustin R.; Junker, Philipp; Hackl, Klaus

    2018-07-01

    Modern high-performance materials have inherent anisotropic elastic properties. The local material orientation can thus be considered to be an additional design variable for the topology optimization of structures containing such materials. In our previous work, we introduced a variational growth approach to topology optimization for isotropic, linear-elastic materials. We solved the optimization problem purely by application of Hamilton's principle. In this way, we were able to determine an evolution equation for the spatial distribution of density mass, which can be evaluated in an iterative process within a solitary finite element environment. We now add the local material orientation described by a set of three Euler angles as additional design variables into the three-dimensional model. This leads to three additional evolution equations that can be separately evaluated for each (material) point. Thus, no additional field unknown within the finite element approach is needed, and the evolution of the spatial distribution of density mass and the evolution of the Euler angles can be evaluated simultaneously.

  20. Metaheuristic simulation optimisation for the stochastic multi-retailer supply chain

    NASA Astrophysics Data System (ADS)

    Omar, Marina; Mustaffa, Noorfa Haszlinna H.; Othman, Siti Norsyahida

    2013-04-01

    Supply Chain Management (SCM) is an important activity in all producing facilities and in many organizations to enable vendors, manufacturers and suppliers to interact gainfully and plan optimally their flow of goods and services. A simulation optimization approach has been widely used in research nowadays on finding the best solution for decision-making process in Supply Chain Management (SCM) that generally faced a complexity with large sources of uncertainty and various decision factors. Metahueristic method is the most popular simulation optimization approach. However, very few researches have applied this approach in optimizing the simulation model for supply chains. Thus, this paper interested in evaluating the performance of metahueristic method for stochastic supply chains in determining the best flexible inventory replenishment parameters that minimize the total operating cost. The simulation optimization model is proposed based on the Bees algorithm (BA) which has been widely applied in engineering application such as training neural networks for pattern recognition. BA is a new member of meta-heuristics. BA tries to model natural behavior of honey bees in food foraging. Honey bees use several mechanisms like waggle dance to optimally locate food sources and to search new ones. This makes them a good candidate for developing new algorithms for solving optimization problems. This model considers an outbound centralised distribution system consisting of one supplier and 3 identical retailers and is assumed to be independent and identically distributed with unlimited supply capacity at supplier.

  1. The effect of model uncertainty on some optimal routing problems

    NASA Technical Reports Server (NTRS)

    Mohanty, Bibhu; Cassandras, Christos G.

    1991-01-01

    The effect of model uncertainties on optimal routing in a system of parallel queues is examined. The uncertainty arises in modeling the service time distribution for the customers (jobs, packets) to be served. For a Poisson arrival process and Bernoulli routing, the optimal mean system delay generally depends on the variance of this distribution. However, as the input traffic load approaches the system capacity the optimal routing assignment and corresponding mean system delay are shown to converge to a variance-invariant point. The implications of these results are examined in the context of gradient-based routing algorithms. An example of a model-independent algorithm using online gradient estimation is also included.

  2. Comparison of linear and nonlinear programming approaches for "worst case dose" and "minmax" robust optimization of intensity-modulated proton therapy dose distributions.

    PubMed

    Zaghian, Maryam; Cao, Wenhua; Liu, Wei; Kardar, Laleh; Randeniya, Sharmalee; Mohan, Radhe; Lim, Gino

    2017-03-01

    Robust optimization of intensity-modulated proton therapy (IMPT) takes uncertainties into account during spot weight optimization and leads to dose distributions that are resilient to uncertainties. Previous studies demonstrated benefits of linear programming (LP) for IMPT in terms of delivery efficiency by considerably reducing the number of spots required for the same quality of plans. However, a reduction in the number of spots may lead to loss of robustness. The purpose of this study was to evaluate and compare the performance in terms of plan quality and robustness of two robust optimization approaches using LP and nonlinear programming (NLP) models. The so-called "worst case dose" and "minmax" robust optimization approaches and conventional planning target volume (PTV)-based optimization approach were applied to designing IMPT plans for five patients: two with prostate cancer, one with skull-based cancer, and two with head and neck cancer. For each approach, both LP and NLP models were used. Thus, for each case, six sets of IMPT plans were generated and assessed: LP-PTV-based, NLP-PTV-based, LP-worst case dose, NLP-worst case dose, LP-minmax, and NLP-minmax. The four robust optimization methods behaved differently from patient to patient, and no method emerged as superior to the others in terms of nominal plan quality and robustness against uncertainties. The plans generated using LP-based robust optimization were more robust regarding patient setup and range uncertainties than were those generated using NLP-based robust optimization for the prostate cancer patients. However, the robustness of plans generated using NLP-based methods was superior for the skull-based and head and neck cancer patients. Overall, LP-based methods were suitable for the less challenging cancer cases in which all uncertainty scenarios were able to satisfy tight dose constraints, while NLP performed better in more difficult cases in which most uncertainty scenarios were hard to meet tight dose limits. For robust optimization, the worst case dose approach was less sensitive to uncertainties than was the minmax approach for the prostate and skull-based cancer patients, whereas the minmax approach was superior for the head and neck cancer patients. The robustness of the IMPT plans was remarkably better after robust optimization than after PTV-based optimization, and the NLP-PTV-based optimization outperformed the LP-PTV-based optimization regarding robustness of clinical target volume coverage. In addition, plans generated using LP-based methods had notably fewer scanning spots than did those generated using NLP-based methods. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  3. Optimal Sizing and Placement of Battery Energy Storage in Distribution System Based on Solar Size for Voltage Regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazaripouya, Hamidreza; Wang, Yubo; Chu, Peter

    2016-07-26

    This paper proposes a new strategy to achieve voltage regulation in distributed power systems in the presence of solar energy sources and battery storage systems. The goal is to find the minimum size of battery storage and its corresponding location in the network based on the size and place of the integrated solar generation. The proposed method formulates the problem by employing the network impedance matrix to obtain an analytical solution instead of using a recursive algorithm such as power flow. The required modifications for modeling the slack and PV buses (generator buses) are utilized to increase the accuracy ofmore » the approach. The use of reactive power control to regulate the voltage regulation is not always an optimal solution as in distribution systems R/X is large. In this paper the minimum size and the best place of battery storage is achieved by optimizing the amount of both active and reactive power exchanged by battery storage and its gridtie inverter (GTI) based on the network topology and R/X ratios in the distribution system. Simulation results for the IEEE 14-bus system verify the effectiveness of the proposed approach.« less

  4. Optimal service distribution in WSN service system subject to data security constraints.

    PubMed

    Wu, Zhao; Xiong, Naixue; Huang, Yannong; Gu, Qiong

    2014-08-04

    Services composition technology provides a flexible approach to building Wireless Sensor Network (WSN) Service Applications (WSA) in a service oriented tasking system for WSN. Maintaining the data security of WSA is one of the most important goals in sensor network research. In this paper, we consider a WSN service oriented tasking system in which the WSN Services Broker (WSB), as the resource management center, can map the service request from user into a set of atom-services (AS) and send them to some independent sensor nodes (SN) for parallel execution. The distribution of ASs among these SNs affects the data security as well as the reliability and performance of WSA because these SNs can be of different and independent specifications. By the optimal service partition into the ASs and their distribution among SNs, the WSB can provide the maximum possible service reliability and/or expected performance subject to data security constraints. This paper proposes an algorithm of optimal service partition and distribution based on the universal generating function (UGF) and the genetic algorithm (GA) approach. The experimental analysis is presented to demonstrate the feasibility of the suggested algorithm.

  5. Optimal Service Distribution in WSN Service System Subject to Data Security Constraints

    PubMed Central

    Wu, Zhao; Xiong, Naixue; Huang, Yannong; Gu, Qiong

    2014-01-01

    Services composition technology provides a flexible approach to building Wireless Sensor Network (WSN) Service Applications (WSA) in a service oriented tasking system for WSN. Maintaining the data security of WSA is one of the most important goals in sensor network research. In this paper, we consider a WSN service oriented tasking system in which the WSN Services Broker (WSB), as the resource management center, can map the service request from user into a set of atom-services (AS) and send them to some independent sensor nodes (SN) for parallel execution. The distribution of ASs among these SNs affects the data security as well as the reliability and performance of WSA because these SNs can be of different and independent specifications. By the optimal service partition into the ASs and their distribution among SNs, the WSB can provide the maximum possible service reliability and/or expected performance subject to data security constraints. This paper proposes an algorithm of optimal service partition and distribution based on the universal generating function (UGF) and the genetic algorithm (GA) approach. The experimental analysis is presented to demonstrate the feasibility of the suggested algorithm. PMID:25093346

  6. Reinforcement Learning in Distributed Domains: Beyond Team Games

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Sill, Joseph; Turner, Kagan

    2000-01-01

    Distributed search algorithms are crucial in dealing with large optimization problems, particularly when a centralized approach is not only impractical but infeasible. Many machine learning concepts have been applied to search algorithms in order to improve their effectiveness. In this article we present an algorithm that blends Reinforcement Learning (RL) and hill climbing directly, by using the RL signal to guide the exploration step of a hill climbing algorithm. We apply this algorithm to the domain of a constellations of communication satellites where the goal is to minimize the loss of importance weighted data. We introduce the concept of 'ghost' traffic, where correctly setting this traffic induces the satellites to act to optimize the world utility. Our results indicated that the bi-utility search introduced in this paper outperforms both traditional hill climbing algorithms and distributed RL approaches such as team games.

  7. The Design of Large Geothermally Powered Air-Conditioning Systems Using an Optimal Control Approach

    NASA Astrophysics Data System (ADS)

    Horowitz, F. G.; O'Bryan, L.

    2010-12-01

    The direct use of geothermal energy from Hot Sedimentary Aquifer (HSA) systems for large scale air-conditioning projects involves many tradeoffs. Aspects contributing towards making design decisions for such systems include: the inadequately known permeability and thermal distributions underground; the combinatorial complexity of selecting pumping and chiller systems to match the underground conditions to the air-conditioning requirements; the future price variations of the electricity market; any uncertainties in future Carbon pricing; and the applicable discount rate for evaluating the financial worth of the project. Expanding upon the previous work of Horowitz and Hornby (2007), we take an optimal control approach to the design of such systems. By building a model of the HSA system, the drilling process, the pumping process, and the chilling operations, along with a specified objective function, we can write a Hamiltonian for the system. Using the standard techniques of optimal control, we use gradients of the Hamiltonian to find the optimal design for any given set of permeabilities, thermal distributions, and the other engineering and financial parameters. By using this approach, optimal system designs could potentially evolve in response to the actual conditions encountered during drilling. Because the granularity of some current models is so coarse, we will be able to compare our optimal control approach to an exhaustive search of parameter space. We will present examples from the conditions appropriate for the Perth Basin of Western Australia, where the WA Geothermal Centre of Excellence is involved with two large air-conditioning projects using geothermal water from deep aquifers at 75 to 95 degrees C.

  8. Optimizing Teleportation Cost in Distributed Quantum Circuits

    NASA Astrophysics Data System (ADS)

    Zomorodi-Moghadam, Mariam; Houshmand, Mahboobeh; Houshmand, Monireh

    2018-03-01

    The presented work provides a procedure for optimizing the communication cost of a distributed quantum circuit (DQC) in terms of the number of qubit teleportations. Because of technology limitations which do not allow large quantum computers to work as a single processing element, distributed quantum computation is an appropriate solution to overcome this difficulty. Previous studies have applied ad-hoc solutions to distribute a quantum system for special cases and applications. In this study, a general approach is proposed to optimize the number of teleportations for a DQC consisting of two spatially separated and long-distance quantum subsystems. To this end, different configurations of locations for executing gates whose qubits are in distinct subsystems are considered and for each of these configurations, the proposed algorithm is run to find the minimum number of required teleportations. Finally, the configuration which leads to the minimum number of teleportations is reported. The proposed method can be used as an automated procedure to find the configuration with the optimal communication cost for the DQC. This cost can be used as a basic measure of the communication cost for future works in the distributed quantum circuits.

  9. Publications | Integrated Energy Solutions | NREL

    Science.gov Websites

    Publications 2018 Federal Tax Incentives for Energy Storage Systems Solar Plus: Optimization of Distributed Resiliency REopt: A Platform for Energy System Integration and Optimization Solar Plus: A Holistic Approach Barriers for Residential Solar Photovoltaics with Energy Storage 2016 Quality Assurance Framework for Mini

  10. Horsetail matching: a flexible approach to optimization under uncertainty

    NASA Astrophysics Data System (ADS)

    Cook, L. W.; Jarrett, J. P.

    2018-04-01

    It is important to design engineering systems to be robust with respect to uncertainties in the design process. Often, this is done by considering statistical moments, but over-reliance on statistical moments when formulating a robust optimization can produce designs that are stochastically dominated by other feasible designs. This article instead proposes a formulation for optimization under uncertainty that minimizes the difference between a design's cumulative distribution function and a target. A standard target is proposed that produces stochastically non-dominated designs, but the formulation also offers enough flexibility to recover existing approaches for robust optimization. A numerical implementation is developed that employs kernels to give a differentiable objective function. The method is applied to algebraic test problems and a robust transonic airfoil design problem where it is compared to multi-objective, weighted-sum and density matching approaches to robust optimization; several advantages over these existing methods are demonstrated.

  11. Cell-based medicinal chemistry optimization of high-throughput screening (HTS) hits for orally active antimalarials. Part 1: challenges in potency and absorption, distribution, metabolism, excretion/pharmacokinetics (ADME/PK).

    PubMed

    Chatterjee, Arnab K

    2013-10-24

    Malaria represents a significant health issue, and novel and effective drugs are needed to address parasite resistance that has emerged to the current drug arsenal. Antimalarial drug discovery has historically benefited from a whole-cell (phenotypic) screening approach to identify lead molecules. This approach has been utilized by several groups to optimize weakly active antimalarial pharmacophores, such as the quinolone scaffold, to yield potent and highly efficacious compounds that are now poised to enter clinical trials. More recently, GNF/Novartis, GSK, and others have employed the same approach in high-throughput screening (HTS) of large compound libraries to find novel scaffolds that have also been optimized to clinical candidates by GNF/Novartis. This perspective outlines some of the inherent challenges in cell-based medicinal chemistry optimization, including optimization of oral exposure and hERG activity.

  12. Global Optimization of Emergency Evacuation Assignments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Lee; Yuan, Fang; Chin, Shih-Miao

    2006-01-01

    Conventional emergency evacuation plans often assign evacuees to fixed routes or destinations based mainly on geographic proximity. Such approaches can be inefficient if the roads are congested, blocked, or otherwise dangerous because of the emergency. By not constraining evacuees to prespecified destinations, a one-destination evacuation approach provides flexibility in the optimization process. We present a framework for the simultaneous optimization of evacuation-traffic distribution and assignment. Based on the one-destination evacuation concept, we can obtain the optimal destination and route assignment by solving a one-destination traffic-assignment problem on a modified network representation. In a county-wide, large-scale evacuation case study, the one-destinationmore » model yields substantial improvement over the conventional approach, with the overall evacuation time reduced by more than 60 percent. More importantly, emergency planners can easily implement this framework by instructing evacuees to go to destinations that the one-destination optimization process selects.« less

  13. Optimization of the graph model of the water conduit network, based on the approach of search space reducing

    NASA Astrophysics Data System (ADS)

    Korovin, Iakov S.; Tkachenko, Maxim G.

    2018-03-01

    In this paper we present a heuristic approach, improving the efficiency of methods, used for creation of efficient architecture of water distribution networks. The essence of the approach is a procedure of search space reduction the by limiting the range of available pipe diameters that can be used for each edge of the network graph. In order to proceed the reduction, two opposite boundary scenarios for the distribution of flows are analysed, after which the resulting range is further narrowed by applying a flow rate limitation for each edge of the network. The first boundary scenario provides the most uniform distribution of the flow in the network, the opposite scenario created the net with the highest possible flow level. The parameters of both distributions are calculated by optimizing systems of quadratic functions in a confined space, which can be effectively performed with small time costs. This approach was used to modify the genetic algorithm (GA). The proposed GA provides a variable number of variants of each gene, according to the number of diameters in list, taking into account flow restrictions. The proposed approach was implemented to the evaluation of a well-known test network - the Hanoi water distribution network [1], the results of research were compared with a classical GA with an unlimited search space. On the test data, the proposed trip significantly reduced the search space and provided faster and more obvious convergence in comparison with the classical version of GA.

  14. A jazz-based approach for optimal setting of pressure reducing valves in water distribution networks

    NASA Astrophysics Data System (ADS)

    De Paola, Francesco; Galdiero, Enzo; Giugni, Maurizio

    2016-05-01

    This study presents a model for valve setting in water distribution networks (WDNs), with the aim of reducing the level of leakage. The approach is based on the harmony search (HS) optimization algorithm. The HS mimics a jazz improvisation process able to find the best solutions, in this case corresponding to valve settings in a WDN. The model also interfaces with the improved version of a popular hydraulic simulator, EPANET 2.0, to check the hydraulic constraints and to evaluate the performances of the solutions. Penalties are introduced in the objective function in case of violation of the hydraulic constraints. The model is applied to two case studies, and the obtained results in terms of pressure reductions are comparable with those of competitive metaheuristic algorithms (e.g. genetic algorithms). The results demonstrate the suitability of the HS algorithm for water network management and optimization.

  15. Finite-dimensional approximation for optimal fixed-order compensation of distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Bernstein, Dennis S.; Rosen, I. G.

    1988-01-01

    In controlling distributed parameter systems it is often desirable to obtain low-order, finite-dimensional controllers in order to minimize real-time computational requirements. Standard approaches to this problem employ model/controller reduction techniques in conjunction with LQG theory. In this paper we consider the finite-dimensional approximation of the infinite-dimensional Bernstein/Hyland optimal projection theory. This approach yields fixed-finite-order controllers which are optimal with respect to high-order, approximating, finite-dimensional plant models. The technique is illustrated by computing a sequence of first-order controllers for one-dimensional, single-input/single-output, parabolic (heat/diffusion) and hereditary systems using spline-based, Ritz-Galerkin, finite element approximation. Numerical studies indicate convergence of the feedback gains with less than 2 percent performance degradation over full-order LQG controllers for the parabolic system and 10 percent degradation for the hereditary system.

  16. A Robot Trajectory Optimization Approach for Thermal Barrier Coatings Used for Free-Form Components

    NASA Astrophysics Data System (ADS)

    Cai, Zhenhua; Qi, Beichun; Tao, Chongyuan; Luo, Jie; Chen, Yuepeng; Xie, Changjun

    2017-10-01

    This paper is concerned with a robot trajectory optimization approach for thermal barrier coatings. As the requirements of high reproducibility of complex workpieces increase, an optimal thermal spraying trajectory should not only guarantee an accurate control of spray parameters defined by users (e.g., scanning speed, spray distance, scanning step, etc.) to achieve coating thickness homogeneity but also help to homogenize the heat transfer distribution on the coating surface. A mesh-based trajectory generation approach is introduced in this work to generate path curves on a free-form component. Then, two types of meander trajectories are generated by performing a different connection method. Additionally, this paper presents a research approach for introducing the heat transfer analysis into the trajectory planning process. Combining heat transfer analysis with trajectory planning overcomes the defects of traditional trajectory planning methods (e.g., local over-heating), which helps form the uniform temperature field by optimizing the time sequence of path curves. The influence of two different robot trajectories on the process of heat transfer is estimated by coupled FEM models which demonstrates the effectiveness of the presented optimization approach.

  17. Ant system: optimization by a colony of cooperating agents.

    PubMed

    Dorigo, M; Maniezzo, V; Colorni, A

    1996-01-01

    An analogy with the way ant colonies function has suggested the definition of a new computational paradigm, which we call ant system (AS). We propose it as a viable new approach to stochastic combinatorial optimization. The main characteristics of this model are positive feedback, distributed computation, and the use of a constructive greedy heuristic. Positive feedback accounts for rapid discovery of good solutions, distributed computation avoids premature convergence, and the greedy heuristic helps find acceptable solutions in the early stages of the search process. We apply the proposed methodology to the classical traveling salesman problem (TSP), and report simulation results. We also discuss parameter selection and the early setups of the model, and compare it with tabu search and simulated annealing using TSP. To demonstrate the robustness of the approach, we show how the ant system (AS) can be applied to other optimization problems like the asymmetric traveling salesman, the quadratic assignment and the job-shop scheduling. Finally we discuss the salient characteristics-global data structure revision, distributed communication and probabilistic transitions of the AS.

  18. Rapid Deployment of Optimal Control for Building HVAC Systems Using Innovative Software Tools and a Hybrid Heuristic/Model Based Control Approach

    DTIC Science & Technology

    2017-03-21

    for public release; distribution is unlimited 13. SUPPLEMENTARY NOTES None 14. ABSTRACT ESTCP project EW-201409 aimed at demonstrating the benefits ...of innovative software technology for building HV AC systems. These benefits included reduced system energy use and cost as wetl as improved...Control Approach March 2017 This document has been cleared for public release; Distribution Statement A

  19. A Disciplined Architectural Approach to Scaling Data Analysis for Massive, Scientific Data

    NASA Astrophysics Data System (ADS)

    Crichton, D. J.; Braverman, A. J.; Cinquini, L.; Turmon, M.; Lee, H.; Law, E.

    2014-12-01

    Data collections across remote sensing and ground-based instruments in astronomy, Earth science, and planetary science are outpacing scientists' ability to analyze them. Furthermore, the distribution, structure, and heterogeneity of the measurements themselves pose challenges that limit the scalability of data analysis using traditional approaches. Methods for developing science data processing pipelines, distribution of scientific datasets, and performing analysis will require innovative approaches that integrate cyber-infrastructure, algorithms, and data into more systematic approaches that can more efficiently compute and reduce data, particularly distributed data. This requires the integration of computer science, machine learning, statistics and domain expertise to identify scalable architectures for data analysis. The size of data returned from Earth Science observing satellites and the magnitude of data from climate model output, is predicted to grow into the tens of petabytes challenging current data analysis paradigms. This same kind of growth is present in astronomy and planetary science data. One of the major challenges in data science and related disciplines defining new approaches to scaling systems and analysis in order to increase scientific productivity and yield. Specific needs include: 1) identification of optimized system architectures for analyzing massive, distributed data sets; 2) algorithms for systematic analysis of massive data sets in distributed environments; and 3) the development of software infrastructures that are capable of performing massive, distributed data analysis across a comprehensive data science framework. NASA/JPL has begun an initiative in data science to address these challenges. Our goal is to evaluate how scientific productivity can be improved through optimized architectural topologies that identify how to deploy and manage the access, distribution, computation, and reduction of massive, distributed data, while managing the uncertainties of scientific conclusions derived from such capabilities. This talk will provide an overview of JPL's efforts in developing a comprehensive architectural approach to data science.

  20. Multiagent distributed watershed management

    NASA Astrophysics Data System (ADS)

    Giuliani, M.; Castelletti, A.; Amigoni, F.; Cai, X.

    2012-04-01

    Deregulation and democratization of water along with increasing environmental awareness are challenging integrated water resources planning and management worldwide. The traditional centralized approach to water management, as described in much of water resources literature, is often unfeasible in most of the modern social and institutional contexts. Thus it should be reconsidered from a more realistic and distributed perspective, in order to account for the presence of multiple and often independent Decision Makers (DMs) and many conflicting stakeholders. Game theory based approaches are often used to study these situations of conflict (Madani, 2010), but they are limited to a descriptive perspective. Multiagent systems (see Wooldridge, 2009), instead, seem to be a more suitable paradigm because they naturally allow to represent a set of self-interested agents (DMs and/or stakeholders) acting in a distributed decision process at the agent level, resulting in a promising compromise alternative between the ideal centralized solution and the actual uncoordinated practices. Casting a water management problem in a multiagent framework allows to exploit the techniques and methods that are already available in this field for solving distributed optimization problems. In particular, in Distributed Constraint Satisfaction Problems (DCSP, see Yokoo et al., 2000), each agent controls some variables according to his own utility function but has to satisfy inter-agent constraints; while in Distributed Constraint Optimization Problems (DCOP, see Modi et al., 2005), the problem is generalized by introducing a global objective function to be optimized that requires a coordination mechanism between the agents. In this work, we apply a DCSP-DCOP based approach to model a steady state hypothetical watershed management problem (Yang et al., 2009), involving several active human agents (i.e. agents who make decisions) and reactive ecological agents (i.e. agents representing environmental interests). Different scenarios of distributed management are simulated, i.e. a situation where all the agents act independently, a situation in which a global coordination takes place and in-between solutions. The solutions are compared with the ones presented in Yang et al. (2009), aiming to present more general multiagent approaches to solve distributed management problems.

  1. A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors.

    PubMed

    Zhang, Jilin; Tu, Hangdi; Ren, Yongjian; Wan, Jian; Zhou, Li; Li, Mingwei; Wang, Jue; Yu, Lifeng; Zhao, Chang; Zhang, Lei

    2017-09-21

    In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT). Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP), which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS). This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors.

  2. Shape and Reinforcement Optimization of Underground Tunnels

    NASA Astrophysics Data System (ADS)

    Ghabraie, Kazem; Xie, Yi Min; Huang, Xiaodong; Ren, Gang

    Design of support system and selecting an optimum shape for the opening are two important steps in designing excavations in rock masses. Currently selecting the shape and support design are mainly based on designer's judgment and experience. Both of these problems can be viewed as material distribution problems where one needs to find the optimum distribution of a material in a domain. Topology optimization techniques have proved to be useful in solving these kinds of problems in structural design. Recently the application of topology optimization techniques in reinforcement design around underground excavations has been studied by some researchers. In this paper a three-phase material model will be introduced changing between normal rock, reinforced rock, and void. Using such a material model both problems of shape and reinforcement design can be solved together. A well-known topology optimization technique used in structural design is bi-directional evolutionary structural optimization (BESO). In this paper the BESO technique has been extended to simultaneously optimize the shape of the opening and the distribution of reinforcements. Validity and capability of the proposed approach have been investigated through some examples.

  3. Hybrid swarm intelligence optimization approach for optimal data storage position identification in wireless sensor networks.

    PubMed

    Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam

    2015-01-01

    The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches.

  4. A thermally driven differential mutation approach for the structural optimization of large atomic systems

    NASA Astrophysics Data System (ADS)

    Biswas, Katja

    2017-09-01

    A computational method is presented which is capable to obtain low lying energy structures of topological amorphous systems. The method merges a differential mutation genetic algorithm with simulated annealing. This is done by incorporating a thermal selection criterion, which makes it possible to reliably obtain low lying minima with just a small population size and is suitable for multimodal structural optimization. The method is tested on the structural optimization of amorphous graphene from unbiased atomic starting configurations. With just a population size of six systems, energetically very low structures are obtained. While each of the structures represents a distinctly different arrangement of the atoms, their properties, such as energy, distribution of rings, radial distribution function, coordination number, and distribution of bond angles, are very similar.

  5. Optimal Regulation of Virtual Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall Anese, Emiliano; Guggilam, Swaroop S.; Simonetto, Andrea

    This paper develops a real-time algorithmic framework for aggregations of distributed energy resources (DERs) in distribution networks to provide regulation services in response to transmission-level requests. Leveraging online primal-dual-type methods for time-varying optimization problems and suitable linearizations of the nonlinear AC power-flow equations, we believe this work establishes the system-theoretic foundation to realize the vision of distribution-level virtual power plants. The optimization framework controls the output powers of dispatchable DERs such that, in aggregate, they respond to automatic-generation-control and/or regulation-services commands. This is achieved while concurrently regulating voltages within the feeder and maximizing customers' and utility's performance objectives. Convergence andmore » tracking capabilities are analytically established under suitable modeling assumptions. Simulations are provided to validate the proposed approach.« less

  6. An efficient hybrid approach for multiobjective optimization of water distribution systems

    NASA Astrophysics Data System (ADS)

    Zheng, Feifei; Simpson, Angus R.; Zecchin, Aaron C.

    2014-05-01

    An efficient hybrid approach for the design of water distribution systems (WDSs) with multiple objectives is described in this paper. The objectives are the minimization of the network cost and maximization of the network resilience. A self-adaptive multiobjective differential evolution (SAMODE) algorithm has been developed, in which control parameters are automatically adapted by means of evolution instead of the presetting of fine-tuned parameter values. In the proposed method, a graph algorithm is first used to decompose a looped WDS into a shortest-distance tree (T) or forest, and chords (Ω). The original two-objective optimization problem is then approximated by a series of single-objective optimization problems of the T to be solved by nonlinear programming (NLP), thereby providing an approximate Pareto optimal front for the original whole network. Finally, the solutions at the approximate front are used to seed the SAMODE algorithm to find an improved front for the original entire network. The proposed approach is compared with two other conventional full-search optimization methods (the SAMODE algorithm and the NSGA-II) that seed the initial population with purely random solutions based on three case studies: a benchmark network and two real-world networks with multiple demand loading cases. Results show that (i) the proposed NLP-SAMODE method consistently generates better-quality Pareto fronts than the full-search methods with significantly improved efficiency; and (ii) the proposed SAMODE algorithm (no parameter tuning) exhibits better performance than the NSGA-II with calibrated parameter values in efficiently offering optimal fronts.

  7. A graph decomposition-based approach for water distribution network optimization

    NASA Astrophysics Data System (ADS)

    Zheng, Feifei; Simpson, Angus R.; Zecchin, Aaron C.; Deuerlein, Jochen W.

    2013-04-01

    A novel optimization approach for water distribution network design is proposed in this paper. Using graph theory algorithms, a full water network is first decomposed into different subnetworks based on the connectivity of the network's components. The original whole network is simplified to a directed augmented tree, in which the subnetworks are substituted by augmented nodes and directed links are created to connect them. Differential evolution (DE) is then employed to optimize each subnetwork based on the sequence specified by the assigned directed links in the augmented tree. Rather than optimizing the original network as a whole, the subnetworks are sequentially optimized by the DE algorithm. A solution choice table is established for each subnetwork (except for the subnetwork that includes a supply node) and the optimal solution of the original whole network is finally obtained by use of the solution choice tables. Furthermore, a preconditioning algorithm is applied to the subnetworks to produce an approximately optimal solution for the original whole network. This solution specifies promising regions for the final optimization algorithm to further optimize the subnetworks. Five water network case studies are used to demonstrate the effectiveness of the proposed optimization method. A standard DE algorithm (SDE) and a genetic algorithm (GA) are applied to each case study without network decomposition to enable a comparison with the proposed method. The results show that the proposed method consistently outperforms the SDE and GA (both with tuned parameters) in terms of both the solution quality and efficiency.

  8. Bayesian ensemble refinement by replica simulations and reweighting.

    PubMed

    Hummer, Gerhard; Köfinger, Jürgen

    2015-12-28

    We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.

  9. Bayesian ensemble refinement by replica simulations and reweighting

    NASA Astrophysics Data System (ADS)

    Hummer, Gerhard; Köfinger, Jürgen

    2015-12-01

    We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.

  10. Computational photoacoustic imaging with sparsity-based optimization of the initial pressure distribution

    NASA Astrophysics Data System (ADS)

    Shang, Ruibo; Archibald, Richard; Gelb, Anne; Luke, Geoffrey P.

    2018-02-01

    In photoacoustic (PA) imaging, the optical absorption can be acquired from the initial pressure distribution (IPD). An accurate reconstruction of the IPD will be very helpful for the reconstruction of the optical absorption. However, the image quality of PA imaging in scattering media is deteriorated by the acoustic diffraction, imaging artifacts, and weak PA signals. In this paper, we propose a sparsity-based optimization approach that improves the reconstruction of the IPD in PA imaging. A linear imaging forward model was set up based on time-and-delay method with the assumption that the point spread function (PSF) is spatial invariant. Then, an optimization equation was proposed with a regularization term to denote the sparsity of the IPD in a certain domain to solve this inverse problem. As a proof of principle, the approach was applied to reconstructing point objects and blood vessel phantoms. The resolution and signal-to-noise ratio (SNR) were compared between conventional back-projection and our proposed approach. Overall these results show that computational imaging can leverage the sparsity of PA images to improve the estimation of the IPD.

  11. Bayesian Regression with Network Prior: Optimal Bayesian Filtering Perspective

    PubMed Central

    Qian, Xiaoning; Dougherty, Edward R.

    2017-01-01

    The recently introduced intrinsically Bayesian robust filter (IBRF) provides fully optimal filtering relative to a prior distribution over an uncertainty class ofjoint random process models, whereas formerly the theory was limited to model-constrained Bayesian robust filters, for which optimization was limited to the filters that are optimal for models in the uncertainty class. This paper extends the IBRF theory to the situation where there are both a prior on the uncertainty class and sample data. The result is optimal Bayesian filtering (OBF), where optimality is relative to the posterior distribution derived from the prior and the data. The IBRF theories for effective characteristics and canonical expansions extend to the OBF setting. A salient focus of the present work is to demonstrate the advantages of Bayesian regression within the OBF setting over the classical Bayesian approach in the context otlinear Gaussian models. PMID:28824268

  12. Simulative design and process optimization of the two-stage stretch-blow molding process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopmann, Ch.; Rasche, S.; Windeck, C.

    2015-05-22

    The total production costs of PET bottles are significantly affected by the costs of raw material. Approximately 70 % of the total costs are spent for the raw material. Therefore, stretch-blow molding industry intends to reduce the total production costs by an optimized material efficiency. However, there is often a trade-off between an optimized material efficiency and required product properties. Due to a multitude of complex boundary conditions, the design process of new stretch-blow molded products is still a challenging task and is often based on empirical knowledge. Application of current CAE-tools supports the design process by reducing development timemore » and costs. This paper describes an approach to determine optimized preform geometry and corresponding process parameters iteratively. The wall thickness distribution and the local stretch ratios of the blown bottle are calculated in a three-dimensional process simulation. Thereby, the wall thickness distribution is correlated with an objective function and preform geometry as well as process parameters are varied by an optimization algorithm. Taking into account the correlation between material usage, process history and resulting product properties, integrative coupled simulation steps, e.g. structural analyses or barrier simulations, are performed. The approach is applied on a 0.5 liter PET bottle of Krones AG, Neutraubling, Germany. The investigations point out that the design process can be supported by applying this simulative optimization approach. In an optimization study the total bottle weight is reduced from 18.5 g to 15.5 g. The validation of the computed results is in progress.« less

  13. Simulative design and process optimization of the two-stage stretch-blow molding process

    NASA Astrophysics Data System (ADS)

    Hopmann, Ch.; Rasche, S.; Windeck, C.

    2015-05-01

    The total production costs of PET bottles are significantly affected by the costs of raw material. Approximately 70 % of the total costs are spent for the raw material. Therefore, stretch-blow molding industry intends to reduce the total production costs by an optimized material efficiency. However, there is often a trade-off between an optimized material efficiency and required product properties. Due to a multitude of complex boundary conditions, the design process of new stretch-blow molded products is still a challenging task and is often based on empirical knowledge. Application of current CAE-tools supports the design process by reducing development time and costs. This paper describes an approach to determine optimized preform geometry and corresponding process parameters iteratively. The wall thickness distribution and the local stretch ratios of the blown bottle are calculated in a three-dimensional process simulation. Thereby, the wall thickness distribution is correlated with an objective function and preform geometry as well as process parameters are varied by an optimization algorithm. Taking into account the correlation between material usage, process history and resulting product properties, integrative coupled simulation steps, e.g. structural analyses or barrier simulations, are performed. The approach is applied on a 0.5 liter PET bottle of Krones AG, Neutraubling, Germany. The investigations point out that the design process can be supported by applying this simulative optimization approach. In an optimization study the total bottle weight is reduced from 18.5 g to 15.5 g. The validation of the computed results is in progress.

  14. Study on probability distributions for evolution in modified extremal optimization

    NASA Astrophysics Data System (ADS)

    Zeng, Guo-Qiang; Lu, Yong-Zai; Mao, Wei-Jie; Chu, Jian

    2010-05-01

    It is widely believed that the power-law is a proper probability distribution being effectively applied for evolution in τ-EO (extremal optimization), a general-purpose stochastic local-search approach inspired by self-organized criticality, and its applications in some NP-hard problems, e.g., graph partitioning, graph coloring, spin glass, etc. In this study, we discover that the exponential distributions or hybrid ones (e.g., power-laws with exponential cutoff) being popularly used in the research of network sciences may replace the original power-laws in a modified τ-EO method called self-organized algorithm (SOA), and provide better performances than other statistical physics oriented methods, such as simulated annealing, τ-EO and SOA etc., from the experimental results on random Euclidean traveling salesman problems (TSP) and non-uniform instances. From the perspective of optimization, our results appear to demonstrate that the power-law is not the only proper probability distribution for evolution in EO-similar methods at least for TSP, the exponential and hybrid distributions may be other choices.

  15. Determination of hyporheic travel time distributions and other parameters from concurrent conservative and reactive tracer tests by local-in-global optimization

    NASA Astrophysics Data System (ADS)

    Knapp, Julia L. A.; Cirpka, Olaf A.

    2017-06-01

    The complexity of hyporheic flow paths requires reach-scale models of solute transport in streams that are flexible in their representation of the hyporheic passage. We use a model that couples advective-dispersive in-stream transport to hyporheic exchange with a shape-free distribution of hyporheic travel times. The model also accounts for two-site sorption and transformation of reactive solutes. The coefficients of the model are determined by fitting concurrent stream-tracer tests of conservative (fluorescein) and reactive (resazurin/resorufin) compounds. The flexibility of the shape-free models give rise to multiple local minima of the objective function in parameter estimation, thus requiring global-search algorithms, which is hindered by the large number of parameter values to be estimated. We present a local-in-global optimization approach, in which we use a Markov-Chain Monte Carlo method as global-search method to estimate a set of in-stream and hyporheic parameters. Nested therein, we infer the shape-free distribution of hyporheic travel times by a local Gauss-Newton method. The overall approach is independent of the initial guess and provides the joint posterior distribution of all parameters. We apply the described local-in-global optimization method to recorded tracer breakthrough curves of three consecutive stream sections, and infer section-wise hydraulic parameter distributions to analyze how hyporheic exchange processes differ between the stream sections.

  16. Determination of Nerve Fiber Diameter Distribution From Compound Action Potential: A Continuous Approach.

    PubMed

    Un, M Kerem; Kaghazchi, Hamed

    2018-01-01

    When a signal is initiated in the nerve, it is transmitted along each nerve fiber via an action potential (called single fiber action potential (SFAP)) which travels with a velocity that is related with the diameter of the fiber. The additive superposition of SFAPs constitutes the compound action potential (CAP) of the nerve. The fiber diameter distribution (FDD) in the nerve can be computed from the CAP data by solving an inverse problem. This is usually achieved by dividing the fibers into a finite number of diameter groups and solve a corresponding linear system to optimize FDD. However, number of fibers in a nerve can be measured sometimes in thousands and it is possible to assume a continuous distribution for the fiber diameters which leads to a gradient optimization problem. In this paper, we have evaluated this continuous approach to the solution of the inverse problem. We have utilized an analytical function for SFAP and an assumed a polynomial form for FDD. The inverse problem involves the optimization of polynomial coefficients to obtain the best estimate for the FDD. We have observed that an eighth order polynomial for FDD can capture both unimodal and bimodal fiber distributions present in vivo, even in case of noisy CAP data. The assumed FDD distribution regularizes the ill-conditioned inverse problem and produces good results.

  17. Applications of Coding in Network Communications

    ERIC Educational Resources Information Center

    Chang, Christopher SungWook

    2012-01-01

    This thesis uses the tool of network coding to investigate fast peer-to-peer file distribution, anonymous communication, robust network construction under uncertainty, and prioritized transmission. In a peer-to-peer file distribution system, we use a linear optimization approach to show that the network coding framework significantly simplifies…

  18. Adaptive, Distributed Control of Constrained Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Bieniawski, Stefan; Wolpert, David H.

    2004-01-01

    Product Distribution (PO) theory was recently developed as a broad framework for analyzing and optimizing distributed systems. Here we demonstrate its use for adaptive distributed control of Multi-Agent Systems (MASS), i.e., for distributed stochastic optimization using MAS s. First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (Probability dist&&on on the joint state of the agents. When the game in question is a team game with constraints, that equilibrium optimizes the expected value of the team game utility, subject to those constraints. One common way to find that equilibrium is to have each agent run a Reinforcement Learning (E) algorithm. PD theory reveals this to be a particular type of search algorithm for minimizing the Lagrangian. Typically that algorithm i s quite inefficient. A more principled alternative is to use a variant of Newton's method to minimize the Lagrangian. Here we compare this alternative to RL-based search in three sets of computer experiments. These are the N Queen s problem and bin-packing problem from the optimization literature, and the Bar problem from the distributed RL literature. Our results confirm that the PD-theory-based approach outperforms the RL-based scheme in all three domains.

  19. Optimal charges in lead progression: a structure-based neuraminidase case study.

    PubMed

    Armstrong, Kathryn A; Tidor, Bruce; Cheng, Alan C

    2006-04-20

    Collective experience in structure-based lead progression has found electrostatic interactions to be more difficult to optimize than shape-based ones. A major reason for this is that the net electrostatic contribution observed includes a significant nonintuitive desolvation component in addition to the more intuitive intermolecular interaction component. To investigate whether knowledge of the ligand optimal charge distribution can facilitate more intuitive design of electrostatic interactions, we took a series of small-molecule influenza neuraminidase inhibitors with known protein cocrystal structures and calculated the difference between the optimal and actual charge distributions. This difference from the electrostatic optimum correlates with the calculated electrostatic contribution to binding (r(2) = 0.94) despite small changes in binding modes caused by chemical substitutions, suggesting that the optimal charge distribution is a useful design goal. Furthermore, detailed suggestions for chemical modification generated by this approach are in many cases consistent with observed improvements in binding affinity, and the method appears to be useful despite discrete chemical constraints. Taken together, these results suggest that charge optimization is useful in facilitating generation of compound ideas in lead optimization. Our results also provide insight into design of neuraminidase inhibitors.

  20. Optimization of equivalent uniform dose using the L-curve criterion.

    PubMed

    Chvetsov, Alexei V; Dempsey, James F; Palta, Jatinder R

    2007-10-07

    Optimization of equivalent uniform dose (EUD) in inverse planning for intensity-modulated radiation therapy (IMRT) prevents variation in radiobiological effect between different radiotherapy treatment plans, which is due to variation in the pattern of dose nonuniformity. For instance, the survival fraction of clonogens would be consistent with the prescription when the optimized EUD is equal to the prescribed EUD. One of the problems in the practical implementation of this approach is that the spatial dose distribution in EUD-based inverse planning would be underdetermined because an unlimited number of nonuniform dose distributions can be computed for a prescribed value of EUD. Together with ill-posedness of the underlying integral equation, this may significantly increase the dose nonuniformity. To optimize EUD and keep dose nonuniformity within reasonable limits, we implemented into an EUD-based objective function an additional criterion which ensures the smoothness of beam intensity functions. This approach is similar to the variational regularization technique which was previously studied for the dose-based least-squares optimization. We show that the variational regularization together with the L-curve criterion for the regularization parameter can significantly reduce dose nonuniformity in EUD-based inverse planning.

  1. Steam distribution and energy delivery optimization using wireless sensors

    NASA Astrophysics Data System (ADS)

    Olama, Mohammed M.; Allgood, Glenn O.; Kuruganti, Teja P.; Sukumar, Sreenivas R.; Djouadi, Seddik M.; Lake, Joe E.

    2011-05-01

    The Extreme Measurement Communications Center at Oak Ridge National Laboratory (ORNL) explores the deployment of a wireless sensor system with a real-time measurement-based energy efficiency optimization framework in the ORNL campus. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize the energy delivery within the steam distribution system. We address the goal of achieving significant energy-saving in steam lines by monitoring and acting on leaking steam valves/traps. Our approach leverages an integrated wireless sensor and real-time monitoring capabilities. We make assessments on the real-time status of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observe the state measurements of these sensors. Our assessments are based on analysis of the wireless sensor measurements. We describe Fourier-spectrum based algorithms that interpret acoustic vibration sensor data to characterize flows and classify the steam system status. We are able to present the sensor readings, steam flow, steam trap status and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.

  2. Optimal Sensor Placement in Active Multistatic Sonar Networks

    DTIC Science & Technology

    2014-06-01

    As b→ 0, the Fermi function approaches the cookie cutter model. 1Discovered in 1926 by Enrico Fermi and Paul Dirac when researching electron...Thesis Co-Advisors: Emily M. Craparo Craig W. Rasmussen Second Reader: Mümtaz Karataş Approved for public release; distribution is unlimited THIS PAGE...A. 12a. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200

  3. Incorporating deliverable monitor unit constraints into spot intensity optimization in intensity modulated proton therapy treatment planning

    PubMed Central

    Cao, Wenhua; Lim, Gino; Li, Xiaoqiang; Li, Yupeng; Zhu, X. Ronald; Zhang, Xiaodong

    2014-01-01

    The purpose of this study is to investigate the feasibility and impact of incorporating deliverable monitor unit (MU) constraints into spot intensity optimization in intensity modulated proton therapy (IMPT) treatment planning. The current treatment planning system (TPS) for IMPT disregards deliverable MU constraints in the spot intensity optimization (SIO) routine. It performs a post-processing procedure on an optimized plan to enforce deliverable MU values that are required by the spot scanning proton delivery system. This procedure can create a significant dose distribution deviation between the optimized and post-processed deliverable plans, especially when small spot spacings are used. In this study, we introduce a two-stage linear programming (LP) approach to optimize spot intensities and constrain deliverable MU values simultaneously, i.e., a deliverable spot intensity optimization (DSIO) model. Thus, the post-processing procedure is eliminated and the associated optimized plan deterioration can be avoided. Four prostate cancer cases at our institution were selected for study and two parallel opposed beam angles were planned for all cases. A quadratic programming (QP) based model without MU constraints, i.e., a conventional spot intensity optimization (CSIO) model, was also implemented to emulate the commercial TPS. Plans optimized by both the DSIO and CSIO models were evaluated for five different settings of spot spacing from 3 mm to 7 mm. For all spot spacings, the DSIO-optimized plans yielded better uniformity for the target dose coverage and critical structure sparing than did the CSIO-optimized plans. With reduced spot spacings, more significant improvements in target dose uniformity and critical structure sparing were observed in the DSIO- than in the CSIO-optimized plans. Additionally, better sparing of the rectum and bladder was achieved when reduced spacings were used for the DSIO-optimized plans. The proposed DSIO approach ensures the deliverability of optimized IMPT plans that take into account MU constraints. This eliminates the post-processing procedure required by the TPS as well as the resultant deteriorating effect on ultimate dose distributions. This approach therefore allows IMPT plans to adopt all possible spot spacings optimally. Moreover, dosimetric benefits can be achieved using smaller spot spacings. PMID:23835656

  4. Using fuzzy rule-based knowledge model for optimum plating conditions search

    NASA Astrophysics Data System (ADS)

    Solovjev, D. S.; Solovjeva, I. A.; Litovka, Yu V.; Arzamastsev, A. A.; Glazkov, V. P.; L’vov, A. A.

    2018-03-01

    The paper discusses existing approaches to plating process modeling in order to decrease the distribution thickness of plating surface cover. However, these approaches do not take into account the experience, knowledge, and intuition of the decision-makers when searching the optimal conditions of electroplating technological process. The original approach to optimal conditions search for applying the electroplating coatings, which uses the rule-based model of knowledge and allows one to reduce the uneven product thickness distribution, is proposed. The block diagrams of a conventional control system of a galvanic process as well as the system based on the production model of knowledge are considered. It is shown that the fuzzy production model of knowledge in the control system makes it possible to obtain galvanic coatings of a given thickness unevenness with a high degree of adequacy to the experimental data. The described experimental results confirm the theoretical conclusions.

  5. Linear Power-Flow Models in Multiphase Distribution Networks: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, Andrey; Dall'Anese, Emiliano

    This paper considers multiphase unbalanced distribution systems and develops approximate power-flow models where bus-voltages, line-currents, and powers at the point of common coupling are linearly related to the nodal net power injections. The linearization approach is grounded on a fixed-point interpretation of the AC power-flow equations, and it is applicable to distribution systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. The proposed linear models can facilitate the development of computationally-affordable optimization and control applications -- frommore » advanced distribution management systems settings to online and distributed optimization routines. Performance of the proposed models is evaluated on different test feeders.« less

  6. Three-Phase AC Optimal Power Flow Based Distribution Locational Marginal Price: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Rui; Zhang, Yingchen

    2017-05-17

    Designing market mechanisms for electricity distribution systems has been a hot topic due to the increased presence of smart loads and distributed energy resources (DERs) in distribution systems. The distribution locational marginal pricing (DLMP) methodology is one of the real-time pricing methods to enable such market mechanisms and provide economic incentives to active market participants. Determining the DLMP is challenging due to high power losses, the voltage volatility, and the phase imbalance in distribution systems. Existing DC Optimal Power Flow (OPF) approaches are unable to model power losses and the reactive power, while single-phase AC OPF methods cannot capture themore » phase imbalance. To address these challenges, in this paper, a three-phase AC OPF based approach is developed to define and calculate DLMP accurately. The DLMP is modeled as the marginal cost to serve an incremental unit of demand at a specific phase at a certain bus, and is calculated using the Lagrange multipliers in the three-phase AC OPF formulation. Extensive case studies have been conducted to understand the impact of system losses and the phase imbalance on DLMPs as well as the potential benefits of flexible resources.« less

  7. Manpower Targets and Educational Investments

    ERIC Educational Resources Information Center

    Ritzen, Jo M.

    1976-01-01

    Discusses the use of quadratic programming to calculate the optimal distribution of educational investments required to closely approach manpower targets when financial resources are insufficient to meet manpower targets completely. Demonstrates use of the quadratic programming approach by applying it to the training of supervisory technicians in…

  8. Optimization of a point-focusing, distributed receiver solar thermal electric system

    NASA Technical Reports Server (NTRS)

    Pons, R. L.

    1979-01-01

    This paper presents an approach to optimization of a solar concept which employs solar-to-electric power conversion at the focus of parabolic dish concentrators. The optimization procedure is presented through a series of trade studies, which include the results of optical/thermal analyses and individual subsystem trades. Alternate closed-cycle and open-cycle Brayton engines and organic Rankine engines are considered to show the influence of the optimization process, and various storage techniques are evaluated, including batteries, flywheels, and hybrid-engine operation.

  9. Distributed Bees Algorithm Parameters Optimization for a Cost Efficient Target Allocation in Swarms of Robots

    PubMed Central

    Jevtić, Aleksandar; Gutiérrez, Álvaro

    2011-01-01

    Swarms of robots can use their sensing abilities to explore unknown environments and deploy on sites of interest. In this task, a large number of robots is more effective than a single unit because of their ability to quickly cover the area. However, the coordination of large teams of robots is not an easy problem, especially when the resources for the deployment are limited. In this paper, the Distributed Bees Algorithm (DBA), previously proposed by the authors, is optimized and applied to distributed target allocation in swarms of robots. Improved target allocation in terms of deployment cost efficiency is achieved through optimization of the DBA’s control parameters by means of a Genetic Algorithm. Experimental results show that with the optimized set of parameters, the deployment cost measured as the average distance traveled by the robots is reduced. The cost-efficient deployment is in some cases achieved at the expense of increased robots’ distribution error. Nevertheless, the proposed approach allows the swarm to adapt to the operating conditions when available resources are scarce. PMID:22346677

  10. Automated distribution system management for multichannel space power systems

    NASA Technical Reports Server (NTRS)

    Fleck, G. W.; Decker, D. K.; Graves, J.

    1983-01-01

    A NASA sponsored study of space power distribution system technology is in progress to develop an autonomously managed power system (AMPS) for large space power platforms. The multichannel, multikilowatt, utility-type power subsystem proposed presents new survivability requirements and increased subsystem complexity. The computer controls under development for the power management system must optimize the power subsystem performance and minimize the life cycle cost of the platform. A distribution system management philosophy has been formulated which incorporates these constraints. Its implementation using a TI9900 microprocessor and FORTH as the programming language is presented. The approach offers a novel solution to the perplexing problem of determining the optimal combination of loads which should be connected to each power channel for a versatile electrical distribution concept.

  11. Epidemic extinction paths in complex networks

    NASA Astrophysics Data System (ADS)

    Hindes, Jason; Schwartz, Ira B.

    2017-05-01

    We study the extinction of long-lived epidemics on finite complex networks induced by intrinsic noise. Applying analytical techniques to the stochastic susceptible-infected-susceptible model, we predict the distribution of large fluctuations, the most probable or optimal path through a network that leads to a disease-free state from an endemic state, and the average extinction time in general configurations. Our predictions agree with Monte Carlo simulations on several networks, including synthetic weighted and degree-distributed networks with degree correlations, and an empirical high school contact network. In addition, our approach quantifies characteristic scaling patterns for the optimal path and distribution of large fluctuations, both near and away from the epidemic threshold, in networks with heterogeneous eigenvector centrality and degree distributions.

  12. Epidemic extinction paths in complex networks.

    PubMed

    Hindes, Jason; Schwartz, Ira B

    2017-05-01

    We study the extinction of long-lived epidemics on finite complex networks induced by intrinsic noise. Applying analytical techniques to the stochastic susceptible-infected-susceptible model, we predict the distribution of large fluctuations, the most probable or optimal path through a network that leads to a disease-free state from an endemic state, and the average extinction time in general configurations. Our predictions agree with Monte Carlo simulations on several networks, including synthetic weighted and degree-distributed networks with degree correlations, and an empirical high school contact network. In addition, our approach quantifies characteristic scaling patterns for the optimal path and distribution of large fluctuations, both near and away from the epidemic threshold, in networks with heterogeneous eigenvector centrality and degree distributions.

  13. Optimal phase estimation with arbitrary a priori knowledge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demkowicz-Dobrzanski, Rafal

    2011-06-15

    The optimal-phase estimation strategy is derived when partial a priori knowledge on the estimated phase is available. The solution is found with the help of the most famous result from the entanglement theory: the positive partial transpose criterion. The structure of the optimal measurements, estimators, and the optimal probe states is analyzed. This Rapid Communication provides a unified framework bridging the gap in the literature on the subject which until now dealt almost exclusively with two extreme cases: almost perfect knowledge (local approach based on Fisher information) and no a priori knowledge (global approach based on covariant measurements). Special attentionmore » is paid to a natural a priori probability distribution arising from a diffusion process.« less

  14. Least squares QR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography.

    PubMed

    Shaw, Calvin B; Prakash, Jaya; Pramanik, Manojit; Yalavarthy, Phaneendra K

    2013-08-01

    A computationally efficient approach that computes the optimal regularization parameter for the Tikhonov-minimization scheme is developed for photoacoustic imaging. This approach is based on the least squares-QR decomposition which is a well-known dimensionality reduction technique for a large system of equations. It is shown that the proposed framework is effective in terms of quantitative and qualitative reconstructions of initial pressure distribution enabled via finding an optimal regularization parameter. The computational efficiency and performance of the proposed method are shown using a test case of numerical blood vessel phantom, where the initial pressure is exactly known for quantitative comparison.

  15. Optimization of a Centrifugal Impeller Design Through CFD Analysis

    NASA Technical Reports Server (NTRS)

    Chen, W. C.; Eastland, A. H.; Chan, D. C.; Garcia, Roberto

    1993-01-01

    This paper discusses the procedure, approach and Rocketdyne CFD results for the optimization of the NASA consortium impeller design. Two different approaches have been investigated. The first one is to use a tandem blade arrangement, the main impeller blade is split into two separate rows with the second blade row offset circumferentially with respect to the first row. The second approach is to control the high losses related to secondary flows within the impeller passage. Many key parameters have been identified and each consortium team member involved will optimize a specific parameter using 3-D CFD analysis. Rocketdyne has provided a series of CFD grids for the consortium team members. SECA will complete the tandem blade study, SRA will study the effect of the splitter blade solidity change, NASA LeRC will evaluate the effect of circumferential position of the splitter blade, VPI will work on the hub to shroud blade loading distribution, NASA Ames will examine the impeller discharge leakage flow impacts and Rocketdyne will continue to work on the meridional contour and the blade leading to trailing edge work distribution. This paper will also present Rocketdyne results from the tandem blade study and from the blade loading distribution study. It is the ultimate goal of this consortium team to integrate the available CFD analysis to design an advanced technology impeller that is suitable for use in the NASA Space Transportation Main Engine (STME) fuel turbopump.

  16. Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution.

    PubMed

    García-Patrón, Raúl; Cerf, Nicolas J

    2006-11-10

    A fully general approach to the security analysis of continuous-variable quantum key distribution (CV-QKD) is presented. Provided that the quantum channel is estimated via the covariance matrix of the quadratures, Gaussian attacks are shown to be optimal against all collective eavesdropping strategies. The proof is made strikingly simple by combining a physical model of measurement, an entanglement-based description of CV-QKD, and a recent powerful result on the extremality of Gaussian states [M. M. Wolf, Phys. Rev. Lett. 96, 080502 (2006)10.1103/PhysRevLett.96.080502].

  17. a Heuristic Approach for Multi Objective Distribution Feeder Reconfiguration: Using Fuzzy Sets in Normalization of Objective Functions

    NASA Astrophysics Data System (ADS)

    Milani, Armin Ebrahimi; Haghifam, Mahmood Reza

    2008-10-01

    The reconfiguration is an operation process used for optimization with specific objectives by means of changing the status of switches in a distribution network. In this paper each objectives is normalized with inspiration from fuzzy sets-to cause optimization more flexible- and formulized as a unique multi-objective function. The genetic algorithm is used for solving the suggested model, in which there is no risk of non-liner objective functions and constraints. The effectiveness of the proposed method is demonstrated through the examples.

  18. Hybrid Swarm Intelligence Optimization Approach for Optimal Data Storage Position Identification in Wireless Sensor Networks

    PubMed Central

    Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam

    2015-01-01

    The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches. PMID:25734182

  19. Decoupled CFD-based optimization of efficiency and cavitation performance of a double-suction pump

    NASA Astrophysics Data System (ADS)

    Škerlavaj, A.; Morgut, M.; Jošt, D.; Nobile, E.

    2017-04-01

    In this study the impeller geometry of a double-suction pump ensuring the best performances in terms of hydraulic efficiency and reluctance of cavitation is determined using an optimization strategy, which was driven by means of the modeFRONTIER optimization platform. The different impeller shapes (designs) are modified according to the optimization parameters and tested with a computational fluid dynamics (CFD) software, namely ANSYS CFX. The simulations are performed using a decoupled approach, where only the impeller domain region is numerically investigated for computational convenience. The flow losses in the volute are estimated on the base of the velocity distribution at the impeller outlet. The best designs are then validated considering the computationally more expensive full geometry CFD model. The overall results show that the proposed approach is suitable for quick impeller shape optimization.

  20. Maximally informative pairwise interactions in networks

    PubMed Central

    Fitzgerald, Jeffrey D.; Sharpee, Tatyana O.

    2010-01-01

    Several types of biological networks have recently been shown to be accurately described by a maximum entropy model with pairwise interactions, also known as the Ising model. Here we present an approach for finding the optimal mappings between input signals and network states that allow the network to convey the maximal information about input signals drawn from a given distribution. This mapping also produces a set of linear equations for calculating the optimal Ising-model coupling constants, as well as geometric properties that indicate the applicability of the pairwise Ising model. We show that the optimal pairwise interactions are on average zero for Gaussian and uniformly distributed inputs, whereas they are nonzero for inputs approximating those in natural environments. These nonzero network interactions are predicted to increase in strength as the noise in the response functions of each network node increases. This approach also suggests ways for how interactions with unmeasured parts of the network can be inferred from the parameters of response functions for the measured network nodes. PMID:19905153

  1. A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors

    PubMed Central

    Zhang, Jilin; Tu, Hangdi; Ren, Yongjian; Wan, Jian; Zhou, Li; Li, Mingwei; Wang, Jue; Yu, Lifeng; Zhao, Chang; Zhang, Lei

    2017-01-01

    In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT). Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP), which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS). This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors. PMID:28934163

  2. Estimating recharge rates with analytic element models and parameter estimation

    USGS Publications Warehouse

    Dripps, W.R.; Hunt, R.J.; Anderson, M.P.

    2006-01-01

    Quantifying the spatial and temporal distribution of recharge is usually a prerequisite for effective ground water flow modeling. In this study, an analytic element (AE) code (GFLOW) was used with a nonlinear parameter estimation code (UCODE) to quantify the spatial and temporal distribution of recharge using measured base flows as calibration targets. The ease and flexibility of AE model construction and evaluation make this approach well suited for recharge estimation. An AE flow model of an undeveloped watershed in northern Wisconsin was optimized to match median annual base flows at four stream gages for 1996 to 2000 to demonstrate the approach. Initial optimizations that assumed a constant distributed recharge rate provided good matches (within 5%) to most of the annual base flow estimates, but discrepancies of >12% at certain gages suggested that a single value of recharge for the entire watershed is inappropriate. Subsequent optimizations that allowed for spatially distributed recharge zones based on the distribution of vegetation types improved the fit and confirmed that vegetation can influence spatial recharge variability in this watershed. Temporally, the annual recharge values varied >2.5-fold between 1996 and 2000 during which there was an observed 1.7-fold difference in annual precipitation, underscoring the influence of nonclimatic factors on interannual recharge variability for regional flow modeling. The final recharge values compared favorably with more labor-intensive field measurements of recharge and results from studies, supporting the utility of using linked AE-parameter estimation codes for recharge estimation. Copyright ?? 2005 The Author(s).

  3. Distribution-dependent robust linear optimization with applications to inventory control

    PubMed Central

    Kang, Seong-Cheol; Brisimi, Theodora S.

    2014-01-01

    This paper tackles linear programming problems with data uncertainty and applies it to an important inventory control problem. Each element of the constraint matrix is subject to uncertainty and is modeled as a random variable with a bounded support. The classical robust optimization approach to this problem yields a solution with guaranteed feasibility. As this approach tends to be too conservative when applications can tolerate a small chance of infeasibility, one would be interested in obtaining a less conservative solution with a certain probabilistic guarantee of feasibility. A robust formulation in the literature produces such a solution, but it does not use any distributional information on the uncertain data. In this work, we show that the use of distributional information leads to an equally robust solution (i.e., under the same probabilistic guarantee of feasibility) but with a better objective value. In particular, by exploiting distributional information, we establish stronger upper bounds on the constraint violation probability of a solution. These bounds enable us to “inject” less conservatism into the formulation, which in turn yields a more cost-effective solution (by 50% or more in some numerical instances). To illustrate the effectiveness of our methodology, we consider a discrete-time stochastic inventory control problem with certain quality of service constraints. Numerical tests demonstrate that the use of distributional information in the robust optimization of the inventory control problem results in 36%–54% cost savings, compared to the case where such information is not used. PMID:26347579

  4. Effect of land tenure and stakeholders attitudes on optimization of conservation practices in agricultural watersheds

    NASA Astrophysics Data System (ADS)

    Piemonti, A. D.; Babbar-Sebens, M.; Luzar, E. J.

    2012-12-01

    Modeled watershed management plans have become valuable tools for evaluating the effectiveness and impacts of conservation practices on hydrologic processes in watersheds. In multi-objective optimization approaches, several studies have focused on maximizing physical, ecological, or economic benefits of practices in a specific location, without considering the relationship between social systems and social attitudes on the overall optimality of the practice at that location. For example, objectives that have been commonly used in spatial optimization of practices are economic costs, sediment loads, nutrient loads and pesticide loads. Though the benefits derived from these objectives are generally oriented towards community preferences, they do not represent attitudes of landowners who might operate their land differently than their neighbors (e.g. farm their own land or rent the land to someone else) and might have different social/personal drivers that motivate them to adopt the practices. In addition, a distribution of such landowners could exist in the watershed, leading to spatially varying preferences to practices. In this study we evaluated the effect of three different land tenure types on the spatial-optimization of conservation practices. To perform the optimization, we used a uniform distribution of land tenure type and a spatially varying distribution of land tenure type. Our results show that for a typical Midwestern agricultural watershed, the most optimal solutions (i.e. highest benefits for minimum economic costs) found were for a uniform distribution of landowners who operate their own land. When a different land-tenure was used for the watershed, the optimized alternatives did not change significantly for nitrates reduction benefits and sediment reduction benefits, but were attained at economic costs much higher than the costs of the landowner who farms her/his own land. For example, landowners who rent to cash-renters would have to spend ~120% higher costs than landowners who operate their own land, to attain the same benefits. We also tested the effect of different social attitudes on the final preferences of the optimized alternatives and its consequences over the total effectiveness of the standard optimization approaches. The results suggest that, for example, when practices were removed from the system due to landowners' attitudes driven by economic profits, then the modified alternatives experienced a decrease in nitrates reduction by 2-50%, and decrease in peak flow reductions by 11-98 %, and decrease in sediments reduction by 20-77%.

  5. The Prediction of the Gas Utilization Ratio Based on TS Fuzzy Neural Network and Particle Swarm Optimization

    PubMed Central

    Jiang, Haihe; Yin, Yixin; Xiao, Wendong; Zhao, Baoyong

    2018-01-01

    Gas utilization ratio (GUR) is an important indicator that is used to evaluate the energy consumption of blast furnaces (BFs). Currently, the existing methods cannot predict the GUR accurately. In this paper, we present a novel data-driven model for predicting the GUR. The proposed approach utilized both the TS fuzzy neural network (TS-FNN) and the particle swarm algorithm (PSO) to predict the GUR. The particle swarm algorithm (PSO) is applied to optimize the parameters of the TS-FNN in order to decrease the error caused by the inaccurate initial parameter. This paper also applied the box graph (Box-plot) method to eliminate the abnormal value of the raw data during the data preprocessing. This method can deal with the data which does not obey the normal distribution which is caused by the complex industrial environments. The prediction results demonstrate that the optimization model based on PSO and the TS-FNN approach achieves higher prediction accuracy compared with the TS-FNN model and SVM model and the proposed approach can accurately predict the GUR of the blast furnace, providing an effective way for the on-line blast furnace distribution control. PMID:29461469

  6. The Prediction of the Gas Utilization Ratio based on TS Fuzzy Neural Network and Particle Swarm Optimization.

    PubMed

    Zhang, Sen; Jiang, Haihe; Yin, Yixin; Xiao, Wendong; Zhao, Baoyong

    2018-02-20

    Gas utilization ratio (GUR) is an important indicator that is used to evaluate the energy consumption of blast furnaces (BFs). Currently, the existing methods cannot predict the GUR accurately. In this paper, we present a novel data-driven model for predicting the GUR. The proposed approach utilized both the TS fuzzy neural network (TS-FNN) and the particle swarm algorithm (PSO) to predict the GUR. The particle swarm algorithm (PSO) is applied to optimize the parameters of the TS-FNN in order to decrease the error caused by the inaccurate initial parameter. This paper also applied the box graph (Box-plot) method to eliminate the abnormal value of the raw data during the data preprocessing. This method can deal with the data which does not obey the normal distribution which is caused by the complex industrial environments. The prediction results demonstrate that the optimization model based on PSO and the TS-FNN approach achieves higher prediction accuracy compared with the TS-FNN model and SVM model and the proposed approach can accurately predict the GUR of the blast furnace, providing an effective way for the on-line blast furnace distribution control.

  7. A condition-specific codon optimization approach for improved heterologous gene expression in Saccharomyces cerevisiae

    PubMed Central

    2014-01-01

    Background Heterologous gene expression is an important tool for synthetic biology that enables metabolic engineering and the production of non-natural biologics in a variety of host organisms. The translational efficiency of heterologous genes can often be improved by optimizing synonymous codon usage to better match the host organism. However, traditional approaches for optimization neglect to take into account many factors known to influence synonymous codon distributions. Results Here we define an alternative approach for codon optimization that utilizes systems level information and codon context for the condition under which heterologous genes are being expressed. Furthermore, we utilize a probabilistic algorithm to generate multiple variants of a given gene. We demonstrate improved translational efficiency using this condition-specific codon optimization approach with two heterologous genes, the fluorescent protein-encoding eGFP and the catechol 1,2-dioxygenase gene CatA, expressed in S. cerevisiae. For the latter case, optimization for stationary phase production resulted in nearly 2.9-fold improvements over commercial gene optimization algorithms. Conclusions Codon optimization is now often a standard tool for protein expression, and while a variety of tools and approaches have been developed, they do not guarantee improved performance for all hosts of applications. Here, we suggest an alternative method for condition-specific codon optimization and demonstrate its utility in Saccharomyces cerevisiae as a proof of concept. However, this technique should be applicable to any organism for which gene expression data can be generated and is thus of potential interest for a variety of applications in metabolic and cellular engineering. PMID:24636000

  8. Optimal sampling theory and population modelling - Application to determination of the influence of the microgravity environment on drug distribution and elimination

    NASA Technical Reports Server (NTRS)

    Drusano, George L.

    1991-01-01

    The optimal sampling theory is evaluated in applications to studies related to the distribution and elimination of several drugs (including ceftazidime, piperacillin, and ciprofloxacin), using the SAMPLE module of the ADAPT II package of programs developed by D'Argenio and Schumitzky (1979, 1988) and comparing the pharmacokinetic parameter values with results obtained by traditional ten-sample design. The impact of the use of optimal sampling was demonstrated in conjunction with NONMEM (Sheiner et al., 1977) approach, in which the population is taken as the unit of analysis, allowing even fragmentary patient data sets to contribute to population parameter estimates. It is shown that this technique is applicable in both the single-dose and the multiple-dose environments. The ability to study real patients made it possible to show that there was a bimodal distribution in ciprofloxacin nonrenal clearance.

  9. Optimal health and disease management using spatial uncertainty: a geographic characterization of emergent artemisinin-resistant Plasmodium falciparum distributions in Southeast Asia.

    PubMed

    Grist, Eric P M; Flegg, Jennifer A; Humphreys, Georgina; Mas, Ignacio Suay; Anderson, Tim J C; Ashley, Elizabeth A; Day, Nicholas P J; Dhorda, Mehul; Dondorp, Arjen M; Faiz, M Abul; Gething, Peter W; Hien, Tran T; Hlaing, Tin M; Imwong, Mallika; Kindermans, Jean-Marie; Maude, Richard J; Mayxay, Mayfong; McDew-White, Marina; Menard, Didier; Nair, Shalini; Nosten, Francois; Newton, Paul N; Price, Ric N; Pukrittayakamee, Sasithon; Takala-Harrison, Shannon; Smithuis, Frank; Nguyen, Nhien T; Tun, Kyaw M; White, Nicholas J; Witkowski, Benoit; Woodrow, Charles J; Fairhurst, Rick M; Sibley, Carol Hopkins; Guerin, Philippe J

    2016-10-24

    Artemisinin-resistant Plasmodium falciparum malaria parasites are now present across much of mainland Southeast Asia, where ongoing surveys are measuring and mapping their spatial distribution. These efforts require substantial resources. Here we propose a generic 'smart surveillance' methodology to identify optimal candidate sites for future sampling and thus map the distribution of artemisinin resistance most efficiently. The approach uses the 'uncertainty' map generated iteratively by a geostatistical model to determine optimal locations for subsequent sampling. The methodology is illustrated using recent data on the prevalence of the K13-propeller polymorphism (a genetic marker of artemisinin resistance) in the Greater Mekong Subregion. This methodology, which has broader application to geostatistical mapping in general, could improve the quality and efficiency of drug resistance mapping and thereby guide practical operations to eliminate malaria in affected areas.

  10. Optimal cure cycle design for autoclave processing of thick composites laminates: A feasibility study

    NASA Technical Reports Server (NTRS)

    Hou, Jean W.

    1985-01-01

    The thermal analysis and the calculation of thermal sensitivity of a cure cycle in autoclave processing of thick composite laminates were studied. A finite element program for the thermal analysis and design derivatives calculation for temperature distribution and the degree of cure was developed and verified. It was found that the direct differentiation was the best approach for the thermal design sensitivity analysis. In addition, the approach of the direct differentiation provided time histories of design derivatives which are of great value to the cure cycle designers. The approach of direct differentiation is to be used for further study, i.e., the optimal cycle design.

  11. RTDS implementation of an improved sliding mode based inverter controller for PV system.

    PubMed

    Islam, Gazi; Muyeen, S M; Al-Durra, Ahmed; Hasanien, Hany M

    2016-05-01

    This paper proposes a novel approach for testing dynamics and control aspects of a large scale photovoltaic (PV) system in real time along with resolving design hindrances of controller parameters using Real Time Digital Simulator (RTDS). In general, the harmonic profile of a fast controller has wide distribution due to the large bandwidth of the controller. The major contribution of this paper is that the proposed control strategy gives an improved voltage harmonic profile and distribute it more around the switching frequency along with fast transient response; filter design, thus, becomes easier. The implementation of a control strategy with high bandwidth in small time steps of Real Time Digital Simulator (RTDS) is not straight forward. This paper shows a good methodology for the practitioners to implement such control scheme in RTDS. As a part of the industrial process, the controller parameters are optimized using particle swarm optimization (PSO) technique to improve the low voltage ride through (LVRT) performance under network disturbance. The response surface methodology (RSM) is well adapted to build analytical models for recovery time (Rt), maximum percentage overshoot (MPOS), settling time (Ts), and steady state error (Ess) of the voltage profile immediate after inverter under disturbance. A systematic approach of controller parameter optimization is detailed. The transient performance of the PSO based optimization method applied to the proposed sliding mode controlled PV inverter is compared with the results from genetic algorithm (GA) based optimization technique. The reported real time implementation challenges and controller optimization procedure are applicable to other control applications in the field of renewable and distributed generation systems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  12. A Metastatistical Approach to Satellite Estimates of Extreme Rainfall Events

    NASA Astrophysics Data System (ADS)

    Zorzetto, E.; Marani, M.

    2017-12-01

    The estimation of the average recurrence interval of intense rainfall events is a central issue for both hydrologic modeling and engineering design. These estimates require the inference of the properties of the right tail of the statistical distribution of precipitation, a task often performed using the Generalized Extreme Value (GEV) distribution, estimated either from a samples of annual maxima (AM) or with a peaks over threshold (POT) approach. However, these approaches require long and homogeneous rainfall records, which often are not available, especially in the case of remote-sensed rainfall datasets. We use here, and tailor it to remotely-sensed rainfall estimates, an alternative approach, based on the metastatistical extreme value distribution (MEVD), which produces estimates of rainfall extreme values based on the probability distribution function (pdf) of all measured `ordinary' rainfall event. This methodology also accounts for the interannual variations observed in the pdf of daily rainfall by integrating over the sample space of its random parameters. We illustrate the application of this framework to the TRMM Multi-satellite Precipitation Analysis rainfall dataset, where MEVD optimally exploits the relatively short datasets of satellite-sensed rainfall, while taking full advantage of its high spatial resolution and quasi-global coverage. Accuracy of TRMM precipitation estimates and scale issues are here investigated for a case study located in the Little Washita watershed, Oklahoma, using a dense network of rain gauges for independent ground validation. The methodology contributes to our understanding of the risk of extreme rainfall events, as it allows i) an optimal use of the TRMM datasets in estimating the tail of the probability distribution of daily rainfall, and ii) a global mapping of daily rainfall extremes and distributional tail properties, bridging the existing gaps in rain gauges networks.

  13. Mission Activity Planning for Humans and Robots on the Moon

    NASA Technical Reports Server (NTRS)

    Weisbin, C.; Shelton, K.; Lincoln, W.; Elfes, A.; Smith, J.H.; Mrozinski, J.; Hua, H.; Adumitroaie, V.; Silberg, R.

    2008-01-01

    A series of studies is conducted to develop a systematic approach to optimizing, both in terms of the distribution and scheduling of tasks, scenarios in which astronauts and robots accomplish a group of activities on the Moon, given an objective function (OF) and specific resources and constraints. An automated planning tool is developed as a key element of this optimization system.

  14. Interference Aware Routing Using Spatial Reuse in Wireless Sensor Networks

    DTIC Science & Technology

    2013-12-01

    practice there is no optimal STDMA algorithm due to the computational complexity of the STDMA implementation; therefore, the common approach is to...Applications, Springer Berlin Heidelberg, pp. 653–657, 2001. [26] B. Korte and J. Vygen, “Shortest Paths,” Combinatorial Optimization Theory and...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited INTERFERENCE

  15. Research reactor loading pattern optimization using estimation of distribution algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, S.; Ziver, K.; AMCG Group, RM Consultants, Abingdon

    2006-07-01

    A new evolutionary search based approach for solving the nuclear reactor loading pattern optimization problems is presented based on the Estimation of Distribution Algorithms. The optimization technique developed is then applied to the maximization of the effective multiplication factor (K{sub eff}) of the Imperial College CONSORT research reactor (the last remaining civilian research reactor in the United Kingdom). A new elitism-guided searching strategy has been developed and applied to improve the local convergence together with some problem-dependent information based on the 'stand-alone K{sub eff} with fuel coupling calculations. A comparison study between the EDAs and a Genetic Algorithm with Heuristicmore » Tie Breaking Crossover operator has shown that the new algorithm is efficient and robust. (authors)« less

  16. Evolving the machine

    NASA Astrophysics Data System (ADS)

    Bailey, Brent Andrew

    Structural designs by humans and nature are wholly distinct in their approaches. Engineers model components to verify that all mechanical requirements are satisfied before assembling a product. Nature, on the other hand; creates holistically: each part evolves in conjunction with the others. The present work is a synthesis of these two design approaches; namely, spatial models that evolve. Topology optimization determines the amount and distribution of material within a model; which corresponds to the optimal connectedness and shape of a structure. Smooth designs are obtained by using higher-order B-splines in the definition of the material distribution. Higher-fidelity is achieved using adaptive meshing techniques at the interface between solid and void. Nature is an exemplary basis for mass minimization, as processing material requires both resources and energy. Topological optimization techniques were originally formulated as the maximization of the structural stiffness subject to a volume constraint. This research inverts the optimization problem: the mass is minimized subject to deflection constraints. Active materials allow a structure to interact with its environment in a manner similar to muscles and sensory organs in animals. By specifying the material properties and design requirements, adaptive structures with integrated sensors and actuators can evolve.

  17. On the ``optimal'' spatial distribution and directional anisotropy of the filter-width and grid-resolution in large eddy simulation

    NASA Astrophysics Data System (ADS)

    Toosi, Siavash; Larsson, Johan

    2017-11-01

    The accuracy of an LES depends directly on the accuracy of the resolved part of the turbulence. The continuing increase in computational power enables the application of LES to increasingly complex flow problems for which the LES community lacks the experience of knowing what the ``optimal'' or even an ``acceptable'' grid (or equivalently filter-width distribution) is. The goal of this work is to introduce a systematic approach to finding the ``optimal'' grid/filter-width distribution and their ``optimal'' anisotropy. The method is tested first on the turbulent channel flow, mainly to see if it is able to predict the right anisotropy of the filter/grid, and then on the more complicated case of flow over a backward-facing step, to test its ability to predict the right distribution and anisotropy of the filter/grid simultaneously, hence leading to a converged solution. This work has been supported by the Naval Air Warfare Center Aircraft Division at Pax River, MD, under contract N00421132M021. Computing time has been provided by the University of Maryland supercomputing resources (http://hpcc.umd.edu).

  18. About Distributed Simulation-based Optimization of Forming Processes using a Grid Architecture

    NASA Astrophysics Data System (ADS)

    Grauer, Manfred; Barth, Thomas

    2004-06-01

    Permanently increasing complexity of products and their manufacturing processes combined with a shorter "time-to-market" leads to more and more use of simulation and optimization software systems for product design. Finding a "good" design of a product implies the solution of computationally expensive optimization problems based on the results of simulation. Due to the computational load caused by the solution of these problems, the requirements on the Information&Telecommunication (IT) infrastructure of an enterprise or research facility are shifting from stand-alone resources towards the integration of software and hardware resources in a distributed environment for high-performance computing. Resources can either comprise software systems, hardware systems, or communication networks. An appropriate IT-infrastructure must provide the means to integrate all these resources and enable their use even across a network to cope with requirements from geographically distributed scenarios, e.g. in computational engineering and/or collaborative engineering. Integrating expert's knowledge into the optimization process is inevitable in order to reduce the complexity caused by the number of design variables and the high dimensionality of the design space. Hence, utilization of knowledge-based systems must be supported by providing data management facilities as a basis for knowledge extraction from product data. In this paper, the focus is put on a distributed problem solving environment (PSE) capable of providing access to a variety of necessary resources and services. A distributed approach integrating simulation and optimization on a network of workstations and cluster systems is presented. For geometry generation the CAD-system CATIA is used which is coupled with the FEM-simulation system INDEED for simulation of sheet-metal forming processes and the problem solving environment OpTiX for distributed optimization.

  19. Energy and operation management of a microgrid using particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Radosavljević, Jordan; Jevtić, Miroljub; Klimenta, Dardan

    2016-05-01

    This article presents an efficient algorithm based on particle swarm optimization (PSO) for energy and operation management (EOM) of a microgrid including different distributed generation units and energy storage devices. The proposed approach employs PSO to minimize the total energy and operating cost of the microgrid via optimal adjustment of the control variables of the EOM, while satisfying various operating constraints. Owing to the stochastic nature of energy produced from renewable sources, i.e. wind turbines and photovoltaic systems, as well as load uncertainties and market prices, a probabilistic approach in the EOM is introduced. The proposed method is examined and tested on a typical grid-connected microgrid including fuel cell, gas-fired microturbine, wind turbine, photovoltaic and energy storage devices. The obtained results prove the efficiency of the proposed approach to solve the EOM of the microgrids.

  20. Material Distribution Optimization for the Shell Aircraft Composite Structure

    NASA Astrophysics Data System (ADS)

    Shevtsov, S.; Zhilyaev, I.; Oganesyan, P.; Axenov, V.

    2016-09-01

    One of the main goal in aircraft structures designing isweight decreasing and stiffness increasing. Composite structures recently became popular in aircraft because of their mechanical properties and wide range of optimization possibilities.Weight distribution and lay-up are keys to creating lightweight stiff strictures. In this paperwe discuss optimization of specific structure that undergoes the non-uniform air pressure at the different flight conditions and reduce a level of noise caused by the airflowinduced vibrations at the constrained weight of the part. Initial model was created with CAD tool Siemens NX, finite element analysis and post processing were performed with COMSOL Multiphysicsr and MATLABr. Numerical solutions of the Reynolds averaged Navier-Stokes (RANS) equations supplemented by k-w turbulence model provide the spatial distributions of air pressure applied to the shell surface. At the formulation of optimization problem the global strain energy calculated within the optimized shell was assumed as the objective. Wall thickness has been changed using parametric approach by an initiation of auxiliary sphere with varied radius and coordinates of the center, which were the design variables. To avoid a local stress concentration, wall thickness increment was defined as smooth function on the shell surface dependent of auxiliary sphere position and size. Our study consists of multiple steps: CAD/CAE transformation of the model, determining wind pressure for different flow angles, optimizing wall thickness distribution for specific flow angles, designing a lay-up for optimal material distribution. The studied structure was improved in terms of maximum and average strain energy at the constrained expense ofweight growth. Developed methods and tools can be applied to wide range of shell-like structures made of multilayered quasi-isotropic laminates.

  1. TU-H-BRC-05: Stereotactic Radiosurgery Optimized with Orthovoltage Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fagerstrom, J; Culberson, W; Bender, E

    2016-06-15

    Purpose: To achieve improved stereotactic radiosurgery (SRS) dose distributions using orthovoltage energy fluence modulation with inverse planning optimization techniques. Methods: A pencil beam model was used to calculate dose distributions from the institution’s orthovoltage unit at 250 kVp. Kernels for the model were derived using Monte Carlo methods as well as measurements with radiochromic film. The orthovoltage photon spectra, modulated by varying thicknesses of attenuating material, were approximated using open-source software. A genetic algorithm search heuristic routine was used to optimize added tungsten filtration thicknesses to approach rectangular function dose distributions at depth. Optimizations were performed for depths of 2.5,more » 5.0, and 7.5 cm, with cone sizes of 8, 10, and 12 mm. Results: Circularly-symmetric tungsten filters were designed based on the results of the optimization, to modulate the orthovoltage beam across the aperture of an SRS cone collimator. For each depth and cone size combination examined, the beam flatness and 80–20% and 90–10% penumbrae were calculated for both standard, open cone-collimated beams as well as for the optimized, filtered beams. For all configurations tested, the modulated beams were able to achieve improved penumbra widths and flatness statistics at depth, with flatness improving between 33 and 52%, and penumbrae improving between 18 and 25% for the modulated beams compared to the unmodulated beams. Conclusion: A methodology has been described that may be used to optimize the spatial distribution of added filtration material in an orthovoltage SRS beam to result in dose distributions at depth with improved flatness and penumbrae compared to standard open cones. This work provides the mathematical foundation for a novel, orthovoltage energy fluence-modulated SRS system.« less

  2. SPECT System Optimization Against A Discrete Parameter Space

    PubMed Central

    Meng, L. J.; Li, N.

    2013-01-01

    In this paper, we present an analytical approach for optimizing the design of a static SPECT system or optimizing the sampling strategy with a variable/adaptive SPECT imaging hardware against an arbitrarily given set of system parameters. This approach has three key aspects. First, it is designed to operate over a discretized system parameter space. Second, we have introduced an artificial concept of virtual detector as the basic building block of an imaging system. With a SPECT system described as a collection of the virtual detectors, one can convert the task of system optimization into a process of finding the optimum imaging time distribution (ITD) across all virtual detectors. Thirdly, the optimization problem (finding the optimum ITD) could be solved with a block-iterative approach or other non-linear optimization algorithms. In essence, the resultant optimum ITD could provide a quantitative measure of the relative importance (or effectiveness) of the virtual detectors and help to identify the system configuration or sampling strategy that leads to an optimum imaging performance. Although we are using SPECT imaging as a platform to demonstrate the system optimization strategy, this development also provides a useful framework for system optimization problems in other modalities, such as positron emission tomography (PET) and X-ray computed tomography (CT) [1, 2]. PMID:23587609

  3. Generating moment matching scenarios using optimization techniques

    DOE PAGES

    Mehrotra, Sanjay; Papp, Dávid

    2013-05-16

    An optimization based method is proposed to generate moment matching scenarios for numerical integration and its use in stochastic programming. The main advantage of the method is its flexibility: it can generate scenarios matching any prescribed set of moments of the underlying distribution rather than matching all moments up to a certain order, and the distribution can be defined over an arbitrary set. This allows for a reduction in the number of scenarios and allows the scenarios to be better tailored to the problem at hand. The method is based on a semi-infinite linear programming formulation of the problem thatmore » is shown to be solvable with polynomial iteration complexity. A practical column generation method is implemented. The column generation subproblems are polynomial optimization problems; however, they need not be solved to optimality. It is found that the columns in the column generation approach can be efficiently generated by random sampling. The number of scenarios generated matches a lower bound of Tchakaloff's. The rate of convergence of the approximation error is established for continuous integrands, and an improved bound is given for smooth integrands. Extensive numerical experiments are presented in which variants of the proposed method are compared to Monte Carlo and quasi-Monte Carlo methods on both numerical integration problems and stochastic optimization problems. The benefits of being able to match any prescribed set of moments, rather than all moments up to a certain order, is also demonstrated using optimization problems with 100-dimensional random vectors. Here, empirical results show that the proposed approach outperforms Monte Carlo and quasi-Monte Carlo based approaches on the tested problems.« less

  4. Integrated aerodynamic/dynamic optimization of helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Walsh, Joanne L.; Riley, Michael F.

    1989-01-01

    An integrated aerodynamic/dynamic optimization procedure is used to minimize blade weight and 4 per rev vertical hub shear for a rotor blade in forward flight. The coupling of aerodynamics and dynamics is accomplished through the inclusion of airloads which vary with the design variables during the optimization process. Both single and multiple objective functions are used in the optimization formulation. The Global Criteria Approach is used to formulate the multiple objective optimization and results are compared with those obtained by using single objective function formulations. Constraints are imposed on natural frequencies, autorotational inertia, and centrifugal stress. The program CAMRAD is used for the blade aerodynamic and dynamic analyses, and the program CONMIN is used for the optimization. Since the spanwise and the azimuthal variations of loading are responsible for most rotor vibration and noise, the vertical airload distributions on the blade, before and after optimization, are compared. The total power required by the rotor to produce the same amount of thrust for a given area is also calculated before and after optimization. Results indicate that integrated optimization can significantly reduce the blade weight, the hub shear and the amplitude of the vertical airload distributions on the blade and the total power required by the rotor.

  5. On the preventive management of sediment-related sewer blockages: a combined maintenance and routing optimization approach.

    PubMed

    Fontecha, John E; Akhavan-Tabatabaei, Raha; Duque, Daniel; Medaglia, Andrés L; Torres, María N; Rodríguez, Juan Pablo

    In this work we tackle the problem of planning and scheduling preventive maintenance (PM) of sediment-related sewer blockages in a set of geographically distributed sites that are subject to non-deterministic failures. To solve the problem, we extend a combined maintenance and routing (CMR) optimization approach which is a procedure based on two components: (a) first a maintenance model is used to determine the optimal time to perform PM operations for each site and second (b) a mixed integer program-based split procedure is proposed to route a set of crews (e.g., sewer cleaners, vehicles equipped with winches or rods and dump trucks) in order to perform PM operations at a near-optimal minimum expected cost. We applied the proposed CMR optimization approach to two (out of five) operative zones in the city of Bogotá (Colombia), where more than 100 maintenance operations per zone must be scheduled on a weekly basis. Comparing the CMR against the current maintenance plan, we obtained more than 50% of cost savings in 90% of the sites.

  6. Robust Operation of Soft Open Points in Active Distribution Networks with High Penetration of Photovoltaic Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Ji, Haoran; Wang, Chengshan

    Distributed generators (DGs) including photovoltaic panels (PVs) have been integrated dramatically in active distribution networks (ADNs). Due to the strong volatility and uncertainty, the high penetration of PV generation immensely exacerbates the conditions of voltage violation in ADNs. However, the emerging flexible interconnection technology based on soft open points (SOPs) provides increased controllability and flexibility to the system operation. For fully exploiting the regulation ability of SOPs to address the problems caused by PV, this paper proposes a robust optimization method to achieve the robust optimal operation of SOPs in ADNs. A two-stage adjustable robust optimization model is built tomore » tackle the uncertainties of PV outputs, in which robust operation strategies of SOPs are generated to eliminate the voltage violations and reduce the power losses of ADNs. A column-and-constraint generation (C&CG) algorithm is developed to solve the proposed robust optimization model, which are formulated as second-order cone program (SOCP) to facilitate the accuracy and computation efficiency. Case studies on the modified IEEE 33-node system and comparisons with the deterministic optimization approach are conducted to verify the effectiveness and robustness of the proposed method.« less

  7. A novel surrogate-based approach for optimal design of electromagnetic-based circuits

    NASA Astrophysics Data System (ADS)

    Hassan, Abdel-Karim S. O.; Mohamed, Ahmed S. A.; Rabie, Azza A.; Etman, Ahmed S.

    2016-02-01

    A new geometric design centring approach for optimal design of central processing unit-intensive electromagnetic (EM)-based circuits is introduced. The approach uses norms related to the probability distribution of the circuit parameters to find distances from a point to the feasible region boundaries by solving nonlinear optimization problems. Based on these normed distances, the design centring problem is formulated as a max-min optimization problem. A convergent iterative boundary search technique is exploited to find the normed distances. To alleviate the computation cost associated with the EM-based circuits design cycle, space-mapping (SM) surrogates are used to create a sequence of iteratively updated feasible region approximations. In each SM feasible region approximation, the centring process using normed distances is implemented, leading to a better centre point. The process is repeated until a final design centre is attained. Practical examples are given to show the effectiveness of the new design centring method for EM-based circuits.

  8. Optimization of black-box models with uncertain climatic inputs—Application to sunflower ideotype design

    PubMed Central

    Picheny, Victor; Trépos, Ronan; Casadebaig, Pierre

    2017-01-01

    Accounting for the interannual climatic variations is a well-known issue for simulation-based studies of environmental systems. It often requires intensive sampling (e.g., averaging the simulation outputs over many climatic series), which hinders many sequential processes, in particular optimization algorithms. We propose here an approach based on a subset selection in a large basis of climatic series, using an ad-hoc similarity function and clustering. A non-parametric reconstruction technique is introduced to estimate accurately the distribution of the output of interest using only the subset sampling. The proposed strategy is non-intrusive and generic (i.e. transposable to most models with climatic data inputs), and can be combined to most “off-the-shelf” optimization solvers. We apply our approach to sunflower ideotype design using the crop model SUNFLO. The underlying optimization problem is formulated as a multi-objective one to account for risk-aversion. Our approach achieves good performances even for limited computational budgets, outperforming significantly standard strategies. PMID:28542198

  9. A transmission power optimization with a minimum node degree for energy-efficient wireless sensor networks with full-reachability.

    PubMed

    Chen, Yi-Ting; Horng, Mong-Fong; Lo, Chih-Cheng; Chu, Shu-Chuan; Pan, Jeng-Shyang; Liao, Bin-Yih

    2013-03-20

    Transmission power optimization is the most significant factor in prolonging the lifetime and maintaining the connection quality of wireless sensor networks. Un-optimized transmission power of nodes either interferes with or fails to link neighboring nodes. The optimization of transmission power depends on the expected node degree and node distribution. In this study, an optimization approach to an energy-efficient and full reachability wireless sensor network is proposed. In the proposed approach, an adjustment model of the transmission range with a minimum node degree is proposed that focuses on topology control and optimization of the transmission range according to node degree and node density. The model adjusts the tradeoff between energy efficiency and full reachability to obtain an ideal transmission range. In addition, connectivity and reachability are used as performance indices to evaluate the connection quality of a network. The two indices are compared to demonstrate the practicability of framework through simulation results. Furthermore, the relationship between the indices under the conditions of various node degrees is analyzed to generalize the characteristics of node densities. The research results on the reliability and feasibility of the proposed approach will benefit the future real deployments.

  10. A Transmission Power Optimization with a Minimum Node Degree for Energy-Efficient Wireless Sensor Networks with Full-Reachability

    PubMed Central

    Chen, Yi-Ting; Horng, Mong-Fong; Lo, Chih-Cheng; Chu, Shu-Chuan; Pan, Jeng-Shyang; Liao, Bin-Yih

    2013-01-01

    Transmission power optimization is the most significant factor in prolonging the lifetime and maintaining the connection quality of wireless sensor networks. Un-optimized transmission power of nodes either interferes with or fails to link neighboring nodes. The optimization of transmission power depends on the expected node degree and node distribution. In this study, an optimization approach to an energy-efficient and full reachability wireless sensor network is proposed. In the proposed approach, an adjustment model of the transmission range with a minimum node degree is proposed that focuses on topology control and optimization of the transmission range according to node degree and node density. The model adjusts the tradeoff between energy efficiency and full reachability to obtain an ideal transmission range. In addition, connectivity and reachability are used as performance indices to evaluate the connection quality of a network. The two indices are compared to demonstrate the practicability of framework through simulation results. Furthermore, the relationship between the indices under the conditions of various node degrees is analyzed to generalize the characteristics of node densities. The research results on the reliability and feasibility of the proposed approach will benefit the future real deployments. PMID:23519351

  11. Risk-Constrained Dynamic Programming for Optimal Mars Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Ono, Masahiro; Kuwata, Yoshiaki

    2013-01-01

    A chance-constrained dynamic programming algorithm was developed that is capable of making optimal sequential decisions within a user-specified risk bound. This work handles stochastic uncertainties over multiple stages in the CEMAT (Combined EDL-Mobility Analyses Tool) framework. It was demonstrated by a simulation of Mars entry, descent, and landing (EDL) using real landscape data obtained from the Mars Reconnaissance Orbiter. Although standard dynamic programming (DP) provides a general framework for optimal sequential decisionmaking under uncertainty, it typically achieves risk aversion by imposing an arbitrary penalty on failure states. Such a penalty-based approach cannot explicitly bound the probability of mission failure. A key idea behind the new approach is called risk allocation, which decomposes a joint chance constraint into a set of individual chance constraints and distributes risk over them. The joint chance constraint was reformulated into a constraint on an expectation over a sum of an indicator function, which can be incorporated into the cost function by dualizing the optimization problem. As a result, the chance-constraint optimization problem can be turned into an unconstrained optimization over a Lagrangian, which can be solved efficiently using a standard DP approach.

  12. Portfolio optimization with skewness and kurtosis

    NASA Astrophysics Data System (ADS)

    Lam, Weng Hoe; Jaaman, Saiful Hafizah Hj.; Isa, Zaidi

    2013-04-01

    Mean and variance of return distributions are two important parameters of the mean-variance model in portfolio optimization. However, the mean-variance model will become inadequate if the returns of assets are not normally distributed. Therefore, higher moments such as skewness and kurtosis cannot be ignored. Risk averse investors prefer portfolios with high skewness and low kurtosis so that the probability of getting negative rates of return will be reduced. The objective of this study is to compare the portfolio compositions as well as performances between the mean-variance model and mean-variance-skewness-kurtosis model by using the polynomial goal programming approach. The results show that the incorporation of skewness and kurtosis will change the optimal portfolio compositions. The mean-variance-skewness-kurtosis model outperforms the mean-variance model because the mean-variance-skewness-kurtosis model takes skewness and kurtosis into consideration. Therefore, the mean-variance-skewness-kurtosis model is more appropriate for the investors of Malaysia in portfolio optimization.

  13. Optimization of gear ratio and power distribution for a multimotor powertrain of an electric vehicle

    NASA Astrophysics Data System (ADS)

    Urbina Coronado, Pedro Daniel; Orta Castañón, Pedro; Ahuett-Garza, Horacio

    2018-02-01

    The architecture and design of the propulsion system of electric vehicles are highly important for the reduction of energy losses. This work presents a powertrain composed of four electric motors in which each motor is connected with a different gear ratio to the differential of the rear axle. A strategy to reduce energy losses is proposed, in which two phases are applied. Phase 1 uses a divide-and-conquer approach to increase the overall output efficiency by obtaining the optimal torque distribution for the electric motors. Phase 2 applies a genetic algorithm to find the optimal value of the gear ratios, in which each individual of each generation applies Phase 1. The results show an optimized efficiency map for the output torque and speed of the powertrain. The increase in efficiency and the reduction of energy losses are validated by the use of numerical experiments in various driving cycles.

  14. Distributed Generators Allocation in Radial Distribution Systems with Load Growth using Loss Sensitivity Approach

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwani; Vijay Babu, P.; Murty, V. V. S. N.

    2017-06-01

    Rapidly increasing electricity demands and capacity shortage of transmission and distribution facilities are the main driving forces for the growth of distributed generation (DG) integration in power grids. One of the reasons for choosing a DG is its ability to support voltage in a distribution system. Selection of effective DG characteristics and DG parameters is a significant concern of distribution system planners to obtain maximum potential benefits from the DG unit. The objective of the paper is to reduce the power losses and improve the voltage profile of the radial distribution system with optimal allocation of the multiple DG in the system. The main contribution in this paper is (i) combined power loss sensitivity (CPLS) based method for multiple DG locations, (ii) determination of optimal sizes for multiple DG units at unity and lagging power factor, (iii) impact of DG installed at optimal, that is, combined load power factor on the system performance, (iv) impact of load growth on optimal DG planning, (v) Impact of DG integration in distribution systems on voltage stability index, (vi) Economic and technical Impact of DG integration in the distribution systems. The load growth factor has been considered in the study which is essential for planning and expansion of the existing systems. The technical and economic aspects are investigated in terms of improvement in voltage profile, reduction in total power losses, cost of energy loss, cost of power obtained from DG, cost of power intake from the substation, and savings in cost of energy loss. The results are obtained on IEEE 69-bus radial distribution systems and also compared with other existing methods.

  15. A new distributed systems scheduling algorithm: a swarm intelligence approach

    NASA Astrophysics Data System (ADS)

    Haghi Kashani, Mostafa; Sarvizadeh, Raheleh; Jameii, Mahdi

    2011-12-01

    The scheduling problem in distributed systems is known as an NP-complete problem, and methods based on heuristic or metaheuristic search have been proposed to obtain optimal and suboptimal solutions. The task scheduling is a key factor for distributed systems to gain better performance. In this paper, an efficient method based on memetic algorithm is developed to solve the problem of distributed systems scheduling. With regard to load balancing efficiently, Artificial Bee Colony (ABC) has been applied as local search in the proposed memetic algorithm. The proposed method has been compared to existing memetic-Based approach in which Learning Automata method has been used as local search. The results demonstrated that the proposed method outperform the above mentioned method in terms of communication cost.

  16. A normative inference approach for optimal sample sizes in decisions from experience

    PubMed Central

    Ostwald, Dirk; Starke, Ludger; Hertwig, Ralph

    2015-01-01

    “Decisions from experience” (DFE) refers to a body of work that emerged in research on behavioral decision making over the last decade. One of the major experimental paradigms employed to study experience-based choice is the “sampling paradigm,” which serves as a model of decision making under limited knowledge about the statistical structure of the world. In this paradigm respondents are presented with two payoff distributions, which, in contrast to standard approaches in behavioral economics, are specified not in terms of explicit outcome-probability information, but by the opportunity to sample outcomes from each distribution without economic consequences. Participants are encouraged to explore the distributions until they feel confident enough to decide from which they would prefer to draw from in a final trial involving real monetary payoffs. One commonly employed measure to characterize the behavior of participants in the sampling paradigm is the sample size, that is, the number of outcome draws which participants choose to obtain from each distribution prior to terminating sampling. A natural question that arises in this context concerns the “optimal” sample size, which could be used as a normative benchmark to evaluate human sampling behavior in DFE. In this theoretical study, we relate the DFE sampling paradigm to the classical statistical decision theoretic literature and, under a probabilistic inference assumption, evaluate optimal sample sizes for DFE. In our treatment we go beyond analytically established results by showing how the classical statistical decision theoretic framework can be used to derive optimal sample sizes under arbitrary, but numerically evaluable, constraints. Finally, we critically evaluate the value of deriving optimal sample sizes under this framework as testable predictions for the experimental study of sampling behavior in DFE. PMID:26441720

  17. Optimizing the Distribution of Leg Muscles for Vertical Jumping

    PubMed Central

    Wong, Jeremy D.; Bobbert, Maarten F.; van Soest, Arthur J.; Gribble, Paul L.; Kistemaker, Dinant A.

    2016-01-01

    A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas—which determine the maximum force deliverable by the muscles—constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of the skeletal segments. PMID:26919645

  18. Static and Dynamic Model Update of an Inflatable/Rigidizable Torus Structure

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Reaves, mercedes C.

    2006-01-01

    The present work addresses the development of an experimental and computational procedure for validating finite element models. A torus structure, part of an inflatable/rigidizable Hexapod, is used to demonstrate the approach. Because of fabrication, materials, and geometric uncertainties, a statistical approach combined with optimization is used to modify key model parameters. Static test results are used to update stiffness parameters and dynamic test results are used to update the mass distribution. Updated parameters are computed using gradient and non-gradient based optimization algorithms. Results show significant improvements in model predictions after parameters are updated. Lessons learned in the areas of test procedures, modeling approaches, and uncertainties quantification are presented.

  19. Statistical simplex approach to primary and secondary color correction in thick lens assemblies

    NASA Astrophysics Data System (ADS)

    Ament, Shelby D. V.; Pfisterer, Richard

    2017-11-01

    A glass selection optimization algorithm is developed for primary and secondary color correction in thick lens systems. The approach is based on the downhill simplex method, and requires manipulation of the surface color equations to obtain a single glass-dependent parameter for each lens element. Linear correlation is used to relate this parameter to all other glass-dependent variables. The algorithm provides a statistical distribution of Abbe numbers for each element in the system. Examples of several lenses, from 2-element to 6-element systems, are performed to verify this approach. The optimization algorithm proposed is capable of finding glass solutions with high color correction without requiring an exhaustive search of the glass catalog.

  20. Toward the optimization of normalized graph Laplacian.

    PubMed

    Xie, Bo; Wang, Meng; Tao, Dacheng

    2011-04-01

    Normalized graph Laplacian has been widely used in many practical machine learning algorithms, e.g., spectral clustering and semisupervised learning. However, all of them use the Euclidean distance to construct the graph Laplacian, which does not necessarily reflect the inherent distribution of the data. In this brief, we propose a method to directly optimize the normalized graph Laplacian by using pairwise constraints. The learned graph is consistent with equivalence and nonequivalence pairwise relationships, and thus it can better represent similarity between samples. Meanwhile, our approach, unlike metric learning, automatically determines the scale factor during the optimization. The learned normalized Laplacian matrix can be directly applied in spectral clustering and semisupervised learning algorithms. Comprehensive experiments demonstrate the effectiveness of the proposed approach.

  1. Evolutionary Multiobjective Query Workload Optimization of Cloud Data Warehouses

    PubMed Central

    Dokeroglu, Tansel; Sert, Seyyit Alper; Cinar, Muhammet Serkan

    2014-01-01

    With the advent of Cloud databases, query optimizers need to find paretooptimal solutions in terms of response time and monetary cost. Our novel approach minimizes both objectives by deploying alternative virtual resources and query plans making use of the virtual resource elasticity of the Cloud. We propose an exact multiobjective branch-and-bound and a robust multiobjective genetic algorithm for the optimization of distributed data warehouse query workloads on the Cloud. In order to investigate the effectiveness of our approach, we incorporate the devised algorithms into a prototype system. Finally, through several experiments that we have conducted with different workloads and virtual resource configurations, we conclude remarkable findings of alternative deployments as well as the advantages and disadvantages of the multiobjective algorithms we propose. PMID:24892048

  2. Optimal tuning of a confined Brownian information engine.

    PubMed

    Park, Jong-Min; Lee, Jae Sung; Noh, Jae Dong

    2016-03-01

    A Brownian information engine is a device extracting mechanical work from a single heat bath by exploiting the information on the state of a Brownian particle immersed in the bath. As for engines, it is important to find the optimal operating condition that yields the maximum extracted work or power. The optimal condition for a Brownian information engine with a finite cycle time τ has been rarely studied because of the difficulty in finding the nonequilibrium steady state. In this study, we introduce a model for the Brownian information engine and develop an analytic formalism for its steady-state distribution for any τ. We find that the extracted work per engine cycle is maximum when τ approaches infinity, while the power is maximum when τ approaches zero.

  3. Collectives for Multiple Resource Job Scheduling Across Heterogeneous Servers

    NASA Technical Reports Server (NTRS)

    Tumer, K.; Lawson, J.

    2003-01-01

    Efficient management of large-scale, distributed data storage and processing systems is a major challenge for many computational applications. Many of these systems are characterized by multi-resource tasks processed across a heterogeneous network. Conventional approaches, such as load balancing, work well for centralized, single resource problems, but breakdown in the more general case. In addition, most approaches are often based on heuristics which do not directly attempt to optimize the world utility. In this paper, we propose an agent based control system using the theory of collectives. We configure the servers of our network with agents who make local job scheduling decisions. These decisions are based on local goals which are constructed to be aligned with the objective of optimizing the overall efficiency of the system. We demonstrate that multi-agent systems in which all the agents attempt to optimize the same global utility function (team game) only marginally outperform conventional load balancing. On the other hand, agents configured using collectives outperform both team games and load balancing (by up to four times for the latter), despite their distributed nature and their limited access to information.

  4. Feasibility of employing model-based optimization of pulse amplitude and electrode distance for effective tumor electropermeabilization.

    PubMed

    Sel, Davorka; Lebar, Alenka Macek; Miklavcic, Damijan

    2007-05-01

    In electrochemotherapy (ECT) electropermeabilization, parameters (pulse amplitude, electrode setup) need to be customized in order to expose the whole tumor to electric field intensities above permeabilizing threshold to achieve effective ECT. In this paper, we present a model-based optimization approach toward determination of optimal electropermeabilization parameters for effective ECT. The optimization is carried out by minimizing the difference between the permeabilization threshold and electric field intensities computed by finite element model in selected points of tumor. We examined the feasibility of model-based optimization of electropermeabilization parameters on a model geometry generated from computer tomography images, representing brain tissue with tumor. Continuous parameter subject to optimization was pulse amplitude. The distance between electrode pairs was optimized as a discrete parameter. Optimization also considered the pulse generator constraints on voltage and current. During optimization the two constraints were reached preventing the exposure of the entire volume of the tumor to electric field intensities above permeabilizing threshold. However, despite the fact that with the particular needle array holder and pulse generator the entire volume of the tumor was not permeabilized, the maximal extent of permeabilization for the particular case (electrodes, tissue) was determined with the proposed approach. Model-based optimization approach could also be used for electro-gene transfer, where electric field intensities should be distributed between permeabilizing threshold and irreversible threshold-the latter causing tissue necrosis. This can be obtained by adding constraints on maximum electric field intensity in optimization procedure.

  5. Dynamic optimization of distributed biological systems using robust and efficient numerical techniques.

    PubMed

    Vilas, Carlos; Balsa-Canto, Eva; García, Maria-Sonia G; Banga, Julio R; Alonso, Antonio A

    2012-07-02

    Systems biology allows the analysis of biological systems behavior under different conditions through in silico experimentation. The possibility of perturbing biological systems in different manners calls for the design of perturbations to achieve particular goals. Examples would include, the design of a chemical stimulation to maximize the amplitude of a given cellular signal or to achieve a desired pattern in pattern formation systems, etc. Such design problems can be mathematically formulated as dynamic optimization problems which are particularly challenging when the system is described by partial differential equations.This work addresses the numerical solution of such dynamic optimization problems for spatially distributed biological systems. The usual nonlinear and large scale nature of the mathematical models related to this class of systems and the presence of constraints on the optimization problems, impose a number of difficulties, such as the presence of suboptimal solutions, which call for robust and efficient numerical techniques. Here, the use of a control vector parameterization approach combined with efficient and robust hybrid global optimization methods and a reduced order model methodology is proposed. The capabilities of this strategy are illustrated considering the solution of a two challenging problems: bacterial chemotaxis and the FitzHugh-Nagumo model. In the process of chemotaxis the objective was to efficiently compute the time-varying optimal concentration of chemotractant in one of the spatial boundaries in order to achieve predefined cell distribution profiles. Results are in agreement with those previously published in the literature. The FitzHugh-Nagumo problem is also efficiently solved and it illustrates very well how dynamic optimization may be used to force a system to evolve from an undesired to a desired pattern with a reduced number of actuators. The presented methodology can be used for the efficient dynamic optimization of generic distributed biological systems.

  6. Chandrasekhar equations and computational algorithms for distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Burns, J. A.; Ito, K.; Powers, R. K.

    1984-01-01

    The Chandrasekhar equations arising in optimal control problems for linear distributed parameter systems are considered. The equations are derived via approximation theory. This approach is used to obtain existence, uniqueness, and strong differentiability of the solutions and provides the basis for a convergent computation scheme for approximating feedback gain operators. A numerical example is presented to illustrate these ideas.

  7. Voxel-based dose prediction with multi-patient atlas selection for automated radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    McIntosh, Chris; Purdie, Thomas G.

    2017-01-01

    Automating the radiotherapy treatment planning process is a technically challenging problem. The majority of automated approaches have focused on customizing and inferring dose volume objectives to be used in plan optimization. In this work we outline a multi-patient atlas-based dose prediction approach that learns to predict the dose-per-voxel for a novel patient directly from the computed tomography planning scan without the requirement of specifying any objectives. Our method learns to automatically select the most effective atlases for a novel patient, and then map the dose from those atlases onto the novel patient. We extend our previous work to include a conditional random field for the optimization of a joint distribution prior that matches the complementary goals of an accurately spatially distributed dose distribution while still adhering to the desired dose volume histograms. The resulting distribution can then be used for inverse-planning with a new spatial dose objective, or to create typical dose volume objectives for the canonical optimization pipeline. We investigated six treatment sites (633 patients for training and 113 patients for testing) and evaluated the mean absolute difference in all DVHs for the clinical and predicted dose distribution. The results on average are favorable in comparison to our previous approach (1.91 versus 2.57). Comparing our method with and without atlas-selection further validates that atlas-selection improved dose prediction on average in whole breast (0.64 versus 1.59), prostate (2.13 versus 4.07), and rectum (1.46 versus 3.29) while it is less important in breast cavity (0.79 versus 0.92) and lung (1.33 versus 1.27) for which there is high conformity and minimal dose shaping. In CNS brain, atlas-selection has the potential to be impactful (3.65 versus 5.09), but selecting the ideal atlas is the most challenging.

  8. Generalized optimal design for two-arm, randomized phase II clinical trials with endpoints from the exponential dispersion family.

    PubMed

    Jiang, Wei; Mahnken, Jonathan D; He, Jianghua; Mayo, Matthew S

    2016-11-01

    For two-arm randomized phase II clinical trials, previous literature proposed an optimal design that minimizes the total sample sizes subject to multiple constraints on the standard errors of the estimated event rates and their difference. The original design is limited to trials with dichotomous endpoints. This paper extends the original approach to be applicable to phase II clinical trials with endpoints from the exponential dispersion family distributions. The proposed optimal design minimizes the total sample sizes needed to provide estimates of population means of both arms and their difference with pre-specified precision. Its applications on data from specific distribution families are discussed under multiple design considerations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Optimized mirror shape tuning using beam weightings based on distance, angle of incidence, reflectivity, and power.

    PubMed

    Goldberg, Kenneth A; Yashchuk, Valeriy V

    2016-05-01

    For glancing-incidence optical systems, such as short-wavelength optics used for nano-focusing, incorporating physical factors in the calculations used for shape optimization can improve performance. Wavefront metrology, including the measurement of a mirror's shape or slope, is routinely used as input for mirror figure optimization on mirrors that can be bent, actuated, positioned, or aligned. Modeling shows that when the incident power distribution, distance from focus, angle of incidence, and the spatially varying reflectivity are included in the optimization, higher Strehl ratios can be achieved. Following the works of Maréchal and Mahajan, optimization of the Strehl ratio (for peak intensity with a coherently illuminated system) occurs when the expectation value of the phase error's variance is minimized. We describe an optimization procedure based on regression analysis that incorporates these physical parameters. This approach is suitable for coherently illuminated systems of nearly diffraction-limited quality. Mathematically, this work is an enhancement of the methods commonly applied for ex situ alignment based on uniform weighting of all points on the surface (or a sub-region of the surface). It follows a similar approach to the optimization of apodized and non-uniformly illuminated optical systems. Significantly, it reaches a different conclusion than a more recent approach based on minimization of focal plane ray errors.

  10. Stochastic Optimization For Water Resources Allocation

    NASA Astrophysics Data System (ADS)

    Yamout, G.; Hatfield, K.

    2003-12-01

    For more than 40 years, water resources allocation problems have been addressed using deterministic mathematical optimization. When data uncertainties exist, these methods could lead to solutions that are sub-optimal or even infeasible. While optimization models have been proposed for water resources decision-making under uncertainty, no attempts have been made to address the uncertainties in water allocation problems in an integrated approach. This paper presents an Integrated Dynamic, Multi-stage, Feedback-controlled, Linear, Stochastic, and Distributed parameter optimization approach to solve a problem of water resources allocation. It attempts to capture (1) the conflict caused by competing objectives, (2) environmental degradation produced by resource consumption, and finally (3) the uncertainty and risk generated by the inherently random nature of state and decision parameters involved in such a problem. A theoretical system is defined throughout its different elements. These elements consisting mainly of water resource components and end-users are described in terms of quantity, quality, and present and future associated risks and uncertainties. Models are identified, modified, and interfaced together to constitute an integrated water allocation optimization framework. This effort is a novel approach to confront the water allocation optimization problem while accounting for uncertainties associated with all its elements; thus resulting in a solution that correctly reflects the physical problem in hand.

  11. Application of the LSQR algorithm in non-parametric estimation of aerosol size distribution

    NASA Astrophysics Data System (ADS)

    He, Zhenzong; Qi, Hong; Lew, Zhongyuan; Ruan, Liming; Tan, Heping; Luo, Kun

    2016-05-01

    Based on the Least Squares QR decomposition (LSQR) algorithm, the aerosol size distribution (ASD) is retrieved in non-parametric approach. The direct problem is solved by the Anomalous Diffraction Approximation (ADA) and the Lambert-Beer Law. An optimal wavelength selection method is developed to improve the retrieval accuracy of the ASD. The proposed optimal wavelength set is selected by the method which can make the measurement signals sensitive to wavelength and decrease the degree of the ill-condition of coefficient matrix of linear systems effectively to enhance the anti-interference ability of retrieval results. Two common kinds of monomodal and bimodal ASDs, log-normal (L-N) and Gamma distributions, are estimated, respectively. Numerical tests show that the LSQR algorithm can be successfully applied to retrieve the ASD with high stability in the presence of random noise and low susceptibility to the shape of distributions. Finally, the experimental measurement ASD over Harbin in China is recovered reasonably. All the results confirm that the LSQR algorithm combined with the optimal wavelength selection method is an effective and reliable technique in non-parametric estimation of ASD.

  12. Tailored Magnetic Nanoparticles for Optimizing Magnetic Fluid Hyperthermia

    PubMed Central

    Khandhar, Amit; Ferguson, R. Matthew; Simon, Julian A.; Krishnan, Kannan M.

    2011-01-01

    Magnetic Fluid Hyperthermia (MFH) is a promising approach towards adjuvant cancer therapy that is based on the localized heating of tumors using the relaxation losses of iron oxide magnetic nanoparticles (MNPs) in alternating magnetic fields (AMF). In this study, we demonstrate optimization of MFH by tailoring MNP size to an applied AMF frequency. Unlike conventional aqueous synthesis routes, we use organic synthesis routes that offer precise control over MNP size (diameter ~ 10–25 nm), size distribution and phase purity. Furthermore, the particles are successfully transferred to the aqueous phase using a biocompatible amphiphilic polymer, and demonstrate long-term shelf life. A rigorous characterization protocol ensures that the water-stable MNPs meet all the critical requirements: (1) uniform shape and monodispersity, (2) phase purity, (3) stable magnetic properties approaching that of the bulk, (4) colloidal stability, (5) substantial shelf life and (6) pose no significant in vitro toxicity. Using a dedicated hyperthermia system, we then identified that 16 nm monodisperse MNPs (σ ~ 0.175) respond optimally to our chosen AMF conditions (f = 373 kHz, Ho = 14 kA/m); however, with a broader size distribution (σ ~ 0.284) the Specific Loss Power (SLP) decreases by 30%. Finally, we show that these tailored MNPs demonstrate maximum hyperthermia efficiency by reducing viability of Jurkat cells in vitro, suggesting our optimization translates truthfully to cell populations. In summary, we present a way to intrinsically optimize MFH by tailoring the MNPs to any applied AMF, a required precursor to optimize dose and time of treatment. PMID:22213652

  13. Superlattice design for optimal thermoelectric generator performance

    NASA Astrophysics Data System (ADS)

    Priyadarshi, Pankaj; Sharma, Abhishek; Mukherjee, Swarnadip; Muralidharan, Bhaskaran

    2018-05-01

    We consider the design of an optimal superlattice thermoelectric generator via the energy bandpass filter approach. Various configurations of superlattice structures are explored to obtain a bandpass transmission spectrum that approaches the ideal ‘boxcar’ form, which is now well known to manifest the largest efficiency at a given output power in the ballistic limit. Using the coherent non-equilibrium Green’s function formalism coupled self-consistently with the Poisson’s equation, we identify such an ideal structure and also demonstrate that it is almost immune to the deleterious effect of self-consistent charging and device variability. Analyzing various superlattice designs, we conclude that superlattice with a Gaussian distribution of the barrier thickness offers the best thermoelectric efficiency at maximum power. It is observed that the best operating regime of this device design provides a maximum power in the range of 0.32–0.46 MW/m 2 at efficiencies between 54%–43% of Carnot efficiency. We also analyze our device designs with the conventional figure of merit approach to counter support the results so obtained. We note a high zT el   =  6 value in the case of Gaussian distribution of the barrier thickness. With the existing advanced thin-film growth technology, the suggested superlattice structures can be achieved, and such optimized thermoelectric performances can be realized.

  14. Integrating machine learning to achieve an automatic parameter prediction for practical continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Liu, Weiqi; Huang, Peng; Peng, Jinye; Fan, Jianping; Zeng, Guihua

    2018-02-01

    For supporting practical quantum key distribution (QKD), it is critical to stabilize the physical parameters of signals, e.g., the intensity, phase, and polarization of the laser signals, so that such QKD systems can achieve better performance and practical security. In this paper, an approach is developed by integrating a support vector regression (SVR) model to optimize the performance and practical security of the QKD system. First, a SVR model is learned to precisely predict the time-along evolutions of the physical parameters of signals. Second, such predicted time-along evolutions are employed as feedback to control the QKD system for achieving the optimal performance and practical security. Finally, our proposed approach is exemplified by using the intensity evolution of laser light and a local oscillator pulse in the Gaussian modulated coherent state QKD system. Our experimental results have demonstrated three significant benefits of our SVR-based approach: (1) it can allow the QKD system to achieve optimal performance and practical security, (2) it does not require any additional resources and any real-time monitoring module to support automatic prediction of the time-along evolutions of the physical parameters of signals, and (3) it is applicable to any measurable physical parameter of signals in the practical QKD system.

  15. On the Optimization of a Probabilistic Data Aggregation Framework for Energy Efficiency in Wireless Sensor Networks.

    PubMed

    Kafetzoglou, Stella; Aristomenopoulos, Giorgos; Papavassiliou, Symeon

    2015-08-11

    Among the key aspects of the Internet of Things (IoT) is the integration of heterogeneous sensors in a distributed system that performs actions on the physical world based on environmental information gathered by sensors and application-related constraints and requirements. Numerous applications of Wireless Sensor Networks (WSNs) have appeared in various fields, from environmental monitoring, to tactical fields, and healthcare at home, promising to change our quality of life and facilitating the vision of sensor network enabled smart cities. Given the enormous requirements that emerge in such a setting-both in terms of data and energy-data aggregation appears as a key element in reducing the amount of traffic in wireless sensor networks and achieving energy conservation. Probabilistic frameworks have been introduced as operational efficient and performance effective solutions for data aggregation in distributed sensor networks. In this work, we introduce an overall optimization approach that improves and complements such frameworks towards identifying the optimal probability for a node to aggregate packets as well as the optimal aggregation period that a node should wait for performing aggregation, so as to minimize the overall energy consumption, while satisfying certain imposed delay constraints. Primal dual decomposition is employed to solve the corresponding optimization problem while simulation results demonstrate the operational efficiency of the proposed approach under different traffic and topology scenarios.

  16. Geometry Design Optimization of Functionally Graded Scaffolds for Bone Tissue Engineering: A Mechanobiological Approach.

    PubMed

    Boccaccio, Antonio; Uva, Antonio Emmanuele; Fiorentino, Michele; Mori, Giorgio; Monno, Giuseppe

    2016-01-01

    Functionally Graded Scaffolds (FGSs) are porous biomaterials where porosity changes in space with a specific gradient. In spite of their wide use in bone tissue engineering, possible models that relate the scaffold gradient to the mechanical and biological requirements for the regeneration of the bony tissue are currently missing. In this study we attempt to bridge the gap by developing a mechanobiology-based optimization algorithm aimed to determine the optimal graded porosity distribution in FGSs. The algorithm combines the parametric finite element model of a FGS, a computational mechano-regulation model and a numerical optimization routine. For assigned boundary and loading conditions, the algorithm builds iteratively different scaffold geometry configurations with different porosity distributions until the best microstructure geometry is reached, i.e. the geometry that allows the amount of bone formation to be maximized. We tested different porosity distribution laws, loading conditions and scaffold Young's modulus values. For each combination of these variables, the explicit equation of the porosity distribution law-i.e the law that describes the pore dimensions in function of the spatial coordinates-was determined that allows the highest amounts of bone to be generated. The results show that the loading conditions affect significantly the optimal porosity distribution. For a pure compression loading, it was found that the pore dimensions are almost constant throughout the entire scaffold and using a FGS allows the formation of amounts of bone slightly larger than those obtainable with a homogeneous porosity scaffold. For a pure shear loading, instead, FGSs allow to significantly increase the bone formation compared to a homogeneous porosity scaffolds. Although experimental data is still necessary to properly relate the mechanical/biological environment to the scaffold microstructure, this model represents an important step towards optimizing geometry of functionally graded scaffolds based on mechanobiological criteria.

  17. A distributed approach for optimizing cascaded classifier topologies in real-time stream mining systems.

    PubMed

    Foo, Brian; van der Schaar, Mihaela

    2010-11-01

    In this paper, we discuss distributed optimization techniques for configuring classifiers in a real-time, informationally-distributed stream mining system. Due to the large volume of streaming data, stream mining systems must often cope with overload, which can lead to poor performance and intolerable processing delay for real-time applications. Furthermore, optimizing over an entire system of classifiers is a difficult task since changing the filtering process at one classifier can impact both the feature values of data arriving at classifiers further downstream and thus, the classification performance achieved by an ensemble of classifiers, as well as the end-to-end processing delay. To address this problem, this paper makes three main contributions: 1) Based on classification and queuing theoretic models, we propose a utility metric that captures both the performance and the delay of a binary filtering classifier system. 2) We introduce a low-complexity framework for estimating the system utility by observing, estimating, and/or exchanging parameters between the inter-related classifiers deployed across the system. 3) We provide distributed algorithms to reconfigure the system, and analyze the algorithms based on their convergence properties, optimality, information exchange overhead, and rate of adaptation to non-stationary data sources. We provide results using different video classifier systems.

  18. Short-Term Distribution System State Forecast Based on Optimal Synchrophasor Sensor Placement and Extreme Learning Machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Zhang, Yingchen

    This paper proposes an approach for distribution system state forecasting, which aims to provide an accurate and high speed state forecasting with an optimal synchrophasor sensor placement (OSSP) based state estimator and an extreme learning machine (ELM) based forecaster. Specifically, considering the sensor installation cost and measurement error, an OSSP algorithm is proposed to reduce the number of synchrophasor sensor and keep the whole distribution system numerically and topologically observable. Then, the weighted least square (WLS) based system state estimator is used to produce the training data for the proposed forecaster. Traditionally, the artificial neural network (ANN) and support vectormore » regression (SVR) are widely used in forecasting due to their nonlinear modeling capabilities. However, the ANN contains heavy computation load and the best parameters for SVR are difficult to obtain. In this paper, the ELM, which overcomes these drawbacks, is used to forecast the future system states with the historical system states. The proposed approach is effective and accurate based on the testing results.« less

  19. Distributed State Estimation Using a Modified Partitioned Moving Horizon Strategy for Power Systems.

    PubMed

    Chen, Tengpeng; Foo, Yi Shyh Eddy; Ling, K V; Chen, Xuebing

    2017-10-11

    In this paper, a distributed state estimation method based on moving horizon estimation (MHE) is proposed for the large-scale power system state estimation. The proposed method partitions the power systems into several local areas with non-overlapping states. Unlike the centralized approach where all measurements are sent to a processing center, the proposed method distributes the state estimation task to the local processing centers where local measurements are collected. Inspired by the partitioned moving horizon estimation (PMHE) algorithm, each local area solves a smaller optimization problem to estimate its own local states by using local measurements and estimated results from its neighboring areas. In contrast with PMHE, the error from the process model is ignored in our method. The proposed modified PMHE (mPMHE) approach can also take constraints on states into account during the optimization process such that the influence of the outliers can be further mitigated. Simulation results on the IEEE 14-bus and 118-bus systems verify that our method achieves comparable state estimation accuracy but with a significant reduction in the overall computation load.

  20. Generalized Likelihood Uncertainty Estimation (GLUE) methodology for optimization of extraction in natural products.

    PubMed

    Maulidiani; Rudiyanto; Abas, Faridah; Ismail, Intan Safinar; Lajis, Nordin H

    2018-06-01

    Optimization process is an important aspect in the natural product extractions. Herein, an alternative approach is proposed for the optimization in extraction, namely, the Generalized Likelihood Uncertainty Estimation (GLUE). The approach combines the Latin hypercube sampling, the feasible range of independent variables, the Monte Carlo simulation, and the threshold criteria of response variables. The GLUE method is tested in three different techniques including the ultrasound, the microwave, and the supercritical CO 2 assisted extractions utilizing the data from previously published reports. The study found that this method can: provide more information on the combined effects of the independent variables on the response variables in the dotty plots; deal with unlimited number of independent and response variables; consider combined multiple threshold criteria, which is subjective depending on the target of the investigation for response variables; and provide a range of values with their distribution for the optimization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Optimal Design for Placements of Tsunami Observing Systems to Accurately Characterize the Inducing Earthquake

    NASA Astrophysics Data System (ADS)

    Mulia, Iyan E.; Gusman, Aditya Riadi; Satake, Kenji

    2017-12-01

    Recently, there are numerous tsunami observation networks deployed in several major tsunamigenic regions. However, guidance on where to optimally place the measurement devices is limited. This study presents a methodological approach to select strategic observation locations for the purpose of tsunami source characterizations, particularly in terms of the fault slip distribution. Initially, we identify favorable locations and determine the initial number of observations. These locations are selected based on extrema of empirical orthogonal function (EOF) spatial modes. To further improve the accuracy, we apply an optimization algorithm called a mesh adaptive direct search to remove redundant measurement locations from the EOF-generated points. We test the proposed approach using multiple hypothetical tsunami sources around the Nankai Trough, Japan. The results suggest that the optimized observation points can produce more accurate fault slip estimates with considerably less number of observations compared to the existing tsunami observation networks.

  2. Operation management of daily economic dispatch using novel hybrid particle swarm optimization and gravitational search algorithm with hybrid mutation strategy

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Huang, Song; Ji, Zhicheng

    2017-07-01

    This paper presents a hybrid particle swarm optimization and gravitational search algorithm based on hybrid mutation strategy (HGSAPSO-M) to optimize economic dispatch (ED) including distributed generations (DGs) considering market-based energy pricing. A daily ED model was formulated and a hybrid mutation strategy was adopted in HGSAPSO-M. The hybrid mutation strategy includes two mutation operators, chaotic mutation, Gaussian mutation. The proposed algorithm was tested on IEEE-33 bus and results show that the approach is effective for this problem.

  3. Cooperative Management of a Lithium-Ion Battery Energy Storage Network: A Distributed MPC Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Huazhen; Wu, Di; Yang, Tao

    2016-12-12

    This paper presents a study of cooperative power supply and storage for a network of Lithium-ion energy storage systems (LiBESSs). We propose to develop a distributed model predictive control (MPC) approach for two reasons. First, able to account for the practical constraints of a LiBESS, the MPC can enable a constraint-aware operation. Second, a distributed management can cope with a complex network that integrates a large number of LiBESSs over a complex communication topology. With this motivation, we then build a fully distributed MPC algorithm from an optimization perspective, which is based on an extension of the alternating direction methodmore » of multipliers (ADMM) method. A simulation example is provided to demonstrate the effectiveness of the proposed algorithm.« less

  4. Intelligent Distributed Systems

    DTIC Science & Technology

    2015-10-23

    periodic gossiping algorithms by using convex combination rules rather than standard averaging rules. On a ring graph, we have discovered how to sequence...the gossips within a period to achieve the best possible convergence rate and we have related this optimal value to the classic edge coloring problem...consensus. There are three different approaches to distributed averaging: linear iterations, gossiping , and dou- ble linear iterations which are also known as

  5. Intelligent Distribution Voltage Control with Distributed Generation =

    NASA Astrophysics Data System (ADS)

    Castro Mendieta, Jose

    In this thesis, three methods for the optimal participation of the reactive power of distributed generations (DGs) in unbalanced distributed network have been proposed, developed, and tested. These new methods were developed with the objectives of maintain voltage within permissible limits and reduce losses. The first method proposes an optimal participation of reactive power of all devices available in the network. The propose approach is validated by comparing the results with other methods reported in the literature. The proposed method was implemented using Simulink of Matlab and OpenDSS. Optimization techniques and the presentation of results are from Matlab. The co-simulation of Electric Power Research Institute's (EPRI) OpenDSS program solves a three-phase optimal power flow problem in the unbalanced IEEE 13 and 34-node test feeders. The results from this work showed a better loss reduction compared to the Coordinated Voltage Control (CVC) method. The second method aims to minimize the voltage variation on the pilot bus on distribution network using DGs. It uses Pareto and Fuzzy-PID logic to reduce the voltage variation. Results indicate that the proposed method reduces the voltage variation more than the other methods. Simulink of Matlab and OpenDSS is used in the development of the proposed approach. The performance of the method is evaluated on IEEE 13-node test feeder with one and three DGs. Variables and unbalanced loads are used, based on real consumption data, over a time window of 48 hours. The third method aims to minimize the reactive losses using DGs on distribution networks. This method analyzes the problem using the IEEE 13-node test feeder with three different loads and the IEEE 123-node test feeder with four DGs. The DGs can be fixed or variables. Results indicate that integration of DGs to optimize the reactive power of the network helps to maintain the voltage within the allowed limits and to reduce the reactive power losses. The thesis is presented in the form of the three articles. The first article is published in the journal Electrical Power and Energy System, the second is published in the international journal Energies and the third was submitted to the journal Electrical Power and Energy System. Two other articles have been published in conferences with reviewing committee. This work is based on six chapters, which are detailed in the various sections of the thesis.

  6. Using spatial information about recurrence risk for robust optimization of dose-painting prescription functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, Edward T.

    Purpose: To develop a robust method for deriving dose-painting prescription functions using spatial information about the risk for disease recurrence. Methods: Spatial distributions of radiobiological model parameters are derived from distributions of recurrence risk after uniform irradiation. These model parameters are then used to derive optimal dose-painting prescription functions given a constant mean biologically effective dose. Results: An estimate for the optimal dose distribution can be derived based on spatial information about recurrence risk. Dose painting based on imaging markers that are moderately or poorly correlated with recurrence risk are predicted to potentially result in inferior disease control when comparedmore » the same mean biologically effective dose delivered uniformly. A robust optimization approach may partially mitigate this issue. Conclusions: The methods described here can be used to derive an estimate for a robust, patient-specific prescription function for use in dose painting. Two approximate scaling relationships were observed: First, the optimal choice for the maximum dose differential when using either a linear or two-compartment prescription function is proportional to R, where R is the Pearson correlation coefficient between a given imaging marker and recurrence risk after uniform irradiation. Second, the predicted maximum possible gain in tumor control probability for any robust optimization technique is nearly proportional to the square of R.« less

  7. A controls engineering approach for analyzing airplane input-output characteristics

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. Douglas

    1991-01-01

    An engineering approach for analyzing airplane control and output characteristics is presented. State-space matrix equations describing the linear perturbation dynamics are transformed from physical coordinates into scaled coordinates. The scaling is accomplished by applying various transformations to the system to employ prior engineering knowledge of the airplane physics. Two different analysis techniques are then explained. Modal analysis techniques calculate the influence of each system input on each fundamental mode of motion and the distribution of each mode among the system outputs. The optimal steady state response technique computes the blending of steady state control inputs that optimize the steady state response of selected system outputs. Analysis of an example airplane model is presented to demonstrate the described engineering approach.

  8. Distributed Coordinated Control of Large-Scale Nonlinear Networks

    DOE PAGES

    Kundu, Soumya; Anghel, Marian

    2015-11-08

    We provide a distributed coordinated approach to the stability analysis and control design of largescale nonlinear dynamical systems by using a vector Lyapunov functions approach. In this formulation the large-scale system is decomposed into a network of interacting subsystems and the stability of the system is analyzed through a comparison system. However finding such comparison system is not trivial. In this work, we propose a sum-of-squares based completely decentralized approach for computing the comparison systems for networks of nonlinear systems. Moreover, based on the comparison systems, we introduce a distributed optimal control strategy in which the individual subsystems (agents) coordinatemore » with their immediate neighbors to design local control policies that can exponentially stabilize the full system under initial disturbances.We illustrate the control algorithm on a network of interacting Van der Pol systems.« less

  9. A comparative review of methods for comparing means using partially paired data.

    PubMed

    Guo, Beibei; Yuan, Ying

    2017-06-01

    In medical experiments with the objective of testing the equality of two means, data are often partially paired by design or because of missing data. The partially paired data represent a combination of paired and unpaired observations. In this article, we review and compare nine methods for analyzing partially paired data, including the two-sample t-test, paired t-test, corrected z-test, weighted t-test, pooled t-test, optimal pooled t-test, multiple imputation method, mixed model approach, and the test based on a modified maximum likelihood estimate. We compare the performance of these methods through extensive simulation studies that cover a wide range of scenarios with different effect sizes, sample sizes, and correlations between the paired variables, as well as true underlying distributions. The simulation results suggest that when the sample size is moderate, the test based on the modified maximum likelihood estimator is generally superior to the other approaches when the data is normally distributed and the optimal pooled t-test performs the best when the data is not normally distributed, with well-controlled type I error rates and high statistical power; when the sample size is small, the optimal pooled t-test is to be recommended when both variables have missing data and the paired t-test is to be recommended when only one variable has missing data.

  10. Modeling complexity in engineered infrastructure system: Water distribution network as an example

    NASA Astrophysics Data System (ADS)

    Zeng, Fang; Li, Xiang; Li, Ke

    2017-02-01

    The complex topology and adaptive behavior of infrastructure systems are driven by both self-organization of the demand and rigid engineering solutions. Therefore, engineering complex systems requires a method balancing holism and reductionism. To model the growth of water distribution networks, a complex network model was developed following the combination of local optimization rules and engineering considerations. The demand node generation is dynamic and follows the scaling law of urban growth. The proposed model can generate a water distribution network (WDN) similar to reported real-world WDNs on some structural properties. Comparison with different modeling approaches indicates that a realistic demand node distribution and co-evolvement of demand node and network are important for the simulation of real complex networks. The simulation results indicate that the efficiency of water distribution networks is exponentially affected by the urban growth pattern. On the contrary, the improvement of efficiency by engineering optimization is limited and relatively insignificant. The redundancy and robustness, on another aspect, can be significantly improved through engineering methods.

  11. Enabling High-performance Interactive Geoscience Data Analysis Through Data Placement and Movement Optimization

    NASA Astrophysics Data System (ADS)

    Zhu, F.; Yu, H.; Rilee, M. L.; Kuo, K. S.; Yu, L.; Pan, Y.; Jiang, H.

    2017-12-01

    Since the establishment of data archive centers and the standardization of file formats, scientists are required to search metadata catalogs for data needed and download the data files to their local machines to carry out data analysis. This approach has facilitated data discovery and access for decades, but it inevitably leads to data transfer from data archive centers to scientists' computers through low-bandwidth Internet connections. Data transfer becomes a major performance bottleneck in such an approach. Combined with generally constrained local compute/storage resources, they limit the extent of scientists' studies and deprive them of timely outcomes. Thus, this conventional approach is not scalable with respect to both the volume and variety of geoscience data. A much more viable solution is to couple analysis and storage systems to minimize data transfer. In our study, we compare loosely coupled approaches (exemplified by Spark and Hadoop) and tightly coupled approaches (exemplified by parallel distributed database management systems, e.g., SciDB). In particular, we investigate the optimization of data placement and movement to effectively tackle the variety challenge, and boost the popularization of parallelization to address the volume challenge. Our goal is to enable high-performance interactive analysis for a good portion of geoscience data analysis exercise. We show that tightly coupled approaches can concentrate data traffic between local storage systems and compute units, and thereby optimizing bandwidth utilization to achieve a better throughput. Based on our observations, we develop a geoscience data analysis system that tightly couples analysis engines with storages, which has direct access to the detailed map of data partition locations. Through an innovation data partitioning and distribution scheme, our system has demonstrated scalable and interactive performance in real-world geoscience data analysis applications.

  12. Final Technical Report: Distributed Controls for High Penetrations of Renewables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrne, Raymond H.; Neely, Jason C.; Rashkin, Lee J.

    2015-12-01

    The goal of this effort was to apply four potential control analysis/design approaches to the design of distributed grid control systems to address the impact of latency and communications uncertainty with high penetrations of photovoltaic (PV) generation. The four techniques considered were: optimal fixed structure control; Nyquist stability criterion; vector Lyapunov analysis; and Hamiltonian design methods. A reduced order model of the Western Electricity Coordinating Council (WECC) developed for the Matlab Power Systems Toolbox (PST) was employed for the study, as well as representative smaller systems (e.g., a two-area, three-area, and four-area power system). Excellent results were obtained with themore » optimal fixed structure approach, and the methodology we developed was published in a journal article. This approach is promising because it offers a method for designing optimal control systems with the feedback signals available from Phasor Measurement Unit (PMU) data as opposed to full state feedback or the design of an observer. The Nyquist approach inherently handles time delay and incorporates performance guarantees (e.g., gain and phase margin). We developed a technique that works for moderate sized systems, but the approach does not scale well to extremely large system because of computational complexity. The vector Lyapunov approach was applied to a two area model to demonstrate the utility for modeling communications uncertainty. Application to large power systems requires a method to automatically expand/contract the state space and partition the system so that communications uncertainty can be considered. The Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) design methodology was selected to investigate grid systems for energy storage requirements to support high penetration of variable or stochastic generation (such as wind and PV) and loads. This method was applied to several small system models.« less

  13. A robust approach to chance constrained optimal power flow with renewable generation

    DOE PAGES

    Lubin, Miles; Dvorkin, Yury; Backhaus, Scott N.

    2016-09-01

    Optimal Power Flow (OPF) dispatches controllable generation at minimum cost subject to operational constraints on generation and transmission assets. The uncertainty and variability of intermittent renewable generation is challenging current deterministic OPF approaches. Recent formulations of OPF use chance constraints to limit the risk from renewable generation uncertainty, however, these new approaches typically assume the probability distributions which characterize the uncertainty and variability are known exactly. We formulate a robust chance constrained (RCC) OPF that accounts for uncertainty in the parameters of these probability distributions by allowing them to be within an uncertainty set. The RCC OPF is solved usingmore » a cutting-plane algorithm that scales to large power systems. We demonstrate the RRC OPF on a modified model of the Bonneville Power Administration network, which includes 2209 buses and 176 controllable generators. In conclusion, deterministic, chance constrained (CC), and RCC OPF formulations are compared using several metrics including cost of generation, area control error, ramping of controllable generators, and occurrence of transmission line overloads as well as the respective computational performance.« less

  14. Performance optimization of dense-array concentrator photovoltaic system considering effects of circumsolar radiation and slope error.

    PubMed

    Wong, Chee-Woon; Chong, Kok-Keong; Tan, Ming-Hui

    2015-07-27

    This paper presents an approach to optimize the electrical performance of dense-array concentrator photovoltaic system comprised of non-imaging dish concentrator by considering the circumsolar radiation and slope error effects. Based on the simulated flux distribution, a systematic methodology to optimize the layout configuration of solar cells interconnection circuit in dense array concentrator photovoltaic module has been proposed by minimizing the current mismatch caused by non-uniformity of concentrated sunlight. An optimized layout of interconnection solar cells circuit with minimum electrical power loss of 6.5% can be achieved by minimizing the effects of both circumsolar radiation and slope error.

  15. Influence of patient mispositioning on SAR distribution and simulated temperature in regional deep hyperthermia

    NASA Astrophysics Data System (ADS)

    Aklan, Bassim; Gierse, Pia; Hartmann, Josefin; Ott, Oliver J.; Fietkau, Rainer; Bert, Christoph

    2017-06-01

    Patient positioning plays an important role in regional deep hyperthermia to obtain a successful hyperthermia treatment. In this study, the influence of possible patient mispositioning was systematically assessed on specific absorption rate (SAR) and temperature distribution. With a finite difference time domain approach, the SAR and temperature distributions were predicted for six patients at 312 positions. Patient displacements and rotations as well as the combination of both were considered inside the Sigma-Eye applicator. Position sensitivity is assessed for hyperthermia treatment planning -guided steering, which relies on model-based optimization of the SAR and temperature distribution. The evaluation of the patient mispositioning was done with and without optimization. The evaluation without optimization was made by creating a treatment plan for the patient reference position in the center of the applicator and applied for all other positions, while the evaluation with optimization was based on creating an individual plan for each position. The parameter T90 was used for the temperature evaluation, which was defined as the temperature that covers 90% of the gross tumor volume (GTV). Furthermore, the hotspot tumor quotient (HTQ) was used as a goal function to assess the quality of the SAR and temperature distribution. The T90 was shown considerably dependent on the position within the applicator. Without optimization, the T90 was clearly decreased below 40 °C by patient shifts and the combination of shifts and rotations. However, the application of optimization for each positon led to an increase of T90 in the GTV. Position inaccuracies of less than 1 cm in the X-and Y-directions and 2 cm in the Z-direction, resulted in an increase of HTQ of less than 5%, which does not significantly affect the SAR and temperature distribution. Current positioning precision is sufficient in the X (right-left)-direction, but position accuracy is required in the Y-and Z-directions.

  16. Improving Health-care Delivery for Post-Traumatic Stress Disorder: An Interrelated Approach Leveraging Systems Engineering and Optimization

    DTIC Science & Technology

    2011-09-01

    AND EXPERIMENTAL DESIGN ..........................................................................................................31   1...PRIMARY RESERCH QUESTION ............................................................41   C.   OBJECTIVE ACHIEVEMENT...Based Outpatient Clinic CPT Cognitive Processing Therapy DISE Distributed Information Systems Experimentation EBT Evidence-Based Treatment GMC

  17. Optimal fixed-finite-dimensional compensator for Burgers' equation with unbounded input/output operators

    NASA Technical Reports Server (NTRS)

    Burns, John A.; Marrekchi, Hamadi

    1993-01-01

    The problem of using reduced order dynamic compensators to control a class of nonlinear parabolic distributed parameter systems was considered. Concentration was on a system with unbounded input and output operators governed by Burgers' equation. A linearized model was used to compute low-order-finite-dimensional control laws by minimizing certain energy functionals. Then these laws were applied to the nonlinear model. Standard approaches to this problem employ model/controller reduction techniques in conjunction with linear quadratic Gaussian (LQG) theory. The approach used is based on the finite dimensional Bernstein/Hyland optimal projection theory which yields a fixed-finite-order controller.

  18. Cluster-based control of a separating flow over a smoothly contoured ramp

    NASA Astrophysics Data System (ADS)

    Kaiser, Eurika; Noack, Bernd R.; Spohn, Andreas; Cattafesta, Louis N.; Morzyński, Marek

    2017-12-01

    The ability to manipulate and control fluid flows is of great importance in many scientific and engineering applications. The proposed closed-loop control framework addresses a key issue of model-based control: The actuation effect often results from slow dynamics of strongly nonlinear interactions which the flow reveals at timescales much longer than the prediction horizon of any model. Hence, we employ a probabilistic approach based on a cluster-based discretization of the Liouville equation for the evolution of the probability distribution. The proposed methodology frames high-dimensional, nonlinear dynamics into low-dimensional, probabilistic, linear dynamics which considerably simplifies the optimal control problem while preserving nonlinear actuation mechanisms. The data-driven approach builds upon a state space discretization using a clustering algorithm which groups kinematically similar flow states into a low number of clusters. The temporal evolution of the probability distribution on this set of clusters is then described by a control-dependent Markov model. This Markov model can be used as predictor for the ergodic probability distribution for a particular control law. This probability distribution approximates the long-term behavior of the original system on which basis the optimal control law is determined. We examine how the approach can be used to improve the open-loop actuation in a separating flow dominated by Kelvin-Helmholtz shedding. For this purpose, the feature space, in which the model is learned, and the admissible control inputs are tailored to strongly oscillatory flows.

  19. Giga-voxel computational morphogenesis for structural design

    NASA Astrophysics Data System (ADS)

    Aage, Niels; Andreassen, Erik; Lazarov, Boyan S.; Sigmund, Ole

    2017-10-01

    In the design of industrial products ranging from hearing aids to automobiles and aeroplanes, material is distributed so as to maximize the performance and minimize the cost. Historically, human intuition and insight have driven the evolution of mechanical design, recently assisted by computer-aided design approaches. The computer-aided approach known as topology optimization enables unrestricted design freedom and shows great promise with regard to weight savings, but its applicability has so far been limited to the design of single components or simple structures, owing to the resolution limits of current optimization methods. Here we report a computational morphogenesis tool, implemented on a supercomputer, that produces designs with giga-voxel resolution—more than two orders of magnitude higher than previously reported. Such resolution provides insights into the optimal distribution of material within a structure that were hitherto unachievable owing to the challenges of scaling up existing modelling and optimization frameworks. As an example, we apply the tool to the design of the internal structure of a full-scale aeroplane wing. The optimized full-wing design has unprecedented structural detail at length scales ranging from tens of metres to millimetres and, intriguingly, shows remarkable similarity to naturally occurring bone structures in, for example, bird beaks. We estimate that our optimized design corresponds to a reduction in mass of 2-5 per cent compared to currently used aeroplane wing designs, which translates into a reduction in fuel consumption of about 40-200 tonnes per year per aeroplane. Our morphogenesis process is generally applicable, not only to mechanical design, but also to flow systems, antennas, nano-optics and micro-systems.

  20. Marine protected areas and the value of spatially optimized fishery management

    PubMed Central

    Rassweiler, Andrew; Costello, Christopher; Siegel, David A.

    2012-01-01

    There is a growing focus around the world on marine spatial planning, including spatial fisheries management. Some spatial management approaches are quite blunt, as when marine protected areas (MPAs) are established to restrict fishing in specific locations. Other management tools, such as zoning or spatial user rights, will affect the distribution of fishing effort in a more nuanced manner. Considerable research has focused on the ability of MPAs to increase fishery returns, but the potential for the broader class of spatial management approaches to outperform MPAs has received far less attention. We use bioeconomic models of seven nearshore fisheries in Southern California to explore the value of optimized spatial management in which the distribution of fishing is chosen to maximize profits. We show that fully optimized spatial management can substantially increase fishery profits relative to optimal nonspatial management but that the magnitude of this increase depends on characteristics of the fishing fleet and target species. Strategically placed MPAs can also increase profits substantially compared with nonspatial management, particularly if fishing costs are low, although profit increases available through optimal MPA-based management are roughly half those from fully optimized spatial management. However, if the same total area is protected by randomly placing MPAs, starkly contrasting results emerge: most random MPA designs reduce expected profits. The high value of spatial management estimated here supports continued interest in spatially explicit fisheries regulations but emphasizes that predicted increases in profits can only be achieved if the fishery is well understood and the regulations are strategically designed. PMID:22753469

  1. Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia.

    PubMed

    Khandhar, Amit P; Ferguson, R Matthew; Simon, Julian A; Krishnan, Kannan M

    2012-03-01

    Magnetic Fluid Hyperthermia (MFH) is a promising approach towards adjuvant cancer therapy that is based on the localized heating of tumors using the relaxation losses of iron oxide magnetic nanoparticles (MNPs) in alternating magnetic fields (AMF). In this study, we demonstrate optimization of MFH by tailoring MNP size to an applied AMF frequency. Unlike conventional aqueous synthesis routes, we use organic synthesis routes that offer precise control over MNP size (diameter ∼10 to 25 nm), size distribution, and phase purity. Furthermore, the particles are successfully transferred to the aqueous phase using a biocompatible amphiphilic polymer, and demonstrate long-term shelf life. A rigorous characterization protocol ensures that the water-stable MNPs meet all the critical requirements: (1) uniform shape and monodispersity, (2) phase purity, (3) stable magnetic properties approaching that of the bulk, (4) colloidal stability, (5) substantial shelf life, and (6) pose no significant in vitro toxicity. Using a dedicated hyperthermia system, we then identified that 16 nm monodisperse MNPs (σ-0.175) respond optimally to our chosen AMF conditions (f = 373 kHz, H₀ = 14 kA/m); however, with a broader size distribution (σ-0.284) the Specific Loss Power (SLP) decreases by 30%. Finally, we show that these tailored MNPs demonstrate maximum hyperthermia efficiency by reducing viability of Jurkat cells in vitro, suggesting our optimization translates truthfully to cell populations. In summary, we present a way to intrinsically optimize MFH by tailoring the MNPs to any applied AMF, a required precursor to optimize dose and time of treatment. Copyright © 2011 Wiley Periodicals, Inc.

  2. Giga-voxel computational morphogenesis for structural design.

    PubMed

    Aage, Niels; Andreassen, Erik; Lazarov, Boyan S; Sigmund, Ole

    2017-10-04

    In the design of industrial products ranging from hearing aids to automobiles and aeroplanes, material is distributed so as to maximize the performance and minimize the cost. Historically, human intuition and insight have driven the evolution of mechanical design, recently assisted by computer-aided design approaches. The computer-aided approach known as topology optimization enables unrestricted design freedom and shows great promise with regard to weight savings, but its applicability has so far been limited to the design of single components or simple structures, owing to the resolution limits of current optimization methods. Here we report a computational morphogenesis tool, implemented on a supercomputer, that produces designs with giga-voxel resolution-more than two orders of magnitude higher than previously reported. Such resolution provides insights into the optimal distribution of material within a structure that were hitherto unachievable owing to the challenges of scaling up existing modelling and optimization frameworks. As an example, we apply the tool to the design of the internal structure of a full-scale aeroplane wing. The optimized full-wing design has unprecedented structural detail at length scales ranging from tens of metres to millimetres and, intriguingly, shows remarkable similarity to naturally occurring bone structures in, for example, bird beaks. We estimate that our optimized design corresponds to a reduction in mass of 2-5 per cent compared to currently used aeroplane wing designs, which translates into a reduction in fuel consumption of about 40-200 tonnes per year per aeroplane. Our morphogenesis process is generally applicable, not only to mechanical design, but also to flow systems, antennas, nano-optics and micro-systems.

  3. Marine protected areas and the value of spatially optimized fishery management.

    PubMed

    Rassweiler, Andrew; Costello, Christopher; Siegel, David A

    2012-07-17

    There is a growing focus around the world on marine spatial planning, including spatial fisheries management. Some spatial management approaches are quite blunt, as when marine protected areas (MPAs) are established to restrict fishing in specific locations. Other management tools, such as zoning or spatial user rights, will affect the distribution of fishing effort in a more nuanced manner. Considerable research has focused on the ability of MPAs to increase fishery returns, but the potential for the broader class of spatial management approaches to outperform MPAs has received far less attention. We use bioeconomic models of seven nearshore fisheries in Southern California to explore the value of optimized spatial management in which the distribution of fishing is chosen to maximize profits. We show that fully optimized spatial management can substantially increase fishery profits relative to optimal nonspatial management but that the magnitude of this increase depends on characteristics of the fishing fleet and target species. Strategically placed MPAs can also increase profits substantially compared with nonspatial management, particularly if fishing costs are low, although profit increases available through optimal MPA-based management are roughly half those from fully optimized spatial management. However, if the same total area is protected by randomly placing MPAs, starkly contrasting results emerge: most random MPA designs reduce expected profits. The high value of spatial management estimated here supports continued interest in spatially explicit fisheries regulations but emphasizes that predicted increases in profits can only be achieved if the fishery is well understood and the regulations are strategically designed.

  4. A Novel Paradigm for Computer-Aided Design: TRIZ-Based Hybridization of Topologically Optimized Density Distributions

    NASA Astrophysics Data System (ADS)

    Cardillo, A.; Cascini, G.; Frillici, F. S.; Rotini, F.

    In a recent project the authors have proposed the adoption of Optimization Systems [1] as a bridging element between Computer-Aided Innovation (CAI) and PLM to identify geometrical contradictions [2], a particular case of the TRIZ physical contradiction [3]. A further development of the research [4] has revealed that the solutions obtained from several topological optimizations can be considered as elementary customized modeling features for a specific design task. The topology overcoming the arising geometrical contradiction can be obtained through a manipulation of the density distributions constituting the conflicting pair. Already two strategies of density combination have been identified as capable to solve geometrical contradictions and several others are under extended testing. The paper illustrates the most recent results of the ongoing research mainly related to the extension of the algorithms from 2D to 3D design spaces. The whole approach is clarified by means of two detailed examples, where the proposed technique is compared with classical multi-goal optimization.

  5. [Site selection of nature reserve based on the self-learning tabu search algorithm with space-ecology set covering problem: An example from Daiyun Mountain, Southeast China].

    PubMed

    Huang, Jia Hang; Liu, Jin Fu; Lin, Zhi Wei; Zheng, Shi Qun; He, Zhong Sheng; Zhang, Hui Guang; Li, Wen Zhou

    2017-01-01

    Designing the nature reserves is an effective approach to protecting biodiversity. The traditional approaches to designing the nature reserves could only identify the core area for protecting the species without specifying an appropriate land area of the nature reserve. The site selection approaches, which are based on mathematical model, can select part of the land from the planning area to compose the nature reserve and to protect specific species or ecosystem. They are useful approaches to alleviating the contradiction between ecological protection and development. The existing site selection methods do not consider the ecological differences between each unit and has the bottleneck of computational efficiency in optimization algorithm. In this study, we first constructed the ecological value assessment system which was appropriated for forest ecosystem and that was used for calculating ecological value of Daiyun Mountain and for drawing its distribution map. Then, the Ecological Set Covering Problem (ESCP) was established by integrating the ecological values and then the Space-ecology Set Covering Problem (SSCP) was generated based on the spatial compactness of ESCP. Finally, the STS algorithm which possessed good optimizing performance was utilized to search the approximate optimal solution under diverse protection targets, and the optimization solution of the built-up area of Daiyun Mountain was proposed. According to the experimental results, the difference of ecological values in the spatial distribution was obvious. The ecological va-lue of selected sites of ESCP was higher than that of SCP. SSCP could aggregate the sites with high ecological value based on ESCP. From the results, the level of the aggregation increased with the weight of the perimeter. We suggested that the range of the existing reserve could be expanded for about 136 km 2 and the site of Tsuga longibracteata should be included, which was located in the northwest of the study area. Our research aimed at providing an optimization scheme for the sustai-nable development of Daiyun Mountain nature reserve and the optimal allocation of land resource, and a novel idea for designing the nature reserve of forest ecosystem in China.

  6. Multi Sensor Fusion Using Fitness Adaptive Differential Evolution

    NASA Astrophysics Data System (ADS)

    Giri, Ritwik; Ghosh, Arnob; Chowdhury, Aritra; Das, Swagatam

    The rising popularity of multi-source, multi-sensor networks supports real-life applications calls for an efficient and intelligent approach to information fusion. Traditional optimization techniques often fail to meet the demands. The evolutionary approach provides a valuable alternative due to its inherent parallel nature and its ability to deal with difficult problems. We present a new evolutionary approach based on a modified version of Differential Evolution (DE), called Fitness Adaptive Differential Evolution (FiADE). FiADE treats sensors in the network as distributed intelligent agents with various degrees of autonomy. Existing approaches based on intelligent agents cannot completely answer the question of how their agents could coordinate their decisions in a complex environment. The proposed approach is formulated to produce good result for the problems that are high-dimensional, highly nonlinear, and random. The proposed approach gives better result in case of optimal allocation of sensors. The performance of the proposed approach is compared with an evolutionary algorithm coordination generalized particle model (C-GPM).

  7. Remote sensing for industrial applications in the energy business: digital territorial data integration for planning of overhead power transmission lines (OHTLs)

    NASA Astrophysics Data System (ADS)

    Terrazzino, Alfonso; Volponi, Silvia; Borgogno Mondino, Enrico

    2001-12-01

    An investigation has been carried out, concerning remote sensing techniques, in order to assess their potential application to the energy system business: the most interesting results concern a new approach, based on digital data from remote sensing, to infrastructures with a large territorial distribution: in particular OverHead Transmission Lines, for the high voltage transmission and distribution of electricity on large distances. Remote sensing could in principle be applied to all the phases of the system lifetime, from planning to design, to construction, management, monitoring and maintenance. In this article, a remote sensing based approach is presented, targeted to the line planning: optimization of OHTLs path and layout, according to different parameters (technical, environmental and industrial). Planning new OHTLs is of particular interest in emerging markets, where typically the cartography is missing or available only on low accuracy scale (1:50.000 and lower), often not updated. Multi- spectral images can be used to generate thematic maps of the region of interest for the planning (soil coverage). Digital Elevation Models (DEMs), allow the planners to easily access the morphologic information of the surface. Other auxiliary information from local laws, environmental instances, international (IEC) standards can be integrated in order to perform an accurate optimized path choice and preliminary spotting of the OHTLs. This operation is carried out by an ABB proprietary optimization algorithm: the output is a preliminary path that bests fits the optimization parameters of the line in a life cycle approach.

  8. Determination of the optimal sample size for a clinical trial accounting for the population size.

    PubMed

    Stallard, Nigel; Miller, Frank; Day, Simon; Hee, Siew Wan; Madan, Jason; Zohar, Sarah; Posch, Martin

    2017-07-01

    The problem of choosing a sample size for a clinical trial is a very common one. In some settings, such as rare diseases or other small populations, the large sample sizes usually associated with the standard frequentist approach may be infeasible, suggesting that the sample size chosen should reflect the size of the population under consideration. Incorporation of the population size is possible in a decision-theoretic approach either explicitly by assuming that the population size is fixed and known, or implicitly through geometric discounting of the gain from future patients reflecting the expected population size. This paper develops such approaches. Building on previous work, an asymptotic expression is derived for the sample size for single and two-arm clinical trials in the general case of a clinical trial with a primary endpoint with a distribution of one parameter exponential family form that optimizes a utility function that quantifies the cost and gain per patient as a continuous function of this parameter. It is shown that as the size of the population, N, or expected size, N∗ in the case of geometric discounting, becomes large, the optimal trial size is O(N1/2) or O(N∗1/2). The sample size obtained from the asymptotic expression is also compared with the exact optimal sample size in examples with responses with Bernoulli and Poisson distributions, showing that the asymptotic approximations can also be reasonable in relatively small sample sizes. © 2016 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Spatially-Distributed Cost-Effectiveness Analysis Framework to Control Phosphorus from Agricultural Diffuse Pollution.

    PubMed

    Geng, Runzhe; Wang, Xiaoyan; Sharpley, Andrew N; Meng, Fande

    2015-01-01

    Best management practices (BMPs) for agricultural diffuse pollution control are implemented at the field or small-watershed scale. However, the benefits of BMP implementation on receiving water quality at multiple spatial is an ongoing challenge. In this paper, we introduce an integrated approach that combines risk assessment (i.e., Phosphorus (P) index), model simulation techniques (Hydrological Simulation Program-FORTRAN), and a BMP placement tool at various scales to identify the optimal location for implementing multiple BMPs and estimate BMP effectiveness after implementation. A statistically significant decrease in nutrient discharge from watersheds is proposed to evaluate the effectiveness of BMPs, strategically targeted within watersheds. Specifically, we estimate two types of cost-effectiveness curves (total pollution reduction and proportion of watersheds improved) for four allocation approaches. Selection of a ''best approach" depends on the relative importance of the two types of effectiveness, which involves a value judgment based on the random/aggregated degree of BMP distribution among and within sub-watersheds. A statistical optimization framework is developed and evaluated in Chaohe River Watershed located in the northern mountain area of Beijing. Results show that BMP implementation significantly (p >0.001) decrease P loss from the watershed. Remedial strategies where BMPs were targeted to areas of high risk of P loss, deceased P loads compared with strategies where BMPs were randomly located across watersheds. Sensitivity analysis indicated that aggregated BMP placement in particular watershed is the most cost-effective scenario to decrease P loss. The optimization approach outlined in this paper is a spatially hierarchical method for targeting nonpoint source controls across a range of scales from field to farm, to watersheds, to regions. Further, model estimates showed targeting at multiple scales is necessary to optimize program efficiency. The integrated model approach described that selects and places BMPs at varying levels of implementation, provides a new theoretical basis and technical guidance for diffuse pollution management in agricultural watersheds.

  10. A case study on topology optimized design for additive manufacturing

    NASA Astrophysics Data System (ADS)

    Gebisa, A. W.; Lemu, H. G.

    2017-12-01

    Topology optimization is an optimization method that employs mathematical tools to optimize material distribution in a part to be designed. Earlier developments of topology optimization considered conventional manufacturing techniques that have limitations in producing complex geometries. This has hindered the topology optimization efforts not to fully be realized. With the emergence of additive manufacturing (AM) technologies, the technology that builds a part layer upon a layer directly from three dimensional (3D) model data of the part, however, producing complex shape geometry is no longer an issue. Realization of topology optimization through AM provides full design freedom for the design engineers. The article focuses on topologically optimized design approach for additive manufacturing with a case study on lightweight design of jet engine bracket. The study result shows that topology optimization is a powerful design technique to reduce the weight of a product while maintaining the design requirements if additive manufacturing is considered.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamzam, Ahmed, S.; Zhaoy, Changhong; Dall'Anesey, Emiliano

    This paper examines the AC Optimal Power Flow (OPF) problem for multiphase distribution networks featuring renewable energy resources (RESs). We start by outlining a power flow model for radial multiphase systems that accommodates wye-connected and delta-connected RESs and non-controllable energy assets. We then formalize an AC OPF problem that accounts for both types of connections. Similar to various AC OPF renditions, the resultant problem is a non convex quadratically-constrained quadratic program. However, the so-called Feasible Point Pursuit-Successive Convex Approximation algorithm is leveraged to obtain a feasible and yet locally-optimal solution. The merits of the proposed solution approach are demonstrated usingmore » two unbalanced multiphase distribution feeders with both wye and delta connections.« less

  12. A New Approach to Site Demand-Based Level Inventory Optimization

    DTIC Science & Technology

    2016-06-01

    Command (2016) Navy supply chain management. Accessed April 17, 2016, https://www.navsup.navy.mil/navsup/capabilities/nscm Salmeron J, Craparo E (2016...Engineering 53: 122-142. Naval Supply Systems Command (2016a) Navy supply chain management. Accessed April 17, 2016, https://www.navsup.navy.mil...distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Naval Supply Systems Command (NAVSUP) supports Navy, Marine Corps

  13. Introducing a distributed unstructured mesh into gyrokinetic particle-in-cell code, XGC

    NASA Astrophysics Data System (ADS)

    Yoon, Eisung; Shephard, Mark; Seol, E. Seegyoung; Kalyanaraman, Kaushik

    2017-10-01

    XGC has shown good scalability for large leadership supercomputers. The current production version uses a copy of the entire unstructured finite element mesh on every MPI rank. Although an obvious scalability issue if the mesh sizes are to be dramatically increased, the current approach is also not optimal with respect to data locality of particles and mesh information. To address these issues we have initiated the development of a distributed mesh PIC method. This approach directly addresses the base scalability issue with respect to mesh size and, through the use of a mesh entity centric view of the particle mesh relationship, provides opportunities to address data locality needs of many core and GPU supported heterogeneous systems. The parallel mesh PIC capabilities are being built on the Parallel Unstructured Mesh Infrastructure (PUMI). The presentation will first overview the form of mesh distribution used and indicate the structures and functions used to support the mesh, the particles and their interaction. Attention will then focus on the node-level optimizations being carried out to ensure performant operation of all PIC operations on the distributed mesh. Partnership for Edge Physics Simulation (EPSI) Grant No. DE-SC0008449 and Center for Extended Magnetohydrodynamic Modeling (CEMM) Grant No. DE-SC0006618.

  14. Information operator approach applied to the retrieval of vertical distributions of atmospheric constituents from ground-based FTIR measurements

    NASA Astrophysics Data System (ADS)

    Senten, Cindy; de Mazière, Martine; Vanhaelewyn, Gauthier; Vigouroux, Corinne; Delmas, Robert

    2010-05-01

    The retrieval of information about the vertical distribution of an atmospheric absorber from high spectral resolution ground-based Fourier Transform infrared (FTIR) solar absorption spectra is an important issue in remote sensing. A frequently used technique at present is the optimal estimation method. This work introduces the application of an alternative method, namely the information operator approach (Doicu et al., 2007; Hoogen et al., 1999), for extracting the available information from such FTIR measurements. This approach has been implemented within the well-known retrieval code SFIT2, by adapting the optimal estimation method such as to take into account only the significant contributions to the solution. In particular, we demonstrate the feasibility of the method when applied to ground-based FTIR spectra taken at the southern (sub)tropical site Ile de La Réunion (21° S, 55° E) in 2007. A thorough comparison has been made between the retrieval results obtained with the original optimal estimation method and the ones obtained with the information operator approach, regarding profile and column stability, information content and corresponding full error budget evaluation. This has been done for the target species ozone (O3), methane (CH4), nitrous oxide (N2O), and carbon monoxide (CO). It is shown that the information operator approach performs well and is capable of achieving the same accuracy as optimal estimation, with a gain of stability and with the additional advantage of being less sensitive to the choice of a priori information as well as to the actual signal-to-noise ratio. Keywords: ground-based FTIR, solar absorption spectra, greenhouse gases, information operator approach References Doicu, A., Hilgers, S., von Bargen, A., Rozanov, A., Eichmann, K.-U., von Savigny, C., and Burrows, J.P.: Information operator approach and iterative regularization methods for atmospheric remote sensing, J. Quant. Spectrosc. Radiat. Transfer, 103, 340-350, 2007. Hoogen, R., Rozanov, V.V., and Burrows, J.P.: Ozone profiles from GOME satellite data: description and first validation, J. Geophys. Res., 104(D7), 8263-8280, 1999.

  15. Stochastic multi-objective model for optimal energy exchange optimization of networked microgrids with presence of renewable generation under risk-based strategies.

    PubMed

    Gazijahani, Farhad Samadi; Ravadanegh, Sajad Najafi; Salehi, Javad

    2018-02-01

    The inherent volatility and unpredictable nature of renewable generations and load demand pose considerable challenges for energy exchange optimization of microgrids (MG). To address these challenges, this paper proposes a new risk-based multi-objective energy exchange optimization for networked MGs from economic and reliability standpoints under load consumption and renewable power generation uncertainties. In so doing, three various risk-based strategies are distinguished by using conditional value at risk (CVaR) approach. The proposed model is specified as a two-distinct objective function. The first function minimizes the operation and maintenance costs, cost of power transaction between upstream network and MGs as well as power loss cost, whereas the second function minimizes the energy not supplied (ENS) value. Furthermore, the stochastic scenario-based approach is incorporated into the approach in order to handle the uncertainty. Also, Kantorovich distance scenario reduction method has been implemented to reduce the computational burden. Finally, non-dominated sorting genetic algorithm (NSGAII) is applied to minimize the objective functions simultaneously and the best solution is extracted by fuzzy satisfying method with respect to risk-based strategies. To indicate the performance of the proposed model, it is performed on the modified IEEE 33-bus distribution system and the obtained results show that the presented approach can be considered as an efficient tool for optimal energy exchange optimization of MGs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Robust optimization based upon statistical theory.

    PubMed

    Sobotta, B; Söhn, M; Alber, M

    2010-08-01

    Organ movement is still the biggest challenge in cancer treatment despite advances in online imaging. Due to the resulting geometric uncertainties, the delivered dose cannot be predicted precisely at treatment planning time. Consequently, all associated dose metrics (e.g., EUD and maxDose) are random variables with a patient-specific probability distribution. The method that the authors propose makes these distributions the basis of the optimization and evaluation process. The authors start from a model of motion derived from patient-specific imaging. On a multitude of geometry instances sampled from this model, a dose metric is evaluated. The resulting pdf of this dose metric is termed outcome distribution. The approach optimizes the shape of the outcome distribution based on its mean and variance. This is in contrast to the conventional optimization of a nominal value (e.g., PTV EUD) computed on a single geometry instance. The mean and variance allow for an estimate of the expected treatment outcome along with the residual uncertainty. Besides being applicable to the target, the proposed method also seamlessly includes the organs at risk (OARs). The likelihood that a given value of a metric is reached in the treatment is predicted quantitatively. This information reveals potential hazards that may occur during the course of the treatment, thus helping the expert to find the right balance between the risk of insufficient normal tissue sparing and the risk of insufficient tumor control. By feeding this information to the optimizer, outcome distributions can be obtained where the probability of exceeding a given OAR maximum and that of falling short of a given target goal can be minimized simultaneously. The method is applicable to any source of residual motion uncertainty in treatment delivery. Any model that quantifies organ movement and deformation in terms of probability distributions can be used as basis for the algorithm. Thus, it can generate dose distributions that are robust against interfraction and intrafraction motion alike, effectively removing the need for indiscriminate safety margins.

  17. Multi-objective optimization to predict muscle tensions in a pinch function using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Bensghaier, Amani; Romdhane, Lotfi; Benouezdou, Fethi

    2012-03-01

    This work is focused on the determination of the thumb and the index finger muscle tensions in a tip pinch task. A biomechanical model of the musculoskeletal system of the thumb and the index finger is developed. Due to the assumptions made in carrying out the biomechanical model, the formulated force analysis problem is indeterminate leading to an infinite number of solutions. Thus, constrained single and multi-objective optimization methodologies are used in order to explore the muscular redundancy and to predict optimal muscle tension distributions. Various models are investigated using the optimization process. The basic criteria to minimize are the sum of the muscle stresses, the sum of individual muscle tensions and the maximum muscle stress. The multi-objective optimization is solved using a Pareto genetic algorithm to obtain non-dominated solutions, defined as the set of optimal distributions of muscle tensions. The results show the advantage of the multi-objective formulation over the single objective one. The obtained solutions are compared to those available in the literature demonstrating the effectiveness of our approach in the analysis of the fingers musculoskeletal systems when predicting muscle tensions.

  18. Optimal consensus algorithm integrated with obstacle avoidance

    NASA Astrophysics Data System (ADS)

    Wang, Jianan; Xin, Ming

    2013-01-01

    This article proposes a new consensus algorithm for the networked single-integrator systems in an obstacle-laden environment. A novel optimal control approach is utilised to achieve not only multi-agent consensus but also obstacle avoidance capability with minimised control efforts. Three cost functional components are defined to fulfil the respective tasks. In particular, an innovative nonquadratic obstacle avoidance cost function is constructed from an inverse optimal control perspective. The other two components are designed to ensure consensus and constrain the control effort. The asymptotic stability and optimality are proven. In addition, the distributed and analytical optimal control law only requires local information based on the communication topology to guarantee the proposed behaviours, rather than all agents' information. The consensus and obstacle avoidance are validated through simulations.

  19. A Systematic Approach for Quantitative Analysis of Multidisciplinary Design Optimization Framework

    NASA Astrophysics Data System (ADS)

    Kim, Sangho; Park, Jungkeun; Lee, Jeong-Oog; Lee, Jae-Woo

    An efficient Multidisciplinary Design and Optimization (MDO) framework for an aerospace engineering system should use and integrate distributed resources such as various analysis codes, optimization codes, Computer Aided Design (CAD) tools, Data Base Management Systems (DBMS), etc. in a heterogeneous environment, and need to provide user-friendly graphical user interfaces. In this paper, we propose a systematic approach for determining a reference MDO framework and for evaluating MDO frameworks. The proposed approach incorporates two well-known methods, Analytic Hierarchy Process (AHP) and Quality Function Deployment (QFD), in order to provide a quantitative analysis of the qualitative criteria of MDO frameworks. Identification and hierarchy of the framework requirements and the corresponding solutions for the reference MDO frameworks, the general one and the aircraft oriented one were carefully investigated. The reference frameworks were also quantitatively identified using AHP and QFD. An assessment of three in-house frameworks was then performed. The results produced clear and useful guidelines for improvement of the in-house MDO frameworks and showed the feasibility of the proposed approach for evaluating an MDO framework without a human interference.

  20. Data-Centric Situational Awareness and Management in Intelligent Power Systems

    NASA Astrophysics Data System (ADS)

    Dai, Xiaoxiao

    The rapid development of technology and society has made the current power system a much more complicated system than ever. The request for big data based situation awareness and management becomes urgent today. In this dissertation, to respond to the grand challenge, two data-centric power system situation awareness and management approaches are proposed to address the security problems in the transmission/distribution grids and social benefits augmentation problem at the distribution-customer lever, respectively. To address the security problem in the transmission/distribution grids utilizing big data, the first approach provides a fault analysis solution based on characterization and analytics of the synchrophasor measurements. Specically, the optimal synchrophasor measurement devices selection algorithm (OSMDSA) and matching pursuit decomposition (MPD) based spatial-temporal synchrophasor data characterization method was developed to reduce data volume while preserving comprehensive information for the big data analyses. And the weighted Granger causality (WGC) method was investigated to conduct fault impact causal analysis during system disturbance for fault localization. Numerical results and comparison with other methods demonstrate the effectiveness and robustness of this analytic approach. As more social effects are becoming important considerations in power system management, the goal of situation awareness should be expanded to also include achievements in social benefits. The second approach investigates the concept and application of social energy upon the University of Denver campus grid to provide management improvement solutions for optimizing social cost. Social element--human working productivity cost, and economic element--electricity consumption cost, are both considered in the evaluation of overall social cost. Moreover, power system simulation, numerical experiments for smart building modeling, distribution level real-time pricing and social response to the pricing signals are studied for implementing the interactive artificial-physical management scheme.

  1. Optimal Detection Range of RFID Tag for RFID-based Positioning System Using the k-NN Algorithm.

    PubMed

    Han, Soohee; Kim, Junghwan; Park, Choung-Hwan; Yoon, Hee-Cheon; Heo, Joon

    2009-01-01

    Positioning technology to track a moving object is an important and essential component of ubiquitous computing environments and applications. An RFID-based positioning system using the k-nearest neighbor (k-NN) algorithm can determine the position of a moving reader from observed reference data. In this study, the optimal detection range of an RFID-based positioning system was determined on the principle that tag spacing can be derived from the detection range. It was assumed that reference tags without signal strength information are regularly distributed in 1-, 2- and 3-dimensional spaces. The optimal detection range was determined, through analytical and numerical approaches, to be 125% of the tag-spacing distance in 1-dimensional space. Through numerical approaches, the range was 134% in 2-dimensional space, 143% in 3-dimensional space.

  2. Numerical model of tapered fiber Bragg gratings for comprehensive analysis and optimization of their sensing and strain-induced tunable dispersion properties.

    PubMed

    Osuch, Tomasz; Markowski, Konrad; Jędrzejewski, Kazimierz

    2015-06-10

    A versatile numerical model for spectral transmission/reflection, group delay characteristic analysis, and design of tapered fiber Bragg gratings (TFBGs) is presented. This approach ensures flexibility with defining both distribution of refractive index change of the gratings (including apodization) and shape of the taper profile. Additionally, sensing and tunable dispersion properties of the TFBGs were fully examined, considering strain-induced effects. The presented numerical approach, together with Pareto optimization, were also used to design the best tanh apodization profiles of the TFBG in terms of maximizing its spectral width with simultaneous minimization of the group delay oscillations. Experimental verification of the model confirms its correctness. The combination of model versatility and possibility to define the other objective functions of Pareto optimization creates a universal tool for TFBG analysis and design.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Yun; Zhang, Lehao; Li, Yang

    Limitations of strength and formability are the major obstacles to the industrial application of magnesium alloys. Here, we demonstrate, by producing the duplex phases and fine intermetallic particles in composition-optimized superlight Mg-Li-Al alloys, a unique approach to simultaneously improve the comprehensive mechanical properties (a strength-ductility balance). In conclusion, the phase components and microstructures, including the size, morphology, and distribution of precipitated-intermetallic particles can be optimized by tuning the Li content, which strongly influences the work-hardening behavior and tension-compression yield asymmetry.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.; Pike, R.W.; Hertwig, T.A.

    An effective approach for source reduction in chemical plants has been demonstrated using on-line optimization with flowsheeting (ASPEN PLUS) for process optimization and parameter estimation and the Tjao-Biegler algorithm implemented in a mathematical programming language (GAMS/MINOS) for data reconciliation and gross error detection. Results for a Monsanto sulfuric acid plant with a Bailey distributed control system showed a 25% reduction in the sulfur dioxide emissions and a 17% improvement in the profit over the current operating conditions. Details of the methods used are described.

  5. Self-Coexistence among IEEE 802.22 Networks: Distributed Allocation of Power and Channel

    PubMed Central

    Sakin, Sayef Azad; Alamri, Atif; Tran, Nguyen H.

    2017-01-01

    Ensuring self-coexistence among IEEE 802.22 networks is a challenging problem owing to opportunistic access of incumbent-free radio resources by users in co-located networks. In this study, we propose a fully-distributed non-cooperative approach to ensure self-coexistence in downlink channels of IEEE 802.22 networks. We formulate the self-coexistence problem as a mixed-integer non-linear optimization problem for maximizing the network data rate, which is an NP-hard one. This work explores a sub-optimal solution by dividing the optimization problem into downlink channel allocation and power assignment sub-problems. Considering fairness, quality of service and minimum interference for customer-premises-equipment, we also develop a greedy algorithm for channel allocation and a non-cooperative game-theoretic framework for near-optimal power allocation. The base stations of networks are treated as players in a game, where they try to increase spectrum utilization by controlling power and reaching a Nash equilibrium point. We further develop a utility function for the game to increase the data rate by minimizing the transmission power and, subsequently, the interference from neighboring networks. A theoretical proof of the uniqueness and existence of the Nash equilibrium has been presented. Performance improvements in terms of data-rate with a degree of fairness compared to a cooperative branch-and-bound-based algorithm and a non-cooperative greedy approach have been shown through simulation studies. PMID:29215591

  6. Self-Coexistence among IEEE 802.22 Networks: Distributed Allocation of Power and Channel.

    PubMed

    Sakin, Sayef Azad; Razzaque, Md Abdur; Hassan, Mohammad Mehedi; Alamri, Atif; Tran, Nguyen H; Fortino, Giancarlo

    2017-12-07

    Ensuring self-coexistence among IEEE 802.22 networks is a challenging problem owing to opportunistic access of incumbent-free radio resources by users in co-located networks. In this study, we propose a fully-distributed non-cooperative approach to ensure self-coexistence in downlink channels of IEEE 802.22 networks. We formulate the self-coexistence problem as a mixed-integer non-linear optimization problem for maximizing the network data rate, which is an NP-hard one. This work explores a sub-optimal solution by dividing the optimization problem into downlink channel allocation and power assignment sub-problems. Considering fairness, quality of service and minimum interference for customer-premises-equipment, we also develop a greedy algorithm for channel allocation and a non-cooperative game-theoretic framework for near-optimal power allocation. The base stations of networks are treated as players in a game, where they try to increase spectrum utilization by controlling power and reaching a Nash equilibrium point. We further develop a utility function for the game to increase the data rate by minimizing the transmission power and, subsequently, the interference from neighboring networks. A theoretical proof of the uniqueness and existence of the Nash equilibrium has been presented. Performance improvements in terms of data-rate with a degree of fairness compared to a cooperative branch-and-bound-based algorithm and a non-cooperative greedy approach have been shown through simulation studies.

  7. [Location selection for Shenyang urban parks based on GIS and multi-objective location allocation model].

    PubMed

    Zhou, Yuan; Shi, Tie-Mao; Hu, Yuan-Man; Gao, Chang; Liu, Miao; Song, Lin-Qi

    2011-12-01

    Based on geographic information system (GIS) technology and multi-objective location-allocation (LA) model, and in considering of four relatively independent objective factors (population density level, air pollution level, urban heat island effect level, and urban land use pattern), an optimized location selection for the urban parks within the Third Ring of Shenyang was conducted, and the selection results were compared with the spatial distribution of existing parks, aimed to evaluate the rationality of the spatial distribution of urban green spaces. In the location selection of urban green spaces in the study area, the factor air pollution was most important, and, compared with single objective factor, the weighted analysis results of multi-objective factors could provide optimized spatial location selection of new urban green spaces. The combination of GIS technology with LA model would be a new approach for the spatial optimizing of urban green spaces.

  8. Distributed Prognostic Health Management with Gaussian Process Regression

    NASA Technical Reports Server (NTRS)

    Saha, Sankalita; Saha, Bhaskar; Saxena, Abhinav; Goebel, Kai Frank

    2010-01-01

    Distributed prognostics architecture design is an enabling step for efficient implementation of health management systems. A major challenge encountered in such design is formulation of optimal distributed prognostics algorithms. In this paper. we present a distributed GPR based prognostics algorithm whose target platform is a wireless sensor network. In addition to challenges encountered in a distributed implementation, a wireless network poses constraints on communication patterns, thereby making the problem more challenging. The prognostics application that was used to demonstrate our new algorithms is battery prognostics. In order to present trade-offs within different prognostic approaches, we present comparison with the distributed implementation of a particle filter based prognostics for the same battery data.

  9. Decentralized Optimal Dispatch of Photovoltaic Inverters in Residential Distribution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Dhople, Sairaj V.; Johnson, Brian B.

    Summary form only given. Decentralized methods for computing optimal real and reactive power setpoints for residential photovoltaic (PV) inverters are developed in this paper. It is known that conventional PV inverter controllers, which are designed to extract maximum power at unity power factor, cannot address secondary performance objectives such as voltage regulation and network loss minimization. Optimal power flow techniques can be utilized to select which inverters will provide ancillary services, and to compute their optimal real and reactive power setpoints according to well-defined performance criteria and economic objectives. Leveraging advances in sparsity-promoting regularization techniques and semidefinite relaxation, this papermore » shows how such problems can be solved with reduced computational burden and optimality guarantees. To enable large-scale implementation, a novel algorithmic framework is introduced - based on the so-called alternating direction method of multipliers - by which optimal power flow-type problems in this setting can be systematically decomposed into sub-problems that can be solved in a decentralized fashion by the utility and customer-owned PV systems with limited exchanges of information. Since the computational burden is shared among multiple devices and the requirement of all-to-all communication can be circumvented, the proposed optimization approach scales favorably to large distribution networks.« less

  10. Multiobjective evolutionary optimization of water distribution systems: Exploiting diversity with infeasible solutions.

    PubMed

    Tanyimboh, Tiku T; Seyoum, Alemtsehay G

    2016-12-01

    This article investigates the computational efficiency of constraint handling in multi-objective evolutionary optimization algorithms for water distribution systems. The methodology investigated here encourages the co-existence and simultaneous development including crossbreeding of subpopulations of cost-effective feasible and infeasible solutions based on Pareto dominance. This yields a boundary search approach that also promotes diversity in the gene pool throughout the progress of the optimization by exploiting the full spectrum of non-dominated infeasible solutions. The relative effectiveness of small and moderate population sizes with respect to the number of decision variables is investigated also. The results reveal the optimization algorithm to be efficient, stable and robust. It found optimal and near-optimal solutions reliably and efficiently. The real-world system based optimization problem involved multiple variable head supply nodes, 29 fire-fighting flows, extended period simulation and multiple demand categories including water loss. The least cost solutions found satisfied the flow and pressure requirements consistently. The best solutions achieved indicative savings of 48.1% and 48.2% based on the cost of the pipes in the existing network, for populations of 200 and 1000, respectively. The population of 1000 achieved slightly better results overall. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Optimal Design and Operation of Permanent Irrigation Systems

    NASA Astrophysics Data System (ADS)

    Oron, Gideon; Walker, Wynn R.

    1981-01-01

    Solid-set pressurized irrigation system design and operation are studied with optimization techniques to determine the minimum cost distribution system. The principle of the analysis is to divide the irrigation system into subunits in such a manner that the trade-offs among energy, piping, and equipment costs are selected at the minimum cost point. The optimization procedure involves a nonlinear, mixed integer approach capable of achieving a variety of optimal solutions leading to significant conclusions with regard to the design and operation of the system. Factors investigated include field geometry, the effect of the pressure head, consumptive use rates, a smaller flow rate in the pipe system, and outlet (sprinkler or emitter) discharge.

  12. Branch and bound algorithm for accurate estimation of analytical isotropic bidirectional reflectance distribution function models.

    PubMed

    Yu, Chanki; Lee, Sang Wook

    2016-05-20

    We present a reliable and accurate global optimization framework for estimating parameters of isotropic analytical bidirectional reflectance distribution function (BRDF) models. This approach is based on a branch and bound strategy with linear programming and interval analysis. Conventional local optimization is often very inefficient for BRDF estimation since its fitting quality is highly dependent on initial guesses due to the nonlinearity of analytical BRDF models. The algorithm presented in this paper employs L1-norm error minimization to estimate BRDF parameters in a globally optimal way and interval arithmetic to derive our feasibility problem and lower bounding function. Our method is developed for the Cook-Torrance model but with several normal distribution functions such as the Beckmann, Berry, and GGX functions. Experiments have been carried out to validate the presented method using 100 isotropic materials from the MERL BRDF database, and our experimental results demonstrate that the L1-norm minimization provides a more accurate and reliable solution than the L2-norm minimization.

  13. A new Monte Carlo-based treatment plan optimization approach for intensity modulated radiation therapy.

    PubMed

    Li, Yongbao; Tian, Zhen; Shi, Feng; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun

    2015-04-07

    Intensity-modulated radiation treatment (IMRT) plan optimization needs beamlet dose distributions. Pencil-beam or superposition/convolution type algorithms are typically used because of their high computational speed. However, inaccurate beamlet dose distributions may mislead the optimization process and hinder the resulting plan quality. To solve this problem, the Monte Carlo (MC) simulation method has been used to compute all beamlet doses prior to the optimization step. The conventional approach samples the same number of particles from each beamlet. Yet this is not the optimal use of MC in this problem. In fact, there are beamlets that have very small intensities after solving the plan optimization problem. For those beamlets, it may be possible to use fewer particles in dose calculations to increase efficiency. Based on this idea, we have developed a new MC-based IMRT plan optimization framework that iteratively performs MC dose calculation and plan optimization. At each dose calculation step, the particle numbers for beamlets were adjusted based on the beamlet intensities obtained through solving the plan optimization problem in the last iteration step. We modified a GPU-based MC dose engine to allow simultaneous computations of a large number of beamlet doses. To test the accuracy of our modified dose engine, we compared the dose from a broad beam and the summed beamlet doses in this beam in an inhomogeneous phantom. Agreement within 1% for the maximum difference and 0.55% for the average difference was observed. We then validated the proposed MC-based optimization schemes in one lung IMRT case. It was found that the conventional scheme required 10(6) particles from each beamlet to achieve an optimization result that was 3% difference in fluence map and 1% difference in dose from the ground truth. In contrast, the proposed scheme achieved the same level of accuracy with on average 1.2 × 10(5) particles per beamlet. Correspondingly, the computation time including both MC dose calculations and plan optimizations was reduced by a factor of 4.4, from 494 to 113 s, using only one GPU card.

  14. An intelligent emissions controller for fuel lean gas reburn in coal-fired power plants.

    PubMed

    Reifman, J; Feldman, E E; Wei, T Y; Glickert, R W

    2000-02-01

    The application of artificial intelligence techniques for performance optimization of the fuel lean gas reburn (FLGR) system is investigated. A multilayer, feedforward artificial neural network is applied to model static nonlinear relationships between the distribution of injected natural gas into the upper region of the furnace of a coal-fired boiler and the corresponding oxides of nitrogen (NOx) emissions exiting the furnace. Based on this model, optimal distributions of injected gas are determined such that the largest NOx reduction is achieved for each value of total injected gas. This optimization is accomplished through the development of a new optimization method based on neural networks. This new optimal control algorithm, which can be used as an alternative generic tool for solving multidimensional nonlinear constrained optimization problems, is described and its results are successfully validated against an off-the-shelf tool for solving mathematical programming problems. Encouraging results obtained using plant data from one of Commonwealth Edison's coal-fired electric power plants demonstrate the feasibility of the overall approach. Preliminary results show that the use of this intelligent controller will also enable the determination of the most cost-effective operating conditions of the FLGR system by considering, along with the optimal distribution of the injected gas, the cost differential between natural gas and coal and the open-market price of NOx emission credits. Further study, however, is necessary, including the construction of a more comprehensive database, needed to develop high-fidelity process models and to add carbon monoxide (CO) emissions to the model of the gas reburn system.

  15. Dynamic optimal control of homeostasis: an integrative system approach for modeling of the central nitrogen metabolism in Saccharomyces cerevisiae.

    PubMed

    van Riel, N A; Giuseppin, M L; Verrips, C T

    2000-01-01

    The theory of dynamic optimal metabolic control (DOMC), as developed by Giuseppin and Van Riel (Metab. Eng., 2000), is applied to model the central nitrogen metabolism (CNM) in Saccharomyces cerevisiae. The CNM represents a typical system encountered in advanced metabolic engineering. The CNM is the source of the cellular amino acids and proteins, including flavors and potentially valuable biomolecules; therefore, it is also of industrial interest. In the DOMC approach the cell is regarded as an optimally controlled system. Given the metabolic genotype, the cell faces a control problem to maintain an optimal flux distribution in a changing environment. The regulation is based on strategies and balances feedback control of homeostasis and feedforward regulation for adaptation. The DOMC approach is an integrative, holistic approach, not based on mechanistic descriptions and (therefore) not biased by the variation present in biochemical and molecular biological data. It is an effective tool to structure the rapidly increasing amount of data on the function of genes and pathways. The DOMC model is used successfully to predict the responses of pulses of ammonia and glutamine to nitrogen-limited continuous cultures of a wild-type strain and a glutamine synthetase-negative mutant. The simulation results are validated with experimental data.

  16. The NUONCE engine for LEO networks

    NASA Technical Reports Server (NTRS)

    Lo, Martin W.; Estabrook, Polly

    1995-01-01

    Typical LEO networks use constellations which provide a uniform coverage. However, the demand for telecom service is dynamic and unevenly distributed around the world. We examine a more efficient and cost effective design by matching the satellite coverage with the cyclical demand for service around the world. Our approach is to use a non-uniform satellite distribution for the network. We have named this constellation design NUONCE for Non Uniform Optimal Network Communications Engine.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Shaughnessy, Eric; Ardani, Kristen; Cutler, Dylan

    Solar 'plus' refers to an emerging approach to distributed solar photovoltaic (PV) deployment that uses energy storage and controllable devices to optimize customer economics. The solar plus approach increases customer system value through technologies such as electric batteries, smart domestic water heaters, smart air-conditioner (AC) units, and electric vehicles We use an NREL optimization model to explore the customer-side economics of solar plus under various utility rate structures and net metering rates. We explore optimal solar plus applications in five case studies with different net metering rates and rate structures. The model deploys different configurations of PV, batteries, smart domesticmore » water heaters, and smart AC units in response to different rate structures and customer load profiles. The results indicate that solar plus improves the customer economics of PV and may mitigate some of the negative impacts of evolving rate structures on PV economics. Solar plus may become an increasingly viable model for optimizing PV customer economics in an evolving rate environment.« less

  18. Solar plus: Optimization of distributed solar PV through battery storage and dispatchable load in residential buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Shaughnessy, Eric; Cutler, Dylan; Ardani, Kristen

    As utility electricity rates evolve, pairing solar photovoltaic (PV) systems with battery storage has potential to ensure the value proposition of residential solar by mitigating economic uncertainty. In addition to batteries, load control technologies can reshape customer load profiles to optimize PV system use. The combination of PV, energy storage, and load control provides an integrated approach to PV deployment, which we call 'solar plus'. The U.S. National Renewable Energy Laboratory's Renewable Energy Optimization (REopt) model is utilized to evaluate cost-optimal technology selection, sizing, and dispatch in residential buildings under a variety of rate structures and locations. The REopt modelmore » is extended to include a controllable or 'smart' domestic hot water heater model and smart air conditioner model. We find that the solar plus approach improves end user economics across a variety of rate structures - especially those that are challenging for PV - including lower grid export rates, non-coincident time-of-use structures, and demand charges.« less

  19. Solar plus: Optimization of distributed solar PV through battery storage and dispatchable load in residential buildings

    DOE PAGES

    O'Shaughnessy, Eric; Cutler, Dylan; Ardani, Kristen; ...

    2018-01-11

    As utility electricity rates evolve, pairing solar photovoltaic (PV) systems with battery storage has potential to ensure the value proposition of residential solar by mitigating economic uncertainty. In addition to batteries, load control technologies can reshape customer load profiles to optimize PV system use. The combination of PV, energy storage, and load control provides an integrated approach to PV deployment, which we call 'solar plus'. The U.S. National Renewable Energy Laboratory's Renewable Energy Optimization (REopt) model is utilized to evaluate cost-optimal technology selection, sizing, and dispatch in residential buildings under a variety of rate structures and locations. The REopt modelmore » is extended to include a controllable or 'smart' domestic hot water heater model and smart air conditioner model. We find that the solar plus approach improves end user economics across a variety of rate structures - especially those that are challenging for PV - including lower grid export rates, non-coincident time-of-use structures, and demand charges.« less

  20. Geometry Design Optimization of Functionally Graded Scaffolds for Bone Tissue Engineering: A Mechanobiological Approach

    PubMed Central

    Boccaccio, Antonio; Uva, Antonio Emmanuele; Fiorentino, Michele; Mori, Giorgio; Monno, Giuseppe

    2016-01-01

    Functionally Graded Scaffolds (FGSs) are porous biomaterials where porosity changes in space with a specific gradient. In spite of their wide use in bone tissue engineering, possible models that relate the scaffold gradient to the mechanical and biological requirements for the regeneration of the bony tissue are currently missing. In this study we attempt to bridge the gap by developing a mechanobiology-based optimization algorithm aimed to determine the optimal graded porosity distribution in FGSs. The algorithm combines the parametric finite element model of a FGS, a computational mechano-regulation model and a numerical optimization routine. For assigned boundary and loading conditions, the algorithm builds iteratively different scaffold geometry configurations with different porosity distributions until the best microstructure geometry is reached, i.e. the geometry that allows the amount of bone formation to be maximized. We tested different porosity distribution laws, loading conditions and scaffold Young’s modulus values. For each combination of these variables, the explicit equation of the porosity distribution law–i.e the law that describes the pore dimensions in function of the spatial coordinates–was determined that allows the highest amounts of bone to be generated. The results show that the loading conditions affect significantly the optimal porosity distribution. For a pure compression loading, it was found that the pore dimensions are almost constant throughout the entire scaffold and using a FGS allows the formation of amounts of bone slightly larger than those obtainable with a homogeneous porosity scaffold. For a pure shear loading, instead, FGSs allow to significantly increase the bone formation compared to a homogeneous porosity scaffolds. Although experimental data is still necessary to properly relate the mechanical/biological environment to the scaffold microstructure, this model represents an important step towards optimizing geometry of functionally graded scaffolds based on mechanobiological criteria. PMID:26771746

  1. Fog computing job scheduling optimization based on bees swarm

    NASA Astrophysics Data System (ADS)

    Bitam, Salim; Zeadally, Sherali; Mellouk, Abdelhamid

    2018-04-01

    Fog computing is a new computing architecture, composed of a set of near-user edge devices called fog nodes, which collaborate together in order to perform computational services such as running applications, storing an important amount of data, and transmitting messages. Fog computing extends cloud computing by deploying digital resources at the premise of mobile users. In this new paradigm, management and operating functions, such as job scheduling aim at providing high-performance, cost-effective services requested by mobile users and executed by fog nodes. We propose a new bio-inspired optimization approach called Bees Life Algorithm (BLA) aimed at addressing the job scheduling problem in the fog computing environment. Our proposed approach is based on the optimized distribution of a set of tasks among all the fog computing nodes. The objective is to find an optimal tradeoff between CPU execution time and allocated memory required by fog computing services established by mobile users. Our empirical performance evaluation results demonstrate that the proposal outperforms the traditional particle swarm optimization and genetic algorithm in terms of CPU execution time and allocated memory.

  2. Adaptive Load-Balancing Algorithms using Symmetric Broadcast Networks

    NASA Technical Reports Server (NTRS)

    Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    In a distributed computing environment, it is important to ensure that the processor workloads are adequately balanced, Among numerous load-balancing algorithms, a unique approach due to Das and Prasad defines a symmetric broadcast network (SBN) that provides a robust communication pattern among the processors in a topology-independent manner. In this paper, we propose and analyze three efficient SBN-based dynamic load-balancing algorithms, and implement them on an SGI Origin2000. A thorough experimental study with Poisson distributed synthetic loads demonstrates that our algorithms are effective in balancing system load. By optimizing completion time and idle time, the proposed algorithms are shown to compare favorably with several existing approaches.

  3. Ambient Ozone Exposure in Czech Forests: A GIS-Based Approach to Spatial Distribution Assessment

    PubMed Central

    Hůnová, I.; Horálek, J.; Schreiberová, M.; Zapletal, M.

    2012-01-01

    Ambient ozone (O3) is an important phytotoxic pollutant, and detailed knowledge of its spatial distribution is becoming increasingly important. The aim of the paper is to compare different spatial interpolation techniques and to recommend the best approach for producing a reliable map for O3 with respect to its phytotoxic potential. For evaluation we used real-time ambient O3 concentrations measured by UV absorbance from 24 Czech rural sites in the 2007 and 2008 vegetation seasons. We considered eleven approaches for spatial interpolation used for the development of maps for mean vegetation season O3 concentrations and the AOT40F exposure index for forests. The uncertainty of maps was assessed by cross-validation analysis. The root mean square error (RMSE) of the map was used as a criterion. Our results indicate that the optimal interpolation approach is linear regression of O3 data and altitude with subsequent interpolation of its residuals by ordinary kriging. The relative uncertainty of the map of O3 mean for the vegetation season is less than 10%, using the optimal method as for both explored years, and this is a very acceptable value. In the case of AOT40F, however, the relative uncertainty of the map is notably worse, reaching nearly 20% in both examined years. PMID:22566757

  4. Automatic Calibration of a Semi-Distributed Hydrologic Model Using Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Bekele, E. G.; Nicklow, J. W.

    2005-12-01

    Hydrologic simulation models need to be calibrated and validated before using them for operational predictions. Spatially-distributed hydrologic models generally have a large number of parameters to capture the various physical characteristics of a hydrologic system. Manual calibration of such models is a very tedious and daunting task, and its success depends on the subjective assessment of a particular modeler, which includes knowledge of the basic approaches and interactions in the model. In order to alleviate these shortcomings, an automatic calibration model, which employs an evolutionary optimization technique known as Particle Swarm Optimizer (PSO) for parameter estimation, is developed. PSO is a heuristic search algorithm that is inspired by social behavior of bird flocking or fish schooling. The newly-developed calibration model is integrated to the U.S. Department of Agriculture's Soil and Water Assessment Tool (SWAT). SWAT is a physically-based, semi-distributed hydrologic model that was developed to predict the long term impacts of land management practices on water, sediment and agricultural chemical yields in large complex watersheds with varying soils, land use, and management conditions. SWAT was calibrated for streamflow and sediment concentration. The calibration process involves parameter specification, whereby sensitive model parameters are identified, and parameter estimation. In order to reduce the number of parameters to be calibrated, parameterization was performed. The methodology is applied to a demonstration watershed known as Big Creek, which is located in southern Illinois. Application results show the effectiveness of the approach and model predictions are significantly improved.

  5. Daily distribution of free healthy school meals or food-voucher intervention? Perceptions and attitudes of parents and educators.

    PubMed

    Dalma, Archontoula; Zota, Dina; Kouvari, Matina; Kastorini, Christina-Maria; Veloudaki, Afroditi; Ellis-Montalban, Paloma; Petralias, Athanassios; Linos, Athena

    2018-01-01

    To qualitatively evaluate the optimal intervention (food-voucher approach vs. free daily meal distribution), aimed at reducing food insecurity and promoting healthy eating among students attending public schools in socioeconomically disadvantaged areas. We randomly assigned 34 schools to one of the two interventions: students in 17 schools received a daily lunch-box and parents in the other 17 schools received a food voucher of equal value once a month. All students were offered the opportunity to participate. We conducted 30 focus groups in all participating schools (17 in the meal distribution and 13 in the food voucher schools). Eligible participants included parents (n = 106), educators (n = 66) and school principals (n = 34). We qualitatively evaluated their perceptions and attitudes towards the program. Important differences were observed between the two approaches, with more favourable perceptions being reported for the meal distribution approach. More specifically, social stigmatization was minimized in the meal distribution approach, through the participation of all students, compared with the food-voucher participants who reported feelings of embarrassment and fear of stigmatization. Secondly, the meal distribution approach alleviated child food insecurity through the provision of the daily meal, while the food-voucher intervention helped manage household food insecurity, as vouchers were mainly used for purchasing food for family meals. Furthermore, the educational and experiential nature of the meal distribution approach intensified healthy eating promotion, while the food-voucher intervention was efficient mainly for conscious parents regarding healthy eating. The meal distribution intervention was considered more effective than the food-voucher one. Hence, for interventions aiming at tackling food insecurity of children and adolescents, public health focus could be oriented towards school-based in kind food assistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Statistical estimation via convex optimization for trending and performance monitoring

    NASA Astrophysics Data System (ADS)

    Samar, Sikandar

    This thesis presents an optimization-based statistical estimation approach to find unknown trends in noisy data. A Bayesian framework is used to explicitly take into account prior information about the trends via trend models and constraints. The main focus is on convex formulation of the Bayesian estimation problem, which allows efficient computation of (globally) optimal estimates. There are two main parts of this thesis. The first part formulates trend estimation in systems described by known detailed models as a convex optimization problem. Statistically optimal estimates are then obtained by maximizing a concave log-likelihood function subject to convex constraints. We consider the problem of increasing problem dimension as more measurements become available, and introduce a moving horizon framework to enable recursive estimation of the unknown trend by solving a fixed size convex optimization problem at each horizon. We also present a distributed estimation framework, based on the dual decomposition method, for a system formed by a network of complex sensors with local (convex) estimation. Two specific applications of the convex optimization-based Bayesian estimation approach are described in the second part of the thesis. Batch estimation for parametric diagnostics in a flight control simulation of a space launch vehicle is shown to detect incipient fault trends despite the natural masking properties of feedback in the guidance and control loops. Moving horizon approach is used to estimate time varying fault parameters in a detailed nonlinear simulation model of an unmanned aerial vehicle. An excellent performance is demonstrated in the presence of winds and turbulence.

  7. An efficient multi-objective optimization method for water quality sensor placement within water distribution systems considering contamination probability variations.

    PubMed

    He, Guilin; Zhang, Tuqiao; Zheng, Feifei; Zhang, Qingzhou

    2018-06-20

    Water quality security within water distribution systems (WDSs) has been an important issue due to their inherent vulnerability associated with contamination intrusion. This motivates intensive studies to identify optimal water quality sensor placement (WQSP) strategies, aimed to timely/effectively detect (un)intentional intrusion events. However, these available WQSP optimization methods have consistently presumed that each WDS node has an equal contamination probability. While being simple in implementation, this assumption may do not conform to the fact that the nodal contamination probability may be significantly regionally varied owing to variations in population density and user properties. Furthermore, the low computational efficiency is another important factor that has seriously hampered the practical applications of the currently available WQSP optimization approaches. To address these two issues, this paper proposes an efficient multi-objective WQSP optimization method to explicitly account for contamination probability variations. Four different contamination probability functions (CPFs) are proposed to represent the potential variations of nodal contamination probabilities within the WDS. Two real-world WDSs are used to demonstrate the utility of the proposed method. Results show that WQSP strategies can be significantly affected by the choice of the CPF. For example, when the proposed method is applied to the large case study with the CPF accounting for user properties, the event detection probabilities of the resultant solutions are approximately 65%, while these values are around 25% for the traditional approach, and such design solutions are achieved approximately 10,000 times faster than the traditional method. This paper provides an alternative method to identify optimal WQSP solutions for the WDS, and also builds knowledge regarding the impacts of different CPFs on sensor deployments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Literature Survey on Operational Voltage Control and Reactive Power Management on Transmission and Sub-Transmission Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elizondo, Marcelo A.; Samaan, Nader A.; Makarov, Yuri V.

    Voltage and reactive power system control is generally performed following usual patterns of loads, based on off-line studies for daily and seasonal operations. This practice is currently challenged by the inclusion of distributed renewable generation, such as solar. There has been focus on resolving this problem at the distribution level; however, the transmission and sub-transmission levels have received less attention. This paper provides a literature review of proposed methods and solution approaches to coordinate and optimize voltage control and reactive power management, with an emphasis on applications at transmission and sub-transmission level. The conclusion drawn from the survey is thatmore » additional research is needed in the areas of optimizing switch shunt actions and coordinating all available resources to deal with uncertain patterns from increasing distributed renewable generation in the operational time frame. These topics are not deeply explored in the literature.« less

  9. Coordinative Voltage Control Strategy with Multiple Resources for Distribution Systems of High PV Penetration: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiangqi; Zhang, Yingchen

    This paper presents an optimal voltage control methodology with coordination among different voltage-regulating resources, including controllable loads, distributed energy resources such as energy storage and photovoltaics (PV), and utility voltage-regulating devices such as voltage regulators and capacitors. The proposed methodology could effectively tackle the overvoltage and voltage regulation device distortion problems brought by high penetrations of PV to improve grid operation reliability. A voltage-load sensitivity matrix and voltage-regulator sensitivity matrix are used to deploy the resources along the feeder to achieve the control objectives. Mixed-integer nonlinear programming is used to solve the formulated optimization control problem. The methodology has beenmore » tested on the IEEE 123-feeder test system, and the results demonstrate that the proposed approach could actively tackle the voltage problem brought about by high penetrations of PV and improve the reliability of distribution system operation.« less

  10. Point Charges Optimally Placed to Represent the Multipole Expansion of Charge Distributions

    PubMed Central

    Onufriev, Alexey V.

    2013-01-01

    We propose an approach for approximating electrostatic charge distributions with a small number of point charges to optimally represent the original charge distribution. By construction, the proposed optimal point charge approximation (OPCA) retains many of the useful properties of point multipole expansion, including the same far-field asymptotic behavior of the approximate potential. A general framework for numerically computing OPCA, for any given number of approximating charges, is described. We then derive a 2-charge practical point charge approximation, PPCA, which approximates the 2-charge OPCA via closed form analytical expressions, and test the PPCA on a set of charge distributions relevant to biomolecular modeling. We measure the accuracy of the new approximations as the RMS error in the electrostatic potential relative to that produced by the original charge distribution, at a distance the extent of the charge distribution–the mid-field. The error for the 2-charge PPCA is found to be on average 23% smaller than that of optimally placed point dipole approximation, and comparable to that of the point quadrupole approximation. The standard deviation in RMS error for the 2-charge PPCA is 53% lower than that of the optimal point dipole approximation, and comparable to that of the point quadrupole approximation. We also calculate the 3-charge OPCA for representing the gas phase quantum mechanical charge distribution of a water molecule. The electrostatic potential calculated by the 3-charge OPCA for water, in the mid-field (2.8 Å from the oxygen atom), is on average 33.3% more accurate than the potential due to the point multipole expansion up to the octupole order. Compared to a 3 point charge approximation in which the charges are placed on the atom centers, the 3-charge OPCA is seven times more accurate, by RMS error. The maximum error at the oxygen-Na distance (2.23 Å ) is half that of the point multipole expansion up to the octupole order. PMID:23861790

  11. Integrated analysis of individual codon contribution to protein biosynthesis reveals a new approach to improving the basis of rational gene design

    PubMed Central

    Villada, Juan C.; Brustolini, Otávio José Bernardes

    2017-01-01

    Abstract Gene codon optimization may be impaired by the misinterpretation of frequency and optimality of codons. Although recent studies have revealed the effects of codon usage bias (CUB) on protein biosynthesis, an integrated perspective of the biological role of individual codons remains unknown. Unlike other previous studies, we show, through an integrated framework that attributes of codons such as frequency, optimality and positional dependency should be combined to unveil individual codon contribution for protein biosynthesis. We designed a codon quantification method for assessing CUB as a function of position within genes with a novel constraint: the relativity of position-dependent codon usage shaped by coding sequence length. Thus, we propose a new way of identifying the enrichment, depletion and non-uniform positional distribution of codons in different regions of yeast genes. We clustered codons that shared attributes of frequency and optimality. The cluster of non-optimal codons with rare occurrence displayed two remarkable characteristics: higher codon decoding time than frequent–non-optimal cluster and enrichment at the 5′-end region, where optimal codons with the highest frequency are depleted. Interestingly, frequent codons with non-optimal adaptation to tRNAs are uniformly distributed in the Saccharomyces cerevisiae genes, suggesting their determinant role as a speed regulator in protein elongation. PMID:28449100

  12. Integrated analysis of individual codon contribution to protein biosynthesis reveals a new approach to improving the basis of rational gene design.

    PubMed

    Villada, Juan C; Brustolini, Otávio José Bernardes; Batista da Silveira, Wendel

    2017-08-01

    Gene codon optimization may be impaired by the misinterpretation of frequency and optimality of codons. Although recent studies have revealed the effects of codon usage bias (CUB) on protein biosynthesis, an integrated perspective of the biological role of individual codons remains unknown. Unlike other previous studies, we show, through an integrated framework that attributes of codons such as frequency, optimality and positional dependency should be combined to unveil individual codon contribution for protein biosynthesis. We designed a codon quantification method for assessing CUB as a function of position within genes with a novel constraint: the relativity of position-dependent codon usage shaped by coding sequence length. Thus, we propose a new way of identifying the enrichment, depletion and non-uniform positional distribution of codons in different regions of yeast genes. We clustered codons that shared attributes of frequency and optimality. The cluster of non-optimal codons with rare occurrence displayed two remarkable characteristics: higher codon decoding time than frequent-non-optimal cluster and enrichment at the 5'-end region, where optimal codons with the highest frequency are depleted. Interestingly, frequent codons with non-optimal adaptation to tRNAs are uniformly distributed in the Saccharomyces cerevisiae genes, suggesting their determinant role as a speed regulator in protein elongation. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  13. Combined design of structures and controllers for optimal maneuverability

    NASA Technical Reports Server (NTRS)

    Ling, Jer; Kabamba, Pierre; Taylor, John

    1990-01-01

    Approaches to the combined design of structures and controllers for achieving optimal maneuverability are presented. A maneuverability index which directly reflects the minimum time required to perform a given set of maneuvers is introduced. By designing the flexible appendages, the maneuver time of the spacecraft is minimized under the constraints of structural properties, and post maneuver spillover is kept within a specified bound. The spillover reduction is achieved by making use of an appropriate reduced order model. The distributed parameter design problem is approached using assumed shape functions, and finite element analysis with dynamic reduction. Solution procedures have been investigated. Approximate design methods have been developed to overcome the computational difficulties. Some new constraints on the modal frequencies of the spacecraft are introduced in the original optimization problem to facilitate the solution process. It is shown that the global optimal design may be obtained by tuning the natural frequencies to satisfy specific constraints. Researchers quantify the difference between a lower bound to the solution for maneuver time associated with the original problem and the estimate obtained from the modified problem, for a specified application requirement. Numerical examples are presented to demonstrate the capability of this approach.

  14. On the multiple depots vehicle routing problem with heterogeneous fleet capacity and velocity

    NASA Astrophysics Data System (ADS)

    Hanum, F.; Hartono, A. P.; Bakhtiar, T.

    2018-03-01

    This current manuscript concerns with the optimization problem arising in a route determination of products distribution. The problem is formulated in the form of multiple depots and time windowed vehicle routing problem with heterogeneous capacity and velocity of fleet. Model includes a number of constraints such as route continuity, multiple depots availability and serving time in addition to generic constraints. In dealing with the unique feature of heterogeneous velocity, we generate a number of velocity profiles along the road segments, which then converted into traveling-time tables. An illustrative example of rice distribution among villages by bureau of logistics is provided. Exact approach is utilized to determine the optimal solution in term of vehicle routes and starting time of service.

  15. Approximation of discrete-time LQG compensators for distributed systems with boundary input and unbounded measurement

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1987-01-01

    The approximation of optimal discrete-time linear quadratic Gaussian (LQG) compensators for distributed parameter control systems with boundary input and unbounded measurement is considered. The approach applies to a wide range of problems that can be formulated in a state space on which both the discrete-time input and output operators are continuous. Approximating compensators are obtained via application of the LQG theory and associated approximation results for infinite dimensional discrete-time control systems with bounded input and output. Numerical results for spline and modal based approximation schemes used to compute optimal compensators for a one dimensional heat equation with either Neumann or Dirichlet boundary control and pointwise measurement of temperature are presented and discussed.

  16. An internet graph model based on trade-off optimization

    NASA Astrophysics Data System (ADS)

    Alvarez-Hamelin, J. I.; Schabanel, N.

    2004-03-01

    This paper presents a new model for the Internet graph (AS graph) based on the concept of heuristic trade-off optimization, introduced by Fabrikant, Koutsoupias and Papadimitriou in[CITE] to grow a random tree with a heavily tailed degree distribution. We propose here a generalization of this approach to generate a general graph, as a candidate for modeling the Internet. We present the results of our simulations and an analysis of the standard parameters measured in our model, compared with measurements from the physical Internet graph.

  17. Efficient hybrid evolutionary algorithm for optimization of a strip coiling process

    NASA Astrophysics Data System (ADS)

    Pholdee, Nantiwat; Park, Won-Woong; Kim, Dong-Kyu; Im, Yong-Taek; Bureerat, Sujin; Kwon, Hyuck-Cheol; Chun, Myung-Sik

    2015-04-01

    This article proposes an efficient metaheuristic based on hybridization of teaching-learning-based optimization and differential evolution for optimization to improve the flatness of a strip during a strip coiling process. Differential evolution operators were integrated into the teaching-learning-based optimization with a Latin hypercube sampling technique for generation of an initial population. The objective function was introduced to reduce axial inhomogeneity of the stress distribution and the maximum compressive stress calculated by Love's elastic solution within the thin strip, which may cause an irregular surface profile of the strip during the strip coiling process. The hybrid optimizer and several well-established evolutionary algorithms (EAs) were used to solve the optimization problem. The comparative studies show that the proposed hybrid algorithm outperformed other EAs in terms of convergence rate and consistency. It was found that the proposed hybrid approach was powerful for process optimization, especially with a large-scale design problem.

  18. A technique for generating phase-space-based Monte Carlo beamlets in radiotherapy applications.

    PubMed

    Bush, K; Popescu, I A; Zavgorodni, S

    2008-09-21

    As radiotherapy treatment planning moves toward Monte Carlo (MC) based dose calculation methods, the MC beamlet is becoming an increasingly common optimization entity. At present, methods used to produce MC beamlets have utilized a particle source model (PSM) approach. In this work we outline the implementation of a phase-space-based approach to MC beamlet generation that is expected to provide greater accuracy in beamlet dose distributions. In this approach a standard BEAMnrc phase space is sorted and divided into beamlets with particles labeled using the inheritable particle history variable. This is achieved with the use of an efficient sorting algorithm, capable of sorting a phase space of any size into the required number of beamlets in only two passes. Sorting a phase space of five million particles can be achieved in less than 8 s on a single-core 2.2 GHz CPU. The beamlets can then be transported separately into a patient CT dataset, producing separate dose distributions (doselets). Methods for doselet normalization and conversion of dose to absolute units of Gy for use in intensity modulated radiation therapy (IMRT) plan optimization are also described.

  19. Estimation and impact assessment of input and parameter uncertainty in predicting groundwater flow with a fully distributed model

    NASA Astrophysics Data System (ADS)

    Touhidul Mustafa, Syed Md.; Nossent, Jiri; Ghysels, Gert; Huysmans, Marijke

    2017-04-01

    Transient numerical groundwater flow models have been used to understand and forecast groundwater flow systems under anthropogenic and climatic effects, but the reliability of the predictions is strongly influenced by different sources of uncertainty. Hence, researchers in hydrological sciences are developing and applying methods for uncertainty quantification. Nevertheless, spatially distributed flow models pose significant challenges for parameter and spatially distributed input estimation and uncertainty quantification. In this study, we present a general and flexible approach for input and parameter estimation and uncertainty analysis of groundwater models. The proposed approach combines a fully distributed groundwater flow model (MODFLOW) with the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm. To avoid over-parameterization, the uncertainty of the spatially distributed model input has been represented by multipliers. The posterior distributions of these multipliers and the regular model parameters were estimated using DREAM. The proposed methodology has been applied in an overexploited aquifer in Bangladesh where groundwater pumping and recharge data are highly uncertain. The results confirm that input uncertainty does have a considerable effect on the model predictions and parameter distributions. Additionally, our approach also provides a new way to optimize the spatially distributed recharge and pumping data along with the parameter values under uncertain input conditions. It can be concluded from our approach that considering model input uncertainty along with parameter uncertainty is important for obtaining realistic model predictions and a correct estimation of the uncertainty bounds.

  20. Distributed control systems with incomplete and uncertain information

    NASA Astrophysics Data System (ADS)

    Tang, Jingpeng

    Scientific and engineering advances in wireless communication, sensors, propulsion, and other areas are rapidly making it possible to develop unmanned air vehicles (UAVs) with sophisticated capabilities. UAVs have come to the forefront as tools for airborne reconnaissance to search for, detect, and destroy enemy targets in relatively complex environments. They potentially reduce risk to human life, are cost effective, and are superior to manned aircraft for certain types of missions. It is desirable for UAVs to have a high level of intelligent autonomy to carry out mission tasks with little external supervision and control. This raises important issues involving tradeoffs between centralized control and the associated potential to optimize mission plans, and decentralized control with great robustness and the potential to adapt to changing conditions. UAV capabilities have been extended several ways through armament (e.g., Hellfire missiles on Predator UAVs), increased endurance and altitude (e.g., Global Hawk), and greater autonomy. Some known barriers to full-scale implementation of UAVs are increased communication and control requirements as well as increased platform and system complexity. One of the key problems is how UAV systems can handle incomplete and uncertain information in dynamic environments. Especially when the system is composed of heterogeneous and distributed UAVs, the overall system complexity is increased under such conditions. Presented through the use of published papers, this dissertation lays the groundwork for the study of methodologies for handling incomplete and uncertain information for distributed control systems. An agent-based simulation framework is built to investigate mathematical approaches (optimization) and emergent intelligence approaches. The first paper provides a mathematical approach for systems of UAVs to handle incomplete and uncertain information. The second paper describes an emergent intelligence approach for UAVs, again in handling incomplete and uncertain information. The third paper combines mathematical and emergent intelligence approaches.

  1. Comparison of anatomy-based, fluence-based and aperture-based treatment planning approaches for VMAT

    NASA Astrophysics Data System (ADS)

    Rao, Min; Cao, Daliang; Chen, Fan; Ye, Jinsong; Mehta, Vivek; Wong, Tony; Shepard, David

    2010-11-01

    Volumetric modulated arc therapy (VMAT) has the potential to reduce treatment times while producing comparable or improved dose distributions relative to fixed-field intensity-modulated radiation therapy. In order to take full advantage of the VMAT delivery technique, one must select a robust inverse planning tool. The purpose of this study was to evaluate the effectiveness and efficiency of VMAT planning techniques of three categories: anatomy-based, fluence-based and aperture-based inverse planning. We have compared these techniques in terms of the plan quality, planning efficiency and delivery efficiency. Fourteen patients were selected for this study including six head-and-neck (HN) cases, and two cases each of prostate, pancreas, lung and partial brain. For each case, three VMAT plans were created. The first VMAT plan was generated based on the anatomical geometry. In the Elekta ERGO++ treatment planning system (TPS), segments were generated based on the beam's eye view (BEV) of the target and the organs at risk. The segment shapes were then exported to Pinnacle3 TPS followed by segment weight optimization and final dose calculation. The second VMAT plan was generated by converting optimized fluence maps (calculated by the Pinnacle3 TPS) into deliverable arcs using an in-house arc sequencer. The third VMAT plan was generated using the Pinnacle3 SmartArc IMRT module which is an aperture-based optimization method. All VMAT plans were delivered using an Elekta Synergy linear accelerator and the plan comparisons were made in terms of plan quality and delivery efficiency. The results show that for cases of little or modest complexity such as prostate, pancreas, lung and brain, the anatomy-based approach provides similar target coverage and critical structure sparing, but less conformal dose distributions as compared to the other two approaches. For more complex HN cases, the anatomy-based approach is not able to provide clinically acceptable VMAT plans while highly conformal dose distributions were obtained using both aperture-based and fluence-based inverse planning techniques. The aperture-based approach provides improved dose conformity than the fluence-based technique in complex cases.

  2. New approach based on tetrahedral-mesh geometry for accurate 4D Monte Carlo patient-dose calculation

    NASA Astrophysics Data System (ADS)

    Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Kim, Seonghoon; Sohn, Jason W.

    2015-02-01

    In the present study, to achieve accurate 4D Monte Carlo dose calculation in radiation therapy, we devised a new approach that combines (1) modeling of the patient body using tetrahedral-mesh geometry based on the patient’s 4D CT data, (2) continuous movement/deformation of the tetrahedral patient model by interpolation of deformation vector fields acquired through deformable image registration, and (3) direct transportation of radiation particles during the movement and deformation of the tetrahedral patient model. The results of our feasibility study show that it is certainly possible to construct 4D patient models (= phantoms) with sufficient accuracy using the tetrahedral-mesh geometry and to directly transport radiation particles during continuous movement and deformation of the tetrahedral patient model. This new approach not only produces more accurate dose distribution in the patient but also replaces the current practice of using multiple 3D voxel phantoms and combining multiple dose distributions after Monte Carlo simulations. For routine clinical application of our new approach, the use of fast automatic segmentation algorithms is a must. In order to achieve, simultaneously, both dose accuracy and computation speed, the number of tetrahedrons for the lungs should be optimized. Although the current computation speed of our new 4D Monte Carlo simulation approach is slow (i.e. ~40 times slower than that of the conventional dose accumulation approach), this problem is resolvable by developing, in Geant4, a dedicated navigation class optimized for particle transportation in tetrahedral-mesh geometry.

  3. CompatPM: enabling energy efficient multimedia workloads for distributed mobile platforms

    NASA Astrophysics Data System (ADS)

    Nathuji, Ripal; O'Hara, Keith J.; Schwan, Karsten; Balch, Tucker

    2007-01-01

    The computation and communication abilities of modern platforms are enabling increasingly capable cooperative distributed mobile systems. An example is distributed multimedia processing of sensor data in robots deployed for search and rescue, where a system manager can exploit the application's cooperative nature to optimize the distribution of roles and tasks in order to successfully accomplish the mission. Because of limited battery capacities, a critical task a manager must perform is online energy management. While support for power management has become common for the components that populate mobile platforms, what is lacking is integration and explicit coordination across the different management actions performed in a variety of system layers. This papers develops an integration approach for distributed multimedia applications, where a global manager specifies both a power operating point and a workload for a node to execute. Surprisingly, when jointly considering power and QoS, experimental evaluations show that using a simple deadline-driven approach to assigning frequencies can be non-optimal. These trends are further affected by certain characteristics of underlying power management mechanisms, which in our research, are identified as groupings that classify component power management as "compatible" (VFC) or "incompatible" (VFI) with voltage and frequency scaling. We build on these findings to develop CompatPM, a vertically integrated control strategy for power management in distributed mobile systems. Experimental evaluations of CompatPM indicate average energy improvements of 8% when platform resources are managed jointly rather than independently, demonstrating that previous attempts to maximize battery life by simply minimizing frequency are inappropriate from a platform-level perspective.

  4. The adaptive approach for storage assignment by mining data of warehouse management system for distribution centres

    NASA Astrophysics Data System (ADS)

    Ming-Huang Chiang, David; Lin, Chia-Ping; Chen, Mu-Chen

    2011-05-01

    Among distribution centre operations, order picking has been reported to be the most labour-intensive activity. Sophisticated storage assignment policies adopted to reduce the travel distance of order picking have been explored in the literature. Unfortunately, previous research has been devoted to locating entire products from scratch. Instead, this study intends to propose an adaptive approach, a Data Mining-based Storage Assignment approach (DMSA), to find the optimal storage assignment for newly delivered products that need to be put away when there is vacant shelf space in a distribution centre. In the DMSA, a new association index (AIX) is developed to evaluate the fitness between the put away products and the unassigned storage locations by applying association rule mining. With AIX, the storage location assignment problem (SLAP) can be formulated and solved as a binary integer programming. To evaluate the performance of DMSA, a real-world order database of a distribution centre is obtained and used to compare the results from DMSA with a random assignment approach. It turns out that DMSA outperforms random assignment as the number of put away products and the proportion of put away products with high turnover rates increase.

  5. Learning stochastic reward distributions in a speeded pointing task.

    PubMed

    Seydell, Anna; McCann, Brian C; Trommershäuser, Julia; Knill, David C

    2008-04-23

    Recent studies have shown that humans effectively take into account task variance caused by intrinsic motor noise when planning fast hand movements. However, previous evidence suggests that humans have greater difficulty accounting for arbitrary forms of stochasticity in their environment, both in economic decision making and sensorimotor tasks. We hypothesized that humans can learn to optimize movement strategies when environmental randomness can be experienced and thus implicitly learned over several trials, especially if it mimics the kinds of randomness for which subjects might have generative models. We tested the hypothesis using a task in which subjects had to rapidly point at a target region partly covered by three stochastic penalty regions introduced as "defenders." At movement completion, each defender jumped to a new position drawn randomly from fixed probability distributions. Subjects earned points when they hit the target, unblocked by a defender, and lost points otherwise. Results indicate that after approximately 600 trials, subjects approached optimal behavior. We further tested whether subjects simply learned a set of stimulus-contingent motor plans or the statistics of defenders' movements by training subjects with one penalty distribution and then testing them on a new penalty distribution. Subjects immediately changed their strategy to achieve the same average reward as subjects who had trained with the second penalty distribution. These results indicate that subjects learned the parameters of the defenders' jump distributions and used this knowledge to optimally plan their hand movements under conditions involving stochastic rewards and penalties.

  6. Spatially-Distributed Cost–Effectiveness Analysis Framework to Control Phosphorus from Agricultural Diffuse Pollution

    PubMed Central

    Geng, Runzhe; Wang, Xiaoyan; Sharpley, Andrew N.; Meng, Fande

    2015-01-01

    Best management practices (BMPs) for agricultural diffuse pollution control are implemented at the field or small-watershed scale. However, the benefits of BMP implementation on receiving water quality at multiple spatial is an ongoing challenge. In this paper, we introduce an integrated approach that combines risk assessment (i.e., Phosphorus (P) index), model simulation techniques (Hydrological Simulation Program–FORTRAN), and a BMP placement tool at various scales to identify the optimal location for implementing multiple BMPs and estimate BMP effectiveness after implementation. A statistically significant decrease in nutrient discharge from watersheds is proposed to evaluate the effectiveness of BMPs, strategically targeted within watersheds. Specifically, we estimate two types of cost-effectiveness curves (total pollution reduction and proportion of watersheds improved) for four allocation approaches. Selection of a ‘‘best approach” depends on the relative importance of the two types of effectiveness, which involves a value judgment based on the random/aggregated degree of BMP distribution among and within sub-watersheds. A statistical optimization framework is developed and evaluated in Chaohe River Watershed located in the northern mountain area of Beijing. Results show that BMP implementation significantly (p >0.001) decrease P loss from the watershed. Remedial strategies where BMPs were targeted to areas of high risk of P loss, deceased P loads compared with strategies where BMPs were randomly located across watersheds. Sensitivity analysis indicated that aggregated BMP placement in particular watershed is the most cost-effective scenario to decrease P loss. The optimization approach outlined in this paper is a spatially hierarchical method for targeting nonpoint source controls across a range of scales from field to farm, to watersheds, to regions. Further, model estimates showed targeting at multiple scales is necessary to optimize program efficiency. The integrated model approach described that selects and places BMPs at varying levels of implementation, provides a new theoretical basis and technical guidance for diffuse pollution management in agricultural watersheds. PMID:26313561

  7. Generalization techniques to reduce the number of volume elements for terrain effect calculations in fully analytical gravitational modelling

    NASA Astrophysics Data System (ADS)

    Benedek, Judit; Papp, Gábor; Kalmár, János

    2018-04-01

    Beyond rectangular prism polyhedron, as a discrete volume element, can also be used to model the density distribution inside 3D geological structures. The calculation of the closed formulae given for the gravitational potential and its higher-order derivatives, however, needs twice more runtime than that of the rectangular prism computations. Although the more detailed the better principle is generally accepted it is basically true only for errorless data. As soon as errors are present any forward gravitational calculation from the model is only a possible realization of the true force field on the significance level determined by the errors. So if one really considers the reliability of input data used in the calculations then sometimes the "less" can be equivalent to the "more" in statistical sense. As a consequence the processing time of the related complex formulae can be significantly reduced by the optimization of the number of volume elements based on the accuracy estimates of the input data. New algorithms are proposed to minimize the number of model elements defined both in local and in global coordinate systems. Common gravity field modelling programs generate optimized models for every computation points ( dynamic approach), whereas the static approach provides only one optimized model for all. Based on the static approach two different algorithms were developed. The grid-based algorithm starts with the maximum resolution polyhedral model defined by 3-3 points of each grid cell and generates a new polyhedral surface defined by points selected from the grid. The other algorithm is more general; it works also for irregularly distributed data (scattered points) connected by triangulation. Beyond the description of the optimization schemes some applications of these algorithms in regional and local gravity field modelling are presented too. The efficiency of the static approaches may provide even more than 90% reduction in computation time in favourable situation without the loss of reliability of the calculated gravity field parameters.

  8. Optimized Orthovoltage Stereotactic Radiosurgery

    NASA Astrophysics Data System (ADS)

    Fagerstrom, Jessica M.

    Because of its ability to treat intracranial targets effectively and noninvasively, stereotactic radiosurgery (SRS) is a prevalent treatment modality in modern radiation therapy. This work focused on SRS delivering rectangular function dose distributions, which are desirable for some targets such as those with functional tissue included within the target volume. In order to achieve such distributions, this work used fluence modulation and energies lower than those utilized in conventional SRS. In this work, the relationship between prescription isodose and dose gradients was examined for standard, unmodulated orthovoltage SRS dose distributions. Monte Carlo-generated energy deposition kernels were used to calculate 4pi, isocentric dose distributions for a polyenergetic orthovoltage spectrum, as well as monoenergetic orthovoltage beams. The relationship between dose gradients and prescription isodose was found to be field size and energy dependent, and values were found for prescription isodose that optimize dose gradients. Next, a pencil-beam model was used with a Genetic Algorithm search heuristic to optimize the spatial distribution of added tungsten filtration within apertures of cone collimators in a moderately filtered 250 kVp beam. Four cone sizes at three depths were examined with a Monte Carlo model to determine the effects of the optimized modulation compared to open cones, and the simulations found that the optimized cones were able to achieve both improved penumbra and flatness statistics at depth compared to the open cones. Prototypes of the filter designs calculated using mathematical optimization techniques and Monte Carlo simulations were then manufactured and inserted into custom built orthovoltage SRS cone collimators. A positioning system built in-house was used to place the collimator and filter assemblies temporarily in the 250 kVp beam line. Measurements were performed in water using radiochromic film scanned with both a standard white light flatbed scanner as well as a prototype laser densitometry system. Measured beam profiles showed that the modulated beams could more closely approach rectangular function dose profiles compared to the open cones. A methodology has been described and implemented to achieve optimized SRS delivery, including the development of working prototypes. Future work may include the construction of a full treatment platform.

  9. Design framework for entanglement-distribution switching networks

    NASA Astrophysics Data System (ADS)

    Drost, Robert J.; Brodsky, Michael

    2016-09-01

    The distribution of quantum entanglement appears to be an important component of applications of quantum communications and networks. The ability to centralize the sourcing of entanglement in a quantum network can provide for improved efficiency and enable a variety of network structures. A necessary feature of an entanglement-sourcing network node comprising several sources of entangled photons is the ability to reconfigurably route the generated pairs of photons to network neighbors depending on the desired entanglement sharing of the network users at a given time. One approach to such routing is the use of a photonic switching network. The requirements for an entanglement distribution switching network are less restrictive than for typical conventional applications, leading to design freedom that can be leveraged to optimize additional criteria. In this paper, we present a mathematical framework defining the requirements of an entanglement-distribution switching network. We then consider the design of such a switching network using a number of 2 × 2 crossbar switches, addressing the interconnection of these switches and efficient routing algorithms. In particular, we define a worst-case loss metric and consider 6 × 6, 8 × 8, and 10 × 10 network designs that optimize both this metric and the number of crossbar switches composing the network. We pay particular attention to the 10 × 10 network, detailing novel results proving the optimality of the proposed design. These optimized network designs have great potential for use in practical quantum networks, thus advancing the concept of quantum networks toward reality.

  10. Distributed Channel Allocation and Time Slot Optimization for Green Internet of Things.

    PubMed

    Ding, Kaiqi; Zhao, Haitao; Hu, Xiping; Wei, Jibo

    2017-10-28

    In sustainable smart cities, power saving is a severe challenge in the energy-constrained Internet of Things (IoT). Efficient utilization of limited multiple non-overlap channels and time resources is a promising solution to reduce the network interference and save energy consumption. In this paper, we propose a joint channel allocation and time slot optimization solution for IoT. First, we propose a channel ranking algorithm which enables each node to rank its available channels based on the channel properties. Then, we propose a distributed channel allocation algorithm so that each node can choose a proper channel based on the channel ranking and its own residual energy. Finally, the sleeping duration and spectrum sensing duration are jointly optimized to maximize the normalized throughput and satisfy energy consumption constraints simultaneously. Different from the former approaches, our proposed solution requires no central coordination or any global information that each node can operate based on its own local information in a total distributed manner. Also, theoretical analysis and extensive simulations have validated that when applying our solution in the network of IoT: (i) each node can be allocated to a proper channel based on the residual energy to balance the lifetime; (ii) the network can rapidly converge to a collision-free transmission through each node's learning ability in the process of the distributed channel allocation; and (iii) the network throughput is further improved via the dynamic time slot optimization.

  11. Release the Prisoners Game

    ERIC Educational Resources Information Center

    Van Hecke, Tanja

    2011-01-01

    This article presents the mathematical approach of the optimal strategy to win the "Release the prisoners" game and the integration of this analysis in a math class. Outline lesson plans at three different levels are given, where simulations are suggested as well as theoretical findings about the probability distribution function and its mean…

  12. Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers

    NASA Technical Reports Server (NTRS)

    Reuther, James; Jameson, Antony; Alonso, Juan Jose; Rimlinger, Mark J.; Saunders, David

    1997-01-01

    An aerodynamic shape optimization method that treats the design of complex aircraft configurations subject to high fidelity computational fluid dynamics (CFD), geometric constraints and multiple design points is described. The design process will be greatly accelerated through the use of both control theory and distributed memory computer architectures. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods. The resulting problem is implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on a higher order CFD method. In order to facilitate the integration of these high fidelity CFD approaches into future multi-disciplinary optimization (NW) applications, new methods must be developed which are capable of simultaneously addressing complex geometries, multiple objective functions, and geometric design constraints. In our earlier studies, we coupled the adjoint based design formulations with unconstrained optimization algorithms and showed that the approach was effective for the aerodynamic design of airfoils, wings, wing-bodies, and complex aircraft configurations. In many of the results presented in these earlier works, geometric constraints were satisfied either by a projection into feasible space or by posing the design space parameterization such that it automatically satisfied constraints. Furthermore, with the exception of reference 9 where the second author initially explored the use of multipoint design in conjunction with adjoint formulations, our earlier works have focused on single point design efforts. Here we demonstrate that the same methodology may be extended to treat complete configuration designs subject to multiple design points and geometric constraints. Examples are presented for both transonic and supersonic configurations ranging from wing alone designs to complex configuration designs involving wing, fuselage, nacelles and pylons.

  13. Obtaining orthotropic elasticity tensor using entries zeroing method.

    NASA Astrophysics Data System (ADS)

    Gierlach, Bartosz; Danek, Tomasz

    2017-04-01

    A generally anisotropic elasticity tensor obtained from measurements can be represented by a tensor belonging to one of eight material symmetry classes. Knowledge of symmetry class and orientation is helpful for describing physical properties of a medium. For each non-trivial symmetry class except isotropic this problem is nonlinear. A common method of obtaining effective tensor is a choosing its non-trivial symmetry class and minimizing Frobenius norm between measured and effective tensor in the same coordinate system. Global optimization algorithm has to be used to determine the best rotation of a tensor. In this contribution, we propose a new approach to obtain optimal tensor, with the assumption that it is orthotropic (or at least has a similar shape to the orthotropic one). In orthotropic form tensor 24 out of 36 entries are zeros. The idea is to minimize the sum of squared entries which are supposed to be equal to zero through rotation calculated with optimization algorithm - in this case Particle Swarm Optimization (PSO) algorithm. Quaternions were used to parametrize rotations in 3D space to improve computational efficiency. In order to avoid a choice of local minima we apply PSO several times and only if we obtain similar results for the third time we consider it as a correct value and finish computations. To analyze obtained results Monte-Carlo method was used. After thousands of single runs of PSO optimization, we obtained values of quaternion parts and plot them. Points concentrate in several points of the graph following the regular pattern. It suggests the existence of more complex symmetry in the analyzed tensor. Then thousands of realizations of generally anisotropic tensor were generated - each tensor entry was replaced with a random value drawn from normal distribution having a mean equal to measured tensor entry and standard deviation of the measurement. Each of these tensors was subject of PSO based optimization delivering quaternion for optimal rotation. Computations were parallelized with OpenMP to decrease computational time what enables different tensors to be processed by different threads. As a result the distributions of rotated tensor entries values were obtained. For the entries which were to be zeroed we can observe almost normal distributions having mean equal to zero or sum of two normal distributions having inverse means. Non-zero entries represent different distributions with two or three maxima. Analysis of obtained results shows that described method produces consistent values of quaternions used to rotate tensors. Despite of less complex target function in a process of optimization in comparison to common approach, entries zeroing method provides results which can be applied to obtain an orthotropic tensor with good reliability. Modification of the method can produce also a tool for obtaining effective tensors belonging to another symmetry classes. This research was supported by the Polish National Science Center under contract No. DEC-2013/11/B/ST10/0472.

  14. Optimal Decision Making in a Class of Uncertain Systems Based on Uncertain Variables

    NASA Astrophysics Data System (ADS)

    Bubnicki, Z.

    2006-06-01

    The paper is concerned with a class of uncertain systems described by relational knowledge representations with unknown parameters which are assumed to be values of uncertain variables characterized by a user in the form of certainty distributions. The first part presents the basic optimization problem consisting in finding the decision maximizing the certainty index that the requirement given by a user is satisfied. The main part is devoted to the description of the optimization problem with the given certainty threshold. It is shown how the approach presented in the paper may be applied to some problems for anticipatory systems.

  15. On the Improvement of Convergence Performance for Integrated Design of Wind Turbine Blade Using a Vector Dominating Multi-objective Evolution Algorithm

    NASA Astrophysics Data System (ADS)

    Wang, L.; Wang, T. G.; Wu, J. H.; Cheng, G. P.

    2016-09-01

    A novel multi-objective optimization algorithm incorporating evolution strategies and vector mechanisms, referred as VD-MOEA, is proposed and applied in aerodynamic- structural integrated design of wind turbine blade. In the algorithm, a set of uniformly distributed vectors is constructed to guide population in moving forward to the Pareto front rapidly and maintain population diversity with high efficiency. For example, two- and three- objective designs of 1.5MW wind turbine blade are subsequently carried out for the optimization objectives of maximum annual energy production, minimum blade mass, and minimum extreme root thrust. The results show that the Pareto optimal solutions can be obtained in one single simulation run and uniformly distributed in the objective space, maximally maintaining the population diversity. In comparison to conventional evolution algorithms, VD-MOEA displays dramatic improvement of algorithm performance in both convergence and diversity preservation for handling complex problems of multi-variables, multi-objectives and multi-constraints. This provides a reliable high-performance optimization approach for the aerodynamic-structural integrated design of wind turbine blade.

  16. A multipopulation PSO based memetic algorithm for permutation flow shop scheduling.

    PubMed

    Liu, Ruochen; Ma, Chenlin; Ma, Wenping; Li, Yangyang

    2013-01-01

    The permutation flow shop scheduling problem (PFSSP) is part of production scheduling, which belongs to the hardest combinatorial optimization problem. In this paper, a multipopulation particle swarm optimization (PSO) based memetic algorithm (MPSOMA) is proposed in this paper. In the proposed algorithm, the whole particle swarm population is divided into three subpopulations in which each particle evolves itself by the standard PSO and then updates each subpopulation by using different local search schemes such as variable neighborhood search (VNS) and individual improvement scheme (IIS). Then, the best particle of each subpopulation is selected to construct a probabilistic model by using estimation of distribution algorithm (EDA) and three particles are sampled from the probabilistic model to update the worst individual in each subpopulation. The best particle in the entire particle swarm is used to update the global optimal solution. The proposed MPSOMA is compared with two recently proposed algorithms, namely, PSO based memetic algorithm (PSOMA) and hybrid particle swarm optimization with estimation of distribution algorithm (PSOEDA), on 29 well-known PFFSPs taken from OR-library, and the experimental results show that it is an effective approach for the PFFSP.

  17. Refractive laser beam shaping by means of a functional differential equation based design approach.

    PubMed

    Duerr, Fabian; Thienpont, Hugo

    2014-04-07

    Many laser applications require specific irradiance distributions to ensure optimal performance. Geometric optical design methods based on numerical calculation of two plano-aspheric lenses have been thoroughly studied in the past. In this work, we present an alternative new design approach based on functional differential equations that allows direct calculation of the rotational symmetric lens profiles described by two-point Taylor polynomials. The formalism is used to design a Gaussian to flat-top irradiance beam shaping system but also to generate a more complex dark-hollow Gaussian (donut-like) irradiance distribution with zero intensity in the on-axis region. The presented ray tracing results confirm the high accuracy of both calculated solutions and emphasize the potential of this design approach for refractive beam shaping applications.

  18. Optimizing conservation practices in watersheds: Do community preferences matter?

    NASA Astrophysics Data System (ADS)

    Piemonti, Adriana D.; Babbar-Sebens, Meghna; Jane Luzar, E.

    2013-10-01

    This paper focuses on investigating (a) how landowner tenure and attitudes of farming communities affect the preference of individual conservation practices in agricultural watersheds, (b) how spatial distribution of landowner tenure affects the spatial optimization of conservation practices on a watershed scale, and (c) how the different attitudes and preferences of stakeholders can modify the effectiveness of alternatives obtained via classic optimization approaches that do not include the influence of existing social attitudes in a watershed during the search process. Results show that for Eagle Creek Watershed in central Indiana, USA, the most optimal alternatives (i.e., highest benefits for minimum economic costs) are for a scenario when the watershed consists of landowners who operate as farmers on their own land. When a different land-tenure scenario was used for the watershed (e.g., share renters and cash renters), the optimized alternatives had similar nitrate reduction benefits and sediment reduction benefits, but at higher economic costs. Our experiments also demonstrated that social attitudes can lead to alteration of optimized alternatives found via typical optimization approaches. For example, when certain practices were rejected by landowner operators whose attitudes toward practices were driven by economic profits, removal of these practices from the optimized alternatives led to a setback of nitrates reduction by 2-50%, peak flow reductions by 11-98 %, and sediments reduction by 20-77%. In conclusion, this study reveals the potential loss in optimality of optimized alternatives possible, when socioeconomic data on farmer preferences and land tenure are not incorporated within watershed optimization investigations.

  19. A nonlinear circuit architecture for magnetoencephalographic signal analysis.

    PubMed

    Bucolo, M; Fortuna, L; Frasca, M; La Rosa, M; Virzì, M C; Shannahoff-Khalsa, D

    2004-01-01

    The objective of this paper was to face the complex spatio-temporal dynamics shown by Magnetoencephalography (MEG) data by applying a nonlinear distributed approach for the Blind Sources Separation. The effort was to characterize and differ-entiate the phases of a yogic respiratory exercise used in the treatment of obsessive compulsive disorders. The patient performed a precise respiratory protocol, at one breath per minute for 31 minutes, with 10 minutes resting phase before and after. The two steps of classical Independent Component Approach have been performed by using a Cellular Neural Network with two sets of templates. The choice of the couple of suitable templates has been carried out using genetic algorithm optimization techniques. Performing BSS with a nonlinear distributed approach, the outputs of the CNN have been compared to the ICA ones. In all the protocol phases, the main components founded with CNN have similar trends compared with that ones obtained with ICA. Moreover, using this distributed approach, a spatial location has been associated to each component. To underline the spatio-temporal and the nonlinearly of the neural process a distributed nonlinear architecture has been proposed. This strategy has been designed in order to overcome the hypothesis of linear combination among the sources signals, that is characteristic of the ICA approach, taking advantage of the spatial information.

  20. Multivariate quadrature for representing cloud condensation nuclei activity of aerosol populations

    DOE PAGES

    Fierce, Laura; McGraw, Robert L.

    2017-07-26

    Here, sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the quadrature method of moments. Given a set of moment constraints, we show how linear programming, combined with an entropy-inspired cost function, can be used to construct optimized quadrature representations of aerosol distributions. The sparse representations derived from this approach accurately reproduce cloud condensation nuclei (CCN) activity for realistically complex distributions simulated by a particleresolved model. Additionally, the linear programming techniques described in this study can be used to bound key aerosolmore » properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy approach described here is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a particle-based aerosol scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.« less

  1. Multivariate quadrature for representing cloud condensation nuclei activity of aerosol populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fierce, Laura; McGraw, Robert L.

    Here, sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the quadrature method of moments. Given a set of moment constraints, we show how linear programming, combined with an entropy-inspired cost function, can be used to construct optimized quadrature representations of aerosol distributions. The sparse representations derived from this approach accurately reproduce cloud condensation nuclei (CCN) activity for realistically complex distributions simulated by a particleresolved model. Additionally, the linear programming techniques described in this study can be used to bound key aerosolmore » properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy approach described here is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a particle-based aerosol scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.« less

  2. Distribution network design under demand uncertainty using genetic algorithm and Monte Carlo simulation approach: a case study in pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Izadi, Arman; Kimiagari, Ali mohammad

    2014-01-01

    Distribution network design as a strategic decision has long-term effect on tactical and operational supply chain management. In this research, the location-allocation problem is studied under demand uncertainty. The purposes of this study were to specify the optimal number and location of distribution centers and to determine the allocation of customer demands to distribution centers. The main feature of this research is solving the model with unknown demand function which is suitable with the real-world problems. To consider the uncertainty, a set of possible scenarios for customer demands is created based on the Monte Carlo simulation. The coefficient of variation of costs is mentioned as a measure of risk and the most stable structure for firm's distribution network is defined based on the concept of robust optimization. The best structure is identified using genetic algorithms and 14% reduction in total supply chain costs is the outcome. Moreover, it imposes the least cost variation created by fluctuation in customer demands (such as epidemic diseases outbreak in some areas of the country) to the logistical system. It is noteworthy that this research is done in one of the largest pharmaceutical distribution firms in Iran.

  3. Distribution network design under demand uncertainty using genetic algorithm and Monte Carlo simulation approach: a case study in pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Izadi, Arman; Kimiagari, Ali Mohammad

    2014-05-01

    Distribution network design as a strategic decision has long-term effect on tactical and operational supply chain management. In this research, the location-allocation problem is studied under demand uncertainty. The purposes of this study were to specify the optimal number and location of distribution centers and to determine the allocation of customer demands to distribution centers. The main feature of this research is solving the model with unknown demand function which is suitable with the real-world problems. To consider the uncertainty, a set of possible scenarios for customer demands is created based on the Monte Carlo simulation. The coefficient of variation of costs is mentioned as a measure of risk and the most stable structure for firm's distribution network is defined based on the concept of robust optimization. The best structure is identified using genetic algorithms and 14 % reduction in total supply chain costs is the outcome. Moreover, it imposes the least cost variation created by fluctuation in customer demands (such as epidemic diseases outbreak in some areas of the country) to the logistical system. It is noteworthy that this research is done in one of the largest pharmaceutical distribution firms in Iran.

  4. A study of optimization techniques in HDR brachytherapy for the prostate

    NASA Astrophysics Data System (ADS)

    Pokharel, Ghana Shyam

    Several studies carried out thus far are in favor of dose escalation to the prostate gland to have better local control of the disease. But optimal way of delivery of higher doses of radiation therapy to the prostate without hurting neighboring critical structures is still debatable. In this study, we proposed that real time high dose rate (HDR) brachytherapy with highly efficient and effective optimization could be an alternative means of precise delivery of such higher doses. This approach of delivery eliminates the critical issues such as treatment setup uncertainties and target localization as in external beam radiation therapy. Likewise, dosimetry in HDR brachytherapy is not influenced by organ edema and potential source migration as in permanent interstitial implants. Moreover, the recent report of radiobiological parameters further strengthen the argument of using hypofractionated HDR brachytherapy for the management of prostate cancer. Firstly, we studied the essential features and requirements of real time HDR brachytherapy treatment planning system. Automating catheter reconstruction with fast editing tools, fast yet accurate dose engine, robust and fast optimization and evaluation engine are some of the essential requirements for such procedures. Moreover, in most of the cases we performed, treatment plan optimization took significant amount of time of overall procedure. So, making treatment plan optimization automatic or semi-automatic with sufficient speed and accuracy was the goal of the remaining part of the project. Secondly, we studied the role of optimization function and constraints in overall quality of optimized plan. We have studied the gradient based deterministic algorithm with dose volume histogram (DVH) and more conventional variance based objective functions for optimization. In this optimization strategy, the relative weight of particular objective in aggregate objective function signifies its importance with respect to other objectives. Based on our study, DVH based objective function performed better than traditional variance based objective function in creating a clinically acceptable plan when executed under identical conditions. Thirdly, we studied the multiobjective optimization strategy using both DVH and variance based objective functions. The optimization strategy was to create several Pareto optimal solutions by scanning the clinically relevant part of the Pareto front. This strategy was adopted to decouple optimization from decision such that user could select final solution from the pool of alternative solutions based on his/her clinical goals. The overall quality of treatment plan improved using this approach compared to traditional class solution approach. In fact, the final optimized plan selected using decision engine with DVH based objective was comparable to typical clinical plan created by an experienced physicist. Next, we studied the hybrid technique comprising both stochastic and deterministic algorithm to optimize both dwell positions and dwell times. The simulated annealing algorithm was used to find optimal catheter distribution and the DVH based algorithm was used to optimize 3D dose distribution for given catheter distribution. This unique treatment planning and optimization tool was capable of producing clinically acceptable highly reproducible treatment plans in clinically reasonable time. As this algorithm was able to create clinically acceptable plans within clinically reasonable time automatically, it is really appealing for real time procedures. Next, we studied the feasibility of multiobjective optimization using evolutionary algorithm for real time HDR brachytherapy for the prostate. The algorithm with properly tuned algorithm specific parameters was able to create clinically acceptable plans within clinically reasonable time. However, the algorithm was let to run just for limited number of generations not considered optimal, in general, for such algorithms. This was done to keep time window desirable for real time procedures. Therefore, it requires further study with improved conditions to realize the full potential of the algorithm.

  5. Modeling and optimization of the multiobjective stochastic joint replenishment and delivery problem under supply chain environment.

    PubMed

    Wang, Lin; Qu, Hui; Liu, Shan; Dun, Cai-xia

    2013-01-01

    As a practical inventory and transportation problem, it is important to synthesize several objectives for the joint replenishment and delivery (JRD) decision. In this paper, a new multiobjective stochastic JRD (MSJRD) of the one-warehouse and n-retailer systems considering the balance of service level and total cost simultaneously is proposed. The goal of this problem is to decide the reasonable replenishment interval, safety stock factor, and traveling routing. Secondly, two approaches are designed to handle this complex multi-objective optimization problem. Linear programming (LP) approach converts the multi-objective to single objective, while a multi-objective evolution algorithm (MOEA) solves a multi-objective problem directly. Thirdly, three intelligent optimization algorithms, differential evolution algorithm (DE), hybrid DE (HDE), and genetic algorithm (GA), are utilized in LP-based and MOEA-based approaches. Results of the MSJRD with LP-based and MOEA-based approaches are compared by a contrastive numerical example. To analyses the nondominated solution of MOEA, a metric is also used to measure the distribution of the last generation solution. Results show that HDE outperforms DE and GA whenever LP or MOEA is adopted.

  6. Modeling and Optimization of the Multiobjective Stochastic Joint Replenishment and Delivery Problem under Supply Chain Environment

    PubMed Central

    Dun, Cai-xia

    2013-01-01

    As a practical inventory and transportation problem, it is important to synthesize several objectives for the joint replenishment and delivery (JRD) decision. In this paper, a new multiobjective stochastic JRD (MSJRD) of the one-warehouse and n-retailer systems considering the balance of service level and total cost simultaneously is proposed. The goal of this problem is to decide the reasonable replenishment interval, safety stock factor, and traveling routing. Secondly, two approaches are designed to handle this complex multi-objective optimization problem. Linear programming (LP) approach converts the multi-objective to single objective, while a multi-objective evolution algorithm (MOEA) solves a multi-objective problem directly. Thirdly, three intelligent optimization algorithms, differential evolution algorithm (DE), hybrid DE (HDE), and genetic algorithm (GA), are utilized in LP-based and MOEA-based approaches. Results of the MSJRD with LP-based and MOEA-based approaches are compared by a contrastive numerical example. To analyses the nondominated solution of MOEA, a metric is also used to measure the distribution of the last generation solution. Results show that HDE outperforms DE and GA whenever LP or MOEA is adopted. PMID:24302880

  7. A flexible approach to distributed data anonymization.

    PubMed

    Kohlmayer, Florian; Prasser, Fabian; Eckert, Claudia; Kuhn, Klaus A

    2014-08-01

    Sensitive biomedical data is often collected from distributed sources, involving different information systems and different organizational units. Local autonomy and legal reasons lead to the need of privacy preserving integration concepts. In this article, we focus on anonymization, which plays an important role for the re-use of clinical data and for the sharing of research data. We present a flexible solution for anonymizing distributed data in the semi-honest model. Prior to the anonymization procedure, an encrypted global view of the dataset is constructed by means of a secure multi-party computing (SMC) protocol. This global representation can then be anonymized. Our approach is not limited to specific anonymization algorithms but provides pre- and postprocessing for a broad spectrum of algorithms and many privacy criteria. We present an extensive analytical and experimental evaluation and discuss which types of methods and criteria are supported. Our prototype demonstrates the approach by implementing k-anonymity, ℓ-diversity, t-closeness and δ-presence with a globally optimal de-identification method in horizontally and vertically distributed setups. The experiments show that our method provides highly competitive performance and offers a practical and flexible solution for anonymizing distributed biomedical datasets. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Co-optimal distribution of leaf nitrogen and hydraulic conductance in plant canopies.

    PubMed

    Peltoniemi, Mikko S; Duursma, Remko A; Medlyn, Belinda E

    2012-05-01

    Leaf properties vary significantly within plant canopies, due to the strong gradient in light availability through the canopy, and the need for plants to use resources efficiently. At high light, photosynthesis is maximized when leaves have a high nitrogen content and water supply, whereas at low light leaves have a lower requirement for both nitrogen and water. Studies of the distribution of leaf nitrogen (N) within canopies have shown that, if water supply is ignored, the optimal distribution is that where N is proportional to light, but that the gradient of N in real canopies is shallower than the optimal distribution. We extend this work by considering the optimal co-allocation of nitrogen and water supply within plant canopies. We developed a simple 'toy' two-leaf canopy model and optimized the distribution of N and hydraulic conductance (K) between the two leaves. We asked whether hydraulic constraints to water supply can explain shallow N gradients in canopies. We found that the optimal N distribution within plant canopies is proportional to the light distribution only if hydraulic conductance, K, is also optimally distributed. The optimal distribution of K is that where K and N are both proportional to incident light, such that optimal K is highest to the upper canopy. If the plant is constrained in its ability to construct higher K to sun-exposed leaves, the optimal N distribution does not follow the gradient in light within canopies, but instead follows a shallower gradient. We therefore hypothesize that measured deviations from the predicted optimal distribution of N could be explained by constraints on the distribution of K within canopies. Further empirical research is required on the extent to which plants can construct optimal K distributions, and whether shallow within-canopy N distributions can be explained by sub-optimal K distributions.

  9. Accelerated Enveloping Distribution Sampling: Enabling Sampling of Multiple End States while Preserving Local Energy Minima.

    PubMed

    Perthold, Jan Walther; Oostenbrink, Chris

    2018-05-17

    Enveloping distribution sampling (EDS) is an efficient approach to calculate multiple free-energy differences from a single molecular dynamics (MD) simulation. However, the construction of an appropriate reference-state Hamiltonian that samples all states efficiently is not straightforward. We propose a novel approach for the construction of the EDS reference-state Hamiltonian, related to a previously described procedure to smoothen energy landscapes. In contrast to previously suggested EDS approaches, our reference-state Hamiltonian preserves local energy minima of the combined end-states. Moreover, we propose an intuitive, robust and efficient parameter optimization scheme to tune EDS Hamiltonian parameters. We demonstrate the proposed method with established and novel test systems and conclude that our approach allows for the automated calculation of multiple free-energy differences from a single simulation. Accelerated EDS promises to be a robust and user-friendly method to compute free-energy differences based on solid statistical mechanics.

  10. Prepositioning emergency supplies under uncertainty: a parametric optimization method

    NASA Astrophysics Data System (ADS)

    Bai, Xuejie; Gao, Jinwu; Liu, Yankui

    2018-07-01

    Prepositioning of emergency supplies is an effective method for increasing preparedness for disasters and has received much attention in recent years. In this article, the prepositioning problem is studied by a robust parametric optimization method. The transportation cost, supply, demand and capacity are unknown prior to the extraordinary event, which are represented as fuzzy parameters with variable possibility distributions. The variable possibility distributions are obtained through the credibility critical value reduction method for type-2 fuzzy variables. The prepositioning problem is formulated as a fuzzy value-at-risk model to achieve a minimum total cost incurred in the whole process. The key difficulty in solving the proposed optimization model is to evaluate the quantile of the fuzzy function in the objective and the credibility in the constraints. The objective function and constraints can be turned into their equivalent parametric forms through chance constrained programming under the different confidence levels. Taking advantage of the structural characteristics of the equivalent optimization model, a parameter-based domain decomposition method is developed to divide the original optimization problem into six mixed-integer parametric submodels, which can be solved by standard optimization solvers. Finally, to explore the viability of the developed model and the solution approach, some computational experiments are performed on realistic scale case problems. The computational results reported in the numerical example show the credibility and superiority of the proposed parametric optimization method.

  11. Analysis of temporal gene expression profiles: clustering by simulated annealing and determining the optimal number of clusters.

    PubMed

    Lukashin, A V; Fuchs, R

    2001-05-01

    Cluster analysis of genome-wide expression data from DNA microarray hybridization studies has proved to be a useful tool for identifying biologically relevant groupings of genes and samples. In the present paper, we focus on several important issues related to clustering algorithms that have not yet been fully studied. We describe a simple and robust algorithm for the clustering of temporal gene expression profiles that is based on the simulated annealing procedure. In general, this algorithm guarantees to eventually find the globally optimal distribution of genes over clusters. We introduce an iterative scheme that serves to evaluate quantitatively the optimal number of clusters for each specific data set. The scheme is based on standard approaches used in regular statistical tests. The basic idea is to organize the search of the optimal number of clusters simultaneously with the optimization of the distribution of genes over clusters. The efficiency of the proposed algorithm has been evaluated by means of a reverse engineering experiment, that is, a situation in which the correct distribution of genes over clusters is known a priori. The employment of this statistically rigorous test has shown that our algorithm places greater than 90% genes into correct clusters. Finally, the algorithm has been tested on real gene expression data (expression changes during yeast cell cycle) for which the fundamental patterns of gene expression and the assignment of genes to clusters are well understood from numerous previous studies.

  12. A synchrotron-based local computed tomography combined with data-constrained modelling approach for quantitative analysis of anthracite coal microstructure

    PubMed Central

    Chen, Wen Hao; Yang, Sam Y. S.; Xiao, Ti Qiao; Mayo, Sherry C.; Wang, Yu Dan; Wang, Hai Peng

    2014-01-01

    Quantifying three-dimensional spatial distributions of pores and material compositions in samples is a key materials characterization challenge, particularly in samples where compositions are distributed across a range of length scales, and where such compositions have similar X-ray absorption properties, such as in coal. Consequently, obtaining detailed information within sub-regions of a multi-length-scale sample by conventional approaches may not provide the resolution and level of detail one might desire. Herein, an approach for quantitative high-definition determination of material compositions from X-ray local computed tomography combined with a data-constrained modelling method is proposed. The approach is capable of dramatically improving the spatial resolution and enabling finer details within a region of interest of a sample larger than the field of view to be revealed than by using conventional techniques. A coal sample containing distributions of porosity and several mineral compositions is employed to demonstrate the approach. The optimal experimental parameters are pre-analyzed. The quantitative results demonstrated that the approach can reveal significantly finer details of compositional distributions in the sample region of interest. The elevated spatial resolution is crucial for coal-bed methane reservoir evaluation and understanding the transformation of the minerals during coal processing. The method is generic and can be applied for three-dimensional compositional characterization of other materials. PMID:24763649

  13. Solving bi-level optimization problems in engineering design using kriging models

    NASA Astrophysics Data System (ADS)

    Xia, Yi; Liu, Xiaojie; Du, Gang

    2018-05-01

    Stackelberg game-theoretic approaches are applied extensively in engineering design to handle distributed collaboration decisions. Bi-level genetic algorithms (BLGAs) and response surfaces have been used to solve the corresponding bi-level programming models. However, the computational costs for BLGAs often increase rapidly with the complexity of lower-level programs, and optimal solution functions sometimes cannot be approximated by response surfaces. This article proposes a new method, namely the optimal solution function approximation by kriging model (OSFAKM), in which kriging models are used to approximate the optimal solution functions. A detailed example demonstrates that OSFAKM can obtain better solutions than BLGAs and response surface-based methods, and at the same time reduce the workload of computation remarkably. Five benchmark problems and a case study of the optimal design of a thin-walled pressure vessel are also presented to illustrate the feasibility and potential of the proposed method for bi-level optimization in engineering design.

  14. Cooperative global optimal preview tracking control of linear multi-agent systems: an internal model approach

    NASA Astrophysics Data System (ADS)

    Lu, Yanrong; Liao, Fucheng; Deng, Jiamei; Liu, Huiyang

    2017-09-01

    This paper investigates the cooperative global optimal preview tracking problem of linear multi-agent systems under the assumption that the output of a leader is a previewable periodic signal and the topology graph contains a directed spanning tree. First, a type of distributed internal model is introduced, and the cooperative preview tracking problem is converted to a global optimal regulation problem of an augmented system. Second, an optimal controller, which can guarantee the asymptotic stability of the augmented system, is obtained by means of the standard linear quadratic optimal preview control theory. Third, on the basis of proving the existence conditions of the controller, sufficient conditions are given for the original problem to be solvable, meanwhile a cooperative global optimal controller with error integral and preview compensation is derived. Finally, the validity of theoretical results is demonstrated by a numerical simulation.

  15. Optimal simulations of ultrasonic fields produced by large thermal therapy arrays using the angular spectrum approach

    PubMed Central

    Zeng, Xiaozheng; McGough, Robert J.

    2009-01-01

    The angular spectrum approach is evaluated for the simulation of focused ultrasound fields produced by large thermal therapy arrays. For an input pressure or normal particle velocity distribution in a plane, the angular spectrum approach rapidly computes the output pressure field in a three dimensional volume. To determine the optimal combination of simulation parameters for angular spectrum calculations, the effect of the size, location, and the numerical accuracy of the input plane on the computed output pressure is evaluated. Simulation results demonstrate that angular spectrum calculations performed with an input pressure plane are more accurate than calculations with an input velocity plane. Results also indicate that when the input pressure plane is slightly larger than the array aperture and is located approximately one wavelength from the array, angular spectrum simulations have very small numerical errors for two dimensional planar arrays. Furthermore, the root mean squared error from angular spectrum simulations asymptotically approaches a nonzero lower limit as the error in the input plane decreases. Overall, the angular spectrum approach is an accurate and robust method for thermal therapy simulations of large ultrasound phased arrays when the input pressure plane is computed with the fast nearfield method and an optimal combination of input parameters. PMID:19425640

  16. A centre-free approach for resource allocation with lower bounds

    NASA Astrophysics Data System (ADS)

    Obando, Germán; Quijano, Nicanor; Rakoto-Ravalontsalama, Naly

    2017-09-01

    Since complexity and scale of systems are continuously increasing, there is a growing interest in developing distributed algorithms that are capable to address information constraints, specially for solving optimisation and decision-making problems. In this paper, we propose a novel method to solve distributed resource allocation problems that include lower bound constraints. The optimisation process is carried out by a set of agents that use a communication network to coordinate their decisions. Convergence and optimality of the method are guaranteed under some mild assumptions related to the convexity of the problem and the connectivity of the underlying graph. Finally, we compare our approach with other techniques reported in the literature, and we present some engineering applications.

  17. Hierarchical Bayesian Approach To Reduce Uncertainty in the Aquatic Effect Assessment of Realistic Chemical Mixtures.

    PubMed

    Oldenkamp, Rik; Hendriks, Harrie W M; van de Meent, Dik; Ragas, Ad M J

    2015-09-01

    Species in the aquatic environment differ in their toxicological sensitivity to the various chemicals they encounter. In aquatic risk assessment, this interspecies variation is often quantified via species sensitivity distributions. Because the information available for the characterization of these distributions is typically limited, optimal use of information is essential to reduce uncertainty involved in the assessment. In the present study, we show that the credibility intervals on the estimated potentially affected fraction of species after exposure to a mixture of chemicals at environmentally relevant surface water concentrations can be extremely wide if a classical approach is followed, in which each chemical in the mixture is considered in isolation. As an alternative, we propose a hierarchical Bayesian approach, in which knowledge on the toxicity of chemicals other than those assessed is incorporated. A case study with a mixture of 13 pharmaceuticals demonstrates that this hierarchical approach results in more realistic estimations of the potentially affected fraction, as a result of reduced uncertainty in species sensitivity distributions for data-poor chemicals.

  18. An optimization approach for observation association with systemic uncertainty applied to electro-optical systems

    NASA Astrophysics Data System (ADS)

    Worthy, Johnny L.; Holzinger, Marcus J.; Scheeres, Daniel J.

    2018-06-01

    The observation to observation measurement association problem for dynamical systems can be addressed by determining if the uncertain admissible regions produced from each observation have one or more points of intersection in state space. An observation association method is developed which uses an optimization based approach to identify local Mahalanobis distance minima in state space between two uncertain admissible regions. A binary hypothesis test with a selected false alarm rate is used to assess the probability that an intersection exists at the point(s) of minimum distance. The systemic uncertainties, such as measurement uncertainties, timing errors, and other parameter errors, define a distribution about a state estimate located at the local Mahalanobis distance minima. If local minima do not exist, then the observations are not associated. The proposed method utilizes an optimization approach defined on a reduced dimension state space to reduce the computational load of the algorithm. The efficacy and efficiency of the proposed method is demonstrated on observation data collected from the Georgia Tech Space Object Research Telescope.

  19. Optimization of removal function in computer controlled optical surfacing

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Guo, Peiji; Ren, Jianfeng

    2010-10-01

    The technical principle of computer controlled optical surfacing (CCOS) and the common method of optimizing removal function that is used in CCOS are introduced in this paper. A new optimizing method time-sharing synthesis of removal function is proposed to solve problems of the removal function being far away from Gaussian type and slow approaching of the removal function error that encountered in the mode of planet motion or translation-rotation. Detailed time-sharing synthesis of using six removal functions is discussed. For a given region on the workpiece, six positions are selected as the centers of the removal function; polishing tool controlled by the executive system of CCOS revolves around each centre to complete a cycle in proper order. The overall removal function obtained by the time-sharing process is the ratio of total material removal in six cycles to time duration of the six cycles, which depends on the arrangement and distribution of the six removal functions. Simulations on the synthesized overall removal functions under two different modes of motion, i.e., planet motion and translation-rotation are performed from which the optimized combination of tool parameters and distribution of time-sharing synthesis removal functions are obtained. The evaluation function when optimizing is determined by an approaching factor which is defined as the ratio of the material removal within the area of half of the polishing tool coverage from the polishing center to the total material removal within the full polishing tool coverage area. After optimization, it is found that the optimized removal function obtained by time-sharing synthesis is closer to the ideal Gaussian type removal function than those by the traditional methods. The time-sharing synthesis method of the removal function provides an efficient way to increase the convergence speed of the surface error in CCOS for the fabrication of aspheric optical surfaces, and to reduce the intermediate- and high-frequency error.

  20. A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems

    DOE PAGES

    Molzahn, Daniel K.; Dorfler, Florian K.; Sandberg, Henrik; ...

    2017-07-25

    Historically, centrally computed algorithms have been the primary means of power system optimization and control. With increasing penetrations of distributed energy resources requiring optimization and control of power systems with many controllable devices, distributed algorithms have been the subject of significant research interest. Here, this paper surveys the literature of distributed algorithms with applications to optimization and control of power systems. In particular, this paper reviews distributed algorithms for offline solution of optimal power flow (OPF) problems as well as online algorithms for real-time solution of OPF, optimal frequency control, optimal voltage control, and optimal wide-area control problems.

  1. A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molzahn, Daniel K.; Dorfler, Florian K.; Sandberg, Henrik

    Historically, centrally computed algorithms have been the primary means of power system optimization and control. With increasing penetrations of distributed energy resources requiring optimization and control of power systems with many controllable devices, distributed algorithms have been the subject of significant research interest. Here, this paper surveys the literature of distributed algorithms with applications to optimization and control of power systems. In particular, this paper reviews distributed algorithms for offline solution of optimal power flow (OPF) problems as well as online algorithms for real-time solution of OPF, optimal frequency control, optimal voltage control, and optimal wide-area control problems.

  2. A distributed predictive control approach for periodic flow-based networks: application to drinking water systems

    NASA Astrophysics Data System (ADS)

    Grosso, Juan M.; Ocampo-Martinez, Carlos; Puig, Vicenç

    2017-10-01

    This paper proposes a distributed model predictive control approach designed to work in a cooperative manner for controlling flow-based networks showing periodic behaviours. Under this distributed approach, local controllers cooperate in order to enhance the performance of the whole flow network avoiding the use of a coordination layer. Alternatively, controllers use both the monolithic model of the network and the given global cost function to optimise the control inputs of the local controllers but taking into account the effect of their decisions over the remainder subsystems conforming the entire network. In this sense, a global (all-to-all) communication strategy is considered. Although the Pareto optimality cannot be reached due to the existence of non-sparse coupling constraints, the asymptotic convergence to a Nash equilibrium is guaranteed. The resultant strategy is tested and its effectiveness is shown when applied to a large-scale complex flow-based network: the Barcelona drinking water supply system.

  3. Classical statistical mechanics approach to multipartite entanglement

    NASA Astrophysics Data System (ADS)

    Facchi, P.; Florio, G.; Marzolino, U.; Parisi, G.; Pascazio, S.

    2010-06-01

    We characterize the multipartite entanglement of a system of n qubits in terms of the distribution function of the bipartite purity over balanced bipartitions. We search for maximally multipartite entangled states, whose average purity is minimal, and recast this optimization problem into a problem of statistical mechanics, by introducing a cost function, a fictitious temperature and a partition function. By investigating the high-temperature expansion, we obtain the first three moments of the distribution. We find that the problem exhibits frustration.

  4. A self-organizing neural network for job scheduling in distributed systems

    NASA Astrophysics Data System (ADS)

    Newman, Harvey B.; Legrand, Iosif C.

    2001-08-01

    The aim of this work is to describe a possible approach for the optimization of the job scheduling in large distributed systems, based on a self-organizing Neural Network. This dynamic scheduling system should be seen as adaptive middle layer software, aware of current available resources and making the scheduling decisions using the "past experience." It aims to optimize job specific parameters as well as the resource utilization. The scheduling system is able to dynamically learn and cluster information in a large dimensional parameter space and at the same time to explore new regions in the parameters space. This self-organizing scheduling system may offer a possible solution to provide an effective use of resources for the off-line data processing jobs for future HEP experiments.

  5. Prediction-based Dynamic Energy Management in Wireless Sensor Networks

    PubMed Central

    Wang, Xue; Ma, Jun-Jie; Wang, Sheng; Bi, Dao-Wei

    2007-01-01

    Energy consumption is a critical constraint in wireless sensor networks. Focusing on the energy efficiency problem of wireless sensor networks, this paper proposes a method of prediction-based dynamic energy management. A particle filter was introduced to predict a target state, which was adopted to awaken wireless sensor nodes so that their sleep time was prolonged. With the distributed computing capability of nodes, an optimization approach of distributed genetic algorithm and simulated annealing was proposed to minimize the energy consumption of measurement. Considering the application of target tracking, we implemented target position prediction, node sleep scheduling and optimal sensing node selection. Moreover, a routing scheme of forwarding nodes was presented to achieve extra energy conservation. Experimental results of target tracking verified that energy-efficiency is enhanced by prediction-based dynamic energy management.

  6. Spatial optimization for decentralized non-potable water reuse

    NASA Astrophysics Data System (ADS)

    Kavvada, Olga; Nelson, Kara L.; Horvath, Arpad

    2018-06-01

    Decentralization has the potential to reduce the scale of the piped distribution network needed to enable non-potable water reuse (NPR) in urban areas by producing recycled water closer to its point of use. However, tradeoffs exist between the economies of scale of treatment facilities and the size of the conveyance infrastructure, including energy for upgradient distribution of recycled water. To adequately capture the impacts from distribution pipes and pumping requirements, site-specific conditions must be accounted for. In this study, a generalized framework (a heuristic modeling approach using geospatial algorithms) is developed that estimates the financial cost, the energy use, and the greenhouse gas emissions associated with NPR (for toilet flushing) as a function of scale of treatment and conveyance networks with the goal of determining the optimal degree of decentralization. A decision-support platform is developed to assess and visualize NPR system designs considering topography, economies of scale, and building size. The platform can be used for scenario development to explore the optimal system size based on the layout of current or new buildings. The model also promotes technology innovation by facilitating the systems-level comparison of options to lower costs, improve energy efficiency, and lower greenhouse gas emissions.

  7. A Pairwise Naïve Bayes Approach to Bayesian Classification.

    PubMed

    Asafu-Adjei, Josephine K; Betensky, Rebecca A

    2015-10-01

    Despite the relatively high accuracy of the naïve Bayes (NB) classifier, there may be several instances where it is not optimal, i.e. does not have the same classification performance as the Bayes classifier utilizing the joint distribution of the examined attributes. However, the Bayes classifier can be computationally intractable due to its required knowledge of the joint distribution. Therefore, we introduce a "pairwise naïve" Bayes (PNB) classifier that incorporates all pairwise relationships among the examined attributes, but does not require specification of the joint distribution. In this paper, we first describe the necessary and sufficient conditions under which the PNB classifier is optimal. We then discuss sufficient conditions for which the PNB classifier, and not NB, is optimal for normal attributes. Through simulation and actual studies, we evaluate the performance of our proposed classifier relative to the Bayes and NB classifiers, along with the HNB, AODE, LBR and TAN classifiers, using normal density and empirical estimation methods. Our applications show that the PNB classifier using normal density estimation yields the highest accuracy for data sets containing continuous attributes. We conclude that it offers a useful compromise between the Bayes and NB classifiers.

  8. Improving LED CCT uniformity using micropatterned films optimized by combining ray tracing and FDTD methods.

    PubMed

    Ding, Xinrui; Li, Jiasheng; Chen, Qiu; Tang, Yong; Li, Zongtao; Yu, Binhai

    2015-02-09

    Although the light-emitting diode (LED) has revolutionized lighting, the non-uniformity of its correlated color temperature (CCT) still remains a major concern. In this context, to improve the light distribution performance of remote phosphor LED lamps, we employ a micropatterned array (MPA) optical film fabricated using a low-cost molding process. The parameters of the MPA, including different installation configurations, positioning, and diameters, are optimized by combining the finite-difference time-domain and ray-tracing methods. Results show that the sample with the upward-facing convex-cone MPA film that has a diameter of half of that of the remote phosphor glass, and is tightly affixed to the inward surface of the remote phosphor glass renders a superior light distribution performance. When compared with the case in which no MPA film is used, the deviation of the CCT distribution decreases from 1033 K to 223 K, and the corresponding output power of the sample is an acceptable level of 85.6%. We perform experiments to verify our simulation results, and the two sets of results exhibit a close agreement. We believe that our approach can be used to optimize MPA films for various lighting applications.

  9. Design considerations of high-performance InGaAs/InP single-photon avalanche diodes for quantum key distribution.

    PubMed

    Ma, Jian; Bai, Bing; Wang, Liu-Jun; Tong, Cun-Zhu; Jin, Ge; Zhang, Jun; Pan, Jian-Wei

    2016-09-20

    InGaAs/InP single-photon avalanche diodes (SPADs) are widely used in practical applications requiring near-infrared photon counting such as quantum key distribution (QKD). Photon detection efficiency and dark count rate are the intrinsic parameters of InGaAs/InP SPADs, due to the fact that their performances cannot be improved using different quenching electronics given the same operation conditions. After modeling these parameters and developing a simulation platform for InGaAs/InP SPADs, we investigate the semiconductor structure design and optimization. The parameters of photon detection efficiency and dark count rate highly depend on the variables of absorption layer thickness, multiplication layer thickness, excess bias voltage, and temperature. By evaluating the decoy-state QKD performance, the variables for SPAD design and operation can be globally optimized. Such optimization from the perspective of specific applications can provide an effective approach to design high-performance InGaAs/InP SPADs.

  10. Optimizing energy for a ‘green’ vaccine supply chain

    PubMed Central

    Lloyd, John; McCarney, Steve; Ouhichi, Ramzi; Lydon, Patrick; Zaffran, Michel

    2015-01-01

    This paper describes an approach piloted in the Kasserine region of Tunisia to increase the energy efficiency of the distribution of vaccines and temperature sensitive drugs. The objectives of an approach, known as the ‘net zero energy’ (NZE) supply chain were demonstrated within the first year of operation. The existing distribution system was modified to store vaccines and medicines in the same buildings and to transport them according to pre-scheduled and optimized delivery circuits. Electric utility vehicles, dedicated to the integrated delivery of vaccines and medicines, improved the regularity and reliability of the supply chains. Solar energy, linked to the electricity grid at regional and district stores, supplied over 100% of consumption meeting all energy needs for storage, cooling and transportation. Significant benefits to the quality and costs of distribution were demonstrated. Supply trips were scheduled, integrated and reliable, energy consumption was reduced, the recurrent cost of electricity was eliminated and the release of carbon to the atmosphere was reduced. Although the initial capital cost of scaling up implementation of NZE remain high today, commercial forecasts predict cost reduction for solar energy and electric vehicles that may permit a step-wise implementation over the next 7–10 years. Efficiency in the use of energy and in the deployment of transport is already a critical component of distribution logistics in both private and public sectors of industrialized countries. The NZE approach has an intensified rationale in countries where energy costs threaten the maintenance of public health services in areas of low population density. In these countries where the mobility of health personnel and timely arrival of supplies is at risk, NZE has the potential to reduce energy costs and release recurrent budget to other needs of service delivery while also improving the supply chain. PMID:25444811

  11. A novel supine isocentric approach for craniospinal irradiation and its clinical outcome.

    PubMed

    Cheng, Yi-Kan; Zeng, Lei; Ye, Shu-Biao; Zheng, Jian; Zhang, Lin; Sun, Peng; Jiang, Xiao-Bo; Sun, Wen-Zhao; Xu, Tao; Chen, Lei

    2016-09-01

    To report a novel approach for craniospinal irradiation (CSI) using a supine isocentric technique. Patients were treated in the supine position using CT simulation. Half-beam-blocked lateral cranial fields and superior spinal fields have the same isocentre, and their beam divergences match. Tangential irradiation provides a non-divergent junction for the other two full-beam spinal fields. Shielding for cranial fields was generated, and dose distribution was calculated using a three-dimensional planning system. When sacral spinal fields were required, two lateral opposite fields were designed to protect the urogenital organs. All treatment portals were filmed once per week. At a median follow-up of 49.8 months, 5 relapses and no cases of radiation myelitis developed in 26 consecutive patients. In the junctions of the brain-spine or spine-spine field, no failure occurred. Three failures occurred in the primary site alone, two in the spinal axis alone. The results of our study have shown that our novel approach for CSI was not associated with increased failures at the field junction and deaths. In addition, no radiation myelitis, pneumonia, severe damage to the heart and gastrointestinal tract, and second cancers occurred in our study. This new approach is an optimal alternative in cancer centre without tomotherapy because of its convenience for immobilization, repeatability, optimal dose distribution and satisfactory clinical outcome.

  12. Nanodosimetry-Based Plan Optimization for Particle Therapy

    PubMed Central

    Schulte, Reinhard W.

    2015-01-01

    Treatment planning for particle therapy is currently an active field of research due uncertainty in how to modify physical dose in order to create a uniform biological dose response in the target. A novel treatment plan optimization strategy based on measurable nanodosimetric quantities rather than biophysical models is proposed in this work. Simplified proton and carbon treatment plans were simulated in a water phantom to investigate the optimization feasibility. Track structures of the mixed radiation field produced at different depths in the target volume were simulated with Geant4-DNA and nanodosimetric descriptors were calculated. The fluences of the treatment field pencil beams were optimized in order to create a mixed field with equal nanodosimetric descriptors at each of the multiple positions in spread-out particle Bragg peaks. For both proton and carbon ion plans, a uniform spatial distribution of nanodosimetric descriptors could be obtained by optimizing opposing-field but not single-field plans. The results obtained indicate that uniform nanodosimetrically weighted plans, which may also be radiobiologically uniform, can be obtained with this approach. Future investigations need to demonstrate that this approach is also feasible for more complicated beam arrangements and that it leads to biologically uniform response in tumor cells and tissues. PMID:26167202

  13. An optimization model to design and manage subsurface drip irrigation system for alfalfa

    NASA Astrophysics Data System (ADS)

    Kandelous, M.; Kamai, T.; Vrugt, J. A.; Simunek, J.; Hanson, B.; Hopmans, J. W.

    2010-12-01

    Subsurface drip irrigation (SDI) is one of the most efficient and cost-effective methods for watering alfalfa plants. Lateral installation depth and distance, emitter discharge, and irrigation time and frequency of SDI, in addition to soil and climatic conditions affect alfalfa’s root water uptake and yield. Here we use a multi-objective optimization approach to find optimal SDI strategies. Our approach uses the AMALGAM evolutionary search method, in combination with the HYDRUS-2D unsaturated flow model to maximize water uptake by alfalfa’s plant roots, and minimize loss of irrigation and drainage water to the atmosphere or groundwater. We use a variety of different objective functions to analyze SDI. These criteria include the lateral installation depth and distance, the lateral discharge, irrigation duration, and irrigation frequency. Our framework includes explicit recognition of the soil moisture status during the simulation period to make sure that the top soil is dry for harvesting during the growing season. Initial results show a wide spectrum of optimized SDI strategies for different root distributions, soil textures and climate conditions. The developed tool should be useful in helping farmers optimize their irrigation strategy and design.

  14. Noise-induced escape in an excitable system

    NASA Astrophysics Data System (ADS)

    Khovanov, I. A.; Polovinkin, A. V.; Luchinsky, D. G.; McClintock, P. V. E.

    2013-03-01

    We consider the stochastic dynamics of escape in an excitable system, the FitzHugh-Nagumo (FHN) neuronal model, for different classes of excitability. We discuss, first, the threshold structure of the FHN model as an example of a system without a saddle state. We then develop a nonlinear (nonlocal) stability approach based on the theory of large fluctuations, including a finite-noise correction, to describe noise-induced escape in the excitable regime. We show that the threshold structure is revealed via patterns of most probable (optimal) fluctuational paths. The approach allows us to estimate the escape rate and the exit location distribution. We compare the responses of a monostable resonator and monostable integrator to stochastic input signals and to a mixture of periodic and stochastic stimuli. Unlike the commonly used local analysis of the stable state, our nonlocal approach based on optimal paths yields results that are in good agreement with direct numerical simulations of the Langevin equation.

  15. A Systems Approach to Manage Drinking Water Quality through Integrated Model Projections, Adaptive Monitoring and Process Optimization - abstract

    EPA Science Inventory

    Drinking water supplies can be vulnerable to impacts from short-term weather events, long-term changes in land-use and climate, and water quality controls in treatment and distribution. Disinfection by-product (DBP) formation in drinking water is a prominent example to illustrate...

  16. A Systems Approach to Manage Drinking Water Quality through Integrated Model Projections, Adaptive Monitoring and Process Optimization

    EPA Science Inventory

    Drinking water supplies can be vulnerable to impacts from short-term weather events, long-term changes in land-use and climate, and water quality controls in treatment and distribution. Disinfection by-product (DBP) formation in drinking water is a prominent example to illustrate...

  17. Assessment of long-term peach evaluation data reveals fruit trait distribution and selection tendencies

    USDA-ARS?s Scientific Manuscript database

    Conventional plant breeding has a long history of success. Although it is often a daunting job, it is still the most common approach used in today’s variety improvement programs. Efficient production of hybrids with potential for release as new varieties with desired traits relies on optimal selecti...

  18. Optimization-Based Approach for Joint X-Ray Fluorescence and Transmission Tomographic Inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di, Zichao; Leyffer, Sven; Wild, Stefan M.

    2016-01-01

    Fluorescence tomographic reconstruction, based on the detection of photons coming from fluorescent emission, can be used for revealing the internal elemental composition of a sample. On the other hand, conventional X-ray transmission tomography can be used for reconstructing the spatial distribution of the absorption coefficient inside a sample. In this work, we integrate both X-ray fluorescence and X-ray transmission data modalities and formulate a nonlinear optimization-based approach for reconstruction of the elemental composition of a given object. This model provides a simultaneous reconstruction of both the quantitative spatial distribution of all elements and the absorption effect in the sample. Mathematicallymore » speaking, we show that compared with the single-modality inversion (i.e., the X-ray transmission or fluorescence alone), the joint inversion provides a better-posed problem, which implies a better recovery. Therefore, the challenges in X-ray fluorescence tomography arising mainly from the effects of self-absorption in the sample are partially mitigated. The use of this technique is demonstrated on the reconstruction of several synthetic samples.« less

  19. Hamiltonian Monte Carlo acceleration using surrogate functions with random bases.

    PubMed

    Zhang, Cheng; Shahbaba, Babak; Zhao, Hongkai

    2017-11-01

    For big data analysis, high computational cost for Bayesian methods often limits their applications in practice. In recent years, there have been many attempts to improve computational efficiency of Bayesian inference. Here we propose an efficient and scalable computational technique for a state-of-the-art Markov chain Monte Carlo methods, namely, Hamiltonian Monte Carlo. The key idea is to explore and exploit the structure and regularity in parameter space for the underlying probabilistic model to construct an effective approximation of its geometric properties. To this end, we build a surrogate function to approximate the target distribution using properly chosen random bases and an efficient optimization process. The resulting method provides a flexible, scalable, and efficient sampling algorithm, which converges to the correct target distribution. We show that by choosing the basis functions and optimization process differently, our method can be related to other approaches for the construction of surrogate functions such as generalized additive models or Gaussian process models. Experiments based on simulated and real data show that our approach leads to substantially more efficient sampling algorithms compared to existing state-of-the-art methods.

  20. Nonprincipal plane scattering of flat plates and pattern control of horn antennas

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Polka, Lesley A.; Liu, Kefeng

    1989-01-01

    Using the geometrical theory of diffraction, the traditional method of high frequency scattering analysis, the prediction of the radar cross section of a perfectly conducting, flat, rectangular plate is limited to principal planes. Part A of this report predicts the radar cross section in nonprincipal planes using the method of equivalent currents. This technique is based on an asymptotic end-point reduction of the surface radiation integrals for an infinite wedge and enables nonprincipal plane prediction. The predicted radar cross sections for both horizontal and vertical polarizations are compared to moment method results and experimental data from Arizona State University's anechoic chamber. In part B, a variational calculus approach to the pattern control of the horn antenna is outlined. The approach starts with the optimization of the aperture field distribution so that the control of the radiation pattern in a range of directions can be realized. A control functional is thus formulated. Next, a spectral analysis method is introduced to solve for the eigenfunctions from the extremal condition of the formulated functional. Solutions to the optimized aperture field distribution are then obtained.

  1. EUD-based biological optimization for carbon ion therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brüningk, Sarah C., E-mail: sarah.brueningk@icr.ac.uk; Kamp, Florian; Wilkens, Jan J.

    2015-11-15

    Purpose: Treatment planning for carbon ion therapy requires an accurate modeling of the biological response of each tissue to estimate the clinical outcome of a treatment. The relative biological effectiveness (RBE) accounts for this biological response on a cellular level but does not refer to the actual impact on the organ as a whole. For photon therapy, the concept of equivalent uniform dose (EUD) represents a simple model to take the organ response into account, yet so far no formulation of EUD has been reported that is suitable to carbon ion therapy. The authors introduce the concept of an equivalentmore » uniform effect (EUE) that is directly applicable to both ion and photon therapies and exemplarily implemented it as a basis for biological treatment plan optimization for carbon ion therapy. Methods: In addition to a classical EUD concept, which calculates a generalized mean over the RBE-weighted dose distribution, the authors propose the EUE to simplify the optimization process of carbon ion therapy plans. The EUE is defined as the biologically equivalent uniform effect that yields the same probability of injury as the inhomogeneous effect distribution in an organ. Its mathematical formulation is based on the generalized mean effect using an effect-volume parameter to account for different organ architectures and is thus independent of a reference radiation. For both EUD concepts, quadratic and logistic objective functions are implemented into a research treatment planning system. A flexible implementation allows choosing for each structure between biological effect constraints per voxel and EUD constraints per structure. Exemplary treatment plans are calculated for a head-and-neck patient for multiple combinations of objective functions and optimization parameters. Results: Treatment plans optimized using an EUE-based objective function were comparable to those optimized with an RBE-weighted EUD-based approach. In agreement with previous results from photon therapy, the optimization by biological objective functions resulted in slightly superior treatment plans in terms of final EUD for the organs at risk (OARs) compared to voxel-based optimization approaches. This observation was made independent of the underlying objective function metric. An absolute gain in OAR sparing was observed for quadratic objective functions, whereas intersecting DVHs were found for logistic approaches. Even for considerable under- or overestimations of the used effect- or dose–volume parameters during the optimization, treatment plans were obtained that were of similar quality as the results of a voxel-based optimization. Conclusions: EUD-based optimization with either of the presented concepts can successfully be applied to treatment plan optimization. This makes EUE-based optimization for carbon ion therapy a useful tool to optimize more specifically in the sense of biological outcome while voxel-to-voxel variations of the biological effectiveness are still properly accounted for. This may be advantageous in terms of computational cost during treatment plan optimization but also enables a straight forward comparison of different fractionation schemes or treatment modalities.« less

  2. Robust portfolio selection based on asymmetric measures of variability of stock returns

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Tan, Shaohua

    2009-10-01

    This paper addresses a new uncertainty set--interval random uncertainty set for robust optimization. The form of interval random uncertainty set makes it suitable for capturing the downside and upside deviations of real-world data. These deviation measures capture distributional asymmetry and lead to better optimization results. We also apply our interval random chance-constrained programming to robust mean-variance portfolio selection under interval random uncertainty sets in the elements of mean vector and covariance matrix. Numerical experiments with real market data indicate that our approach results in better portfolio performance.

  3. Towards inverse modeling of turbidity currents: The inverse lock-exchange problem

    NASA Astrophysics Data System (ADS)

    Lesshafft, Lutz; Meiburg, Eckart; Kneller, Ben; Marsden, Alison

    2011-04-01

    A new approach is introduced for turbidite modeling, leveraging the potential of computational fluid dynamics methods to simulate the flow processes that led to turbidite formation. The practical use of numerical flow simulation for the purpose of turbidite modeling so far is hindered by the need to specify parameters and initial flow conditions that are a priori unknown. The present study proposes a method to determine optimal simulation parameters via an automated optimization process. An iterative procedure matches deposit predictions from successive flow simulations against available localized reference data, as in practice may be obtained from well logs, and aims at convergence towards the best-fit scenario. The final result is a prediction of the entire deposit thickness and local grain size distribution. The optimization strategy is based on a derivative-free, surrogate-based technique. Direct numerical simulations are performed to compute the flow dynamics. A proof of concept is successfully conducted for the simple test case of a two-dimensional lock-exchange turbidity current. The optimization approach is demonstrated to accurately retrieve the initial conditions used in a reference calculation.

  4. Hierarchical Solution of the Traveling Salesman Problem with Random Dyadic Tilings

    NASA Astrophysics Data System (ADS)

    Kalmár-Nagy, Tamás; Bak, Bendegúz Dezső

    We propose a hierarchical heuristic approach for solving the Traveling Salesman Problem (TSP) in the unit square. The points are partitioned with a random dyadic tiling and clusters are formed by the points located in the same tile. Each cluster is represented by its geometrical barycenter and a “coarse” TSP solution is calculated for these barycenters. Midpoints are placed at the middle of each edge in the coarse solution. Near-optimal (or optimal) minimum tours are computed for each cluster. The tours are concatenated using the midpoints yielding a solution for the original TSP. The method is tested on random TSPs (independent, identically distributed points in the unit square) up to 10,000 points as well as on a popular benchmark problem (att532 — coordinates of 532 American cities). Our solutions are 8-13% longer than the optimal ones. We also present an optimization algorithm for the partitioning to improve our solutions. This algorithm further reduces the solution errors (by several percent using 1000 iteration steps). The numerical experiments demonstrate the viability of the approach.

  5. A Maximum-Likelihood Approach to Force-Field Calibration.

    PubMed

    Zaborowski, Bartłomiej; Jagieła, Dawid; Czaplewski, Cezary; Hałabis, Anna; Lewandowska, Agnieszka; Żmudzińska, Wioletta; Ołdziej, Stanisław; Karczyńska, Agnieszka; Omieczynski, Christian; Wirecki, Tomasz; Liwo, Adam

    2015-09-28

    A new approach to the calibration of the force fields is proposed, in which the force-field parameters are obtained by maximum-likelihood fitting of the calculated conformational ensembles to the experimental ensembles of training system(s). The maximum-likelihood function is composed of logarithms of the Boltzmann probabilities of the experimental conformations, calculated with the current energy function. Because the theoretical distribution is given in the form of the simulated conformations only, the contributions from all of the simulated conformations, with Gaussian weights in the distances from a given experimental conformation, are added to give the contribution to the target function from this conformation. In contrast to earlier methods for force-field calibration, the approach does not suffer from the arbitrariness of dividing the decoy set into native-like and non-native structures; however, if such a division is made instead of using Gaussian weights, application of the maximum-likelihood method results in the well-known energy-gap maximization. The computational procedure consists of cycles of decoy generation and maximum-likelihood-function optimization, which are iterated until convergence is reached. The method was tested with Gaussian distributions and then applied to the physics-based coarse-grained UNRES force field for proteins. The NMR structures of the tryptophan cage, a small α-helical protein, determined at three temperatures (T = 280, 305, and 313 K) by Hałabis et al. ( J. Phys. Chem. B 2012 , 116 , 6898 - 6907 ), were used. Multiplexed replica-exchange molecular dynamics was used to generate the decoys. The iterative procedure exhibited steady convergence. Three variants of optimization were tried: optimization of the energy-term weights alone and use of the experimental ensemble of the folded protein only at T = 280 K (run 1); optimization of the energy-term weights and use of experimental ensembles at all three temperatures (run 2); and optimization of the energy-term weights and the coefficients of the torsional and multibody energy terms and use of experimental ensembles at all three temperatures (run 3). The force fields were subsequently tested with a set of 14 α-helical and two α + β proteins. Optimization run 1 resulted in better agreement with the experimental ensemble at T = 280 K compared with optimization run 2 and in comparable performance on the test set but poorer agreement of the calculated folding temperature with the experimental folding temperature. Optimization run 3 resulted in the best fit of the calculated ensembles to the experimental ones for the tryptophan cage but in much poorer performance on the training set, suggesting that use of a small α-helical protein for extensive force-field calibration resulted in overfitting of the data for this protein at the expense of transferability. The optimized force field resulting from run 2 was found to fold 13 of the 14 tested α-helical proteins and one small α + β protein with the correct topologies; the average structures of 10 of them were predicted with accuracies of about 5 Å C(α) root-mean-square deviation or better. Test simulations with an additional set of 12 α-helical proteins demonstrated that this force field performed better on α-helical proteins than the previous parametrizations of UNRES. The proposed approach is applicable to any problem of maximum-likelihood parameter estimation when the contributions to the maximum-likelihood function cannot be evaluated at the experimental points and the dimension of the configurational space is too high to construct histograms of the experimental distributions.

  6. Distributed Unmixing of Hyperspectral Datawith Sparsity Constraint

    NASA Astrophysics Data System (ADS)

    Khoshsokhan, S.; Rajabi, R.; Zayyani, H.

    2017-09-01

    Spectral unmixing (SU) is a data processing problem in hyperspectral remote sensing. The significant challenge in the SU problem is how to identify endmembers and their weights, accurately. For estimation of signature and fractional abundance matrices in a blind problem, nonnegative matrix factorization (NMF) and its developments are used widely in the SU problem. One of the constraints which was added to NMF is sparsity constraint that was regularized by L1/2 norm. In this paper, a new algorithm based on distributed optimization has been used for spectral unmixing. In the proposed algorithm, a network including single-node clusters has been employed. Each pixel in hyperspectral images considered as a node in this network. The distributed unmixing with sparsity constraint has been optimized with diffusion LMS strategy, and then the update equations for fractional abundance and signature matrices are obtained. Simulation results based on defined performance metrics, illustrate advantage of the proposed algorithm in spectral unmixing of hyperspectral data compared with other methods. The results show that the AAD and SAD of the proposed approach are improved respectively about 6 and 27 percent toward distributed unmixing in SNR=25dB.

  7. On the effects of alternative optima in context-specific metabolic model predictions

    PubMed Central

    Nikoloski, Zoran

    2017-01-01

    The integration of experimental data into genome-scale metabolic models can greatly improve flux predictions. This is achieved by restricting predictions to a more realistic context-specific domain, like a particular cell or tissue type. Several computational approaches to integrate data have been proposed—generally obtaining context-specific (sub)models or flux distributions. However, these approaches may lead to a multitude of equally valid but potentially different models or flux distributions, due to possible alternative optima in the underlying optimization problems. Although this issue introduces ambiguity in context-specific predictions, it has not been generally recognized, especially in the case of model reconstructions. In this study, we analyze the impact of alternative optima in four state-of-the-art context-specific data integration approaches, providing both flux distributions and/or metabolic models. To this end, we present three computational methods and apply them to two particular case studies: leaf-specific predictions from the integration of gene expression data in a metabolic model of Arabidopsis thaliana, and liver-specific reconstructions derived from a human model with various experimental data sources. The application of these methods allows us to obtain the following results: (i) we sample the space of alternative flux distributions in the leaf- and the liver-specific case and quantify the ambiguity of the predictions. In addition, we show how the inclusion of ℓ1-regularization during data integration reduces the ambiguity in both cases. (ii) We generate sets of alternative leaf- and liver-specific models that are optimal to each one of the evaluated model reconstruction approaches. We demonstrate that alternative models of the same context contain a marked fraction of disparate reactions. Further, we show that a careful balance between model sparsity and metabolic functionality helps in reducing the discrepancies between alternative models. Finally, our findings indicate that alternative optima must be taken into account for rendering the context-specific metabolic model predictions less ambiguous. PMID:28557990

  8. On the effects of alternative optima in context-specific metabolic model predictions.

    PubMed

    Robaina-Estévez, Semidán; Nikoloski, Zoran

    2017-05-01

    The integration of experimental data into genome-scale metabolic models can greatly improve flux predictions. This is achieved by restricting predictions to a more realistic context-specific domain, like a particular cell or tissue type. Several computational approaches to integrate data have been proposed-generally obtaining context-specific (sub)models or flux distributions. However, these approaches may lead to a multitude of equally valid but potentially different models or flux distributions, due to possible alternative optima in the underlying optimization problems. Although this issue introduces ambiguity in context-specific predictions, it has not been generally recognized, especially in the case of model reconstructions. In this study, we analyze the impact of alternative optima in four state-of-the-art context-specific data integration approaches, providing both flux distributions and/or metabolic models. To this end, we present three computational methods and apply them to two particular case studies: leaf-specific predictions from the integration of gene expression data in a metabolic model of Arabidopsis thaliana, and liver-specific reconstructions derived from a human model with various experimental data sources. The application of these methods allows us to obtain the following results: (i) we sample the space of alternative flux distributions in the leaf- and the liver-specific case and quantify the ambiguity of the predictions. In addition, we show how the inclusion of ℓ1-regularization during data integration reduces the ambiguity in both cases. (ii) We generate sets of alternative leaf- and liver-specific models that are optimal to each one of the evaluated model reconstruction approaches. We demonstrate that alternative models of the same context contain a marked fraction of disparate reactions. Further, we show that a careful balance between model sparsity and metabolic functionality helps in reducing the discrepancies between alternative models. Finally, our findings indicate that alternative optima must be taken into account for rendering the context-specific metabolic model predictions less ambiguous.

  9. Broadband All-angle Negative Refraction by Optimized Phononic Crystals.

    PubMed

    Li, Yang Fan; Meng, Fei; Zhou, Shiwei; Lu, Ming-Hui; Huang, Xiaodong

    2017-08-07

    All-angle negative refraction (AANR) of phononic crystals and its frequency range are dependent on mechanical properties of constituent materials and their spatial distribution. So far, it is impossible to achieve the maximum operation frequency range of AANR theoretically. In this paper, we will present a numerical approach for designing a two-dimensional phononic crystal with broadband AANR without negative index. Through analyzing the mechanism of AANR, a topology optimization problem aiming at broadband AANR is established and solved by bi-directional evolutionary structural optimization method. The optimal steel/air phononic crystal exhibits a record AANR range over 20% and its refractive properties and focusing effects are further investigated. The results demonstrate the multifunctionality of a flat phononic slab including superlensing effect near upper AANR frequencies and self-collimation at lower AANR frequencies.

  10. Efficiency of operation of wind turbine rotors optimized by the Glauert and Betz methods

    NASA Astrophysics Data System (ADS)

    Okulov, V. L.; Mikkelsen, R.; Litvinov, I. V.; Naumov, I. V.

    2015-11-01

    The models of two types of rotors with blades constructed using different optimization methods are compared experimentally. In the first case, the Glauert optimization by the pulsed method is used, which is applied independently for each individual blade cross section. This method remains the main approach in designing rotors of various duties. The construction of the other rotor is based on the Betz idea about optimization of rotors by determining a special distribution of circulation over the blade, which ensures the helical structure of the wake behind the rotor. It is established for the first time as a result of direct experimental comparison that the rotor constructed using the Betz method makes it possible to extract more kinetic energy from the homogeneous incoming flow.

  11. Optimization of 200 MWth and 250 MWt Ship Based Small Long Life NPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitriyani, Dian; Su'ud, Zaki

    2010-06-22

    Design optimization of ship-based 200 MWth and 250 MWt nuclear power reactors have been performed. The neutronic and thermo-hydraulic programs of the three-dimensional X-Y-Z geometry have been developed for the analysis of ship-based nuclear power plant. Quasi-static approach is adopted to treat seawater effect. The reactor are loop type lead bismuth cooled fast reactor with nitride fuel and with relatively large coolant pipe above reactor core, the heat from primary coolant system is directly transferred to watersteam loop through steam generators. Square core type are selected and optimized. As the optimization result, the core outlet temperature distribution is changing withmore » the elevation angle of the reactor system and the characteristics are discussed.« less

  12. A quality of service negotiation procedure for distributed multimedia presentational applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hafid, A.; Bochmann, G.V.; Kerherve, B.

    Most of current approaches in designing and implementing distributed multimedia (MM) presentational applications, e.g. news-on-demand, have concentrated on the performance of the continuous media file servers in terms of seek time overhead, and real-time disk scheduling; particularly the QoS negotiation mechanisms they provide are used in a rather static manner that is, these mechanisms are restricted to the evaluation of the capacity of certain system components, e.g. file server a priori known to support a specific quality of service (QoS). In contrast to those approaches, we propose a general QoS negotiation framework that supports the dynamic choice of a configurationmore » of system components to support the QoS requirements of the user of a specific application: we consider different possible system configurations and select an optimal one to provide the appropriate QoS support. In this paper we document the design and implementation of a QoS negotiation procedure for distributed MM presentational applications, such as news-on-demand. The negotiation procedure described here is an instantiation of the general framework for QoS negotiation which was developed earlier Our proposal differs in many respect with the negotiation functions provided by existing approaches: (1) the negotiation process uses an optimization approach to find a configuration of system components which supports the user requirements, (2) the negotiation process supports the negotiation of a MM document and not only a single monomedia object, (3) the QoS negotiation takes into account the cost to the user, and (4) the negotiation process may be used to support automatic adaptation to react to QoS degradations, without intervention by the user/application.« less

  13. Meta-food-chains as a many-layer epidemic process on networks

    NASA Astrophysics Data System (ADS)

    Barter, Edmund; Gross, Thilo

    2016-02-01

    Notable recent works have focused on the multilayer properties of coevolving diseases. We point out that very similar systems play an important role in population ecology. Specifically we study a meta-food-web model that was recently proposed by Pillai et al. [Theor. Ecol. 3, 223 (2009), 10.1007/s12080-009-0065-1]. This model describes a network of species connected by feeding interactions, which spread over a network of spatial patches. Focusing on the essential case, where the network of feeding interactions is a chain, we develop an analytical approach for the computation of the degree distributions of colonized spatial patches for the different species in the chain. This framework allows us to address ecologically relevant questions. Considering configuration model ensembles of spatial networks, we find that there is an upper bound for the fraction of patches that a given species can occupy, which depends only on the networks mean degree. For a given mean degree there is then an optimal degree distribution that comes closest to the upper bound. Notably scale-free degree distributions perform worse than more homogeneous degree distributions if the mean degree is sufficiently high. Because species experience the underlying network differently the optimal degree distribution for one particular species is generally not the optimal distribution for the other species in the same food web. These results are of interest for conservation ecology, where, for instance, the task of selecting areas of old-growth forest to preserve in an agricultural landscape, amounts to the design of a patch network.

  14. ISS-Crystal Growth of Photorefractive Materials (BSO): Critical Design Issues for Optimized Data Extraction from Space Experiments

    NASA Technical Reports Server (NTRS)

    Hyers, Robert W.; Motakef, S.; Witt, A. F.; Wuensch, B.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Realization of the full potential of photorefractive materials in device technology is seriously impeded by our inability to achieve controlled formation of critical defects during single crystal growth and by difficulties in meeting the required degree of compositional uniformity on a micro-scale over macroscopic dimensions. The exact nature and origin of the critical defects which control photorefractivity could not as yet be identified because of gravitational interference. There exists, however, strong evidence that the density of defect formation and their spatial distribution are adversely affected by gravitational interference which precludes the establishment of quantifiable and controllable heat and mass transfer conditions during crystal growth. The current, NASA sponsored research at MIT is directed at establishing a basis for the development of a comprehensive approach to the optimization of property control during melt growth of photorefractive materials, making use of the m-g environment, provided in the International Space Station. The objectives to be pursued in m-g research on photorefractive BSO (Bi12SiO20) are: (a) identification of the x-level(s) responsible for photorefractivity in undoped BSO; (b) development of approaches leading to the control of x-level formation at uniform spatial distribution; (c) development of doping and processing procedures for optimization of the critical, application specific parameters, spectral response, sensitivity, response time and matrix stability. The presentation will focus on: the rationale for the justification of the space experiment, ground-based development efforts, design considerations for the space experiments, strategic plan of the space experiments, and approaches to the quantitative analysis of the space experiments.

  15. Regulation of Dynamical Systems to Optimal Solutions of Semidefinite Programs: Algorithms and Applications to AC Optimal Power Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Dhople, Sairaj V.; Giannakis, Georgios B.

    2015-07-01

    This paper considers a collection of networked nonlinear dynamical systems, and addresses the synthesis of feedback controllers that seek optimal operating points corresponding to the solution of pertinent network-wide optimization problems. Particular emphasis is placed on the solution of semidefinite programs (SDPs). The design of the feedback controller is grounded on a dual e-subgradient approach, with the dual iterates utilized to dynamically update the dynamical-system reference signals. Global convergence is guaranteed for diminishing stepsize rules, even when the reference inputs are updated at a faster rate than the dynamical-system settling time. The application of the proposed framework to the controlmore » of power-electronic inverters in AC distribution systems is discussed. The objective is to bridge the time-scale separation between real-time inverter control and network-wide optimization. Optimization objectives assume the form of SDP relaxations of prototypical AC optimal power flow problems.« less

  16. Explicit optimization of plan quality measures in intensity-modulated radiation therapy treatment planning.

    PubMed

    Engberg, Lovisa; Forsgren, Anders; Eriksson, Kjell; Hårdemark, Björn

    2017-06-01

    To formulate convex planning objectives of treatment plan multicriteria optimization with explicit relationships to the dose-volume histogram (DVH) statistics used in plan quality evaluation. Conventional planning objectives are designed to minimize the violation of DVH statistics thresholds using penalty functions. Although successful in guiding the DVH curve towards these thresholds, conventional planning objectives offer limited control of the individual points on the DVH curve (doses-at-volume) used to evaluate plan quality. In this study, we abandon the usual penalty-function framework and propose planning objectives that more closely relate to DVH statistics. The proposed planning objectives are based on mean-tail-dose, resulting in convex optimization. We also demonstrate how to adapt a standard optimization method to the proposed formulation in order to obtain a substantial reduction in computational cost. We investigated the potential of the proposed planning objectives as tools for optimizing DVH statistics through juxtaposition with the conventional planning objectives on two patient cases. Sets of treatment plans with differently balanced planning objectives were generated using either the proposed or the conventional approach. Dominance in the sense of better distributed doses-at-volume was observed in plans optimized within the proposed framework. The initial computational study indicates that the DVH statistics are better optimized and more efficiently balanced using the proposed planning objectives than using the conventional approach. © 2017 American Association of Physicists in Medicine.

  17. Bell-Curve Based Evolutionary Optimization Algorithm

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; Laba, K.; Kincaid, R.

    1998-01-01

    The paper presents an optimization algorithm that falls in the category of genetic, or evolutionary algorithms. While the bit exchange is the basis of most of the Genetic Algorithms (GA) in research and applications in America, some alternatives, also in the category of evolutionary algorithms, but use a direct, geometrical approach have gained popularity in Europe and Asia. The Bell-Curve Based Evolutionary Algorithm (BCB) is in this alternative category and is distinguished by the use of a combination of n-dimensional geometry and the normal distribution, the bell-curve, in the generation of the offspring. The tool for creating a child is a geometrical construct comprising a line connecting two parents and a weighted point on that line. The point that defines the child deviates from the weighted point in two directions: parallel and orthogonal to the connecting line, the deviation in each direction obeying a probabilistic distribution. Tests showed satisfactory performance of BCB. The principal advantage of BCB is its controllability via the normal distribution parameters and the geometrical construct variables.

  18. Ensuring the Reliable Operation of the Power Grid: State-Based and Distributed Approaches to Scheduling Energy and Contingency Reserves

    NASA Astrophysics Data System (ADS)

    Prada, Jose Fernando

    Keeping a contingency reserve in power systems is necessary to preserve the security of real-time operations. This work studies two different approaches to the optimal allocation of energy and reserves in the day-ahead generation scheduling process. Part I presents a stochastic security-constrained unit commitment model to co-optimize energy and the locational reserves required to respond to a set of uncertain generation contingencies, using a novel state-based formulation. The model is applied in an offer-based electricity market to allocate contingency reserves throughout the power grid, in order to comply with the N-1 security criterion under transmission congestion. The objective is to minimize expected dispatch and reserve costs, together with post contingency corrective redispatch costs, modeling the probability of generation failure and associated post contingency states. The characteristics of the scheduling problem are exploited to formulate a computationally efficient method, consistent with established operational practices. We simulated the distribution of locational contingency reserves on the IEEE RTS96 system and compared the results with the conventional deterministic method. We found that assigning locational spinning reserves can guarantee an N-1 secure dispatch accounting for transmission congestion at a reasonable extra cost. The simulations also showed little value of allocating downward reserves but sizable operating savings from co-optimizing locational nonspinning reserves. Overall, the results indicate the computational tractability of the proposed method. Part II presents a distributed generation scheduling model to optimally allocate energy and spinning reserves among competing generators in a day-ahead market. The model is based on the coordination between individual generators and a market entity. The proposed method uses forecasting, augmented pricing and locational signals to induce efficient commitment of generators based on firm posted prices. It is price-based but does not rely on multiple iterations, minimizes information exchange and simplifies the market clearing process. Simulations of the distributed method performed on a six-bus test system showed that, using an appropriate set of prices, it is possible to emulate the results of a conventional centralized solution, without need of providing make-whole payments to generators. Likewise, they showed that the distributed method can accommodate transactions with different products and complex security constraints.

  19. New methods versus the smart application of existing tools in the design of water distribution network

    NASA Astrophysics Data System (ADS)

    Cisty, Milan; Bajtek, Zbynek; Celar, Lubomir; Soldanova, Veronika

    2017-04-01

    Finding effective ways to build irrigation systems which meet irrigation demands and also achieve positive environmental and economic outcomes requires, among other activities, the development of new modelling tools. Due to the high costs associated with the necessary material and the installation of an irrigation water distribution system (WDS), it is essential to optimize the design of the WDS, while the hydraulic requirements (e.g., the required pressure on irrigation machines) of the network are gratified. In this work an optimal design of a water distribution network is proposed for large irrigation networks. In the present work, a multi-step optimization approach is proposed in such a way that the optimization is accomplished in two phases. In the first phase suboptimal solutions are searched for; in the second phase, the optimization problem is solved with a reduced search space based on these solutions, which significantly supports the finding of an optimal solution. The first phase of the optimization consists of several runs of the NSGA-II, which is applied in this phase by varying its parameters for every run, i.e., changing the population size, the number of generations, and the crossover and mutation parameters. This is done with the aim of obtaining different sub-optimal solutions which have a relatively low cost. These sub-optimal solutions are subsequently used in the second phase of the proposed methodology, in which the final optimization run is built on sub-optimal solutions from the previous phase. The purpose of the second phase is to improve the results of the first phase by searching through the reduced search space. The reduction is based on the minimum and maximum diameters for each pipe from all the networks from the first stage. In this phase, NSGA-II do not consider diameters which are outside of this range. After the NSGA-II second phase computations, the best result published so far for the Balerma benchmark network which was used for methodology testing was achieved in the presented work. The knowledge gained from these computational experiments lies not in offering a new advanced heuristic or hybrid optimization methods of a water distribution network, but in the fact that it is possible to obtain very good results with simple, known methods if they are properly used methodologically. ACKNOWLEDGEMENT This work was supported by the Slovak Research and Development Agency under Contract No. APVV-15-0489 and by the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences, Grant No. 1/0665/15.

  20. Time-Parallel Solutions to Ordinary Differential Equations on GPUs with a New Functional Optimization Approach Related to the Sobolev Gradient Method

    DTIC Science & Technology

    2012-10-01

    black and approximations in cyan and magenta. The second ODE is the pendulum equation, given by: This ODE was also implemented using Crank...The drawback of approaches like the one proposed can be observed with a very simple example. Suppose vector is found by applying 4 linear...public release; distribution unlimited Figure 2. A phase space plot of the Pendulum example. Fine solution (black) contains 32768 time steps

  1. Performance Optimization of Marine Science and Numerical Modeling on HPC Cluster

    PubMed Central

    Yang, Dongdong; Yang, Hailong; Wang, Luming; Zhou, Yucong; Zhang, Zhiyuan; Wang, Rui; Liu, Yi

    2017-01-01

    Marine science and numerical modeling (MASNUM) is widely used in forecasting ocean wave movement, through simulating the variation tendency of the ocean wave. Although efforts have been devoted to improve the performance of MASNUM from various aspects by existing work, there is still large space unexplored for further performance improvement. In this paper, we aim at improving the performance of propagation solver and data access during the simulation, in addition to the efficiency of output I/O and load balance. Our optimizations include several effective techniques such as the algorithm redesign, load distribution optimization, parallel I/O and data access optimization. The experimental results demonstrate that our approach achieves higher performance compared to the state-of-the-art work, about 3.5x speedup without degrading the prediction accuracy. In addition, the parameter sensitivity analysis shows our optimizations are effective under various topography resolutions and output frequencies. PMID:28045972

  2. Optimal one-section and two-section circular sound-absorbing duct liners for plane-wave and monopole sources without flow

    NASA Technical Reports Server (NTRS)

    Lester, H. C.; Posey, J. W.

    1976-01-01

    A discrete frequency study is made of the influence of source characteristics on the optimal properties of acoustically lined uniform and two section ducts. Two simplified sources, a plane wave and a monopole, are considered in some detail and over a greater frequency range than has been previously studied. Source and termination impedance effects are given limited examination. An example of a turbomachinery source and three associated source variants is also presented. Optimal liner designs based on modal theory approach the Cremer criterion at low frequencies and the geometric acoustics limit at high frequencies. Over an intermediate frequency range, optimal two section liners produced higher transmission losses than did the uniform configurations. Source distribution effects were found to have a significant effect on optimal liner design, but source and termination impedance effects appear to be relatively unimportant.

  3. Optimal investment horizons

    NASA Astrophysics Data System (ADS)

    Simonsen, I.; Jensen, M. H.; Johansen, A.

    2002-06-01

    In stochastic finance, one traditionally considers the return as a competitive measure of an asset, i.e., the profit generated by that asset after some fixed time span Δt, say one week or one year. This measures how well (or how bad) the asset performs over that given period of time. It has been established that the distribution of returns exhibits ``fat tails'' indicating that large returns occur more frequently than what is expected from standard Gaussian stochastic processes [1-3]. Instead of estimating this ``fat tail'' distribution of returns, we propose here an alternative approach, which is outlined by addressing the following question: What is the smallest time interval needed for an asset to cross a fixed return level of say 10%? For a particular asset, we refer to this time as the investment horizon and the corresponding distribution as the investment horizon distribution. This latter distribution complements that of returns and provides new and possibly crucial information for portfolio design and risk-management, as well as for pricing of more exotic options. By considering historical financial data, exemplified by the Dow Jones Industrial Average, we obtain a novel set of probability distributions for the investment horizons which can be used to estimate the optimal investment horizon for a stock or a future contract.

  4. Influence of savanna fire on Australian monsoon season precipitation and circulation as simulated using a distributed computing environment

    NASA Astrophysics Data System (ADS)

    Lynch, Amanda H.; Abramson, David; Görgen, Klaus; Beringer, Jason; Uotila, Petteri

    2007-10-01

    Fires in the Australian savanna have been hypothesized to affect monsoon evolution, but the hypothesis is controversial and the effects have not been quantified. A distributed computing approach allows the development of a challenging experimental design that permits simultaneous variation of all fire attributes. The climate model simulations are distributed around multiple independent computer clusters in six countries, an approach that has potential for a range of other large simulation applications in the earth sciences. The experiment clarifies that savanna burning can shape the monsoon through two mechanisms. Boundary-layer circulation and large-scale convergence is intensified monotonically through increasing fire intensity and area burned. However, thresholds of fire timing and area are evident in the consequent influence on monsoon rainfall. In the optimal band of late, high intensity fires with a somewhat limited extent, it is possible for the wet season to be significantly enhanced.

  5. Microbial production of polyhydroxybutyrate with tailor-made properties: an integrated modelling approach and experimental validation.

    PubMed

    Penloglou, Giannis; Chatzidoukas, Christos; Kiparissides, Costas

    2012-01-01

    The microbial production of polyhydroxybutyrate (PHB) is a complex process in which the final quantity and quality of the PHB depend on a large number of process operating variables. Consequently, the design and optimal dynamic operation of a microbial process for the efficient production of PHB with tailor-made molecular properties is an extremely interesting problem. The present study investigates how key process operating variables (i.e., nutritional and aeration conditions) affect the biomass production rate and the PHB accumulation in the cells and its associated molecular weight distribution. A combined metabolic/polymerization/macroscopic modelling approach, relating the process performance and product quality with the process variables, was developed and validated using an extensive series of experiments and measurements. The model predicts the dynamic evolution of the biomass growth, the polymer accumulation, the consumption of carbon and nitrogen sources and the average molecular weights of the PHB in a bioreactor, under batch and fed-batch operating conditions. The proposed integrated model was used for the model-based optimization of the production of PHB with tailor-made molecular properties in Azohydromonas lata bacteria. The process optimization led to a high intracellular PHB accumulation (up to 95% g of PHB per g of DCW) and the production of different grades (i.e., different molecular weight distributions) of PHB. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Multi-time Scale Coordination of Distributed Energy Resources in Isolated Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhorn, Ebony; Xie, Le; Butler-Purry, Karen

    2016-03-31

    In isolated power systems, including microgrids, distributed assets, such as renewable energy resources (e.g. wind, solar) and energy storage, can be actively coordinated to reduce dependency on fossil fuel generation. The key challenge of such coordination arises from significant uncertainty and variability occurring at small time scales associated with increased penetration of renewables. Specifically, the problem is with ensuring economic and efficient utilization of DERs, while also meeting operational objectives such as adequate frequency performance. One possible solution is to reduce the time step at which tertiary controls are implemented and to ensure feedback and look-ahead capability are incorporated tomore » handle variability and uncertainty. However, reducing the time step of tertiary controls necessitates investigating time-scale coupling with primary controls so as not to exacerbate system stability issues. In this paper, an optimal coordination (OC) strategy, which considers multiple time-scales, is proposed for isolated microgrid systems with a mix of DERs. This coordination strategy is based on an online moving horizon optimization approach. The effectiveness of the strategy was evaluated in terms of economics, technical performance, and computation time by varying key parameters that significantly impact performance. The illustrative example with realistic scenarios on a simulated isolated microgrid test system suggests that the proposed approach is generalizable towards designing multi-time scale optimal coordination strategies for isolated power systems.« less

  7. COLA: Optimizing Stream Processing Applications via Graph Partitioning

    NASA Astrophysics Data System (ADS)

    Khandekar, Rohit; Hildrum, Kirsten; Parekh, Sujay; Rajan, Deepak; Wolf, Joel; Wu, Kun-Lung; Andrade, Henrique; Gedik, Buğra

    In this paper, we describe an optimization scheme for fusing compile-time operators into reasonably-sized run-time software units called processing elements (PEs). Such PEs are the basic deployable units in System S, a highly scalable distributed stream processing middleware system. Finding a high quality fusion significantly benefits the performance of streaming jobs. In order to maximize throughput, our solution approach attempts to minimize the processing cost associated with inter-PE stream traffic while simultaneously balancing load across the processing hosts. Our algorithm computes a hierarchical partitioning of the operator graph based on a minimum-ratio cut subroutine. We also incorporate several fusion constraints in order to support real-world System S jobs. We experimentally compare our algorithm with several other reasonable alternative schemes, highlighting the effectiveness of our approach.

  8. Determination of optimum allocation and pricing of distributed generation using genetic algorithm methodology

    NASA Astrophysics Data System (ADS)

    Mwakabuta, Ndaga Stanslaus

    Electric power distribution systems play a significant role in providing continuous and "quality" electrical energy to different classes of customers. In the context of the present restrictions on transmission system expansions and the new paradigm of "open and shared" infrastructure, new approaches to distribution system analyses, economic and operational decision-making need investigation. This dissertation includes three layers of distribution system investigations. In the basic level, improved linear models are shown to offer significant advantages over previous models for advanced analysis. In the intermediate level, the improved model is applied to solve the traditional problem of operating cost minimization using capacitors and voltage regulators. In the advanced level, an artificial intelligence technique is applied to minimize cost under Distributed Generation injection from private vendors. Soft computing techniques are finding increasing applications in solving optimization problems in large and complex practical systems. The dissertation focuses on Genetic Algorithm for investigating the economic aspects of distributed generation penetration without compromising the operational security of the distribution system. The work presents a methodology for determining the optimal pricing of distributed generation that would help utilities make a decision on how to operate their system economically. This would enable modular and flexible investments that have real benefits to the electric distribution system. Improved reliability for both customers and the distribution system in general, reduced environmental impacts, increased efficiency of energy use, and reduced costs of energy services are some advantages.

  9. 3-D phononic crystals with ultra-wide band gaps

    PubMed Central

    Lu, Yan; Yang, Yang; Guest, James K.; Srivastava, Ankit

    2017-01-01

    In this paper gradient based topology optimization (TO) is used to discover 3-D phononic structures that exhibit ultra-wide normalized all-angle all-mode band gaps. The challenging computational task of repeated 3-D phononic band-structure evaluations is accomplished by a combination of a fast mixed variational eigenvalue solver and distributed Graphic Processing Unit (GPU) parallel computations. The TO algorithm utilizes the material distribution-based approach and a gradient-based optimizer. The design sensitivity for the mixed variational eigenvalue problem is derived using the adjoint method and is implemented through highly efficient vectorization techniques. We present optimized results for two-material simple cubic (SC), body centered cubic (BCC), and face centered cubic (FCC) crystal structures and show that in each of these cases different initial designs converge to single inclusion network topologies within their corresponding primitive cells. The optimized results show that large phononic stop bands for bulk wave propagation can be achieved at lower than close packed spherical configurations leading to lighter unit cells. For tungsten carbide - epoxy crystals we identify all angle all mode normalized stop bands exceeding 100%, which is larger than what is possible with only spherical inclusions. PMID:28233812

  10. 3-D phononic crystals with ultra-wide band gaps.

    PubMed

    Lu, Yan; Yang, Yang; Guest, James K; Srivastava, Ankit

    2017-02-24

    In this paper gradient based topology optimization (TO) is used to discover 3-D phononic structures that exhibit ultra-wide normalized all-angle all-mode band gaps. The challenging computational task of repeated 3-D phononic band-structure evaluations is accomplished by a combination of a fast mixed variational eigenvalue solver and distributed Graphic Processing Unit (GPU) parallel computations. The TO algorithm utilizes the material distribution-based approach and a gradient-based optimizer. The design sensitivity for the mixed variational eigenvalue problem is derived using the adjoint method and is implemented through highly efficient vectorization techniques. We present optimized results for two-material simple cubic (SC), body centered cubic (BCC), and face centered cubic (FCC) crystal structures and show that in each of these cases different initial designs converge to single inclusion network topologies within their corresponding primitive cells. The optimized results show that large phononic stop bands for bulk wave propagation can be achieved at lower than close packed spherical configurations leading to lighter unit cells. For tungsten carbide - epoxy crystals we identify all angle all mode normalized stop bands exceeding 100%, which is larger than what is possible with only spherical inclusions.

  11. Parameter optimization of a hydrologic model in a snow-dominated basin using a modular Python framework

    NASA Astrophysics Data System (ADS)

    Volk, J. M.; Turner, M. A.; Huntington, J. L.; Gardner, M.; Tyler, S.; Sheneman, L.

    2016-12-01

    Many distributed models that simulate watershed hydrologic processes require a collection of multi-dimensional parameters as input, some of which need to be calibrated before the model can be applied. The Precipitation Runoff Modeling System (PRMS) is a physically-based and spatially distributed hydrologic model that contains a considerable number of parameters that often need to be calibrated. Modelers can also benefit from uncertainty analysis of these parameters. To meet these needs, we developed a modular framework in Python to conduct PRMS parameter optimization, uncertainty analysis, interactive visual inspection of parameters and outputs, and other common modeling tasks. Here we present results for multi-step calibration of sensitive parameters controlling solar radiation, potential evapo-transpiration, and streamflow in a PRMS model that we applied to the snow-dominated Dry Creek watershed in Idaho. We also demonstrate how our modular approach enables the user to use a variety of parameter optimization and uncertainty methods or easily define their own, such as Monte Carlo random sampling, uniform sampling, or even optimization methods such as the downhill simplex method or its commonly used, more robust counterpart, shuffled complex evolution.

  12. A Multipopulation PSO Based Memetic Algorithm for Permutation Flow Shop Scheduling

    PubMed Central

    Liu, Ruochen; Ma, Chenlin; Ma, Wenping; Li, Yangyang

    2013-01-01

    The permutation flow shop scheduling problem (PFSSP) is part of production scheduling, which belongs to the hardest combinatorial optimization problem. In this paper, a multipopulation particle swarm optimization (PSO) based memetic algorithm (MPSOMA) is proposed in this paper. In the proposed algorithm, the whole particle swarm population is divided into three subpopulations in which each particle evolves itself by the standard PSO and then updates each subpopulation by using different local search schemes such as variable neighborhood search (VNS) and individual improvement scheme (IIS). Then, the best particle of each subpopulation is selected to construct a probabilistic model by using estimation of distribution algorithm (EDA) and three particles are sampled from the probabilistic model to update the worst individual in each subpopulation. The best particle in the entire particle swarm is used to update the global optimal solution. The proposed MPSOMA is compared with two recently proposed algorithms, namely, PSO based memetic algorithm (PSOMA) and hybrid particle swarm optimization with estimation of distribution algorithm (PSOEDA), on 29 well-known PFFSPs taken from OR-library, and the experimental results show that it is an effective approach for the PFFSP. PMID:24453841

  13. Spatial coding-based approach for partitioning big spatial data in Hadoop

    NASA Astrophysics Data System (ADS)

    Yao, Xiaochuang; Mokbel, Mohamed F.; Alarabi, Louai; Eldawy, Ahmed; Yang, Jianyu; Yun, Wenju; Li, Lin; Ye, Sijing; Zhu, Dehai

    2017-09-01

    Spatial data partitioning (SDP) plays a powerful role in distributed storage and parallel computing for spatial data. However, due to skew distribution of spatial data and varying volume of spatial vector objects, it leads to a significant challenge to ensure both optimal performance of spatial operation and data balance in the cluster. To tackle this problem, we proposed a spatial coding-based approach for partitioning big spatial data in Hadoop. This approach, firstly, compressed the whole big spatial data based on spatial coding matrix to create a sensing information set (SIS), including spatial code, size, count and other information. SIS was then employed to build spatial partitioning matrix, which was used to spilt all spatial objects into different partitions in the cluster finally. Based on our approach, the neighbouring spatial objects can be partitioned into the same block. At the same time, it also can minimize the data skew in Hadoop distributed file system (HDFS). The presented approach with a case study in this paper is compared against random sampling based partitioning, with three measurement standards, namely, the spatial index quality, data skew in HDFS, and range query performance. The experimental results show that our method based on spatial coding technique can improve the query performance of big spatial data, as well as the data balance in HDFS. We implemented and deployed this approach in Hadoop, and it is also able to support efficiently any other distributed big spatial data systems.

  14. Practical Framework for an Electron Beam Induced Current Technique Based on a Numerical Optimization Approach

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hideshi; Soeda, Takeshi

    2015-03-01

    A practical framework for an electron beam induced current (EBIC) technique has been established for conductive materials based on a numerical optimization approach. Although the conventional EBIC technique is useful for evaluating the distributions of dopants or crystal defects in semiconductor transistors, issues related to the reproducibility and quantitative capability of measurements using this technique persist. For instance, it is difficult to acquire high-quality EBIC images throughout continuous tests due to variation in operator skill or test environment. Recently, due to the evaluation of EBIC equipment performance and the numerical optimization of equipment items, the constant acquisition of high contrast images has become possible, improving the reproducibility as well as yield regardless of operator skill or test environment. The technique proposed herein is even more sensitive and quantitative than scanning probe microscopy, an imaging technique that can possibly damage the sample. The new technique is expected to benefit the electrical evaluation of fragile or soft materials along with LSI materials.

  15. Selection of Reserves for Woodland Caribou Using an Optimization Approach

    PubMed Central

    Schneider, Richard R.; Hauer, Grant; Dawe, Kimberly; Adamowicz, Wiktor; Boutin, Stan

    2012-01-01

    Habitat protection has been identified as an important strategy for the conservation of woodland caribou (Rangifer tarandus). However, because of the economic opportunity costs associated with protection it is unlikely that all caribou ranges can be protected in their entirety. We used an optimization approach to identify reserve designs for caribou in Alberta, Canada, across a range of potential protection targets. Our designs minimized costs as well as three demographic risk factors: current industrial footprint, presence of white-tailed deer (Odocoileus virginianus), and climate change. We found that, using optimization, 60% of current caribou range can be protected (including 17% in existing parks) while maintaining access to over 98% of the value of resources on public lands. The trade-off between minimizing cost and minimizing demographic risk factors was minimal because the spatial distributions of cost and risk were similar. The prospects for protection are much reduced if protection is directed towards the herds that are most at risk of near-term extirpation. PMID:22363702

  16. TH-AB-202-09: Direct-Aperture Optimization for Combined MV+kV Dose Planning in Fluoroscopic Real-Time Tumor-Tracking Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X; Belcher, AH; Grelewicz, Z

    Purpose: Real-time kV fluoroscopic tumor tracking has the benefit of direct tumor position monitoring. However, there is clinical concern over the excess kV imaging dose cost to the patient when imaging in continuous fluoroscopic mode. This work addresses this specific issue by proposing a combined MV+kV direct-aperture optimization (DAO) approach to integrate the kV imaging beam into a treatment planning such that the kV radiation is considered as a contributor to the overall dose delivery. Methods: The combined MV+kV DAO approach includes three algorithms. First, a projected Quasi-Newton algorithm (L-BFGS) is used to find optimized fluence with MV+kV dose formore » the best possible dose distribution. Then, Engel’s algorithm is applied to optimize the total number of monitor units and heuristically optimize the number of apertures. Finally, an aperture shape optimization (ASO) algorithm is applied to locally optimize the leaf positions of MLC. Results: Compared to conventional DAO MV plans with continuous kV fluoroscopic tracking, combined MV+kV DAO plan leads to a reduction in the total number of MV monitor units due to inclusion of kV dose as part of the PTV, and was also found to reduce the mean and maximum doses on the organs at risk (OAR). Compared to conventional DAO MV plan without kV tracking, the OAR dose in the combined MV+kV DAO plan was only slightly higher. DVH curves show that combined MV+kV DAO plan provided about the same PTV coverage as that in the conventional DAO plans without kV imaging. Conclusion: We report a combined MV+kV DAO approach that allows real time kV imager tumor tracking with only a trivial increasing on the OAR doses while providing the same coverage to PTV. The approach is suitable for clinic implementation.« less

  17. Deriving field-based species sensitivity distributions (f-SSDs) from stacked species distribution models (S-SDMs).

    PubMed

    Schipper, Aafke M; Posthuma, Leo; de Zwart, Dick; Huijbregts, Mark A J

    2014-12-16

    Quantitative relationships between species richness and single environmental factors, also called species sensitivity distributions (SSDs), are helpful to understand and predict biodiversity patterns, identify environmental management options and set environmental quality standards. However, species richness is typically dependent on a variety of environmental factors, implying that it is not straightforward to quantify SSDs from field monitoring data. Here, we present a novel and flexible approach to solve this, based on the method of stacked species distribution modeling. First, a species distribution model (SDM) is established for each species, describing its probability of occurrence in relation to multiple environmental factors. Next, the predictions of the SDMs are stacked along the gradient of each environmental factor with the remaining environmental factors at fixed levels. By varying those fixed levels, our approach can be used to investigate how field-based SSDs for a given environmental factor change in relation to changing confounding influences, including for example optimal, typical, or extreme environmental conditions. This provides an asset in the evaluation of potential management measures to reach good ecological status.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Rui; Zhang, Yingchen

    Designing market mechanisms for electricity distribution systems has been a hot topic due to the increased presence of smart loads and distributed energy resources (DERs) in distribution systems. The distribution locational marginal pricing (DLMP) methodology is one of the real-time pricing methods to enable such market mechanisms and provide economic incentives to active market participants. Determining the DLMP is challenging due to high power losses, the voltage volatility, and the phase imbalance in distribution systems. Existing DC Optimal Power Flow (OPF) approaches are unable to model power losses and the reactive power, while single-phase AC OPF methods cannot capture themore » phase imbalance. To address these challenges, in this paper, a three-phase AC OPF based approach is developed to define and calculate DLMP accurately. The DLMP is modeled as the marginal cost to serve an incremental unit of demand at a specific phase at a certain bus, and is calculated using the Lagrange multipliers in the three-phase AC OPF formulation. Extensive case studies have been conducted to understand the impact of system losses and the phase imbalance on DLMPs as well as the potential benefits of flexible resources.« less

  19. Inferring ancestral distribution area and survival vegetation of Caragana (Fabaceae) in Tertiary

    Treesearch

    Mingli Zhang; Juanjuan Xue; Qiang Zhang; Stewart C. Sanderson

    2015-01-01

    Caragana, a leguminous genus mainly restricted to temperate Central and East Asia, occurs in arid, semiarid, and humid belts, and has forest, grassland, and desert ecotypes. Based on the previous molecular phylogenetic tree and dating, biogeographical analyses of extant species area and ecotype were conducted by means of four ancestral optimization approaches: S-DIVA,...

  20. Optimizing smoke and plume rise modeling approaches at local scales

    Treesearch

    Derek V. Mallia; Adam K. Kochanski; Shawn P. Urbanski; John C. Lin

    2018-01-01

    Heating from wildfires adds buoyancy to the overlying air, often producing plumes that vertically distribute fire emissions throughout the atmospheric column over the fire. The height of the rising wildfire plume is a complex function of the size of the wildfire, fire heat flux, plume geometry, and atmospheric conditions, which can make simulating plume rises difficult...

  1. Analysis and Modeling of Realistic Compound Channels in Transparent Relay Transmissions

    PubMed Central

    Kanjirathumkal, Cibile K.; Mohammed, Sameer S.

    2014-01-01

    Analytical approaches for the characterisation of the compound channels in transparent multihop relay transmissions over independent fading channels are considered in this paper. Compound channels with homogeneous links are considered first. Using Mellin transform technique, exact expressions are derived for the moments of cascaded Weibull distributions. Subsequently, two performance metrics, namely, coefficient of variation and amount of fade, are derived using the computed moments. These metrics quantify the possible variations in the channel gain and signal to noise ratio from their respective average values and can be used to characterise the achievable receiver performance. This approach is suitable for analysing more realistic compound channel models for scattering density variations of the environment, experienced in multihop relay transmissions. The performance metrics for such heterogeneous compound channels having distinct distribution in each hop are computed and compared with those having identical constituent component distributions. The moments and the coefficient of variation computed are then used to develop computationally efficient estimators for the distribution parameters and the optimal hop count. The metrics and estimators proposed are complemented with numerical and simulation results to demonstrate the impact of the accuracy of the approaches. PMID:24701175

  2. Optimal timing in biological processes

    USGS Publications Warehouse

    Williams, B.K.; Nichols, J.D.

    1984-01-01

    A general approach for obtaining solutions to a class of biological optimization problems is provided. The general problem is one of determining the appropriate time to take some action, when the action can be taken only once during some finite time frame. The approach can also be extended to cover a number of other problems involving animal choice (e.g., mate selection, habitat selection). Returns (assumed to index fitness) are treated as random variables with time-specific distributions, and can be either observable or unobservable at the time action is taken. In the case of unobservable returns, the organism is assumed to base decisions on some ancillary variable that is associated with returns. Optimal policies are derived for both situations and their properties are discussed. Various extensions are also considered, including objective functions based on functions of returns other than the mean, nonmonotonic relationships between the observable variable and returns; possible death of the organism before action is taken; and discounting of future returns. A general feature of the optimal solutions for many of these problems is that an organism should be very selective (i.e., should act only when returns or expected returns are relatively high) at the beginning of the time frame and should become less and less selective as time progresses. An example of the application of optimal timing to a problem involving the timing of bird migration is discussed, and a number of other examples for which the approach is applicable are described.

  3. Optimization of rainfall networks using information entropy and temporal variability analysis

    NASA Astrophysics Data System (ADS)

    Wang, Wenqi; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Liu, Jiufu; Zou, Ying; He, Ruimin

    2018-04-01

    Rainfall networks are the most direct sources of precipitation data and their optimization and evaluation are essential and important. Information entropy can not only represent the uncertainty of rainfall distribution but can also reflect the correlation and information transmission between rainfall stations. Using entropy this study performs optimization of rainfall networks that are of similar size located in two big cities in China, Shanghai (in Yangtze River basin) and Xi'an (in Yellow River basin), with respect to temporal variability analysis. Through an easy-to-implement greedy ranking algorithm based on the criterion called, Maximum Information Minimum Redundancy (MIMR), stations of the networks in the two areas (each area is further divided into two subareas) are ranked during sliding inter-annual series and under different meteorological conditions. It is found that observation series with different starting days affect the ranking, alluding to the temporal variability during network evaluation. We propose a dynamic network evaluation framework for considering temporal variability, which ranks stations under different starting days with a fixed time window (1-year, 2-year, and 5-year). Therefore, we can identify rainfall stations which are temporarily of importance or redundancy and provide some useful suggestions for decision makers. The proposed framework can serve as a supplement for the primary MIMR optimization approach. In addition, during different periods (wet season or dry season) the optimal network from MIMR exhibits differences in entropy values and the optimal network from wet season tended to produce higher entropy values. Differences in spatial distribution of the optimal networks suggest that optimizing the rainfall network for changing meteorological conditions may be more recommended.

  4. Efficient sampling of parsimonious inversion histories with application to genome rearrangement in Yersinia.

    PubMed

    Miklós, István; Darling, Aaron E

    2009-06-22

    Inversions are among the most common mutations acting on the order and orientation of genes in a genome, and polynomial-time algorithms exist to obtain a minimal length series of inversions that transform one genome arrangement to another. However, the minimum length series of inversions (the optimal sorting path) is often not unique as many such optimal sorting paths exist. If we assume that all optimal sorting paths are equally likely, then statistical inference on genome arrangement history must account for all such sorting paths and not just a single estimate. No deterministic polynomial algorithm is known to count the number of optimal sorting paths nor sample from the uniform distribution of optimal sorting paths. Here, we propose a stochastic method that uniformly samples the set of all optimal sorting paths. Our method uses a novel formulation of parallel Markov chain Monte Carlo. In practice, our method can quickly estimate the total number of optimal sorting paths. We introduce a variant of our approach in which short inversions are modeled to be more likely, and we show how the method can be used to estimate the distribution of inversion lengths and breakpoint usage in pathogenic Yersinia pestis. The proposed method has been implemented in a program called "MC4Inversion." We draw comparison of MC4Inversion to the sampler implemented in BADGER and a previously described importance sampling (IS) technique. We find that on high-divergence data sets, MC4Inversion finds more optimal sorting paths per second than BADGER and the IS technique and simultaneously avoids bias inherent in the IS technique.

  5. Distributed Power Allocation for Wireless Sensor Network Localization: A Potential Game Approach.

    PubMed

    Ke, Mingxing; Li, Ding; Tian, Shiwei; Zhang, Yuli; Tong, Kaixiang; Xu, Yuhua

    2018-05-08

    The problem of distributed power allocation in wireless sensor network (WSN) localization systems is investigated in this paper, using the game theoretic approach. Existing research focuses on the minimization of the localization errors of individual agent nodes over all anchor nodes subject to power budgets. When the service area and the distribution of target nodes are considered, finding the optimal trade-off between localization accuracy and power consumption is a new critical task. To cope with this issue, we propose a power allocation game where each anchor node minimizes the square position error bound (SPEB) of the service area penalized by its individual power. Meanwhile, it is proven that the power allocation game is an exact potential game which has one pure Nash equilibrium (NE) at least. In addition, we also prove the existence of an ϵ -equilibrium point, which is a refinement of NE and the better response dynamic approach can reach the end solution. Analytical and simulation results demonstrate that: (i) when prior distribution information is available, the proposed strategies have better localization accuracy than the uniform strategies; (ii) when prior distribution information is unknown, the performance of the proposed strategies outperforms power management strategies based on the second-order cone program (SOCP) for particular agent nodes after obtaining the estimated distribution of agent nodes. In addition, proposed strategies also provide an instructional trade-off between power consumption and localization accuracy.

  6. Predictive uncertainty analysis of plume distribution for geological carbon sequestration using sparse-grid Bayesian method

    NASA Astrophysics Data System (ADS)

    Shi, X.; Zhang, G.

    2013-12-01

    Because of the extensive computational burden, parametric uncertainty analyses are rarely conducted for geological carbon sequestration (GCS) process based multi-phase models. The difficulty of predictive uncertainty analysis for the CO2 plume migration in realistic GCS models is not only due to the spatial distribution of the caprock and reservoir (i.e. heterogeneous model parameters), but also because the GCS optimization estimation problem has multiple local minima due to the complex nonlinear multi-phase (gas and aqueous), and multi-component (water, CO2, salt) transport equations. The geological model built by Doughty and Pruess (2004) for the Frio pilot site (Texas) was selected and assumed to represent the 'true' system, which was composed of seven different facies (geological units) distributed among 10 layers. We chose to calibrate the permeabilities of these facies. Pressure and gas saturation values from this true model were then extracted and used as observations for subsequent model calibration. Random noise was added to the observations to approximate realistic field conditions. Each simulation of the model lasts about 2 hours. In this study, we develop a new approach that improves computational efficiency of Bayesian inference by constructing a surrogate system based on an adaptive sparse-grid stochastic collocation method. This surrogate response surface global optimization algorithm is firstly used to calibrate the model parameters, then prediction uncertainty of the CO2 plume position is quantified due to the propagation from parametric uncertainty in the numerical experiments, which is also compared to the actual plume from the 'true' model. Results prove that the approach is computationally efficient for multi-modal optimization and prediction uncertainty quantification for computationally expensive simulation models. Both our inverse methodology and findings can be broadly applicable to GCS in heterogeneous storage formations.

  7. Optimizing placements of ground-based snow sensors for areal snow cover estimation using a machine-learning algorithm and melt-season snow-LiDAR data

    NASA Astrophysics Data System (ADS)

    Oroza, C.; Zheng, Z.; Glaser, S. D.; Bales, R. C.; Conklin, M. H.

    2016-12-01

    We present a structured, analytical approach to optimize ground-sensor placements based on time-series remotely sensed (LiDAR) data and machine-learning algorithms. We focused on catchments within the Merced and Tuolumne river basins, covered by the JPL Airborne Snow Observatory LiDAR program. First, we used a Gaussian mixture model to identify representative sensor locations in the space of independent variables for each catchment. Multiple independent variables that govern the distribution of snow depth were used, including elevation, slope, and aspect. Second, we used a Gaussian process to estimate the areal distribution of snow depth from the initial set of measurements. This is a covariance-based model that also estimates the areal distribution of model uncertainty based on the independent variable weights and autocorrelation. The uncertainty raster was used to strategically add sensors to minimize model uncertainty. We assessed the temporal accuracy of the method using LiDAR-derived snow-depth rasters collected in water-year 2014. In each area, optimal sensor placements were determined using the first available snow raster for the year. The accuracy in the remaining LiDAR surveys was compared to 100 configurations of sensors selected at random. We found the accuracy of the model from the proposed placements to be higher and more consistent in each remaining survey than the average random configuration. We found that a relatively small number of sensors can be used to accurately reproduce the spatial patterns of snow depth across the basins, when placed using spatial snow data. Our approach also simplifies sensor placement. At present, field surveys are required to identify representative locations for such networks, a process that is labor intensive and provides limited guarantees on the networks' representation of catchment independent variables.

  8. Numerical approach for unstructured quantum key distribution

    PubMed Central

    Coles, Patrick J.; Metodiev, Eric M.; Lütkenhaus, Norbert

    2016-01-01

    Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with symmetries, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. Here we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study ‘unstructured' protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which markedly reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown. PMID:27198739

  9. Feasibility of Decentralized Linear-Quadratic-Gaussian Control of Autonomous Distributed Spacecraft

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell

    1999-01-01

    A distributed satellite formation, modeled as an arbitrary number of fully connected nodes in a network, could be controlled using a decentralized controller framework that distributes operations in parallel over the network. For such problems, a solution that minimizes data transmission requirements, in the context of linear-quadratic-Gaussian (LQG) control theory, was given by Speyer. This approach is advantageous because it is non-hierarchical, detected failures gracefully degrade system performance, fewer local computations are required than for a centralized controller, and it is optimal with respect to the standard LQG cost function. Disadvantages of the approach are the need for a fully connected communications network, the total operations performed over all the nodes are greater than for a centralized controller, and the approach is formulated for linear time-invariant systems. To investigate the feasibility of the decentralized approach to satellite formation flying, a simple centralized LQG design for a spacecraft orbit control problem is adapted to the decentralized framework. The simple design uses a fixed reference trajectory (an equatorial, Keplerian, circular orbit), and by appropriate choice of coordinates and measurements is formulated as a linear time-invariant system.

  10. Optimal Power Control in Wireless Powered Sensor Networks: A Dynamic Game-Based Approach

    PubMed Central

    Xu, Haitao; Guo, Chao; Zhang, Long

    2017-01-01

    In wireless powered sensor networks (WPSN), it is essential to research uplink transmit power control in order to achieve throughput performance balancing and energy scheduling. Each sensor should have an optimal transmit power level for revenue maximization. In this paper, we discuss a dynamic game-based algorithm for optimal power control in WPSN. The main idea is to use the non-cooperative differential game to control the uplink transmit power of wireless sensors in WPSN, to extend their working hours and to meet QoS (Quality of Services) requirements. Subsequently, the Nash equilibrium solutions are obtained through Bellman dynamic programming. At the same time, an uplink power control algorithm is proposed in a distributed manner. Through numerical simulations, we demonstrate that our algorithm can obtain optimal power control and reach convergence for an infinite horizon. PMID:28282945

  11. Unified anomaly suppression and boundary extraction in laser radar range imagery based on a joint curve-evolution and expectation-maximization algorithm.

    PubMed

    Feng, Haihua; Karl, William Clem; Castañon, David A

    2008-05-01

    In this paper, we develop a new unified approach for laser radar range anomaly suppression, range profiling, and segmentation. This approach combines an object-based hybrid scene model for representing the range distribution of the field and a statistical mixture model for the range data measurement noise. The image segmentation problem is formulated as a minimization problem which jointly estimates the target boundary together with the target region range variation and background range variation directly from the noisy and anomaly-filled range data. This formulation allows direct incorporation of prior information concerning the target boundary, target ranges, and background ranges into an optimal reconstruction process. Curve evolution techniques and a generalized expectation-maximization algorithm are jointly employed as an efficient solver for minimizing the objective energy, resulting in a coupled pair of object and intensity optimization tasks. The method directly and optimally extracts the target boundary, avoiding a suboptimal two-step process involving image smoothing followed by boundary extraction. Experiments are presented demonstrating that the proposed approach is robust to anomalous pixels (missing data) and capable of producing accurate estimation of the target boundary and range values from noisy data.

  12. DMS Advanced Applications for Accommodating High Penetrations of DERs and Microgrids: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, Annabelle; Veda, Santosh; Maitra, Arindam

    Efficient and effective management of the electrical distribution system requires an integrated system approach for Distribution Management Systems (DMS), Distributed Energy Resources (DERs), Distributed Energy Resources Management System (DERMS), and microgrids to work in harmony. This paper highlights some of the outcomes from a U.S. Department of Energy (DOE), Office of Electricity (OE) project, including 1) Architecture of these integrated systems, and 2) Expanded functions of two example DMS applications, Volt-VAR optimization (VVO) and Fault Location, Isolation and Service Restoration (FLISR), to accommodate DER. For these two example applications, the relevant DER Group Functions necessary to support communication between DMSmore » and Microgrid Controller (MC) in grid-tied mode are identified.« less

  13. Zone-boundary optimization for direct laser writing of continuous-relief diffractive optical elements.

    PubMed

    Korolkov, Victor P; Nasyrov, Ruslan K; Shimansky, Ruslan V

    2006-01-01

    Enhancing the diffraction efficiency of continuous-relief diffractive optical elements fabricated by direct laser writing is discussed. A new method of zone-boundary optimization is proposed to correct exposure data only in narrow areas along the boundaries of diffractive zones. The optimization decreases the loss of diffraction efficiency related to convolution of a desired phase profile with a writing-beam intensity distribution. A simplified stepped transition function that describes optimized exposure data near zone boundaries can be made universal for a wide range of zone periods. The approach permits a similar increase in the diffraction efficiency as an individual-pixel optimization but with fewer computation efforts. Computer simulations demonstrated that the zone-boundary optimization for a 6 microm period grating increases the efficiency by 7% and 14.5% for 0.6 microm and 1.65 microm writing-spot diameters, respectively. The diffraction efficiency of as much as 65%-90% for 4-10 microm zone periods was obtained experimentally with this method.

  14. Confronting dynamics and uncertainty in optimal decision making for conservation

    USGS Publications Warehouse

    Williams, Byron K.; Johnson, Fred A.

    2013-01-01

    The effectiveness of conservation efforts ultimately depends on the recognition that decision making, and the systems that it is designed to affect, are inherently dynamic and characterized by multiple sources of uncertainty. To cope with these challenges, conservation planners are increasingly turning to the tools of decision analysis, especially dynamic optimization methods. Here we provide a general framework for optimal, dynamic conservation and then explore its capacity for coping with various sources and degrees of uncertainty. In broadest terms, the dynamic optimization problem in conservation is choosing among a set of decision options at periodic intervals so as to maximize some conservation objective over the planning horizon. Planners must account for immediate objective returns, as well as the effect of current decisions on future resource conditions and, thus, on future decisions. Undermining the effectiveness of such a planning process are uncertainties concerning extant resource conditions (partial observability), the immediate consequences of decision choices (partial controllability), the outcomes of uncontrolled, environmental drivers (environmental variation), and the processes structuring resource dynamics (structural uncertainty). Where outcomes from these sources of uncertainty can be described in terms of probability distributions, a focus on maximizing the expected objective return, while taking state-specific actions, is an effective mechanism for coping with uncertainty. When such probability distributions are unavailable or deemed unreliable, a focus on maximizing robustness is likely to be the preferred approach. Here the idea is to choose an action (or state-dependent policy) that achieves at least some minimum level of performance regardless of the (uncertain) outcomes. We provide some examples of how the dynamic optimization problem can be framed for problems involving management of habitat for an imperiled species, conservation of a critically endangered population through captive breeding, control of invasive species, construction of biodiversity reserves, design of landscapes to increase habitat connectivity, and resource exploitation. Although these decision making problems and their solutions present significant challenges, we suggest that a systematic and effective approach to dynamic decision making in conservation need not be an onerous undertaking. The requirements are shared with any systematic approach to decision making--a careful consideration of values, actions, and outcomes.

  15. Confronting dynamics and uncertainty in optimal decision making for conservation

    NASA Astrophysics Data System (ADS)

    Williams, Byron K.; Johnson, Fred A.

    2013-06-01

    The effectiveness of conservation efforts ultimately depends on the recognition that decision making, and the systems that it is designed to affect, are inherently dynamic and characterized by multiple sources of uncertainty. To cope with these challenges, conservation planners are increasingly turning to the tools of decision analysis, especially dynamic optimization methods. Here we provide a general framework for optimal, dynamic conservation and then explore its capacity for coping with various sources and degrees of uncertainty. In broadest terms, the dynamic optimization problem in conservation is choosing among a set of decision options at periodic intervals so as to maximize some conservation objective over the planning horizon. Planners must account for immediate objective returns, as well as the effect of current decisions on future resource conditions and, thus, on future decisions. Undermining the effectiveness of such a planning process are uncertainties concerning extant resource conditions (partial observability), the immediate consequences of decision choices (partial controllability), the outcomes of uncontrolled, environmental drivers (environmental variation), and the processes structuring resource dynamics (structural uncertainty). Where outcomes from these sources of uncertainty can be described in terms of probability distributions, a focus on maximizing the expected objective return, while taking state-specific actions, is an effective mechanism for coping with uncertainty. When such probability distributions are unavailable or deemed unreliable, a focus on maximizing robustness is likely to be the preferred approach. Here the idea is to choose an action (or state-dependent policy) that achieves at least some minimum level of performance regardless of the (uncertain) outcomes. We provide some examples of how the dynamic optimization problem can be framed for problems involving management of habitat for an imperiled species, conservation of a critically endangered population through captive breeding, control of invasive species, construction of biodiversity reserves, design of landscapes to increase habitat connectivity, and resource exploitation. Although these decision making problems and their solutions present significant challenges, we suggest that a systematic and effective approach to dynamic decision making in conservation need not be an onerous undertaking. The requirements are shared with any systematic approach to decision making—a careful consideration of values, actions, and outcomes.

  16. Nonparametric density estimation and optimal bandwidth selection for protein unfolding and unbinding data

    NASA Astrophysics Data System (ADS)

    Bura, E.; Zhmurov, A.; Barsegov, V.

    2009-01-01

    Dynamic force spectroscopy and steered molecular simulations have become powerful tools for analyzing the mechanical properties of proteins, and the strength of protein-protein complexes and aggregates. Probability density functions of the unfolding forces and unfolding times for proteins, and rupture forces and bond lifetimes for protein-protein complexes allow quantification of the forced unfolding and unbinding transitions, and mapping the biomolecular free energy landscape. The inference of the unknown probability distribution functions from the experimental and simulated forced unfolding and unbinding data, as well as the assessment of analytically tractable models of the protein unfolding and unbinding requires the use of a bandwidth. The choice of this quantity is typically subjective as it draws heavily on the investigator's intuition and past experience. We describe several approaches for selecting the "optimal bandwidth" for nonparametric density estimators, such as the traditionally used histogram and the more advanced kernel density estimators. The performance of these methods is tested on unimodal and multimodal skewed, long-tailed distributed data, as typically observed in force spectroscopy experiments and in molecular pulling simulations. The results of these studies can serve as a guideline for selecting the optimal bandwidth to resolve the underlying distributions from the forced unfolding and unbinding data for proteins.

  17. Developing Portfolios of Water Supply Transfers

    NASA Astrophysics Data System (ADS)

    Characklis, G. W.; Kirsch, B. R.; Ramsey, J.; Dillard, K. E.; Kelley, C. T.

    2005-12-01

    Most cities rely on firm water supply capacity to meet demand, but increasing scarcity and supply costs are encouraging greater use of temporary transfers (e.g., spot leases, options). This raises questions regarding how best to coordinate the use of these transfers in meeting cost and reliability objectives. This work combines a hydrologic-water market simulation with an optimization approach to identify portfolios of permanent rights, options and leases that minimize expected costs of meeting a city's annual demand with a specified reliability. Spot market prices are linked to hydrologic conditions and described by monthly lease price distributions which are used to price options via a risk neutral approach. Monthly choices regarding when and how much water to acquire through temporary transfers are made on the basis of anticipatory decision rules related to the ratio of expected supply-to-expected demand. The simulation is linked with an algorithm that uses an implicit filtering search method designed for solution surfaces that exhibit high frequency, low amplitude noise. This simulation-optimization approach is applied to a region that currently supports an active water market, with results suggesting that the use of temporary transfers can reduce expected water supply costs substantially, while still maintaining high reliability levels. Also evaluated are tradeoffs between expected costs and cost variability that occur with variation in a portfolio's distribution of rights, options and leases. While this work represents firm supply capacity as permanent water rights, a similar approach could be used to develop portfolios integrating options and/or leases with hard supply infrastructure.

  18. Experimental characterization of a bi-dimensional array of negative capacitance piezo-patches for vibroacoustic control

    NASA Astrophysics Data System (ADS)

    Tateo, F.; Collet, M.; Ouisse, M.; Ichchou, M. N.; Cunefare, K. A.

    2013-04-01

    A recent technological revolution in the fields of integrated MEMS has finally rendered possible the mechanical integration of active smart materials, electronics and power supply systems for the next generation of smart composite structures. Using a bi-dimensional array of electromechanical transducers, composed by piezo-patches connected to a synthetic negative capacitance, it is possible to modify the dynamics of the underlying structure. In this study, we present an application of the Floquet-Bloch theorem for vibroacoustic power flow optimization, by means of distributed shunted piezoelectric material. In the context of periodically distributed damped 2D mechanical systems, this numerical approach allows one to compute the multi-modal waves dispersion curves into the entire first Brillouin zone. This approach also permits optimization of the piezoelectric shunting electrical impedance, which controls energy diffusion into the proposed semi-active distributed set of cells. Furthermore, we present experimental evidence that proves the effectiveness of the proposed control method. The experiment requires a rectangular metallic plate equipped with seventy-five piezo-patches, controlled independently by electronic circuits. More specifically, the out-of-plane displacements and the averaged kinetic energy of the controlled plate are compared in two different cases (open-circuit and controlled circuit). The resulting data clearly show how this proposed technique is able to damp and selectively reflect the incident waves.

  19. Real-Time Optimization and Control of Next-Generation Distribution

    Science.gov Websites

    Infrastructure | Grid Modernization | NREL Real-Time Optimization and Control of Next -Generation Distribution Infrastructure Real-Time Optimization and Control of Next-Generation Distribution Infrastructure This project develops innovative, real-time optimization and control methods for next-generation

  20. On Reducing Delay in Mesh-Based P2P Streaming: A Mesh-Push Approach

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Xue, Kaiping; Hong, Peilin

    The peer-assisted streaming paradigm has been widely employed to distribute live video data on the internet recently. In general, the mesh-based pull approach is more robust and efficient than the tree-based push approach. However, pull protocol brings about longer streaming delay, which is caused by the handshaking process of advertising buffer map message, sending request message and scheduling of the data block. In this paper, we propose a new approach, mesh-push, to address this issue. Different from the traditional pull approach, mesh-push implements block scheduling algorithm at sender side, where the block transmission is initiated by the sender rather than by the receiver. We first formulate the optimal upload bandwidth utilization problem, then present the mesh-push approach, in which a token protocol is designed to avoid block redundancy; a min-cost flow model is employed to derive the optimal scheduling for the push peer; and a push peer selection algorithm is introduced to reduce control overhead. Finally, we evaluate mesh-push through simulation, the results of which show mesh-push outperforms the pull scheduling in streaming delay, and achieves comparable delivery ratio at the same time.

  1. Improvement of mechanical behaviors of a superlight Mg-Li base alloy by duplex phases and fine precipitates

    DOE PAGES

    Zou, Yun; Zhang, Lehao; Li, Yang; ...

    2017-12-06

    Limitations of strength and formability are the major obstacles to the industrial application of magnesium alloys. Here, we demonstrate, by producing the duplex phases and fine intermetallic particles in composition-optimized superlight Mg-Li-Al alloys, a unique approach to simultaneously improve the comprehensive mechanical properties (a strength-ductility balance). In conclusion, the phase components and microstructures, including the size, morphology, and distribution of precipitated-intermetallic particles can be optimized by tuning the Li content, which strongly influences the work-hardening behavior and tension-compression yield asymmetry.

  2. Distribution path robust optimization of electric vehicle with multiple distribution centers

    PubMed Central

    Hao, Wei; He, Ruichun; Jia, Xiaoyan; Pan, Fuquan; Fan, Jing; Xiong, Ruiqi

    2018-01-01

    To identify electrical vehicle (EV) distribution paths with high robustness, insensitivity to uncertainty factors, and detailed road-by-road schemes, optimization of the distribution path problem of EV with multiple distribution centers and considering the charging facilities is necessary. With the minimum transport time as the goal, a robust optimization model of EV distribution path with adjustable robustness is established based on Bertsimas’ theory of robust discrete optimization. An enhanced three-segment genetic algorithm is also developed to solve the model, such that the optimal distribution scheme initially contains all road-by-road path data using the three-segment mixed coding and decoding method. During genetic manipulation, different interlacing and mutation operations are carried out on different chromosomes, while, during population evolution, the infeasible solution is naturally avoided. A part of the road network of Xifeng District in Qingyang City is taken as an example to test the model and the algorithm in this study, and the concrete transportation paths are utilized in the final distribution scheme. Therefore, more robust EV distribution paths with multiple distribution centers can be obtained using the robust optimization model. PMID:29518169

  3. Optimizing DER Participation in Inertial and Primary-Frequency Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall-Anese, Emiliano; Zhao, Changhong; Guggilam, Swaroop

    This paper develops an approach to enable the optimal participation of distributed energy resources (DERs) in inertial and primary-frequency response alongside conventional synchronous generators. Leveraging a reduced-order model description of frequency dynamics, DERs' synthetic inertias and droop coefficients are designed to meet time-domain performance objectives of frequency overshoot and steady-state regulation. Furthermore, an optimization-based method centered around classical economic dispatch is developed to ensure that DERs share the power injections for inertial- and primary-frequency response in proportion to their power ratings. Simulations for a modified New England test-case system composed of ten synchronous generators and six instances of the IEEEmore » 37-node test feeder with frequency-responsive DERs validate the design strategy.« less

  4. Memory-efficient dynamic programming backtrace and pairwise local sequence alignment.

    PubMed

    Newberg, Lee A

    2008-08-15

    A backtrace through a dynamic programming algorithm's intermediate results in search of an optimal path, or to sample paths according to an implied probability distribution, or as the second stage of a forward-backward algorithm, is a task of fundamental importance in computational biology. When there is insufficient space to store all intermediate results in high-speed memory (e.g. cache) existing approaches store selected stages of the computation, and recompute missing values from these checkpoints on an as-needed basis. Here we present an optimal checkpointing strategy, and demonstrate its utility with pairwise local sequence alignment of sequences of length 10,000. Sample C++-code for optimal backtrace is available in the Supplementary Materials. Supplementary data is available at Bioinformatics online.

  5. A random optimization approach for inherent optic properties of nearshore waters

    NASA Astrophysics Data System (ADS)

    Zhou, Aijun; Hao, Yongshuai; Xu, Kuo; Zhou, Heng

    2016-10-01

    Traditional method of water quality sampling is time-consuming and highly cost. It can not meet the needs of social development. Hyperspectral remote sensing technology has well time resolution, spatial coverage and more general segment information on spectrum. It has a good potential in water quality supervision. Via the method of semi-analytical, remote sensing information can be related with the water quality. The inherent optical properties are used to quantify the water quality, and an optical model inside the water is established to analysis the features of water. By stochastic optimization algorithm Threshold Acceptance, a global optimization of the unknown model parameters can be determined to obtain the distribution of chlorophyll, organic solution and suspended particles in water. Via the improvement of the optimization algorithm in the search step, the processing time will be obviously reduced, and it will create more opportunity for the increasing the number of parameter. For the innovation definition of the optimization steps and standard, the whole inversion process become more targeted, thus improving the accuracy of inversion. According to the application result for simulated data given by IOCCG and field date provided by NASA, the approach model get continuous improvement and enhancement. Finally, a low-cost, effective retrieval model of water quality from hyper-spectral remote sensing can be achieved.

  6. Using game theory for perceptual tuned rate control algorithm in video coding

    NASA Astrophysics Data System (ADS)

    Luo, Jiancong; Ahmad, Ishfaq

    2005-03-01

    This paper proposes a game theoretical rate control technique for video compression. Using a cooperative gaming approach, which has been utilized in several branches of natural and social sciences because of its enormous potential for solving constrained optimization problems, we propose a dual-level scheme to optimize the perceptual quality while guaranteeing "fairness" in bit allocation among macroblocks. At the frame level, the algorithm allocates target bits to frames based on their coding complexity. At the macroblock level, the algorithm distributes bits to macroblocks by defining a bargaining game. Macroblocks play cooperatively to compete for shares of resources (bits) to optimize their quantization scales while considering the Human Visual System"s perceptual property. Since the whole frame is an entity perceived by viewers, macroblocks compete cooperatively under a global objective of achieving the best quality with the given bit constraint. The major advantage of the proposed approach is that the cooperative game leads to an optimal and fair bit allocation strategy based on the Nash Bargaining Solution. Another advantage is that it allows multi-objective optimization with multiple decision makers (macroblocks). The simulation results testify the algorithm"s ability to achieve accurate bit rate with good perceptual quality, and to maintain a stable buffer level.

  7. Engineering the on-axis intensity of Bessel beam by a feedback tuning loop

    NASA Astrophysics Data System (ADS)

    Li, Runze; Yu, Xianghua; Yang, Yanlong; Peng, Tong; Yao, Baoli; Zhang, Chunmin; Ye, Tong

    2018-02-01

    The Bessel beam belongs to a typical class of non-diffractive optical fields that are characterized by their invariant focal profiles along the propagation direction. However, ideal Bessel beams only rigorously exist in theory; Bessel beams generated in the lab are quasi-Bessel beams with finite focal extensions and varying intensity profiles along the propagation axis. The ability to engineer the on-axis intensity profile to the desired shape is essential for many applications. Here we demonstrate an iterative optimization-based approach to engineering the on-axis intensity of Bessel beams. The genetic algorithm is used to demonstrate this approach. Starting with a traditional axicon phase mask, in the design process, the computed on-axis beam profile is fed into a feedback tuning loop of an iterative optimization process, which searches for an optimal radial phase distribution that can generate a generalized Bessel beam with the desired onaxis intensity profile. The experimental implementation involves a fine-tuning process that adjusts the originally targeted profile so that the optimization process can optimize the phase mask to yield an improved on-axis profile. Our proposed method has been demonstrated in engineering several zeroth-order Bessel beams with customized on-axis profiles. High accuracy and high energy throughput merit its use in many applications.

  8. [Carbon footprint of buildings in the urban agglomeration of central Liaoning, China].

    PubMed

    Shi, Yu; Yun, Ying Xia; Liu, Chong; Chu, Ya Qi

    2017-06-18

    With the development of urbanization in China, buildings consumed lots of material and energy. How to estimate carbon emission of buildings is an important scientific problem. Carbon footprint of the central Liaoning agglomeration was studied with carbon footprint approach, geographic information system (GIS) and high-resolution remote sensing (HRRS) technology. The results showed that the construction carbon footprint coefficient of central Liaoning urban agglomeration was 269.16 kg·m -2 . The approach of interpreting total building area and spatial distribution with HRRS was effective, and the accuracy was 89%. The extraction approach was critical for total carbon footprint and spatial distribution estimation. The building area and total carbon footprint of central Liaoning urban agglomeration in descending order was Shenyang, Anshan, Fushun, Liao-yang, Yingkou, Tieling and Benxi. The annual average increment of footprint from 2011 to 2013 in descending order was Shenyang, Benxi, Fushun, Anshan, Tieling, Yingkou and Liaoyang. The accurate estimation of construction carbon footprint spatial and its distribution was of significance for the planning and optimization of carbon emission reduction.

  9. A Facile pH Controlled Citrate-Based Reduction Method for Gold Nanoparticle Synthesis at Room Temperature.

    PubMed

    Tyagi, Himanshu; Kushwaha, Ajay; Kumar, Anshuman; Aslam, Mohammed

    2016-12-01

    The synthesis of gold nanoparticles using citrate reduction process has been revisited. A simplified room temperature approach to standard Turkevich synthesis is employed to obtain fairly monodisperse gold nanoparticles. The role of initial pH alongside the concentration ratio of reactants is explored for the size control of Au nanoparticles. The particle size distribution has been investigated using UV-vis spectroscopy and transmission electron microscope (TEM). At optimal pH of 5, gold nanoparticles obtained are highly monodisperse and spherical in shape and have narrower size distribution (sharp surface plasmon at 520 nm). For other pH conditions, particles are non-uniform and polydisperse, showing a red-shift in plasmon peak due to aggregation and large particle size distribution. The room temperature approach results in highly stable "colloidal" suspension of gold nanoparticles. The stability test through absorption spectroscopy indicates no sign of aggregation for a month. The rate of reduction of auric ionic species by citrate ions is determined via UV absorbance studies. The size of nanoparticles under various conditions is thus predicted using a theoretical model that incorporates nucleation, growth, and aggregation processes. The faster rate of reduction yields better size distribution for optimized pH and reactant concentrations. The model involves solving population balance equation for continuously evolving particle size distribution by discretization techniques. The particle sizes estimated from the simulations (13 to 25 nm) are close to the experimental ones (10 to 32 nm) and corroborate the similarity of reaction processes at 300 and 373 K (classical Turkevich reaction). Thus, substitution of experimentally measured rate of disappearance of auric ionic species into theoretical model enables us to capture the unusual experimental observations.

  10. Control and Communication for a Secure and Reconfigurable Power Distribution System

    NASA Astrophysics Data System (ADS)

    Giacomoni, Anthony Michael

    A major transformation is taking place throughout the electric power industry to overlay existing electric infrastructure with advanced sensing, communications, and control system technologies. This transformation to a smart grid promises to enhance system efficiency, increase system reliability, support the electrification of transportation, and provide customers with greater control over their electricity consumption. Upgrading control and communication systems for the end-to-end electric power grid, however, will present many new security challenges that must be dealt with before extensive deployment and implementation of these technologies can begin. In this dissertation, a comprehensive systems approach is taken to minimize and prevent cyber-physical disturbances to electric power distribution systems using sensing, communications, and control system technologies. To accomplish this task, an intelligent distributed secure control (IDSC) architecture is presented and validated in silico for distribution systems to provide greater adaptive protection, with the ability to proactively reconfigure, and rapidly respond to disturbances. Detailed descriptions of functionalities at each layer of the architecture as well as the whole system are provided. To compare the performance of the IDSC architecture with that of other control architectures, an original simulation methodology is developed. The simulation model integrates aspects of cyber-physical security, dynamic price and demand response, sensing, communications, intermittent distributed energy resources (DERs), and dynamic optimization and reconfiguration. Applying this comprehensive systems approach, performance results for the IEEE 123 node test feeder are simulated and analyzed. The results show the trade-offs between system reliability, operational constraints, and costs for several control architectures and optimization algorithms. Additional simulation results are also provided. In particular, the advantages of an IDSC architecture are highlighted when an intermittent DER is present on the system.

  11. Mapping Wintering Waterfowl Distributions Using Weather Surveillance Radar

    PubMed Central

    Buler, Jeffrey J.; Randall, Lori A.; Fleskes, Joseph P.; Barrow, Wylie C.; Bogart, Tianna; Kluver, Daria

    2012-01-01

    The current network of weather surveillance radars within the United States readily detects flying birds and has proven to be a useful remote-sensing tool for ornithological study. Radar reflectivity measures serve as an index to bird density and have been used to quantitatively map landbird distributions during migratory stopover by sampling birds aloft at the onset of nocturnal migratory flights. Our objective was to further develop and validate a similar approach for mapping wintering waterfowl distributions using weather surveillance radar observations at the onset of evening flights. We evaluated data from the Sacramento, CA radar (KDAX) during winters 1998–1999 and 1999–2000. We determined an optimal sampling time by evaluating the accuracy and precision of radar observations at different times during the onset of evening flight relative to observed diurnal distributions of radio-marked birds on the ground. The mean time of evening flight initiation occurred 23 min after sunset with the strongest correlations between reflectivity and waterfowl density on the ground occurring almost immediately after flight initiation. Radar measures became more spatially homogeneous as evening flight progressed because birds dispersed from their departure locations. Radars effectively detected birds to a mean maximum range of 83 km during the first 20 min of evening flight. Using a sun elevation angle of −5° (28 min after sunset) as our optimal sampling time, we validated our approach using KDAX data and additional data from the Beale Air Force Base, CA (KBBX) radar during winter 1998–1999. Bias-adjusted radar reflectivity of waterfowl aloft was positively related to the observed diurnal density of radio-marked waterfowl locations on the ground. Thus, weather radars provide accurate measures of relative wintering waterfowl density that can be used to comprehensively map their distributions over large spatial extents. PMID:22911816

  12. Mapping wintering waterfowl distributions using weather surveillance radar.

    PubMed

    Buler, Jeffrey J; Randall, Lori A; Fleskes, Joseph P; Barrow, Wylie C; Bogart, Tianna; Kluver, Daria

    2012-01-01

    The current network of weather surveillance radars within the United States readily detects flying birds and has proven to be a useful remote-sensing tool for ornithological study. Radar reflectivity measures serve as an index to bird density and have been used to quantitatively map landbird distributions during migratory stopover by sampling birds aloft at the onset of nocturnal migratory flights. Our objective was to further develop and validate a similar approach for mapping wintering waterfowl distributions using weather surveillance radar observations at the onset of evening flights. We evaluated data from the Sacramento, CA radar (KDAX) during winters 1998-1999 and 1999-2000. We determined an optimal sampling time by evaluating the accuracy and precision of radar observations at different times during the onset of evening flight relative to observed diurnal distributions of radio-marked birds on the ground. The mean time of evening flight initiation occurred 23 min after sunset with the strongest correlations between reflectivity and waterfowl density on the ground occurring almost immediately after flight initiation. Radar measures became more spatially homogeneous as evening flight progressed because birds dispersed from their departure locations. Radars effectively detected birds to a mean maximum range of 83 km during the first 20 min of evening flight. Using a sun elevation angle of -5° (28 min after sunset) as our optimal sampling time, we validated our approach using KDAX data and additional data from the Beale Air Force Base, CA (KBBX) radar during winter 1998-1999. Bias-adjusted radar reflectivity of waterfowl aloft was positively related to the observed diurnal density of radio-marked waterfowl locations on the ground. Thus, weather radars provide accurate measures of relative wintering waterfowl density that can be used to comprehensively map their distributions over large spatial extents.

  13. A fuzzy adaptive network approach to parameter estimation in cases where independent variables come from an exponential distribution

    NASA Astrophysics Data System (ADS)

    Dalkilic, Turkan Erbay; Apaydin, Aysen

    2009-11-01

    In a regression analysis, it is assumed that the observations come from a single class in a data cluster and the simple functional relationship between the dependent and independent variables can be expressed using the general model; Y=f(X)+[epsilon]. However; a data cluster may consist of a combination of observations that have different distributions that are derived from different clusters. When faced with issues of estimating a regression model for fuzzy inputs that have been derived from different distributions, this regression model has been termed the [`]switching regression model' and it is expressed with . Here li indicates the class number of each independent variable and p is indicative of the number of independent variables [J.R. Jang, ANFIS: Adaptive-network-based fuzzy inference system, IEEE Transaction on Systems, Man and Cybernetics 23 (3) (1993) 665-685; M. Michel, Fuzzy clustering and switching regression models using ambiguity and distance rejects, Fuzzy Sets and Systems 122 (2001) 363-399; E.Q. Richard, A new approach to estimating switching regressions, Journal of the American Statistical Association 67 (338) (1972) 306-310]. In this study, adaptive networks have been used to construct a model that has been formed by gathering obtained models. There are methods that suggest the class numbers of independent variables heuristically. Alternatively, in defining the optimal class number of independent variables, the use of suggested validity criterion for fuzzy clustering has been aimed. In the case that independent variables have an exponential distribution, an algorithm has been suggested for defining the unknown parameter of the switching regression model and for obtaining the estimated values after obtaining an optimal membership function, which is suitable for exponential distribution.

  14. Designing optimized multi-species monitoring networks to detect range shifts driven by climate change: a case study with bats in the North of Portugal.

    PubMed

    Amorim, Francisco; Carvalho, Sílvia B; Honrado, João; Rebelo, Hugo

    2014-01-01

    Here we develop a framework to design multi-species monitoring networks using species distribution models and conservation planning tools to optimize the location of monitoring stations to detect potential range shifts driven by climate change. For this study, we focused on seven bat species in Northern Portugal (Western Europe). Maximum entropy modelling was used to predict the likely occurrence of those species under present and future climatic conditions. By comparing present and future predicted distributions, we identified areas where each species is likely to gain, lose or maintain suitable climatic space. We then used a decision support tool (the Marxan software) to design three optimized monitoring networks considering: a) changes in species likely occurrence, b) species conservation status, and c) level of volunteer commitment. For present climatic conditions, species distribution models revealed that areas suitable for most species occur in the north-eastern part of the region. However, areas predicted to become climatically suitable in the future shifted towards west. The three simulated monitoring networks, adaptable for an unpredictable volunteer commitment, included 28, 54 and 110 sampling locations respectively, distributed across the study area and covering the potential full range of conditions where species range shifts may occur. Our results show that our framework outperforms the traditional approach that only considers current species ranges, in allocating monitoring stations distributed across different categories of predicted shifts in species distributions. This study presents a straightforward framework to design monitoring schemes aimed specifically at testing hypotheses about where and when species ranges may shift with climatic changes, while also ensuring surveillance of general population trends.

  15. Multi-material size optimization of a ladder frame chassis

    NASA Astrophysics Data System (ADS)

    Baker, Michael

    The Corporate Average Fuel Economy (CAFE) is an American fuel standard that sets regulations on fuel economy in vehicles. This law ultimately shapes the development and design research for automakers. Reducing the weight of conventional cars offers a way to improve fuel efficiency. This research investigated the optimality of an automobile's ladder frame chassis (LFC) by conducting multi-objective optimization on the LFC in order to reduce the weight of the chassis. The focus of the design and optimization was a ladder frame chassis commonly used for mass production light motor vehicles with an open-top rear cargo area. This thesis is comprised of two major sections. The first looked to perform thickness optimization in the outer walls of the ladder frame. In the second section, many multi-material distributions, including steel and aluminium varieties, were investigated. A simplified model was used to do an initial hand calculation analysis of the problem. This was used to create a baseline validation to compare the theory with the modeling. A CAD model of the LFC was designed. From the CAD model, a finite element model was extracted and joined using weld and bolt connectors. Following this, a linear static analysis was performed to look at displacement and stresses when subjected to loading conditions that simulate harsh driving conditions. The analysis showed significant values of stress and displacement on the ends of the rails, suggesting improvements could be made elsewhere. An optimization scheme was used to find the values of an all steel frame an optimal thickness distribution was found. This provided a 13% weight reduction over the initial model. To advance the analysis a multi-material approach was used to push the weight savings even further. Several material distributions were analyzed and the lightest utilized aluminium in all but the most strenuous subjected components. This enabled a reduction in weight of 15% over the initial model, equivalent to approximately 1 mile per gallon (MPG) in fuel economy.

  16. Intelligent and robust optimization frameworks for smart grids

    NASA Astrophysics Data System (ADS)

    Dhansri, Naren Reddy

    A smart grid implies a cyberspace real-time distributed power control system to optimally deliver electricity based on varying consumer characteristics. Although smart grids solve many of the contemporary problems, they give rise to new control and optimization problems with the growing role of renewable energy sources such as wind or solar energy. Under highly dynamic nature of distributed power generation and the varying consumer demand and cost requirements, the total power output of the grid should be controlled such that the load demand is met by giving a higher priority to renewable energy sources. Hence, the power generated from renewable energy sources should be optimized while minimizing the generation from non renewable energy sources. This research develops a demand-based automatic generation control and optimization framework for real-time smart grid operations by integrating conventional and renewable energy sources under varying consumer demand and cost requirements. Focusing on the renewable energy sources, the intelligent and robust control frameworks optimize the power generation by tracking the consumer demand in a closed-loop control framework, yielding superior economic and ecological benefits and circumvent nonlinear model complexities and handles uncertainties for superior real-time operations. The proposed intelligent system framework optimizes the smart grid power generation for maximum economical and ecological benefits under an uncertain renewable wind energy source. The numerical results demonstrate that the proposed framework is a viable approach to integrate various energy sources for real-time smart grid implementations. The robust optimization framework results demonstrate the effectiveness of the robust controllers under bounded power plant model uncertainties and exogenous wind input excitation while maximizing economical and ecological performance objectives. Therefore, the proposed framework offers a new worst-case deterministic optimization algorithm for smart grid automatic generation control.

  17. Inverse Planning Approach for 3-D MRI-Based Pulse-Dose Rate Intracavitary Brachytherapy in Cervix Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chajon, Enrique; Dumas, Isabelle; Touleimat, Mahmoud B.Sc.

    2007-11-01

    Purpose: The purpose of this study was to evaluate the inverse planning simulated annealing (IPSA) software for the optimization of dose distribution in patients with cervix carcinoma treated with MRI-based pulsed-dose rate intracavitary brachytherapy. Methods and Materials: Thirty patients treated with a technique using a customized vaginal mold were selected. Dose-volume parameters obtained using the IPSA method were compared with the classic manual optimization method (MOM). Target volumes and organs at risk were delineated according to the Gynecological Brachytherapy Group/European Society for Therapeutic Radiology and Oncology recommendations. Because the pulsed dose rate program was based on clinical experience with lowmore » dose rate, dwell time values were required to be as homogeneous as possible. To achieve this goal, different modifications of the IPSA program were applied. Results: The first dose distribution calculated by the IPSA algorithm proposed a heterogeneous distribution of dwell time positions. The mean D90, D100, and V100 calculated with both methods did not differ significantly when the constraints were applied. For the bladder, doses calculated at the ICRU reference point derived from the MOM differed significantly from the doses calculated by the IPSA method (mean, 58.4 vs. 55 Gy respectively; p = 0.0001). For the rectum, the doses calculated at the ICRU reference point were also significantly lower with the IPSA method. Conclusions: The inverse planning method provided fast and automatic solutions for the optimization of dose distribution. However, the straightforward use of IPSA generated significant heterogeneity in dwell time values. Caution is therefore recommended in the use of inverse optimization tools with clinical relevance study of new dosimetric rules.« less

  18. Robust Hydrological Forecasting for High-resolution Distributed Models Using a Unified Data Assimilation Approach

    NASA Astrophysics Data System (ADS)

    Hernandez, F.; Liang, X.

    2017-12-01

    Reliable real-time hydrological forecasting, to predict important phenomena such as floods, is invaluable to the society. However, modern high-resolution distributed models have faced challenges when dealing with uncertainties that are caused by the large number of parameters and initial state estimations involved. Therefore, to rely on these high-resolution models for critical real-time forecast applications, considerable improvements on the parameter and initial state estimation techniques must be made. In this work we present a unified data assimilation algorithm called Optimized PareTo Inverse Modeling through Inverse STochastic Search (OPTIMISTS) to deal with the challenge of having robust flood forecasting for high-resolution distributed models. This new algorithm combines the advantages of particle filters and variational methods in a unique way to overcome their individual weaknesses. The analysis of candidate particles compares model results with observations in a flexible time frame, and a multi-objective approach is proposed which attempts to simultaneously minimize differences with the observations and departures from the background states by using both Bayesian sampling and non-convex evolutionary optimization. Moreover, the resulting Pareto front is given a probabilistic interpretation through kernel density estimation to create a non-Gaussian distribution of the states. OPTIMISTS was tested on a low-resolution distributed land surface model using VIC (Variable Infiltration Capacity) and on a high-resolution distributed hydrological model using the DHSVM (Distributed Hydrology Soil Vegetation Model). In the tests streamflow observations are assimilated. OPTIMISTS was also compared with a traditional particle filter and a variational method. Results show that our method can reliably produce adequate forecasts and that it is able to outperform those resulting from assimilating the observations using a particle filter or an evolutionary 4D variational method alone. In addition, our method is shown to be efficient in tackling high-resolution applications with robust results.

  19. SU-F-J-133: Adaptive Radiation Therapy with a Four-Dimensional Dose Calculation Algorithm That Optimizes Dose Distribution Considering Breathing Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, I; Algan, O; Ahmad, S

    Purpose: To model patient motion and produce four-dimensional (4D) optimized dose distributions that consider motion-artifacts in the dose calculation during the treatment planning process. Methods: An algorithm for dose calculation is developed where patient motion is considered in dose calculation at the stage of the treatment planning. First, optimal dose distributions are calculated for the stationary target volume where the dose distributions are optimized considering intensity-modulated radiation therapy (IMRT). Second, a convolution-kernel is produced from the best-fitting curve which matches the motion trajectory of the patient. Third, the motion kernel is deconvolved with the initial dose distribution optimized for themore » stationary target to produce a dose distribution that is optimized in four-dimensions. This algorithm is tested with measured doses using a mobile phantom that moves with controlled motion patterns. Results: A motion-optimized dose distribution is obtained from the initial dose distribution of the stationary target by deconvolution with the motion-kernel of the mobile target. This motion-optimized dose distribution is equivalent to that optimized for the stationary target using IMRT. The motion-optimized and measured dose distributions are tested with the gamma index with a passing rate of >95% considering 3% dose-difference and 3mm distance-to-agreement. If the dose delivery per beam takes place over several respiratory cycles, then the spread-out of the dose distributions is only dependent on the motion amplitude and not affected by motion frequency and phase. This algorithm is limited to motion amplitudes that are smaller than the length of the target along the direction of motion. Conclusion: An algorithm is developed to optimize dose in 4D. Besides IMRT that provides optimal dose coverage for a stationary target, it extends dose optimization to 4D considering target motion. This algorithm provides alternative to motion management techniques such as beam-gating or breath-holding and has potential applications in adaptive radiation therapy.« less

  20. Optimum design of bolted composite lap joints under mechanical and thermal loading

    NASA Astrophysics Data System (ADS)

    Kradinov, Vladimir Yurievich

    A new approach is developed for the analysis and design of mechanically fastened composite lap joints under mechanical and thermal loading. Based on the combined complex potential and variational formulation, the solution method satisfies the equilibrium equations exactly while the boundary conditions are satisfied by minimizing the total potential. This approach is capable of modeling finite laminate planform dimensions, uniform and variable laminate thickness, laminate lay-up, interaction among bolts, bolt torque, bolt flexibility, bolt size, bolt-hole clearance and interference, insert dimensions and insert material properties. Comparing to the finite element analysis, the robustness of the method does not decrease when modeling the interaction of many bolts; also, the method is more suitable for parametric study and design optimization. The Genetic Algorithm (GA), a powerful optimization technique for multiple extrema functions in multiple dimensions search spaces, is applied in conjunction with the complex potential and variational formulation to achieve optimum designs of bolted composite lap joints. The objective of the optimization is to acquire such a design that ensures the highest strength of the joint. The fitness function for the GA optimization is based on the average stress failure criterion predicting net-section, shear-out, and bearing failure modes in bolted lap joints. The criterion accounts for the stress distribution in the thickness direction at the bolt location by applying an approach utilizing a beam on an elastic foundation formulation.

  1. Solar tower cavity receiver aperture optimization based on transient optical and thermo-hydraulic modeling

    NASA Astrophysics Data System (ADS)

    Schöttl, Peter; Bern, Gregor; van Rooyen, De Wet; Heimsath, Anna; Fluri, Thomas; Nitz, Peter

    2017-06-01

    A transient simulation methodology for cavity receivers for Solar Tower Central Receiver Systems with molten salt as heat transfer fluid is described. Absorbed solar radiation is modeled with ray tracing and a sky discretization approach to reduce computational effort. Solar radiation re-distribution in the cavity as well as thermal radiation exchange are modeled based on view factors, which are also calculated with ray tracing. An analytical approach is used to represent convective heat transfer in the cavity. Heat transfer fluid flow is simulated with a discrete tube model, where the boundary conditions at the outer tube surface mainly depend on inputs from the previously mentioned modeling aspects. A specific focus is put on the integration of optical and thermo-hydraulic models. Furthermore, aiming point and control strategies are described, which are used during the transient performance assessment. Eventually, the developed simulation methodology is used for the optimization of the aperture opening size of a PS10-like reference scenario with cavity receiver and heliostat field. The objective function is based on the cumulative gain of one representative day. Results include optimized aperture opening size, transient receiver characteristics and benefits of the implemented aiming point strategy compared to a single aiming point approach. Future work will include annual simulations, cost assessment and optimization of a larger range of receiver parameters.

  2. Cooperative inversion of magnetotelluric and seismic data sets

    NASA Astrophysics Data System (ADS)

    Markovic, M.; Santos, F.

    2012-04-01

    Cooperative inversion of magnetotelluric and seismic data sets Milenko Markovic,Fernando Monteiro Santos IDL, Faculdade de Ciências da Universidade de Lisboa 1749-016 Lisboa Inversion of single geophysical data has well-known limitations due to the non-linearity of the fields and non-uniqueness of the model. There is growing need, both in academy and industry to use two or more different data sets and thus obtain subsurface property distribution. In our case ,we are dealing with magnetotelluric and seismic data sets. In our approach,we are developing algorithm based on fuzzy-c means clustering technique, for pattern recognition of geophysical data. Separate inversion is performed on every step, information exchanged for model integration. Interrelationships between parameters from different models is not required in analytical form. We are investigating how different number of clusters, affects zonation and spatial distribution of parameters. In our study optimization in fuzzy c-means clustering (for magnetotelluric and seismic data) is compared for two cases, firstly alternating optimization and then hybrid method (alternating optimization+ Quasi-Newton method). Acknowledgment: This work is supported by FCT Portugal

  3. A New Methodology for Open Pit Slope Design in Karst-Prone Ground Conditions Based on Integrated Stochastic-Limit Equilibrium Analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Cao, Ping; Ma, Guowei; Fan, Wenchen; Meng, Jingjing; Li, Kaihui

    2016-07-01

    Using the Chengmenshan Copper Mine as a case study, a new methodology for open pit slope design in karst-prone ground conditions is presented based on integrated stochastic-limit equilibrium analysis. The numerical modeling and optimization design procedure contain a collection of drill core data, karst cave stochastic model generation, SLIDE simulation and bisection method optimization. Borehole investigations are performed, and the statistical result shows that the length of the karst cave fits a negative exponential distribution model, but the length of carbonatite does not exactly follow any standard distribution. The inverse transform method and acceptance-rejection method are used to reproduce the length of the karst cave and carbonatite, respectively. A code for karst cave stochastic model generation, named KCSMG, is developed. The stability of the rock slope with the karst cave stochastic model is analyzed by combining the KCSMG code and the SLIDE program. This approach is then applied to study the effect of the karst cave on the stability of the open pit slope, and a procedure to optimize the open pit slope angle is presented.

  4. Efficient Redundancy Techniques in Cloud and Desktop Grid Systems using MAP/G/c-type Queues

    NASA Astrophysics Data System (ADS)

    Chakravarthy, Srinivas R.; Rumyantsev, Alexander

    2018-03-01

    Cloud computing is continuing to prove its flexibility and versatility in helping industries and businesses as well as academia as a way of providing needed computing capacity. As an important alternative to cloud computing, desktop grids allow to utilize the idle computer resources of an enterprise/community by means of distributed computing system, providing a more secure and controllable environment with lower operational expenses. Further, both cloud computing and desktop grids are meant to optimize limited resources and at the same time to decrease the expected latency for users. The crucial parameter for optimization both in cloud computing and in desktop grids is the level of redundancy (replication) for service requests/workunits. In this paper we study the optimal replication policies by considering three variations of Fork-Join systems in the context of a multi-server queueing system with a versatile point process for the arrivals. For services we consider phase type distributions as well as shifted exponential and Weibull. We use both analytical and simulation approach in our analysis and report some interesting qualitative results.

  5. Frontiers in Distributed Optimization and Control of Sustainable Power

    Science.gov Websites

    Optimization and Control of Sustainable Power Systems Workshop Frontiers in Distributed Optimization and Control of Sustainable Power Systems Workshop In January 2016, NREL's energy systems integration team hosted a workshop on frontiers in distributed optimization and control of sustainable power systems. The

  6. A roadmap for optimal control: the right way to commute.

    PubMed

    Ross, I Michael

    2005-12-01

    Optimal control theory is the foundation for many problems in astrodynamics. Typical examples are trajectory design and optimization, relative motion control of distributed space systems and attitude steering. Many such problems in astrodynamics are solved by an alternative route of mathematical analysis and deep physical insight, in part because of the perception that an optimal control framework generates hard problems. Although this is indeed true of the Bellman and Pontryagin frameworks, the covector mapping principle provides a neoclassical approach that renders hard problems easy. That is, although the origins of this philosophy can be traced back to Bernoulli and Euler, it is essentially modern as a result of the strong linkage between approximation theory, set-valued analysis and computing technology. Motivated by the broad success of this approach, mission planners are now conceiving and demanding higher performance from space systems. This has resulted in new set of theoretical and computational problems. Recently, under the leadership of NASA-GRC, several workshops were held to address some of these problems. This paper outlines the theoretical issues stemming from practical problems in astrodynamics. Emphasis is placed on how it pertains to advanced mission design problems.

  7. Optimal Operation and Dispatch of Voltage Regulation Devices Considering High Penetrations of Distributed Photovoltaic Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mather, Barry A; Hodge, Brian S; Cho, Gyu-Jung

    Voltage regulation devices have been traditionally installed and utilized to support distribution voltages. Installations of distributed energy resources (DERs) in distribution systems are rapidly increasing, and many of these generation resources have variable and uncertain power output. These generators can significantly change the voltage profile for a feeder; therefore, in the distribution system planning stage of the optimal operation and dispatch of voltage regulation devices, possible high penetrations of DERs should be considered. In this paper, we model the IEEE 34-bus test feeder, including all essential equipment. An optimization method is adopted to determine the optimal siting and operation ofmore » the voltage regulation devices in the presence of distributed solar power generation. Finally, we verify the optimal configuration of the entire system through the optimization and simulation results.« less

  8. Enhancing Data Assimilation by Evolutionary Particle Filter and Markov Chain Monte Carlo

    NASA Astrophysics Data System (ADS)

    Moradkhani, H.; Abbaszadeh, P.; Yan, H.

    2016-12-01

    Particle Filters (PFs) have received increasing attention by the researchers from different disciplines in hydro-geosciences as an effective method to improve model predictions in nonlinear and non-Gaussian dynamical systems. The implication of dual state and parameter estimation by means of data assimilation in hydrology and geoscience has evolved since 2005 from SIR-PF to PF-MCMC and now to the most effective and robust framework through evolutionary PF approach based on Genetic Algorithm (GA) and Markov Chain Monte Carlo (MCMC), the so-called EPF-MCMC. In this framework, the posterior distribution undergoes an evolutionary process to update an ensemble of prior states that more closely resemble realistic posterior probability distribution. The premise of this approach is that the particles move to optimal position using the GA optimization coupled with MCMC increasing the number of effective particles, hence the particle degeneracy is avoided while the particle diversity is improved. The proposed algorithm is applied on a conceptual and highly nonlinear hydrologic model and the effectiveness, robustness and reliability of the method in jointly estimating the states and parameters and also reducing the uncertainty is demonstrated for few river basins across the United States.

  9. Principal Curves on Riemannian Manifolds.

    PubMed

    Hauberg, Soren

    2016-09-01

    Euclidean statistics are often generalized to Riemannian manifolds by replacing straight-line interpolations with geodesic ones. While these Riemannian models are familiar-looking, they are restricted by the inflexibility of geodesics, and they rely on constructions which are optimal only in Euclidean domains. We consider extensions of Principal Component Analysis (PCA) to Riemannian manifolds. Classic Riemannian approaches seek a geodesic curve passing through the mean that optimizes a criteria of interest. The requirements that the solution both is geodesic and must pass through the mean tend to imply that the methods only work well when the manifold is mostly flat within the support of the generating distribution. We argue that instead of generalizing linear Euclidean models, it is more fruitful to generalize non-linear Euclidean models. Specifically, we extend the classic Principal Curves from Hastie & Stuetzle to data residing on a complete Riemannian manifold. We show that for elliptical distributions in the tangent of spaces of constant curvature, the standard principal geodesic is a principal curve. The proposed model is simple to compute and avoids many of the pitfalls of traditional geodesic approaches. We empirically demonstrate the effectiveness of the Riemannian principal curves on several manifolds and datasets.

  10. The microbial community of a biofilm contact reactor for the treatment of winery wastewater.

    PubMed

    de Beer, D M; Botes, M; Cloete, T E

    2018-02-01

    To utilize a three-tiered approach to provide insight into the microbial community structure, the spatial distribution and the metabolic capabilities of organisms of a biofilm in the two towers of a high-rate biological contact reactor treating winery wastewater. Next-generation sequencing indicated that bacteria primarily responsible for the removal of carbohydrates, sugars and alcohol were more abundant in tower 1 than tower 2 while nitrifying and denitrifying bacteria were more abundant in tower 2. Yeast populations differed in each tower. Fluorescent in situ hybridization coupled with confocal microscopy showed distribution of organisms confirming an oxygen gradient across the biofilm depth. The Biolog system (ECO plates) specified the different carbon-metabolizing profiles of the two biofilms. The three-tiered approach confirmed that the addition of a second subunit to the bioreactor, expanded the treatment capacity by augmenting the microbial and metabolic diversity of the system, improving the treatment scope of the system. A three-tiered biofilm analysis provided data required to optimize the design of a bioreactor to provide favourable conditions for the development of a microbial consortium, which has optimal waste removal properties for the treatment requirements at hand. © 2017 The Society for Applied Microbiology.

  11. Maximizing Information Diffusion in the Cyber-physical Integrated Network †

    PubMed Central

    Lu, Hongliang; Lv, Shaohe; Jiao, Xianlong; Wang, Xiaodong; Liu, Juan

    2015-01-01

    Nowadays, our living environment has been embedded with smart objects, such as smart sensors, smart watches and smart phones. They make cyberspace and physical space integrated by their abundant abilities of sensing, communication and computation, forming a cyber-physical integrated network. In order to maximize information diffusion in such a network, a group of objects are selected as the forwarding points. To optimize the selection, a minimum connected dominating set (CDS) strategy is adopted. However, existing approaches focus on minimizing the size of the CDS, neglecting an important factor: the weight of links. In this paper, we propose a distributed maximizing the probability of information diffusion (DMPID) algorithm in the cyber-physical integrated network. Unlike previous approaches that only consider the size of CDS selection, DMPID also considers the information spread probability that depends on the weight of links. To weaken the effects of excessively-weighted links, we also present an optimization strategy that can properly balance the two factors. The results of extensive simulation show that DMPID can nearly double the information diffusion probability, while keeping a reasonable size of selection with low overhead in different distributed networks. PMID:26569254

  12. Event-triggered resilient filtering with stochastic uncertainties and successive packet dropouts via variance-constrained approach

    NASA Astrophysics Data System (ADS)

    Jia, Chaoqing; Hu, Jun; Chen, Dongyan; Liu, Yurong; Alsaadi, Fuad E.

    2018-07-01

    In this paper, we discuss the event-triggered resilient filtering problem for a class of time-varying systems subject to stochastic uncertainties and successive packet dropouts. The event-triggered mechanism is employed with hope to reduce the communication burden and save network resources. The stochastic uncertainties are considered to describe the modelling errors and the phenomenon of successive packet dropouts is characterized by a random variable obeying the Bernoulli distribution. The aim of the paper is to provide a resilient event-based filtering approach for addressed time-varying systems such that, for all stochastic uncertainties, successive packet dropouts and filter gain perturbation, an optimized upper bound of the filtering error covariance is obtained by designing the filter gain. Finally, simulations are provided to demonstrate the effectiveness of the proposed robust optimal filtering strategy.

  13. Approximating the linear quadratic optimal control law for hereditary systems with delays in the control

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.

    1987-01-01

    The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary systems. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.

  14. Design of order statistics filters using feedforward neural networks

    NASA Astrophysics Data System (ADS)

    Maslennikova, Yu. S.; Bochkarev, V. V.

    2016-08-01

    In recent years significant progress have been made in the development of nonlinear data processing techniques. Such techniques are widely used in digital data filtering and image enhancement. Many of the most effective nonlinear filters based on order statistics. The widely used median filter is the best known order statistic filter. Generalized form of these filters could be presented based on Lloyd's statistics. Filters based on order statistics have excellent robustness properties in the presence of impulsive noise. In this paper, we present special approach for synthesis of order statistics filters using artificial neural networks. Optimal Lloyd's statistics are used for selecting of initial weights for the neural network. Adaptive properties of neural networks provide opportunities to optimize order statistics filters for data with asymmetric distribution function. Different examples demonstrate the properties and performance of presented approach.

  15. Approximating the linear quadratic optimal control law for hereditary systems with delays in the control

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.

    1988-01-01

    The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary schemes. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.

  16. Multi-Robot, Multi-Target Particle Swarm Optimization Search in Noisy Wireless Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt Derr; Milos Manic

    Multiple small robots (swarms) can work together using Particle Swarm Optimization (PSO) to perform tasks that are difficult or impossible for a single robot to accomplish. The problem considered in this paper is exploration of an unknown environment with the goal of finding a target(s) at an unknown location(s) using multiple small mobile robots. This work demonstrates the use of a distributed PSO algorithm with a novel adaptive RSS weighting factor to guide robots for locating target(s) in high risk environments. The approach was developed and analyzed on multiple robot single and multiple target search. The approach was further enhancedmore » by the multi-robot-multi-target search in noisy environments. The experimental results demonstrated how the availability of radio frequency signal can significantly affect robot search time to reach a target.« less

  17. Systematically biological prioritizing remediation sites based on datasets of biological investigations and heavy metals in soil

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Chih; Lin, Yu-Pin; Anthony, Johnathen

    2015-04-01

    Heavy metal pollution has adverse effects on not only the focal invertebrate species of this study, such as reduction in pupa weight and increased larval mortality, but also on the higher trophic level organisms which feed on them, either directly or indirectly, through the process of biomagnification. Despite this, few studies regarding remediation prioritization take species distribution or biological conservation priorities into consideration. This study develops a novel approach for delineating sites which are both contaminated by any of 5 readily bioaccumulated heavy metal soil contaminants and are of high ecological importance for the highly mobile, low trophic level focal species. The conservation priority of each site was based on the projected distributions of 6 moth species simulated via the presence-only maximum entropy species distribution model followed by the subsequent application of a systematic conservation tool. In order to increase the number of available samples, we also integrated crowd-sourced data with professionally-collected data via a novel optimization procedure based on a simulated annealing algorithm. This integration procedure was important since while crowd-sourced data can drastically increase the number of data samples available to ecologists, still the quality or reliability of crowd-sourced data can be called into question, adding yet another source of uncertainty in projecting species distributions. The optimization method screens crowd-sourced data in terms of the environmental variables which correspond to professionally-collected data. The sample distribution data was derived from two different sources, including the EnjoyMoths project in Taiwan (crowd-sourced data) and the Global Biodiversity Information Facility (GBIF) ?eld data (professional data). The distributions of heavy metal concentrations were generated via 1000 iterations of a geostatistical co-simulation approach. The uncertainties in distributions of the heavy metals were then quantified based on the overall consistency between realizations. Finally, Information-Gap Decision Theory (IGDT) was applied to rank the remediation priorities of contaminated sites in terms of both spatial consensus of multiple heavy metal realizations and the priority of specific conservation areas. Our results show that the crowd-sourced optimization algorithm developed in this study is effective at selecting suitable data from crowd-sourced data. By using this technique the available sample data increased to a total number of 96, 162, 72, 62, 69 and 62 or, that is, 2.6, 1.6, 2.5, 1.6, 1.2 and 1.8 times that originally available through the GBIF professionally-assembled database. Additionally, for all species considered the performance of models, in terms of test-AUC values, based on the combination of both data sources exceeded those models which were based on a single data source. Furthermore, the additional optimization-selected data lowered the overall variability, and therefore uncertainty, of model outputs. Based on the projected species distributions, our results revealed that around 30% of high species hotspot areas were also identified as contaminated. The decision-making tool, IGDT, successfully yielded remediation plans in terms of specific ecological value requirements, false positive tolerance rates of contaminated areas, and expected decision robustness. The proposed approach can be applied both to identify high conservation priority sites contaminated by heavy metals, based on the combination of screened crowd-sourced and professionally-collected data, and in making robust remediation decisions.

  18. Large deviations and portfolio optimization

    NASA Astrophysics Data System (ADS)

    Sornette, Didier

    Risk control and optimal diversification constitute a major focus in the finance and insurance industries as well as, more or less consciously, in our everyday life. We present a discussion of the characterization of risks and of the optimization of portfolios that starts from a simple illustrative model and ends by a general functional integral formulation. A major item is that risk, usually thought of as one-dimensional in the conventional mean-variance approach, has to be addressed by the full distribution of losses. Furthermore, the time-horizon of the investment is shown to play a major role. We show the importance of accounting for large fluctuations and use the theory of Cramér for large deviations in this context. We first treat a simple model with a single risky asset that exemplifies the distinction between the average return and the typical return and the role of large deviations in multiplicative processes, and the different optimal strategies for the investors depending on their size. We then analyze the case of assets whose price variations are distributed according to exponential laws, a situation that is found to describe daily price variations reasonably well. Several portfolio optimization strategies are presented that aim at controlling large risks. We end by extending the standard mean-variance portfolio optimization theory, first within the quasi-Gaussian approximation and then using a general formulation for non-Gaussian correlated assets in terms of the formalism of functional integrals developed in the field theory of critical phenomena.

  19. Analytical modeling and feasibility study of a multi-GPU cloud-based server (MGCS) framework for non-voxel-based dose calculations.

    PubMed

    Neylon, J; Min, Y; Kupelian, P; Low, D A; Santhanam, A

    2017-04-01

    In this paper, a multi-GPU cloud-based server (MGCS) framework is presented for dose calculations, exploring the feasibility of remote computing power for parallelization and acceleration of computationally and time intensive radiotherapy tasks in moving toward online adaptive therapies. An analytical model was developed to estimate theoretical MGCS performance acceleration and intelligently determine workload distribution. Numerical studies were performed with a computing setup of 14 GPUs distributed over 4 servers interconnected by a 1 Gigabits per second (Gbps) network. Inter-process communication methods were optimized to facilitate resource distribution and minimize data transfers over the server interconnect. The analytically predicted computation time predicted matched experimentally observations within 1-5 %. MGCS performance approached a theoretical limit of acceleration proportional to the number of GPUs utilized when computational tasks far outweighed memory operations. The MGCS implementation reproduced ground-truth dose computations with negligible differences, by distributing the work among several processes and implemented optimization strategies. The results showed that a cloud-based computation engine was a feasible solution for enabling clinics to make use of fast dose calculations for advanced treatment planning and adaptive radiotherapy. The cloud-based system was able to exceed the performance of a local machine even for optimized calculations, and provided significant acceleration for computationally intensive tasks. Such a framework can provide access to advanced technology and computational methods to many clinics, providing an avenue for standardization across institutions without the requirements of purchasing, maintaining, and continually updating hardware.

  20. Following the clues to neuropathic pain. Distribution and other leads reveal the cause and the treatment approach.

    PubMed

    Belgrade, M J

    1999-11-01

    Neuropathic pain can seem enigmatic at first because it can last indefinitely and often a cause is not evident. However, heightened awareness of typical characteristics, such as the following, makes identification fairly easy: The presence of certain accompanying conditions (e.g., diabetes, HIV or herpes zoster infection, multiple sclerosis) Pain described as shooting, stabbing, lancinating, burning, or searing Pain worse at night Pain following anatomic nerve distribution Pain in a numb or insensate site The presence of allodynia Neuropathic pain responds poorly to standard pain therapies and usually requires specialized medications (e.g., anticonvulsants, tricyclic antidepressants, opioid analgesics) for optimal control. Successful pain control is enhanced with use of a systematic approach consisting of disease modification, local or regional measures, and systemic therapy.

  1. Adaptive distributed outlier detection for WSNs.

    PubMed

    De Paola, Alessandra; Gaglio, Salvatore; Lo Re, Giuseppe; Milazzo, Fabrizio; Ortolani, Marco

    2015-05-01

    The paradigm of pervasive computing is gaining more and more attention nowadays, thanks to the possibility of obtaining precise and continuous monitoring. Ease of deployment and adaptivity are typically implemented by adopting autonomous and cooperative sensory devices; however, for such systems to be of any practical use, reliability and fault tolerance must be guaranteed, for instance by detecting corrupted readings amidst the huge amount of gathered sensory data. This paper proposes an adaptive distributed Bayesian approach for detecting outliers in data collected by a wireless sensor network; our algorithm aims at optimizing classification accuracy, time complexity and communication complexity, and also considering externally imposed constraints on such conflicting goals. The performed experimental evaluation showed that our approach is able to improve the considered metrics for latency and energy consumption, with limited impact on classification accuracy.

  2. A Direct Method for Fuel Optimal Maneuvers of Distributed Spacecraft in Multiple Flight Regimes

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Cooley, D. S.; Guzman, Jose J.

    2005-01-01

    We present a method to solve the impulsive minimum fuel maneuver problem for a distributed set of spacecraft. We develop the method assuming a non-linear dynamics model and parameterize the problem to allow the method to be applicable to multiple flight regimes including low-Earth orbits, highly-elliptic orbits (HEO), Lagrange point orbits, and interplanetary trajectories. Furthermore, the approach is not limited by the inter-spacecraft separation distances and is applicable to both small formations as well as large constellations. Semianalytical derivatives are derived for the changes in the total AV with respect to changes in the independent variables. We also apply a set of constraints to ensure that the fuel expenditure is equalized over the spacecraft in formation. We conclude with several examples and present optimal maneuver sequences for both a HE0 and libration point formation.

  3. A comparison of portfolio selection models via application on ISE 100 index data

    NASA Astrophysics Data System (ADS)

    Altun, Emrah; Tatlidil, Hüseyin

    2013-10-01

    Markowitz Model, a classical approach to portfolio optimization problem, relies on two important assumptions: the expected return is multivariate normally distributed and the investor is risk averter. But this model has not been extensively used in finance. Empirical results show that it is very hard to solve large scale portfolio optimization problems with Mean-Variance (M-V)model. Alternative model, Mean Absolute Deviation (MAD) model which is proposed by Konno and Yamazaki [7] has been used to remove most of difficulties of Markowitz Mean-Variance model. MAD model don't need to assume that the probability of the rates of return is normally distributed and based on Linear Programming. Another alternative portfolio model is Mean-Lower Semi Absolute Deviation (M-LSAD), which is proposed by Speranza [3]. We will compare these models to determine which model gives more appropriate solution to investors.

  4. Optimal policy for mitigating emissions in the European transport sector

    NASA Astrophysics Data System (ADS)

    Leduc, Sylvain; Piera, Patrizio; Sennai, Mesfun; Igor, Staritsky; Berien, Elbersen; Tijs, Lammens; Florian, Kraxner

    2017-04-01

    A geographic explicit techno-economic model, BeWhere (www.iiasa.ac.at/bewhere), has been developed at the European scale (Europe 28, the Balkans countries, Turkey, Moldavia and Ukraine) at a 40km grid size, to assess the potential of bioenergy from non-food feedstock. Based on the minimization of the supply chain from feedstock collection to the final energy product distribution, the model identifies the optimal bioenergy production plants in terms of spatial location, technology and capacity. The feedstock of interests are woody biomass (divided into eight types from conifers and non-conifers) and five different crop residuals. For each type of feedstock, one or multiple technologies can be applied for either heat, electricity or biofuel production. The model is run for different policy tools such as carbon cost, biofuel support, or subsidies, and the optimal mix of technologies and biomass needed is optimized to reach a production cost competitive against the actual reference system which is fossil fuel based. From this approach, the optimal mix of policy tools that can be applied country wide in Europe will be identified. The preliminary results show that high carbon tax and biofuel support contribute to the development of large scale biofuel production based on woody biomass plants mainly located in the northern part of Europe. Finally the highest emission reduction is reached with low biofuel support and high carbon tax evenly distributed in Europe.

  5. Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, J.; Polly, B.; Collis, J.

    2013-09-01

    This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define 'explicit' input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAEmore » 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.« less

  6. Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    and Ben Polly, Joseph Robertson; Polly, Ben; Collis, Jon

    2013-09-01

    This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define "explicit" input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAEmore » 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.« less

  7. A general approach for sample size calculation for the three-arm 'gold standard' non-inferiority design.

    PubMed

    Stucke, Kathrin; Kieser, Meinhard

    2012-12-10

    In the three-arm 'gold standard' non-inferiority design, an experimental treatment, an active reference, and a placebo are compared. This design is becoming increasingly popular, and it is, whenever feasible, recommended for use by regulatory guidelines. We provide a general method to calculate the required sample size for clinical trials performed in this design. As special cases, the situations of continuous, binary, and Poisson distributed outcomes are explored. Taking into account the correlation structure of the involved test statistics, the proposed approach leads to considerable savings in sample size as compared with application of ad hoc methods for all three scale levels. Furthermore, optimal sample size allocation ratios are determined that result in markedly smaller total sample sizes as compared with equal assignment. As optimal allocation makes the active treatment groups larger than the placebo group, implementation of the proposed approach is also desirable from an ethical viewpoint. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Coordinated control of active and reactive power of distribution network with distributed PV cluster via model predictive control

    NASA Astrophysics Data System (ADS)

    Ji, Yu; Sheng, Wanxing; Jin, Wei; Wu, Ming; Liu, Haitao; Chen, Feng

    2018-02-01

    A coordinated optimal control method of active and reactive power of distribution network with distributed PV cluster based on model predictive control is proposed in this paper. The method divides the control process into long-time scale optimal control and short-time scale optimal control with multi-step optimization. The models are transformed into a second-order cone programming problem due to the non-convex and nonlinear of the optimal models which are hard to be solved. An improved IEEE 33-bus distribution network system is used to analyse the feasibility and the effectiveness of the proposed control method

  9. The effective magnetoelectric coefficients of polycrystalline Cr2O3 annealed in perpendicular electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Liu, Y. Y.; Xie, S. H.; Jin, G.; Li, J. Y.

    2009-04-01

    Magnetoelectric annealing is necessary to remove antiferromagnetic domains and induce macroscopic magnetoelectric effect in polycrystalline magnetoelectric materials, and in this paper, we study the effective magnetoelectric properties of perpendicularly annealed polycrystalline Cr2O3 using effective medium approximation. The effect of temperatures, grain aspect ratios, and two different types of orientation distribution function have been analyzed, and unusual material symmetry is observed when the orientation distribution function only depends on Euler angle ψ. Optimal grain aspect ratio and texture coefficient are also identified. The approach can be applied to analyze the microstructural field distribution and macroscopic properties of a wide range of magnetoelectric polycrystals.

  10. Stochastic Frontier Model Approach for Measuring Stock Market Efficiency with Different Distributions

    PubMed Central

    Hasan, Md. Zobaer; Kamil, Anton Abdulbasah; Mustafa, Adli; Baten, Md. Azizul

    2012-01-01

    The stock market is considered essential for economic growth and expected to contribute to improved productivity. An efficient pricing mechanism of the stock market can be a driving force for channeling savings into profitable investments and thus facilitating optimal allocation of capital. This study investigated the technical efficiency of selected groups of companies of Bangladesh Stock Market that is the Dhaka Stock Exchange (DSE) market, using the stochastic frontier production function approach. For this, the authors considered the Cobb-Douglas Stochastic frontier in which the technical inefficiency effects are defined by a model with two distributional assumptions. Truncated normal and half-normal distributions were used in the model and both time-variant and time-invariant inefficiency effects were estimated. The results reveal that technical efficiency decreased gradually over the reference period and that truncated normal distribution is preferable to half-normal distribution for technical inefficiency effects. The value of technical efficiency was high for the investment group and low for the bank group, as compared with other groups in the DSE market for both distributions in time- varying environment whereas it was high for the investment group but low for the ceramic group as compared with other groups in the DSE market for both distributions in time-invariant situation. PMID:22629352

  11. Stochastic frontier model approach for measuring stock market efficiency with different distributions.

    PubMed

    Hasan, Md Zobaer; Kamil, Anton Abdulbasah; Mustafa, Adli; Baten, Md Azizul

    2012-01-01

    The stock market is considered essential for economic growth and expected to contribute to improved productivity. An efficient pricing mechanism of the stock market can be a driving force for channeling savings into profitable investments and thus facilitating optimal allocation of capital. This study investigated the technical efficiency of selected groups of companies of Bangladesh Stock Market that is the Dhaka Stock Exchange (DSE) market, using the stochastic frontier production function approach. For this, the authors considered the Cobb-Douglas Stochastic frontier in which the technical inefficiency effects are defined by a model with two distributional assumptions. Truncated normal and half-normal distributions were used in the model and both time-variant and time-invariant inefficiency effects were estimated. The results reveal that technical efficiency decreased gradually over the reference period and that truncated normal distribution is preferable to half-normal distribution for technical inefficiency effects. The value of technical efficiency was high for the investment group and low for the bank group, as compared with other groups in the DSE market for both distributions in time-varying environment whereas it was high for the investment group but low for the ceramic group as compared with other groups in the DSE market for both distributions in time-invariant situation.

  12. Intervention in gene regulatory networks with maximal phenotype alteration.

    PubMed

    Yousefi, Mohammadmahdi R; Dougherty, Edward R

    2013-07-15

    A basic issue for translational genomics is to model gene interaction via gene regulatory networks (GRNs) and thereby provide an informatics environment to study the effects of intervention (say, via drugs) and to derive effective intervention strategies. Taking the view that the phenotype is characterized by the long-run behavior (steady-state distribution) of the network, we desire interventions to optimally move the probability mass from undesirable to desirable states Heretofore, two external control approaches have been taken to shift the steady-state mass of a GRN: (i) use a user-defined cost function for which desirable shift of the steady-state mass is a by-product and (ii) use heuristics to design a greedy algorithm. Neither approach provides an optimal control policy relative to long-run behavior. We use a linear programming approach to optimally shift the steady-state mass from undesirable to desirable states, i.e. optimization is directly based on the amount of shift and therefore must outperform previously proposed methods. Moreover, the same basic linear programming structure is used for both unconstrained and constrained optimization, where in the latter case, constraints on the optimization limit the amount of mass that may be shifted to 'ambiguous' states, these being states that are not directly undesirable relative to the pathology of interest but which bear some perceived risk. We apply the method to probabilistic Boolean networks, but the theory applies to any Markovian GRN. Supplementary materials, including the simulation results, MATLAB source code and description of suboptimal methods are available at http://gsp.tamu.edu/Publications/supplementary/yousefi13b. edward@ece.tamu.edu Supplementary data are available at Bioinformatics online.

  13. Optimal land use management for soil erosion control by using an interval-parameter fuzzy two-stage stochastic programming approach.

    PubMed

    Han, Jing-Cheng; Huang, Guo-He; Zhang, Hua; Li, Zhong

    2013-09-01

    Soil erosion is one of the most serious environmental and public health problems, and such land degradation can be effectively mitigated through performing land use transitions across a watershed. Optimal land use management can thus provide a way to reduce soil erosion while achieving the maximum net benefit. However, optimized land use allocation schemes are not always successful since uncertainties pertaining to soil erosion control are not well presented. This study applied an interval-parameter fuzzy two-stage stochastic programming approach to generate optimal land use planning strategies for soil erosion control based on an inexact optimization framework, in which various uncertainties were reflected. The modeling approach can incorporate predefined soil erosion control policies, and address inherent system uncertainties expressed as discrete intervals, fuzzy sets, and probability distributions. The developed model was demonstrated through a case study in the Xiangxi River watershed, China's Three Gorges Reservoir region. Land use transformations were employed as decision variables, and based on these, the land use change dynamics were yielded for a 15-year planning horizon. Finally, the maximum net economic benefit with an interval value of [1.197, 6.311] × 10(9) $ was obtained as well as corresponding land use allocations in the three planning periods. Also, the resulting soil erosion amount was found to be decreased and controlled at a tolerable level over the watershed. Thus, results confirm that the developed model is a useful tool for implementing land use management as not only does it allow local decision makers to optimize land use allocation, but can also help to answer how to accomplish land use changes.

  14. Optimal Land Use Management for Soil Erosion Control by Using an Interval-Parameter Fuzzy Two-Stage Stochastic Programming Approach

    NASA Astrophysics Data System (ADS)

    Han, Jing-Cheng; Huang, Guo-He; Zhang, Hua; Li, Zhong

    2013-09-01

    Soil erosion is one of the most serious environmental and public health problems, and such land degradation can be effectively mitigated through performing land use transitions across a watershed. Optimal land use management can thus provide a way to reduce soil erosion while achieving the maximum net benefit. However, optimized land use allocation schemes are not always successful since uncertainties pertaining to soil erosion control are not well presented. This study applied an interval-parameter fuzzy two-stage stochastic programming approach to generate optimal land use planning strategies for soil erosion control based on an inexact optimization framework, in which various uncertainties were reflected. The modeling approach can incorporate predefined soil erosion control policies, and address inherent system uncertainties expressed as discrete intervals, fuzzy sets, and probability distributions. The developed model was demonstrated through a case study in the Xiangxi River watershed, China's Three Gorges Reservoir region. Land use transformations were employed as decision variables, and based on these, the land use change dynamics were yielded for a 15-year planning horizon. Finally, the maximum net economic benefit with an interval value of [1.197, 6.311] × 109 was obtained as well as corresponding land use allocations in the three planning periods. Also, the resulting soil erosion amount was found to be decreased and controlled at a tolerable level over the watershed. Thus, results confirm that the developed model is a useful tool for implementing land use management as not only does it allow local decision makers to optimize land use allocation, but can also help to answer how to accomplish land use changes.

  15. A singular value decomposition linear programming (SVDLP) optimization technique for circular cone based robotic radiotherapy.

    PubMed

    Liang, Bin; Li, Yongbao; Wei, Ran; Guo, Bin; Xu, Xuang; Liu, Bo; Li, Jiafeng; Wu, Qiuwen; Zhou, Fugen

    2018-01-05

    With robot-controlled linac positioning, robotic radiotherapy systems such as CyberKnife significantly increase freedom of radiation beam placement, but also impose more challenges on treatment plan optimization. The resampling mechanism in the vendor-supplied treatment planning system (MultiPlan) cannot fully explore the increased beam direction search space. Besides, a sparse treatment plan (using fewer beams) is desired to improve treatment efficiency. This study proposes a singular value decomposition linear programming (SVDLP) optimization technique for circular collimator based robotic radiotherapy. The SVDLP approach initializes the input beams by simulating the process of covering the entire target volume with equivalent beam tapers. The requirements on dosimetry distribution are modeled as hard and soft constraints, and the sparsity of the treatment plan is achieved by compressive sensing. The proposed linear programming (LP) model optimizes beam weights by minimizing the deviation of soft constraints subject to hard constraints, with a constraint on the l 1 norm of the beam weight. A singular value decomposition (SVD) based acceleration technique was developed for the LP model. Based on the degeneracy of the influence matrix, the model is first compressed into lower dimension for optimization, and then back-projected to reconstruct the beam weight. After beam weight optimization, the number of beams is reduced by removing the beams with low weight, and optimizing the weights of the remaining beams using the same model. This beam reduction technique is further validated by a mixed integer programming (MIP) model. The SVDLP approach was tested on a lung case. The results demonstrate that the SVD acceleration technique speeds up the optimization by a factor of 4.8. Furthermore, the beam reduction achieves a similar plan quality to the globally optimal plan obtained by the MIP model, but is one to two orders of magnitude faster. Furthermore, the SVDLP approach is tested and compared with MultiPlan on three clinical cases of varying complexities. In general, the plans generated by the SVDLP achieve steeper dose gradient, better conformity and less damage to normal tissues. In conclusion, the SVDLP approach effectively improves the quality of treatment plan due to the use of the complete beam search space. This challenging optimization problem with the complete beam search space is effectively handled by the proposed SVD acceleration.

  16. A singular value decomposition linear programming (SVDLP) optimization technique for circular cone based robotic radiotherapy

    NASA Astrophysics Data System (ADS)

    Liang, Bin; Li, Yongbao; Wei, Ran; Guo, Bin; Xu, Xuang; Liu, Bo; Li, Jiafeng; Wu, Qiuwen; Zhou, Fugen

    2018-01-01

    With robot-controlled linac positioning, robotic radiotherapy systems such as CyberKnife significantly increase freedom of radiation beam placement, but also impose more challenges on treatment plan optimization. The resampling mechanism in the vendor-supplied treatment planning system (MultiPlan) cannot fully explore the increased beam direction search space. Besides, a sparse treatment plan (using fewer beams) is desired to improve treatment efficiency. This study proposes a singular value decomposition linear programming (SVDLP) optimization technique for circular collimator based robotic radiotherapy. The SVDLP approach initializes the input beams by simulating the process of covering the entire target volume with equivalent beam tapers. The requirements on dosimetry distribution are modeled as hard and soft constraints, and the sparsity of the treatment plan is achieved by compressive sensing. The proposed linear programming (LP) model optimizes beam weights by minimizing the deviation of soft constraints subject to hard constraints, with a constraint on the l 1 norm of the beam weight. A singular value decomposition (SVD) based acceleration technique was developed for the LP model. Based on the degeneracy of the influence matrix, the model is first compressed into lower dimension for optimization, and then back-projected to reconstruct the beam weight. After beam weight optimization, the number of beams is reduced by removing the beams with low weight, and optimizing the weights of the remaining beams using the same model. This beam reduction technique is further validated by a mixed integer programming (MIP) model. The SVDLP approach was tested on a lung case. The results demonstrate that the SVD acceleration technique speeds up the optimization by a factor of 4.8. Furthermore, the beam reduction achieves a similar plan quality to the globally optimal plan obtained by the MIP model, but is one to two orders of magnitude faster. Furthermore, the SVDLP approach is tested and compared with MultiPlan on three clinical cases of varying complexities. In general, the plans generated by the SVDLP achieve steeper dose gradient, better conformity and less damage to normal tissues. In conclusion, the SVDLP approach effectively improves the quality of treatment plan due to the use of the complete beam search space. This challenging optimization problem with the complete beam search space is effectively handled by the proposed SVD acceleration.

  17. Airfoil Design Using a Coupled Euler and Integral Boundary Layer Method with Adjoint Based Sensitivities

    NASA Technical Reports Server (NTRS)

    Edwards, S.; Reuther, J.; Chattot, J. J.

    1997-01-01

    The objective of this paper is to present a control theory approach for the design of airfoils in the presence of viscous compressible flows. A coupled system of the integral boundary layer and the Euler equations is solved to provide rapid flow simulations. An adjunct approach consistent with the complete coupled state equations is employed to obtain the sensitivities needed to drive a numerical optimization algorithm. Design to target pressure distribution is demonstrated on an RAE 2822 airfoil at transonic speed.

  18. Estimation of reflectance from camera responses by the regularized local linear model.

    PubMed

    Zhang, Wei-Feng; Tang, Gongguo; Dai, Dao-Qing; Nehorai, Arye

    2011-10-01

    Because of the limited approximation capability of using fixed basis functions, the performance of reflectance estimation obtained by traditional linear models will not be optimal. We propose an approach based on the regularized local linear model. Our approach performs efficiently and knowledge of the spectral power distribution of the illuminant and the spectral sensitivities of the camera is not needed. Experimental results show that the proposed method performs better than some well-known methods in terms of both reflectance error and colorimetric error. © 2011 Optical Society of America

  19. Large-Scale Optimization for Bayesian Inference in Complex Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willcox, Karen; Marzouk, Youssef

    2013-11-12

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimization) Project focused on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimization and inversion methods. The project was a collaborative effort among MIT, the University of Texas at Austin, Georgia Institute of Technology, and Sandia National Laboratories. The research was directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. The MIT--Sandia component of themore » SAGUARO Project addressed the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas--Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to-observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as ``reduce then sample'' and ``sample then reduce.'' In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to achieve their speedups.« less

  20. SU-E-T-549: A Combinatorial Optimization Approach to Treatment Planning with Non-Uniform Fractions in Intensity Modulated Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papp, D; Unkelbach, J

    2014-06-01

    Purpose: Non-uniform fractionation, i.e. delivering distinct dose distributions in two subsequent fractions, can potentially improve outcomes by increasing biological dose to the target without increasing dose to healthy tissues. This is possible if both fractions deliver a similar dose to normal tissues (exploit the fractionation effect) but high single fraction doses to subvolumes of the target (hypofractionation). Optimization of such treatment plans can be formulated using biological equivalent dose (BED), but leads to intractable nonconvex optimization problems. We introduce a novel optimization approach to address this challenge. Methods: We first optimize a reference IMPT plan using standard techniques that deliversmore » a homogeneous target dose in both fractions. The method then divides the pencil beams into two sets, which are assigned to either fraction one or fraction two. The total intensity of each pencil beam, and therefore the physical dose, remains unchanged compared to the reference plan. The objectives are to maximize the mean BED in the target and to minimize the mean BED in normal tissues, which is a quadratic function of the pencil beam weights. The optimal reassignment of pencil beams to one of the two fractions is formulated as a binary quadratic optimization problem. A near-optimal solution to this problem can be obtained by convex relaxation and randomized rounding. Results: The method is demonstrated for a large arteriovenous malformation (AVM) case treated in two fractions. The algorithm yields a treatment plan, which delivers a high dose to parts of the AVM in one of the fractions, but similar doses in both fractions to the normal brain tissue adjacent to the AVM. Using the approach, the mean BED in the target was increased by approximately 10% compared to what would have been possible with a uniform reference plan for the same normal tissue mean BED.« less

  1. Competition and Cooperation of Distributed Generation and Power System

    NASA Astrophysics Data System (ADS)

    Miyake, Masatoshi; Nanahara, Toshiya

    Advances in distributed generation technologies together with the deregulation of an electric power industry can lead to a massive introduction of distributed generation. Since most of distributed generation will be interconnected to a power system, coordination and competition between distributed generators and large-scale power sources would be a vital issue in realizing a more desirable energy system in the future. This paper analyzes competitions between electric utilities and cogenerators from the viewpoints of economic and energy efficiency based on the simulation results on an energy system including a cogeneration system. First, we examine best response correspondence of an electric utility and a cogenerator with a noncooperative game approach: we obtain a Nash equilibrium point. Secondly, we examine the optimum strategy that attains the highest social surplus and the highest energy efficiency through global optimization.

  2. The Integration of Production-Distribution on Newspapers Supply Chain for Cost Minimization using Analytic Models: Case Study

    NASA Astrophysics Data System (ADS)

    Febriana Aqidawati, Era; Sutopo, Wahyudi; Hisjam, Muh.

    2018-03-01

    Newspapers are products with special characteristics which are perishable, have a shorter range of time between the production and distribution, zero inventory, and decreasing sales value along with increasing in time. Generally, the problem of production and distribution in the paper supply chain is the integration of production planning and distribution to minimize the total cost. The approach used in this article to solve the problem is using an analytical model. In this article, several parameters and constraints have been considered in the calculation of the total cost of the integration of production and distribution of newspapers during the determined time horizon. This model can be used by production and marketing managers as decision support in determining the optimal quantity of production and distribution in order to obtain minimum cost so that company's competitiveness level can be increased.

  3. Optimal Capacitor Bank Capacity and Placement in Distribution Systems with High Distributed Solar Power Penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, Brian S; Mather, Barry A; Cho, Gyu-Jung

    Capacitor banks have been generally installed and utilized to support distribution voltage during period of higher load or on longer, higher impedance, feeders. Installations of distributed energy resources in distribution systems are rapidly increasing, and many of these generation resources have variable and uncertain power output. These generators can significantly change the voltage profile across a feeder, and therefore when a new capacitor bank is needed analysis of optimal capacity and location of the capacitor bank is required. In this paper, we model a particular distribution system including essential equipment. An optimization method is adopted to determine the best capacitymore » and location sets of the newly installed capacitor banks, in the presence of distributed solar power generation. Finally we analyze the optimal capacitor banks configuration through the optimization and simulation results.« less

  4. A rapid application of GA-MODFLOW combined approach to optimization of well placement and operation for drought-ready groundwater reservoir design

    NASA Astrophysics Data System (ADS)

    Park, C.; Kim, Y.; Jang, H.

    2016-12-01

    Poor temporal distribution of precipitation increases winter drought risks in mountain valley areas in Korea. Since perennial streams or reservoirs for water use are rare in the areas, groundwater is usually a major water resource. Significant amount of the precipitation contributing groundwater recharge mostly occurs during the summer season. However, a volume of groundwater recharge is limited by rapid runoff because of the topographic characteristics such as steep hill and slope. A groundwater reservoir using artificial recharge method with rain water reuse can be a suitable solution to secure water resource for the mountain valley areas. Successful groundwater reservoir design depends on optimization of well placement and operation. This study introduces a combined approach using GA (Genetic Algorithm) and MODFLOW and its rapid application. The methodology is based on RAD (Rapid Application Development) concept in order to minimize the cost of implementation. DEAP (Distributed Evolutionary Algorithms in Python), a framework for prototyping and testing evolutionary algorithms, is applied for quick code development and CUDA (Compute Unified Device Architecture), a parallel computing platform using GPU (Graphics Processing Unit), is introduced to reduce runtime. The application was successfully applied to Samdeok-ri, Gosung, Korea. The site is located in a mountain valley area and unconfined aquifers are major source of water use. The results of the application produced the best location and optimized operation schedule of wells including pumping and injecting.

  5. Stress-Constrained Structural Topology Optimization with Design-Dependent Loads

    NASA Astrophysics Data System (ADS)

    Lee, Edmund

    Topology optimization is commonly used to distribute a given amount of material to obtain the stiffest structure, with predefined fixed loads. The present work investigates the result of applying stress constraints to topology optimization, for problems with design-depending loading, such as self-weight and pressure. In order to apply pressure loading, a material boundary identification scheme is proposed, iteratively connecting points of equal density. In previous research, design-dependent loading problems have been limited to compliance minimization. The present study employs a more practical approach by minimizing mass subject to failure constraints, and uses a stress relaxation technique to avoid stress constraint singularities. The results show that these design dependent loading problems may converge to a local minimum when stress constraints are enforced. Comparisons between compliance minimization solutions and stress-constrained solutions are also given. The resulting topologies of these two solutions are usually vastly different, demonstrating the need for stress-constrained topology optimization.

  6. Approach for Input Uncertainty Propagation and Robust Design in CFD Using Sensitivity Derivatives

    NASA Technical Reports Server (NTRS)

    Putko, Michele M.; Taylor, Arthur C., III; Newman, Perry A.; Green, Lawrence L.

    2002-01-01

    An implementation of the approximate statistical moment method for uncertainty propagation and robust optimization for quasi 3-D Euler CFD code is presented. Given uncertainties in statistically independent, random, normally distributed input variables, first- and second-order statistical moment procedures are performed to approximate the uncertainty in the CFD output. Efficient calculation of both first- and second-order sensitivity derivatives is required. In order to assess the validity of the approximations, these moments are compared with statistical moments generated through Monte Carlo simulations. The uncertainties in the CFD input variables are also incorporated into a robust optimization procedure. For this optimization, statistical moments involving first-order sensitivity derivatives appear in the objective function and system constraints. Second-order sensitivity derivatives are used in a gradient-based search to successfully execute a robust optimization. The approximate methods used throughout the analyses are found to be valid when considering robustness about input parameter mean values.

  7. TRO-2D - A code for rational transonic aerodynamic optimization

    NASA Technical Reports Server (NTRS)

    Davis, W. H., Jr.

    1985-01-01

    Features and sample applications of the transonic rational optimization (TRO-2D) code are outlined. TRO-2D includes the airfoil analysis code FLO-36, the CONMIN optimization code and a rational approach to defining aero-function shapes for geometry modification. The program is part of an effort to develop an aerodynamically smart optimizer that will simplify and shorten the design process. The user has a selection of drag minimization and associated minimum lift, moment, and the pressure distribution, a choice among 14 resident aero-function shapes, and options on aerodynamic and geometric constraints. Design variables such as the angle of attack, leading edge radius and camber, shock strength and movement, supersonic pressure plateau control, etc., are discussed. The results of calculations of a reduced leading edge camber transonic airfoil and an airfoil with a natural laminar flow are provided, showing that only four design variables need be specified to obtain satisfactory results.

  8. Efficient Sampling of Parsimonious Inversion Histories with Application to Genome Rearrangement in Yersinia

    PubMed Central

    Darling, Aaron E.

    2009-01-01

    Inversions are among the most common mutations acting on the order and orientation of genes in a genome, and polynomial-time algorithms exist to obtain a minimal length series of inversions that transform one genome arrangement to another. However, the minimum length series of inversions (the optimal sorting path) is often not unique as many such optimal sorting paths exist. If we assume that all optimal sorting paths are equally likely, then statistical inference on genome arrangement history must account for all such sorting paths and not just a single estimate. No deterministic polynomial algorithm is known to count the number of optimal sorting paths nor sample from the uniform distribution of optimal sorting paths. Here, we propose a stochastic method that uniformly samples the set of all optimal sorting paths. Our method uses a novel formulation of parallel Markov chain Monte Carlo. In practice, our method can quickly estimate the total number of optimal sorting paths. We introduce a variant of our approach in which short inversions are modeled to be more likely, and we show how the method can be used to estimate the distribution of inversion lengths and breakpoint usage in pathogenic Yersinia pestis. The proposed method has been implemented in a program called “MC4Inversion.” We draw comparison of MC4Inversion to the sampler implemented in BADGER and a previously described importance sampling (IS) technique. We find that on high-divergence data sets, MC4Inversion finds more optimal sorting paths per second than BADGER and the IS technique and simultaneously avoids bias inherent in the IS technique. PMID:20333186

  9. Quality assurance for high dose rate brachytherapy treatment planning optimization: using a simple optimization to verify a complex optimization

    NASA Astrophysics Data System (ADS)

    Deufel, Christopher L.; Furutani, Keith M.

    2014-02-01

    As dose optimization for high dose rate brachytherapy becomes more complex, it becomes increasingly important to have a means of verifying that optimization results are reasonable. A method is presented for using a simple optimization as quality assurance for the more complex optimization algorithms typically found in commercial brachytherapy treatment planning systems. Quality assurance tests may be performed during commissioning, at regular intervals, and/or on a patient specific basis. A simple optimization method is provided that optimizes conformal target coverage using an exact, variance-based, algebraic approach. Metrics such as dose volume histogram, conformality index, and total reference air kerma agree closely between simple and complex optimizations for breast, cervix, prostate, and planar applicators. The simple optimization is shown to be a sensitive measure for identifying failures in a commercial treatment planning system that are possibly due to operator error or weaknesses in planning system optimization algorithms. Results from the simple optimization are surprisingly similar to the results from a more complex, commercial optimization for several clinical applications. This suggests that there are only modest gains to be made from making brachytherapy optimization more complex. The improvements expected from sophisticated linear optimizations, such as PARETO methods, will largely be in making systems more user friendly and efficient, rather than in finding dramatically better source strength distributions.

  10. Rapid optimization of tension distribution for cable-driven parallel manipulators with redundant cables

    NASA Astrophysics Data System (ADS)

    Ouyang, Bo; Shang, Weiwei

    2016-03-01

    The solution of tension distributions is infinite for cable-driven parallel manipulators(CDPMs) with redundant cables. A rapid optimization method for determining the optimal tension distribution is presented. The new optimization method is primarily based on the geometry properties of a polyhedron and convex analysis. The computational efficiency of the optimization method is improved by the designed projection algorithm, and a fast algorithm is proposed to determine which two of the lines are intersected at the optimal point. Moreover, a method for avoiding the operating point on the lower tension limit is developed. Simulation experiments are implemented on a six degree-of-freedom(6-DOF) CDPM with eight cables, and the results indicate that the new method is one order of magnitude faster than the standard simplex method. The optimal distribution of tension distribution is thus rapidly established on real-time by the proposed method.

  11. New Approach to Optimize the Apfs Placement Based on Instantaneous Reactive Power Theory by Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Hashemi-Dezaki, Hamed; Mohammadalizadeh-Shabestary, Masoud; Askarian-Abyaneh, Hossein; Rezaei-Jegarluei, Mohammad

    2014-01-01

    In electrical distribution systems, a great amount of power are wasting across the lines, also nowadays power factors, voltage profiles and total harmonic distortions (THDs) of most loads are not as would be desired. So these important parameters of a system play highly important role in wasting money and energy, and besides both consumers and sources are suffering from a high rate of distortions and even instabilities. Active power filters (APFs) are innovative ideas for solving of this adversity which have recently used instantaneous reactive power theory. In this paper, a novel method is proposed to optimize the allocation of APFs. The introduced method is based on the instantaneous reactive power theory in vectorial representation. By use of this representation, it is possible to asses different compensation strategies. Also, APFs proper placement in the system plays a crucial role in either reducing the losses costs and power quality improvement. To optimize the APFs placement, a new objective function has been defined on the basis of five terms: total losses, power factor, voltage profile, THD and cost. Genetic algorithm has been used to solve the optimization problem. The results of applying this method to a distribution network illustrate the method advantages.

  12. Optimal planning for the sustainable utilization of municipal solid waste.

    PubMed

    Santibañez-Aguilar, José Ezequiel; Ponce-Ortega, José María; Betzabe González-Campos, J; Serna-González, Medardo; El-Halwagi, Mahmoud M

    2013-12-01

    The increasing generation of municipal solid waste (MSW) is a major problem particularly for large urban areas with insufficient landfill capacities and inefficient waste management systems. Several options associated to the supply chain for implementing a MSW management system are available, however to determine the optimal solution several technical, economic, environmental and social aspects must be considered. Therefore, this paper proposes a mathematical programming model for the optimal planning of the supply chain associated to the MSW management system to maximize the economic benefit while accounting for technical and environmental issues. The optimization model simultaneously selects the processing technologies and their location, the distribution of wastes from cities as well as the distribution of products to markets. The problem was formulated as a multi-objective mixed-integer linear programing problem to maximize the profit of the supply chain and the amount of recycled wastes, where the results are showed through Pareto curves that tradeoff economic and environmental aspects. The proposed approach is applied to a case study for the west-central part of Mexico to consider the integration of MSW from several cities to yield useful products. The results show that an integrated utilization of MSW can provide economic, environmental and social benefits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Considering Decision Variable Diversity in Multi-Objective Optimization: Application in Hydrologic Model Calibration

    NASA Astrophysics Data System (ADS)

    Sahraei, S.; Asadzadeh, M.

    2017-12-01

    Any modern multi-objective global optimization algorithm should be able to archive a well-distributed set of solutions. While the solution diversity in the objective space has been explored extensively in the literature, little attention has been given to the solution diversity in the decision space. Selection metrics such as the hypervolume contribution and crowding distance calculated in the objective space would guide the search toward solutions that are well-distributed across the objective space. In this study, the diversity of solutions in the decision-space is used as the main selection criteria beside the dominance check in multi-objective optimization. To this end, currently archived solutions are clustered in the decision space and the ones in less crowded clusters are given more chance to be selected for generating new solution. The proposed approach is first tested on benchmark mathematical test problems. Second, it is applied to a hydrologic model calibration problem with more than three objective functions. Results show that the chance of finding more sparse set of high-quality solutions increases, and therefore the analyst would receive a well-diverse set of options with maximum amount of information. Pareto Archived-Dynamically Dimensioned Search, which is an efficient and parsimonious multi-objective optimization algorithm for model calibration, is utilized in this study.

  14. Generalized t-statistic for two-group classification.

    PubMed

    Komori, Osamu; Eguchi, Shinto; Copas, John B

    2015-06-01

    In the classic discriminant model of two multivariate normal distributions with equal variance matrices, the linear discriminant function is optimal both in terms of the log likelihood ratio and in terms of maximizing the standardized difference (the t-statistic) between the means of the two distributions. In a typical case-control study, normality may be sensible for the control sample but heterogeneity and uncertainty in diagnosis may suggest that a more flexible model is needed for the cases. We generalize the t-statistic approach by finding the linear function which maximizes a standardized difference but with data from one of the groups (the cases) filtered by a possibly nonlinear function U. We study conditions for consistency of the method and find the function U which is optimal in the sense of asymptotic efficiency. Optimality may also extend to other measures of discriminatory efficiency such as the area under the receiver operating characteristic curve. The optimal function U depends on a scalar probability density function which can be estimated non-parametrically using a standard numerical algorithm. A lasso-like version for variable selection is implemented by adding L1-regularization to the generalized t-statistic. Two microarray data sets in the study of asthma and various cancers are used as motivating examples. © 2014, The International Biometric Society.

  15. Decentralized diagnostics based on a distributed micro-genetic algorithm for transducer networks monitoring large experimental systems.

    PubMed

    Arpaia, P; Cimmino, P; Girone, M; La Commara, G; Maisto, D; Manna, C; Pezzetti, M

    2014-09-01

    Evolutionary approach to centralized multiple-faults diagnostics is extended to distributed transducer networks monitoring large experimental systems. Given a set of anomalies detected by the transducers, each instance of the multiple-fault problem is formulated as several parallel communicating sub-tasks running on different transducers, and thus solved one-by-one on spatially separated parallel processes. A micro-genetic algorithm merges evaluation time efficiency, arising from a small-size population distributed on parallel-synchronized processors, with the effectiveness of centralized evolutionary techniques due to optimal mix of exploitation and exploration. In this way, holistic view and effectiveness advantages of evolutionary global diagnostics are combined with reliability and efficiency benefits of distributed parallel architectures. The proposed approach was validated both (i) by simulation at CERN, on a case study of a cold box for enhancing the cryogeny diagnostics of the Large Hadron Collider, and (ii) by experiments, under the framework of the industrial research project MONDIEVOB (Building Remote Monitoring and Evolutionary Diagnostics), co-funded by EU and the company Del Bo srl, Napoli, Italy.

  16. Research on the optimization of vehicle distribution routes in logistics enterprises

    NASA Astrophysics Data System (ADS)

    Fan, Zhigou; Ma, Mengkun

    2018-01-01

    With the rapid development of modern logistics, the vehicle routing problem has become one of the urgent problems in the logistics industry. The rationality of distribution route planning directly affects the efficiency and quality of logistics distribution. This paper first introduces the definition of logistics distribution and the three methods of optimizing the distribution routes, and then analyzes the current vehicle distribution route by using a representative example, finally puts forward the optimization schemes of logistics distribution route.

  17. Optimizing energy for a 'green' vaccine supply chain.

    PubMed

    Lloyd, John; McCarney, Steve; Ouhichi, Ramzi; Lydon, Patrick; Zaffran, Michel

    2015-02-11

    This paper describes an approach piloted in the Kasserine region of Tunisia to increase the energy efficiency of the distribution of vaccines and temperature sensitive drugs. The objectives of an approach, known as the 'net zero energy' (NZE) supply chain were demonstrated within the first year of operation. The existing distribution system was modified to store vaccines and medicines in the same buildings and to transport them according to pre-scheduled and optimized delivery circuits. Electric utility vehicles, dedicated to the integrated delivery of vaccines and medicines, improved the regularity and reliability of the supply chains. Solar energy, linked to the electricity grid at regional and district stores, supplied over 100% of consumption meeting all energy needs for storage, cooling and transportation. Significant benefits to the quality and costs of distribution were demonstrated. Supply trips were scheduled, integrated and reliable, energy consumption was reduced, the recurrent cost of electricity was eliminated and the release of carbon to the atmosphere was reduced. Although the initial capital cost of scaling up implementation of NZE remain high today, commercial forecasts predict cost reduction for solar energy and electric vehicles that may permit a step-wise implementation over the next 7-10 years. Efficiency in the use of energy and in the deployment of transport is already a critical component of distribution logistics in both private and public sectors of industrialized countries. The NZE approach has an intensified rationale in countries where energy costs threaten the maintenance of public health services in areas of low population density. In these countries where the mobility of health personnel and timely arrival of supplies is at risk, NZE has the potential to reduce energy costs and release recurrent budget to other needs of service delivery while also improving the supply chain. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Optimal Bayesian Adaptive Design for Test-Item Calibration.

    PubMed

    van der Linden, Wim J; Ren, Hao

    2015-06-01

    An optimal adaptive design for test-item calibration based on Bayesian optimality criteria is presented. The design adapts the choice of field-test items to the examinees taking an operational adaptive test using both the information in the posterior distributions of their ability parameters and the current posterior distributions of the field-test parameters. Different criteria of optimality based on the two types of posterior distributions are possible. The design can be implemented using an MCMC scheme with alternating stages of sampling from the posterior distributions of the test takers' ability parameters and the parameters of the field-test items while reusing samples from earlier posterior distributions of the other parameters. Results from a simulation study demonstrated the feasibility of the proposed MCMC implementation for operational item calibration. A comparison of performances for different optimality criteria showed faster calibration of substantial numbers of items for the criterion of D-optimality relative to A-optimality, a special case of c-optimality, and random assignment of items to the test takers.

  19. Provenance-aware optimization of workload for distributed data production

    NASA Astrophysics Data System (ADS)

    Makatun, Dzmitry; Lauret, Jérôme; Rudová, Hana; Šumbera, Michal

    2017-10-01

    Distributed data processing in High Energy and Nuclear Physics (HENP) is a prominent example of big data analysis. Having petabytes of data being processed at tens of computational sites with thousands of CPUs, standard job scheduling approaches either do not address well the problem complexity or are dedicated to one specific aspect of the problem only (CPU, network or storage). Previously we have developed a new job scheduling approach dedicated to distributed data production - an essential part of data processing in HENP (preprocessing in big data terminology). In this contribution, we discuss the load balancing with multiple data sources and data replication, present recent improvements made to our planner and provide results of simulations which demonstrate the advantage against standard scheduling policies for the new use case. Multi-source or provenance is common in computing models of many applications whereas the data may be copied to several destinations. The initial input data set would hence be already partially replicated to multiple locations and the task of the scheduler is to maximize overall computational throughput considering possible data movements and CPU allocation. The studies have shown that our approach can provide a significant gain in overall computational performance in a wide scope of simulations considering realistic size of computational Grid and various input data distribution.

  20. Comparison between different direct search optimization algorithms in the calibration of a distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Campo, Lorenzo; Castelli, Fabio; Caparrini, Francesca

    2010-05-01

    The modern distributed hydrological models allow the representation of the different surface and subsurface phenomena with great accuracy and high spatial and temporal resolution. Such complexity requires, in general, an equally accurate parametrization. A number of approaches have been followed in this respect, from simple local search method (like Nelder-Mead algorithm), that minimize a cost function representing some distance between model's output and available measures, to more complex approaches like dynamic filters (such as the Ensemble Kalman Filter) that carry on an assimilation of the observations. In this work the first approach was followed in order to compare the performances of three different direct search algorithms on the calibration of a distributed hydrological balance model. The direct search family can be defined as that category of algorithms that make no use of derivatives of the cost function (that is, in general, a black box) and comprehend a large number of possible approaches. The main benefit of this class of methods is that they don't require changes in the implementation of the numerical codes to be calibrated. The first algorithm is the classical Nelder-Mead, often used in many applications and utilized as reference. The second algorithm is a GSS (Generating Set Search) algorithm, built in order to guarantee the conditions of global convergence and suitable for a parallel and multi-start implementation, here presented. The third one is the EGO algorithm (Efficient Global Optimization), that is particularly suitable to calibrate black box cost functions that require expensive computational resource (like an hydrological simulation). EGO minimizes the number of evaluations of the cost function balancing the need to minimize a response surface that approximates the problem and the need to improve the approximation sampling where prediction error may be high. The hydrological model to be calibrated was MOBIDIC, a complete balance distributed model developed at the Department of Civil and Environmental Engineering of the University of Florence. Discussion on the comparisons between the effectiveness of the different algorithms on different cases of study on Central Italy basins is provided.

Top