Pepper seed variety identification based on visible/near-infrared spectral technology
NASA Astrophysics Data System (ADS)
Li, Cuiling; Wang, Xiu; Meng, Zhijun; Fan, Pengfei; Cai, Jichen
2016-11-01
Pepper is a kind of important fruit vegetable, with the expansion of pepper hybrid planting area, detection of pepper seed purity is especially important. This research used visible/near infrared (VIS/NIR) spectral technology to detect the variety of single pepper seed, and chose hybrid pepper seeds "Zhuo Jiao NO.3", "Zhuo Jiao NO.4" and "Zhuo Jiao NO.5" as research sample. VIS/NIR spectral data of 80 "Zhuo Jiao NO.3", 80 "Zhuo Jiao NO.4" and 80 "Zhuo Jiao NO.5" pepper seeds were collected, and the original spectral data was pretreated with standard normal variable (SNV) transform, first derivative (FD), and Savitzky-Golay (SG) convolution smoothing methods. Principal component analysis (PCA) method was adopted to reduce the dimension of the spectral data and extract principal components, according to the distribution of the first principal component (PC1) along with the second principal component(PC2) in the twodimensional plane, similarly, the distribution of PC1 coupled with the third principal component(PC3), and the distribution of PC2 combined with PC3, distribution areas of three varieties of pepper seeds were divided in each twodimensional plane, and the discriminant accuracy of PCA was tested through observing the distribution area of samples' principal components in validation set. This study combined PCA and linear discriminant analysis (LDA) to identify single pepper seed varieties, results showed that with the FD preprocessing method, the discriminant accuracy of pepper seed varieties was 98% for validation set, it concludes that using VIS/NIR spectral technology is feasible for identification of single pepper seed varieties.
Evaluation of Low-Voltage Distribution Network Index Based on Improved Principal Component Analysis
NASA Astrophysics Data System (ADS)
Fan, Hanlu; Gao, Suzhou; Fan, Wenjie; Zhong, Yinfeng; Zhu, Lei
2018-01-01
In order to evaluate the development level of the low-voltage distribution network objectively and scientifically, chromatography analysis method is utilized to construct evaluation index model of low-voltage distribution network. Based on the analysis of principal component and the characteristic of logarithmic distribution of the index data, a logarithmic centralization method is adopted to improve the principal component analysis algorithm. The algorithm can decorrelate and reduce the dimensions of the evaluation model and the comprehensive score has a better dispersion degree. The clustering method is adopted to analyse the comprehensive score because the comprehensive score of the courts is concentrated. Then the stratification evaluation of the courts is realized. An example is given to verify the objectivity and scientificity of the evaluation method.
Strale, Mathieu; Krysinska, Karolina; Overmeiren, Gaëtan Van; Andriessen, Karl
2017-06-01
This study investigated the geographic distribution of suicide and railway suicide in Belgium over 2008--2013 on local (i.e., district or arrondissement) level. There were differences in the regional distribution of suicide and railway suicides in Belgium over the study period. Principal component analysis identified three groups of correlations among population variables and socio-economic indicators, such as population density, unemployment, and age group distribution, on two components that helped explaining the variance of railway suicide at a local (arrondissement) level. This information is of particular importance to prevent suicides in high-risk areas on the Belgian railway network.
Research on distributed heterogeneous data PCA algorithm based on cloud platform
NASA Astrophysics Data System (ADS)
Zhang, Jin; Huang, Gang
2018-05-01
Principal component analysis (PCA) of heterogeneous data sets can solve the problem that centralized data scalability is limited. In order to reduce the generation of intermediate data and error components of distributed heterogeneous data sets, a principal component analysis algorithm based on heterogeneous data sets under cloud platform is proposed. The algorithm performs eigenvalue processing by using Householder tridiagonalization and QR factorization to calculate the error component of the heterogeneous database associated with the public key to obtain the intermediate data set and the lost information. Experiments on distributed DBM heterogeneous datasets show that the model method has the feasibility and reliability in terms of execution time and accuracy.
Sparse modeling of spatial environmental variables associated with asthma
Chang, Timothy S.; Gangnon, Ronald E.; Page, C. David; Buckingham, William R.; Tandias, Aman; Cowan, Kelly J.; Tomasallo, Carrie D.; Arndt, Brian G.; Hanrahan, Lawrence P.; Guilbert, Theresa W.
2014-01-01
Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin’s Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5–50 years over a three-year period. Each patient’s home address was geocoded to one of 3,456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin’s geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. PMID:25533437
Sparse modeling of spatial environmental variables associated with asthma.
Chang, Timothy S; Gangnon, Ronald E; David Page, C; Buckingham, William R; Tandias, Aman; Cowan, Kelly J; Tomasallo, Carrie D; Arndt, Brian G; Hanrahan, Lawrence P; Guilbert, Theresa W
2015-02-01
Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin's Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5-50years over a three-year period. Each patient's home address was geocoded to one of 3456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin's geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. Copyright © 2014 Elsevier Inc. All rights reserved.
A modified procedure for mixture-model clustering of regional geochemical data
Ellefsen, Karl J.; Smith, David B.; Horton, John D.
2014-01-01
A modified procedure is proposed for mixture-model clustering of regional-scale geochemical data. The key modification is the robust principal component transformation of the isometric log-ratio transforms of the element concentrations. This principal component transformation and the associated dimension reduction are applied before the data are clustered. The principal advantage of this modification is that it significantly improves the stability of the clustering. The principal disadvantage is that it requires subjective selection of the number of clusters and the number of principal components. To evaluate the efficacy of this modified procedure, it is applied to soil geochemical data that comprise 959 samples from the state of Colorado (USA) for which the concentrations of 44 elements are measured. The distributions of element concentrations that are derived from the mixture model and from the field samples are similar, indicating that the mixture model is a suitable representation of the transformed geochemical data. Each cluster and the associated distributions of the element concentrations are related to specific geologic and anthropogenic features. In this way, mixture model clustering facilitates interpretation of the regional geochemical data.
Liu, Xiang; Guo, Ling-Peng; Zhang, Fei-Yun; Ma, Jie; Mu, Shu-Yong; Zhao, Xin; Li, Lan-Hai
2015-02-01
Eight physical and chemical indicators related to water quality were monitored from nineteen sampling sites along the Kunes River at the end of snowmelt season in spring. To investigate the spatial distribution characteristics of water physical and chemical properties, cluster analysis (CA), discriminant analysis (DA) and principal component analysis (PCA) are employed. The result of cluster analysis showed that the Kunes River could be divided into three reaches according to the similarities of water physical and chemical properties among sampling sites, representing the upstream, midstream and downstream of the river, respectively; The result of discriminant analysis demonstrated that the reliability of such a classification was high, and DO, Cl- and BOD5 were the significant indexes leading to this classification; Three principal components were extracted on the basis of the principal component analysis, in which accumulative variance contribution could reach 86.90%. The result of principal component analysis also indicated that water physical and chemical properties were mostly affected by EC, ORP, NO3(-) -N, NH4(+) -N, Cl- and BOD5. The sorted results of principal component scores in each sampling sites showed that the water quality was mainly influenced by DO in upstream, by pH in midstream, and by the rest of indicators in downstream. The order of comprehensive scores for principal components revealed that the water quality degraded from the upstream to downstream, i.e., the upstream had the best water quality, followed by the midstream, while the water quality at downstream was the worst. This result corresponded exactly to the three reaches classified using cluster analysis. Anthropogenic activity and the accumulation of pollutants along the river were probably the main reasons leading to this spatial difference.
Considering Horn's Parallel Analysis from a Random Matrix Theory Point of View.
Saccenti, Edoardo; Timmerman, Marieke E
2017-03-01
Horn's parallel analysis is a widely used method for assessing the number of principal components and common factors. We discuss the theoretical foundations of parallel analysis for principal components based on a covariance matrix by making use of arguments from random matrix theory. In particular, we show that (i) for the first component, parallel analysis is an inferential method equivalent to the Tracy-Widom test, (ii) its use to test high-order eigenvalues is equivalent to the use of the joint distribution of the eigenvalues, and thus should be discouraged, and (iii) a formal test for higher-order components can be obtained based on a Tracy-Widom approximation. We illustrate the performance of the two testing procedures using simulated data generated under both a principal component model and a common factors model. For the principal component model, the Tracy-Widom test performs consistently in all conditions, while parallel analysis shows unpredictable behavior for higher-order components. For the common factor model, including major and minor factors, both procedures are heuristic approaches, with variable performance. We conclude that the Tracy-Widom procedure is preferred over parallel analysis for statistically testing the number of principal components based on a covariance matrix.
Fast, Exact Bootstrap Principal Component Analysis for p > 1 million
Fisher, Aaron; Caffo, Brian; Schwartz, Brian; Zipunnikov, Vadim
2015-01-01
Many have suggested a bootstrap procedure for estimating the sampling variability of principal component analysis (PCA) results. However, when the number of measurements per subject (p) is much larger than the number of subjects (n), calculating and storing the leading principal components from each bootstrap sample can be computationally infeasible. To address this, we outline methods for fast, exact calculation of bootstrap principal components, eigenvalues, and scores. Our methods leverage the fact that all bootstrap samples occupy the same n-dimensional subspace as the original sample. As a result, all bootstrap principal components are limited to the same n-dimensional subspace and can be efficiently represented by their low dimensional coordinates in that subspace. Several uncertainty metrics can be computed solely based on the bootstrap distribution of these low dimensional coordinates, without calculating or storing the p-dimensional bootstrap components. Fast bootstrap PCA is applied to a dataset of sleep electroencephalogram recordings (p = 900, n = 392), and to a dataset of brain magnetic resonance images (MRIs) (p ≈ 3 million, n = 352). For the MRI dataset, our method allows for standard errors for the first 3 principal components based on 1000 bootstrap samples to be calculated on a standard laptop in 47 minutes, as opposed to approximately 4 days with standard methods. PMID:27616801
Tanaka, Kazuki; Takesue, Nobuyuki; Nishioka, Jun; Kondo, Yoshiko; Ooki, Atsushi; Kuma, Kenshi; Hirawake, Toru; Yamashita, Youhei
2016-01-01
The spatial distribution of dissolved organic carbon (DOC) concentrations and the optical properties of dissolved organic matter (DOM) determined by ultraviolet-visible absorbance and fluorescence spectroscopy were measured in surface waters of the southern Chukchi Sea, western Arctic Ocean, during the early summer of 2013. Neither the DOC concentration nor the optical parameters of the DOM correlated with salinity. Principal component analysis using the DOM optical parameters clearly separated the DOM sources. A significant linear relationship was evident between the DOC and the principal component score for specific water masses, indicating that a high DOC level was related to a terrigenous source, whereas a low DOC level was related to a marine source. Relationships between the DOC and the principal component scores of the surface waters of the southern Chukchi Sea implied that the major factor controlling the distribution of DOC concentrations was the mixing of plural water masses rather than local production and degradation. PMID:27658444
Effect of noise in principal component analysis with an application to ozone pollution
NASA Astrophysics Data System (ADS)
Tsakiri, Katerina G.
This thesis analyzes the effect of independent noise in principal components of k normally distributed random variables defined by a covariance matrix. We prove that the principal components as well as the canonical variate pairs determined from joint distribution of original sample affected by noise can be essentially different in comparison with those determined from the original sample. However when the differences between the eigenvalues of the original covariance matrix are sufficiently large compared to the level of the noise, the effect of noise in principal components and canonical variate pairs proved to be negligible. The theoretical results are supported by simulation study and examples. Moreover, we compare our results about the eigenvalues and eigenvectors in the two dimensional case with other models examined before. This theory can be applied in any field for the decomposition of the components in multivariate analysis. One application is the detection and prediction of the main atmospheric factor of ozone concentrations on the example of Albany, New York. Using daily ozone, solar radiation, temperature, wind speed and precipitation data, we determine the main atmospheric factor for the explanation and prediction of ozone concentrations. A methodology is described for the decomposition of the time series of ozone and other atmospheric variables into the global term component which describes the long term trend and the seasonal variations, and the synoptic scale component which describes the short term variations. By using the Canonical Correlation Analysis, we show that solar radiation is the only main factor between the atmospheric variables considered here for the explanation and prediction of the global and synoptic scale component of ozone. The global term components are modeled by a linear regression model, while the synoptic scale components by a vector autoregressive model and the Kalman filter. The coefficient of determination, R2, for the prediction of the synoptic scale ozone component was found to be the highest when we consider the synoptic scale component of the time series for solar radiation and temperature. KEY WORDS: multivariate analysis; principal component; canonical variate pairs; eigenvalue; eigenvector; ozone; solar radiation; spectral decomposition; Kalman filter; time series prediction
NASA Astrophysics Data System (ADS)
Hristian, L.; Ostafe, M. M.; Manea, L. R.; Apostol, L. L.
2017-06-01
The work pursued the distribution of combed wool fabrics destined to manufacturing of external articles of clothing in terms of the values of durability and physiological comfort indices, using the mathematical model of Principal Component Analysis (PCA). Principal Components Analysis (PCA) applied in this study is a descriptive method of the multivariate analysis/multi-dimensional data, and aims to reduce, under control, the number of variables (columns) of the matrix data as much as possible to two or three. Therefore, based on the information about each group/assortment of fabrics, it is desired that, instead of nine inter-correlated variables, to have only two or three new variables called components. The PCA target is to extract the smallest number of components which recover the most of the total information contained in the initial data.
NASA Technical Reports Server (NTRS)
Murray, C. W., Jr.; Mueller, J. L.; Zwally, H. J.
1984-01-01
A field of measured anomalies of some physical variable relative to their time averages, is partitioned in either the space domain or the time domain. Eigenvectors and corresponding principal components of the smaller dimensioned covariance matrices associated with the partitioned data sets are calculated independently, then joined to approximate the eigenstructure of the larger covariance matrix associated with the unpartitioned data set. The accuracy of the approximation (fraction of the total variance in the field) and the magnitudes of the largest eigenvalues from the partitioned covariance matrices together determine the number of local EOF's and principal components to be joined by any particular level. The space-time distribution of Nimbus-5 ESMR sea ice measurement is analyzed.
Rosacea assessment by erythema index and principal component analysis segmentation maps
NASA Astrophysics Data System (ADS)
Kuzmina, Ilona; Rubins, Uldis; Saknite, Inga; Spigulis, Janis
2017-12-01
RGB images of rosacea were analyzed using segmentation maps of principal component analysis (PCA) and erythema index (EI). Areas of segmented clusters were compared to Clinician's Erythema Assessment (CEA) values given by two dermatologists. The results show that visible blood vessels are segmented more precisely on maps of the erythema index and the third principal component (PC3). In many cases, a distribution of clusters on EI and PC3 maps are very similar. Mean values of clusters' areas on these maps show a decrease of the area of blood vessels and erythema and an increase of lighter skin area after the therapy for the patients with diagnosis CEA = 2 on the first visit and CEA=1 on the second visit. This study shows that EI and PC3 maps are more useful than the maps of the first (PC1) and second (PC2) principal components for indicating vascular structures and erythema on the skin of rosacea patients and therapy monitoring.
NASA Astrophysics Data System (ADS)
Zhang, Qiong; Peng, Cong; Lu, Yiming; Wang, Hao; Zhu, Kaiguang
2018-04-01
A novel technique is developed to level airborne geophysical data using principal component analysis based on flight line difference. In the paper, flight line difference is introduced to enhance the features of levelling error for airborne electromagnetic (AEM) data and improve the correlation between pseudo tie lines. Thus we conduct levelling to the flight line difference data instead of to the original AEM data directly. Pseudo tie lines are selected distributively cross profile direction, avoiding the anomalous regions. Since the levelling errors of selective pseudo tie lines show high correlations, principal component analysis is applied to extract the local levelling errors by low-order principal components reconstruction. Furthermore, we can obtain the levelling errors of original AEM data through inverse difference after spatial interpolation. This levelling method does not need to fly tie lines and design the levelling fitting function. The effectiveness of this method is demonstrated by the levelling results of survey data, comparing with the results from tie-line levelling and flight-line correlation levelling.
Principal components analysis of the photoresponse nonuniformity of a matrix detector.
Ferrero, Alejandro; Alda, Javier; Campos, Joaquín; López-Alonso, Jose Manuel; Pons, Alicia
2007-01-01
The principal component analysis is used to identify and quantify spatial distributions of relative photoresponse as a function of the exposure time for a visible CCD array. The analysis shows a simple way to define an invariant photoresponse nonuniformity and compare it with the definition of this invariant pattern as the one obtained for long exposure times. Experimental data of radiant exposure from levels of irradiance obtained in a stable and well-controlled environment are used.
Spectral decomposition of asteroid Itokawa based on principal component analysis
NASA Astrophysics Data System (ADS)
Koga, Sumire C.; Sugita, Seiji; Kamata, Shunichi; Ishiguro, Masateru; Hiroi, Takahiro; Tatsumi, Eri; Sasaki, Sho
2018-01-01
The heliocentric stratification of asteroid spectral types may hold important information on the early evolution of the Solar System. Asteroid spectral taxonomy is based largely on principal component analysis. However, how the surface properties of asteroids, such as the composition and age, are projected in the principal-component (PC) space is not understood well. We decompose multi-band disk-resolved visible spectra of the Itokawa surface with principal component analysis (PCA) in comparison with main-belt asteroids. The obtained distribution of Itokawa spectra projected in the PC space of main-belt asteroids follows a linear trend linking the Q-type and S-type regions and is consistent with the results of space-weathering experiments on ordinary chondrites and olivine, suggesting that this trend may be a space-weathering-induced spectral evolution track for S-type asteroids. Comparison with space-weathering experiments also yield a short average surface age (< a few million years) for Itokawa, consistent with the cosmic-ray-exposure time of returned samples from Itokawa. The Itokawa PC score distribution exhibits asymmetry along the evolution track, strongly suggesting that space weathering has begun saturated on this young asteroid. The freshest spectrum found on Itokawa exhibits a clear sign for space weathering, indicating again that space weathering occurs very rapidly on this body. We also conducted PCA on Itokawa spectra alone and compared the results with space-weathering experiments. The obtained results indicate that the first principal component of Itokawa surface spectra is consistent with spectral change due to space weathering and that the spatial variation in the degree of space weathering is very large (a factor of three in surface age), which would strongly suggest the presence of strong regional/local resurfacing process(es) on this small asteroid.
Zhang, Jian; Hou, Dibo; Wang, Ke; Huang, Pingjie; Zhang, Guangxin; Loáiciga, Hugo
2017-05-01
The detection of organic contaminants in water distribution systems is essential to protect public health from potential harmful compounds resulting from accidental spills or intentional releases. Existing methods for detecting organic contaminants are based on quantitative analyses such as chemical testing and gas/liquid chromatography, which are time- and reagent-consuming and involve costly maintenance. This study proposes a novel procedure based on discrete wavelet transform and principal component analysis for detecting organic contamination events from ultraviolet spectral data. Firstly, the spectrum of each observation is transformed using discrete wavelet with a coiflet mother wavelet to capture the abrupt change along the wavelength. Principal component analysis is then employed to approximate the spectra based on capture and fusion features. The significant value of Hotelling's T 2 statistics is calculated and used to detect outliers. An alarm of contamination event is triggered by sequential Bayesian analysis when the outliers appear continuously in several observations. The effectiveness of the proposed procedure is tested on-line using a pilot-scale setup and experimental data.
NASA Astrophysics Data System (ADS)
Hirose, Misa; Toyota, Saori; Ojima, Nobutoshi; Ogawa-Ochiai, Keiko; Tsumura, Norimichi
2017-08-01
In this paper, principal component analysis is applied to the distribution of pigmentation, surface reflectance, and landmarks in whole facial images to obtain feature values. The relationship between the obtained feature vectors and the age of the face is then estimated by multiple regression analysis so that facial images can be modulated for woman aged 10-70. In a previous study, we analyzed only the distribution of pigmentation, and the reproduced images appeared to be younger than the apparent age of the initial images. We believe that this happened because we did not modulate the facial structures and detailed surfaces, such as wrinkles. By considering landmarks and surface reflectance over the entire face, we were able to analyze the variation in the distributions of facial structures and fine asperity, and pigmentation. As a result, our method is able to appropriately modulate the appearance of a face so that it appears to be the correct age.
Distributions of experimental protein structures on coarse-grained free energy landscapes
Liu, Jie; Jernigan, Robert L.
2015-01-01
Predicting conformational changes of proteins is needed in order to fully comprehend functional mechanisms. With the large number of available structures in sets of related proteins, it is now possible to directly visualize the clusters of conformations and their conformational transitions through the use of principal component analysis. The most striking observation about the distributions of the structures along the principal components is their highly non-uniform distributions. In this work, we use principal component analysis of experimental structures of 50 diverse proteins to extract the most important directions of their motions, sample structures along these directions, and estimate their free energy landscapes by combining knowledge-based potentials and entropy computed from elastic network models. When these resulting motions are visualized upon their coarse-grained free energy landscapes, the basis for conformational pathways becomes readily apparent. Using three well-studied proteins, T4 lysozyme, serum albumin, and sarco-endoplasmic reticular Ca2+ adenosine triphosphatase (SERCA), as examples, we show that such free energy landscapes of conformational changes provide meaningful insights into the functional dynamics and suggest transition pathways between different conformational states. As a further example, we also show that Monte Carlo simulations on the coarse-grained landscape of HIV-1 protease can directly yield pathways for force-driven conformational changes. PMID:26723638
Principal Component Analysis for Normal-Distribution-Valued Symbolic Data.
Wang, Huiwen; Chen, Meiling; Shi, Xiaojun; Li, Nan
2016-02-01
This paper puts forward a new approach to principal component analysis (PCA) for normal-distribution-valued symbolic data, which has a vast potential of applications in the economic and management field. We derive a full set of numerical characteristics and variance-covariance structure for such data, which forms the foundation for our analytical PCA approach. Our approach is able to use all of the variance information in the original data than the prevailing representative-type approach in the literature which only uses centers, vertices, etc. The paper also provides an accurate approach to constructing the observations in a PC space based on the linear additivity property of normal distribution. The effectiveness of the proposed method is illustrated by simulated numerical experiments. At last, our method is applied to explain the puzzle of risk-return tradeoff in China's stock market.
Ferrero, A; Campos, J; Rabal, A M; Pons, A; Hernanz, M L; Corróns, A
2011-09-26
The Bidirectional Reflectance Distribution Function (BRDF) is essential to characterize an object's reflectance properties. This function depends both on the various illumination-observation geometries as well as on the wavelength. As a result, the comprehensive interpretation of the data becomes rather complex. In this work we assess the use of the multivariable analysis technique of Principal Components Analysis (PCA) applied to the experimental BRDF data of a ceramic colour standard. It will be shown that the result may be linked to the various reflection processes occurring on the surface, assuming that the incoming spectral distribution is affected by each one of these processes in a specific manner. Moreover, this procedure facilitates the task of interpolating a series of BRDF measurements obtained for a particular sample. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Haneishi, Hideaki; Sakuda, Yasunori; Honda, Toshio
2002-06-01
Spectral reflectance of most reflective objects such as natural objects and color hardcopy is relatively smooth and can be approximated by several numbers of principal components with high accuracy. Though the subspace spanned by those principal components represents a space in which reflective objects can exist, it dos not provide the bound in which the samples distribute. In this paper we propose to represent the gamut of reflective objects in more distinct form, i.e., as a polyhedron in the subspace spanned by several principal components. Concept of the polyhedral gamut representation and its application to calculation of metamer ensemble are described. Color-mismatch volume caused by different illuminant and/or observer for a metamer ensemble is also calculated and compared with theoretical one.
Azevedo, C F; Nascimento, M; Silva, F F; Resende, M D V; Lopes, P S; Guimarães, S E F; Glória, L S
2015-10-09
A significant contribution of molecular genetics is the direct use of DNA information to identify genetically superior individuals. With this approach, genome-wide selection (GWS) can be used for this purpose. GWS consists of analyzing a large number of single nucleotide polymorphism markers widely distributed in the genome; however, because the number of markers is much larger than the number of genotyped individuals, and such markers are highly correlated, special statistical methods are widely required. Among these methods, independent component regression, principal component regression, partial least squares, and partial principal components stand out. Thus, the aim of this study was to propose an application of the methods of dimensionality reduction to GWS of carcass traits in an F2 (Piau x commercial line) pig population. The results show similarities between the principal and the independent component methods and provided the most accurate genomic breeding estimates for most carcass traits in pigs.
NASA Astrophysics Data System (ADS)
Gao, Yang; Chen, Maomao; Wu, Junyu; Zhou, Yuan; Cai, Chuangjian; Wang, Daliang; Luo, Jianwen
2017-09-01
Fluorescence molecular imaging has been used to target tumors in mice with xenograft tumors. However, tumor imaging is largely distorted by the aggregation of fluorescent probes in the liver. A principal component analysis (PCA)-based strategy was applied on the in vivo dynamic fluorescence imaging results of three mice with xenograft tumors to facilitate tumor imaging, with the help of a tumor-specific fluorescent probe. Tumor-relevant features were extracted from the original images by PCA and represented by the principal component (PC) maps. The second principal component (PC2) map represented the tumor-related features, and the first principal component (PC1) map retained the original pharmacokinetic profiles, especially of the liver. The distribution patterns of the PC2 map of the tumor-bearing mice were in good agreement with the actual tumor location. The tumor-to-liver ratio and contrast-to-noise ratio were significantly higher on the PC2 map than on the original images, thus distinguishing the tumor from its nearby fluorescence noise of liver. The results suggest that the PC2 map could serve as a bioimaging marker to facilitate in vivo tumor localization, and dynamic fluorescence molecular imaging with PCA could be a valuable tool for future studies of in vivo tumor metabolism and progression.
Yuan, Yuan-Yuan; Zhou, Yu-Bi; Sun, Jing; Deng, Juan; Bai, Ying; Wang, Jie; Lu, Xue-Feng
2017-06-01
The content of elements in fifteen different regions of Nitraria roborowskii samples were determined by inductively coupled plasma-atomic emission spectrometry(ICP-OES), and its elemental characteristics were analyzed by principal component analysis. The results indicated that 18 mineral elements were detected in N. roborowskii of which V cannot be detected. In addition, contents of Na, K and Ca showed high concentration. Ti showed maximum content variance, while K is minimum. Four principal components were gained from the original data. The cumulative variance contribution rate is 81.542% and the variance contribution of the first principal component was 44.997%, indicating that Cr, Fe, P and Ca were the characteristic elements of N. roborowskii.Thus, the established method was simple, precise and can be used for determination of mineral elements in N.roborowskii Kom. fruits. The elemental distribution characteristics among N.roborowskii fruits are related to geographical origins which were clearly revealed by PCA. All the results will provide good basis for comprehensive utilization of N.roborowskii. Copyright© by the Chinese Pharmaceutical Association.
Climatic niche evolution in New World monkeys (Platyrrhini).
Duran, Andressa; Meyer, Andreas L S; Pie, Marcio R
2013-01-01
Despite considerable interest in recent years on species distribution modeling and phylogenetic niche conservatism, little is known about the way in which climatic niches change over evolutionary time. This knowledge is of major importance to understand the mechanisms underlying limits of species distributions, as well as to infer how different lineages might be affected by anthropogenic climate change. In this study we investigate the tempo and mode climatic niche evolution in New World monkeys (Platyrrhini). Climatic conditions found throughout the distribution of 140 primate species were investigated using a principal component analysis, which indicated that mean temperature (particularly during the winter) is the most important climatic correlate of platyrrhine geographical distributions, accounting for nearly half of the interspecific variation in climatic niches. The effects of precipitation were associated with the second principal component, particularly with respect to the dry season. When models of trait evolution were fit to scores on each of the principal component axes, significant phylogenetic signal was detected for PC1 scores, but not for PC2 scores. Interestingly, although all platyrrhine families occupied comparable regions of climatic space, some aotid species such as Aotus lemurinus, A. jorgehernandezi, and A. miconax show highly distinctive climatic niches associated with drier conditions (high PC2 scores). This shift might have been made possible by their nocturnal habits, which could serve as an exaptation that allow them to be less constrained by humidity during the night. These results underscore the usefulness of investigating explicitly the tempo and mode of climatic niche evolution and its role in determining species distributions.
Zhao, Ruifeng; Zhou, Huarong; Qian, Yibing; Zhang, Jianjun
2006-06-01
A total of 16 quadrants of wetlands and surrounding lands in the mid- and lower reaches of Tarim River were surveyed, and the data about the characteristics of plant communities and environmental factors were collected and counted. By using PCA (principal component analysis) ordination and regression procedure, the distribution patterns of plant communities and the relationships between the characteristics of plant community structure and environmental factors were analyzed. The results showed that the distribution of the plant communities was closely related to soil moisture, salt, and nutrient contents. The accumulative contribution rate of soil moisture and salt contents in the first principal component accounted for 35.70%, and that of soil nutrient content in the second principal component reached 25.97%. There were 4 types of habitats for the plant community distribution, i. e., fenny--light salt--medium nutrient, moist--medium salt--medium nutrient, mesophytic--medium salt--low nutrient, and medium xerophytic-heavy salt--low nutrient. Along these habitats, swamp vegetation, meadow vegetation, riparian sparse forest, halophytic desert, and salinized shrub were distributed. In the wetlands and surrounding lands of mid- and lower reaches of Tarim River, the ecological dominance of the plant communities was markedly and unitary-linearly correlated with the compound gradient of soil moisture and salt contents. The relationships between species diversity, ecological dominance, and compound gradient of soil moisture and salt contents were significantly accorded to binary-linear regression model.
Perturbational formulation of principal component analysis in molecular dynamics simulation.
Koyama, Yohei M; Kobayashi, Tetsuya J; Tomoda, Shuji; Ueda, Hiroki R
2008-10-01
Conformational fluctuations of a molecule are important to its function since such intrinsic fluctuations enable the molecule to respond to the external environmental perturbations. For extracting large conformational fluctuations, which predict the primary conformational change by the perturbation, principal component analysis (PCA) has been used in molecular dynamics simulations. However, several versions of PCA, such as Cartesian coordinate PCA and dihedral angle PCA (dPCA), are limited to use with molecules with a single dominant state or proteins where the dihedral angle represents an important internal coordinate. Other PCAs with general applicability, such as the PCA using pairwise atomic distances, do not represent the physical meaning clearly. Therefore, a formulation that provides general applicability and clearly represents the physical meaning is yet to be developed. For developing such a formulation, we consider the conformational distribution change by the perturbation with arbitrary linearly independent perturbation functions. Within the second order approximation of the Kullback-Leibler divergence by the perturbation, the PCA can be naturally interpreted as a method for (1) decomposing a given perturbation into perturbations that independently contribute to the conformational distribution change or (2) successively finding the perturbation that induces the largest conformational distribution change. In this perturbational formulation of PCA, (i) the eigenvalue measures the Kullback-Leibler divergence from the unperturbed to perturbed distributions, (ii) the eigenvector identifies the combination of the perturbation functions, and (iii) the principal component determines the probability change induced by the perturbation. Based on this formulation, we propose a PCA using potential energy terms, and we designate it as potential energy PCA (PEPCA). The PEPCA provides both general applicability and clear physical meaning. For demonstrating its power, we apply the PEPCA to an alanine dipeptide molecule in vacuum as a minimal model of a nonsingle dominant conformational biomolecule. The first and second principal components clearly characterize two stable states and the transition state between them. Positive and negative components with larger absolute values of the first and second eigenvectors identify the electrostatic interactions, which stabilize or destabilize each stable state and the transition state. Our result therefore indicates that PCA can be applied, by carefully selecting the perturbation functions, not only to identify the molecular conformational fluctuation but also to predict the conformational distribution change by the perturbation beyond the limitation of the previous methods.
Perturbational formulation of principal component analysis in molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Koyama, Yohei M.; Kobayashi, Tetsuya J.; Tomoda, Shuji; Ueda, Hiroki R.
2008-10-01
Conformational fluctuations of a molecule are important to its function since such intrinsic fluctuations enable the molecule to respond to the external environmental perturbations. For extracting large conformational fluctuations, which predict the primary conformational change by the perturbation, principal component analysis (PCA) has been used in molecular dynamics simulations. However, several versions of PCA, such as Cartesian coordinate PCA and dihedral angle PCA (dPCA), are limited to use with molecules with a single dominant state or proteins where the dihedral angle represents an important internal coordinate. Other PCAs with general applicability, such as the PCA using pairwise atomic distances, do not represent the physical meaning clearly. Therefore, a formulation that provides general applicability and clearly represents the physical meaning is yet to be developed. For developing such a formulation, we consider the conformational distribution change by the perturbation with arbitrary linearly independent perturbation functions. Within the second order approximation of the Kullback-Leibler divergence by the perturbation, the PCA can be naturally interpreted as a method for (1) decomposing a given perturbation into perturbations that independently contribute to the conformational distribution change or (2) successively finding the perturbation that induces the largest conformational distribution change. In this perturbational formulation of PCA, (i) the eigenvalue measures the Kullback-Leibler divergence from the unperturbed to perturbed distributions, (ii) the eigenvector identifies the combination of the perturbation functions, and (iii) the principal component determines the probability change induced by the perturbation. Based on this formulation, we propose a PCA using potential energy terms, and we designate it as potential energy PCA (PEPCA). The PEPCA provides both general applicability and clear physical meaning. For demonstrating its power, we apply the PEPCA to an alanine dipeptide molecule in vacuum as a minimal model of a nonsingle dominant conformational biomolecule. The first and second principal components clearly characterize two stable states and the transition state between them. Positive and negative components with larger absolute values of the first and second eigenvectors identify the electrostatic interactions, which stabilize or destabilize each stable state and the transition state. Our result therefore indicates that PCA can be applied, by carefully selecting the perturbation functions, not only to identify the molecular conformational fluctuation but also to predict the conformational distribution change by the perturbation beyond the limitation of the previous methods.
Spatial distribution of environmental risk associated to a uranium abandoned mine (Central Portugal)
NASA Astrophysics Data System (ADS)
Antunes, I. M.; Ribeiro, A. F.
2012-04-01
The abandoned uranium mine of Canto do Lagar is located at Arcozelo da Serra, central Portugal. The mine was exploited in an open pit and produced about 12430Kg of uranium oxide (U3O8), between 1987 and 1988. The dominant geological unit is the porphyritic coarse-grained two-mica granite, with biotite>muscovite. The uranium deposit consists of two gaps crushing, parallel to the coarse-grained porphyritic granite, with average direction N30°E, silicified, sericitized and reddish jasperized, with a width of approximately 10 meters. These gaps are accompanied by two thin veins of white quartz, 70°-80° WNW, ferruginous and jasperized with chalcedony, red jasper and opal. These veins are about 6 meters away from each other. They contain secondary U-phosphates phases such as autunite and torbernite. Rejected materials (1000000ton) were deposited on two dumps and a lake was formed in the open pit. To assess the environmental risk of the abandoned uranium mine of Canto do Lagar, were collected and analysed 70 samples on stream sediments, soils and mine tailings materials. The relation between samples composition were tested using the Principal Components Analysis (PCA) (multivariate analysis) and spatial distribution using Kriging Indicator. The spatial distribution of stream sediments shows that the probability of expression for principal component 1 (explaining Y, Zr, Nb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Hf, Th and U contents), decreases along SE-NW direction. This component is explained by the samples located inside mine influence. The probability of expression for principal component 2 (explaining Be, Na, Al, Si, P, K, Ca, Ti, Mn, Fe, Co, Ni, Cu, As, Rb, Sr, Mo, Cs, Ba, Tl and Bi contents), increases to middle stream line. This component is explained by the samples located outside mine influence. The spatial distribution of soils, shows that the probability of expression for principal component 1 (explaining Mg, P, Ca, Ge, Sr, Y, Zr, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, W, Th and U contents) decreases along SE direction and increases along NE and SW directions. The probability of expression for principal component 2 (explaining pH, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr and Pb contents), decreases from central points (inside mine influence) to peripheral points (outside mine influence) and gradually increases along N and SW directions. The spatial distribution of tailing materials did not allowed a consistent spatial distribution. In general, the stream sediments are classified as unpolluted and not polluted or moderately polluted, according to geoaccumulation Müller index with exception of local samples, located inside mine influence. The soils cannot be used for public, private or residential uses according to the Canadian soil legislation. However, almost samples can be used for commercial or industrial occupation. According to the target values and intervention values for soils remediation, these soils need intervention. Tailing materials samples are much polluted in thorium (Th) and uranium (U) and they cannot be used for public, private or residential uses.
Discriminative components of data.
Peltonen, Jaakko; Kaski, Samuel
2005-01-01
A simple probabilistic model is introduced to generalize classical linear discriminant analysis (LDA) in finding components that are informative of or relevant for data classes. The components maximize the predictability of the class distribution which is asymptotically equivalent to 1) maximizing mutual information with the classes, and 2) finding principal components in the so-called learning or Fisher metrics. The Fisher metric measures only distances that are relevant to the classes, that is, distances that cause changes in the class distribution. The components have applications in data exploration, visualization, and dimensionality reduction. In empirical experiments, the method outperformed, in addition to more classical methods, a Renyi entropy-based alternative while having essentially equivalent computational cost.
NASA Astrophysics Data System (ADS)
Chattopadhyay, Goutami; Chattopadhyay, Surajit; Chakraborthy, Parthasarathi
2012-07-01
The present study deals with daily total ozone concentration time series over four metro cities of India namely Kolkata, Mumbai, Chennai, and New Delhi in the multivariate environment. Using the Kaiser-Meyer-Olkin measure, it is established that the data set under consideration are suitable for principal component analysis. Subsequently, by introducing rotated component matrix for the principal components, the predictors suitable for generating artificial neural network (ANN) for daily total ozone prediction are identified. The multicollinearity is removed in this way. Models of ANN in the form of multilayer perceptron trained through backpropagation learning are generated for all of the study zones, and the model outcomes are assessed statistically. Measuring various statistics like Pearson correlation coefficients, Willmott's indices, percentage errors of prediction, and mean absolute errors, it is observed that for Mumbai and Kolkata the proposed ANN model generates very good predictions. The results are supported by the linearly distributed coordinates in the scatterplots.
A method to map errors in the deformable registration of 4DCT images1
Vaman, Constantin; Staub, David; Williamson, Jeffrey; Murphy, Martin J.
2010-01-01
Purpose: To present a new approach to the problem of estimating errors in deformable image registration (DIR) applied to sequential phases of a 4DCT data set. Methods: A set of displacement vector fields (DVFs) are made by registering a sequence of 4DCT phases. The DVFs are assumed to display anatomical movement, with the addition of errors due to the imaging and registration processes. The positions of physical landmarks in each CT phase are measured as ground truth for the physical movement in the DVF. Principal component analysis of the DVFs and the landmarks is used to identify and separate the eigenmodes of physical movement from the error eigenmodes. By subtracting the physical modes from the principal components of the DVFs, the registration errors are exposed and reconstructed as DIR error maps. The method is demonstrated via a simple numerical model of 4DCT DVFs that combines breathing movement with simulated maps of spatially correlated DIR errors. Results: The principal components of the simulated DVFs were observed to share the basic properties of principal components for actual 4DCT data. The simulated error maps were accurately recovered by the estimation method. Conclusions: Deformable image registration errors can have complex spatial distributions. Consequently, point-by-point landmark validation can give unrepresentative results that do not accurately reflect the registration uncertainties away from the landmarks. The authors are developing a method for mapping the complete spatial distribution of DIR errors using only a small number of ground truth validation landmarks. PMID:21158288
NASA Astrophysics Data System (ADS)
Ketcham, Richard A.
2017-04-01
Anisotropy in three-dimensional quantities such as geometric shape and orientation is commonly quantified using principal components analysis, in which a second order tensor determines the orientations of orthogonal components and their relative magnitudes. This approach has many advantages, such as simplicity and ability to accommodate many forms of data, and resilience to data sparsity. However, when data are sufficiently plentiful and precise, they sometimes show that aspects of the principal components approach are oversimplifications that may affect how the data are interpreted or extrapolated for mathematical or physical modeling. High-resolution X-ray computed tomography (CT) can effectively extract thousands of measurements from a single sample, providing a data density sufficient to examine the ways in which anisotropy on the hand-sample scale and smaller can be quantified, and the extent to which the ways the data are simplified are faithful to the underlying distributions. Features within CT data can be considered as discrete objects or continuum fabrics; the latter can be characterized using a variety of metrics, such as the most commonly used mean intercept length, and also the more specialized star length and star volume distributions. Each method posits a different scaling among components that affects the measured degree of anisotropy. The star volume distribution is the most sensitive to anisotropy, and commonly distinguishes strong fabric components that are not orthogonal. Although these data are well-presented using a stereoplot, 3D rose diagrams are another visualization option that can often help identify these components. This talk presents examples from a number of cases, starting with trabecular bone and extending to geological features such as fractures and brittle and ductile fabrics, in which non-orthogonal principal components identified using CT provide some insight into the origin of the underlying structures, and how they should be interpreted and potentially up-scaled.
A Genealogical Interpretation of Principal Components Analysis
McVean, Gil
2009-01-01
Principal components analysis, PCA, is a statistical method commonly used in population genetics to identify structure in the distribution of genetic variation across geographical location and ethnic background. However, while the method is often used to inform about historical demographic processes, little is known about the relationship between fundamental demographic parameters and the projection of samples onto the primary axes. Here I show that for SNP data the projection of samples onto the principal components can be obtained directly from considering the average coalescent times between pairs of haploid genomes. The result provides a framework for interpreting PCA projections in terms of underlying processes, including migration, geographical isolation, and admixture. I also demonstrate a link between PCA and Wright's fst and show that SNP ascertainment has a largely simple and predictable effect on the projection of samples. Using examples from human genetics, I discuss the application of these results to empirical data and the implications for inference. PMID:19834557
Classical Testing in Functional Linear Models.
Kong, Dehan; Staicu, Ana-Maria; Maity, Arnab
2016-01-01
We extend four tests common in classical regression - Wald, score, likelihood ratio and F tests - to functional linear regression, for testing the null hypothesis, that there is no association between a scalar response and a functional covariate. Using functional principal component analysis, we re-express the functional linear model as a standard linear model, where the effect of the functional covariate can be approximated by a finite linear combination of the functional principal component scores. In this setting, we consider application of the four traditional tests. The proposed testing procedures are investigated theoretically for densely observed functional covariates when the number of principal components diverges. Using the theoretical distribution of the tests under the alternative hypothesis, we develop a procedure for sample size calculation in the context of functional linear regression. The four tests are further compared numerically for both densely and sparsely observed noisy functional data in simulation experiments and using two real data applications.
Classical Testing in Functional Linear Models
Kong, Dehan; Staicu, Ana-Maria; Maity, Arnab
2016-01-01
We extend four tests common in classical regression - Wald, score, likelihood ratio and F tests - to functional linear regression, for testing the null hypothesis, that there is no association between a scalar response and a functional covariate. Using functional principal component analysis, we re-express the functional linear model as a standard linear model, where the effect of the functional covariate can be approximated by a finite linear combination of the functional principal component scores. In this setting, we consider application of the four traditional tests. The proposed testing procedures are investigated theoretically for densely observed functional covariates when the number of principal components diverges. Using the theoretical distribution of the tests under the alternative hypothesis, we develop a procedure for sample size calculation in the context of functional linear regression. The four tests are further compared numerically for both densely and sparsely observed noisy functional data in simulation experiments and using two real data applications. PMID:28955155
Time series analysis of collective motions in proteins
NASA Astrophysics Data System (ADS)
Alakent, Burak; Doruker, Pemra; ćamurdan, Mehmet C.
2004-01-01
The dynamics of α-amylase inhibitor tendamistat around its native state is investigated using time series analysis of the principal components of the Cα atomic displacements obtained from molecular dynamics trajectories. Collective motion along a principal component is modeled as a homogeneous nonstationary process, which is the result of the damped oscillations in local minima superimposed on a random walk. The motion in local minima is described by a stationary autoregressive moving average model, consisting of the frequency, damping factor, moving average parameters and random shock terms. Frequencies for the first 50 principal components are found to be in the 3-25 cm-1 range, which are well correlated with the principal component indices and also with atomistic normal mode analysis results. Damping factors, though their correlation is less pronounced, decrease as principal component indices increase, indicating that low frequency motions are less affected by friction. The existence of a positive moving average parameter indicates that the stochastic force term is likely to disturb the mode in opposite directions for two successive sampling times, showing the modes tendency to stay close to minimum. All these four parameters affect the mean square fluctuations of a principal mode within a single minimum. The inter-minima transitions are described by a random walk model, which is driven by a random shock term considerably smaller than that for the intra-minimum motion. The principal modes are classified into three subspaces based on their dynamics: essential, semiconstrained, and constrained, at least in partial consistency with previous studies. The Gaussian-type distributions of the intermediate modes, called "semiconstrained" modes, are explained by asserting that this random walk behavior is not completely free but between energy barriers.
[Geographical distribution of left ventricular Tei index based on principal component analysis].
Xu, Jinhui; Ge, Miao; He, Jinwei; Xue, Ranyin; Yang, Shaofang; Jiang, Jilin
2014-11-01
To provide a scientific standard of left ventricular Tei index for healthy people from various region of China, and to lay a reliable foundation for the evaluation of left ventricular diastolic and systolic function. The correlation and principal component analysis were used to explore the left ventricular Tei index, which based on the data of 3 562 samples from 50 regions of China by means of literature retrieval. Th e nine geographical factors were longitude(X₁), latitude(X₂), altitude(X₃), annual sunshine hours (X₄), the annual average temperature (X₅), annual average relative humidity (X₆), annual precipitation (X₇), annual temperature range (X₈) and annual average wind speed (X₉). ArcGIS soft ware was applied to calculate the spatial distribution regularities of left ventricular Tei index. There is a significant correlation between the healthy people's left ventricular Tei index and geographical factors, and the correlation coefficients were -0.107 (r₁), -0.301 (r₂), -0.029 (r₃), -0.277 (r₄), -0.256(r₅), -0.289(r₆), -0.320(r₇), -0.310 (r₈) and -0.117 (r₉), respectively. A linear equation between the Tei index and the geographical factor was obtained by regression analysis based on the three extracting principal components. The geographical distribution tendency chart for healthy people's left Tei index was fitted out by the ArcGIS spatial interpolation analysis. The geographical distribution for left ventricular Tei index in China follows certain pattern. The reference value in North is higher than that in South, while the value in East is higher than that in West.
Mahler, Barbara J.
2008-01-01
The statistical analyses taken together indicate that the geochemistry at the freshwater-zone wells is more variable than that at the transition-zone wells. The geochemical variability at the freshwater-zone wells might result from dilution of ground water by meteoric water. This is indicated by relatively constant major ion molar ratios; a preponderance of positive correlations between SC, major ions, and trace elements; and a principal components analysis in which the major ions are strongly loaded on the first principal component. Much of the variability at three of the four transition-zone wells might result from the use of different laboratory analytical methods or reporting procedures during the period of sampling. This is reflected by a lack of correlation between SC and major ion concentrations at the transition-zone wells and by a principal components analysis in which the variability is fairly evenly distributed across several principal components. The statistical analyses further indicate that, although the transition-zone wells are less well connected to surficial hydrologic conditions than the freshwater-zone wells, there is some connection but the response time is longer.
Systematic study of anharmonic features in a principal component analysis of gramicidin A.
Kurylowicz, Martin; Yu, Ching-Hsing; Pomès, Régis
2010-02-03
We use principal component analysis (PCA) to detect functionally interesting collective motions in molecular-dynamics simulations of membrane-bound gramicidin A. We examine the statistical and structural properties of all PCA eigenvectors and eigenvalues for the backbone and side-chain atoms. All eigenvalue spectra show two distinct power-law scaling regimes, quantitatively separating large from small covariance motions. Time trajectories of the largest PCs converge to Gaussian distributions at long timescales, but groups of small-covariance PCs, which are usually ignored as noise, have subdiffusive distributions. These non-Gaussian distributions imply anharmonic motions on the free-energy surface. We characterize the anharmonic components of motion by analyzing the mean-square displacement for all PCs. The subdiffusive components reveal picosecond-scale oscillations in the mean-square displacement at frequencies consistent with infrared measurements. In this regime, the slowest backbone mode exhibits tilting of the peptide planes, which allows carbonyl oxygen atoms to provide surrogate solvation for water and cation transport in the channel lumen. Higher-frequency modes are also apparent, and we describe their vibrational spectra. Our findings expand the utility of PCA for quantifying the essential features of motion on the anharmonic free-energy surface made accessible by atomistic molecular-dynamics simulations. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kholodov, V. A.; Yaroslavtseva, N. V.; Lazarev, V. I.; Frid, A. S.
2016-09-01
Cluster analysis and principal component analysis (PCA) have been used for the interpretation of dry sieving data. Chernozems from the treatments of long-term field experiments with different land-use patterns— annually mowed steppe, continuous potato culture, permanent black fallow, and untilled fallow since 1998 after permanent black fallow—have been used. Analysis of dry sieving data by PCA has shown that the treatments of untilled fallow after black fallow and annually mowed steppe differ most in the series considered; the content of dry aggregates of 10-7 mm makes the largest contribution to the distribution of objects along the first principal component. This fraction has been sieved in water and analyzed by PCA. In contrast to dry sieving data, the wet sieving data showed the closest mathematical distance between the treatment of untilled fallow after black fallow and the undisturbed treatment of annually mowed steppe, while the untilled fallow after black fallow and the permanent black fallow were the most distant treatments. Thus, it may be suggested that the water stability of structure is first restored after the removal of destructive anthropogenic load. However, the restoration of the distribution of structural separates to the parameters characteristic of native soils is a significantly longer process.
2011-01-01
Background Hemorrhagic fever with renal syndrome (HFRS) is an important infectious disease caused by different species of hantaviruses. As a rodent-borne disease with a seasonal distribution, external environmental factors including climate factors may play a significant role in its transmission. The city of Shenyang is one of the most seriously endemic areas for HFRS. Here, we characterized the dynamic temporal trend of HFRS, and identified climate-related risk factors and their roles in HFRS transmission in Shenyang, China. Methods The annual and monthly cumulative numbers of HFRS cases from 2004 to 2009 were calculated and plotted to show the annual and seasonal fluctuation in Shenyang. Cross-correlation and autocorrelation analyses were performed to detect the lagged effect of climate factors on HFRS transmission and the autocorrelation of monthly HFRS cases. Principal component analysis was constructed by using climate data from 2004 to 2009 to extract principal components of climate factors to reduce co-linearity. The extracted principal components and autocorrelation terms of monthly HFRS cases were added into a multiple regression model called principal components regression model (PCR) to quantify the relationship between climate factors, autocorrelation terms and transmission of HFRS. The PCR model was compared to a general multiple regression model conducted only with climate factors as independent variables. Results A distinctly declining temporal trend of annual HFRS incidence was identified. HFRS cases were reported every month, and the two peak periods occurred in spring (March to May) and winter (November to January), during which, nearly 75% of the HFRS cases were reported. Three principal components were extracted with a cumulative contribution rate of 86.06%. Component 1 represented MinRH0, MT1, RH1, and MWV1; component 2 represented RH2, MaxT3, and MAP3; and component 3 represented MaxT2, MAP2, and MWV2. The PCR model was composed of three principal components and two autocorrelation terms. The association between HFRS epidemics and climate factors was better explained in the PCR model (F = 446.452, P < 0.001, adjusted R2 = 0.75) than in the general multiple regression model (F = 223.670, P < 0.000, adjusted R2 = 0.51). Conclusion The temporal distribution of HFRS in Shenyang varied in different years with a distinctly declining trend. The monthly trends of HFRS were significantly associated with local temperature, relative humidity, precipitation, air pressure, and wind velocity of the different previous months. The model conducted in this study will make HFRS surveillance simpler and the control of HFRS more targeted in Shenyang. PMID:22133347
Dihedral angle principal component analysis of molecular dynamics simulations.
Altis, Alexandros; Nguyen, Phuong H; Hegger, Rainer; Stock, Gerhard
2007-06-28
It has recently been suggested by Mu et al. [Proteins 58, 45 (2005)] to use backbone dihedral angles instead of Cartesian coordinates in a principal component analysis of molecular dynamics simulations. Dihedral angles may be advantageous because internal coordinates naturally provide a correct separation of internal and overall motion, which was found to be essential for the construction and interpretation of the free energy landscape of a biomolecule undergoing large structural rearrangements. To account for the circular statistics of angular variables, a transformation from the space of dihedral angles {phi(n)} to the metric coordinate space {x(n)=cos phi(n),y(n)=sin phi(n)} was employed. To study the validity and the applicability of the approach, in this work the theoretical foundations underlying the dihedral angle principal component analysis (dPCA) are discussed. It is shown that the dPCA amounts to a one-to-one representation of the original angle distribution and that its principal components can readily be characterized by the corresponding conformational changes of the peptide. Furthermore, a complex version of the dPCA is introduced, in which N angular variables naturally lead to N eigenvalues and eigenvectors. Applying the methodology to the construction of the free energy landscape of decaalanine from a 300 ns molecular dynamics simulation, a critical comparison of the various methods is given.
Dihedral angle principal component analysis of molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Altis, Alexandros; Nguyen, Phuong H.; Hegger, Rainer; Stock, Gerhard
2007-06-01
It has recently been suggested by Mu et al. [Proteins 58, 45 (2005)] to use backbone dihedral angles instead of Cartesian coordinates in a principal component analysis of molecular dynamics simulations. Dihedral angles may be advantageous because internal coordinates naturally provide a correct separation of internal and overall motion, which was found to be essential for the construction and interpretation of the free energy landscape of a biomolecule undergoing large structural rearrangements. To account for the circular statistics of angular variables, a transformation from the space of dihedral angles {φn} to the metric coordinate space {xn=cosφn,yn=sinφn} was employed. To study the validity and the applicability of the approach, in this work the theoretical foundations underlying the dihedral angle principal component analysis (dPCA) are discussed. It is shown that the dPCA amounts to a one-to-one representation of the original angle distribution and that its principal components can readily be characterized by the corresponding conformational changes of the peptide. Furthermore, a complex version of the dPCA is introduced, in which N angular variables naturally lead to N eigenvalues and eigenvectors. Applying the methodology to the construction of the free energy landscape of decaalanine from a 300ns molecular dynamics simulation, a critical comparison of the various methods is given.
Phytoplankton across Tropical and Subtropical Regions of the Atlantic, Indian and Pacific Oceans
Estrada, Marta; Delgado, Maximino; Blasco, Dolors; Latasa, Mikel; Cabello, Ana María; Benítez-Barrios, Verónica; Fraile-Nuez, Eugenio; Mozetič, Patricija; Vidal, Montserrat
2016-01-01
We examine the large-scale distribution patterns of the nano- and microphytoplankton collected from 145 oceanic stations, at 3 m depth, the 20% light level and the depth of the subsurface chlorophyll maximum, during the Malaspina-2010 Expedition (December 2010-July 2011), which covered 15 biogeographical provinces across the Atlantic, Indian and Pacific oceans, between 35°N and 40°S. In general, the water column was stratified, the surface layers were nutrient-poor and the nano- and microplankton (hereafter phytoplankton, for simplicity, although it included also heterotrophic protists) community was dominated by dinoflagellates, other flagellates and coccolithophores, while the contribution of diatoms was only important in zones with shallow nutriclines such as the equatorial upwelling regions. We applied a principal component analysis to the correlation matrix among the abundances (after logarithmic transform) of the 76 most frequent taxa to synthesize the information contained in the phytoplankton data set. The main trends of variability identified consisted of: 1) A contrast between the community composition of the upper and the lower parts of the euphotic zone, expressed respectively by positive or negative scores of the first principal component, which was positively correlated with taxa such as the dinoflagellates Oxytoxum minutum and Scrippsiella spp., and the coccolithophores Discosphaera tubifera and Syracosphaera pulchra (HOL and HET), and negatively correlated with taxa like Ophiaster hydroideus (coccolithophore) and several diatoms, 2) a general abundance gradient between phytoplankton-rich regions with high abundances of dinoflagellate, coccolithophore and ciliate taxa, and phytoplankton-poor regions (second principal component), 3) differences in dominant phytoplankton and ciliate taxa among the Atlantic, the Indian and the Pacific oceans (third principal component) and 4) the occurrence of a diatom-dominated assemblage (the fourth principal component assemblage), including several pennate taxa, Planktoniella sol, Hemiaulus hauckii and Pseudo-nitzschia spp., in the divergence regions. Our findings indicate that consistent assemblages of co-occurring phytoplankton taxa can be identified and that their distribution is best explained by a combination in different degrees of both environmental and historical influences. PMID:26982180
Phytoplankton across Tropical and Subtropical Regions of the Atlantic, Indian and Pacific Oceans.
Estrada, Marta; Delgado, Maximino; Blasco, Dolors; Latasa, Mikel; Cabello, Ana María; Benítez-Barrios, Verónica; Fraile-Nuez, Eugenio; Mozetič, Patricija; Vidal, Montserrat
2016-01-01
We examine the large-scale distribution patterns of the nano- and microphytoplankton collected from 145 oceanic stations, at 3 m depth, the 20% light level and the depth of the subsurface chlorophyll maximum, during the Malaspina-2010 Expedition (December 2010-July 2011), which covered 15 biogeographical provinces across the Atlantic, Indian and Pacific oceans, between 35°N and 40°S. In general, the water column was stratified, the surface layers were nutrient-poor and the nano- and microplankton (hereafter phytoplankton, for simplicity, although it included also heterotrophic protists) community was dominated by dinoflagellates, other flagellates and coccolithophores, while the contribution of diatoms was only important in zones with shallow nutriclines such as the equatorial upwelling regions. We applied a principal component analysis to the correlation matrix among the abundances (after logarithmic transform) of the 76 most frequent taxa to synthesize the information contained in the phytoplankton data set. The main trends of variability identified consisted of: 1) A contrast between the community composition of the upper and the lower parts of the euphotic zone, expressed respectively by positive or negative scores of the first principal component, which was positively correlated with taxa such as the dinoflagellates Oxytoxum minutum and Scrippsiella spp., and the coccolithophores Discosphaera tubifera and Syracosphaera pulchra (HOL and HET), and negatively correlated with taxa like Ophiaster hydroideus (coccolithophore) and several diatoms, 2) a general abundance gradient between phytoplankton-rich regions with high abundances of dinoflagellate, coccolithophore and ciliate taxa, and phytoplankton-poor regions (second principal component), 3) differences in dominant phytoplankton and ciliate taxa among the Atlantic, the Indian and the Pacific oceans (third principal component) and 4) the occurrence of a diatom-dominated assemblage (the fourth principal component assemblage), including several pennate taxa, Planktoniella sol, Hemiaulus hauckii and Pseudo-nitzschia spp., in the divergence regions. Our findings indicate that consistent assemblages of co-occurring phytoplankton taxa can be identified and that their distribution is best explained by a combination in different degrees of both environmental and historical influences.
Principal Curves on Riemannian Manifolds.
Hauberg, Soren
2016-09-01
Euclidean statistics are often generalized to Riemannian manifolds by replacing straight-line interpolations with geodesic ones. While these Riemannian models are familiar-looking, they are restricted by the inflexibility of geodesics, and they rely on constructions which are optimal only in Euclidean domains. We consider extensions of Principal Component Analysis (PCA) to Riemannian manifolds. Classic Riemannian approaches seek a geodesic curve passing through the mean that optimizes a criteria of interest. The requirements that the solution both is geodesic and must pass through the mean tend to imply that the methods only work well when the manifold is mostly flat within the support of the generating distribution. We argue that instead of generalizing linear Euclidean models, it is more fruitful to generalize non-linear Euclidean models. Specifically, we extend the classic Principal Curves from Hastie & Stuetzle to data residing on a complete Riemannian manifold. We show that for elliptical distributions in the tangent of spaces of constant curvature, the standard principal geodesic is a principal curve. The proposed model is simple to compute and avoids many of the pitfalls of traditional geodesic approaches. We empirically demonstrate the effectiveness of the Riemannian principal curves on several manifolds and datasets.
Ferrero, Alejandro; Rabal, Ana María; Campos, Joaquín; Pons, Alicia; Hernanz, María Luisa
2012-06-01
A type of representation of the spectral bidirectional reflectance distribution function (BRDF) is proposed that distinctly separates the spectral variable (wavelength) from the geometrical variables (spherical coordinates of the irradiation and viewing directions). Principal components analysis (PCA) is used in order to decompose the spectral BRDF in decorrelated spectral components, and the weight that they have at every geometrical configuration of irradiation/viewing is established. This method was applied to the spectral BRDF measurement of a special effect pigment sample, and four principal components with relevant variance were identified. These four components are enough to reproduce the great diversity of spectral reflectances observed at different geometrical configurations. Since this representation is able to separate spectral and geometrical variables, it facilitates the interpretation of the color variation of special effect pigments coatings versus the geometrical configuration of irradiation/viewing.
Using Structural Equation Modeling To Fit Models Incorporating Principal Components.
ERIC Educational Resources Information Center
Dolan, Conor; Bechger, Timo; Molenaar, Peter
1999-01-01
Considers models incorporating principal components from the perspectives of structural-equation modeling. These models include the following: (1) the principal-component analysis of patterned matrices; (2) multiple analysis of variance based on principal components; and (3) multigroup principal-components analysis. Discusses fitting these models…
Exploring the Factor Structure of Neurocognitive Measures in Older Individuals
Santos, Nadine Correia; Costa, Patrício Soares; Amorim, Liliana; Moreira, Pedro Silva; Cunha, Pedro; Cotter, Jorge; Sousa, Nuno
2015-01-01
Here we focus on factor analysis from a best practices point of view, by investigating the factor structure of neuropsychological tests and using the results obtained to illustrate on choosing a reasonable solution. The sample (n=1051 individuals) was randomly divided into two groups: one for exploratory factor analysis (EFA) and principal component analysis (PCA), to investigate the number of factors underlying the neurocognitive variables; the second to test the “best fit” model via confirmatory factor analysis (CFA). For the exploratory step, three extraction (maximum likelihood, principal axis factoring and principal components) and two rotation (orthogonal and oblique) methods were used. The analysis methodology allowed exploring how different cognitive/psychological tests correlated/discriminated between dimensions, indicating that to capture latent structures in similar sample sizes and measures, with approximately normal data distribution, reflective models with oblimin rotation might prove the most adequate. PMID:25880732
Asymptotics of empirical eigenstructure for high dimensional spiked covariance.
Wang, Weichen; Fan, Jianqing
2017-06-01
We derive the asymptotic distributions of the spiked eigenvalues and eigenvectors under a generalized and unified asymptotic regime, which takes into account the magnitude of spiked eigenvalues, sample size, and dimensionality. This regime allows high dimensionality and diverging eigenvalues and provides new insights into the roles that the leading eigenvalues, sample size, and dimensionality play in principal component analysis. Our results are a natural extension of those in Paul (2007) to a more general setting and solve the rates of convergence problems in Shen et al. (2013). They also reveal the biases of estimating leading eigenvalues and eigenvectors by using principal component analysis, and lead to a new covariance estimator for the approximate factor model, called shrinkage principal orthogonal complement thresholding (S-POET), that corrects the biases. Our results are successfully applied to outstanding problems in estimation of risks of large portfolios and false discovery proportions for dependent test statistics and are illustrated by simulation studies.
Asymptotics of empirical eigenstructure for high dimensional spiked covariance
Wang, Weichen
2017-01-01
We derive the asymptotic distributions of the spiked eigenvalues and eigenvectors under a generalized and unified asymptotic regime, which takes into account the magnitude of spiked eigenvalues, sample size, and dimensionality. This regime allows high dimensionality and diverging eigenvalues and provides new insights into the roles that the leading eigenvalues, sample size, and dimensionality play in principal component analysis. Our results are a natural extension of those in Paul (2007) to a more general setting and solve the rates of convergence problems in Shen et al. (2013). They also reveal the biases of estimating leading eigenvalues and eigenvectors by using principal component analysis, and lead to a new covariance estimator for the approximate factor model, called shrinkage principal orthogonal complement thresholding (S-POET), that corrects the biases. Our results are successfully applied to outstanding problems in estimation of risks of large portfolios and false discovery proportions for dependent test statistics and are illustrated by simulation studies. PMID:28835726
Zhang, Xiaobo; Zhao, Yuping; Guo, Lanping; Qiu, Zhidong; Huang, Luqi; Qu, Xiaobo
2017-01-01
Daodi-herb is a part of Chinese culture, which has been naturally selected by traditional Chinese medicine clinical practice for many years. Sweet wormwood herb is a kind of Daodi-herb, and comes from Artemisia annua L. Artemisinin is a kind of effective antimalarial drug being extracted from A. annua. Because of artemisinin, Sweet wormwood herb earns a reputation. Based on the Pharmacopoeia of the People's Republic of China (PPRC), Sweet wormwood herb can be used to resolve summerheat-heat, and prevent malaria. Besides, it also has other medical efficacies. A. annua, a medicinal plant that is widely distributed in the world contains many kinds of chemical composition. Research has shown that compatibility of artemisinin, scopoletin, arteannuin B and arteannuic acid has antimalarial effect. Compatibility of scopoletin, arteannuin B and arteannuic acid is conducive to resolving summerheat-heat. Chemical constituents in A. annua vary significantly according to geographical locations. So, distribution of A. annua may play a key role in the characteristics of efficacy and chemical constituents of Sweet wormwood herb. It is of great significance to study this relationship. We mainly analyzed the relationship between the chemical constituents (arteannuin B, artemisinin, artemisinic acid, and scopoletin) with special efficacy in A. annua that come from different provinces in china, and analyzed the relationship between chemical constituents and spatial distribution, in order to find out the relationship between efficacy, chemical constituents and distribution. A field survey was carried out to collect A. annua plant samples. A global positioning system (GPS) was used for obtaining geographical coordinates of sampling sites. Chemical constituents in A. annua were determined by liquid chromatography tandem an atmospheric pressure ionization-electrospray mass spectrometry. Relationship between chemical constituents including proportions, correlation analysis (CoA), principal component analysis (PCA) and cluster analysis (ClA) was displayed through Excel and R software version2.3.2(R), while the one between efficacy, chemical constituents and spatial distribution was presented through ArcGIS10.0, Excel and R software. According to the results of CoA, arteannuin B content presented a strong positive correlation with artemisinic acid content (p = 0), and a strong negative correlation with artemisinin content (p = 0). Scopoletin content presented a strong positive correlation with artemisinin content (p = 0), and a strong negative correlation with artemisinic acid content (p = 0). According to the results of PCA, the first two principal components accounted for 81.57% of the total accumulation contribution rate. The contribution of the first principal component is about 45.12%, manly including arteannuin B and artemisinic acid. The contribution of the second principal component is 36.45% of the total, manly including artemisinin and scopoletin. According to the ClA by using the principal component scores, 19 provinces could be divided into two groups. In terms of provinces in group one, the proportions of artemisinin are all higher than 80%. Based on the results of PCA, ClA, percentages and scatter plot analysis, chemical types are defined as "QHYS type", "INT type" and "QHS type." As a conclusion, this paper shows the relationship between efficacy, chemical constituents and distribution. Sweet wormwood herb with high arteannuin B and artemisinic acid content, mainly distributes in northern China. Sweet wormwood herb with high artemisinin and scopoletin content has the medical function of preventing malaria, which mainly distributes in southern China. In this paper, it is proved that Sweet wormwood Daodi herb growing in particular geographic regions, has more significant therapeutical effect and higher chemical constituents compared with other same kind of CMM. And also, it has proved the old saying in China that Sweet wormwood Daodi herb which has been used to resolve summerheat-heat and prevent malaria, which distributed in central China. But in modern time, Daodi Sweet wormwood herb mainly has been used to extract artemisinin and prevent malaria, so the Daod-region has transferred to the southern China.
Finger crease pattern recognition using Legendre moments and principal component analysis
NASA Astrophysics Data System (ADS)
Luo, Rongfang; Lin, Tusheng
2007-03-01
The finger joint lines defined as finger creases and its distribution can identify a person. In this paper, we propose a new finger crease pattern recognition method based on Legendre moments and principal component analysis (PCA). After obtaining the region of interest (ROI) for each finger image in the pre-processing stage, Legendre moments under Radon transform are applied to construct a moment feature matrix from the ROI, which greatly decreases the dimensionality of ROI and can represent principal components of the finger creases quite well. Then, an approach to finger crease pattern recognition is designed based on Karhunen-Loeve (K-L) transform. The method applies PCA to a moment feature matrix rather than the original image matrix to achieve the feature vector. The proposed method has been tested on a database of 824 images from 103 individuals using the nearest neighbor classifier. The accuracy up to 98.584% has been obtained when using 4 samples per class for training. The experimental results demonstrate that our proposed approach is feasible and effective in biometrics.
Mao, Zhi-Hua; Yin, Jian-Hua; Zhang, Xue-Xi; Wang, Xiao; Xia, Yang
2016-01-01
Fourier transform infrared spectroscopic imaging (FTIRI) technique can be used to obtain the quantitative information of content and spatial distribution of principal components in cartilage by combining with chemometrics methods. In this study, FTIRI combining with principal component analysis (PCA) and Fisher’s discriminant analysis (FDA) was applied to identify the healthy and osteoarthritic (OA) articular cartilage samples. Ten 10-μm thick sections of canine cartilages were imaged at 6.25μm/pixel in FTIRI. The infrared spectra extracted from the FTIR images were imported into SPSS software for PCA and FDA. Based on the PCA result of 2 principal components, the healthy and OA cartilage samples were effectively discriminated by the FDA with high accuracy of 94% for the initial samples (training set) and cross validation, as well as 86.67% for the prediction group. The study showed that cartilage degeneration became gradually weak with the increase of the depth. FTIRI combined with chemometrics may become an effective method for distinguishing healthy and OA cartilages in future. PMID:26977354
Corrected confidence bands for functional data using principal components.
Goldsmith, J; Greven, S; Crainiceanu, C
2013-03-01
Functional principal components (FPC) analysis is widely used to decompose and express functional observations. Curve estimates implicitly condition on basis functions and other quantities derived from FPC decompositions; however these objects are unknown in practice. In this article, we propose a method for obtaining correct curve estimates by accounting for uncertainty in FPC decompositions. Additionally, pointwise and simultaneous confidence intervals that account for both model- and decomposition-based variability are constructed. Standard mixed model representations of functional expansions are used to construct curve estimates and variances conditional on a specific decomposition. Iterated expectation and variance formulas combine model-based conditional estimates across the distribution of decompositions. A bootstrap procedure is implemented to understand the uncertainty in principal component decomposition quantities. Our method compares favorably to competing approaches in simulation studies that include both densely and sparsely observed functions. We apply our method to sparse observations of CD4 cell counts and to dense white-matter tract profiles. Code for the analyses and simulations is publicly available, and our method is implemented in the R package refund on CRAN. Copyright © 2013, The International Biometric Society.
Corrected Confidence Bands for Functional Data Using Principal Components
Goldsmith, J.; Greven, S.; Crainiceanu, C.
2014-01-01
Functional principal components (FPC) analysis is widely used to decompose and express functional observations. Curve estimates implicitly condition on basis functions and other quantities derived from FPC decompositions; however these objects are unknown in practice. In this article, we propose a method for obtaining correct curve estimates by accounting for uncertainty in FPC decompositions. Additionally, pointwise and simultaneous confidence intervals that account for both model- and decomposition-based variability are constructed. Standard mixed model representations of functional expansions are used to construct curve estimates and variances conditional on a specific decomposition. Iterated expectation and variance formulas combine model-based conditional estimates across the distribution of decompositions. A bootstrap procedure is implemented to understand the uncertainty in principal component decomposition quantities. Our method compares favorably to competing approaches in simulation studies that include both densely and sparsely observed functions. We apply our method to sparse observations of CD4 cell counts and to dense white-matter tract profiles. Code for the analyses and simulations is publicly available, and our method is implemented in the R package refund on CRAN. PMID:23003003
Lee, Seung-Yup; Lee, Hae Kook; Jeong, Hyunsuk; Yim, Hyeon Woo; Bhang, Soo-Young; Jo, Sun-Jin; Baek, Kyung-Young; Kim, Eunjin; Kim, Min Seob; Choi, Jung-Seok
2017-01-01
Objective To explore the structure of Internet gaming disorder (IGD) criteria and their distribution according to the different severity level of IGD. The associations of psychiatric comorbidities to each IGD symptom and to the IGD severity were also investigated. Methods Consecutively recruited 330 Korean middle school students underwent face-to-face diagnostic interviews to assess their gaming problems by clinicians. The psychiatric comorbidities were also evaluated with a semi-structured instrument. The data was analyzed using principal components analysis and the distribution of criteria among different severity groups was visualized by plotting univariate curves. Results Two principal components of ‘Compulsivity’ and ‘Tolerance’ were extracted. ‘Decrease in other activities’ and ‘Jeopardizing relationship/career’ may indicate a higher severity of IGD. While ‘Craving’ deserved more recognition in clinical utility, ‘Tolerance’ did not demonstrate much difference in distribution by the IGD severity. Internalizing and externalizing psychiatric disorders differed in distribution by the IGD severity. Conclusion A hierarchic presentation of IGD criteria was revealed. ‘Decrease in other activities’ and ‘Jeopardizing relationship/career’ may represent a higher severity, thus indicating more clinical attention to such symptoms. However, ‘Tolerance’ was not found to be a valid diagnostic criterion. PMID:28539943
Krohn, M.D.; Milton, N.M.; Segal, D.; Enland, A.
1981-01-01
A principal component image enhancement has been effective in applying Landsat data to geologic mapping in a heavily forested area of E Virginia. The image enhancement procedure consists of a principal component transformation, a histogram normalization, and the inverse principal componnet transformation. The enhancement preserves the independence of the principal components, yet produces a more readily interpretable image than does a single principal component transformation. -from Authors
Intelligent Classification in Huge Heterogeneous Data Sets
2015-06-01
Competencies DoD Department of Defense GMTI Ground Moving Target Indicator ISR Intelligence, Surveillance and Reconnaissance NCD Noncoherent Change...Detection OCR Optical Character Recognition PCA Principal Component Analysis SAR Synthetic Aperture Radar SVD Singular Value Decomponsition USPS United States Postal Service 8 Approved for Public Release; Distribution Unlimited.
Sugár, István P; Zhai, Xiuhong; Boldyrev, Ivan A; Molotkovsky, Julian G; Brockman, Howard L; Brown, Rhoderick E
2010-01-01
Lipid lateral organization in binary-constituent monolayers consisting of fluorescent and nonfluorescent lipids has been investigated by acquiring multiple emission spectra during measurement of each force-area isotherm. The emission spectra reflect BODIPY-labeled lipid surface concentration and lateral mixing with different nonfluorescent lipid species. Using principal component analysis (PCA) each spectrum could be approximated as the linear combination of only two principal vectors. One point on a plane could be associated with each spectrum, where the coordinates of the point are the coefficients of the linear combination. Points belonging to the same lipid constituents and experimental conditions form a curve on the plane, where each point belongs to a different mole fraction. The location and shape of the curve reflects the lateral organization of the fluorescent lipid mixed with a specific nonfluorescent lipid. The method provides massive data compression that preserves and emphasizes key information pertaining to lipid distribution in different lipid monolayer phases. Collectively, the capacity of PCA for handling large spectral data sets, the nanoscale resolution afforded by the fluorescence signal, and the inherent versatility of monolayers for characterization of lipid lateral interactions enable significantly enhanced resolution of lipid lateral organizational changes induced by different lipid compositions.
Principal component regression analysis with SPSS.
Liu, R X; Kuang, J; Gong, Q; Hou, X L
2003-06-01
The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.
Investigation of domain walls in PPLN by confocal raman microscopy and PCA analysis
NASA Astrophysics Data System (ADS)
Shur, Vladimir Ya.; Zelenovskiy, Pavel; Bourson, Patrice
2017-07-01
Confocal Raman microscopy (CRM) is a powerful tool for investigation of ferroelectric domains. Mechanical stresses and electric fields existed in the vicinity of neutral and charged domain walls modify frequency, intensity and width of spectral lines [1], thus allowing to visualize micro- and nanodomain structures both at the surface and in the bulk of the crystal [2,3]. Stresses and fields are naturally coupled in ferroelectrics due to inverse piezoelectric effect and hardly can be separated in Raman spectra. PCA is a powerful statistical method for analysis of large data matrix providing a set of orthogonal variables, called principal components (PCs). PCA is widely used for classification of experimental data, for example, in crystallization experiments, for detection of small amounts of components in solid mixtures etc. [4,5]. In Raman spectroscopy PCA was applied for analysis of phase transitions and provided critical pressure with good accuracy [6]. In the present work we for the first time applied Principal Component Analysis (PCA) method for analysis of Raman spectra measured in periodically poled lithium niobate (PPLN). We found that principal components demonstrate different sensitivity to mechanical stresses and electric fields in the vicinity of the domain walls. This allowed us to separately visualize spatial distribution of fields and electric fields at the surface and in the bulk of PPLN.
Xiao, Hong; Tian, Huai-Yu; Gao, Li-Dong; Liu, Hai-Ning; Duan, Liang-Song; Basta, Nicole; Cazelles, Bernard; Li, Xiu-Jun; Lin, Xiao-Ling; Wu, Hong-Wei; Chen, Bi-Yun; Yang, Hui-Suo; Xu, Bing; Grenfell, Bryan
2014-01-01
China has the highest incidence of hemorrhagic fever with renal syndrome (HFRS) worldwide. Reported cases account for 90% of the total number of global cases. By 2010, approximately 1.4 million HFRS cases had been reported in China. This study aimed to explore the effect of the rodent reservoir, and natural and socioeconomic variables, on the transmission pattern of HFRS. Data on monthly HFRS cases were collected from 2006 to 2010. Dynamic rodent monitoring data, normalized difference vegetation index (NDVI) data, climate data, and socioeconomic data were also obtained. Principal component analysis was performed, and the time-lag relationships between the extracted principal components and HFRS cases were analyzed. Polynomial distributed lag (PDL) models were used to fit and forecast HFRS transmission. Four principal components were extracted. Component 1 (F1) represented rodent density, the NDVI, and monthly average temperature. Component 2 (F2) represented monthly average rainfall and monthly average relative humidity. Component 3 (F3) represented rodent density and monthly average relative humidity. The last component (F4) represented gross domestic product and the urbanization rate. F2, F3, and F4 were significantly correlated, with the monthly HFRS incidence with lags of 4 months (r = -0.289, P<0.05), 5 months (r = -0.523, P<0.001), and 0 months (r = -0.376, P<0.01), respectively. F1 was correlated with the monthly HFRS incidence, with a lag of 4 months (r = 0.179, P = 0.192). Multivariate PDL modeling revealed that the four principal components were significantly associated with the transmission of HFRS. The monthly trend in HFRS cases was significantly associated with the local rodent reservoir, climatic factors, the NDVI, and socioeconomic conditions present during the previous months. The findings of this study may facilitate the development of early warning systems for the control and prevention of HFRS and similar diseases.
A Model of Objective Weighting for EIA.
ERIC Educational Resources Information Center
Ying, Long Gen; Liu, You Ci
1995-01-01
In the research of environmental impact assessment (EIA), the problem of weight distribution for a set of parameters has not yet been properly solved. Presents an approach of objective weighting by using a procedure of Pij principal component-factor analysis (Pij PCFA), which suits specifically those parameters measured directly by physical…
USDA-ARS?s Scientific Manuscript database
Principal component analysis (PCA) with 36,621 polymorphic genome-anchored single nucleotide polymorphisms (SNPs) identified collectively for Capsicum annuum and Capsicum baccatum was used to show the distribution of these 2 important incompatible cultivated pepper species. Estimated mean nucleotide...
Evaluation of Meterorite Amono Acid Analysis Data Using Multivariate Techniques
NASA Technical Reports Server (NTRS)
McDonald, G.; Storrie-Lombardi, M.; Nealson, K.
1999-01-01
The amino acid distributions in the Murchison carbonaceous chondrite, Mars meteorite ALH84001, and ice from the Allan Hills region of Antarctica are shown, using a multivariate technique known as Principal Component Analysis (PCA), to be statistically distinct from the average amino acid compostion of 101 terrestrial protein superfamilies.
A hybrid spatial-spectral denoising method for infrared hyperspectral images using 2DPCA
NASA Astrophysics Data System (ADS)
Huang, Jun; Ma, Yong; Mei, Xiaoguang; Fan, Fan
2016-11-01
The traditional noise reduction methods for 3-D infrared hyperspectral images typically operate independently in either the spatial or spectral domain, and such methods overlook the relationship between the two domains. To address this issue, we propose a hybrid spatial-spectral method in this paper to link both domains. First, principal component analysis and bivariate wavelet shrinkage are performed in the 2-D spatial domain. Second, 2-D principal component analysis transformation is conducted in the 1-D spectral domain to separate the basic components from detail ones. The energy distribution of noise is unaffected by orthogonal transformation; therefore, the signal-to-noise ratio of each component is used as a criterion to determine whether a component should be protected from over-denoising or denoised with certain 1-D denoising methods. This study implements the 1-D wavelet shrinking threshold method based on Stein's unbiased risk estimator, and the quantitative results on publicly available datasets demonstrate that our method can improve denoising performance more effectively than other state-of-the-art methods can.
Geographic Distribution and Ecology of Potential Malaria Vectors in the Republic of Korea
2009-05-01
species . Figure 4 shows a minimal spanning tree of the non- metric multidimensional scaling analysis of the means of the Þrst 15 principal components...to develop ecological niche models (ENMs) of the potential geographic distribution for eight anopheline species known to occur there. The areas...predicted suitable for the Hyrcanus Group species were the most extensive for Anopheles sinensis Wiedemann, An. kleini Rueda, An. belenrae Rueda, and An
Principal component analysis of PiB distribution in Parkinson and Alzheimer diseases
Markham, Joanne; Flores, Hubert; Hartlein, Johanna M.; Goate, Alison M.; Cairns, Nigel J.; Videen, Tom O.; Perlmutter, Joel S.
2013-01-01
Objective: To use principal component analyses (PCA) of Pittsburgh compound B (PiB) PET imaging to determine whether the pattern of in vivo β-amyloid (Aβ) in Parkinson disease (PD) with cognitive impairment is similar to the pattern found in symptomatic Alzheimer disease (AD). Methods: PiB PET scans were obtained from participants with PD with cognitive impairment (n = 53), participants with symptomatic AD (n = 35), and age-matched controls (n = 67). All were assessed using the Clinical Dementia Rating and APOE genotype was determined in 137 participants. PCA was used to 1) determine the PiB binding pattern in AD, 2) determine a possible unique PD pattern, and 3) directly compare the PiB binding patterns in PD and AD groups. Results: The first 2 principal components (PC1 and PC2) significantly separated the AD and control participants (p < 0.001). Participants with PD with cognitive impairment also were significantly different from participants with symptomatic AD on both components (p < 0.001). However, there was no difference between PD and controls on either component. Even those participants with PD with elevated mean cortical binding potentials were significantly different from participants with AD on both components. Conclusion: Using PCA, we demonstrated that participants with PD with cognitive impairment do not exhibit the same PiB binding pattern as participants with AD. These data suggest that Aβ deposition may play a different pathophysiologic role in the cognitive impairment of PD compared to that in AD. PMID:23825179
Annual Cycle of Surface Longwave Radiation
NASA Technical Reports Server (NTRS)
Mlynczak, Pamela E.; Smith, G. Louis; Wilber, Anne C.; Stackhouse, Paul W.
2011-01-01
The annual cycles of upward and downward longwave fluxes at the Earth s surface are investigated by use of the NASA/GEWEX Surface Radiation Budget Data Set. Because of the immense difference between the heat capacity of land and ocean, the surface of Earth is partitioned into these two categories. Principal component analysis is used to quantify the annual cycles. Over land, the first principal component describes over 95% of the variance of the annual cycle of the upward and downward longwave fluxes. Over ocean the first term describes more than 87% of these annual cycles. Empirical orthogonal functions show the corresponding geographical distributions of these cycles. Phase plane diagrams of the annual cycles of upward longwave fluxes as a function of net shortwave flux show the thermal inertia of land and ocean.
Synthetic maps of human gene frequencies in Europeans.
Menozzi, P; Piazza, A; Cavalli-Sforza, L
1978-09-01
Multivarate techniques can be used to condense the information for a large number of loci and alleles into one or a few synthetic variables. The geographic distribution of synthetic variables can be plotted by the same technique used in mapping the gene frequency of a single allele. Synthetic maps were constructed for Europe and the Near East, with the use of principal components to condense the information of 38 independent alleles from ten loci. The first principal component summarizes close to 30% of the total information and shows gradients. Maps thus constructed show clines in remarkable agreement with those expected on the basis of the spread of early farming in Europe, thus supporting the hypothesis that this spread was a demic spread rather than a cultural diffusion of farming technology.
Zhang, Bing; Song, Xianfang; Zhang, Yinghua; Han, Dongmei; Tang, Changyuan; Yu, Yilei; Ma, Ying
2012-05-15
Water quality is the critical factor that influence on human health and quantity and quality of grain production in semi-humid and semi-arid area. Songnen plain is one of the grain bases in China, as well as one of the three major distribution regions of soda saline-alkali soil in the world. To assess the water quality, surface water and groundwater were sampled and analyzed by fuzzy membership analysis and multivariate statistics. The surface water were gather into class I, IV and V, while groundwater were grouped as class I, II, III and V by fuzzy membership analysis. The water samples were grouped into four categories according to irrigation water quality assessment diagrams of USDA. Most water samples distributed in category C1-S1, C2-S2 and C3-S3. Three groups were generated from hierarchical cluster analysis. Four principal components were extracted from principal component analysis. The indicators to water quality assessment were Na, HCO(3), NO(3), Fe, Mn and EC from principal component analysis. We conclude that surface water and shallow groundwater are suitable for irrigation, the reservoir and deep groundwater in upstream are the resources for drinking. The water for drinking should remove of the naturally occurring ions of Fe and Mn. The control of sodium and salinity hazard is required for irrigation. The integrated management of surface water and groundwater for drinking and irrigation is to solve the water issues. Copyright © 2012 Elsevier Ltd. All rights reserved.
Principal elementary mode analysis (PEMA).
Folch-Fortuny, Abel; Marques, Rodolfo; Isidro, Inês A; Oliveira, Rui; Ferrer, Alberto
2016-03-01
Principal component analysis (PCA) has been widely applied in fluxomics to compress data into a few latent structures in order to simplify the identification of metabolic patterns. These latent structures lack a direct biological interpretation due to the intrinsic constraints associated with a PCA model. Here we introduce a new method that significantly improves the interpretability of the principal components with a direct link to metabolic pathways. This method, called principal elementary mode analysis (PEMA), establishes a bridge between a PCA-like model, aimed at explaining the maximum variance in flux data, and the set of elementary modes (EMs) of a metabolic network. It provides an easy way to identify metabolic patterns in large fluxomics datasets in terms of the simplest pathways of the organism metabolism. The results using a real metabolic model of Escherichia coli show the ability of PEMA to identify the EMs that generated the different simulated flux distributions. Actual flux data of E. coli and Pichia pastoris cultures confirm the results observed in the simulated study, providing a biologically meaningful model to explain flux data of both organisms in terms of the EM activation. The PEMA toolbox is freely available for non-commercial purposes on http://mseg.webs.upv.es.
Fine structure of the low-frequency spectra of heart rate and blood pressure
Kuusela, Tom A; Kaila, Timo J; Kähönen, Mika
2003-01-01
Background The aim of this study was to explore the principal frequency components of the heart rate and blood pressure variability in the low frequency (LF) and very low frequency (VLF) band. The spectral composition of the R–R interval (RRI) and systolic arterial blood pressure (SAP) in the frequency range below 0.15 Hz were carefully analyzed using three different spectral methods: Fast Fourier transform (FFT), Wigner-Ville distribution (WVD), and autoregression (AR). All spectral methods were used to create time–frequency plots to uncover the principal spectral components that are least dependent on time. The accurate frequencies of these components were calculated from the pole decomposition of the AR spectral density after determining the optimal model order – the most crucial factor when using this method – with the help of FFT and WVD methods. Results Spectral analysis of the RRI and SAP of 12 healthy subjects revealed that there are always at least three spectral components below 0.15 Hz. The three principal frequency components are 0.026 ± 0.003 (mean ± SD) Hz, 0.076 ± 0.012 Hz, and 0.117 ± 0.016 Hz. These principal components vary only slightly over time. FFT-based coherence and phase-function analysis suggests that the second and third components are related to the baroreflex control of blood pressure, since the phase difference between SAP and RRI was negative and almost constant, whereas the origin of the first component is different since no clear SAP–RRI phase relationship was found. Conclusion The above data indicate that spontaneous fluctuations in heart rate and blood pressure within the standard low-frequency range of 0.04–0.15 Hz typically occur at two frequency components rather than only at one as widely believed, and these components are not harmonically related. This new observation in humans can help explain divergent results in the literature concerning spontaneous low-frequency oscillations. It also raises methodological and computational questions regarding the usability and validity of the low-frequency spectral band when estimating sympathetic activity and baroreflex gain. PMID:14552660
Fine structure of the low-frequency spectra of heart rate and blood pressure.
Kuusela, Tom A; Kaila, Timo J; Kähönen, Mika
2003-10-13
The aim of this study was to explore the principal frequency components of the heart rate and blood pressure variability in the low frequency (LF) and very low frequency (VLF) band. The spectral composition of the R-R interval (RRI) and systolic arterial blood pressure (SAP) in the frequency range below 0.15 Hz were carefully analyzed using three different spectral methods: Fast Fourier transform (FFT), Wigner-Ville distribution (WVD), and autoregression (AR). All spectral methods were used to create time-frequency plots to uncover the principal spectral components that are least dependent on time. The accurate frequencies of these components were calculated from the pole decomposition of the AR spectral density after determining the optimal model order--the most crucial factor when using this method--with the help of FFT and WVD methods. Spectral analysis of the RRI and SAP of 12 healthy subjects revealed that there are always at least three spectral components below 0.15 Hz. The three principal frequency components are 0.026 +/- 0.003 (mean +/- SD) Hz, 0.076 +/- 0.012 Hz, and 0.117 +/- 0.016 Hz. These principal components vary only slightly over time. FFT-based coherence and phase-function analysis suggests that the second and third components are related to the baroreflex control of blood pressure, since the phase difference between SAP and RRI was negative and almost constant, whereas the origin of the first component is different since no clear SAP-RRI phase relationship was found. The above data indicate that spontaneous fluctuations in heart rate and blood pressure within the standard low-frequency range of 0.04-0.15 Hz typically occur at two frequency components rather than only at one as widely believed, and these components are not harmonically related. This new observation in humans can help explain divergent results in the literature concerning spontaneous low-frequency oscillations. It also raises methodological and computational questions regarding the usability and validity of the low-frequency spectral band when estimating sympathetic activity and baroreflex gain.
Di Carlo, Antonio; Pezzella, Francesca Romana; Fraser, Alec; Bovis, Francesca; Baeza, Juan; McKevitt, Chris; Boaz, Annette; Heuschmann, Peter; Wolfe, Charles D A; Inzitari, Domenico
2015-08-01
Differences in stroke care and outcomes reported in Europe may reflect different degrees of implementation of evidence-based interventions. We evaluated strategies for implementing research evidence into stroke care in 10 European countries. A questionnaire was developed and administered through face-to-face interviews with key informants. Implementation strategies were investigated considering 3 levels (macro, meso, and micro, eg, policy, organization, patients/professionals) identified by the framing analysis, and different settings (primary, hospital, and specialist) of stroke care. Similarities and differences among countries were evaluated using the categorical principal components analysis. Implementation methods reported by ≥7 countries included nonmandatory policies, public financial incentives, continuing professional education, distribution of educational material, educational meetings and campaigns, guidelines, opinion leaders', and stroke patients associations' activities. Audits were present in 6 countries at national level; national and regional regulations in 4 countries. Private financial incentives, reminders, and educational outreach visits were reported only in 2 countries. At national level, the first principal component of categorical principal components analysis separated England, France, Scotland, and Sweden, all with positive object scores, from the other countries. Belgium and Lithuania obtained the lowest scores. At regional level, England, France, Germany, Italy, and Sweden had positive scores in the first principal component, whereas Belgium, Lithuania, Poland, and Scotland showed negative scores. Spain was in an intermediate position. We developed a novel method to assess different domains of implementation in stroke care. Clear variations were observed among European countries. The new tool may be used elsewhere for future contributions. © 2015 American Heart Association, Inc.
An Alternative Way to Model Population Ability Distributions in Large-Scale Educational Surveys
ERIC Educational Resources Information Center
Wetzel, Eunike; Xu, Xueli; von Davier, Matthias
2015-01-01
In large-scale educational surveys, a latent regression model is used to compensate for the shortage of cognitive information. Conventionally, the covariates in the latent regression model are principal components extracted from background data. This operational method has several important disadvantages, such as the handling of missing data and…
On the Fallibility of Principal Components in Research
ERIC Educational Resources Information Center
Raykov, Tenko; Marcoulides, George A.; Li, Tenglong
2017-01-01
The measurement error in principal components extracted from a set of fallible measures is discussed and evaluated. It is shown that as long as one or more measures in a given set of observed variables contains error of measurement, so also does any principal component obtained from the set. The error variance in any principal component is shown…
Value assignment and uncertainty evaluation for single-element reference solutions
NASA Astrophysics Data System (ADS)
Possolo, Antonio; Bodnar, Olha; Butler, Therese A.; Molloy, John L.; Winchester, Michael R.
2018-06-01
A Bayesian statistical procedure is proposed for value assignment and uncertainty evaluation for the mass fraction of the elemental analytes in single-element solutions distributed as NIST standard reference materials. The principal novelty that we describe is the use of information about relative differences observed historically between the measured values obtained via gravimetry and via high-performance inductively coupled plasma optical emission spectrometry, to quantify the uncertainty component attributable to between-method differences. This information is encapsulated in a prior probability distribution for the between-method uncertainty component, and it is then used, together with the information provided by current measurement data, to produce a probability distribution for the value of the measurand from which an estimate and evaluation of uncertainty are extracted using established statistical procedures.
Montes-Botella, C; Tenorio, M D
2003-11-01
The Iberian Pyrite Belt is the largest mass of sulfide and manganese ores in Western Europe. Its sulfide oxidation is the origin of a heavily acidic drainage that affects the Odiel River in southwestern Huelva (Spain). To assess physicochemical, contamination parameters, heavy metal distribution and its seasonal variation in the upper Odiel River and in El Lomero mines, three water samplings were undertaken and analyzed between July 1998 and November 1999. Water from the Odiel River in the polluted zone showed low pH values (2.76-3.51), high heavy metal content, and high values of conductivity (1410-3648 microS/cm) and dissolved solids (1484-5602 mg/L). Principal Component Analysis (PCA) showed that variables related with the products of the pyrite oxidation and the salts that are solubilized by the high acidity generated in the oxidation of sulfides, grouped in the first component, accounted for 40.88% of total variance, and were the main influential factor in physicochemical water sample properties. The second influential factor was minority metals (nickel, cobalt, cadmium). Heavy metals showed three different seasonal patterns, closely related with saline efflorescences formed next to the river bed: majority metals (iron, copper, manganese, zinc); minority metals (lead, nickel, cobalt, cadmium); and chromium, which had a distinctive behavior.
Analysis of heavy metal sources in soil using kriging interpolation on principal components.
Ha, Hoehun; Olson, James R; Bian, Ling; Rogerson, Peter A
2014-05-06
Anniston, Alabama has a long history of operation of foundries and other heavy industry. We assessed the extent of heavy metal contamination in soils by determining the concentrations of 11 heavy metals (Pb, As, Cd, Cr, Co, Cu, Mn, Hg, Ni, V, and Zn) based on 2046 soil samples collected from 595 industrial and residential sites. Principal Component Analysis (PCA) was adopted to characterize the distribution of heavy metals in soil in this region. In addition, a geostatistical technique (kriging) was used to create regional distribution maps for the interpolation of nonpoint sources of heavy metal contamination using geographical information system (GIS) techniques. There were significant differences found between sampling zones in the concentrations of heavy metals, with the exception of the levels of Ni. Three main components explaining the heavy metal variability in soils were identified. The results suggest that Pb, Cd, Cu, and Zn were associated with anthropogenic activities, such as the operations of some foundries and major railroads, which released these heavy metals, whereas the presence of Co, Mn, and V were controlled by natural sources, such as soil texture, pedogenesis, and soil hydrology. In general terms, the soil levels of heavy metals analyzed in this study were higher than those reported in previous studies in other industrial and residential communities.
NASA Astrophysics Data System (ADS)
Dafu, Shen; Leihong, Zhang; Dong, Liang; Bei, Li; Yi, Kang
2017-07-01
The purpose of this study is to improve the reconstruction precision and better copy the color of spectral image surfaces. A new spectral reflectance reconstruction algorithm based on an iterative threshold combined with weighted principal component space is presented in this paper, and the principal component with weighted visual features is the sparse basis. Different numbers of color cards are selected as the training samples, a multispectral image is the testing sample, and the color differences in the reconstructions are compared. The channel response value is obtained by a Mega Vision high-accuracy, multi-channel imaging system. The results show that spectral reconstruction based on weighted principal component space is superior in performance to that based on traditional principal component space. Therefore, the color difference obtained using the compressive-sensing algorithm with weighted principal component analysis is less than that obtained using the algorithm with traditional principal component analysis, and better reconstructed color consistency with human eye vision is achieved.
Analyzing coastal environments by means of functional data analysis
NASA Astrophysics Data System (ADS)
Sierra, Carlos; Flor-Blanco, Germán; Ordoñez, Celestino; Flor, Germán; Gallego, José R.
2017-07-01
Here we used Functional Data Analysis (FDA) to examine particle-size distributions (PSDs) in a beach/shallow marine sedimentary environment in Gijón Bay (NW Spain). The work involved both Functional Principal Components Analysis (FPCA) and Functional Cluster Analysis (FCA). The grainsize of the sand samples was characterized by means of laser dispersion spectroscopy. Within this framework, FPCA was used as a dimension reduction technique to explore and uncover patterns in grain-size frequency curves. This procedure proved useful to describe variability in the structure of the data set. Moreover, an alternative approach, FCA, was applied to identify clusters and to interpret their spatial distribution. Results obtained with this latter technique were compared with those obtained by means of two vector approaches that combine PCA with CA (Cluster Analysis). The first method, the point density function (PDF), was employed after adapting a log-normal distribution to each PSD and resuming each of the density functions by its mean, sorting, skewness and kurtosis. The second applied a centered-log-ratio (clr) to the original data. PCA was then applied to the transformed data, and finally CA to the retained principal component scores. The study revealed functional data analysis, specifically FPCA and FCA, as a suitable alternative with considerable advantages over traditional vector analysis techniques in sedimentary geology studies.
Principal Component and Linkage Analysis of Cardiovascular Risk Traits in the Norfolk Isolate
Cox, Hannah C.; Bellis, Claire; Lea, Rod A.; Quinlan, Sharon; Hughes, Roger; Dyer, Thomas; Charlesworth, Jac; Blangero, John; Griffiths, Lyn R.
2009-01-01
Objective(s) An individual's risk of developing cardiovascular disease (CVD) is influenced by genetic factors. This study focussed on mapping genetic loci for CVD-risk traits in a unique population isolate derived from Norfolk Island. Methods This investigation focussed on 377 individuals descended from the population founders. Principal component analysis was used to extract orthogonal components from 11 cardiovascular risk traits. Multipoint variance component methods were used to assess genome-wide linkage using SOLAR to the derived factors. A total of 285 of the 377 related individuals were informative for linkage analysis. Results A total of 4 principal components accounting for 83% of the total variance were derived. Principal component 1 was loaded with body size indicators; principal component 2 with body size, cholesterol and triglyceride levels; principal component 3 with the blood pressures; and principal component 4 with LDL-cholesterol and total cholesterol levels. Suggestive evidence of linkage for principal component 2 (h2 = 0.35) was observed on chromosome 5q35 (LOD = 1.85; p = 0.0008). While peak regions on chromosome 10p11.2 (LOD = 1.27; p = 0.005) and 12q13 (LOD = 1.63; p = 0.003) were observed to segregate with principal components 1 (h2 = 0.33) and 4 (h2 = 0.42), respectively. Conclusion(s): This study investigated a number of CVD risk traits in a unique isolated population. Findings support the clustering of CVD risk traits and provide interesting evidence of a region on chromosome 5q35 segregating with weight, waist circumference, HDL-c and total triglyceride levels. PMID:19339786
Maurer, Christian; Federolf, Peter; von Tscharner, Vinzenz; Stirling, Lisa; Nigg, Benno M
2012-05-01
Changes in gait kinematics have often been analyzed using pattern recognition methods such as principal component analysis (PCA). It is usually just the first few principal components that are analyzed, because they describe the main variability within a dataset and thus represent the main movement patterns. However, while subtle changes in gait pattern (for instance, due to different footwear) may not change main movement patterns, they may affect movements represented by higher principal components. This study was designed to test two hypotheses: (1) speed and gender differences can be observed in the first principal components, and (2) small interventions such as changing footwear change the gait characteristics of higher principal components. Kinematic changes due to different running conditions (speed - 3.1m/s and 4.9 m/s, gender, and footwear - control shoe and adidas MicroBounce shoe) were investigated by applying PCA and support vector machine (SVM) to a full-body reflective marker setup. Differences in speed changed the basic movement pattern, as was reflected by a change in the time-dependent coefficient derived from the first principal. Gender was differentiated by using the time-dependent coefficient derived from intermediate principal components. (Intermediate principal components are characterized by limb rotations of the thigh and shank.) Different shoe conditions were identified in higher principal components. This study showed that different interventions can be analyzed using a full-body kinematic approach. Within the well-defined vector space spanned by the data of all subjects, higher principal components should also be considered because these components show the differences that result from small interventions such as footwear changes. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Ferrero, Alejandro; Rabal, Ana María; Campos, Joaquín; Pons, Alicia; Hernanz, María Luisa
2012-12-20
A study on the variation of the spectral bidirectional reflectance distribution function (BRDF) of four diffuse reflectance standards (matte ceramic, BaSO(4), Spectralon, and white Russian opal glass) is accomplished through this work. Spectral BRDF measurements were carried out and, using principal components analysis, its spectral and geometrical variation respect to a reference geometry was assessed from the experimental data. Several descriptors were defined in order to compare the spectral BRDF variation of the four materials.
NASA Astrophysics Data System (ADS)
Nagai, Toshiki; Mitsutake, Ayori; Takano, Hiroshi
2013-02-01
A new relaxation mode analysis method, which is referred to as the principal component relaxation mode analysis method, has been proposed to handle a large number of degrees of freedom of protein systems. In this method, principal component analysis is carried out first and then relaxation mode analysis is applied to a small number of principal components with large fluctuations. To reduce the contribution of fast relaxation modes in these principal components efficiently, we have also proposed a relaxation mode analysis method using multiple evolution times. The principal component relaxation mode analysis method using two evolution times has been applied to an all-atom molecular dynamics simulation of human lysozyme in aqueous solution. Slow relaxation modes and corresponding relaxation times have been appropriately estimated, demonstrating that the method is applicable to protein systems.
Overview of the Ground and Its Movement in Part of Northwestern California
Stephen D. Ellen; Juan de la Fuente; James N. Falls; Robert J. McLaughlin
2007-01-01
The Eureka area of northwestern California is characterized by a variety of terrain forms that reflect a variety of geologic materials, most of which are components of the highly disrupted and heterogeneous Franciscan Complex. Recent regional geologic mapping by McLaughlin and others (2000) has delineated the distribution of contrasting materials within the principal...
Dong, Jianghu J; Wang, Liangliang; Gill, Jagbir; Cao, Jiguo
2017-01-01
This article is motivated by some longitudinal clinical data of kidney transplant recipients, where kidney function progression is recorded as the estimated glomerular filtration rates at multiple time points post kidney transplantation. We propose to use the functional principal component analysis method to explore the major source of variations of glomerular filtration rate curves. We find that the estimated functional principal component scores can be used to cluster glomerular filtration rate curves. Ordering functional principal component scores can detect abnormal glomerular filtration rate curves. Finally, functional principal component analysis can effectively estimate missing glomerular filtration rate values and predict future glomerular filtration rate values.
Principal component analysis of molecular dynamics: On the use of Cartesian vs. internal coordinates
NASA Astrophysics Data System (ADS)
Sittel, Florian; Jain, Abhinav; Stock, Gerhard
2014-07-01
Principal component analysis of molecular dynamics simulations is a popular method to account for the essential dynamics of the system on a low-dimensional free energy landscape. Using Cartesian coordinates, first the translation and overall rotation need to be removed from the trajectory. Since the rotation depends via the moment of inertia on the molecule's structure, this separation is only straightforward for relatively rigid systems. Adopting millisecond molecular dynamics simulations of the folding of villin headpiece and the functional dynamics of BPTI provided by D. E. Shaw Research, it is demonstrated via a comparison of local and global rotational fitting that the structural dynamics of flexible molecules necessarily results in a mixing of overall and internal motion. Even for the small-amplitude functional motion of BPTI, the conformational distribution obtained from a Cartesian principal component analysis therefore reflects to some extend the dominant overall motion rather than the much smaller internal motion of the protein. Internal coordinates such as backbone dihedral angles, on the other hand, are found to yield correct and well-resolved energy landscapes for both examples. The virtues and shortcomings of the choice of various fitting schemes and coordinate sets as well as the generality of these results are discussed in some detail.
Sittel, Florian; Jain, Abhinav; Stock, Gerhard
2014-07-07
Principal component analysis of molecular dynamics simulations is a popular method to account for the essential dynamics of the system on a low-dimensional free energy landscape. Using Cartesian coordinates, first the translation and overall rotation need to be removed from the trajectory. Since the rotation depends via the moment of inertia on the molecule's structure, this separation is only straightforward for relatively rigid systems. Adopting millisecond molecular dynamics simulations of the folding of villin headpiece and the functional dynamics of BPTI provided by D. E. Shaw Research, it is demonstrated via a comparison of local and global rotational fitting that the structural dynamics of flexible molecules necessarily results in a mixing of overall and internal motion. Even for the small-amplitude functional motion of BPTI, the conformational distribution obtained from a Cartesian principal component analysis therefore reflects to some extend the dominant overall motion rather than the much smaller internal motion of the protein. Internal coordinates such as backbone dihedral angles, on the other hand, are found to yield correct and well-resolved energy landscapes for both examples. The virtues and shortcomings of the choice of various fitting schemes and coordinate sets as well as the generality of these results are discussed in some detail.
Scalable Robust Principal Component Analysis Using Grassmann Averages.
Hauberg, Sren; Feragen, Aasa; Enficiaud, Raffi; Black, Michael J
2016-11-01
In large datasets, manual data verification is impossible, and we must expect the number of outliers to increase with data size. While principal component analysis (PCA) can reduce data size, and scalable solutions exist, it is well-known that outliers can arbitrarily corrupt the results. Unfortunately, state-of-the-art approaches for robust PCA are not scalable. We note that in a zero-mean dataset, each observation spans a one-dimensional subspace, giving a point on the Grassmann manifold. We show that the average subspace corresponds to the leading principal component for Gaussian data. We provide a simple algorithm for computing this Grassmann Average ( GA), and show that the subspace estimate is less sensitive to outliers than PCA for general distributions. Because averages can be efficiently computed, we immediately gain scalability. We exploit robust averaging to formulate the Robust Grassmann Average (RGA) as a form of robust PCA. The resulting Trimmed Grassmann Average ( TGA) is appropriate for computer vision because it is robust to pixel outliers. The algorithm has linear computational complexity and minimal memory requirements. We demonstrate TGA for background modeling, video restoration, and shadow removal. We show scalability by performing robust PCA on the entire Star Wars IV movie; a task beyond any current method. Source code is available online.
Liu, Xiao-Fang; Xue, Chang-Hu; Wang, Yu-Ming; Li, Zhao-Jie; Xue, Yong; Xu, Jie
2011-11-01
The present study is to investigate the feasibility of multi-elements analysis in determination of the geographical origin of sea cucumber Apostichopus japonicus, and to make choice of the effective tracers in sea cucumber Apostichopus japonicus geographical origin assessment. The content of the elements such as Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Hg and Pb in sea cucumber Apostichopus japonicus samples from seven places of geographical origin were determined by means of ICP-MS. The results were used for the development of elements database. Cluster analysis(CA) and principal component analysis (PCA) were applied to differentiate the sea cucumber Apostichopus japonicus geographical origin. Three principal components which accounted for over 89% of the total variance were extracted from the standardized data. The results of Q-type cluster analysis showed that the 26 samples could be clustered reasonably into five groups, the classification results were significantly associated with the marine distribution of the sea cucumber Apostichopus japonicus samples. The CA and PCA were the effective methods for elements analysis of sea cucumber Apostichopus japonicus samples. The content of the mineral elements in sea cucumber Apostichopus japonicus samples was good chemical descriptors for differentiating their geographical origins.
Wavelet decomposition based principal component analysis for face recognition using MATLAB
NASA Astrophysics Data System (ADS)
Sharma, Mahesh Kumar; Sharma, Shashikant; Leeprechanon, Nopbhorn; Ranjan, Aashish
2016-03-01
For the realization of face recognition systems in the static as well as in the real time frame, algorithms such as principal component analysis, independent component analysis, linear discriminate analysis, neural networks and genetic algorithms are used for decades. This paper discusses an approach which is a wavelet decomposition based principal component analysis for face recognition. Principal component analysis is chosen over other algorithms due to its relative simplicity, efficiency, and robustness features. The term face recognition stands for identifying a person from his facial gestures and having resemblance with factor analysis in some sense, i.e. extraction of the principal component of an image. Principal component analysis is subjected to some drawbacks, mainly the poor discriminatory power and the large computational load in finding eigenvectors, in particular. These drawbacks can be greatly reduced by combining both wavelet transform decomposition for feature extraction and principal component analysis for pattern representation and classification together, by analyzing the facial gestures into space and time domain, where, frequency and time are used interchangeably. From the experimental results, it is envisaged that this face recognition method has made a significant percentage improvement in recognition rate as well as having a better computational efficiency.
The Relation between Factor Score Estimates, Image Scores, and Principal Component Scores
ERIC Educational Resources Information Center
Velicer, Wayne F.
1976-01-01
Investigates the relation between factor score estimates, principal component scores, and image scores. The three methods compared are maximum likelihood factor analysis, principal component analysis, and a variant of rescaled image analysis. (RC)
The Butterflies of Principal Components: A Case of Ultrafine-Grained Polyphase Units
NASA Astrophysics Data System (ADS)
Rietmeijer, F. J. M.
1996-03-01
Dusts in the accretion regions of chondritic interplanetary dust particles [IDPs] consisted of three principal components: carbonaceous units [CUs], carbon-bearing chondritic units [GUs] and carbon-free silicate units [PUs]. Among others, differences among chondritic IDP morphologies and variable bulk C/Si ratios reflect variable mixtures of principal components. The spherical shapes of the initially amorphous principal components remain visible in many chondritic porous IDPs but fusion was documented for CUs, GUs and PUs. The PUs occur as coarse- and ultrafine-grained units that include so called GEMS. Spherical principal components preserved in an IDP as recognisable textural units have unique proporties with important implications for their petrological evolution from pre-accretion processing to protoplanet alteration and dynamic pyrometamorphism. Throughout their lifetime the units behaved as closed-systems without chemical exchange with other units. This behaviour is reflected in their mineralogies while the bulk compositions of principal components define the environments wherein they were formed.
NASA Astrophysics Data System (ADS)
Durigon, Angelica; Lier, Quirijn de Jong van; Metselaar, Klaas
2016-10-01
To date, measuring plant transpiration at canopy scale is laborious and its estimation by numerical modelling can be used to assess high time frequency data. When using the model by Jacobs (1994) to simulate transpiration of water stressed plants it needs to be reparametrized. We compare the importance of model variables affecting simulated transpiration of water stressed plants. A systematic literature review was performed to recover existing parameterizations to be tested in the model. Data from a field experiment with common bean under full and deficit irrigation were used to correlate estimations to forcing variables applying principal component analysis. New parameterizations resulted in a moderate reduction of prediction errors and in an increase in model performance. Ags model was sensitive to changes in the mesophyll conductance and leaf angle distribution parameterizations, allowing model improvement. Simulated transpiration could be separated in temporal components. Daily, afternoon depression and long-term components for the fully irrigated treatment were more related to atmospheric forcing variables (specific humidity deficit between stomata and air, relative air humidity and canopy temperature). Daily and afternoon depression components for the deficit-irrigated treatment were related to both atmospheric and soil dryness, and long-term component was related to soil dryness.
Yang, Liping; Mei, Kun; Liu, Xingmei; Wu, Laosheng; Zhang, Minghua; Xu, Jianming; Wang, Fan
2013-08-01
Water quality degradation in river systems has caused great concerns all over the world. Identifying the spatial distribution and sources of water pollutants is the very first step for efficient water quality management. A set of water samples collected bimonthly at 12 monitoring sites in 2009 and 2010 were analyzed to determine the spatial distribution of critical parameters and to apportion the sources of pollutants in Wen-Rui-Tang (WRT) river watershed, near the East China Sea. The 12 monitoring sites were divided into three administrative zones of urban, suburban, and rural zones considering differences in land use and population density. Multivariate statistical methods [one-way analysis of variance, principal component analysis (PCA), and absolute principal component score-multiple linear regression (APCS-MLR) methods] were used to investigate the spatial distribution of water quality and to apportion the pollution sources. Results showed that most water quality parameters had no significant difference between the urban and suburban zones, whereas these two zones showed worse water quality than the rural zone. Based on PCA and APCS-MLR analysis, urban domestic sewage and commercial/service pollution, suburban domestic sewage along with fluorine point source pollution, and agricultural nonpoint source pollution with rural domestic sewage pollution were identified to the main pollution sources in urban, suburban, and rural zones, respectively. Understanding the water pollution characteristics of different administrative zones could put insights into effective water management policy-making especially in the area across various administrative zones.
Geochemistry of sediments in the Northern and Central Adriatic Sea
NASA Astrophysics Data System (ADS)
De Lazzari, A.; Rampazzo, G.; Pavoni, B.
2004-03-01
Major, minor and trace elements, loss of ignition, specific surface area, quantities of calcite and dolomite, qualitative mineralogical composition, grain-size distribution and organic micropollutants (PAH, PCB, DDT) were determined on surficial marine sediments sampled during the 1990 ASCOP (Adriatic Scientific Cooperative Program) cruise. Mineralogical composition and carbonate content of the samples were found to be comparable with data previously reported in the literature, whereas geochemical composition and distribution of major, minor and trace elements for samples in international waters and in the central basin have never been reported before. The large amount of information contained in the variables of different origin has been processed by means of a comprehensive approach which establishes the relations among the components through the mathematical-statistical calculation of principal components (factors). These account for the major part of data variance loosing only marginal parts of information and are independent from the units of measure. The sample descriptors concerning natural components and contamination load are discussed by means of a statistical model based on an R-mode Factor analysis calculating four significant factors which explain 86.8% of the total variance, and represent important relationships between grain size, mineralogy, geochemistry and organic micropollutants. A description and an interpretation of factor composition is discussed on the basis of pollution inputs, basin geology and hydrodynamics. The areal distribution of the factors showed that it is the fine grain-size fraction, with oxides and hydroxides of colloidal origin, which are the main means of transport and thus the principal link between chemical, physical and granulometric elements in the Adriatic.
Foch, Eric; Milner, Clare E
2014-01-03
Iliotibial band syndrome (ITBS) is a common knee overuse injury among female runners. Atypical discrete trunk and lower extremity biomechanics during running may be associated with the etiology of ITBS. Examining discrete data points limits the interpretation of a waveform to a single value. Characterizing entire kinematic and kinetic waveforms may provide additional insight into biomechanical factors associated with ITBS. Therefore, the purpose of this cross-sectional investigation was to determine whether female runners with previous ITBS exhibited differences in kinematics and kinetics compared to controls using a principal components analysis (PCA) approach. Forty participants comprised two groups: previous ITBS and controls. Principal component scores were retained for the first three principal components and were analyzed using independent t-tests. The retained principal components accounted for 93-99% of the total variance within each waveform. Runners with previous ITBS exhibited low principal component one scores for frontal plane hip angle. Principal component one accounted for the overall magnitude in hip adduction which indicated that runners with previous ITBS assumed less hip adduction throughout stance. No differences in the remaining retained principal component scores for the waveforms were detected among groups. A smaller hip adduction angle throughout the stance phase of running may be a compensatory strategy to limit iliotibial band strain. This running strategy may have persisted after ITBS symptoms subsided. © 2013 Published by Elsevier Ltd.
Benson, Nsikak U.; Asuquo, Francis E.; Williams, Akan B.; Essien, Joseph P.; Ekong, Cyril I.; Akpabio, Otobong; Olajire, Abaas A.
2016-01-01
Trace metals (Cd, Cr, Cu, Ni and Pb) concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria). The degree of contamination was assessed using the individual contamination factors (ICF) and global contamination factor (GCF). Multivariate statistical approaches including principal component analysis (PCA), cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources. PMID:27257934
NASA Astrophysics Data System (ADS)
Litvinenko, S. V.; Bielobrov, D. O.; Lysenko, V.; Skryshevsky, V. A.
2016-08-01
The electronic tongue based on the array of low selective photovoltaic (PV) sensors and principal component analysis is proposed for detection of various alcohol solutions. A sensor array is created at the forming of p-n junction on silicon wafer with porous silicon layer on the opposite side. A dynamical set of sensors is formed due to the inhomogeneous distribution of the surface recombination rate at this porous silicon side. The sensitive to molecular adsorption photocurrent is induced at the scanning of this side by laser beam. Water, ethanol, iso-propanol, and their mixtures were selected for testing. It is shown that the use of the random dispersion of surface recombination rates on different spots of the rear side of p-n junction and principal component analysis of PV signals allows identifying mentioned liquid substances and their mixtures.
NASA Astrophysics Data System (ADS)
Bhushan, A.; Sharker, M. H.; Karimi, H. A.
2015-07-01
In this paper, we address outliers in spatiotemporal data streams obtained from sensors placed across geographically distributed locations. Outliers may appear in such sensor data due to various reasons such as instrumental error and environmental change. Real-time detection of these outliers is essential to prevent propagation of errors in subsequent analyses and results. Incremental Principal Component Analysis (IPCA) is one possible approach for detecting outliers in such type of spatiotemporal data streams. IPCA has been widely used in many real-time applications such as credit card fraud detection, pattern recognition, and image analysis. However, the suitability of applying IPCA for outlier detection in spatiotemporal data streams is unknown and needs to be investigated. To fill this research gap, this paper contributes by presenting two new IPCA-based outlier detection methods and performing a comparative analysis with the existing IPCA-based outlier detection methods to assess their suitability for spatiotemporal sensor data streams.
Preliminary study of soil permeability properties using principal component analysis
NASA Astrophysics Data System (ADS)
Yulianti, M.; Sudriani, Y.; Rustini, H. A.
2018-02-01
Soil permeability measurement is undoubtedly important in carrying out soil-water research such as rainfall-runoff modelling, irrigation water distribution systems, etc. It is also known that acquiring reliable soil permeability data is rather laborious, time-consuming, and costly. Therefore, it is desirable to develop the prediction model. Several studies of empirical equations for predicting permeability have been undertaken by many researchers. These studies derived the models from areas which soil characteristics are different from Indonesian soil, which suggest a possibility that these permeability models are site-specific. The purpose of this study is to identify which soil parameters correspond strongly to soil permeability and propose a preliminary model for permeability prediction. Principal component analysis (PCA) was applied to 16 parameters analysed from 37 sites consist of 91 samples obtained from Batanghari Watershed. Findings indicated five variables that have strong correlation with soil permeability, and we recommend a preliminary permeability model, which is potential for further development.
Akama, Hiroyuki; Miyake, Maki; Jung, Jaeyoung; Murphy, Brian
2015-01-01
In this study, we introduce an original distance definition for graphs, called the Markov-inverse-F measure (MiF). This measure enables the integration of classical graph theory indices with new knowledge pertaining to structural feature extraction from semantic networks. MiF improves the conventional Jaccard and/or Simpson indices, and reconciles both the geodesic information (random walk) and co-occurrence adjustment (degree balance and distribution). We measure the effectiveness of graph-based coefficients through the application of linguistic graph information for a neural activity recorded during conceptual processing in the human brain. Specifically, the MiF distance is computed between each of the nouns used in a previous neural experiment and each of the in-between words in a subgraph derived from the Edinburgh Word Association Thesaurus of English. From the MiF-based information matrix, a machine learning model can accurately obtain a scalar parameter that specifies the degree to which each voxel in (the MRI image of) the brain is activated by each word or each principal component of the intermediate semantic features. Furthermore, correlating the voxel information with the MiF-based principal components, a new computational neurolinguistics model with a network connectivity paradigm is created. This allows two dimensions of context space to be incorporated with both semantic and neural distributional representations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckert-Gallup, Aubrey C.; Sallaberry, Cédric J.; Dallman, Ann R.
Environmental contours describing extreme sea states are generated as the input for numerical or physical model simulations as a part of the standard current practice for designing marine structures to survive extreme sea states. These environmental contours are characterized by combinations of significant wave height (H s) and either energy period (T e) or peak period (T p) values calculated for a given recurrence interval using a set of data based on hindcast simulations or buoy observations over a sufficient period of record. The use of the inverse first-order reliability method (I-FORM) is a standard design practice for generating environmentalmore » contours. This paper develops enhanced methodologies for data analysis prior to the application of the I-FORM, including the use of principal component analysis (PCA) to create an uncorrelated representation of the variables under consideration as well as new distribution and parameter fitting techniques. As a result, these modifications better represent the measured data and, therefore, should contribute to the development of more realistic representations of environmental contours of extreme sea states for determining design loads for marine structures.« less
Eckert-Gallup, Aubrey C.; Sallaberry, Cédric J.; Dallman, Ann R.; ...
2016-01-06
Environmental contours describing extreme sea states are generated as the input for numerical or physical model simulations as a part of the standard current practice for designing marine structures to survive extreme sea states. These environmental contours are characterized by combinations of significant wave height (H s) and either energy period (T e) or peak period (T p) values calculated for a given recurrence interval using a set of data based on hindcast simulations or buoy observations over a sufficient period of record. The use of the inverse first-order reliability method (I-FORM) is a standard design practice for generating environmentalmore » contours. This paper develops enhanced methodologies for data analysis prior to the application of the I-FORM, including the use of principal component analysis (PCA) to create an uncorrelated representation of the variables under consideration as well as new distribution and parameter fitting techniques. As a result, these modifications better represent the measured data and, therefore, should contribute to the development of more realistic representations of environmental contours of extreme sea states for determining design loads for marine structures.« less
Principal Preferences and the Uneven Distribution of Principals across Schools
ERIC Educational Resources Information Center
Loeb, Susanna; Kalogrides, Demetra; Horng, Eileen Lai
2010-01-01
The authors use longitudinal data from one large school district to investigate the distribution of principals across schools. They find that schools serving many low-income, non-White, and low-achieving students have principals who have less experience and less education and who attended less selective colleges. This distribution of principals is…
Chemometric expertise of the quality of groundwater sources for domestic use.
Spanos, Thomas; Ene, Antoaneta; Simeonova, Pavlina
2015-01-01
In the present study 49 representative sites have been selected for the collection of water samples from central water supplies with different geographical locations in the region of Kavala, Northern Greece. Ten physicochemical parameters (pH, electric conductivity, nitrate, chloride, sodium, potassium, total alkalinity, total hardness, bicarbonate and calcium) were analyzed monthly, in the period from January 2010 to December 2010. Chemometric methods were used for monitoring data mining and interpretation (cluster analysis, principal components analysis and source apportioning by principal components regression). The clustering of the chemical indicators delivers two major clusters related to the water hardness and the mineral components (impacted by sea, bedrock and acidity factors). The sampling locations are separated into three major clusters corresponding to the spatial distribution of the sites - coastal, lowland and semi-mountainous. The principal components analysis reveals two latent factors responsible for the data structures, which are also an indication for the sources determining the groundwater quality of the region (conditionally named "mineral" factor and "water hardness" factor). By the apportionment approach it is shown what the contribution is of each of the identified sources to the formation of the total concentration of each one of the chemical parameters. The mean values of the studied physicochemical parameters were found to be within the limits given in the 98/83/EC Directive. The water samples are appropriate for human consumption. The results of this study provide an overview of the hydrogeological profile of water supply system for the studied area.
Differential use of fresh water environments by wintering waterfowl of coastal Texas
White, D.H.; James, D.
1978-01-01
A comparative study of the environmental relationships among 14 species of wintering waterfowl was conducted at the Welder Wildlife Foundation, San Patricia County, near Sinton, Texas during the fall and early winter of 1973. Measurements of 20 environmental factors (social, vegetational, physical, and chemical) were subjected to multivariate statistical methods to determine certain niche characteristics and environmental relationships of waterfowl wintering in the aquatic community.....Each waterfowl species occupied a unique realized niche by responding to distinct combinations of environmental factors identified by principal component analysis. One percent confidence ellipses circumscribing the mean scores plotted for the first and second principal components gave an indication of relative niche width for each species. The waterfowl environments were significantly different interspecifically and water depth at feeding site and % emergent vegetation were most important in the separation. This was shown by subjecting the transformed data to multivariate analysis of variance with an associated step-down procedure. The species were distributed along a community cline extending from shallow water with abundant emergent vegetation to open deep water with little emergent vegetation of any kind. Four waterfowl subgroups were significantly separated along the cline, as indicated by one-way analysis of variance with Duncan?s multiple range test. Clumping of the bird species toward the middle of the available habitat hyperspace was shown in a plot of the principal component scores for the random samples and individual species.....Naturally occurring relationships among waterfowl were clarified using principal comcomponent analysis and related multivariate procedures. These techniques may prove useful in wetland management for particular groups of waterfowl based on habitat preferences.
NASA Astrophysics Data System (ADS)
Sukhanov, Ivan I.; Ditenberg, Ivan A.
2017-12-01
The paper provides a theoretical analysis of elastic stresses and elastic energy distribution in nanostructured metal materials in the vicinity of nanograin boundaries with a high partial disclination density. The analysis demonstrates the stress field distribution in disclination grain boundary configurations as a function of nanograin size, taking into account the superposition of these stresses in screening the disclination pile-ups. It is found that the principal stress tensor components reach maximum values only in disclination planes P ≈ E/25 and that the stress gradients peak at nodal points ∂P/∂x ≈ 0.08E nm-1. The shear stress components are localized within the physical grain size, and the specific elastic energy distribution for such configurations reveals characteristic local maxima which can be the cause for physical broadening of nanograin boundaries.
Wavelength dependence of the bidirectional reflectance distribution function (BRDF) of beach sands.
Doctor, Katarina Z; Bachmann, Charles M; Gray, Deric J; Montes, Marcos J; Fusina, Robert A
2015-11-01
The wavelength dependence of the dominant directional reflective properties of beach sands was demonstrated using principal component analysis and the related correlation matrix. In general, we found that the hyperspectral bidirectional reflectance distribution function (BRDF) of beach sands has weak wavelength dependence. Its BRDF varies slightly in three broad wavelength regions. The variations are more evident in surfaces of greater visual roughness than in smooth surfaces. The weak wavelength dependence of the BRDF of beach sand can be captured using three broad wavelength regions instead of hundreds of individual wavelengths.
Nonlinear Principal Components Analysis: Introduction and Application
ERIC Educational Resources Information Center
Linting, Marielle; Meulman, Jacqueline J.; Groenen, Patrick J. F.; van der Koojj, Anita J.
2007-01-01
The authors provide a didactic treatment of nonlinear (categorical) principal components analysis (PCA). This method is the nonlinear equivalent of standard PCA and reduces the observed variables to a number of uncorrelated principal components. The most important advantages of nonlinear over linear PCA are that it incorporates nominal and ordinal…
USDA-ARS?s Scientific Manuscript database
Selective principal component regression analysis (SPCR) uses a subset of the original image bands for principal component transformation and regression. For optimal band selection before the transformation, this paper used genetic algorithms (GA). In this case, the GA process used the regression co...
Similarities between principal components of protein dynamics and random diffusion
NASA Astrophysics Data System (ADS)
Hess, Berk
2000-12-01
Principal component analysis, also called essential dynamics, is a powerful tool for finding global, correlated motions in atomic simulations of macromolecules. It has become an established technique for analyzing molecular dynamics simulations of proteins. The first few principal components of simulations of large proteins often resemble cosines. We derive the principal components for high-dimensional random diffusion, which are almost perfect cosines. This resemblance between protein simulations and noise implies that for many proteins the time scales of current simulations are too short to obtain convergence of collective motions.
Directly Reconstructing Principal Components of Heterogeneous Particles from Cryo-EM Images
Tagare, Hemant D.; Kucukelbir, Alp; Sigworth, Fred J.; Wang, Hongwei; Rao, Murali
2015-01-01
Structural heterogeneity of particles can be investigated by their three-dimensional principal components. This paper addresses the question of whether, and with what algorithm, the three-dimensional principal components can be directly recovered from cryo-EM images. The first part of the paper extends the Fourier slice theorem to covariance functions showing that the three-dimensional covariance, and hence the principal components, of a heterogeneous particle can indeed be recovered from two-dimensional cryo-EM images. The second part of the paper proposes a practical algorithm for reconstructing the principal components directly from cryo-EM images without the intermediate step of calculating covariances. This algorithm is based on maximizing the (posterior) likelihood using the Expectation-Maximization algorithm. The last part of the paper applies this algorithm to simulated data and to two real cryo-EM data sets: a data set of the 70S ribosome with and without Elongation Factor-G (EF-G), and a data set of the inluenza virus RNA dependent RNA Polymerase (RdRP). The first principal component of the 70S ribosome data set reveals the expected conformational changes of the ribosome as the EF-G binds and unbinds. The first principal component of the RdRP data set reveals a conformational change in the two dimers of the RdRP. PMID:26049077
The role of habitat shift in the evolution of lizard morphology: evidence from tropical Tropidurus
Vitt, Laurie J.; Caldwell, Janalee P.; Zani, Peter A.; Titus, Tom A.
1997-01-01
We compared morphology of two geographically close populations of the tropical lizard Tropidurus hispidus to test the hypothesis that habitat structure influences the evolution of morphology and ecology at the population level. T. hispidus isolated on a rock outcrop surrounded by tropical forest use rock crevices for refuge and appear dorsoventrally compressed compared with those in open savanna. A principal components analysis revealed that the populations were differentially distributed along an axis representing primarily three components of shape: body width, body height, and hind-leg length. Morphological divergence was supported by a principal components analysis of size-free morphological variables. Mitochondrial DNA sequences of ATPase 6 indicate that these populations are closely related relative to other T. hispidus, the rock outcrop morphology and ecology are derived within T. hispidus, and morphological and ecological divergence has occurred more rapidly than genetic divergence. This suggests that natural selection can rapidly adjust morphology and ecology in response to a recent history of exposure to habitats differing in structure, a result heretofore implied from comparative studies among lizard species. PMID:9108063
The role of habitat shift in the evolution of lizard morphology: evidence from tropical Tropidurus.
Vitt, L J; Caldwell, J P; Zani, P A; Titus, T A
1997-04-15
We compared morphology of two geographically close populations of the tropical lizard Tropidurus hispidus to test the hypothesis that habitat structure influences the evolution of morphology and ecology at the population level. T. hispidus isolated on a rock outcrop surrounded by tropical forest use rock crevices for refuge and appear dorsoventrally compressed compared with those in open savanna. A principal components analysis revealed that the populations were differentially distributed along an axis representing primarily three components of shape: body width, body height, and hind-leg length. Morphological divergence was supported by a principal components analysis of size-free morphological variables. Mitochondrial DNA sequences of ATPase 6 indicate that these populations are closely related relative to other T. hispidus, the rock outcrop morphology and ecology are derived within T. hispidus, and morphological and ecological divergence has occurred more rapidly than genetic divergence. This suggests that natural selection can rapidly adjust morphology and ecology in response to a recent history of exposure to habitats differing in structure, a result heretofore implied from comparative studies among lizard species.
NASA Astrophysics Data System (ADS)
Diego, M. C. R.; Purwanto, Y. A.; Sutrisno; Budiastra, I. W.
2018-05-01
Research related to the non-destructive method of near-infrared (NIR) spectroscopy in aromatic oil is still in development in Indonesia. The objectives of the study were to determine the characteristics of the near-infrared spectra of patchouli oil and classify it based on its origin. The samples were selected from seven different places in Indonesia (Bogor and Garut from West Java, Aceh, and Jambi from Sumatra and Konawe, Masamba and Kolaka from Sulawesi Island). The spectral data of patchouli oil was obtained by FT-NIR spectrometer at the wavelength of 1000-2500 nm, and after that, the samples were subjected to composition analysis using Gas Chromatography-Mass Spectrometry. The transmittance and absorbance spectra were analyzed and then principal component analysis (PCA) was carried out. Discriminant analysis (DA) of the principal component was developed to classify patchouli oil based on its origin. The result shows that the data of both spectra (transmittance and absorbance spectra) by the PC analysis give a similar result for discriminating the seven types of patchouli oil due to their distribution and behavior. The DA of the three principal component in both data processed spectra could classify patchouli oil accurately. This result exposed that NIR spectroscopy can be successfully used as a correct method to classify patchouli oil based on its origin.
An Empirical Cumulus Parameterization Scheme for a Global Spectral Model
NASA Technical Reports Server (NTRS)
Rajendran, K.; Krishnamurti, T. N.; Misra, V.; Tao, W.-K.
2004-01-01
Realistic vertical heating and drying profiles in a cumulus scheme is important for obtaining accurate weather forecasts. A new empirical cumulus parameterization scheme based on a procedure to improve the vertical distribution of heating and moistening over the tropics is developed. The empirical cumulus parameterization scheme (ECPS) utilizes profiles of Tropical Rainfall Measuring Mission (TRMM) based heating and moistening derived from the European Centre for Medium- Range Weather Forecasts (ECMWF) analysis. A dimension reduction technique through rotated principal component analysis (RPCA) is performed on the vertical profiles of heating (Q1) and drying (Q2) over the convective regions of the tropics, to obtain the dominant modes of variability. Analysis suggests that most of the variance associated with the observed profiles can be explained by retaining the first three modes. The ECPS then applies a statistical approach in which Q1 and Q2 are expressed as a linear combination of the first three dominant principal components which distinctly explain variance in the troposphere as a function of the prevalent large-scale dynamics. The principal component (PC) score which quantifies the contribution of each PC to the corresponding loading profile is estimated through a multiple screening regression method which yields the PC score as a function of the large-scale variables. The profiles of Q1 and Q2 thus obtained are found to match well with the observed profiles. The impact of the ECPS is investigated in a series of short range (1-3 day) prediction experiments using the Florida State University global spectral model (FSUGSM, T126L14). Comparisons between short range ECPS forecasts and those with the modified Kuo scheme show a very marked improvement in the skill in ECPS forecasts. This improvement in the forecast skill with ECPS emphasizes the importance of incorporating realistic vertical distributions of heating and drying in the model cumulus scheme. This also suggests that in the absence of explicit models for convection, the proposed statistical scheme improves the modeling of the vertical distribution of heating and moistening in areas of deep convection.
An Introductory Application of Principal Components to Cricket Data
ERIC Educational Resources Information Center
Manage, Ananda B. W.; Scariano, Stephen M.
2013-01-01
Principal Component Analysis is widely used in applied multivariate data analysis, and this article shows how to motivate student interest in this topic using cricket sports data. Here, principal component analysis is successfully used to rank the cricket batsmen and bowlers who played in the 2012 Indian Premier League (IPL) competition. In…
Least Principal Components Analysis (LPCA): An Alternative to Regression Analysis.
ERIC Educational Resources Information Center
Olson, Jeffery E.
Often, all of the variables in a model are latent, random, or subject to measurement error, or there is not an obvious dependent variable. When any of these conditions exist, an appropriate method for estimating the linear relationships among the variables is Least Principal Components Analysis. Least Principal Components are robust, consistent,…
Identifying apple surface defects using principal components analysis and artifical neural networks
USDA-ARS?s Scientific Manuscript database
Artificial neural networks and principal components were used to detect surface defects on apples in near-infrared images. Neural networks were trained and tested on sets of principal components derived from columns of pixels from images of apples acquired at two wavelengths (740 nm and 950 nm). I...
Dong, Yan; Zhong, Zhao-hui; Li, Hong; Li, Jie; Wang, Ying-xiong; Peng, Bin; Zhang, Mao-zhong; Huang, Qiao; Yan, Ju; Xu, Fei-long
2013-10-01
To explore the correlation between the incidence of birth defects and the contents of soil elements so as to provide a scientific basis for screening the related pathogenic factors that inducing birth defects for the development of related preventive and control strategies. MapInfo 7.0 software was used to draw the maps on spatial distribution regarding the incidence rates of birth defects and the contents of 11 chemical elements in soil in the 33 studied areas. Variables on the two maps were superposed for analyzing the spatial correlation. SAS 8.0 software was used to analyze single factor, multi-factors and principal components as well as to comprehensively evaluate the degrees of relevance. Different incidence rates of birth defects showed in the maps of spatial distribution presented certain degrees of negative correlation with anomalies of soil chemical elements, including copper, chrome, iodine, selenium, zinc while positively correlated with the levels of lead. Results from the principal component regression equation indicating that the contents of copper(0.002), arsenic(-0.07), cadmium(0.05), chrome (-0.001), zinc (0.001), iodine(-0.03), lead (0.08), fluorine(-0.002)might serve as important factors that related to the prevalence of birth defects. Through the study on spatial distribution, we noticed that the incidence rates of birth defects were related to the contents of copper, chrome, iodine, selenium, zinc, lead in soil while the contents of chrome, iodine and lead might lead to the occurrence of birth defects.
Finding Planets in K2: A New Method of Cleaning the Data
NASA Astrophysics Data System (ADS)
Currie, Miles; Mullally, Fergal; Thompson, Susan E.
2017-01-01
We present a new method of removing systematic flux variations from K2 light curves by employing a pixel-level principal component analysis (PCA). This method decomposes the light curves into its principal components (eigenvectors), each with an associated eigenvalue, the value of which is correlated to how much influence the basis vector has on the shape of the light curve. This method assumes that the most influential basis vectors will correspond to the unwanted systematic variations in the light curve produced by K2’s constant motion. We correct the raw light curve by automatically fitting and removing the strongest principal components. The strongest principal components generally correspond to the flux variations that result from the motion of the star in the field of view. Our primary method of calculating the strongest principal components to correct for in the raw light curve estimates the noise by measuring the scatter in the light curve after using an algorithm for Savitsy-Golay detrending, which computes the combined photometric precision value (SG-CDPP value) used in classic Kepler. We calculate this value after correcting the raw light curve for each element in a list of cumulative sums of principal components so that we have as many noise estimate values as there are principal components. We then take the derivative of the list of SG-CDPP values and take the number of principal components that correlates to the point at which the derivative effectively goes to zero. This is the optimal number of principal components to exclude from the refitting of the light curve. We find that a pixel-level PCA is sufficient for cleaning unwanted systematic and natural noise from K2’s light curves. We present preliminary results and a basic comparison to other methods of reducing the noise from the flux variations.
Directly reconstructing principal components of heterogeneous particles from cryo-EM images.
Tagare, Hemant D; Kucukelbir, Alp; Sigworth, Fred J; Wang, Hongwei; Rao, Murali
2015-08-01
Structural heterogeneity of particles can be investigated by their three-dimensional principal components. This paper addresses the question of whether, and with what algorithm, the three-dimensional principal components can be directly recovered from cryo-EM images. The first part of the paper extends the Fourier slice theorem to covariance functions showing that the three-dimensional covariance, and hence the principal components, of a heterogeneous particle can indeed be recovered from two-dimensional cryo-EM images. The second part of the paper proposes a practical algorithm for reconstructing the principal components directly from cryo-EM images without the intermediate step of calculating covariances. This algorithm is based on maximizing the posterior likelihood using the Expectation-Maximization algorithm. The last part of the paper applies this algorithm to simulated data and to two real cryo-EM data sets: a data set of the 70S ribosome with and without Elongation Factor-G (EF-G), and a data set of the influenza virus RNA dependent RNA Polymerase (RdRP). The first principal component of the 70S ribosome data set reveals the expected conformational changes of the ribosome as the EF-G binds and unbinds. The first principal component of the RdRP data set reveals a conformational change in the two dimers of the RdRP. Copyright © 2015 Elsevier Inc. All rights reserved.
40 CFR 60.2998 - What are the principal components of the model rule?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What are the principal components of... December 9, 2004 Model Rule-Use of Model Rule § 60.2998 What are the principal components of the model rule... management plan. (c) Operator training and qualification. (d) Emission limitations and operating limits. (e...
40 CFR 60.2570 - What are the principal components of the model rule?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What are the principal components of... Construction On or Before November 30, 1999 Use of Model Rule § 60.2570 What are the principal components of... (k) of this section. (a) Increments of progress toward compliance. (b) Waste management plan. (c...
NASA Technical Reports Server (NTRS)
Dong, D.; Fang, P.; Bock, F.; Webb, F.; Prawirondirdjo, L.; Kedar, S.; Jamason, P.
2006-01-01
Spatial filtering is an effective way to improve the precision of coordinate time series for regional GPS networks by reducing so-called common mode errors, thereby providing better resolution for detecting weak or transient deformation signals. The commonly used approach to regional filtering assumes that the common mode error is spatially uniform, which is a good approximation for networks of hundreds of kilometers extent, but breaks down as the spatial extent increases. A more rigorous approach should remove the assumption of spatially uniform distribution and let the data themselves reveal the spatial distribution of the common mode error. The principal component analysis (PCA) and the Karhunen-Loeve expansion (KLE) both decompose network time series into a set of temporally varying modes and their spatial responses. Therefore they provide a mathematical framework to perform spatiotemporal filtering.We apply the combination of PCA and KLE to daily station coordinate time series of the Southern California Integrated GPS Network (SCIGN) for the period 2000 to 2004. We demonstrate that spatially and temporally correlated common mode errors are the dominant error source in daily GPS solutions. The spatial characteristics of the common mode errors are close to uniform for all east, north, and vertical components, which implies a very long wavelength source for the common mode errors, compared to the spatial extent of the GPS network in southern California. Furthermore, the common mode errors exhibit temporally nonrandom patterns.
Maisuradze, Gia G; Leitner, David M
2007-05-15
Dihedral principal component analysis (dPCA) has recently been developed and shown to display complex features of the free energy landscape of a biomolecule that may be absent in the free energy landscape plotted in principal component space due to mixing of internal and overall rotational motion that can occur in principal component analysis (PCA) [Mu et al., Proteins: Struct Funct Bioinfo 2005;58:45-52]. Another difficulty in the implementation of PCA is sampling convergence, which we address here for both dPCA and PCA using a tetrapeptide as an example. We find that for both methods the sampling convergence can be reached over a similar time. Minima in the free energy landscape in the space of the two largest dihedral principal components often correspond to unique structures, though we also find some distinct minima to correspond to the same structure. 2007 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Ling; Harley, Robert A.; Brown, Nancy J.
Cluster analysis was applied to daily 8 h ozone maxima modeled for a summer season to characterize meteorology-induced variations in the spatial distribution of ozone. Principal component analysis is employed to form a reduced dimension set to describe and interpret ozone spatial patterns. The first three principal components (PCs) capture {approx}85% of total variance, with PC1 describing a general spatial trend, and PC2 and PC3 each describing a spatial contrast. Six clusters were identified for California's San Joaquin Valley (SJV) with two low, three moderate, and one high-ozone cluster. The moderate ozone clusters are distinguished by elevated ozone levels inmore » different parts of the valley: northern, western, and eastern, respectively. The SJV ozone clusters have stronger coupling with the San Francisco Bay area (SFB) than with the Sacramento Valley (SV). Variations in ozone spatial distributions induced by anthropogenic emission changes are small relative to the overall variations in ozone amomalies observed for the whole summer. Ozone regimes identified here are mostly determined by the direct and indirect meteorological effects. Existing measurement sites are sufficiently representative to capture ozone spatial patterns in the SFB and SV, but the western side of the SJV is under-sampled.« less
Analysis of Hand and Wrist Postural Synergies in Tolerance Grasping of Various Objects
Liu, Yuan; Jiang, Li; Yang, Dapeng; Liu, Hong
2016-01-01
Human can successfully grasp various objects in different acceptable relative positions between human hand and objects. This grasp functionality can be described as the grasp tolerance of human hand, which is a significant functionality of human grasp. To understand the motor control of human hand completely, an analysis of hand and wrist postural synergies in tolerance grasping of various objects is needed. Ten healthy right-handed subjects were asked to perform the tolerance grasping with right hand using 6 objects of different shapes, sizes and relative positions between human hand and objects. Subjects were wearing CyberGlove attaching motion tracker on right hand, allowing a measurement of the hand and wrist postures. Correlation analysis of joints and inter-joint/inter-finger modules were carried on to explore the coordination between joints or modules. As the correlation between hand and wrist module is not obvious in tolerance grasping, individual analysis of wrist synergies would be more practical. In this case, postural synergies of hand and wrist were then presented separately through principal component analysis (PCA), expressed through the principal component (PC) information transmitted ratio, PC elements distribution and reconstructed angle error of joints. Results on correlation comparison of different module movements can be well explained by the influence factors of the joint movement correlation. Moreover, correlation analysis of joints and modules showed the wrist module had the lowest correlation among all inter-finger and inter-joint modules. Hand and wrist postures were both sufficient to be described by a few principal components. In terms of the PC elements distribution of hand postures, compared with previous investigations, there was a greater proportion of movement in the thumb joints especially the interphalangeal (IP) and opposition rotation (ROT) joint. The research could serve to a complete understanding of hand grasp, and the design, control of the anthropomorphic hand and wrist. PMID:27580298
ERIC Educational Resources Information Center
Oplatka, Izhar
2017-01-01
Purpose: In order to fill the gap in theoretical and empirical knowledge about the characteristics of principal workload, the purpose of this paper is to explore the components of principal workload as well as its determinants and the coping strategies commonly used by principals to face this personal state. Design/methodology/approach:…
EM in high-dimensional spaces.
Draper, Bruce A; Elliott, Daniel L; Hayes, Jeremy; Baek, Kyungim
2005-06-01
This paper considers fitting a mixture of Gaussians model to high-dimensional data in scenarios where there are fewer data samples than feature dimensions. Issues that arise when using principal component analysis (PCA) to represent Gaussian distributions inside Expectation-Maximization (EM) are addressed, and a practical algorithm results. Unlike other algorithms that have been proposed, this algorithm does not try to compress the data to fit low-dimensional models. Instead, it models Gaussian distributions in the (N - 1)-dimensional space spanned by the N data samples. We are able to show that this algorithm converges on data sets where low-dimensional techniques do not.
Circulation types related to lightning activity over Catalonia and the Principality of Andorra
NASA Astrophysics Data System (ADS)
Pineda, N.; Esteban, P.; Trapero, L.; Soler, X.; Beck, C.
In the present study, we use a Principal Component Analysis (PCA) to characterize the surface 6-h circulation types related to substantial lightning activity over the Catalonia area (north-eastern Iberia) and the Principality of Andorra (eastern Pyrenees) from January 2003 to December 2007. The gridded data used for classification of the circulation types is the NCEP Final Analyses of the Global Tropospheric Analyses at 1° resolution over the region 35°N-48°N by 5°W-8°E. Lightning information was collected by the SAFIR lightning detection system operated by the Meteorological Service of Catalonia (SMC), which covers the region studied. We determined nine circulation types on the basis of the S-mode orthogonal rotated Principal Component Analysis. The “extreme scores” principle was used previous to the assignation of all cases, to obtain the number of final types and their centroids. The distinct differences identified in the resulting mean Sea Level Pressure (SLP) fields enabled us to group the types into three main patterns, taking into account their scale/dynamical origin. The first group of types shows the different distribution of the centres of action at synoptic scale associated with the occurrence of lightning. The second group is connected to mesoscale dynamics, mainly induced by the relief of the Pyrenees. The third group shows types with low gradient SLP patterns in which the lightning activity is a consequence of thermal dynamics (coastal and mountain breezes). Apart from reinforcing the consistency of the groups obtained, analysis of the resulting classification improves our understanding of the geographical distribution and genesis factors of thunderstorm activity in the study area, and provides complementary information for supporting weather forecasting. Thus, the catalogue obtained will provide advances in different climatological and meteorological applications, such as nowcasting products or detection of climate change trends.
Oblinsky, Daniel G; Vanschouwen, Bryan M B; Gordon, Heather L; Rothstein, Stuart M
2009-12-14
Given the principal component analysis (PCA) of a molecular dynamics (MD) conformational trajectory for a model protein, we perform orthogonal Procrustean rotation to "best fit" the PCA squared-loading matrix to that of a target matrix computed for a related but different molecular system. The sum of squared deviations of the elements of the rotated matrix from those of the target, known as the error of fit (EOF), provides a quantitative measure of the dissimilarity between the two conformational samples. To estimate precision of the EOF, we perform bootstrap resampling of the molecular conformations within the trajectories, generating a distribution of EOF values for the system and target. The average EOF per variable is determined and visualized to ascertain where, locally, system and target sample properties differ. We illustrate this approach by analyzing MD trajectories for the wild-type and four selected mutants of the beta1 domain of protein G.
NASA Astrophysics Data System (ADS)
Oblinsky, Daniel G.; VanSchouwen, Bryan M. B.; Gordon, Heather L.; Rothstein, Stuart M.
2009-12-01
Given the principal component analysis (PCA) of a molecular dynamics (MD) conformational trajectory for a model protein, we perform orthogonal Procrustean rotation to "best fit" the PCA squared-loading matrix to that of a target matrix computed for a related but different molecular system. The sum of squared deviations of the elements of the rotated matrix from those of the target, known as the error of fit (EOF), provides a quantitative measure of the dissimilarity between the two conformational samples. To estimate precision of the EOF, we perform bootstrap resampling of the molecular conformations within the trajectories, generating a distribution of EOF values for the system and target. The average EOF per variable is determined and visualized to ascertain where, locally, system and target sample properties differ. We illustrate this approach by analyzing MD trajectories for the wild-type and four selected mutants of the β1 domain of protein G.
Luo, Jie; Qi, Shihua; Xie, Xianming; Gu, X W Sophie; Wang, Jinji
2017-01-01
Guiyu is a well-known electronic waste dismantling and recycling town in south China. Concentrations and distribution of the 21 mineral elements and 16 polycyclic aromatic hydrocarbons (PAHs) collected there were evaluated. Principal component analyses (PCA) applied to the data matrix of PAHs in the soil extracted three major factors explaining 85.7% of the total variability identified as traffic emission, coal combustion, and an unidentified source. By using metallic or metalloid element concentrations as variables, five principal components (PCs) were identified and accounted for 70.4% of the information included in the initial data matrix, which can be denoted as e-waste dismantling-related contamination, two different geological origins, anthropogenic influenced source, and marine aerosols. Combining the 21 metallic and metalloid element datasets with the 16 PAH concentrations can narrow down the coarse source and decrease the unidentified contribution to soil in the present study and therefore effectively assists the source identification process.
Šašiċ, Slobodan; Ojakovo, Peter; Warman, Martin; Sanghvi, Tapan
2013-09-01
Raman chemical mapping was used to determine the distribution of magnesium stearate, a lubricant, on the surface of tablets. The lubrication was carried out via a punch-face lubrication system with different spraying rates applied on placebo and active-containing tablets. Principal component analysis was used for decomposing the matrix of Raman mapping spectra. Some of the loadings associated with minuscule variation in the data significantly overlap with the Raman spectrum of magnesium stearate in placebo tablets and allow for imaging the domains of magnesium stearate via corresponding scores. Despite the negligible variation accounted for by respective principal components, the score images seem reliable as demonstrated through thresholding the one-dimensional representation and the spectra of the hot pixels that show a weak but perceivable magnesium stearate band at 1295 cm(-1). The same approach was applied on the active formulation, but no magnesium stearate was identified, presumably due to overwhelming concentration and spectral contribution of the active pharmaceutical ingredient.
Characterizing Time Series Data Diversity for Wind Forecasting: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, Brian S; Chartan, Erol Kevin; Feng, Cong
Wind forecasting plays an important role in integrating variable and uncertain wind power into the power grid. Various forecasting models have been developed to improve the forecasting accuracy. However, it is challenging to accurately compare the true forecasting performances from different methods and forecasters due to the lack of diversity in forecasting test datasets. This paper proposes a time series characteristic analysis approach to visualize and quantify wind time series diversity. The developed method first calculates six time series characteristic indices from various perspectives. Then the principal component analysis is performed to reduce the data dimension while preserving the importantmore » information. The diversity of the time series dataset is visualized by the geometric distribution of the newly constructed principal component space. The volume of the 3-dimensional (3D) convex polytope (or the length of 1D number axis, or the area of the 2D convex polygon) is used to quantify the time series data diversity. The method is tested with five datasets with various degrees of diversity.« less
Diversity in shortjaw cisco (Coregonus zenithicus) in North America
Todd, T.N.; Steinhilber, M.
2002-01-01
Shortjaw cisco (Coregonus zenithicus) exhibit morphological variability across their geographic range in North America and could comprise more than one distinct morph or taxon. To investigate this, principal components analysis was applied to a data set that consisted of four variables from nine localities. All data were obtained from digital images of the specimens and the excised first gill arch. Confidence ellipses (95%) about the means of bivariate distributions of the principal components revealed that some populations were distinct from the others, but a continuity of overlap clouded understanding of pattern among the variation. Most populations had more and longer gillrakers than shortjaw cisco from George Lake (Manitoba) and Basswood Lake (Ontario) that had fewer and shorter gillrakers. This analysis supports the existence of a short- and few-rakered morph and a long- and many-rakered morph. However, most populations of shortjaw cisco from the Great Lakes across Canada to the Arctic share a similar morphology and likely represent a single, widespread species.
Modification of isoflavone profiles in a fermented soy food with almond powder.
Park, MinHee; Jeong, Min Kyu; Kim, MiJa; Lee, JaeHwan
2012-01-01
Isoflavone profiles of a fermented soy food, cheonggukjang, were modified using almond powder. Isoflavones were analyzed by high performance liquid chromatography (HPLC) with an ultraviolet detector. Malonyl derivatives of isoflavones decreased and aglycones of isoflavones increased in samples with almond powder for 48 h. As added, almond powder increased from 0%, 5%, and 10% (w/w), amounts of aglycones increased to 21.11%, 26.63%, and 32.45% for 48 h, respectively. β-Glucosidase activity in 5% and 10% almond added samples was significantly higher than samples without addition of almond (P < 0.05). The content of succinyl daidzin and succinyl genistin, new metabolites from isoflavones, in almond-added cheonggukjang was significantly lower than control samples, implying that β-glucosidase activity from almond affected negatively the formation of succinyl derivatives (P < 0.05). Principal component analysis (PCA) for isoflavone distribution showed that first principal component (PC1) and second principal component (PC2) expressed 64.78% and 22.26% of the data variability, respectively. Biotransformation of isoflavones in any fermented soy foods can be achieved using natural products containing high β-glucosidase activity such as almond. The results of this study can help to modify the structural transformation of phytochemicals in any fermented soy foods using natural products. Adjusting the content of almond powder can achieve wanted profiles, for example, high aglycones content. Also, content of metabolites such as succinyl derivatives can be controlled using proper amounts of almond and fermentation time. © 2011 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Farsadnia, Farhad; Ghahreman, Bijan
2016-04-01
Hydrologic homogeneous group identification is considered both fundamental and applied research in hydrology. Clustering methods are among conventional methods to assess the hydrological homogeneous regions. Recently, Self-Organizing feature Map (SOM) method has been applied in some studies. However, the main problem of this method is the interpretation on the output map of this approach. Therefore, SOM is used as input to other clustering algorithms. The aim of this study is to apply a two-level Self-Organizing feature map and Ward hierarchical clustering method to determine the hydrologic homogenous regions in North and Razavi Khorasan provinces. At first by principal component analysis, we reduced SOM input matrix dimension, then the SOM was used to form a two-dimensional features map. To determine homogeneous regions for flood frequency analysis, SOM output nodes were used as input into the Ward method. Generally, the regions identified by the clustering algorithms are not statistically homogeneous. Consequently, they have to be adjusted to improve their homogeneity. After adjustment of the homogeneity regions by L-moment tests, five hydrologic homogeneous regions were identified. Finally, adjusted regions were created by a two-level SOM and then the best regional distribution function and associated parameters were selected by the L-moment approach. The results showed that the combination of self-organizing maps and Ward hierarchical clustering by principal components as input is more effective than the hierarchical method, by principal components or standardized inputs to achieve hydrologic homogeneous regions.
Spatial assessment of water quality using chemometrics in the Pearl River Estuary, China
NASA Astrophysics Data System (ADS)
Wu, Meilin; Wang, Youshao; Dong, Junde; Sun, Fulin; Wang, Yutu; Hong, Yiguo
2017-03-01
A cruise was commissioned in the summer of 2009 to evaluate water quality in the Pearl River Estuary (PRE). Chemometrics such as Principal Component Analysis (PCA), Cluster analysis (CA) and Self-Organizing Map (SOM) were employed to identify anthropogenic and natural influences on estuary water quality. The scores of stations in the surface layer in the first principal component (PC1) were related to NH4-N, PO4-P, NO2-N, NO3-N, TP, and Chlorophyll a while salinity, turbidity, and SiO3-Si in the second principal component (PC2). Similarly, the scores of stations in the bottom layers in PC1 were related to PO4-P, NO2-N, NO3-N, and TP, while salinity, Chlorophyll a, NH4-N, and SiO3-Si in PC2. Results of the PCA identified the spatial distribution of the surface and bottom water quality, namely the Guangzhou urban reach, Middle reach, and Lower reach of the estuary. Both cluster analysis and PCA produced the similar results. Self-organizing map delineated the Guangzhou urban reach of the Pearl River that was mainly influenced by human activities. The middle and lower reaches of the PRE were mainly influenced by the waters in the South China Sea. The information extracted by PCA, CA, and SOM would be very useful to regional agencies in developing a strategy to carry out scientific plans for resource use based on marine system functions.
Pace, Roberto; Martinelli, Ernesto Marco; Sardone, Nicola; D E Combarieu, Eric
2015-03-01
Ginseng is any one of the eleven species belonging to the genus Panax of the family Araliaceae and is found in North America and in eastern Asia. Ginseng is characterized by the presence of ginsenosides. Principally Panax ginseng and Panax quinquefolius are the adaptogenic herbs and are commonly distributed as health food markets. In the present study high performance liquid chromatography has been used to identify and quantify ginsenosides in the two subject species and the different parts of the plant (roots, neck, leaves, flowers, fruits). The power of this chromatographic technique to evaluate the identity of botanical material and to distinguishing different part of the plants has been investigated with metabolomic technique such as principal component analysis. Metabolomics provide a good opportunity for mining useful chemical information from the chromatographic data set resulting an important tool for quality evaluation of medicinal plants in the authenticity, consistency and efficacy. Copyright © 2015 Elsevier B.V. All rights reserved.
The Influence Function of Principal Component Analysis by Self-Organizing Rule.
Higuchi; Eguchi
1998-07-28
This article is concerned with a neural network approach to principal component analysis (PCA). An algorithm for PCA by the self-organizing rule has been proposed and its robustness observed through the simulation study by Xu and Yuille (1995). In this article, the robustness of the algorithm against outliers is investigated by using the theory of influence function. The influence function of the principal component vector is given in an explicit form. Through this expression, the method is shown to be robust against any directions orthogonal to the principal component vector. In addition, a statistic generated by the self-organizing rule is proposed to assess the influence of data in PCA.
Liu, D W; Li, J; Guo, L; Rong, Q G; Zhou, Y H
2018-02-18
To analyze the stress distribution in the periodontal ligament (PDL) under different loading conditions at the stage of space closure by 3D finite element model of customized lingual appliances. The 3D finite element model was used in ANSYS 11.0 to analyze the stress distribution in the PDL under the following loading conditions: (1) buccal sliding mechanics (0.75 N,1.00 N,1.50 N), (2) palatal sliding mechanics (0.75 N,1.00 N,1.50 N), (3) palatal-buccal combined sliding mechanics (buccal 1.00 N + palatal 0.50 N, buccal 0.75 N + palatal 0.75 N, buccal 0.50 N+ palatal 1.00 N). The maximum principal stress, minimum principal stress and von Mises stress were evaluated. (1) buccal sliding mechanics(0.75 N,1.00 N,1.50 N): maximum principal stress: at the initial of loading, maximum principal stress, which was the compressed stress, distributed in labial PDL of cervix of lateral incisor, and palatal distal PDL of cervix of canine. With increasing loa-ding, the magnitude and range of the stress was increased. Minimum principal stress: at the initial of loading, minimum principal stress which was tonsil stress, distributed in palatal PDL of cervix of lateral incisor and mesial PDL of cervix of canine. With increasing loading, the magnitude and range of minimum principal stress was increased. The area of minimum principal stress appeared in distal and mesial PDL of cervix of central incisor. von Mises stress:it distributed in labial and palatal PDL of cervix of lateral incisor and distal PDL of cervix of canine initially. With increasing loading, the magnitude and range of stress was increased towards the direction of root. Finally, there was stress concentration area at mesial PDL of cervix of canine. (2) palatal sliding mechanics(0.75 N,1.00 N,1.50 N): maximum principal stress: at the initial of loading, maximum principal stress which was the compressed stress, distributed in palatal and distal PDL of cervix of canine, and distal-buccal and palatal PDL of cervix of lateral incisor. With increasing loading, the magnitude and range of the stress was increased. Minimum principal stress: at the initial of loading, minimum principal stress which was tonsil stress, distributed in distal-interproximal PDL of cervix of lateral incisor and mesial-interproximal PDL of cervix of canine. With increasing loading, the magnitude and range of the stress was increased.von Mises stress: von Mises stress distributed in palatal and interproximal PDL of cervix of canine. With increasing loading, the magnitude and range of stress was increased. Finally, von Mises stress distributing area appeared at distal-palatal PDL of cervix of canine. (3) palatal-buccal combined sliding mechanics: maximum principal stress: maximum principal stress still distributed in distal-palatal PDL of cervix of canine. Minimum principal stress: minimum principal stress distributed in palatal PDL of cervix of lateral incisor when buccal force was more than palatal force. As palatal force increased, the stress concentrating area transferred to mesial PDL of cervix of canine.von Mises stress: it was lower and more well-distributed in palatal-buccal combined sliding mechanics than palatal or buccal sliding mechanics. Using buccal sliding mechanics,stress majorly distributed in PDL of lateral incisor and canine, and magnitude and range of stress increased with the increase of loading; Using palatal sliding mechanics, stress majorly distributed in PDL of canine, and magnitude and range of stress increased with the increase of loading; With palatal-buccal combined sliding mechanics, the maximum principal stress distributed in the distal PDL of canine. Minimum principal stress distributed in palatal PDL of cervix of lateral incisor when buccal force was more than palatal force. As palatal force was increasing, the minimum principal stress distributing area shifted to mesial PDL of cervix of canine. When using 1.00 N buccal force and 0.50 N palatal force, the von Mises stress distributed uniformly in PDL and minimal stress appeared.
Brown, C. Erwin
1993-01-01
Correlation analysis in conjunction with principal-component and multiple-regression analyses were applied to laboratory chemical and petrographic data to assess the usefulness of these techniques in evaluating selected physical and hydraulic properties of carbonate-rock aquifers in central Pennsylvania. Correlation and principal-component analyses were used to establish relations and associations among variables, to determine dimensions of property variation of samples, and to filter the variables containing similar information. Principal-component and correlation analyses showed that porosity is related to other measured variables and that permeability is most related to porosity and grain size. Four principal components are found to be significant in explaining the variance of data. Stepwise multiple-regression analysis was used to see how well the measured variables could predict porosity and (or) permeability for this suite of rocks. The variation in permeability and porosity is not totally predicted by the other variables, but the regression is significant at the 5% significance level. ?? 1993.
Source identification and apportionment of heavy metals in urban soil profiles.
Luo, Xiao-San; Xue, Yan; Wang, Yan-Ling; Cang, Long; Xu, Bo; Ding, Jing
2015-05-01
Because heavy metals (HMs) occurring naturally in soils accumulate continuously due to human activities, identifying and apportioning their sources becomes a challenging task for pollution prevention in urban environments. Besides the enrichment factors (EFs) and principal component analysis (PCA) for source classification, the receptor model (Absolute Principal Component Scores-Multiple Linear Regression, APCS-MLR) and Pb isotopic mixing model were also developed to quantify the source contribution for typical HMs (Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn) in urban park soils of Xiamen, a representative megacity in southeast China. Furthermore, distribution patterns of their concentrations and sources in 13 soil profiles (top 20 cm) were investigated by different depths (0-5, 5-10, 10-20 cm). Currently the principal anthropogenic source for HMs in urban soil of China is atmospheric deposition from coal combustion rather than vehicle exhaust. Specifically for Pb source by isotopic model ((206)Pb/(207)Pb and (208)Pb/(207)Pb), the average contributions were natural (49%)>coal combustion (45%)≫traffic emissions (6%). Although the urban surface soils are usually more contaminated owing to recent and current human sources, leaching effects and historic vehicle emissions can also make deep soil layer contaminated by HMs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hemmateenejad, Bahram; Akhond, Morteza; Miri, Ramin; Shamsipur, Mojtaba
2003-01-01
A QSAR algorithm, principal component-genetic algorithm-artificial neural network (PC-GA-ANN), has been applied to a set of newly synthesized calcium channel blockers, which are of special interest because of their role in cardiac diseases. A data set of 124 1,4-dihydropyridines bearing different ester substituents at the C-3 and C-5 positions of the dihydropyridine ring and nitroimidazolyl, phenylimidazolyl, and methylsulfonylimidazolyl groups at the C-4 position with known Ca(2+) channel binding affinities was employed in this study. Ten different sets of descriptors (837 descriptors) were calculated for each molecule. The principal component analysis was used to compress the descriptor groups into principal components. The most significant descriptors of each set were selected and used as input for the ANN. The genetic algorithm (GA) was used for the selection of the best set of extracted principal components. A feed forward artificial neural network with a back-propagation of error algorithm was used to process the nonlinear relationship between the selected principal components and biological activity of the dihydropyridines. A comparison between PC-GA-ANN and routine PC-ANN shows that the first model yields better prediction ability.
Salvatore, Stefania; Bramness, Jørgen G; Røislien, Jo
2016-07-12
Wastewater-based epidemiology (WBE) is a novel approach in drug use epidemiology which aims to monitor the extent of use of various drugs in a community. In this study, we investigate functional principal component analysis (FPCA) as a tool for analysing WBE data and compare it to traditional principal component analysis (PCA) and to wavelet principal component analysis (WPCA) which is more flexible temporally. We analysed temporal wastewater data from 42 European cities collected daily over one week in March 2013. The main temporal features of ecstasy (MDMA) were extracted using FPCA using both Fourier and B-spline basis functions with three different smoothing parameters, along with PCA and WPCA with different mother wavelets and shrinkage rules. The stability of FPCA was explored through bootstrapping and analysis of sensitivity to missing data. The first three principal components (PCs), functional principal components (FPCs) and wavelet principal components (WPCs) explained 87.5-99.6 % of the temporal variation between cities, depending on the choice of basis and smoothing. The extracted temporal features from PCA, FPCA and WPCA were consistent. FPCA using Fourier basis and common-optimal smoothing was the most stable and least sensitive to missing data. FPCA is a flexible and analytically tractable method for analysing temporal changes in wastewater data, and is robust to missing data. WPCA did not reveal any rapid temporal changes in the data not captured by FPCA. Overall the results suggest FPCA with Fourier basis functions and common-optimal smoothing parameter as the most accurate approach when analysing WBE data.
40 CFR 62.14505 - What are the principal components of this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false What are the principal components of this subpart? 62.14505 Section 62.14505 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... components of this subpart? This subpart contains the eleven major components listed in paragraphs (a...
Principal semantic components of language and the measurement of meaning.
Samsonovich, Alexei V; Samsonovic, Alexei V; Ascoli, Giorgio A
2010-06-11
Metric systems for semantics, or semantic cognitive maps, are allocations of words or other representations in a metric space based on their meaning. Existing methods for semantic mapping, such as Latent Semantic Analysis and Latent Dirichlet Allocation, are based on paradigms involving dissimilarity metrics. They typically do not take into account relations of antonymy and yield a large number of domain-specific semantic dimensions. Here, using a novel self-organization approach, we construct a low-dimensional, context-independent semantic map of natural language that represents simultaneously synonymy and antonymy. Emergent semantics of the map principal components are clearly identifiable: the first three correspond to the meanings of "good/bad" (valence), "calm/excited" (arousal), and "open/closed" (freedom), respectively. The semantic map is sufficiently robust to allow the automated extraction of synonyms and antonyms not originally in the dictionaries used to construct the map and to predict connotation from their coordinates. The map geometric characteristics include a limited number ( approximately 4) of statistically significant dimensions, a bimodal distribution of the first component, increasing kurtosis of subsequent (unimodal) components, and a U-shaped maximum-spread planar projection. Both the semantic content and the main geometric features of the map are consistent between dictionaries (Microsoft Word and Princeton's WordNet), among Western languages (English, French, German, and Spanish), and with previously established psychometric measures. By defining the semantics of its dimensions, the constructed map provides a foundational metric system for the quantitative analysis of word meaning. Language can be viewed as a cumulative product of human experiences. Therefore, the extracted principal semantic dimensions may be useful to characterize the general semantic dimensions of the content of mental states. This is a fundamental step toward a universal metric system for semantics of human experiences, which is necessary for developing a rigorous science of the mind.
Butler, Rebecca A.
2014-01-01
Stroke aphasia is a multidimensional disorder in which patient profiles reflect variation along multiple behavioural continua. We present a novel approach to separating the principal aspects of chronic aphasic performance and isolating their neural bases. Principal components analysis was used to extract core factors underlying performance of 31 participants with chronic stroke aphasia on a large, detailed battery of behavioural assessments. The rotated principle components analysis revealed three key factors, which we labelled as phonology, semantic and executive/cognition on the basis of the common elements in the tests that loaded most strongly on each component. The phonology factor explained the most variance, followed by the semantic factor and then the executive-cognition factor. The use of principle components analysis rendered participants’ scores on these three factors orthogonal and therefore ideal for use as simultaneous continuous predictors in a voxel-based correlational methodology analysis of high resolution structural scans. Phonological processing ability was uniquely related to left posterior perisylvian regions including Heschl’s gyrus, posterior middle and superior temporal gyri and superior temporal sulcus, as well as the white matter underlying the posterior superior temporal gyrus. The semantic factor was uniquely related to left anterior middle temporal gyrus and the underlying temporal stem. The executive-cognition factor was not correlated selectively with the structural integrity of any particular region, as might be expected in light of the widely-distributed and multi-functional nature of the regions that support executive functions. The identified phonological and semantic areas align well with those highlighted by other methodologies such as functional neuroimaging and neurostimulation. The use of principle components analysis allowed us to characterize the neural bases of participants’ behavioural performance more robustly and selectively than the use of raw assessment scores or diagnostic classifications because principle components analysis extracts statistically unique, orthogonal behavioural components of interest. As such, in addition to improving our understanding of lesion–symptom mapping in stroke aphasia, the same approach could be used to clarify brain–behaviour relationships in other neurological disorders. PMID:25348632
Hierarchical Regularity in Multi-Basin Dynamics on Protein Landscapes
NASA Astrophysics Data System (ADS)
Matsunaga, Yasuhiro; Kostov, Konstatin S.; Komatsuzaki, Tamiki
2004-04-01
We analyze time series of potential energy fluctuations and principal components at several temperatures for two kinds of off-lattice 46-bead models that have two distinctive energy landscapes. The less-frustrated "funnel" energy landscape brings about stronger nonstationary behavior of the potential energy fluctuations at the folding temperature than the other, rather frustrated energy landscape at the collapse temperature. By combining principal component analysis with an embedding nonlinear time-series analysis, it is shown that the fast fluctuations with small amplitudes of 70-80% of the principal components cause the time series to become almost "random" in only 100 simulation steps. However, the stochastic feature of the principal components tends to be suppressed through a wide range of degrees of freedom at the transition temperature.
Cuss, C W; Guéguen, C
2013-09-01
Dissolved organic matter (DOM) was leached from eight distinct samples of leaves taken from six distinct trees (red maple, bur oak at three times of the year, two sugar maple and two white spruce trees from disparate soil types). Multiple samples were taken over 72-96h of leaching. The size and optical properties of leachates were assessed using asymmetrical flow field-flow fractionation (AF4) coupled to diode-array ultraviolet/visible absorbance and excitation-emission matrix fluorescence detectors (EEM). The fluorescence of unfractionated samples was also analyzed. EEMs were analyzed using parallel factor analysis (PARAFAC) and principal component analysis (PCA) of proportional component loadings. Both the unfractionated and AF4-fractionated leachates had distinct size and optical properties. The 95% confidence ranges for molecular weight distributions were determined as: 210-440Da for spruce, 540-920Da for sugar maple, 630-800Da for spring oak leaves, 930-950Da for senescent oak, 1490-1670 for senescent red maple, and 3430-4270Da for oak leaves that were collected from the ground after spring thaw. In most cases the fluorescence properties of leachates were different for individuals from different soil types and across seasons; however, PCA of PARAFAC loadings revealed that the observed distinctiveness was chiefly species-based. Strong correlations were found between the molecular weight distribution of both unfractionated and fractionated leachates and their principal component loadings (R(2)=0.85 and 0.95, respectively). It is concluded that results support a species-based origin for differences in optical properties. Copyright © 2013 Elsevier Ltd. All rights reserved.
Boiret, Mathieu; de Juan, Anna; Gorretta, Nathalie; Ginot, Yves-Michel; Roger, Jean-Michel
2015-01-25
In this work, Raman hyperspectral images and multivariate curve resolution-alternating least squares (MCR-ALS) are used to study the distribution of actives and excipients within a pharmaceutical drug product. This article is mainly focused on the distribution of a low dose constituent. Different approaches are compared, using initially filtered or non-filtered data, or using a column-wise augmented dataset before starting the MCR-ALS iterative process including appended information on the low dose component. In the studied formulation, magnesium stearate is used as a lubricant to improve powder flowability. With a theoretical concentration of 0.5% (w/w) in the drug product, the spectral variance contained in the data is weak. By using a principal component analysis (PCA) filtered dataset as a first step of the MCR-ALS approach, the lubricant information is lost in the non-explained variance and its associated distribution in the tablet cannot be highlighted. A sufficient number of components to generate the PCA noise-filtered matrix has to be used in order to keep the lubricant variability within the data set analyzed or, otherwise, work with the raw non-filtered data. Different models are built using an increasing number of components to perform the PCA reduction. It is shown that the magnesium stearate information can be extracted from a PCA model using a minimum of 20 components. In the last part, a column-wise augmented matrix, including a reference spectrum of the lubricant, is used before starting MCR-ALS process. PCA reduction is performed on the augmented matrix, so the magnesium stearate contribution is included within the MCR-ALS calculations. By using an appropriate PCA reduction, with a sufficient number of components, or by using an augmented dataset including appended information on the low dose component, the distribution of the two actives, the two main excipients and the low dose lubricant are correctly recovered. Copyright © 2014 Elsevier B.V. All rights reserved.
Principals' Perceptions Regarding Their Supervision and Evaluation
ERIC Educational Resources Information Center
Hvidston, David J.; Range, Bret G.; McKim, Courtney Ann
2015-01-01
This study examined the perceptions of principals concerning principal evaluation and supervisory feedback. Principals were asked two open-ended questions. Respondents included 82 principals in the Rocky Mountain region. The emerging themes were "Superintendent Performance," "Principal Evaluation Components," "Specific…
NASA Technical Reports Server (NTRS)
Gerstell, M. F.
1993-01-01
A review of the convolution theorem for obtaining the cumulative k-distribution of a gas mixture proven in Goody et al. (1989) and a discussion of its application to natural spectra are presented. Computational optimizations for use in analyzing high-altitude gas mixtures are introduced. Comparisons of the results of the optimizations, and criteria for deciding what altitudes are 'high' in this context are given. A few relevant features of the testing support software are examined. Some spectrally integrated results, and the circumstances the might permit substituting the method of principal absorbers are examined.
García-Herreros, Manuel
2016-01-01
The main aims of this research were to study possible differences in objective morphometric sperm characteristics, establish normative sperm morphometry standards, and evaluate the presumed different subpopulation distribution of avian spermatozoa from the rooster (Gallus domesticus ) and Guinea fowl (Numida meleagris ) as model avian species. Seventy-two ejaculates (36 per species studied) were obtained manually, following a training period involving gently combined dorso-abdominal and lumbo-sacral massage of the birds. Ejaculates were processed for volume, sperm concentration, viability, motility, and morphology. Moreover, samples were submitted for sperm morphometric assessment using objective Computer-Assisted Semen Analysis for Morphometry (CASA-Morph) methods, with sperm morphometric descriptors evaluated by Principal Component Analysis (PCA) and multivariate clustering analyses. There were several differences observed between the avian species in values obtained for ejaculate volume and sperm concentration (P < 0.001). Irrespective of species, PCA revealed two Principal Components (PCs) explaining more than 80% of the variance. In addition, the number of subpopulations differed with species (three and five subpopulations for rooster and Guinea fowl, respectively). Moreover, the distribution of the sperm subpopulations was found to be structurally different between species. In conclusion, our findings from using CASA-Morph methods indicate pronounced sperm morphometric variation between these two avian species. Because of the strong differences observed in morphometric parameter values and their subpopulation distribution, these results suggest that application of objective analytical methods such as CASA-Morph could substantially improve the reliability of comparative studies and help establish valid normative sperm morphological values for avian species.
García-Herreros, Manuel
2016-01-01
The main aims of this research were to study possible differences in objective morphometric sperm characteristics, establish normative sperm morphometry standards, and evaluate the presumed different subpopulation distribution of avian spermatozoa from the rooster (Gallus domesticus) and Guinea fowl (Numida meleagris) as model avian species. Seventy-two ejaculates (36 per species studied) were obtained manually, following a training period involving gently combined dorso-abdominal and lumbo-sacral massage of the birds. Ejaculates were processed for volume, sperm concentration, viability, motility, and morphology. Moreover, samples were submitted for sperm morphometric assessment using objective Computer-Assisted Semen Analysis for Morphometry (CASA-Morph) methods, with sperm morphometric descriptors evaluated by Principal Component Analysis (PCA) and multivariate clustering analyses. There were several differences observed between the avian species in values obtained for ejaculate volume and sperm concentration (P < 0.001). Irrespective of species, PCA revealed two Principal Components (PCs) explaining more than 80% of the variance. In addition, the number of subpopulations differed with species (three and five subpopulations for rooster and Guinea fowl, respectively). Moreover, the distribution of the sperm subpopulations was found to be structurally different between species. In conclusion, our findings from using CASA-Morph methods indicate pronounced sperm morphometric variation between these two avian species. Because of the strong differences observed in morphometric parameter values and their subpopulation distribution, these results suggest that application of objective analytical methods such as CASA-Morph could substantially improve the reliability of comparative studies and help establish valid normative sperm morphological values for avian species. PMID:27751988
Nguyen, Phuong H
2007-05-15
Principal component analysis is a powerful method for projecting multidimensional conformational space of peptides or proteins onto lower dimensional subspaces in which the main conformations are present, making it easier to reveal the structures of molecules from e.g. molecular dynamics simulation trajectories. However, the identification of all conformational states is still difficult if the subspaces consist of more than two dimensions. This is mainly due to the fact that the principal components are not independent with each other, and states in the subspaces cannot be visualized. In this work, we propose a simple and fast scheme that allows one to obtain all conformational states in the subspaces. The basic idea is that instead of directly identifying the states in the subspace spanned by principal components, we first transform this subspace into another subspace formed by components that are independent of one other. These independent components are obtained from the principal components by employing the independent component analysis method. Because of independence between components, all states in this new subspace are defined as all possible combinations of the states obtained from each single independent component. This makes the conformational analysis much simpler. We test the performance of the method by analyzing the conformations of the glycine tripeptide and the alanine hexapeptide. The analyses show that our method is simple and quickly reveal all conformational states in the subspaces. The folding pathways between the identified states of the alanine hexapeptide are analyzed and discussed in some detail. 2007 Wiley-Liss, Inc.
Liu, Hui-lin; Wan, Xia; Yang, Gong-huan
2013-02-01
To explore the relationship between the strength of tobacco control and the effectiveness of creating smoke-free hospital, and summarize the main factors that affect the program of creating smoke-free hospitals. A total of 210 hospitals from 7 provinces/municipalities directly under the central government were enrolled in this study using stratified random sampling method. Principle component analysis and regression analysis were conducted to analyze the strength of tobacco control and the effectiveness of creating smoke-free hospitals. Two principal components were extracted in the strength of tobacco control index, which respectively reflected the tobacco control policies and efforts, and the willingness and leadership of hospital managers regarding tobacco control. The regression analysis indicated that only the first principal component was significantly correlated with the progression in creating smoke-free hospital (P<0.001), i.e. hospitals with higher scores on the first principal component had better achievements in smoke-free environment creation. Tobacco control policies and efforts are critical in creating smoke-free hospitals. The principal component analysis provides a comprehensive and objective tool for evaluating the creation of smoke-free hospitals.
Critical Factors Explaining the Leadership Performance of High-Performing Principals
ERIC Educational Resources Information Center
Hutton, Disraeli M.
2018-01-01
The study explored critical factors that explain leadership performance of high-performing principals and examined the relationship between these factors based on the ratings of school constituents in the public school system. The principal component analysis with the use of Varimax Rotation revealed that four components explain 51.1% of the…
Molecular dynamics in principal component space.
Michielssens, Servaas; van Erp, Titus S; Kutzner, Carsten; Ceulemans, Arnout; de Groot, Bert L
2012-07-26
A molecular dynamics algorithm in principal component space is presented. It is demonstrated that sampling can be improved without changing the ensemble by assigning masses to the principal components proportional to the inverse square root of the eigenvalues. The setup of the simulation requires no prior knowledge of the system; a short initial MD simulation to extract the eigenvectors and eigenvalues suffices. Independent measures indicated a 6-7 times faster sampling compared to a regular molecular dynamics simulation.
Optimized principal component analysis on coronagraphic images of the fomalhaut system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meshkat, Tiffany; Kenworthy, Matthew A.; Quanz, Sascha P.
We present the results of a study to optimize the principal component analysis (PCA) algorithm for planet detection, a new algorithm complementing angular differential imaging and locally optimized combination of images (LOCI) for increasing the contrast achievable next to a bright star. The stellar point spread function (PSF) is constructed by removing linear combinations of principal components, allowing the flux from an extrasolar planet to shine through. The number of principal components used determines how well the stellar PSF is globally modeled. Using more principal components may decrease the number of speckles in the final image, but also increases themore » background noise. We apply PCA to Fomalhaut Very Large Telescope NaCo images acquired at 4.05 μm with an apodized phase plate. We do not detect any companions, with a model dependent upper mass limit of 13-18 M {sub Jup} from 4-10 AU. PCA achieves greater sensitivity than the LOCI algorithm for the Fomalhaut coronagraphic data by up to 1 mag. We make several adaptations to the PCA code and determine which of these prove the most effective at maximizing the signal-to-noise from a planet very close to its parent star. We demonstrate that optimizing the number of principal components used in PCA proves most effective for pulling out a planet signal.« less
Khan, Md Firoz; Latif, Mohd Talib; Amil, Norhaniza; Juneng, Liew; Mohamad, Noorlin; Nadzir, Mohd Shahrul Mohd; Hoque, Hossain Mohammed Syedul
2015-09-01
Principal component analysis (PCA) and correlation have been used to study the variability of particle mass and particle number concentrations (PNC) in a tropical semi-urban environment. PNC and mass concentration (diameter in the range of 0.25->32.0 μm) have been measured from 1 February to 26 February 2013 using an in situ Grimm aerosol sampler. We found that the 24-h average total suspended particulates (TSP), particulate matter ≤10 μm (PM10), particulate matter ≤2.5 μm (PM2.5) and particulate matter ≤1 μm (PM1) were 14.37 ± 4.43, 14.11 ± 4.39, 12.53 ± 4.13 and 10.53 ± 3.98 μg m(-3), respectively. PNC in the accumulation mode (<500 nm) was the most abundant (at about 99 %). Five principal components (PCs) resulted from the PCA analysis where PC1 (43.8 % variance) predominates with PNC in the fine and sub-microme tre range. PC2, PC3, PC4 and PC5 explain 16.5, 12.4, 6.0 and 5.6 % of the variance to address the coarse, coarser, accumulation and giant fraction of PNC, respectively. Our particle distribution results show good agreement with the moderate resolution imaging spectroradiometer (MODIS) distribution.
A search for stability gradients in North American breeding bird communities
Noon, B.R.; Dawson, D.K.; Kelly, J.P.
1985-01-01
To search for the existence of stability gradients in North American breeding land bird communities we operationally defined stability (after Jarvinen 1979) as year-to-year persistence in species composition and distribution of species abundances. From the census data for 174 study plots we derived nine indices that estimate the annual variability of species composition, the species abundance distribution, diversity, and breeding density. The resulting matrix of study plot by stability indices was used to estimate the correlation structure of the stability indices. The correlation matrix was, in turn, subjected to a principal components analysis to derive synthetic gradients of variation. We then searched for patterns of variation in these stability gradients associated with either geographic location or habitat type. Three independent principal component axes reproduced most of the variation in the initial data and were interpreted as gradients of variation in species turnover, diversity, and breeding abundance. Thus, the annual stability of community structure apparently responds independently to species and abundance variation. Despite the clarity of the derived gradients, few patterns emerged when the plots were ordinated by either habitat or geographic location. In general, grasslands showed greater annual variation in diversity than forested habitats, and, for some habitats, northern communities were less stable than more southern communities. However, few of these patterns were very strong, and we interpret them cautiously.
[A study of Boletus bicolor from different areas using Fourier transform infrared spectrometry].
Zhou, Zai-Jin; Liu, Gang; Ren, Xian-Pei
2010-04-01
It is hard to differentiate the same species of wild growing mushrooms from different areas by macromorphological features. In this paper, Fourier transform infrared (FTIR) spectroscopy combined with principal component analysis was used to identify 58 samples of boletus bicolor from five different areas. Based on the fingerprint infrared spectrum of boletus bicolor samples, principal component analysis was conducted on 58 boletus bicolor spectra in the range of 1 350-750 cm(-1) using the statistical software SPSS 13.0. According to the result, the accumulated contributing ratio of the first three principal components accounts for 88.87%. They included almost all the information of samples. The two-dimensional projection plot using first and second principal component is a satisfactory clustering effect for the classification and discrimination of boletus bicolor. All boletus bicolor samples were divided into five groups with a classification accuracy of 98.3%. The study demonstrated that wild growing boletus bicolor at species level from different areas can be identified by FTIR spectra combined with principal components analysis.
Structure of the principal olfactory tract.
Gil-Carcedo, L M; Vallejo, L A; Gil-Carcedo, E
2000-01-01
Although the purpose and importance of the sense of smell in human beings has not been totally clarified, it is one of the principal information channels in macrosmatic animals. It was the first long-distance information system to have appeared in phylogenetic evolution. The objective of this article is to deepen the knowledge of the pathways that join the olfactory epithelium with the cortical olfaction areas, to better understand olfactory dysfunction in human beings. Differential staining and marking techniques were applied to histologic sections obtained from 155 animals of different species, to study the different connections existing among olfactory tract components. Our study of the connections between the olfactory mucosa and the principal olfactory bulb deserves special mention. The distribution of second neuron connections of the olfactory tract with the central nervous system is quite complex and diffuse. This indicates an interrelation between the sense of smell and a multitude of functions. These connections seem to be of different quantitative importance according to species, but qualitatively they exist in both human beings and other macrosmatic animals.
Paris, Guillaume; Ramseyer, Christophe; Enescu, Mironel
2014-05-01
The conformational dynamics of human serum albumin (HSA) was investigated by principal component analysis (PCA) applied to three molecular dynamics trajectories of 200 ns each. The overlap of the essential subspaces spanned by the first 10 principal components (PC) of different trajectories was about 0.3 showing that the PCA based on a trajectory length of 200 ns is not completely convergent for this protein. The contributions of the relative motion of subdomains and of the subdomains (internal) distortion to the first 10 PCs were found to be comparable. Based on the distribution of the first 3 PC, 10 protein conformers are identified showing relative root mean square deviations (RMSD) between 2.3 and 4.6 Å. The main PCs are found to be delocalized over the whole protein structure indicating that the motions of different protein subdomains are coupled. This coupling is considered as being related to the allosteric effects observed upon ligand binding to HSA. On the other hand, the first PC of one of the three trajectories describes a conformational transition of the protein domain I that is close to that experimentally observed upon myristate binding. This is a theoretical support for the older hypothesis stating that changes of the protein onformation favorable to binding can precede the ligand complexation. A detailed all atoms PCA performed on the primary Sites 1 and 2 confirms the multiconformational character of the HSA binding sites as well as the significant coupling of their motions. Copyright © 2013 Wiley Periodicals, Inc.
How multi segmental patterns deviate in spastic diplegia from typical developed.
Zago, Matteo; Sforza, Chiarella; Bona, Alessia; Cimolin, Veronica; Costici, Pier Francesco; Condoluci, Claudia; Galli, Manuela
2017-10-01
The relationship between gait features and coordination in children with Cerebral Palsy is not sufficiently analyzed yet. Principal Component Analysis can help in understanding motion patterns decomposing movement into its fundamental components (Principal Movements). This study aims at quantitatively characterizing the functional connections between multi-joint gait patterns in Cerebral Palsy. 65 children with spastic diplegia aged 10.6 (SD 3.7) years participated in standardized gait analysis trials; 31 typically developing adolescents aged 13.6 (4.4) years were also tested. To determine if posture affects gait patterns, patients were split into Crouch and knee Hyperextension group according to knee flexion angle at standing. 3D coordinates of hips, knees, ankles, metatarsal joints, pelvis and shoulders were submitted to Principal Component Analysis. Four Principal Movements accounted for 99% of global variance; components 1-3 explained major sagittal patterns, components 4-5 referred to movements on frontal plane and component 6 to additional movement refinements. Dimensionality was higher in patients than in controls (p<0.01), and the Crouch group significantly differed from controls in the application of components 1 and 4-6 (p<0.05), while the knee Hyperextension group in components 1-2 and 5 (p<0.05). Compensatory strategies of children with Cerebral Palsy (interactions between main and secondary movement patterns), were objectively determined. Principal Movements can reduce the effort in interpreting gait reports, providing an immediate and quantitative picture of the connections between movement components. Copyright © 2017 Elsevier Ltd. All rights reserved.
Particle identification with neural networks using a rotational invariant moment representation
NASA Astrophysics Data System (ADS)
Sinkus, Ralph; Voss, Thomas
1997-02-01
A feed-forward neural network is used to identify electromagnetic particles based upon their showering properties within a segmented calorimeter. A preprocessing procedure is applied to the spatial energy distribution of the particle shower in order to account for the varying geometry of the calorimeter. The novel feature is the expansion of the energy distribution in terms of moments of the so-called Zernike functions which are invariant under rotation. The distributions of moments exhibit very different scales, thus the multidimensional input distribution for the neural network is transformed via a principal component analysis and rescaled by its respective variances to ensure input values of the order of one. This increases the sensitivity of the network and thus results in better performance in identifying and separating electromagnetic from hadronic particles, especially at low energies.
NASA Technical Reports Server (NTRS)
Williams, D. L.; Borden, F. Y.
1977-01-01
Methods to accurately delineate the types of land cover in the urban-rural transition zone of metropolitan areas were considered. The application of principal components analysis to multidate LANDSAT imagery was investigated as a means of reducing the overlap between residential and agricultural spectral signatures. The statistical concepts of principal components analysis were discussed, as well as the results of this analysis when applied to multidate LANDSAT imagery of the Washington, D.C. metropolitan area.
Constrained Principal Component Analysis: Various Applications.
ERIC Educational Resources Information Center
Hunter, Michael; Takane, Yoshio
2002-01-01
Provides example applications of constrained principal component analysis (CPCA) that illustrate the method on a variety of contexts common to psychological research. Two new analyses, decompositions into finer components and fitting higher order structures, are presented, followed by an illustration of CPCA on contingency tables and the CPCA of…
Independent component analysis decomposition of hospital emergency department throughput measures
NASA Astrophysics Data System (ADS)
He, Qiang; Chu, Henry
2016-05-01
We present a method adapted from medical sensor data analysis, viz. independent component analysis of electroencephalography data, to health system analysis. Timely and effective care in a hospital emergency department is measured by throughput measures such as median times patients spent before they were admitted as an inpatient, before they were sent home, before they were seen by a healthcare professional. We consider a set of five such measures collected at 3,086 hospitals distributed across the U.S. One model of the performance of an emergency department is that these correlated throughput measures are linear combinations of some underlying sources. The independent component analysis decomposition of the data set can thus be viewed as transforming a set of performance measures collected at a site to a collection of outputs of spatial filters applied to the whole multi-measure data. We compare the independent component sources with the output of the conventional principal component analysis to show that the independent components are more suitable for understanding the data sets through visualizations.
NASA Astrophysics Data System (ADS)
Ginanjar, Irlandia; Pasaribu, Udjianna S.; Indratno, Sapto W.
2017-03-01
This article presents the application of the principal component analysis (PCA) biplot for the needs of data mining. This article aims to simplify and objectify the methods for objects clustering in PCA biplot. The novelty of this paper is to get a measure that can be used to objectify the objects clustering in PCA biplot. Orthonormal eigenvectors, which are the coefficients of a principal component model representing an association between principal components and initial variables. The existence of the association is a valid ground to objects clustering based on principal axes value, thus if m principal axes used in the PCA, then the objects can be classified into 2m clusters. The inter-city buses are clustered based on maintenance costs data by using two principal axes PCA biplot. The buses are clustered into four groups. The first group is the buses with high maintenance costs, especially for lube, and brake canvass. The second group is the buses with high maintenance costs, especially for tire, and filter. The third group is the buses with low maintenance costs, especially for lube, and brake canvass. The fourth group is buses with low maintenance costs, especially for tire, and filter.
Favaro, Livio; Tirelli, Tina; Pessani, Daniela
2010-01-01
Over the last decades, the populations of Austropotamobius pallipes have decreased markedly all over Europe. If we evaluate the ecological factors that determine its presence, we will have information that could guide conservation decisions. This study aims to investigate the chemical-physical demands of A. pallipes in NW Italy. To this end, we investigated 98 sites. We performed Principal Component Analysis using chemical-physical parameters, collected in both presence and absence sites. We then used principal components with eigenvalue > 1 to run Discriminant Function Analysis and Logistic Regression. The statistics on the concentration of Ca(2+), water hardness, pH and BOD(5) were significantly different in the presence and in the absence sites. pH and BOD(5) played the most important role in separating the presence from the absence locations. These findings are further evidence that we should reduce dissolved organic matter and fine particles in order to contribute to species management and conservation. Copyright 2009 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Kharroubi, Adel; Gargouri, Dorra; Baati, Houda; Azri, Chafai
2012-06-01
Concentrations of selected heavy metals (Cd, Pb, Zn, Cu, Mn, and Fe) in surface sediments from 66 sites in both northern and eastern Mediterranean Sea-Boughrara lagoon exchange areas (southeastern Tunisia) were studied in order to understand current metal contamination due to the urbanization and economic development of nearby several coastal regions of the Gulf of Gabès. Multiple approaches were applied for the sediment quality assessment. These approaches were based on GIS coupled with chemometric methods (enrichment factors, geoaccumulation index, principal component analysis, and cluster analysis). Enrichment factors and principal component analysis revealed two distinct groups of metals. The first group corresponded to Fe and Mn derived from natural sources, and the second group contained Cd, Pb, Zn, and Cu originated from man-made sources. For these latter metals, cluster analysis showed two distinct distributions in the selected areas. They were attributed to temporal and spatial variations of contaminant sources input. The geoaccumulation index (I (geo)) values explained that only Cd, Pb, and Cu can be considered as moderate to extreme pollutants in the studied sediments.
Szabo, J.K.; Fedriani, E.M.; Segovia-Gonzalez, M. M.; Astheimer, L.B.; Hooper, M.J.
2010-01-01
This paper introduces a new technique in ecology to analyze spatial and temporal variability in environmental variables. By using simple statistics, we explore the relations between abiotic and biotic variables that influence animal distributions. However, spatial and temporal variability in rainfall, a key variable in ecological studies, can cause difficulties to any basic model including time evolution. The study was of a landscape scale (three million square kilometers in eastern Australia), mainly over the period of 19982004. We simultaneously considered qualitative spatial (soil and habitat types) and quantitative temporal (rainfall) variables in a Geographical Information System environment. In addition to some techniques commonly used in ecology, we applied a new method, Functional Principal Component Analysis, which proved to be very suitable for this case, as it explained more than 97% of the total variance of the rainfall data, providing us with substitute variables that are easier to manage and are even able to explain rainfall patterns. The main variable came from a habitat classification that showed strong correlations with rainfall values and soil types. ?? 2010 World Scientific Publishing Company.
Kakio, Tomoko; Nagase, Hitomi; Takaoka, Takashi; Yoshida, Naoko; Hirakawa, Junichi; Macha, Susan; Hiroshima, Takashi; Ikeda, Yukihiro; Tsuboi, Hirohito; Kimura, Kazuko
2018-06-01
The World Health Organization has warned that substandard and falsified medical products (SFs) can harm patients and fail to treat the diseases for which they were intended, and they affect every region of the world, leading to loss of confidence in medicines, health-care providers, and health systems. Therefore, development of analytical procedures to detect SFs is extremely important. In this study, we investigated the quality of pharmaceutical tablets containing the antihypertensive candesartan cilexetil, collected in China, Indonesia, Japan, and Myanmar, using the Japanese pharmacopeial analytical procedures for quality control, together with principal component analysis (PCA) of Raman spectrum obtained with handheld Raman spectrometer. Some samples showed delayed dissolution and failed to meet the pharmacopeial specification, whereas others failed the assay test. These products appeared to be substandard. Principal component analysis showed that all Raman spectra could be explained in terms of two components: the amount of the active pharmaceutical ingredient and the kinds of excipients. Principal component analysis score plot indicated one substandard, and the falsified tablets have similar principal components in Raman spectra, in contrast to authentic products. The locations of samples within the PCA score plot varied according to the source country, suggesting that manufacturers in different countries use different excipients. Our results indicate that the handheld Raman device will be useful for detection of SFs in the field. Principal component analysis of that Raman data clarify the difference in chemical properties between good quality products and SFs that circulate in the Asian market.
Principal component analysis and the locus of the Fréchet mean in the space of phylogenetic trees.
Nye, Tom M W; Tang, Xiaoxian; Weyenberg, Grady; Yoshida, Ruriko
2017-12-01
Evolutionary relationships are represented by phylogenetic trees, and a phylogenetic analysis of gene sequences typically produces a collection of these trees, one for each gene in the analysis. Analysis of samples of trees is difficult due to the multi-dimensionality of the space of possible trees. In Euclidean spaces, principal component analysis is a popular method of reducing high-dimensional data to a low-dimensional representation that preserves much of the sample's structure. However, the space of all phylogenetic trees on a fixed set of species does not form a Euclidean vector space, and methods adapted to tree space are needed. Previous work introduced the notion of a principal geodesic in this space, analogous to the first principal component. Here we propose a geometric object for tree space similar to the [Formula: see text]th principal component in Euclidean space: the locus of the weighted Fréchet mean of [Formula: see text] vertex trees when the weights vary over the [Formula: see text]-simplex. We establish some basic properties of these objects, in particular showing that they have dimension [Formula: see text], and propose algorithms for projection onto these surfaces and for finding the principal locus associated with a sample of trees. Simulation studies demonstrate that these algorithms perform well, and analyses of two datasets, containing Apicomplexa and African coelacanth genomes respectively, reveal important structure from the second principal components.
Sivakumar, Siddharth S; Namath, Amalia G; Galán, Roberto F
2016-01-01
Previous work from our lab has demonstrated how the connectivity of brain circuits constrains the repertoire of activity patterns that those circuits can display. Specifically, we have shown that the principal components of spontaneous neural activity are uniquely determined by the underlying circuit connections, and that although the principal components do not uniquely resolve the circuit structure, they do reveal important features about it. Expanding upon this framework on a larger scale of neural dynamics, we have analyzed EEG data recorded with the standard 10-20 electrode system from 41 neurologically normal children and adolescents during stage 2, non-REM sleep. We show that the principal components of EEG spindles, or sigma waves (10-16 Hz), reveal non-propagating, standing waves in the form of spherical harmonics. We mathematically demonstrate that standing EEG waves exist when the spatial covariance and the Laplacian operator on the head's surface commute. This in turn implies that the covariance between two EEG channels decreases as the inverse of their relative distance; a relationship that we corroborate with empirical data. Using volume conduction theory, we then demonstrate that superficial current sources are more synchronized at larger distances, and determine the characteristic length of large-scale neural synchronization as 1.31 times the head radius, on average. Moreover, consistent with the hypothesis that EEG spindles are driven by thalamo-cortical rather than cortico-cortical loops, we also show that 8 additional patients with hypoplasia or complete agenesis of the corpus callosum, i.e., with deficient or no connectivity between cortical hemispheres, similarly exhibit standing EEG waves in the form of spherical harmonics. We conclude that spherical harmonics are a hallmark of spontaneous, large-scale synchronization of neural activity in the brain, which are associated with unconscious, light sleep. The analogy with spherical harmonics in quantum mechanics suggests that the variances (eigenvalues) of the principal components follow a Boltzmann distribution, or equivalently, that standing waves are in a sort of "thermodynamic" equilibrium during non-REM sleep. By extension, we speculate that consciousness emerges as the brain dynamics deviate from such equilibrium.
2014-01-01
Background The chemical composition of aerosols and particle size distributions are the most significant factors affecting air quality. In particular, the exposure to finer particles can cause short and long-term effects on human health. In the present paper PM10 (particulate matter with aerodynamic diameter lower than 10 μm), CO, NOx (NO and NO2), Benzene and Toluene trends monitored in six monitoring stations of Bari province are shown. The data set used was composed by bi-hourly means for all parameters (12 bi-hourly means per day for each parameter) and it’s referred to the period of time from January 2005 and May 2007. The main aim of the paper is to provide a clear illustration of how large data sets from monitoring stations can give information about the number and nature of the pollutant sources, and mainly to assess the contribution of the traffic source to PM10 concentration level by using multivariate statistical techniques such as Principal Component Analysis (PCA) and Absolute Principal Component Scores (APCS). Results Comparing the night and day mean concentrations (per day) for each parameter it has been pointed out that there is a different night and day behavior for some parameters such as CO, Benzene and Toluene than PM10. This suggests that CO, Benzene and Toluene concentrations are mainly connected with transport systems, whereas PM10 is mostly influenced by different factors. The statistical techniques identified three recurrent sources, associated with vehicular traffic and particulate transport, covering over 90% of variance. The contemporaneous analysis of gas and PM10 has allowed underlining the differences between the sources of these pollutants. Conclusions The analysis of the pollutant trends from large data set and the application of multivariate statistical techniques such as PCA and APCS can give useful information about air quality and pollutant’s sources. These knowledge can provide useful advices to environmental policies in order to reach the WHO recommended levels. PMID:24555534
Sivakumar, Siddharth S.; Namath, Amalia G.; Galán, Roberto F.
2016-01-01
Previous work from our lab has demonstrated how the connectivity of brain circuits constrains the repertoire of activity patterns that those circuits can display. Specifically, we have shown that the principal components of spontaneous neural activity are uniquely determined by the underlying circuit connections, and that although the principal components do not uniquely resolve the circuit structure, they do reveal important features about it. Expanding upon this framework on a larger scale of neural dynamics, we have analyzed EEG data recorded with the standard 10–20 electrode system from 41 neurologically normal children and adolescents during stage 2, non-REM sleep. We show that the principal components of EEG spindles, or sigma waves (10–16 Hz), reveal non-propagating, standing waves in the form of spherical harmonics. We mathematically demonstrate that standing EEG waves exist when the spatial covariance and the Laplacian operator on the head's surface commute. This in turn implies that the covariance between two EEG channels decreases as the inverse of their relative distance; a relationship that we corroborate with empirical data. Using volume conduction theory, we then demonstrate that superficial current sources are more synchronized at larger distances, and determine the characteristic length of large-scale neural synchronization as 1.31 times the head radius, on average. Moreover, consistent with the hypothesis that EEG spindles are driven by thalamo-cortical rather than cortico-cortical loops, we also show that 8 additional patients with hypoplasia or complete agenesis of the corpus callosum, i.e., with deficient or no connectivity between cortical hemispheres, similarly exhibit standing EEG waves in the form of spherical harmonics. We conclude that spherical harmonics are a hallmark of spontaneous, large-scale synchronization of neural activity in the brain, which are associated with unconscious, light sleep. The analogy with spherical harmonics in quantum mechanics suggests that the variances (eigenvalues) of the principal components follow a Boltzmann distribution, or equivalently, that standing waves are in a sort of “thermodynamic” equilibrium during non-REM sleep. By extension, we speculate that consciousness emerges as the brain dynamics deviate from such equilibrium. PMID:27445777
NASA Astrophysics Data System (ADS)
Hus, Jean-Christophe; Bruschweiler, Rafael
2002-07-01
A general method is presented for the reconstruction of interatomic vector orientations from nuclear magnetic resonance (NMR) spectroscopic data of tensor interactions of rank 2, such as dipolar coupling and chemical shielding anisotropy interactions, in solids and partially aligned liquid-state systems. The method, called PRIMA, is based on a principal component analysis of the covariance matrix of the NMR parameters collected for multiple alignments. The five nonzero eigenvalues and their eigenvectors efficiently allow the approximate reconstruction of the vector orientations of the underlying interactions. The method is demonstrated for an isotropic distribution of sample orientations as well as for finite sets of orientations and internuclear vectors encountered in protein systems.
Wavelet packets for multi- and hyper-spectral imagery
NASA Astrophysics Data System (ADS)
Benedetto, J. J.; Czaja, W.; Ehler, M.; Flake, C.; Hirn, M.
2010-01-01
State of the art dimension reduction and classification schemes in multi- and hyper-spectral imaging rely primarily on the information contained in the spectral component. To better capture the joint spatial and spectral data distribution we combine the Wavelet Packet Transform with the linear dimension reduction method of Principal Component Analysis. Each spectral band is decomposed by means of the Wavelet Packet Transform and we consider a joint entropy across all the spectral bands as a tool to exploit the spatial information. Dimension reduction is then applied to the Wavelet Packets coefficients. We present examples of this technique for hyper-spectral satellite imaging. We also investigate the role of various shrinkage techniques to model non-linearity in our approach.
1982-02-01
of them are pre- sented in this paper. As an application, important practical problems similar to the one posed by Gnanadesikan (1977), p. 77 can be... Gnanadesikan and Wilk (1969) to search for a non-linear combination, giving rise to non-linear first principal component. So, a p-dinensional vector can...distribution, Gnanadesikan and Gupta (1970) and earlier Eaton (1967) have considered the problem of ranking the r underlying populations according to the
Wang, Jian; Zhu, Jinmao; Huang, RuZhu; Yang, YuSheng
2012-07-01
We explored the rapid qualitative analysis of wheat cultivars with good lodging resistances by Fourier transform infrared resonance (FTIR) spectroscopy and multivariate statistical analysis. FTIR imaging showing that wheat stem cell walls were mainly composed of cellulose, pectin, protein, and lignin. Principal components analysis (PCA) was used to eliminate multicollinearity among multiple peak absorptions. PCA revealed the developmental internodes of wheat stems could be distributed from low to high along the load of the second principal component, which was consistent with the corresponding bands of cellulose in the FTIR spectra of the cell walls. Furthermore, four distinct stem populations could also be identified by spectral features related to their corresponding mechanical properties via PCA and cluster analysis. Histochemical staining of four types of wheat stems with various abilities to resist lodging revealed that cellulose contributed more than lignin to the ability to resist lodging. These results strongly suggested that the main cell wall component responsible for these differences was cellulose. Therefore, the combination of multivariate analysis and FTIR could rapidly screen wheat cultivars with good lodging resistance. Furthermore, the application of these methods to a much wider range of cultivars of unknown mechanical properties promises to be of interest.
Code of Federal Regulations, 2011 CFR
2011-04-01
... AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LIFE ESTATES AND FUTURE INTERESTS Life Estates Created Under AIPRA § 179.201 How does the Secretary distribute principal and income to the holder of a life... 25 Indians 1 2011-04-01 2011-04-01 false How does the Secretary distribute principal and income to...
Code of Federal Regulations, 2014 CFR
2014-04-01
... § 179.101 How does the Secretary distribute principal and income to the holder of a life estate? (a... mine doctrine does not apply. (b) In all cases listed in paragraph (a) of this section, the Secretary... 25 Indians 1 2014-04-01 2014-04-01 false How does the Secretary distribute principal and income to...
Code of Federal Regulations, 2014 CFR
2014-04-01
... AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LIFE ESTATES AND FUTURE INTERESTS Life Estates Created Under AIPRA § 179.201 How does the Secretary distribute principal and income to the holder of a life... 25 Indians 1 2014-04-01 2014-04-01 false How does the Secretary distribute principal and income to...
Code of Federal Regulations, 2012 CFR
2012-04-01
... AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LIFE ESTATES AND FUTURE INTERESTS Life Estates Created Under AIPRA § 179.201 How does the Secretary distribute principal and income to the holder of a life... 25 Indians 1 2012-04-01 2011-04-01 true How does the Secretary distribute principal and income to...
Code of Federal Regulations, 2010 CFR
2010-04-01
... AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LIFE ESTATES AND FUTURE INTERESTS Life Estates Created Under AIPRA § 179.201 How does the Secretary distribute principal and income to the holder of a life... 25 Indians 1 2010-04-01 2010-04-01 false How does the Secretary distribute principal and income to...
Code of Federal Regulations, 2013 CFR
2013-04-01
... AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LIFE ESTATES AND FUTURE INTERESTS Life Estates Created Under AIPRA § 179.201 How does the Secretary distribute principal and income to the holder of a life... 25 Indians 1 2013-04-01 2013-04-01 false How does the Secretary distribute principal and income to...
Dondi, Daniele; Merli, Daniele; Pretali, Luca; Fagnoni, Maurizio; Albini, Angelo; Serpone, Nick
2007-11-01
A series of prebiotic mixtures of simple molecules, sources of C, H, N, and O, were examined under conditions that may have prevailed during the Hadean eon (4.6-3.8 billion years), namely an oxygen-free atmosphere and a significant UV radiation flux over a large wavelength range due to the absence of an ozone layer. Mixtures contained a C source (methanol, acetone or other ketones), a N source (ammonia or methylamine), and an O source (water) at various molar ratios of C : H : N : O. When subjected to UV light or heated for periods of 7 to 45 days under an argon atmosphere, they yielded a narrow product distribution of a few principal compounds. Different initial conditions produced different distributions. The nature of the products was ascertained by gas chromatographic-mass spectral analysis (GC-MS). UVC irradiation of an aqueous methanol-ammonia-water prebiotic mixture for 14 days under low UV dose (6 x 10(-2) Einstein) produced methylisourea, hexamethylenetetramine (HMT), methyl-HMT and hydroxy-HMT, whereas under high UV dose (45 days; 1.9 x 10(-1) Einstein) yielded only HMT. By contrast, the prebiotic mixture composed of acetone-ammonia-water produced five principal species with acetamide as the major component; thermally the same mixture produced a different product distribution of four principal species. UVC irradiation of the CH(3)CN-NH(3)-H(2)O prebiotic mixture for 7 days gave mostly trimethyl-s-triazine, whereas in the presence of two metal oxides (TiO(2) or Fe(2)O(3)) also produced some HMT; the thermal process yielded only acetamide.
Meyer, Karin; Kirkpatrick, Mark
2005-01-01
Principal component analysis is a widely used 'dimension reduction' technique, albeit generally at a phenotypic level. It is shown that we can estimate genetic principal components directly through a simple reparameterisation of the usual linear, mixed model. This is applicable to any analysis fitting multiple, correlated genetic effects, whether effects for individual traits or sets of random regression coefficients to model trajectories. Depending on the magnitude of genetic correlation, a subset of the principal component generally suffices to capture the bulk of genetic variation. Corresponding estimates of genetic covariance matrices are more parsimonious, have reduced rank and are smoothed, with the number of parameters required to model the dispersion structure reduced from k(k + 1)/2 to m(2k - m + 1)/2 for k effects and m principal components. Estimation of these parameters, the largest eigenvalues and pertaining eigenvectors of the genetic covariance matrix, via restricted maximum likelihood using derivatives of the likelihood, is described. It is shown that reduced rank estimation can reduce computational requirements of multivariate analyses substantially. An application to the analysis of eight traits recorded via live ultrasound scanning of beef cattle is given. PMID:15588566
Morin, R.H.
1997-01-01
Returns from drilling in unconsolidated cobble and sand aquifers commonly do not identify lithologic changes that may be meaningful for Hydrogeologic investigations. Vertical resolution of saturated, Quaternary, coarse braided-slream deposits is significantly improved by interpreting natural gamma (G), epithermal neutron (N), and electromagnetically induced resistivity (IR) logs obtained from wells at the Capital Station site in Boise, Idaho. Interpretation of these geophysical logs is simplified because these sediments are derived largely from high-gamma-producing source rocks (granitics of the Boise River drainage), contain few clays, and have undergone little diagenesis. Analysis of G, N, and IR data from these deposits with principal components analysis provides an objective means to determine if units can be recognized within the braided-stream deposits. In particular, performing principal components analysis on G, N, and IR data from eight wells at Capital Station (1) allows the variable system dimensionality to be reduced from three to two by selecting the two eigenvectors with the greatest variance as axes for principal component scatterplots, (2) generates principal components with interpretable physical meanings, (3) distinguishes sand from cobble-dominated units, and (4) provides a means to distinguish between cobble-dominated units.
Analysis and Evaluation of the Characteristic Taste Components in Portobello Mushroom.
Wang, Jinbin; Li, Wen; Li, Zhengpeng; Wu, Wenhui; Tang, Xueming
2018-05-10
To identify the characteristic taste components of the common cultivated mushroom (brown; Portobello), Agaricus bisporus, taste components in the stipe and pileus of Portobello mushroom harvested at different growth stages were extracted and identified, and principal component analysis (PCA) and taste active value (TAV) were used to reveal the characteristic taste components during the each of the growth stages of Portobello mushroom. In the stipe and pileus, 20 and 14 different principal taste components were identified, respectively, and they were considered as the principal taste components of Portobello mushroom fruit bodies, which included most amino acids and 5'-nucleotides. Some taste components that were found at high levels, such as lactic acid and citric acid, were not detected as Portobello mushroom principal taste components through PCA. However, due to their high content, Portobello mushroom could be used as a source of organic acids. The PCA and TAV results revealed that 5'-GMP, glutamic acid, malic acid, alanine, proline, leucine, and aspartic acid were the characteristic taste components of Portobello mushroom fruit bodies. Portobello mushroom was also found to be rich in protein and amino acids, so it might also be useful in the formulation of nutraceuticals and functional food. The results in this article could provide a theoretical basis for understanding and regulating the characteristic flavor components synthesis process of Portobello mushroom. © 2018 Institute of Food Technologists®.
NASA Astrophysics Data System (ADS)
Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Y.
2015-12-01
The results of numerical simulation of application principal component analysis to absorption spectra of breath air of patients with pulmonary diseases are presented. Various methods of experimental data preprocessing are analyzed.
Lemos, Cleidiel Aparecido Araujo; Verri, Fellippo Ramos; Santiago, Joel Ferreira; Almeida, Daniel Augusto de Faria; Batista, Victor Eduardo de Souza; Noritomi, Pedro Yoshito; Pellizzer, Duardo Piza
2018-01-01
The purpose of this study was to evaluate different retention systems (cement- or screw-retained) and crown designs (non-splinted or splinted) of fixed implant-supported restorations, in terms of stress distributions in implants/components and bone tissue, by 3-dimensional (3D) finite element analysis. Four 3D models were simulated with the InVesalius, Rhinoceros 3D, and SolidWorks programs. Models were made of type III bone from the posterior maxillary area. Models included three 4.0-mm-diameter Morse taper (MT) implants with different lengths, which supported metal-ceramic crowns. Models were processed by the Femap and NeiNastran programs, using an axial force of 400 N and oblique force of 200 N. Results were visualized as the von Mises stress and maximum principal stress (σmax). Under axial loading, there was no difference in the distribution of stress in implants/components between retention systems and splinted crowns; however, in oblique loading, cemented prostheses showed better stress distribution than screwed prostheses, whereas splinted crowns tended to reduce stress in the implant of the first molar. In the bone tissue cemented prostheses showed better stress distribution in bone tissue than screwed prostheses under axial and oblique loading. The splinted design only had an effect in the screwed prosthesis, with no influence in the cemented prosthesis. Cemented prostheses on MT implants showed more favorable stress distributions in implants/components and bone tissue. Splinting was favorable for stress distribution only for screwed prostheses under oblique loading.
Chen, Hongwei; An, Jing; Wei, Shuhe; Gu, Jian
2015-01-01
Northeast China is an intensive area of resource-exhausted city, which is facing the challenges of industry conversion and sustainable development. In order to evaluate the soil environmental quality influenced by mining activities over decades, the concentration and spatial distribution of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and Zinc (Zn) in surface soils (0-20cm) of a typical resource-exhausted city were investigated by analyzing 306 soil samples. The results showed that the average concentrations in the samples were 6.17 mg/kg for As, 0.19 mg/kg for Cd, 51.08 mg/kg for Cr, 23.27 mg/kg for Cu, 31.15 mg/kg for Ni, 22.17 mg/kg for Pb, and 54.21 mg/kg for Zn. Metals distribution maps produced by using the inverse distance weighted interpolation method and results revealed that all investigated metals showed distinct geographical patterns, and the concentrations were higher in urban and industrial areas than in farmland. Pearson correlation and principal component analysis showed that there were significant positive correlations (p<0.05) between all of the metals, and As, Cd, Cr, Mn, Ni, Pb, and Zn were closely associated with the first principal component (PC1), which explained 39.81% of the total variance. Cu and As were mainly associated with the second component (PC2). Based on the calculated Nemerow pollution index, percentage for slightly polluted (1
Dascălu, Cristina Gena; Antohe, Magda Ecaterina
2009-01-01
Based on the eigenvalues and the eigenvectors analysis, the principal component analysis has the purpose to identify the subspace of the main components from a set of parameters, which are enough to characterize the whole set of parameters. Interpreting the data for analysis as a cloud of points, we find through geometrical transformations the directions where the cloud's dispersion is maximal--the lines that pass through the cloud's center of weight and have a maximal density of points around them (by defining an appropriate criteria function and its minimization. This method can be successfully used in order to simplify the statistical analysis on questionnaires--because it helps us to select from a set of items only the most relevant ones, which cover the variations of the whole set of data. For instance, in the presented sample we started from a questionnaire with 28 items and, applying the principal component analysis we identified 7 principal components--or main items--fact that simplifies significantly the further data statistical analysis.
ERIC Educational Resources Information Center
Mugrage, Beverly; And Others
Three ridge regression solutions are compared with ordinary least squares regression and with principal components regression using all components. Ridge regression, particularly the Lawless-Wang solution, out-performed ordinary least squares regression and the principal components solution on the criteria of stability of coefficient and closeness…
A Note on McDonald's Generalization of Principal Components Analysis
ERIC Educational Resources Information Center
Shine, Lester C., II
1972-01-01
It is shown that McDonald's generalization of Classical Principal Components Analysis to groups of variables maximally channels the totalvariance of the original variables through the groups of variables acting as groups. An equation is obtained for determining the vectors of correlations of the L2 components with the original variables.…
Peterson, Leif E
2002-01-01
CLUSFAVOR (CLUSter and Factor Analysis with Varimax Orthogonal Rotation) 5.0 is a Windows-based computer program for hierarchical cluster and principal-component analysis of microarray-based transcriptional profiles. CLUSFAVOR 5.0 standardizes input data; sorts data according to gene-specific coefficient of variation, standard deviation, average and total expression, and Shannon entropy; performs hierarchical cluster analysis using nearest-neighbor, unweighted pair-group method using arithmetic averages (UPGMA), or furthest-neighbor joining methods, and Euclidean, correlation, or jack-knife distances; and performs principal-component analysis. PMID:12184816
Régine, Maury-Brachet; Gilles, Durrieu; Yannick, Dominique; Alain, Boudou
2006-09-01
Within a multidisciplinary research programme set up in French Guiana (Amazonian basin), twelve fish species from six food regimes were collected from the upper part of the Maroni River in order to analyze mercury (Hg) distribution in six organs (gills, liver, kidneys, skeletal muscle, stomach, and intestine) and to look for a relationship between Hg organotropism and food regimes. As many studies have shown, mercury biomagnification leads to extremely marked differences in muscle accumulation levels: the average ratio between extreme concentrations measured in piscivorous and herbivorous species was almost 500. A first principal component analysis on primary Hg concentration variables showed that biomagnification had a marked effect, masking differences between Hg distribution in the organs according to fish species and their food regimes. In order to avoid this, we determined ratios between Hg concentrations measured in the different organs and in the skeletal muscle, considered as the reference tissue for biomagnification effects. A new principal component analysis using these normalized values, in conjunction with a Ward's hierarchical clustering method, revealed that there is a link between Hg organotropism and the food regimes, with comparatively high [Hg]gills/[Hg]muscle ratios for the herbivorous species; high [Hg]intestine-liver-kidneys/[Hg]muscle ratios for the benthivorous and periphytophagous species, and, in contrast, ratios of less than 1 in the different organs for the piscivorous and omnivorous species. Our determinations of methylmercury (MMHg) percentages in the food consumed by the fish (aquatic macrophytes, terrestrial material from the river banks, biofilms, benthic invertebrates, fish muscle tissues), according to the different food regimes (herbivorous, periphytophagous, benthivorous, omnivorous, carnivorous, piscivorous), showed that this criterion can account for the differences in Hg distribution in the fish organs. For instance, the periphytophagous and benthivorous fish species ingest biofilms and small benthic invertebrates with quite low MMHg burdens (18% and 35 to 52% of Hgtotal, respectively). The highest [Hg]organs/[Hg]muscle ratios were observed for the liver and kidneys, the two principal target organs for inorganic Hg in fish. On the other hand, the piscivorous species ingest a large amount of fish of varying size, with high MMHg percentages in their muscle tissue (nearly 80%); Hg organotropism is characterized by high MMHg concentrations in the skeletal muscle and comparatively low [Hg]organs/[Hg]muscle ratios.
The Complexity of Human Walking: A Knee Osteoarthritis Study
Kotti, Margarita; Duffell, Lynsey D.; Faisal, Aldo A.; McGregor, Alison H.
2014-01-01
This study proposes a framework for deconstructing complex walking patterns to create a simple principal component space before checking whether the projection to this space is suitable for identifying changes from the normality. We focus on knee osteoarthritis, the most common knee joint disease and the second leading cause of disability. Knee osteoarthritis affects over 250 million people worldwide. The motivation for projecting the highly dimensional movements to a lower dimensional and simpler space is our belief that motor behaviour can be understood by identifying a simplicity via projection to a low principal component space, which may reflect upon the underlying mechanism. To study this, we recruited 180 subjects, 47 of which reported that they had knee osteoarthritis. They were asked to walk several times along a walkway equipped with two force plates that capture their ground reaction forces along 3 axes, namely vertical, anterior-posterior, and medio-lateral, at 1000 Hz. Data when the subject does not clearly strike the force plate were excluded, leaving 1–3 gait cycles per subject. To examine the complexity of human walking, we applied dimensionality reduction via Probabilistic Principal Component Analysis. The first principal component explains 34% of the variance in the data, whereas over 80% of the variance is explained by 8 principal components or more. This proves the complexity of the underlying structure of the ground reaction forces. To examine if our musculoskeletal system generates movements that are distinguishable between normal and pathological subjects in a low dimensional principal component space, we applied a Bayes classifier. For the tested cross-validated, subject-independent experimental protocol, the classification accuracy equals 82.62%. Also, a novel complexity measure is proposed, which can be used as an objective index to facilitate clinical decision making. This measure proves that knee osteoarthritis subjects exhibit more variability in the two-dimensional principal component space. PMID:25232949
Principal Components Analysis of a JWST NIRSpec Detector Subsystem
NASA Technical Reports Server (NTRS)
Arendt, Richard G.; Fixsen, D. J.; Greenhouse, Matthew A.; Lander, Matthew; Lindler, Don; Loose, Markus; Moseley, S. H.; Mott, D. Brent; Rauscher, Bernard J.; Wen, Yiting;
2013-01-01
We present principal component analysis (PCA) of a flight-representative James Webb Space Telescope NearInfrared Spectrograph (NIRSpec) Detector Subsystem. Although our results are specific to NIRSpec and its T - 40 K SIDECAR ASICs and 5 m cutoff H2RG detector arrays, the underlying technical approach is more general. We describe how we measured the systems response to small environmental perturbations by modulating a set of bias voltages and temperature. We used this information to compute the systems principal noise components. Together with information from the astronomical scene, we show how the zeroth principal component can be used to calibrate out the effects of small thermal and electrical instabilities to produce cosmetically cleaner images with significantly less correlated noise. Alternatively, if one were designing a new instrument, one could use a similar PCA approach to inform a set of environmental requirements (temperature stability, electrical stability, etc.) that enabled the planned instrument to meet performance requirements
Ghosh, Debasree; Chattopadhyay, Parimal
2012-06-01
The objective of the work was to use the method of quantitative descriptive analysis (QDA) to describe the sensory attributes of the fermented food products prepared with the incorporation of lactic cultures. Panellists were selected and trained to evaluate various attributes specially color and appearance, body texture, flavor, overall acceptability and acidity of the fermented food products like cow milk curd and soymilk curd, idli, sauerkraut and probiotic ice cream. Principal component analysis (PCA) identified the six significant principal components that accounted for more than 90% of the variance in the sensory attribute data. Overall product quality was modelled as a function of principal components using multiple least squares regression (R (2) = 0.8). The result from PCA was statistically analyzed by analysis of variance (ANOVA). These findings demonstrate the utility of quantitative descriptive analysis for identifying and measuring the fermented food product attributes that are important for consumer acceptability.
NASA Astrophysics Data System (ADS)
Valle, R. R.; Carvalho, F. M.; Muniz, J. A. P. C.; Leal, C. L. V.; García-Herreros, M.
2013-10-01
The aim of this study was to develop an objective method to determine the incidence of pleiomorphisms and its influence on the distribution of sperm morphometric subpopulations in ejaculates of howling monkeys ( Alouatta caraya) by using a combination of computerized analysis system (ASMA) and principal component analysis (PCA) methods. Ejaculates were collected by electroejaculation methods on a regular basis from five individuals maintained under identical captive environmental, nutritional, and management conditions. Each sperm head was measured for dimensional parameters (Area [ A, (square micrometers)], Perimeter [ P, (micrometers)], Length [ L, (micrometers)], and Width [ W, (micrometers)]) and shape-derived parameters (Ellipticity [( L/ W)], Elongation [( L - W)/( L + W)], and Rugosity [(4л A/ P 2)]). PCA revealed two principal components explaining more than the 96 % of the variance. Clustering methods and discriminant analyzes were performed and seven separate subpopulations were identified. There were differences ( P < 0.001) in the distribution of the seven subpopulations as well as in the incidence of abnormal pleiomorphisms (58.6 %, 49.8 %, 35.1 %, 66.4 %, and 55.1 %, P < 0.05) among the five donors tested. Our results indicated that differences among individuals related to the incidence of pleiomorphisms, and sperm subpopulational structure was not related to the captivity conditions or the sperm collection method, since all individuals were studied under identical conditions. In conclusion, the combination of ASMA and PCA is a useful clinical diagnostic resource for detecting deficiencies in sperm morphology and sperm subpopulations in A. caraya ejaculates that could be used in ex situ conservation programs of threatened species in Alouatta genus or even other endangered neotropical primate species.
NASA Astrophysics Data System (ADS)
Inoue, N.; Kitada, N.; Tonagi, M.
2016-12-01
Distributed fault displacements in Probabilistic Fault Displace- ment Analysis (PFDHA) have an important rule in evaluation of important facilities such as Nuclear Installations. In Japan, the Nu- clear Installations should be constructed where there is no possibility that the displacement by the earthquake on the active faults occurs. Youngs et al. (2003) defined the distributed fault as displacement on other faults or shears, or fractures in the vicinity of the principal rup- ture in response to the principal faulting. Other researchers treated the data of distribution fault around principal fault and modeled according to their definitions (e.g. Petersen et al., 2011; Takao et al., 2013 ). We organized Japanese fault displacements data and constructed the slip-distance relationship depending on fault types. In the case of reverse fault, slip-distance relationship on the foot-wall indicated difference trend compared with that on hanging-wall. The process zone or damaged zone have been studied as weak structure around principal faults. The density or number is rapidly decrease away from the principal faults. We contrasted the trend of these zones with that of distributed slip-distance distributions. The subsurface FEM simulation have been carried out to inves- tigate the distribution of stress around principal faults. The results indicated similar trend compared with the distribution of field obser- vations. This research was part of the 2014-2015 research project `Development of evaluating method for fault displacement` by the Secretariat of Nuclear Regulation Authority (S/NRA), Japan.
NASA Astrophysics Data System (ADS)
Lim, Hoong-Ta; Murukeshan, Vadakke Matham
2017-06-01
Hyperspectral imaging combines imaging and spectroscopy to provide detailed spectral information for each spatial point in the image. This gives a three-dimensional spatial-spatial-spectral datacube with hundreds of spectral images. Probe-based hyperspectral imaging systems have been developed so that they can be used in regions where conventional table-top platforms would find it difficult to access. A fiber bundle, which is made up of specially-arranged optical fibers, has recently been developed and integrated with a spectrograph-based hyperspectral imager. This forms a snapshot hyperspectral imaging probe, which is able to form a datacube using the information from each scan. Compared to the other configurations, which require sequential scanning to form a datacube, the snapshot configuration is preferred in real-time applications where motion artifacts and pixel misregistration can be minimized. Principal component analysis is a dimension-reducing technique that can be applied in hyperspectral imaging to convert the spectral information into uncorrelated variables known as principal components. A confidence ellipse can be used to define the region of each class in the principal component feature space and for classification. This paper demonstrates the use of the snapshot hyperspectral imaging probe to acquire data from samples of different colors. The spectral library of each sample was acquired and then analyzed using principal component analysis. Confidence ellipse was then applied to the principal components of each sample and used as the classification criteria. The results show that the applied analysis can be used to perform classification of the spectral data acquired using the snapshot hyperspectral imaging probe.
Long, J.M.; Fisher, W.L.
2006-01-01
We present a method for spatial interpretation of environmental variation in a reservoir that integrates principal components analysis (PCA) of environmental data with geographic information systems (GIS). To illustrate our method, we used data from a Great Plains reservoir (Skiatook Lake, Oklahoma) with longitudinal variation in physicochemical conditions. We measured 18 physicochemical features, mapped them using GIS, and then calculated and interpreted four principal components. Principal component 1 (PC1) was readily interpreted as longitudinal variation in water chemistry, but the other principal components (PC2-4) were difficult to interpret. Site scores for PC1-4 were calculated in GIS by summing weighted overlays of the 18 measured environmental variables, with the factor loadings from the PCA as the weights. PC1-4 were then ordered into a landscape hierarchy, an emergent property of this technique, which enabled their interpretation. PC1 was interpreted as a reservoir scale change in water chemistry, PC2 was a microhabitat variable of rip-rap substrate, PC3 identified coves/embayments and PC4 consisted of shoreline microhabitats related to slope. The use of GIS improved our ability to interpret the more obscure principal components (PC2-4), which made the spatial variability of the reservoir environment more apparent. This method is applicable to a variety of aquatic systems, can be accomplished using commercially available software programs, and allows for improved interpretation of the geographic environmental variability of a system compared to using typical PCA plots. ?? Copyright by the North American Lake Management Society 2006.
ERIC Educational Resources Information Center
Wright, Lisa L.
2008-01-01
Although claiming leadership to be critical to school improvement, few studies seek the informative voice of principals regarding their understandings of roles and sources of leadership. Using a distributed perspective as a theoretical lens to reconceptualize leadership, this article explores principals' perspectives of leadership in relation to…
Giesen, E B W; Ding, M; Dalstra, M; van Eijden, T M G J
2003-09-01
As several morphological parameters of cancellous bone express more or less the same architectural measure, we applied principal components analysis to group these measures and correlated these to the mechanical properties. Cylindrical specimens (n = 24) were obtained in different orientations from embalmed mandibular condyles; the angle of the first principal direction and the axis of the specimen, expressing the orientation of the trabeculae, ranged from 10 degrees to 87 degrees. Morphological parameters were determined by a method based on Archimedes' principle and by micro-CT scanning, and the mechanical properties were obtained by mechanical testing. The principal components analysis was used to obtain a set of independent components to describe the morphology. This set was entered into linear regression analyses for explaining the variance in mechanical properties. The principal components analysis revealed four components: amount of bone, number of trabeculae, trabecular orientation, and miscellaneous. They accounted for about 90% of the variance in the morphological variables. The component loadings indicated that a higher amount of bone was primarily associated with more plate-like trabeculae, and not with more or thicker trabeculae. The trabecular orientation was most determinative (about 50%) in explaining stiffness, strength, and failure energy. The amount of bone was second most determinative and increased the explained variance to about 72%. These results suggest that trabecular orientation and amount of bone are important in explaining the anisotropic mechanical properties of the cancellous bone of the mandibular condyle.
2017-01-01
Introduction This research paper aims to assess factors reported by parents associated with the successful transition of children with complex additional support requirements that have undergone a transition between school environments from 8 European Union member states. Methods Quantitative data were collected from 306 parents within education systems from 8 EU member states (Bulgaria, Cyprus, Greece, Ireland, the Netherlands, Romania, Spain and the UK). The data were derived from an online questionnaire and consisted of 41 questions. Information was collected on: parental involvement in their child’s transition, child involvement in transition, child autonomy, school ethos, professionals’ involvement in transition and integrated working, such as, joint assessment, cooperation and coordination between agencies. Survey questions that were designed on a Likert-scale were included in the Principal Components Analysis (PCA), additional survey questions, along with the results from the PCA, were used to build a logistic regression model. Results Four principal components were identified accounting for 48.86% of the variability in the data. Principal component 1 (PC1), ‘child inclusive ethos,’ contains 16.17% of the variation. Principal component 2 (PC2), which represents child autonomy and involvement, is responsible for 8.52% of the total variation. Principal component 3 (PC3) contains questions relating to parental involvement and contributed to 12.26% of the overall variation. Principal component 4 (PC4), which involves transition planning and coordination, contributed to 11.91% of the overall variation. Finally, the principal components were included in a logistic regression to evaluate the relationship between inclusion and a successful transition, as well as whether other factors that may have influenced transition. All four principal components were significantly associated with a successful transition, with PC1 being having the most effect (OR: 4.04, CI: 2.43–7.18, p<0.0001). Discussion To support a child with complex additional support requirements through transition from special school to mainstream, governments and professionals need to ensure children with additional support requirements and their parents are at the centre of all decisions that affect them. It is important that professionals recognise the educational, psychological, social and cultural contexts of a child with additional support requirements and their families which will provide a holistic approach and remove barriers for learning. PMID:28636649
Ravenscroft, John; Wazny, Kerri; Davis, John M
2017-01-01
This research paper aims to assess factors reported by parents associated with the successful transition of children with complex additional support requirements that have undergone a transition between school environments from 8 European Union member states. Quantitative data were collected from 306 parents within education systems from 8 EU member states (Bulgaria, Cyprus, Greece, Ireland, the Netherlands, Romania, Spain and the UK). The data were derived from an online questionnaire and consisted of 41 questions. Information was collected on: parental involvement in their child's transition, child involvement in transition, child autonomy, school ethos, professionals' involvement in transition and integrated working, such as, joint assessment, cooperation and coordination between agencies. Survey questions that were designed on a Likert-scale were included in the Principal Components Analysis (PCA), additional survey questions, along with the results from the PCA, were used to build a logistic regression model. Four principal components were identified accounting for 48.86% of the variability in the data. Principal component 1 (PC1), 'child inclusive ethos,' contains 16.17% of the variation. Principal component 2 (PC2), which represents child autonomy and involvement, is responsible for 8.52% of the total variation. Principal component 3 (PC3) contains questions relating to parental involvement and contributed to 12.26% of the overall variation. Principal component 4 (PC4), which involves transition planning and coordination, contributed to 11.91% of the overall variation. Finally, the principal components were included in a logistic regression to evaluate the relationship between inclusion and a successful transition, as well as whether other factors that may have influenced transition. All four principal components were significantly associated with a successful transition, with PC1 being having the most effect (OR: 4.04, CI: 2.43-7.18, p<0.0001). To support a child with complex additional support requirements through transition from special school to mainstream, governments and professionals need to ensure children with additional support requirements and their parents are at the centre of all decisions that affect them. It is important that professionals recognise the educational, psychological, social and cultural contexts of a child with additional support requirements and their families which will provide a holistic approach and remove barriers for learning.
Ibrahim, George M; Morgan, Benjamin R; Macdonald, R Loch
2014-03-01
Predictors of outcome after aneurysmal subarachnoid hemorrhage have been determined previously through hypothesis-driven methods that often exclude putative covariates and require a priori knowledge of potential confounders. Here, we apply a data-driven approach, principal component analysis, to identify baseline patient phenotypes that may predict neurological outcomes. Principal component analysis was performed on 120 subjects enrolled in a prospective randomized trial of clazosentan for the prevention of angiographic vasospasm. Correlation matrices were created using a combination of Pearson, polyserial, and polychoric regressions among 46 variables. Scores of significant components (with eigenvalues>1) were included in multivariate logistic regression models with incidence of severe angiographic vasospasm, delayed ischemic neurological deficit, and long-term outcome as outcomes of interest. Sixteen significant principal components accounting for 74.6% of the variance were identified. A single component dominated by the patients' initial hemodynamic status, World Federation of Neurosurgical Societies score, neurological injury, and initial neutrophil/leukocyte counts was significantly associated with poor outcome. Two additional components were associated with angiographic vasospasm, of which one was also associated with delayed ischemic neurological deficit. The first was dominated by the aneurysm-securing procedure, subarachnoid clot clearance, and intracerebral hemorrhage, whereas the second had high contributions from markers of anemia and albumin levels. Principal component analysis, a data-driven approach, identified patient phenotypes that are associated with worse neurological outcomes. Such data reduction methods may provide a better approximation of unique patient phenotypes and may inform clinical care as well as patient recruitment into clinical trials. http://www.clinicaltrials.gov. Unique identifier: NCT00111085.
Principal components of wrist circumduction from electromagnetic surgical tracking.
Rasquinha, Brian J; Rainbow, Michael J; Zec, Michelle L; Pichora, David R; Ellis, Randy E
2017-02-01
An electromagnetic (EM) surgical tracking system was used for a functionally calibrated kinematic analysis of wrist motion. Circumduction motions were tested for differences in subject gender and for differences in the sense of the circumduction as clockwise or counter-clockwise motion. Twenty subjects were instrumented for EM tracking. Flexion-extension motion was used to identify the functional axis. Subjects performed unconstrained wrist circumduction in a clockwise and counter-clockwise sense. Data were decomposed into orthogonal flexion-extension motions and radial-ulnar deviation motions. PCA was used to concisely represent motions. Nonparametric Wilcoxon tests were used to distinguish the groups. Flexion-extension motions were projected onto a direction axis with a root-mean-square error of [Formula: see text]. Using the first three principal components, there was no statistically significant difference in gender (all [Formula: see text]). For motion sense, radial-ulnar deviation distinguished the sense of circumduction in the first principal component ([Formula: see text]) and in the third principal component ([Formula: see text]); flexion-extension distinguished the sense in the second principal component ([Formula: see text]). The clockwise sense of circumduction could be distinguished by a multifactorial combination of components; there were no gender differences in this small population. These data constitute a baseline for normal wrist circumduction. The multifactorial PCA findings suggest that a higher-dimensional method, such as manifold analysis, may be a more concise way of representing circumduction in human joints.
Decoding and reconstructing color from responses in human visual cortex.
Brouwer, Gijs Joost; Heeger, David J
2009-11-04
How is color represented by spatially distributed patterns of activity in visual cortex? Functional magnetic resonance imaging responses to several stimulus colors were analyzed with multivariate techniques: conventional pattern classification, a forward model of idealized color tuning, and principal component analysis (PCA). Stimulus color was accurately decoded from activity in V1, V2, V3, V4, and VO1 but not LO1, LO2, V3A/B, or MT+. The conventional classifier and forward model yielded similar accuracies, but the forward model (unlike the classifier) also reliably reconstructed novel stimulus colors not used to train (specify parameters of) the model. The mean responses, averaged across voxels in each visual area, were not reliably distinguishable for the different stimulus colors. Hence, each stimulus color was associated with a unique spatially distributed pattern of activity, presumably reflecting the color selectivity of cortical neurons. Using PCA, a color space was derived from the covariation, across voxels, in the responses to different colors. In V4 and VO1, the first two principal component scores (main source of variation) of the responses revealed a progression through perceptual color space, with perceptually similar colors evoking the most similar responses. This was not the case for any of the other visual cortical areas, including V1, although decoding was most accurate in V1. This dissociation implies a transformation from the color representation in V1 to reflect perceptual color space in V4 and VO1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuckfield, C; J V Mcarthur
2007-04-16
Sediment bacteria samples were collected from three streams in South Carolina, two contaminated with multiple metals (Four Mile Creek and Castor Creek), one uncontaminated (Meyers Branch), and another metal contaminated stream (Lampert Creek) in northern Washington State. Growth plates inoculated with Four Mile Creek sample extracts show bacteria colony growth after incubation on plates containing either one of two aminoglycosides (kanamycin or streptomycin), tetracycline or chloramphenocol. This study analyzes the spatial pattern of antibiotic resistance in culturable sediment bacteria in all four streams that may be due to metal contamination. We summarize the two aminoglycoside resistance measures and the 10more » metals concentrations by Principal Components Analysis. Respectively, 63% and 58% of the variability was explained in the 1st principal component of each variable set. We used the respective multivariate summary metrics (i.e. 1st principal component scores) as input measures for exploring the spatial correlation between antibiotic resistance and metal concentration for each stream reach sampled. Results show a significant and negative correlation between metals scores versus aminoglycoside resistance scores and suggest that selection for metal tolerance among sediment bacteria may influence selection for antibiotic resistance differently than previously supposed.. In addition, we borrow a method from geostatistics (variography) wherein a spatial cross-correlation analysis shows that decreasing metal concentrations scores are associated with increasing aminoglycoside resistance scores as the separation distance between sediment samples decreases, but for contaminated streams only. Since these results were counter to our initial expectation and to other experimental evidence for water column bacteria, we suspect our field results are influenced by metal bioavailability in the sediments and by a contaminant promoted interaction or ''cocktail effect'' from complex combinations of pollution mediated selection agents.« less
Groundwater quality assessment of urban Bengaluru using multivariate statistical techniques
NASA Astrophysics Data System (ADS)
Gulgundi, Mohammad Shahid; Shetty, Amba
2018-03-01
Groundwater quality deterioration due to anthropogenic activities has become a subject of prime concern. The objective of the study was to assess the spatial and temporal variations in groundwater quality and to identify the sources in the western half of the Bengaluru city using multivariate statistical techniques. Water quality index rating was calculated for pre and post monsoon seasons to quantify overall water quality for human consumption. The post-monsoon samples show signs of poor quality in drinking purpose compared to pre-monsoon. Cluster analysis (CA), principal component analysis (PCA) and discriminant analysis (DA) were applied to the groundwater quality data measured on 14 parameters from 67 sites distributed across the city. Hierarchical cluster analysis (CA) grouped the 67 sampling stations into two groups, cluster 1 having high pollution and cluster 2 having lesser pollution. Discriminant analysis (DA) was applied to delineate the most meaningful parameters accounting for temporal and spatial variations in groundwater quality of the study area. Temporal DA identified pH as the most important parameter, which discriminates between water quality in the pre-monsoon and post-monsoon seasons and accounts for 72% seasonal assignation of cases. Spatial DA identified Mg, Cl and NO3 as the three most important parameters discriminating between two clusters and accounting for 89% spatial assignation of cases. Principal component analysis was applied to the dataset obtained from the two clusters, which evolved three factors in each cluster, explaining 85.4 and 84% of the total variance, respectively. Varifactors obtained from principal component analysis showed that groundwater quality variation is mainly explained by dissolution of minerals from rock water interactions in the aquifer, effect of anthropogenic activities and ion exchange processes in water.
Introduction to uses and interpretation of principal component analyses in forest biology.
J. G. Isebrands; Thomas R. Crow
1975-01-01
The application of principal component analysis for interpretation of multivariate data sets is reviewed with emphasis on (1) reduction of the number of variables, (2) ordination of variables, and (3) applications in conjunction with multiple regression.
Principal component analysis of phenolic acid spectra
USDA-ARS?s Scientific Manuscript database
Phenolic acids are common plant metabolites that exhibit bioactive properties and have applications in functional food and animal feed formulations. The ultraviolet (UV) and infrared (IR) spectra of four closely related phenolic acid structures were evaluated by principal component analysis (PCA) to...
Optimal pattern synthesis for speech recognition based on principal component analysis
NASA Astrophysics Data System (ADS)
Korsun, O. N.; Poliyev, A. V.
2018-02-01
The algorithm for building an optimal pattern for the purpose of automatic speech recognition, which increases the probability of correct recognition, is developed and presented in this work. The optimal pattern forming is based on the decomposition of an initial pattern to principal components, which enables to reduce the dimension of multi-parameter optimization problem. At the next step the training samples are introduced and the optimal estimates for principal components decomposition coefficients are obtained by a numeric parameter optimization algorithm. Finally, we consider the experiment results that show the improvement in speech recognition introduced by the proposed optimization algorithm.
NASA Astrophysics Data System (ADS)
Ueki, Kenta; Iwamori, Hikaru
2017-10-01
In this study, with a view of understanding the structure of high-dimensional geochemical data and discussing the chemical processes at work in the evolution of arc magmas, we employed principal component analysis (PCA) to evaluate the compositional variations of volcanic rocks from the Sengan volcanic cluster of the Northeastern Japan Arc. We analyzed the trace element compositions of various arc volcanic rocks, sampled from 17 different volcanoes in a volcanic cluster. The PCA results demonstrated that the first three principal components accounted for 86% of the geochemical variation in the magma of the Sengan region. Based on the relationships between the principal components and the major elements, the mass-balance relationships with respect to the contributions of minerals, the composition of plagioclase phenocrysts, geothermal gradient, and seismic velocity structure in the crust, the first, the second, and the third principal components appear to represent magma mixing, crystallizations of olivine/pyroxene, and crystallizations of plagioclase, respectively. These represented 59%, 20%, and 6%, respectively, of the variance in the entire compositional range, indicating that magma mixing accounted for the largest variance in the geochemical variation of the arc magma. Our result indicated that crustal processes dominate the geochemical variation of magma in the Sengan volcanic cluster.
ERIC Educational Resources Information Center
Kronenberger, William G.; Thompson, Robert J., Jr.; Morrow, Catherine
1997-01-01
A principal components analysis of the Family Environment Scale (FES) (R. Moos and B. Moos, 1994) was performed using 113 undergraduates. Research supported 3 broad components encompassing the 10 FES subscales. These results supported previous research and the generalization of the FES to college samples. (SLD)
Burst and Principal Components Analyses of MEA Data Separates Chemicals by Class
Microelectrode arrays (MEAs) detect drug and chemical induced changes in action potential "spikes" in neuronal networks and can be used to screen chemicals for neurotoxicity. Analytical "fingerprinting," using Principal Components Analysis (PCA) on spike trains recorded from prim...
EVALUATION OF ACID DEPOSITION MODELS USING PRINCIPAL COMPONENT SPACES
An analytical technique involving principal components analysis is proposed for use in the evaluation of acid deposition models. elationships among model predictions are compared to those among measured data, rather than the more common one-to-one comparison of predictions to mea...
Lin, Ying-he; Man, Yi; Qu, Yi-li; Guan, Dong-hua; Lu, Xuan; Wei, Na
2006-01-01
To study the movement of long axis and the distribution of principal stress in the abutment teeth in removable partial denture which is retained by use of conical telescope. An ideal three dimensional finite element model was constructed by using SCT image reconstruction technique, self-programming and ANSYS software. The static loads were applied. The displacement of the long axis and the distribution of the principal stress in the abutment teeth was analyzed. There is no statistic difference of displacenat and stress distribution among different three-dimensional finite element models. Generally, the abutment teeth move along the long axis itself. Similar stress distribution was observed in each three-dimensional finite element model. The maximal principal compressive stress was observed at the distal cervix of the second premolar. The abutment teeth can be well protected by use of conical telescope.
Principal components analysis in clinical studies.
Zhang, Zhongheng; Castelló, Adela
2017-09-01
In multivariate analysis, independent variables are usually correlated to each other which can introduce multicollinearity in the regression models. One approach to solve this problem is to apply principal components analysis (PCA) over these variables. This method uses orthogonal transformation to represent sets of potentially correlated variables with principal components (PC) that are linearly uncorrelated. PCs are ordered so that the first PC has the largest possible variance and only some components are selected to represent the correlated variables. As a result, the dimension of the variable space is reduced. This tutorial illustrates how to perform PCA in R environment, the example is a simulated dataset in which two PCs are responsible for the majority of the variance in the data. Furthermore, the visualization of PCA is highlighted.
Complexity of free energy landscapes of peptides revealed by nonlinear principal component analysis.
Nguyen, Phuong H
2006-12-01
Employing the recently developed hierarchical nonlinear principal component analysis (NLPCA) method of Saegusa et al. (Neurocomputing 2004;61:57-70 and IEICE Trans Inf Syst 2005;E88-D:2242-2248), the complexities of the free energy landscapes of several peptides, including triglycine, hexaalanine, and the C-terminal beta-hairpin of protein G, were studied. First, the performance of this NLPCA method was compared with the standard linear principal component analysis (PCA). In particular, we compared two methods according to (1) the ability of the dimensionality reduction and (2) the efficient representation of peptide conformations in low-dimensional spaces spanned by the first few principal components. The study revealed that NLPCA reduces the dimensionality of the considered systems much better, than did PCA. For example, in order to get the similar error, which is due to representation of the original data of beta-hairpin in low dimensional space, one needs 4 and 21 principal components of NLPCA and PCA, respectively. Second, by representing the free energy landscapes of the considered systems as a function of the first two principal components obtained from PCA, we obtained the relatively well-structured free energy landscapes. In contrast, the free energy landscapes of NLPCA are much more complicated, exhibiting many states which are hidden in the PCA maps, especially in the unfolded regions. Furthermore, the study also showed that many states in the PCA maps are mixed up by several peptide conformations, while those of the NLPCA maps are more pure. This finding suggests that the NLPCA should be used to capture the essential features of the systems. (c) 2006 Wiley-Liss, Inc.
Jović, Ozren; Smolić, Tomislav; Primožič, Ines; Hrenar, Tomica
2016-04-19
The aim of this study was to investigate the feasibility of FTIR-ATR spectroscopy coupled with the multivariate numerical methodology for qualitative and quantitative analysis of binary and ternary edible oil mixtures. Four pure oils (extra virgin olive oil, high oleic sunflower oil, rapeseed oil, and sunflower oil), as well as their 54 binary and 108 ternary mixtures, were analyzed using FTIR-ATR spectroscopy in combination with principal component and discriminant analysis, partial least-squares, and principal component regression. It was found that the composition of all 166 samples can be excellently represented using only the first three principal components describing 98.29% of total variance in the selected spectral range (3035-2989, 1170-1140, 1120-1100, 1093-1047, and 930-890 cm(-1)). Factor scores in 3D space spanned by these three principal components form a tetrahedral-like arrangement: pure oils being at the vertices, binary mixtures at the edges, and ternary mixtures on the faces of a tetrahedron. To confirm the validity of results, we applied several cross-validation methods. Quantitative analysis was performed by minimization of root-mean-square error of cross-validation values regarding the spectral range, derivative order, and choice of method (partial least-squares or principal component regression), which resulted in excellent predictions for test sets (R(2) > 0.99 in all cases). Additionally, experimentally more demanding gas chromatography analysis of fatty acid content was carried out for all specimens, confirming the results obtained by FTIR-ATR coupled with principal component analysis. However, FTIR-ATR provided a considerably better model for prediction of mixture composition than gas chromatography, especially for high oleic sunflower oil.
NASA Astrophysics Data System (ADS)
Li, Jiangtong; Luo, Yongdao; Dai, Honglin
2018-01-01
Water is the source of life and the essential foundation of all life. With the development of industrialization, the phenomenon of water pollution is becoming more and more frequent, which directly affects the survival and development of human. Water quality detection is one of the necessary measures to protect water resources. Ultraviolet (UV) spectral analysis is an important research method in the field of water quality detection, which partial least squares regression (PLSR) analysis method is becoming predominant technology, however, in some special cases, PLSR's analysis produce considerable errors. In order to solve this problem, the traditional principal component regression (PCR) analysis method was improved by using the principle of PLSR in this paper. The experimental results show that for some special experimental data set, improved PCR analysis method performance is better than PLSR. The PCR and PLSR is the focus of this paper. Firstly, the principal component analysis (PCA) is performed by MATLAB to reduce the dimensionality of the spectral data; on the basis of a large number of experiments, the optimized principal component is extracted by using the principle of PLSR, which carries most of the original data information. Secondly, the linear regression analysis of the principal component is carried out with statistic package for social science (SPSS), which the coefficients and relations of principal components can be obtained. Finally, calculating a same water spectral data set by PLSR and improved PCR, analyzing and comparing two results, improved PCR and PLSR is similar for most data, but improved PCR is better than PLSR for data near the detection limit. Both PLSR and improved PCR can be used in Ultraviolet spectral analysis of water, but for data near the detection limit, improved PCR's result better than PLSR.
Vargas-Bello-Pérez, Einar; Toro-Mujica, Paula; Enriquez-Hidalgo, Daniel; Fellenberg, María Angélica; Gómez-Cortés, Pilar
2017-06-01
We used a multivariate chemometric approach to differentiate or associate retail bovine milks with different fat contents and non-dairy beverages, using fatty acid profiles and statistical analysis. We collected samples of bovine milk (whole, semi-skim, and skim; n = 62) and non-dairy beverages (n = 27), and we analyzed them using gas-liquid chromatography. Principal component analysis of the fatty acid data yielded 3 significant principal components, which accounted for 72% of the total variance in the data set. Principal component 1 was related to saturated fatty acids (C4:0, C6:0, C8:0, C12:0, C14:0, C17:0, and C18:0) and monounsaturated fatty acids (C14:1 cis-9, C16:1 cis-9, C17:1 cis-9, and C18:1 trans-11); whole milk samples were clearly differentiated from the rest using this principal component. Principal component 2 differentiated semi-skim milk samples by n-3 fatty acid content (C20:3n-3, C20:5n-3, and C22:6n-3). Principal component 3 was related to C18:2 trans-9,trans-12 and C20:4n-6, and its lower scores were observed in skim milk and non-dairy beverages. A cluster analysis yielded 3 groups: group 1 consisted of only whole milk samples, group 2 was represented mainly by semi-skim milks, and group 3 included skim milk and non-dairy beverages. Overall, the present study showed that a multivariate chemometric approach is a useful tool for differentiating or associating retail bovine milks and non-dairy beverages using their fatty acid profile. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Use of multivariate statistics to identify unreliable data obtained using CASA.
Martínez, Luis Becerril; Crispín, Rubén Huerta; Mendoza, Maximino Méndez; Gallegos, Oswaldo Hernández; Martínez, Andrés Aragón
2013-06-01
In order to identify unreliable data in a dataset of motility parameters obtained from a pilot study acquired by a veterinarian with experience in boar semen handling, but without experience in the operation of a computer assisted sperm analysis (CASA) system, a multivariate graphical and statistical analysis was performed. Sixteen boar semen samples were aliquoted then incubated with varying concentrations of progesterone from 0 to 3.33 µg/ml and analyzed in a CASA system. After standardization of the data, Chernoff faces were pictured for each measurement, and a principal component analysis (PCA) was used to reduce the dimensionality and pre-process the data before hierarchical clustering. The first twelve individual measurements showed abnormal features when Chernoff faces were drawn. PCA revealed that principal components 1 and 2 explained 63.08% of the variance in the dataset. Values of principal components for each individual measurement of semen samples were mapped to identify differences among treatment or among boars. Twelve individual measurements presented low values of principal component 1. Confidence ellipses on the map of principal components showed no statistically significant effects for treatment or boar. Hierarchical clustering realized on two first principal components produced three clusters. Cluster 1 contained evaluations of the two first samples in each treatment, each one of a different boar. With the exception of one individual measurement, all other measurements in cluster 1 were the same as observed in abnormal Chernoff faces. Unreliable data in cluster 1 are probably related to the operator inexperience with a CASA system. These findings could be used to objectively evaluate the skill level of an operator of a CASA system. This may be particularly useful in the quality control of semen analysis using CASA systems.
Putilov, Arcady A; Donskaya, Olga G
2016-01-01
Age-associated changes in different bandwidths of the human electroencephalographic (EEG) spectrum are well documented, but their functional significance is poorly understood. This spectrum seems to represent summation of simultaneous influences of several sleep-wake regulatory processes. Scoring of its orthogonal (uncorrelated) principal components can help in separation of the brain signatures of these processes. In particular, the opposite age-associated changes were documented for scores on the two largest (1st and 2nd) principal components of the sleep EEG spectrum. A decrease of the first score and an increase of the second score can reflect, respectively, the weakening of the sleep drive and disinhibition of the opposing wake drive with age. In order to support the suggestion of age-associated disinhibition of the wake drive from the antagonistic influence of the sleep drive, we analyzed principal component scores of the resting EEG spectra obtained in sleep deprivation experiments with 81 healthy young adults aged between 19 and 26 and 40 healthy older adults aged between 45 and 66 years. At the second day of the sleep deprivation experiments, frontal scores on the 1st principal component of the EEG spectrum demonstrated an age-associated reduction of response to eyes closed relaxation. Scores on the 2nd principal component were either initially increased during wakefulness or less responsive to such sleep-provoking conditions (frontal and occipital scores, respectively). These results are in line with the suggestion of disinhibition of the wake drive with age. They provide an explanation of why older adults are less vulnerable to sleep deprivation than young adults.
NASA Astrophysics Data System (ADS)
Wojciechowski, Adam
2017-04-01
In order to assess ecodiversity understood as a comprehensive natural landscape factor (Jedicke 2001), it is necessary to apply research methods which recognize the environment in a holistic way. Principal component analysis may be considered as one of such methods as it allows to distinguish the main factors determining landscape diversity on the one hand, and enables to discover regularities shaping the relationships between various elements of the environment under study on the other hand. The procedure adopted to assess ecodiversity with the use of principal component analysis involves: a) determining and selecting appropriate factors of the assessed environment qualities (hypsometric, geological, hydrographic, plant, and others); b) calculating the absolute value of individual qualities for the basic areas under analysis (e.g. river length, forest area, altitude differences, etc.); c) principal components analysis and obtaining factor maps (maps of selected components); d) generating a resultant, detailed map and isolating several classes of ecodiversity. An assessment of ecodiversity with the use of principal component analysis was conducted in the test area of 299,67 km2 in Debnica Kaszubska commune. The whole commune is situated in the Weichselian glaciation area of high hypsometric and morphological diversity as well as high geo- and biodiversity. The analysis was based on topographical maps of the commune area in scale 1:25000 and maps of forest habitats. Consequently, nine factors reflecting basic environment elements were calculated: maximum height (m), minimum height (m), average height (m), the length of watercourses (km), the area of water reservoirs (m2), total forest area (ha), coniferous forests habitats area (ha), deciduous forest habitats area (ha), alder habitats area (ha). The values for individual factors were analysed for 358 grid cells of 1 km2. Based on the principal components analysis, four major factors affecting commune ecodiversity were distinguished: hypsometric component (PC1), deciduous forest habitats component (PC2), river valleys and alder habitats component (PC3), and lakes component (PC4). The distinguished factors characterise natural qualities of postglacial area and reflect well the role of the four most important groups of environment components in shaping ecodiversity of the area under study. The map of ecodiversity of Debnica Kaszubska commune was created on the basis of the first four principal component scores and then five classes of diversity were isolated: very low, low, average, high and very high. As a result of the assessment, five commune regions of very high ecodiversity were separated. These regions are also very attractive for tourists and valuable in terms of their rich nature which include protected areas such as Slupia Valley Landscape Park. The suggested method of ecodiversity assessment with the use of principal component analysis may constitute an alternative methodological proposition to other research methods used so far. Literature Jedicke E., 2001. Biodiversität, Geodiversität, Ökodiversität. Kriterien zur Analyse der Landschaftsstruktur - ein konzeptioneller Diskussionsbeitrag. Naturschutz und Landschaftsplanung, 33(2/3), 59-68.
A stochastic model of weather states and concurrent daily precipitation at multiple precipitation stations is described. our algorithms are invested for classification of daily weather states; k means, fuzzy clustering, principal components, and principal components coupled with ...
Multilevel sparse functional principal component analysis.
Di, Chongzhi; Crainiceanu, Ciprian M; Jank, Wolfgang S
2014-01-29
We consider analysis of sparsely sampled multilevel functional data, where the basic observational unit is a function and data have a natural hierarchy of basic units. An example is when functions are recorded at multiple visits for each subject. Multilevel functional principal component analysis (MFPCA; Di et al. 2009) was proposed for such data when functions are densely recorded. Here we consider the case when functions are sparsely sampled and may contain only a few observations per function. We exploit the multilevel structure of covariance operators and achieve data reduction by principal component decompositions at both between and within subject levels. We address inherent methodological differences in the sparse sampling context to: 1) estimate the covariance operators; 2) estimate the functional principal component scores; 3) predict the underlying curves. Through simulations the proposed method is able to discover dominating modes of variations and reconstruct underlying curves well even in sparse settings. Our approach is illustrated by two applications, the Sleep Heart Health Study and eBay auctions.
[Content of mineral elements of Gastrodia elata by principal components analysis].
Li, Jin-ling; Zhao, Zhi; Liu, Hong-chang; Luo, Chun-li; Huang, Ming-jin; Luo, Fu-lai; Wang, Hua-lei
2015-03-01
To study the content of mineral elements and the principal components in Gastrodia elata. Mineral elements were determined by ICP and the data was analyzed by SPSS. K element has the highest content-and the average content was 15.31 g x kg(-1). The average content of N element was 8.99 g x kg(-1), followed by K element. The coefficient of variation of K and N was small, but the Mn was the biggest with 51.39%. The highly significant positive correlation was found among N, P and K . Three principal components were selected by principal components analysis to evaluate the quality of G. elata. P, B, N, K, Cu, Mn, Fe and Mg were the characteristic elements of G. elata. The content of K and N elements was higher and relatively stable. The variation of Mn content was biggest. The quality of G. elata in Guizhou and Yunnan was better from the perspective of mineral elements.
Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Nonomura-Nakano, M; Nesumi, H; Yoshida, T; Sugiura, M; Yano, M
2001-08-01
Twenty-four Citrus hybrids of King (C. nobilis) and Mukaku Kishu (C. kinokuni) were examined for their flavonoid profiles of the edible part by reversed-phase HPLC analysis. Two hybrids (G-155 and G-156) contained higher amounts of natsudaidain than their parents, whereas the remainder of the hybrids had a character intermediate between those of King and Mukaku Kishu on the basis of polymethoxylated flavone composition. Principal component analysis revealed the distribution of the hybrids by quantifying 23 flavonoid contents.
Quantitation of flavonoid constituents in citrus fruits.
Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Yano, M
1999-09-01
Twenty-four flavonoids have been determined in 66 Citrus species and near-citrus relatives, grown in the same field and year, by means of reversed phase high-performance liquid chromatography analysis. Statistical methods have been applied to find relations among the species. The F ratios of 21 flavonoids obtained by applying ANOVA analysis are significant, indicating that a classification of the species using these variables is reasonable to pursue. Principal component analysis revealed that the distributions of Citrus species belonging to different classes were largely in accordance with Tanaka's classification system.
Visualizing Hyolaryngeal Mechanics in Swallowing Using Dynamic MRI
Pearson, William G.; Zumwalt, Ann C.
2013-01-01
Introduction Coordinates of anatomical landmarks are captured using dynamic MRI to explore whether a proposed two-sling mechanism underlies hyolaryngeal elevation in pharyngeal swallowing. A principal components analysis (PCA) is applied to coordinates to determine the covariant function of the proposed mechanism. Methods Dynamic MRI (dMRI) data were acquired from eleven healthy subjects during a repeated swallows task. Coordinates mapping the proposed mechanism are collected from each dynamic (frame) of a dynamic MRI swallowing series of a randomly selected subject in order to demonstrate shape changes in a single subject. Coordinates representing minimum and maximum hyolaryngeal elevation of all 11 subjects were also mapped to demonstrate shape changes of the system among all subjects. MophoJ software was used to perform PCA and determine vectors of shape change (eigenvectors) for elements of the two-sling mechanism of hyolaryngeal elevation. Results For both single subject and group PCAs, hyolaryngeal elevation accounted for the first principal component of variation. For the single subject PCA, the first principal component accounted for 81.5% of the variance. For the between subjects PCA, the first principal component accounted for 58.5% of the variance. Eigenvectors and shape changes associated with this first principal component are reported. Discussion Eigenvectors indicate that two-muscle slings and associated skeletal elements function as components of a covariant mechanism to elevate the hyolaryngeal complex. Morphological analysis is useful to model shape changes in the two-sling mechanism of hyolaryngeal elevation. PMID:25090608
A model of objective weighting for EIA.
Ying, L G; Liu, Y C
1995-06-01
In spite of progress achieved in the research of environmental impact assessment (EIA), the problem of weight distribution for a set of parameters has not as yet, been properly solved. This paper presents an approach of objective weighting by using a procedure of P ij principal component-factor analysis (P ij PCFA), which suits specifically those parameters measured directly by physical scales. The P ij PCFA weighting procedure reforms the conventional weighting practice in two aspects: first, the expert subjective judgment is replaced by the standardized measure P ij as the original input of weight processing and, secondly, the principal component-factor analysis is introduced to approach the environmental parameters for their respective contributions to the totality of the regional ecosystem. Not only is the P ij PCFA weighting logical in theoretical reasoning, it also suits practically all levels of professional routines in natural environmental assessment and impact analysis. Having been assured of objectivity and accuracy in the EIA case study of the Chuansha County in Shanghai, China, the P ij PCFA weighting procedure has the potential to be applied in other geographical fields that need assigning weights to parameters that are measured by physical scales.
[Physicochemical quality of drinking water in Southern Algeria: study of excess mineral salts].
Djellouli, H M; Taleb, S; Harrache-Chettouh, D; Djaroud, S
2005-01-01
The aim of this study was to determine the physicochemical composition of water intended for human consumption in several regions of Southern Algeria. Excess minerals in drinking water, including magnesium, calcium, sulfates and fluorides play a fundamental role in the prevention of urinary calculi, which are formed mainly from calcium oxalate. The ever-increasingly prevalence of this disorder and its recurrence make it a real public health problem in Algeria. The most elementary preventive treatment, recommended to all subjects with lithiasis, is to drink 2 to 3 L water distributed throughout the (24-hour) day. This study began by conducting a physicochemical analysis of the principal components of water from several sources. We will subsequently test it to examine the effects of its mineral salts on the crystallization kinetics of the principal component of calculi (calcium oxalate). The results indicate that 77.5 % of the samples had magnesium concentrations ([Mg 2+] > 50 mg/L), 95 % were sulfated, with sulfate ion concentrations exceeding the standard recommended by WHO ([SO4 2-] > 250 mg/L). Moreover, 57.5 % had excess fluoride levels, [F-] > 1.5 mg/L, and 65 % excessive calcium concentrations, with Ca 2+ > 150 mg/L.
Quantification of intensity variations in functional MR images using rotated principal components
NASA Astrophysics Data System (ADS)
Backfrieder, W.; Baumgartner, R.; Sámal, M.; Moser, E.; Bergmann, H.
1996-08-01
In functional MRI (fMRI), the changes in cerebral haemodynamics related to stimulated neural brain activity are measured using standard clinical MR equipment. Small intensity variations in fMRI data have to be detected and distinguished from non-neural effects by careful image analysis. Based on multivariate statistics we describe an algorithm involving oblique rotation of the most significant principal components for an estimation of the temporal and spatial distribution of the stimulated neural activity over the whole image matrix. This algorithm takes advantage of strong local signal variations. A mathematical phantom was designed to generate simulated data for the evaluation of the method. In simulation experiments, the potential of the method to quantify small intensity changes, especially when processing data sets containing multiple sources of signal variations, was demonstrated. In vivo fMRI data collected in both visual and motor stimulation experiments were analysed, showing a proper location of the activated cortical regions within well known neural centres and an accurate extraction of the activation time profile. The suggested method yields accurate absolute quantification of in vivo brain activity without the need of extensive prior knowledge and user interaction.
NASA Astrophysics Data System (ADS)
Han, H. H.; Wang, Y. L.; Ren, G. L.; LI, J. Q.; Gao, T.; Yang, M.; Yang, J. L.
2016-11-01
Remote sensing plays an important role in mineral exploration of “One Belt One Road” plan. One of its applications is extracting and locating hydrothermal alteration zones that are related to mines. At present, the extracting method for alteration anomalies from principal component image mainly relies on the data's normal distribution, without considering the nonlinear characteristics of geological anomaly. In this study, a Fractal Dimension Change Point Model (FDCPM), calculated by the self-similarity and mutability of alteration anomalies, is employed to quantitatively acquire the critical threshold of alteration anomalies. The realization theory and access mechanism of the model are elaborated by an experiment with ASTER data in Beishan mineralization belt, also the results are compared with traditional method (De-Interfered Anomalous Principal Component Thresholding Technique, DIAPCTT). The results show that the findings produced by FDCPM are agree with well with a mounting body of evidence from different perspectives, with the extracting accuracy over 80%, indicating that FDCPM is an effective extracting method for remote sensing alteration anomalies, and could be used as an useful tool for mineral exploration in similar areas in Silk Road Economic Belt.
Sand/cement ratio evaluation on mortar using neural networks and ultrasonic transmission inspection.
Molero, M; Segura, I; Izquierdo, M A G; Fuente, J V; Anaya, J J
2009-02-01
The quality and degradation state of building materials can be determined by nondestructive testing (NDT). These materials are composed of a cementitious matrix and particles or fragments of aggregates. Sand/cement ratio (s/c) provides the final material quality; however, the sand content can mask the matrix properties in a nondestructive measurement. Therefore, s/c ratio estimation is needed in nondestructive characterization of cementitious materials. In this study, a methodology to classify the sand content in mortar is presented. The methodology is based on ultrasonic transmission inspection, data reduction, and features extraction by principal components analysis (PCA), and neural network classification. This evaluation is carried out with several mortar samples, which were made while taking into account different cement types and s/c ratios. The estimated s/c ratio is determined by ultrasonic spectral attenuation with three different broadband transducers (0.5, 1, and 2 MHz). Statistical PCA to reduce the dimension of the captured traces has been applied. Feed-forward neural networks (NNs) are trained using principal components (PCs) and their outputs are used to display the estimated s/c ratios in false color images, showing the s/c ratio distribution of the mortar samples.
Panazzolo, Diogo G; Sicuro, Fernando L; Clapauch, Ruth; Maranhão, Priscila A; Bouskela, Eliete; Kraemer-Aguiar, Luiz G
2012-11-13
We aimed to evaluate the multivariate association between functional microvascular variables and clinical-laboratorial-anthropometrical measurements. Data from 189 female subjects (34.0 ± 15.5 years, 30.5 ± 7.1 kg/m2), who were non-smokers, non-regular drug users, without a history of diabetes and/or hypertension, were analyzed by principal component analysis (PCA). PCA is a classical multivariate exploratory tool because it highlights common variation between variables allowing inferences about possible biological meaning of associations between them, without pre-establishing cause-effect relationships. In total, 15 variables were used for PCA: body mass index (BMI), waist circumference, systolic and diastolic blood pressure (BP), fasting plasma glucose, levels of total cholesterol, high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), triglycerides (TG), insulin, C-reactive protein (CRP), and functional microvascular variables measured by nailfold videocapillaroscopy. Nailfold videocapillaroscopy was used for direct visualization of nutritive capillaries, assessing functional capillary density, red blood cell velocity (RBCV) at rest and peak after 1 min of arterial occlusion (RBCV(max)), and the time taken to reach RBCV(max) (TRBCV(max)). A total of 35% of subjects had metabolic syndrome, 77% were overweight/obese, and 9.5% had impaired fasting glucose. PCA was able to recognize that functional microvascular variables and clinical-laboratorial-anthropometrical measurements had a similar variation. The first five principal components explained most of the intrinsic variation of the data. For example, principal component 1 was associated with BMI, waist circumference, systolic BP, diastolic BP, insulin, TG, CRP, and TRBCV(max) varying in the same way. Principal component 1 also showed a strong association among HDL-c, RBCV, and RBCV(max), but in the opposite way. Principal component 3 was associated only with microvascular variables in the same way (functional capillary density, RBCV and RBCV(max)). Fasting plasma glucose appeared to be related to principal component 4 and did not show any association with microvascular reactivity. In non-diabetic female subjects, a multivariate scenario of associations between classic clinical variables strictly related to obesity and metabolic syndrome suggests a significant relationship between these diseases and microvascular reactivity.
Modified Inverse First Order Reliability Method (I-FORM) for Predicting Extreme Sea States.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckert-Gallup, Aubrey Celia; Sallaberry, Cedric Jean-Marie; Dallman, Ann Renee
Environmental contours describing extreme sea states are generated as the input for numerical or physical model simulation s as a part of the stand ard current practice for designing marine structure s to survive extreme sea states. Such environmental contours are characterized by combinations of significant wave height ( ) and energy period ( ) values calculated for a given recurrence interval using a set of data based on hindcast simulations or buoy observations over a sufficient period of record. The use of the inverse first - order reliability method (IFORM) i s standard design practice for generating environmental contours.more » In this paper, the traditional appli cation of the IFORM to generating environmental contours representing extreme sea states is described in detail and its merits and drawbacks are assessed. The application of additional methods for analyzing sea state data including the use of principal component analysis (PCA) to create an uncorrelated representation of the data under consideration is proposed. A reexamination of the components of the IFORM application to the problem at hand including the use of new distribution fitting techniques are shown to contribute to the development of more accurate a nd reasonable representations of extreme sea states for use in survivability analysis for marine struc tures. Keywords: In verse FORM, Principal Component Analysis , Environmental Contours, Extreme Sea State Characteri zation, Wave Energy Converters« less
The factorial reliability of the Middlesex Hospital Questionnaire in normal subjects.
Bagley, C
1980-03-01
The internal reliability of the Middlesex Hospital Questionnaire and its component subscales has been checked by means of principal components analyses of data on 256 normal subjects. The subscales (with the possible exception of Hysteria) were found to contribute to the general underlying factor of psychoneurosis. In general, the principal components analysis points to the reliability of the subscales, despite some item overlap.
ERIC Educational Resources Information Center
McCormick, Ernest J.; And Others
The study deals with the job component method of establishing compensation rates. The basic job analysis questionnaire used in the study was the Position Analysis Questionnaire (PAQ) (Form B). On the basis of a principal components analysis of PAQ data for a large sample (2,688) of jobs, a number of principal components (job dimensions) were…
ERIC Educational Resources Information Center
Faginski-Stark, Erica; Casavant, Christopher; Collins, William; McCandless, Jason; Tencza, Marilyn
2012-01-01
Recent federal and state mandates have tasked school systems to move beyond principal evaluation as a bureaucratic function and to re-imagine it as a critical component to improve principal performance and compel school renewal. This qualitative study investigated the district leaders' and principals' perceptions of the performance evaluation…
Functional Data Analysis in NTCP Modeling: A New Method to Explore the Radiation Dose-Volume Effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benadjaoud, Mohamed Amine, E-mail: mohamedamine.benadjaoud@gustaveroussy.fr; Université Paris sud, Le Kremlin-Bicêtre; Institut Gustave Roussy, Villejuif
2014-11-01
Purpose/Objective(s): To describe a novel method to explore radiation dose-volume effects. Functional data analysis is used to investigate the information contained in differential dose-volume histograms. The method is applied to the normal tissue complication probability modeling of rectal bleeding (RB) for patients irradiated in the prostatic bed by 3-dimensional conformal radiation therapy. Methods and Materials: Kernel density estimation was used to estimate the individual probability density functions from each of the 141 rectum differential dose-volume histograms. Functional principal component analysis was performed on the estimated probability density functions to explore the variation modes in the dose distribution. The functional principalmore » components were then tested for association with RB using logistic regression adapted to functional covariates (FLR). For comparison, 3 other normal tissue complication probability models were considered: the Lyman-Kutcher-Burman model, logistic model based on standard dosimetric parameters (LM), and logistic model based on multivariate principal component analysis (PCA). Results: The incidence rate of grade ≥2 RB was 14%. V{sub 65Gy} was the most predictive factor for the LM (P=.058). The best fit for the Lyman-Kutcher-Burman model was obtained with n=0.12, m = 0.17, and TD50 = 72.6 Gy. In PCA and FLR, the components that describe the interdependence between the relative volumes exposed at intermediate and high doses were the most correlated to the complication. The FLR parameter function leads to a better understanding of the volume effect by including the treatment specificity in the delivered mechanistic information. For RB grade ≥2, patients with advanced age are significantly at risk (odds ratio, 1.123; 95% confidence interval, 1.03-1.22), and the fits of the LM, PCA, and functional principal component analysis models are significantly improved by including this clinical factor. Conclusion: Functional data analysis provides an attractive method for flexibly estimating the dose-volume effect for normal tissues in external radiation therapy.« less
2L-PCA: a two-level principal component analyzer for quantitative drug design and its applications.
Du, Qi-Shi; Wang, Shu-Qing; Xie, Neng-Zhong; Wang, Qing-Yan; Huang, Ri-Bo; Chou, Kuo-Chen
2017-09-19
A two-level principal component predictor (2L-PCA) was proposed based on the principal component analysis (PCA) approach. It can be used to quantitatively analyze various compounds and peptides about their functions or potentials to become useful drugs. One level is for dealing with the physicochemical properties of drug molecules, while the other level is for dealing with their structural fragments. The predictor has the self-learning and feedback features to automatically improve its accuracy. It is anticipated that 2L-PCA will become a very useful tool for timely providing various useful clues during the process of drug development.
NASA Technical Reports Server (NTRS)
2005-01-01
Under funding from this proposal three in situ profile measurements of stratospheric sulfate aerosol and ozone were completed from balloon-borne platforms. The measured quantities are aerosol size resolved number concentration and ozone. The one derived product is aerosol size distribution, from which aerosol moments, such as surface area, volume, and extinction can be calculated for comparison with SAGE III measurements and SAGE III derived products, such as surface area. The analysis of these profiles and comparison with SAGE III extinction measurements and SAGE III derived surface areas are provided in Yongxiao (2005), which comprised the research thesis component of Mr. Jian Yongxiao's M.S. degree in Atmospheric Science at the University of Wyoming. In addition analysis continues on using principal component analysis (PCA) to derive aerosol surface area from the 9 wavelength extinction measurements available from SAGE III. Ths paper will present PCA components to calculate surface area from SAGE III measurements and compare these derived surface areas with those available directly from in situ size distribution measurements, as well as surface areas which would be derived from PCA and Thomason's algorithm applied to the four wavelength SAGE II extinction measurements.
Undergraduate nursing assistant employment in aged care has benefits for new graduates.
Algoso, Maricris; Ramjan, Lucie; East, Leah; Peters, Kath
2018-04-20
To determine how undergraduate assistant in nursing employment in aged care helps to prepare new graduates for clinical work as a registered nurse. The amount and quality of clinical experience afforded by university programs has been the subject of constant debate in the nursing profession. New graduate nurses are often deemed inadequately prepared for clinical practice and so many nursing students seek employment as assistants in nursing whilst studying to increase their clinical experience. This paper presents the first phase of a larger mixed-methods study to explore whether undergraduate assistant in nursing employment in aged care prepares new graduate nurses for the clinical work environment. The first phase involved the collection of quantitative data from a modified Preparation for Clinical Practice survey, which contained 50-scaled items relating to nursing practice. Ethics approval was obtained prior to commencing data collection. New graduate nurses who were previously employed as assistants in nursing in aged care and had at least 3 months' experience as a registered nurse, were invited to complete the survey. Social media and professional networks were used to distribute the survey between March 2015 and May 2016 and again in January 2017 - February 2017. Purposeful and snowballing sampling methods using social media and nursing networks were used to collect survey responses. Data were analysed using principal components analysis. 110 completed surveys were returned. Principal components analysis revealed four underlying constructs (components) of undergraduate assistant in nursing employment in aged care. These were emotional literacy (component 1), clinical skills (component 2), managing complex patient care (component 3) and health promotion (component 4). The 4 extracted components reflect the development of core nursing skills that transcend that of technical skills and includes the ability to situate oneself as a nurse in the care of an individual and in a healthcare team. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Feizbakhsh, Masood; Kadkhodaei, Mahmoud; Zandian, Dana; Hosseinpour, Zahra
2017-01-01
One of the most effective ways for distal movement of molars to treat Class II malocclusion is using extraoral force through a headgear device. The purpose of this study was the comparison of stress distribution in maxillary first molar periodontium using straight pull headgear in vertical and horizontal tubes through finite element method. Based on the real geometry model, a basic model of the first molar and maxillary bone was obtained using three-dimensional imaging of the skull. After the geometric modeling of periodontium components through CATIA software and the definition of mechanical properties and element classification, a force of 150 g for each headgear was defined in ABAQUS software. Consequently, Von Mises and Principal stresses were evaluated. The statistical analysis was performed using T-paired and Wilcoxon nonparametric tests. Extension of areas with Von Mises and Principal stresses utilizing straight pull headgear with a vertical tube was not different from that of using a horizontal tube, but the numerical value of the Von Mises stress in the vertical tube was significantly reduced ( P < 0/05). On the other hand, the difference of the principal stress between both tubes was not significant ( P > 0/05). Based on the results, when force applied to the straight pull headgear with a vertical tube, Von Mises stress was reduced significantly in comparison with the horizontal tube. Therefore, to correct the mesiolingual movement of the maxillary first molar, vertical headgear tube is recommended.
PCA feature extraction for change detection in multidimensional unlabeled data.
Kuncheva, Ludmila I; Faithfull, William J
2014-01-01
When classifiers are deployed in real-world applications, it is assumed that the distribution of the incoming data matches the distribution of the data used to train the classifier. This assumption is often incorrect, which necessitates some form of change detection or adaptive classification. While there has been a lot of work on change detection based on the classification error monitored over the course of the operation of the classifier, finding changes in multidimensional unlabeled data is still a challenge. Here, we propose to apply principal component analysis (PCA) for feature extraction prior to the change detection. Supported by a theoretical example, we argue that the components with the lowest variance should be retained as the extracted features because they are more likely to be affected by a change. We chose a recently proposed semiparametric log-likelihood change detection criterion that is sensitive to changes in both mean and variance of the multidimensional distribution. An experiment with 35 datasets and an illustration with a simple video segmentation demonstrate the advantage of using extracted features compared to raw data. Further analysis shows that feature extraction through PCA is beneficial, specifically for data with multiple balanced classes.
Information extraction from multivariate images
NASA Technical Reports Server (NTRS)
Park, S. K.; Kegley, K. A.; Schiess, J. R.
1986-01-01
An overview of several multivariate image processing techniques is presented, with emphasis on techniques based upon the principal component transformation (PCT). Multiimages in various formats have a multivariate pixel value, associated with each pixel location, which has been scaled and quantized into a gray level vector, and the bivariate of the extent to which two images are correlated. The PCT of a multiimage decorrelates the multiimage to reduce its dimensionality and reveal its intercomponent dependencies if some off-diagonal elements are not small, and for the purposes of display the principal component images must be postprocessed into multiimage format. The principal component analysis of a multiimage is a statistical analysis based upon the PCT whose primary application is to determine the intrinsic component dimensionality of the multiimage. Computational considerations are also discussed.
Soleimani, Mohammad Ali; Yaghoobzadeh, Ameneh; Bahrami, Nasim; Sharif, Saeed Pahlevan; Sharif Nia, Hamid
2016-10-01
In this study, 398 Iranian cancer patients completed the 15-item Templer's Death Anxiety Scale (TDAS). Tests of internal consistency, principal components analysis, and confirmatory factor analysis were conducted to assess the internal consistency and factorial validity of the Persian TDAS. The construct reliability statistic and average variance extracted were also calculated to measure construct reliability, convergent validity, and discriminant validity. Principal components analysis indicated a 3-component solution, which was generally supported in the confirmatory analysis. However, acceptable cutoffs for construct reliability, convergent validity, and discriminant validity were not fulfilled for the three subscales that were derived from the principal component analysis. This study demonstrated both the advantages and potential limitations of using the TDAS with Persian-speaking cancer patients.
Principal Component Clustering Approach to Teaching Quality Discriminant Analysis
ERIC Educational Resources Information Center
Xian, Sidong; Xia, Haibo; Yin, Yubo; Zhai, Zhansheng; Shang, Yan
2016-01-01
Teaching quality is the lifeline of the higher education. Many universities have made some effective achievement about evaluating the teaching quality. In this paper, we establish the Students' evaluation of teaching (SET) discriminant analysis model and algorithm based on principal component clustering analysis. Additionally, we classify the SET…
Analysis of the principal component algorithm in phase-shifting interferometry.
Vargas, J; Quiroga, J Antonio; Belenguer, T
2011-06-15
We recently presented a new asynchronous demodulation method for phase-sampling interferometry. The method is based in the principal component analysis (PCA) technique. In the former work, the PCA method was derived heuristically. In this work, we present an in-depth analysis of the PCA demodulation method.
Psychometric Measurement Models and Artificial Neural Networks
ERIC Educational Resources Information Center
Sese, Albert; Palmer, Alfonso L.; Montano, Juan J.
2004-01-01
The study of measurement models in psychometrics by means of dimensionality reduction techniques such as Principal Components Analysis (PCA) is a very common practice. In recent times, an upsurge of interest in the study of artificial neural networks apt to computing a principal component extraction has been observed. Despite this interest, the…
Microelectrode arrays (MEAs) detect drug and chemical induced changes in neuronal network function and have been used for neurotoxicity screening. As a proof-•of-concept, the current study assessed the utility of analytical "fingerprinting" using Principal Components Analysis (P...
Incremental principal component pursuit for video background modeling
Rodriquez-Valderrama, Paul A.; Wohlberg, Brendt
2017-03-14
An incremental Principal Component Pursuit (PCP) algorithm for video background modeling that is able to process one frame at a time while adapting to changes in background, with a computational complexity that allows for real-time processing, having a low memory footprint and is robust to translational and rotational jitter.
Dynamic competitive probabilistic principal components analysis.
López-Rubio, Ezequiel; Ortiz-DE-Lazcano-Lobato, Juan Miguel
2009-04-01
We present a new neural model which extends the classical competitive learning (CL) by performing a Probabilistic Principal Components Analysis (PPCA) at each neuron. The model also has the ability to learn the number of basis vectors required to represent the principal directions of each cluster, so it overcomes a drawback of most local PCA models, where the dimensionality of a cluster must be fixed a priori. Experimental results are presented to show the performance of the network with multispectral image data.
A principal components model of soundscape perception.
Axelsson, Östen; Nilsson, Mats E; Berglund, Birgitta
2010-11-01
There is a need for a model that identifies underlying dimensions of soundscape perception, and which may guide measurement and improvement of soundscape quality. With the purpose to develop such a model, a listening experiment was conducted. One hundred listeners measured 50 excerpts of binaural recordings of urban outdoor soundscapes on 116 attribute scales. The average attribute scale values were subjected to principal components analysis, resulting in three components: Pleasantness, eventfulness, and familiarity, explaining 50, 18 and 6% of the total variance, respectively. The principal-component scores were correlated with physical soundscape properties, including categories of dominant sounds and acoustic variables. Soundscape excerpts dominated by technological sounds were found to be unpleasant, whereas soundscape excerpts dominated by natural sounds were pleasant, and soundscape excerpts dominated by human sounds were eventful. These relationships remained after controlling for the overall soundscape loudness (Zwicker's N(10)), which shows that 'informational' properties are substantial contributors to the perception of soundscape. The proposed principal components model provides a framework for future soundscape research and practice. In particular, it suggests which basic dimensions are necessary to measure, how to measure them by a defined set of attribute scales, and how to promote high-quality soundscapes.
NASA Astrophysics Data System (ADS)
Matsuda, Norihiro; Izumi, Yuichi; Yamanaka, Yoshiyuki; Gandou, Toshiyuki; Yamada, Masaaki; Oishi, Koji
2017-09-01
Measurements of reaction rates by secondary neutrons produced from beam losses by 17-MeV protons are conducted at a compact cyclotron facility with the foil activation method. The experimentally obtained distribution of the reaction rates of 197Au (n, γ) 198Au on the concrete walls suggests that a target and an electrostatic deflector as machine components for beam extraction of the compact cyclotron are principal beam loss points. The measurements are compared with calculations by the Monte Carlo code: PHITS. The calculated results based on the beam losses are good agreements with the measured ones within 21%. In this compact cyclotron facility, exponential attenuations with the distance from the electrostatic deflector in the distributions of the measured reaction rates were observed, which was looser than that by the inverse square of distance.
Overdenture retaining bar stress distribution: a finite-element analysis.
Caetano, Conrado Reinoldes; Mesquita, Marcelo Ferraz; Consani, Rafael Leonardo Xediek; Correr-Sobrinho, Lourenço; Dos Santos, Mateus Bertolini Fernandes
2015-05-01
Evaluate the stress distribution on the peri-implant bone tissue and prosthetic components of bar-clip retaining systems for overdentures presenting different implant inclinations, vertical misfit and framework material. Three-dimensional models of a jaw and an overdenture retained by two implants and a bar-clip attachment were modeled using specific software (SolidWorks 2010). The studied variables were: latero-lateral inclination of one implant (-10°, -5°, 0°, +5°, +10°); vertical misfit on the other implant (50, 100, 200 µm); and framework material (Au type IV, Ag-Pd, Ti cp, Co-Cr). Solid models were imported into mechanical simulation software (ANSYS Workbench 11). All nodes on the bone's external surface were constrained and a displacement was applied to simulate the settling of the framework on the ill-fitted component. Von Mises stress for the prosthetic components and maximum principal stress to the bone tissue were evaluated. The +10° inclination presented the worst biomechanical behavior, promoting the highest stress values on the bar framework and peri-implant bone tissue. The -5° group presented the lowest stress values on the prosthetic components and the lowest stress value on peri-implant bone tissue was observed in -10°. Increased vertical misfit caused an increase on the stress values in all evaluated structures. Stiffer framework materials caused a considerable stress increase in the framework itself, prosthetic screw of the fitted component and peri-implant bone tissue. Inclination of one implant associated with vertical misfit caused a relevant effect on the stress distribution in bar-clip retained overdentures. Different framework materials promoted increased levels of stress in all the evaluated structures.
Cluster-based exposure variation analysis
2013-01-01
Background Static posture, repetitive movements and lack of physical variation are known risk factors for work-related musculoskeletal disorders, and thus needs to be properly assessed in occupational studies. The aims of this study were (i) to investigate the effectiveness of a conventional exposure variation analysis (EVA) in discriminating exposure time lines and (ii) to compare it with a new cluster-based method for analysis of exposure variation. Methods For this purpose, we simulated a repeated cyclic exposure varying within each cycle between “low” and “high” exposure levels in a “near” or “far” range, and with “low” or “high” velocities (exposure change rates). The duration of each cycle was also manipulated by selecting a “small” or “large” standard deviation of the cycle time. Theses parameters reflected three dimensions of exposure variation, i.e. range, frequency and temporal similarity. Each simulation trace included two realizations of 100 concatenated cycles with either low (ρ = 0.1), medium (ρ = 0.5) or high (ρ = 0.9) correlation between the realizations. These traces were analyzed by conventional EVA, and a novel cluster-based EVA (C-EVA). Principal component analysis (PCA) was applied on the marginal distributions of 1) the EVA of each of the realizations (univariate approach), 2) a combination of the EVA of both realizations (multivariate approach) and 3) C-EVA. The least number of principal components describing more than 90% of variability in each case was selected and the projection of marginal distributions along the selected principal component was calculated. A linear classifier was then applied to these projections to discriminate between the simulated exposure patterns, and the accuracy of classified realizations was determined. Results C-EVA classified exposures more correctly than univariate and multivariate EVA approaches; classification accuracy was 49%, 47% and 52% for EVA (univariate and multivariate), and C-EVA, respectively (p < 0.001). All three methods performed poorly in discriminating exposure patterns differing with respect to the variability in cycle time duration. Conclusion While C-EVA had a higher accuracy than conventional EVA, both failed to detect differences in temporal similarity. The data-driven optimality of data reduction and the capability of handling multiple exposure time lines in a single analysis are the advantages of the C-EVA. PMID:23557439
ERIC Educational Resources Information Center
Klar, Hans W.; Huggins, Kristin Shawn; Hammonds, Hattie L.; Buskey, Frederick C.
2016-01-01
Principals are being encouraged to distribute leadership to increase schools' organizational capacities, and enhance student growth and learning. Extant research on distributed leadership practices provides an emerging basis for adopting such approaches. Yet, relatively less attention has been paid to examining the principal's role in fostering…
Distributing Positive Leadership: The Case of Team Counseling
ERIC Educational Resources Information Center
Tubin, Dorit; Pinyan-Weiss, Michal
2015-01-01
The concept of distributed leadership is widely used, but the ways whereby it becomes positive when distributed from the principal through the school counselor, still call for further clarification. The present study aims to illuminate this subject by analyzing the work of the principal and the counselors in five successful Israeli schools. Using…
NASA Technical Reports Server (NTRS)
Hardman, P.; Spooner, B. S.
1992-01-01
The importance of the extracellular matrix (ECM) in epithelial-mesenchymal interactions in developing organisms is well established. Proteoglycans and interstitial collagens are required for the growth, morphogenesis, and differentiation of epithelial organs and the distribution of these molecules has been described. However, much less is known about other ECM macromolecules in developing epithelial organs. We used confocal microscopy to examine the distribution of laminin, heparan sulfate (BM-1) proteoglycan, fibronectin, and collagen types I, IV, and V, in mouse embryonic salivary glands. Organ rudiments were isolated from gestational day 13 mouse embryos and cultured for 24, 48, or 72 hours. Whole mounts were stained by indirect immunofluorescence and then examined using a Zeiss Laser Scan Microscope. We found that each ECM component examined had a distinct distribution and that the distribution of some molecules varied with culture time. Laminin was mainly restricted to the basement membrane. BM-1 proteoglycan was concentrated in the basement membrane and also formed a fine network throughout the mesenchyme. Type IV collagen was mainly located in the basement membrane of the epithelium, but it was also present throughout the mesenchyme. Type V collagen was distributed throughout the mesenchyme at 24 hours, but at 48 hours was principally located in the basement membrane. Type I collagen was distributed throughout the mesenchyme at all culture times, and accumulated in the clefts and particularly at the epithelial-mesenchymal interface as time in culture increased. Fibronectin was observed throughout the mesenchyme at all times.
Hooper, R.P.; Peters, N.E.
1989-01-01
A principal-components analysis was performed on the major solutes in wet deposition collected from 194 stations in the United States and its territories. Approximately 90% of the components derived could be interpreted as falling into one of three categories - acid, salt, or an agricultural/soil association. The total mass, or the mass of any one solute, was apportioned among these components by multiple linear regression techniques. The use of multisolute components for determining trends or spatial distribution represents a substantial improvement over single-solute analysis in that these components are more directly related to the sources of the deposition. The geographic patterns displayed by the components in this analysis indicate a far more important role for acid deposition in the Southeast and intermountain regions of the United States than would be indicated by maps of sulfate or nitrate deposition alone. In the Northeast and Midwest, the acid component is not declining at most stations, as would be expected from trends in sulfate deposition, but is holding constant or increasing. This is due, in part, to a decline in the agriculture/soil factor throughout this region, which would help to neutralize the acidity.
Das, Atanu; Mukhopadhyay, Chaitali
2007-10-28
We have performed molecular dynamics (MD) simulation of the thermal denaturation of one protein and one peptide-ubiquitin and melittin. To identify the correlation in dynamics among various secondary structural fragments and also the individual contribution of different residues towards thermal unfolding, principal component analysis method was applied in order to give a new insight to protein dynamics by analyzing the contribution of coefficients of principal components. The cross-correlation matrix obtained from MD simulation trajectory provided important information regarding the anisotropy of backbone dynamics that leads to unfolding. Unfolding of ubiquitin was found to be a three-state process, while that of melittin, though smaller and mostly helical, is more complicated.
NASA Astrophysics Data System (ADS)
Das, Atanu; Mukhopadhyay, Chaitali
2007-10-01
We have performed molecular dynamics (MD) simulation of the thermal denaturation of one protein and one peptide—ubiquitin and melittin. To identify the correlation in dynamics among various secondary structural fragments and also the individual contribution of different residues towards thermal unfolding, principal component analysis method was applied in order to give a new insight to protein dynamics by analyzing the contribution of coefficients of principal components. The cross-correlation matrix obtained from MD simulation trajectory provided important information regarding the anisotropy of backbone dynamics that leads to unfolding. Unfolding of ubiquitin was found to be a three-state process, while that of melittin, though smaller and mostly helical, is more complicated.
SAS program for quantitative stratigraphic correlation by principal components
Hohn, M.E.
1985-01-01
A SAS program is presented which constructs a composite section of stratigraphic events through principal components analysis. The variables in the analysis are stratigraphic sections and the observational units are range limits of taxa. The program standardizes data in each section, extracts eigenvectors, estimates missing range limits, and computes the composite section from scores of events on the first principal component. Provided is an option of several types of diagnostic plots; these help one to determine conservative range limits or unrealistic estimates of missing values. Inspection of the graphs and eigenvalues allow one to evaluate goodness of fit between the composite and measured data. The program is extended easily to the creation of a rank-order composite. ?? 1985.
NASA Astrophysics Data System (ADS)
Werth, Alexandra; Liakat, Sabbir; Dong, Anqi; Woods, Callie M.; Gmachl, Claire F.
2018-05-01
An integrating sphere is used to enhance the collection of backscattered light in a noninvasive glucose sensor based on quantum cascade laser spectroscopy. The sphere enhances signal stability by roughly an order of magnitude, allowing us to use a thermoelectrically (TE) cooled detector while maintaining comparable glucose prediction accuracy levels. Using a smaller TE-cooled detector reduces form factor, creating a mobile sensor. Principal component analysis has predicted principal components of spectra taken from human subjects that closely match the absorption peaks of glucose. These principal components are used as regressors in a linear regression algorithm to make glucose concentration predictions, over 75% of which are clinically accurate.
A novel principal component analysis for spatially misaligned multivariate air pollution data.
Jandarov, Roman A; Sheppard, Lianne A; Sampson, Paul D; Szpiro, Adam A
2017-01-01
We propose novel methods for predictive (sparse) PCA with spatially misaligned data. These methods identify principal component loading vectors that explain as much variability in the observed data as possible, while also ensuring the corresponding principal component scores can be predicted accurately by means of spatial statistics at locations where air pollution measurements are not available. This will make it possible to identify important mixtures of air pollutants and to quantify their health effects in cohort studies, where currently available methods cannot be used. We demonstrate the utility of predictive (sparse) PCA in simulated data and apply the approach to annual averages of particulate matter speciation data from national Environmental Protection Agency (EPA) regulatory monitors.
A Parametric k-Means Algorithm
Tarpey, Thaddeus
2007-01-01
Summary The k points that optimally represent a distribution (usually in terms of a squared error loss) are called the k principal points. This paper presents a computationally intensive method that automatically determines the principal points of a parametric distribution. Cluster means from the k-means algorithm are nonparametric estimators of principal points. A parametric k-means approach is introduced for estimating principal points by running the k-means algorithm on a very large simulated data set from a distribution whose parameters are estimated using maximum likelihood. Theoretical and simulation results are presented comparing the parametric k-means algorithm to the usual k-means algorithm and an example on determining sizes of gas masks is used to illustrate the parametric k-means algorithm. PMID:17917692
Principals' Perceptions of Collegial Support as a Component of Administrative Inservice.
ERIC Educational Resources Information Center
Daresh, John C.
To address the problem of increasing professional isolation of building administrators, the Principals' Inservice Project helps establish principals' collegial support groups across the nation. The groups are typically composed of 6 to 10 principals who meet at least once each month over a 2-year period. One collegial support group of seven…
Training the Trainers: Learning to Be a Principal Supervisor
ERIC Educational Resources Information Center
Saltzman, Amy
2017-01-01
While most principal supervisors are former principals themselves, few come to the role with specific training in how to do the job effectively. For this reason, both the Washington, D.C., and Tulsa, Oklahoma, principal supervisor programs include a strong professional development component. In this article, the author takes a look inside these…
ERIC Educational Resources Information Center
Rodrigue, Christine M.
2011-01-01
This paper presents a laboratory exercise used to teach principal components analysis (PCA) as a means of surface zonation. The lab was built around abundance data for 16 oxides and elements collected by the Mars Exploration Rover Spirit in Gusev Crater between Sol 14 and Sol 470. Students used PCA to reduce 15 of these into 3 components, which,…
ERIC Educational Resources Information Center
Ackermann, Margot Elise; Morrow, Jennifer Ann
2008-01-01
The present study describes the development and initial validation of the Coping with the College Environment Scale (CWCES). Participants included 433 college students who took an online survey. Principal Components Analysis (PCA) revealed six coping strategies: planning and self-management, seeking support from institutional resources, escaping…
NASA Astrophysics Data System (ADS)
Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Yu.
2015-11-01
The comparison results of different mother wavelets used for de-noising of model and experimental data which were presented by profiles of absorption spectra of exhaled air are presented. The impact of wavelets de-noising on classification quality made by principal component analysis are also discussed.
Evaluation of skin melanoma in spectral range 450-950 nm using principal component analysis
NASA Astrophysics Data System (ADS)
Jakovels, D.; Lihacova, I.; Kuzmina, I.; Spigulis, J.
2013-06-01
Diagnostic potential of principal component analysis (PCA) of multi-spectral imaging data in the wavelength range 450- 950 nm for distant skin melanoma recognition is discussed. Processing of the measured clinical data by means of PCA resulted in clear separation between malignant melanomas and pigmented nevi.
ERIC Educational Resources Information Center
Linting, Marielle; Meulman, Jacqueline J.; Groenen, Patrick J. F.; van der Kooij, Anita J.
2007-01-01
Principal components analysis (PCA) is used to explore the structure of data sets containing linearly related numeric variables. Alternatively, nonlinear PCA can handle possibly nonlinearly related numeric as well as nonnumeric variables. For linear PCA, the stability of its solution can be established under the assumption of multivariate…
40 CFR 60.2998 - What are the principal components of the model rule?
Code of Federal Regulations, 2012 CFR
2012-07-01
... the model rule? 60.2998 Section 60.2998 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines... December 9, 2004 Model Rule-Use of Model Rule § 60.2998 What are the principal components of the model rule...
40 CFR 60.2998 - What are the principal components of the model rule?
Code of Federal Regulations, 2014 CFR
2014-07-01
... the model rule? 60.2998 Section 60.2998 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines... December 9, 2004 Model Rule-Use of Model Rule § 60.2998 What are the principal components of the model rule...
40 CFR 60.2998 - What are the principal components of the model rule?
Code of Federal Regulations, 2011 CFR
2011-07-01
... the model rule? 60.2998 Section 60.2998 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines... December 9, 2004 Model Rule-Use of Model Rule § 60.2998 What are the principal components of the model rule...
40 CFR 60.1580 - What are the principal components of the model rule?
Code of Federal Regulations, 2010 CFR
2010-07-01
... the model rule? 60.1580 Section 60.1580 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines..., 1999 Use of Model Rule § 60.1580 What are the principal components of the model rule? The model rule...
40 CFR 60.2998 - What are the principal components of the model rule?
Code of Federal Regulations, 2013 CFR
2013-07-01
... the model rule? 60.2998 Section 60.2998 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines... December 9, 2004 Model Rule-Use of Model Rule § 60.2998 What are the principal components of the model rule...
Students' Perceptions of Teaching and Learning Practices: A Principal Component Approach
ERIC Educational Resources Information Center
Mukorera, Sophia; Nyatanga, Phocenah
2017-01-01
Students' attendance and engagement with teaching and learning practices is perceived as a critical element for academic performance. Even with stipulated attendance policies, students still choose not to engage. The study employed a principal component analysis to analyze first- and second-year students' perceptions of the importance of the 12…
ERIC Educational Resources Information Center
Hunley-Jenkins, Keisha Janine
2012-01-01
This qualitative study explores large, urban, mid-western principal perspectives about cyberbullying and the policy components and practices that they have found effective and ineffective at reducing its occurrence and/or negative effect on their schools' learning environments. More specifically, the researcher was interested in learning more…
Principal Component Analysis: Resources for an Essential Application of Linear Algebra
ERIC Educational Resources Information Center
Pankavich, Stephen; Swanson, Rebecca
2015-01-01
Principal Component Analysis (PCA) is a highly useful topic within an introductory Linear Algebra course, especially since it can be used to incorporate a number of applied projects. This method represents an essential application and extension of the Spectral Theorem and is commonly used within a variety of fields, including statistics,…
Learning Principal Component Analysis by Using Data from Air Quality Networks
ERIC Educational Resources Information Center
Perez-Arribas, Luis Vicente; Leon-González, María Eugenia; Rosales-Conrado, Noelia
2017-01-01
With the final objective of using computational and chemometrics tools in the chemistry studies, this paper shows the methodology and interpretation of the Principal Component Analysis (PCA) using pollution data from different cities. This paper describes how students can obtain data on air quality and process such data for additional information…
Applications of Nonlinear Principal Components Analysis to Behavioral Data.
ERIC Educational Resources Information Center
Hicks, Marilyn Maginley
1981-01-01
An empirical investigation of the statistical procedure entitled nonlinear principal components analysis was conducted on a known equation and on measurement data in order to demonstrate the procedure and examine its potential usefulness. This method was suggested by R. Gnanadesikan and based on an early paper of Karl Pearson. (Author/AL)
ERIC Educational Resources Information Center
Hendrix, Dean
2010-01-01
This study analyzed 2005-2006 Web of Science bibliometric data from institutions belonging to the Association of Research Libraries (ARL) and corresponding ARL statistics to find any associations between indicators from the two data sets. Principal components analysis on 36 variables from 103 universities revealed obvious associations between…
Principal component analysis for protein folding dynamics.
Maisuradze, Gia G; Liwo, Adam; Scheraga, Harold A
2009-01-09
Protein folding is considered here by studying the dynamics of the folding of the triple beta-strand WW domain from the Formin-binding protein 28. Starting from the unfolded state and ending either in the native or nonnative conformational states, trajectories are generated with the coarse-grained united residue (UNRES) force field. The effectiveness of principal components analysis (PCA), an already established mathematical technique for finding global, correlated motions in atomic simulations of proteins, is evaluated here for coarse-grained trajectories. The problems related to PCA and their solutions are discussed. The folding and nonfolding of proteins are examined with free-energy landscapes. Detailed analyses of many folding and nonfolding trajectories at different temperatures show that PCA is very efficient for characterizing the general folding and nonfolding features of proteins. It is shown that the first principal component captures and describes in detail the dynamics of a system. Anomalous diffusion in the folding/nonfolding dynamics is examined by the mean-square displacement (MSD) and the fractional diffusion and fractional kinetic equations. The collisionless (or ballistic) behavior of a polypeptide undergoing Brownian motion along the first few principal components is accounted for.
Principal Component 2-D Long Short-Term Memory for Font Recognition on Single Chinese Characters.
Tao, Dapeng; Lin, Xu; Jin, Lianwen; Li, Xuelong
2016-03-01
Chinese character font recognition (CCFR) has received increasing attention as the intelligent applications based on optical character recognition becomes popular. However, traditional CCFR systems do not handle noisy data effectively. By analyzing in detail the basic strokes of Chinese characters, we propose that font recognition on a single Chinese character is a sequence classification problem, which can be effectively solved by recurrent neural networks. For robust CCFR, we integrate a principal component convolution layer with the 2-D long short-term memory (2DLSTM) and develop principal component 2DLSTM (PC-2DLSTM) algorithm. PC-2DLSTM considers two aspects: 1) the principal component layer convolution operation helps remove the noise and get a rational and complete font information and 2) simultaneously, 2DLSTM deals with the long-range contextual processing along scan directions that can contribute to capture the contrast between character trajectory and background. Experiments using the frequently used CCFR dataset suggest the effectiveness of PC-2DLSTM compared with other state-of-the-art font recognition methods.
Dynamic of consumer groups and response of commodity markets by principal component analysis
NASA Astrophysics Data System (ADS)
Nobi, Ashadun; Alam, Shafiqul; Lee, Jae Woo
2017-09-01
This study investigates financial states and group dynamics by applying principal component analysis to the cross-correlation coefficients of the daily returns of commodity futures. The eigenvalues of the cross-correlation matrix in the 6-month timeframe displays similar values during 2010-2011, but decline following 2012. A sharp drop in eigenvalue implies the significant change of the market state. Three commodity sectors, energy, metals and agriculture, are projected into two dimensional spaces consisting of two principal components (PC). We observe that they form three distinct clusters in relation to various sectors. However, commodities with distinct features have intermingled with one another and scattered during severe crises, such as the European sovereign debt crises. We observe the notable change of the position of two dimensional spaces of groups during financial crises. By considering the first principal component (PC1) within the 6-month moving timeframe, we observe that commodities of the same group change states in a similar pattern, and the change of states of one group can be used as a warning for other group.
Lü, Gui-Cai; Zhao, Wei-Hong; Wang, Jiang-Tao
2011-01-01
The identification techniques for 10 species of red tide algae often found in the coastal areas of China were developed by combining the three-dimensional fluorescence spectra of fluorescence dissolved organic matter (FDOM) from the cultured red tide algae with principal component analysis. Based on the results of principal component analysis, the first principal component loading spectrum of three-dimensional fluorescence spectrum was chosen as the identification characteristic spectrum for red tide algae, and the phytoplankton fluorescence characteristic spectrum band was established. Then the 10 algae species were tested using Bayesian discriminant analysis with a correct identification rate of more than 92% for Pyrrophyta on the level of species, and that of more than 75% for Bacillariophyta on the level of genus in which the correct identification rates were more than 90% for the phaeodactylum and chaetoceros. The results showed that the identification techniques for 10 species of red tide algae based on the three-dimensional fluorescence spectra of FDOM from the cultured red tide algae and principal component analysis could work well.
NASA Astrophysics Data System (ADS)
Ji, Yi; Sun, Shanlin; Xie, Hong-Bo
2017-06-01
Discrete wavelet transform (WT) followed by principal component analysis (PCA) has been a powerful approach for the analysis of biomedical signals. Wavelet coefficients at various scales and channels were usually transformed into a one-dimensional array, causing issues such as the curse of dimensionality dilemma and small sample size problem. In addition, lack of time-shift invariance of WT coefficients can be modeled as noise and degrades the classifier performance. In this study, we present a stationary wavelet-based two-directional two-dimensional principal component analysis (SW2D2PCA) method for the efficient and effective extraction of essential feature information from signals. Time-invariant multi-scale matrices are constructed in the first step. The two-directional two-dimensional principal component analysis then operates on the multi-scale matrices to reduce the dimension, rather than vectors in conventional PCA. Results are presented from an experiment to classify eight hand motions using 4-channel electromyographic (EMG) signals recorded in healthy subjects and amputees, which illustrates the efficiency and effectiveness of the proposed method for biomedical signal analysis.
Hyperspectral optical imaging of human iris in vivo: characteristics of reflectance spectra
NASA Astrophysics Data System (ADS)
Medina, José M.; Pereira, Luís M.; Correia, Hélder T.; Nascimento, Sérgio M. C.
2011-07-01
We report a hyperspectral imaging system to measure the reflectance spectra of real human irises with high spatial resolution. A set of ocular prosthesis was used as the control condition. Reflectance data were decorrelated by the principal-component analysis. The main conclusion is that spectral complexity of the human iris is considerable: between 9 and 11 principal components are necessary to account for 99% of the cumulative variance in human irises. Correcting image misalignments associated with spontaneous ocular movements did not influence this result. The data also suggests a correlation between the first principal component and different levels of melanin present in the irises. It was also found that although the spectral characteristics of the first five principal components were not affected by the radial and angular position of the selected iridal areas, they affect the higher-order ones, suggesting a possible influence of the iris texture. The results show that hyperspectral imaging in the iris, together with adequate spectroscopic analyses provide more information than conventional colorimetric methods, making hyperspectral imaging suitable for the characterization of melanin and the noninvasive diagnosis of ocular diseases and iris color.
Seeing wholes: The concept of systems thinking and its implementation in school leadership
NASA Astrophysics Data System (ADS)
Shaked, Haim; Schechter, Chen
2013-12-01
Systems thinking (ST) is an approach advocating thinking about any given issue as a whole, emphasising the interrelationships between its components rather than the components themselves. This article aims to link ST and school leadership, claiming that ST may enable school principals to develop highly performing schools that can cope successfully with current challenges, which are more complex than ever before in today's era of accountability and high expectations. The article presents the concept of ST - its definition, components, history and applications. Thereafter, its connection to education and its contribution to school management are described. The article concludes by discussing practical processes including screening for ST-skilled principal candidates and developing ST skills among prospective and currently performing school principals, pinpointing three opportunities for skills acquisition: during preparatory programmes; during their first years on the job, supported by veteran school principals as mentors; and throughout their entire career. Such opportunities may not only provide school principals with ST skills but also improve their functioning throughout the aforementioned stages of professional development.
Chen, Jian-bo; Sun, Su-qin; Zhou, Qun
2015-07-01
The nondestructive and label-free infrared (IR) spectroscopy is a direct tool to characterize the spatial distribution of organic and inorganic compounds in plant. Since plant samples are usually complex mixtures, signal-resolving methods are necessary to find the spectral features of compounds of interest in the signal-overlapped IR spectra. In this research, two approaches using existing data-driven signal-resolving methods are proposed to interpret the IR spectra of plant samples. If the number of spectra is small, "tri-step identification" can enhance the spectral resolution to separate and identify the overlapped bands. First, the envelope bands of the original spectrum are interpreted according to the spectra-structure correlations. Then the spectrum is differentiated to resolve the underlying peaks in each envelope band. Finally, two-dimensional correlation spectroscopy is used to enhance the spectral resolution further. For a large number of spectra, "tri-step decomposition" can resolve the spectra by multivariate methods to obtain the structural and semi-quantitative information about the chemical components. Principal component analysis is used first to explore the existing signal types without any prior knowledge. Then the spectra are decomposed by self-modeling curve resolution methods to estimate the spectra and contents of significant chemical components. At last, targeted methods such as partial least squares target can explore the content profiles of specific components sensitively. As an example, the macroscopic and microscopic distribution of eugenol and calcium oxalate in the bud of clove is studied.
A new approach for computing a flood vulnerability index using cluster analysis
NASA Astrophysics Data System (ADS)
Fernandez, Paulo; Mourato, Sandra; Moreira, Madalena; Pereira, Luísa
2016-08-01
A Flood Vulnerability Index (FloodVI) was developed using Principal Component Analysis (PCA) and a new aggregation method based on Cluster Analysis (CA). PCA simplifies a large number of variables into a few uncorrelated factors representing the social, economic, physical and environmental dimensions of vulnerability. CA groups areas that have the same characteristics in terms of vulnerability into vulnerability classes. The grouping of the areas determines their classification contrary to other aggregation methods in which the areas' classification determines their grouping. While other aggregation methods distribute the areas into classes, in an artificial manner, by imposing a certain probability for an area to belong to a certain class, as determined by the assumption that the aggregation measure used is normally distributed, CA does not constrain the distribution of the areas by the classes. FloodVI was designed at the neighbourhood level and was applied to the Portuguese municipality of Vila Nova de Gaia where several flood events have taken place in the recent past. The FloodVI sensitivity was assessed using three different aggregation methods: the sum of component scores, the first component score and the weighted sum of component scores. The results highlight the sensitivity of the FloodVI to different aggregation methods. Both sum of component scores and weighted sum of component scores have shown similar results. The first component score aggregation method classifies almost all areas as having medium vulnerability and finally the results obtained using the CA show a distinct differentiation of the vulnerability where hot spots can be clearly identified. The information provided by records of previous flood events corroborate the results obtained with CA, because the inundated areas with greater damages are those that are identified as high and very high vulnerability areas by CA. This supports the fact that CA provides a reliable FloodVI.
Temporal evolution of financial-market correlations.
Fenn, Daniel J; Porter, Mason A; Williams, Stacy; McDonald, Mark; Johnson, Neil F; Jones, Nick S
2011-08-01
We investigate financial market correlations using random matrix theory and principal component analysis. We use random matrix theory to demonstrate that correlation matrices of asset price changes contain structure that is incompatible with uncorrelated random price changes. We then identify the principal components of these correlation matrices and demonstrate that a small number of components accounts for a large proportion of the variability of the markets that we consider. We characterize the time-evolving relationships between the different assets by investigating the correlations between the asset price time series and principal components. Using this approach, we uncover notable changes that occurred in financial markets and identify the assets that were significantly affected by these changes. We show in particular that there was an increase in the strength of the relationships between several different markets following the 2007-2008 credit and liquidity crisis.
Temporal evolution of financial-market correlations
NASA Astrophysics Data System (ADS)
Fenn, Daniel J.; Porter, Mason A.; Williams, Stacy; McDonald, Mark; Johnson, Neil F.; Jones, Nick S.
2011-08-01
We investigate financial market correlations using random matrix theory and principal component analysis. We use random matrix theory to demonstrate that correlation matrices of asset price changes contain structure that is incompatible with uncorrelated random price changes. We then identify the principal components of these correlation matrices and demonstrate that a small number of components accounts for a large proportion of the variability of the markets that we consider. We characterize the time-evolving relationships between the different assets by investigating the correlations between the asset price time series and principal components. Using this approach, we uncover notable changes that occurred in financial markets and identify the assets that were significantly affected by these changes. We show in particular that there was an increase in the strength of the relationships between several different markets following the 2007-2008 credit and liquidity crisis.
Zhang, Pan; Hu, Rijun; Zhu, Longhai; Wang, Peng; Yin, Dongxiao; Zhang, Lianjie
2017-06-15
Heavy metals (Cu, Pb, Cr, Cd and As) contents in surface sediments from western Laizhou Bay were analysed to evaluate the spatial distribution pattern and their contamination level. As was mainly concentrated in the coastal area near the estuaries and the other metals were mainly concentrated in the central part of the study area. The heavy metals were present at unpolluted levels overall evaluated by the sediment quality guidelines and geoaccumulation index. Principal component analysis suggest that Cu, Pb and Cd were mainly sourced from natural processes and As was mainly derived from anthropogenic inputs. Meanwhile, Cr originated from both natural processes and anthropogenic contributions. Tidal currents, sediments and human activities were important factors affecting the distribution of heavy metals. The heavy metal environment was divided into four subareas to provide a reference for understanding the distribution and pollution of heavy metals in the estuary-bay system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Non-linear principal component analysis applied to Lorenz models and to North Atlantic SLP
NASA Astrophysics Data System (ADS)
Russo, A.; Trigo, R. M.
2003-04-01
A non-linear generalisation of Principal Component Analysis (PCA), denoted Non-Linear Principal Component Analysis (NLPCA), is introduced and applied to the analysis of three data sets. Non-Linear Principal Component Analysis allows for the detection and characterisation of low-dimensional non-linear structure in multivariate data sets. This method is implemented using a 5-layer feed-forward neural network introduced originally in the chemical engineering literature (Kramer, 1991). The method is described and details of its implementation are addressed. Non-Linear Principal Component Analysis is first applied to a data set sampled from the Lorenz attractor (1963). It is found that the NLPCA approximations are more representative of the data than are the corresponding PCA approximations. The same methodology was applied to the less known Lorenz attractor (1984). However, the results obtained weren't as good as those attained with the famous 'Butterfly' attractor. Further work with this model is underway in order to assess if NLPCA techniques can be more representative of the data characteristics than are the corresponding PCA approximations. The application of NLPCA to relatively 'simple' dynamical systems, such as those proposed by Lorenz, is well understood. However, the application of NLPCA to a large climatic data set is much more challenging. Here, we have applied NLPCA to the sea level pressure (SLP) field for the entire North Atlantic area and the results show a slight imcrement of explained variance associated. Finally, directions for future work are presented.%}
Xiao, Keke; Chen, Yun; Jiang, Xie; Zhou, Yan
2017-03-01
An investigation was conducted for 20 different types of sludge in order to identify the key organic compounds in extracellular polymeric substances (EPS) that are important in assessing variations of sludge filterability. The different types of sludge varied in initial total solids (TS) content, organic composition and pre-treatment methods. For instance, some of the sludges were pre-treated by acid, ultrasonic, thermal, alkaline, or advanced oxidation technique. The Pearson's correlation results showed significant correlations between sludge filterability and zeta potential, pH, dissolved organic carbon, protein and polysaccharide in soluble EPS (SB EPS), loosely bound EPS (LB EPS) and tightly bound EPS (TB EPS). The principal component analysis (PCA) method was used to further explore correlations between variables and similarities among EPS fractions of different types of sludge. Two principal components were extracted: principal component 1 accounted for 59.24% of total EPS variations, while principal component 2 accounted for 25.46% of total EPS variations. Dissolved organic carbon, protein and polysaccharide in LB EPS showed higher eigenvector projection values than the corresponding compounds in SB EPS and TB EPS in principal component 1. Further characterization of fractionized key organic compounds in LB EPS was conducted with size-exclusion chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND). A numerical multiple linear regression model was established to describe relationship between organic compounds in LB EPS and sludge filterability. Copyright © 2016 Elsevier Ltd. All rights reserved.
QSAR modeling of flotation collectors using principal components extracted from topological indices.
Natarajan, R; Nirdosh, Inderjit; Basak, Subhash C; Mills, Denise R
2002-01-01
Several topological indices were calculated for substituted-cupferrons that were tested as collectors for the froth flotation of uranium. The principal component analysis (PCA) was used for data reduction. Seven principal components (PC) were found to account for 98.6% of the variance among the computed indices. The principal components thus extracted were used in stepwise regression analyses to construct regression models for the prediction of separation efficiencies (Es) of the collectors. A two-parameter model with a correlation coefficient of 0.889 and a three-parameter model with a correlation coefficient of 0.913 were formed. PCs were found to be better than partition coefficient to form regression equations, and inclusion of an electronic parameter such as Hammett sigma or quantum mechanically derived electronic charges on the chelating atoms did not improve the correlation coefficient significantly. The method was extended to model the separation efficiencies of mercaptobenzothiazoles (MBT) and aminothiophenols (ATP) used in the flotation of lead and zinc ores, respectively. Five principal components were found to explain 99% of the data variability in each series. A three-parameter equation with correlation coefficient of 0.985 and a two-parameter equation with correlation coefficient of 0.926 were obtained for MBT and ATP, respectively. The amenability of separation efficiencies of chelating collectors to QSAR modeling using PCs based on topological indices might lead to the selection of collectors for synthesis and testing from a virtual database.
Akbari, Hamed; Macyszyn, Luke; Da, Xiao; Wolf, Ronald L.; Bilello, Michel; Verma, Ragini; O’Rourke, Donald M.
2014-01-01
Purpose To augment the analysis of dynamic susceptibility contrast material–enhanced magnetic resonance (MR) images to uncover unique tissue characteristics that could potentially facilitate treatment planning through a better understanding of the peritumoral region in patients with glioblastoma. Materials and Methods Institutional review board approval was obtained for this study, with waiver of informed consent for retrospective review of medical records. Dynamic susceptibility contrast-enhanced MR imaging data were obtained for 79 patients, and principal component analysis was applied to the perfusion signal intensity. The first six principal components were sufficient to characterize more than 99% of variance in the temporal dynamics of blood perfusion in all regions of interest. The principal components were subsequently used in conjunction with a support vector machine classifier to create a map of heterogeneity within the peritumoral region, and the variance of this map served as the heterogeneity score. Results The calculated principal components allowed near-perfect separability of tissue that was likely highly infiltrated with tumor and tissue that was unlikely infiltrated with tumor. The heterogeneity map created by using the principal components showed a clear relationship between voxels judged by the support vector machine to be highly infiltrated and subsequent recurrence. The results demonstrated a significant correlation (r = 0.46, P < .0001) between the heterogeneity score and patient survival. The hazard ratio was 2.23 (95% confidence interval: 1.4, 3.6; P < .01) between patients with high and low heterogeneity scores on the basis of the median heterogeneity score. Conclusion Analysis of dynamic susceptibility contrast-enhanced MR imaging data by using principal component analysis can help identify imaging variables that can be subsequently used to evaluate the peritumoral region in glioblastoma. These variables are potentially indicative of tumor infiltration and may become useful tools in guiding therapy, as well as individualized prognostication. © RSNA, 2014 PMID:24955928
Grimbergen, M C M; van Swol, C F P; Kendall, C; Verdaasdonk, R M; Stone, N; Bosch, J L H R
2010-01-01
The overall quality of Raman spectra in the near-infrared region, where biological samples are often studied, has benefited from various improvements to optical instrumentation over the past decade. However, obtaining ample spectral quality for analysis is still challenging due to device requirements and short integration times required for (in vivo) clinical applications of Raman spectroscopy. Multivariate analytical methods, such as principal component analysis (PCA) and linear discriminant analysis (LDA), are routinely applied to Raman spectral datasets to develop classification models. Data compression is necessary prior to discriminant analysis to prevent or decrease the degree of over-fitting. The logical threshold for the selection of principal components (PCs) to be used in discriminant analysis is likely to be at a point before the PCs begin to introduce equivalent signal and noise and, hence, include no additional value. Assessment of the signal-to-noise ratio (SNR) at a certain peak or over a specific spectral region will depend on the sample measured. Therefore, the mean SNR over the whole spectral region (SNR(msr)) is determined in the original spectrum as well as for spectra reconstructed from an increasing number of principal components. This paper introduces a method of assessing the influence of signal and noise from individual PC loads and indicates a method of selection of PCs for LDA. To evaluate this method, two data sets with different SNRs were used. The sets were obtained with the same Raman system and the same measurement parameters on bladder tissue collected during white light cystoscopy (set A) and fluorescence-guided cystoscopy (set B). This method shows that the mean SNR over the spectral range in the original Raman spectra of these two data sets is related to the signal and noise contribution of principal component loads. The difference in mean SNR over the spectral range can also be appreciated since fewer principal components can reliably be used in the low SNR data set (set B) compared to the high SNR data set (set A). Despite the fact that no definitive threshold could be found, this method may help to determine the cutoff for the number of principal components used in discriminant analysis. Future analysis of a selection of spectral databases using this technique will allow optimum thresholds to be selected for different applications and spectral data quality levels.
Principal component reconstruction (PCR) for cine CBCT with motion learning from 2D fluoroscopy.
Gao, Hao; Zhang, Yawei; Ren, Lei; Yin, Fang-Fang
2018-01-01
This work aims to generate cine CT images (i.e., 4D images with high-temporal resolution) based on a novel principal component reconstruction (PCR) technique with motion learning from 2D fluoroscopic training images. In the proposed PCR method, the matrix factorization is utilized as an explicit low-rank regularization of 4D images that are represented as a product of spatial principal components and temporal motion coefficients. The key hypothesis of PCR is that temporal coefficients from 4D images can be reasonably approximated by temporal coefficients learned from 2D fluoroscopic training projections. For this purpose, we can acquire fluoroscopic training projections for a few breathing periods at fixed gantry angles that are free from geometric distortion due to gantry rotation, that is, fluoroscopy-based motion learning. Such training projections can provide an effective characterization of the breathing motion. The temporal coefficients can be extracted from these training projections and used as priors for PCR, even though principal components from training projections are certainly not the same for these 4D images to be reconstructed. For this purpose, training data are synchronized with reconstruction data using identical real-time breathing position intervals for projection binning. In terms of image reconstruction, with a priori temporal coefficients, the data fidelity for PCR changes from nonlinear to linear, and consequently, the PCR method is robust and can be solved efficiently. PCR is formulated as a convex optimization problem with the sum of linear data fidelity with respect to spatial principal components and spatiotemporal total variation regularization imposed on 4D image phases. The solution algorithm of PCR is developed based on alternating direction method of multipliers. The implementation is fully parallelized on GPU with NVIDIA CUDA toolbox and each reconstruction takes about a few minutes. The proposed PCR method is validated and compared with a state-of-art method, that is, PICCS, using both simulation and experimental data with the on-board cone-beam CT setting. The results demonstrated the feasibility of PCR for cine CBCT and significantly improved reconstruction quality of PCR from PICCS for cine CBCT. With a priori estimated temporal motion coefficients using fluoroscopic training projections, the PCR method can accurately reconstruct spatial principal components, and then generate cine CT images as a product of temporal motion coefficients and spatial principal components. © 2017 American Association of Physicists in Medicine.
Comparative genomic analysis of three Leishmania species that cause diverse human disease
Peacock, Christopher S; Seeger, Kathy; Harris, David; Murphy, Lee; Ruiz, Jeronimo C; Quail, Michael A; Peters, Nick; Adlem, Ellen; Tivey, Adrian; Aslett, Martin; Kerhornou, Arnaud; Ivens, Alasdair; Fraser, Audrey; Rajandream, Marie-Adele; Carver, Tim; Norbertczak, Halina; Chillingworth, Tracey; Hance, Zahra; Jagels, Kay; Moule, Sharon; Ormond, Doug; Rutter, Simon; Squares, Rob; Whitehead, Sally; Rabbinowitsch, Ester; Arrowsmith, Claire; White, Brian; Thurston, Scott; Bringaud, Frédéric; Baldauf, Sandra L; Faulconbridge, Adam; Jeffares, Daniel; Depledge, Daniel P; Oyola, Samuel O; Hilley, James D; Brito, Loislene O; Tosi, Luiz R O; Barrell, Barclay; Cruz, Angela K; Mottram, Jeremy C; Smith, Deborah F; Berriman, Matthew
2008-01-01
Leishmania parasites cause a broad spectrum of clinical disease. Here we report the sequencing of the genomes of two species of Leishmania: Leishmania infantum and Leishmania braziliensis. The comparison of these sequences with the published genome of Leishmania major reveals marked conservation of synteny and identifies only ∼200 genes with a differential distribution between the three species. L. braziliensis, contrary to Leishmania species examined so far, possesses components of a putative RNA-mediated interference pathway, telomere-associated transposable elements and spliced leader–associated SLACS retrotransposons. We show that pseudogene formation and gene loss are the principal forces shaping the different genomes. Genes that are differentially distributed between the species encode proteins implicated in host-pathogen interactions and parasite survival in the macrophage. PMID:17572675
NASA Astrophysics Data System (ADS)
Santarius, John; Navarro, Marcos; Michalak, Matthew; Fancher, Aaron; Kulcinski, Gerald; Bonomo, Richard
2016-10-01
A newly initiated research project will be described that investigates methods for detecting shielded special nuclear materials by combining multi-dimensional neutron sources, forward/adjoint calculations modeling neutron and gamma transport, and sparse data analysis of detector signals. The key tasks for this project are: (1) developing a radiation transport capability for use in optimizing adaptive-geometry, inertial-electrostatic confinement (IEC) neutron source/detector configurations for neutron pulses distributed in space and/or phased in time; (2) creating distributed-geometry, gas-target, IEC fusion neutron sources; (3) applying sparse data and noise reduction algorithms, such as principal component analysis (PCA) and wavelet transform analysis, to enhance detection fidelity; and (4) educating graduate and undergraduate students. Funded by DHS DNDO Project 2015-DN-077-ARI095.
NASA Astrophysics Data System (ADS)
Falamas, A.; Kalra, S.; Chis, V.; Notingher, I.
2013-11-01
The aim of this study was to monitor the intracellular distribution of nucleic acids in human embryonic stem cells. Raman micro-spectroscopy and fluorescence imaging investigations were employed to obtain high-spatial resolution maps of nucleic acids. The DNA Raman signal was identified based on the 782 cm-1 band, while the RNA characteristic signal was detected based on the 813 cm-1 fingerprint band assigned to O-P-O symmetric stretching vibrations. Additionally, principal components analysis was performed and nucleic acids characteristic Raman signals were identified in the data set, which were plotted at each position in the cells. In this manner, high intensity RNA signal was identified in the cells nucleolus and cytoplasm, while the nucleus presented a much lower signal.
ERIC Educational Resources Information Center
Lin, Mind-Dih
2012-01-01
Improving principal leadership is a vital component to the success of educational reform initiatives that seek to improve whole-school performance, as principal leadership often exercises positive but indirect effects on student learning. Because of the importance of principals within the field of school improvement, this article focuses on…
ERIC Educational Resources Information Center
Herrmann, Mariesa; Ross, Christine
2016-01-01
States and districts across the country are implementing new principal evaluation systems that include measures of the quality of principals' school leadership practices and measures of student achievement growth. Because these evaluation systems will be used for high-stakes decisions, it is important that the component measures of the evaluation…
ERIC Educational Resources Information Center
Hvidston, David J.; Range, Bret G.; McKim, Courtney Ann; Mette, Ian M.
2015-01-01
This study examined the perspectives of novice and late career principals concerning instructional and organizational leadership within their performance evaluations. An online survey was sent to 251 principals with a return rate of 49%. Instructional leadership components of the evaluation that were most important to all principals were:…
Gitari, M W; Akinyemi, S A; Ramugondo, L; Matidza, M; Mhlongo, S E
2018-04-30
The economic benefits of mining industry have often overshadowed the serious challenges posed to the environments through huge volume of tailings generated and disposed in tailings dumps. Some of these challenges include the surface and groundwater contamination, dust, and inability to utilize the land for developmental purposes. The abandoned copper mine tailings in Musina (Limpopo province, South Africa) was investigated for particle size distribution, mineralogy, physicochemical properties using arrays of granulometric, X-ray diffraction, and X-ray fluorescence analyses. A modified Community Bureau of Reference (BCR) sequential chemical extraction method followed by inductively coupled plasma mass spectrometry/atomic emission spectrometry (ICP-MS/AES) technique was employed to assess bioavailability of metals. Principal component analysis was performed on the sequential extraction data to reveal different loadings and mobilities of metals in samples collected at various depths. The pH ranged between 7.5 and 8.5 (average ≈ 8.0) indicating alkaline medium. Samples composed mostly of poorly grated sands (i.e. 50% fine sand) with an average permeability of about 387.6 m/s. Samples have SiO 2 /Al 2 O 3 and Na 2 O/(Al 2 O 3 + SiO 2 ) ratios and low plastic index (i.e. PI ≈ 2.79) suggesting non-plastic and very low dry strength. Major minerals were comprised of quartz, epidote, and chlorite while the order of relative abundance of minerals in minor quantities is plagioclase > muscovite > hornblende > calcite > haematite. The largest percentage of elements such as As, Cd and Cr was strongly bound to less extractable fractions. Results showed high concentration and easily extractable Cu in the Musina Copper Mine tailings, which indicates bioavailability and poses environmental risk and potential health risk of human exposure. Principal component analysis revealed Fe-oxide/hydroxides, carbonate and clay components, and copper ore process are controlling the elements distribution.
Resveratrols in Grape Berry Skins and Leaves in Vitis Germplasm
Wang, Lijun; Xu, Man; Liu, Chunyan; Wang, Junfang; Xi, Huifen; Wu, Benhong; Loescher, Wayne; Duan, Wei; Fan, Peige; Li, Shaohua
2013-01-01
Background Resveratrol is an important stilbene that benefits human health. However, it is only distributed in a few species including grape and is very expensive. At present, grape has been an important source resveratrol. However, the details are scarce on resveratrol distribution in different Vitis species or cultivars. Methodology/Principal Finding The composition and content of resveratrols were investigated by HPLC for assessing genotypic variation in berry skins and leaves of 75 grape cultivars, belonging to 3 species and 7 interspecific hybrids. Trans-resveratrol, cis-piceid and trans-piceid were detected in berry skins and leaves, but cis-resveratrol was not. Resveratrol content largely varied with genetic background as well as usage. In most cultivars, total resveratrol including the above three compounds was higher in berry skins than leaves. In berry skins of most cultivars and leaves of almost all cultivars, cis-piceid was the most abundant resveratrol; trans-resveratrol and trans-piceid were minor components. Some specific cultivars were found with extremely high levels of trans-resveratrol, cis- piceid, trans-piceid or total resveratrols in berry skins or leaves. In skins and leaves, rootstock cultivars had a higher content of total resveratrols, and the cultivated European type cultivars and their hybrids with V. labrusca had relatively low totals. There were no significant correlations of the amounts of total resveratrols or any individual resveratrol between berry skins and leaves. All 75 cultivars can be divided into four groups based on the composition of resveratrols and their concentration by principal component analysis. Conclusion Resveratrol content of grape berries and leaves varied largely with their genetic background and usage. Rootstock cultivars had a higher content of total resveratrols than the other germplasm. Total resveratrols were lower in leaves than berry skins in most cultivars. Cis-piceid was the most abundant resveratrol in most cultivars, and trans-res and trans-pd were minor components. PMID:23637874
Principal Investigator Microgravity Services Role in ISS Acceleration Data Distribution
NASA Technical Reports Server (NTRS)
McPherson, Kevin
1999-01-01
Measurement of the microgravity acceleration environment on the International Space Station will be accomplished by two accelerometer systems. The Microgravity Acceleration Measurement System will record the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime comprised of vehicle, crew, and equipment disturbances will be accomplished by the Space Acceleration Measurement System-II. Due to the dynamic nature of the microgravity environment and its potential to influence sensitive experiments, Principal Investigators require distribution of microgravity acceleration in a timely and straightforward fashion. In addition to this timely distribution of the data, long term access to International Space Station microgravity environment acceleration data is required. The NASA Glenn Research Center's Principal Investigator Microgravity Services project will provide the means for real-time and post experiment distribution of microgravity acceleration data to microgravity science Principal Investigators. Real-time distribution of microgravity environment acceleration data will be accomplished via the World Wide Web. Data packets from the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System-II will be routed from onboard the International Space Station to the NASA Glenn Research Center's Telescience Support Center. Principal Investigator Microgravity Services' ground support equipment located at the Telescience Support Center will be capable of generating a standard suite of acceleration data displays, including various time domain and frequency domain options. These data displays will be updated in real-time and will periodically update images available via the Principal Investigator Microgravity Services web page.
NASA Technical Reports Server (NTRS)
Conel, J. E.
1983-01-01
NS-001 multispectral scanner data (0.45-2.35 micron) combined as principal components were utilized to map distributions of surface oxidation/weathering in Precambrian granitic rocks at Copper Mountain, Wyoming. Intense oxidation is found over granitic outcrops in partly exhumed pediments along the southern margin of the Owl Creek uplift, and along paleodrainages higher in the range. Supergene(?) uranium mineralization in the granites is localized beneath remnant Tertiary sediments covering portions of the pediments. The patterns of mineralization and oxidation are in agreement, but the genetic connections between the two remain in doubt.
ERIC Educational Resources Information Center
Chou, Yeh-Tai; Wang, Wen-Chung
2010-01-01
Dimensionality is an important assumption in item response theory (IRT). Principal component analysis on standardized residuals has been used to check dimensionality, especially under the family of Rasch models. It has been suggested that an eigenvalue greater than 1.5 for the first eigenvalue signifies a violation of unidimensionality when there…
ERIC Educational Resources Information Center
Brusco, Michael J.; Singh, Renu; Steinley, Douglas
2009-01-01
The selection of a subset of variables from a pool of candidates is an important problem in several areas of multivariate statistics. Within the context of principal component analysis (PCA), a number of authors have argued that subset selection is crucial for identifying those variables that are required for correct interpretation of the…
Relaxation mode analysis of a peptide system: comparison with principal component analysis.
Mitsutake, Ayori; Iijima, Hiromitsu; Takano, Hiroshi
2011-10-28
This article reports the first attempt to apply the relaxation mode analysis method to a simulation of a biomolecular system. In biomolecular systems, the principal component analysis is a well-known method for analyzing the static properties of fluctuations of structures obtained by a simulation and classifying the structures into some groups. On the other hand, the relaxation mode analysis has been used to analyze the dynamic properties of homopolymer systems. In this article, a long Monte Carlo simulation of Met-enkephalin in gas phase has been performed. The results are analyzed by the principal component analysis and relaxation mode analysis methods. We compare the results of both methods and show the effectiveness of the relaxation mode analysis.
Fast principal component analysis for stacking seismic data
NASA Astrophysics Data System (ADS)
Wu, Juan; Bai, Min
2018-04-01
Stacking seismic data plays an indispensable role in many steps of the seismic data processing and imaging workflow. Optimal stacking of seismic data can help mitigate seismic noise and enhance the principal components to a great extent. Traditional average-based seismic stacking methods cannot obtain optimal performance when the ambient noise is extremely strong. We propose a principal component analysis (PCA) algorithm for stacking seismic data without being sensitive to noise level. Considering the computational bottleneck of the classic PCA algorithm in processing massive seismic data, we propose an efficient PCA algorithm to make the proposed method readily applicable for industrial applications. Two numerically designed examples and one real seismic data are used to demonstrate the performance of the presented method.
Wongchai, C; Chaidee, A; Pfeiffer, W
2012-01-01
Global warming increases plant salt stress via evaporation after irrigation, but how plant cells sense salt stress remains unknown. Here, we searched for correlation-based targets of salt stress sensing in Chenopodium rubrum cell suspension cultures. We proposed a linkage between the sensing of salt stress and the sensing of distinct metabolites. Consequently, we analysed various extracellular pH signals in autotroph and heterotroph cell suspensions. Our search included signals after 52 treatments: salt and osmotic stress, ion channel inhibitors (amiloride, quinidine), salt-sensing modulators (proline), amino acids, carboxylic acids and regulators (salicylic acid, 2,4-dichlorphenoxyacetic acid). Multivariate analyses revealed hirarchical clusters of signals and five principal components of extracellular proton flux. The principal component correlated with salt stress was an antagonism of γ-aminobutyric and salicylic acid, confirming involvement of acid-sensing ion channels (ASICs) in salt stress sensing. Proline, short non-substituted mono-carboxylic acids (C2-C6), lactic acid and amiloride characterised the four uncorrelated principal components of proton flux. The proline-associated principal component included an antagonism of 2,4-dichlorphenoxyacetic acid and a set of amino acids (hydrophobic, polar, acidic, basic). The five principal components captured 100% of variance of extracellular proton flux. Thus, a bias-free, functional high-throughput screening was established to extract new clusters of response elements and potential signalling pathways, and to serve as a core for quantitative meta-analysis in plant biology. The eigenvectors reorient research, associating proline with development instead of salt stress, and the proof of existence of multiple components of proton flux can help to resolve controversy about the acid growth theory. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.
NASA Astrophysics Data System (ADS)
Fursdon, M.; Barrett, T.; Domptail, F.; Evans, Ll M.; Luzginova, N.; Greuner, N. H.; You, J.-H.; Li, M.; Richou, M.; Gallay, F.; Visca, E.
2017-12-01
The design and development of a novel plasma facing component (for fusion power plants) is described. The component uses the existing ‘monoblock’ construction which consists of a tungsten ‘block’ joined via a copper interlayer to a through CuCrZr cooling pipe. In the new concept the interlayer stiffness and conductivity properties are tuned so that stress in the principal structural element of the component (the cooling pipe) is reduced. Following initial trials with off-the-shelf materials, the concept was realized by machined features in an otherwise solid copper interlayer. The shape and distribution of the features were tuned by finite element analyses subject to ITER structural design criterion in-vessel components (SDC-IC) design rules. Proof of concept mock-ups were manufactured using a two stage brazing process verified by tomography and micrographic inspection. Full assemblies were inspected using ultrasound and thermographic (SATIR) test methods at ENEA and CEA respectively. High heat flux tests using IPP’s GLADIS facility showed that 200 cycles at 20 MW m-2 and five cycles at 25 MW m-2 could be sustained without apparent component damage. Further testing and component development is planned.
2016-01-01
Tissue architecture is intimately linked with its functions, and loss of tissue organization is often associated with pathologies. The intricate depth-dependent extracellular matrix (ECM) arrangement in articular cartilage is critical to its biomechanical functions. In this study, we developed a Raman spectroscopic imaging approach to gain new insight into the depth-dependent arrangement of native and tissue-engineered articular cartilage using bovine tissues and cells. Our results revealed previously unreported tissue complexity into at least six zones above the tidemark based on a principal component analysis and k-means clustering analysis of the distribution and orientation of the main ECM components. Correlation of nanoindentation and Raman spectroscopic data suggested that the biomechanics across the tissue depth are influenced by ECM microstructure rather than composition. Further, Raman spectroscopy together with multivariate analysis revealed changes in the collagen, glycosaminoglycan, and water distributions in tissue-engineered constructs over time. These changes were assessed using simple metrics that promise to instruct efforts toward the regeneration of a broad range of tissues with native zonal complexity and functional performance. PMID:28058277
Revisiting AVHRR Tropospheric Aerosol Trends Using Principal Component Analysis
NASA Technical Reports Server (NTRS)
Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.
2014-01-01
The advanced very high resolution radiometer (AVHRR) satellite instruments provide a nearly 25 year continuous record of global aerosol properties over the ocean. It offers valuable insights into the long-term change in global aerosol loading. However, the AVHRR data record is heavily influenced by two volcanic eruptions, El Chichon on March 1982 and Mount Pinatubo on June 1991. The gradual decay of volcanic aerosols may last years after the eruption, which potentially masks the estimation of aerosol trends in the lower troposphere, especially those of anthropogenic origin. In this study, we show that a principal component analysis approach effectively captures the bulk of the spatial and temporal variability of volcanic aerosols into a single mode. The spatial pattern and time series of this mode provide a good match to the global distribution and decay of volcanic aerosols. We further reconstruct the data set by removing the volcanic aerosol component and reestimate the global and regional aerosol trends. Globally, the reconstructed data set reveals an increase of aerosol optical depth from 1985 to 1990 and decreasing trend from 1994 to 2006. Regionally, in the 1980s, positive trends are observed over the North Atlantic and North Arabian Sea, while negative tendencies are present off the West African coast and North Pacific. During the 1994 to 2006 period, the Gulf of Mexico, North Atlantic close to Europe, and North Africa exhibit negative trends, while the coastal regions of East and South Asia, the Sahel region, and South America show positive trends.
Hou, Deyi; O'Connor, David; Nathanail, Paul; Tian, Li; Ma, Yan
2017-12-01
Heavy metal soil contamination is associated with potential toxicity to humans or ecotoxicity. Scholars have increasingly used a combination of geographical information science (GIS) with geostatistical and multivariate statistical analysis techniques to examine the spatial distribution of heavy metals in soils at a regional scale. A review of such studies showed that most soil sampling programs were based on grid patterns and composite sampling methodologies. Many programs intended to characterize various soil types and land use types. The most often used sampling depth intervals were 0-0.10 m, or 0-0.20 m, below surface; and the sampling densities used ranged from 0.0004 to 6.1 samples per km 2 , with a median of 0.4 samples per km 2 . The most widely used spatial interpolators were inverse distance weighted interpolation and ordinary kriging; and the most often used multivariate statistical analysis techniques were principal component analysis and cluster analysis. The review also identified several determining and correlating factors in heavy metal distribution in soils, including soil type, soil pH, soil organic matter, land use type, Fe, Al, and heavy metal concentrations. The major natural and anthropogenic sources of heavy metals were found to derive from lithogenic origin, roadway and transportation, atmospheric deposition, wastewater and runoff from industrial and mining facilities, fertilizer application, livestock manure, and sewage sludge. This review argues that the full potential of integrated GIS and multivariate statistical analysis for assessing heavy metal distribution in soils on a regional scale has not yet been fully realized. It is proposed that future research be conducted to map multivariate results in GIS to pinpoint specific anthropogenic sources, to analyze temporal trends in addition to spatial patterns, to optimize modeling parameters, and to expand the use of different multivariate analysis tools beyond principal component analysis (PCA) and cluster analysis (CA). Copyright © 2017 Elsevier Ltd. All rights reserved.
Heavy metals seasonal variability and distribution in Lake Qaroun sediments, El-Fayoum, Egypt
NASA Astrophysics Data System (ADS)
Redwan, Mostafa; Elhaddad, Engy
2017-10-01
This study was carried out to investigate the seasonal variability and distribution of heavy metals ;HMs; (Fe, Mn, Co, Cr, Cu, Ni, Pb, Zn and V) in the bottom sediments of Lake Qaroun, in Egypt. The samples were collected from 10 sites in summer and winter seasons in 2015. Total metals concentrations were measured using inductively coupled plasma spectrometer. Multivariate techniques were applied to analyse the distribution and potential source of heavy metals. The mean seasonal concentrations follow a descending order of Fe > Mn > V > Zn > Cr > Ni > Cu > Co > Pb. The mean concentrations of HMs in sediments during summer were higher than the concentrations during winter and above the average world shale values, except for Pb, suggesting potential adverse toxicity to aquatic organisms. All metals showed enrichment during summer and winter at sites S3 and S5 in the southeastern parts of the lake due to the heavy discharge of contaminants from El-Bats and El-Wadi drains. Principal component analysis results suggested two principal components controlling HMs variability in sediments, which accounted for 63.9% (factor 1: Co, Cr, Cu, Ni, Zn, Pb and V), 15.9% (factor 2: Mn and Fe) during summer, and 76.7% (factor 1: Fe, Co, Cr, Cu, Ni, Zn, Pb and V), 13.8% (factor 2: Mn) during winter of the total variance. Geo-accumulation index (Igeo) showed some pollution risk at the southeastern and southern parts (sites S3 and S5). Dilution during winter, concentration during summer, impact of non-point sources from different agricultural, industrial, municipal sewage and fish farms in the southern part of Lake Qaroun, adsorption and salt dissolution reactions and lithogenic sources are the main controlling factors for HMs in the study area. Monitoring of contaminant discharge at Lake Qaroun should be introduced for future remediation and management strategies.
Surzhikov, V D; Surzhikov, D V
2014-01-01
The search and measurement of causal relationships between exposure to air pollution and health state of the population is based on the system analysis and risk assessment to improve the quality of research. With this purpose there is applied the modern statistical analysis with the use of criteria of independence, principal component analysis and discriminate function analysis. As a result of analysis out of all atmospheric pollutants there were separated four main components: for diseases of the circulatory system main principal component is implied with concentrations of suspended solids, nitrogen dioxide, carbon monoxide, hydrogen fluoride, for the respiratory diseases the main c principal component is closely associated with suspended solids, sulfur dioxide and nitrogen dioxide, charcoal black. The discriminant function was shown to be used as a measure of the level of air pollution.
Priority of VHS Development Based in Potential Area using Principal Component Analysis
NASA Astrophysics Data System (ADS)
Meirawan, D.; Ana, A.; Saripudin, S.
2018-02-01
The current condition of VHS is still inadequate in quality, quantity and relevance. The purpose of this research is to analyse the development of VHS based on the development of regional potential by using principal component analysis (PCA) in Bandung, Indonesia. This study used descriptive qualitative data analysis using the principle of secondary data reduction component. The method used is Principal Component Analysis (PCA) analysis with Minitab Statistics Software tool. The results of this study indicate the value of the lowest requirement is a priority of the construction of development VHS with a program of majors in accordance with the development of regional potential. Based on the PCA score found that the main priority in the development of VHS in Bandung is in Saguling, which has the lowest PCA value of 416.92 in area 1, Cihampelas with the lowest PCA value in region 2 and Padalarang with the lowest PCA value.
Advantages and Challenges of Distributing Leadership in Middle-Level Schools
ERIC Educational Resources Information Center
Grenda, J. Patrick; Hackmann, Donald G.
2014-01-01
This multiple-site case study examined distributed leadership practices of three middle school principals, using observations, interviews, and document analysis. Findings disclosed that the principals built on the interdisciplinary teaming structure to develop empowering organizational structures that promoted democratic governance. Employing…
Woodman, Neal; Stabile, Frank A.
2015-01-01
Myosoricinae is a small clade of shrews (Mammalia, Eulipotyphla, Soricidae) that is currently restricted to the African continent. Individual species have limited distributions that are often associated with higher elevations. Although the majority of species in the subfamily are considered ambulatory in their locomotory behavior, species of the myosoricine genus Surdisorex are known to be semifossorial. To better characterize variation in locomotory behaviors among myosoricines, we calculated 32 morphological indices from skeletal measurements from nine species representing all three genera that comprise the subfamily (i.e., Congosorex, Myosorex, Surdisorex) and compared them to indices calculated for two species with well-documented locomotory behaviors: the ambulatory talpid Uropsilus soricipes and the semifossorial talpid Neurotrichus gibbsii. We summarized the 22 most complete morphological variables by 1) calculating a mean percentile rank for each species and 2) using the first principal component from principal component analysis of the indices. The two methods yielded similar results and indicate grades of adaptations reflecting a range of potential locomotory behaviors from ambulatory to semifossorial that exceeds the range represented by the two talpids. Morphological variation reflecting grades of increased semifossoriality among myosoricine shrews is similar in many respects to that seen for soricines, but some features are unique to the Myosoricinae.
Zere, Eyob; Mandlhate, Custodia; Mbeeli, Thomas; Shangula, Kalumbi; Mutirua, Kauto; Kapenambili, William
2007-01-01
Background The pace of redressing inequities in the distribution of scarce health care resources in Namibia has been slow. This is due primarily to adherence to the historical incrementalist type of budgeting that has been used to allocate resources. Those regions with high levels of deprivation and relatively greater need for health care resources have been getting less than their fair share. To rectify this situation, which was inherited from the apartheid system, there is a need to develop a needs-based resource allocation mechanism. Methods Principal components analysis was employed to compute asset indices from asset based and health-related variables, using data from the Namibia demographic and health survey of 2000. The asset indices then formed the basis of proposals for regional weights for establishing a needs-based resource allocation formula. Results Comparing the current allocations of public sector health car resources with estimates using a needs based formula showed that regions with higher levels of need currently receive fewer resources than do regions with lower need. Conclusion To address the prevailing inequities in resource allocation, the Ministry of Health and Social Services should abandon the historical incrementalist method of budgeting/resource allocation and adopt a more appropriate allocation mechanism that incorporates measures of need for health care. PMID:17391533
The Population Structure and Diversity of Eggplant from Asia and the Mediterranean Basin
Cericola, Fabio; Portis, Ezio; Toppino, Laura; Barchi, Lorenzo; Acciarri, Nazareno; Ciriaci, Tommaso; Sala, Tea; Rotino, Giuseppe Leonardo; Lanteri, Sergio
2013-01-01
A collection of 238 eggplant breeding lines, heritage varieties and selections within local landraces provenanced from Asia and the Mediterranean Basin was phenotyped with respect to key plant and fruit traits, and genotyped using 24 microsatellite loci distributed uniformly throughout the genome. STRUCTURE analysis based on the genotypic data identified two major sub-groups, which to a large extent mirrored the provenance of the entries. With the goal to identify true-breeding types, 38 of the entries were discarded on the basis of microsatellite-based residual heterozygosity, along with a further nine which were not phenotypically uniform. The remaining 191 entries were scored for a set of 19 fruit and plant traits in a replicated experimental field trial. The phenotypic data were subjected to principal component and hierarchical principal component analyses, allowing three major morphological groups to be identified. All three morphological groups were represented in both the “Occidental” and the “Oriental” germplasm, so the correlation between the phenotypic and the genotypic data sets was quite weak. The relevance of these results for evolutionary studies and the further improvement of eggplant are discussed. The population structure of the core set of germplasm shows that it can be used as a basis for an association mapping approach. PMID:24040032
Zere, Eyob; Mandlhate, Custodia; Mbeeli, Thomas; Shangula, Kalumbi; Mutirua, Kauto; Kapenambili, William
2007-03-29
The pace of redressing inequities in the distribution of scarce health care resources in Namibia has been slow. This is due primarily to adherence to the historical incrementalist type of budgeting that has been used to allocate resources. Those regions with high levels of deprivation and relatively greater need for health care resources have been getting less than their fair share. To rectify this situation, which was inherited from the apartheid system, there is a need to develop a needs-based resource allocation mechanism. Principal components analysis was employed to compute asset indices from asset based and health-related variables, using data from the Namibia demographic and health survey of 2000. The asset indices then formed the basis of proposals for regional weights for establishing a needs-based resource allocation formula. Comparing the current allocations of public sector health car resources with estimates using a needs based formula showed that regions with higher levels of need currently receive fewer resources than do regions with lower need. To address the prevailing inequities in resource allocation, the Ministry of Health and Social Services should abandon the historical incrementalist method of budgeting/resource allocation and adopt a more appropriate allocation mechanism that incorporates measures of need for health care.
NASA Astrophysics Data System (ADS)
Tibaduiza, D.-A.; Torres-Arredondo, M.-A.; Mujica, L. E.; Rodellar, J.; Fritzen, C.-P.
2013-12-01
This article is concerned with the practical use of Multiway Principal Component Analysis (MPCA), Discrete Wavelet Transform (DWT), Squared Prediction Error (SPE) measures and Self-Organizing Maps (SOM) to detect and classify damages in mechanical structures. The formalism is based on a distributed piezoelectric active sensor network for the excitation and detection of structural dynamic responses. Statistical models are built using PCA when the structure is known to be healthy either directly from the dynamic responses or from wavelet coefficients at different scales representing Time-frequency information. Different damages on the tested structures are simulated by adding masses at different positions. The data from the structure in different states (damaged or not) are then projected into the different principal component models by each actuator in order to obtain the input feature vectors for a SOM from the scores and the SPE measures. An aircraft fuselage from an Airbus A320 and a multi-layered carbon fiber reinforced plastic (CFRP) plate are used as examples to test the approaches. Results are presented, compared and discussed in order to determine their potential in structural health monitoring. These results showed that all the simulated damages were detectable and the selected features proved capable of separating all damage conditions from the undamaged state for both approaches.
NASA Astrophysics Data System (ADS)
Cao, Qian; Wan, Xiaoxia; Li, Junfeng; Liu, Qiang; Liang, Jingxing; Li, Chan
2016-10-01
This paper proposed two weight functions based on principal component analysis (PCA) to reserve more colorimetric information in spectral data compression process. One weight function consisted of the CIE XYZ color-matching functions representing the characteristic of the human visual system, while another was made up of the CIE XYZ color-matching functions of human visual system and relative spectral power distribution of the CIE standard illuminant D65. The improvement obtained from the proposed two methods were tested to compress and reconstruct the reflectance spectra of 1600 glossy Munsell color chips and 1950 Natural Color System color chips as well as six multispectral images. The performance was evaluated by the mean values of color difference under the CIE 1931 standard colorimetric observer and the CIE standard illuminant D65 and A. The mean values of root mean square errors between the original and reconstructed spectra were also calculated. The experimental results show that the proposed two methods significantly outperform the standard PCA and another two weighted PCA in the aspects of colorimetric reconstruction accuracy with very slight degradation in spectral reconstruction accuracy. In addition, weight functions with the CIE standard illuminant D65 can improve the colorimetric reconstruction accuracy compared to weight functions without the CIE standard illuminant D65.
Volatile Organic Compounds: Characteristics, distribution and sources in urban schools
NASA Astrophysics Data System (ADS)
Mishra, Nitika; Bartsch, Jennifer; Ayoko, Godwin A.; Salthammer, Tunga; Morawska, Lidia
2015-04-01
Long term exposure to organic pollutants, both inside and outside school buildings may affect children's health and influence their learning performance. Since children spend significant amount of time in school, air quality, especially in classrooms plays a key role in determining the health risks associated with exposure at schools. Within this context, the present study investigated the ambient concentrations of Volatile Organic Compounds (VOCs) in 25 primary schools in Brisbane with the aim to quantify the indoor and outdoor VOCs concentrations, identify VOCs sources and their contribution, and based on these; propose mitigation measures to reduce VOCs exposure in schools. One of the most important findings is the occurrence of indoor sources, indicated by the I/O ratio >1 in 19 schools. Principal Component Analysis with Varimax rotation was used to identify common sources of VOCs and source contribution was calculated using an Absolute Principal Component Scores technique. The result showed that outdoor 47% of VOCs were contributed by petrol vehicle exhaust but the overall cleaning products had the highest contribution of 41% indoors followed by air fresheners and art and craft activities. These findings point to the need for a range of basic precautions during the selection, use and storage of cleaning products and materials to reduce the risk from these sources.
Guo, Xueru; Zuo, Rui; Meng, Li; Wang, Jinsheng; Teng, Yanguo; Liu, Xin; Chen, Minhua
2018-01-01
Globally, groundwater resources are being deteriorated by rapid social development. Thus, there is an urgent need to assess the combined impacts of natural and enhanced anthropogenic sources on groundwater chemistry. The aim of this study was to identify seasonal characteristics and spatial variations in anthropogenic and natural effects, to improve the understanding of major hydrogeochemical processes based on source apportionment. 34 groundwater points located in a riverside groundwater resource area in northeast China were sampled during the wet and dry seasons in 2015. Using principal component analysis and factor analysis, 4 principal components (PCs) were extracted from 16 groundwater parameters. Three of the PCs were water-rock interaction (PC1), geogenic Fe and Mn (PC2), and agricultural pollution (PC3). A remarkable difference (PC4) was organic pollution originating from negative anthropogenic effects during the wet season, and geogenic F enrichment during the dry season. Groundwater exploitation resulted in dramatic depression cone with higher hydraulic gradient around the water source area. It not only intensified dissolution of calcite, dolomite, gypsum, Fe, Mn and fluorine minerals, but also induced more surface water recharge for the water source area. The spatial distribution of the PCs also suggested the center of the study area was extremely vulnerable to contamination by Fe, Mn, COD, and F−. PMID:29415516
Acoustic-articulatory mapping in vowels by locally weighted regression
McGowan, Richard S.; Berger, Michael A.
2009-01-01
A method for mapping between simultaneously measured articulatory and acoustic data is proposed. The method uses principal components analysis on the articulatory and acoustic variables, and mapping between the domains by locally weighted linear regression, or loess [Cleveland, W. S. (1979). J. Am. Stat. Assoc. 74, 829–836]. The latter method permits local variation in the slopes of the linear regression, assuming that the function being approximated is smooth. The methodology is applied to vowels of four speakers in the Wisconsin X-ray Microbeam Speech Production Database, with formant analysis. Results are examined in terms of (1) examples of forward (articulation-to-acoustics) mappings and inverse mappings, (2) distributions of local slopes and constants, (3) examples of correlations among slopes and constants, (4) root-mean-square error, and (5) sensitivity of formant frequencies to articulatory change. It is shown that the results are qualitatively correct and that loess performs better than global regression. The forward mappings show different root-mean-square error properties than the inverse mappings indicating that this method is better suited for the forward mappings than the inverse mappings, at least for the data chosen for the current study. Some preliminary results on sensitivity of the first two formant frequencies to the two most important articulatory principal components are presented. PMID:19813812
The population structure and diversity of eggplant from Asia and the Mediterranean Basin.
Cericola, Fabio; Portis, Ezio; Toppino, Laura; Barchi, Lorenzo; Acciarri, Nazareno; Ciriaci, Tommaso; Sala, Tea; Rotino, Giuseppe Leonardo; Lanteri, Sergio
2013-01-01
A collection of 238 eggplant breeding lines, heritage varieties and selections within local landraces provenanced from Asia and the Mediterranean Basin was phenotyped with respect to key plant and fruit traits, and genotyped using 24 microsatellite loci distributed uniformly throughout the genome. STRUCTURE analysis based on the genotypic data identified two major sub-groups, which to a large extent mirrored the provenance of the entries. With the goal to identify true-breeding types, 38 of the entries were discarded on the basis of microsatellite-based residual heterozygosity, along with a further nine which were not phenotypically uniform. The remaining 191 entries were scored for a set of 19 fruit and plant traits in a replicated experimental field trial. The phenotypic data were subjected to principal component and hierarchical principal component analyses, allowing three major morphological groups to be identified. All three morphological groups were represented in both the "Occidental" and the "Oriental" germplasm, so the correlation between the phenotypic and the genotypic data sets was quite weak. The relevance of these results for evolutionary studies and the further improvement of eggplant are discussed. The population structure of the core set of germplasm shows that it can be used as a basis for an association mapping approach.
ERIC Educational Resources Information Center
National Association of Secondary School Principals, Reston, VA.
Preparation programs for principals should have excellent academic and performance based components. In examining the nature of performance based principal preparation this report finds that school administration programs must bridge the gap between conceptual learning in the classroom and the requirements of professional practice. A number of…
Principal component greenness transformation in multitemporal agricultural Landsat data
NASA Technical Reports Server (NTRS)
Abotteen, R. A.
1978-01-01
A data compression technique for multitemporal Landsat imagery which extracts phenological growth pattern information for agricultural crops is described. The principal component greenness transformation was applied to multitemporal agricultural Landsat data for information retrieval. The transformation was favorable for applications in agricultural Landsat data analysis because of its physical interpretability and its relation to the phenological growth of crops. It was also found that the first and second greenness eigenvector components define a temporal small-grain trajectory and nonsmall-grain trajectory, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, L; Lin, A; Ahn, P
Purpose: To utilize online CBCT scans to develop models for predicting DVH metrics in proton therapy of head and neck tumors. Methods: Nine patients with locally advanced oropharyngeal cancer were retrospectively selected in this study. Deformable image registration was applied to the simulation CT, target volumes, and organs at risk (OARs) contours onto each weekly CBCT scan. Intensity modulated proton therapy (IMPT) treatment plans were created on the simulation CT and forward calculated onto each corrected CBCT scan. Thirty six potentially predictive metrics were extracted from each corrected CBCT. These features include minimum/maximum/mean over and under-ranges at the proximal andmore » distal surface of PTV volumes, and geometrical and water equivalent distance between PTV and each OARs. Principal component analysis (PCA) was used to reduce the dimension of the extracted features. Three principal components were found to account for over 90% of variances in those features. Datasets from eight patients were used to train a machine learning model to fit these principal components with DVH metrics (dose to 95% and 5% of PTV, mean dose or max dose to OARs) from the forward calculated dose on each corrected CBCT. The accuracy of this model was verified on the datasets from the 9th patient. Results: The predicted changes of DVH metrics from the model were in good agreement with actual values calculated on corrected CBCT images. Median differences were within 1 Gy for most DVH metrics except for larynx and constrictor mean dose. However, a large spread of the differences was observed, indicating additional training datasets and predictive features are needed to improve the model. Conclusion: Intensity corrected CBCT scans hold the potential to be used for online verification of proton therapy and prediction of delivered dose distributions.« less
Fernández-Arjona, María Del Mar; Grondona, Jesús M; Granados-Durán, Pablo; Fernández-Llebrez, Pedro; López-Ávalos, María D
2017-01-01
It is known that microglia morphology and function are closely related, but only few studies have objectively described different morphological subtypes. To address this issue, morphological parameters of microglial cells were analyzed in a rat model of aseptic neuroinflammation. After the injection of a single dose of the enzyme neuraminidase (NA) within the lateral ventricle (LV) an acute inflammatory process occurs. Sections from NA-injected animals and sham controls were immunolabeled with the microglial marker IBA1, which highlights ramifications and features of the cell shape. Using images obtained by section scanning, individual microglial cells were sampled from various regions (septofimbrial nucleus, hippocampus and hypothalamus) at different times post-injection (2, 4 and 12 h). Each cell yielded a set of 15 morphological parameters by means of image analysis software. Five initial parameters (including fractal measures) were statistically different in cells from NA-injected rats (most of them IL-1β positive, i.e., M1-state) compared to those from control animals (none of them IL-1β positive, i.e., surveillant state). However, additional multimodal parameters were revealed more suitable for hierarchical cluster analysis (HCA). This method pointed out the classification of microglia population in four clusters. Furthermore, a linear discriminant analysis (LDA) suggested three specific parameters to objectively classify any microglia by a decision tree. In addition, a principal components analysis (PCA) revealed two extra valuable variables that allowed to further classifying microglia in a total of eight sub-clusters or types. The spatio-temporal distribution of these different morphotypes in our rat inflammation model allowed to relate specific morphotypes with microglial activation status and brain location. An objective method for microglia classification based on morphological parameters is proposed. Main points Microglia undergo a quantifiable morphological change upon neuraminidase induced inflammation.Hierarchical cluster and principal components analysis allow morphological classification of microglia.Brain location of microglia is a relevant factor.
Mwove, Johnson K; Gogo, Lilian A; Chikamai, Ben N; Omwamba, Mary; Mahungu, Symon M
2018-03-01
Principal component analysis (PCA) was carried out to study the relationship between 24 meat quality measurements taken from beef round samples that were injected with curing brines containing gum arabic (1%, 1.5%, 2%, 2.5%, and 3%) and soy protein concentrate (SPC) (3.5%) at two injection levels (30% and 35%). The measurements used to describe beef round quality were expressible moisture, moisture content, cook yield, possible injection, achieved gum arabic level in beef round, and protein content, as well as descriptive sensory attributes for flavor, texture, basic tastes, feeling factors, color, and overall acceptability. Several significant correlations were found between beef round quality parameters. The highest significant negative and positive correlations were recorded between color intensity and gray color and between color intensity and brown color, respectively. The first seven principal components (PCs) were extracted explaining over 95% of the total variance. The first PC was characterized by texture attributes (hardness and denseness), feeling factors (chemical taste and chemical burn), and two physicochemical properties (expressible moisture and achieved gum arabic level). Taste attribute (saltiness), physicochemical attributes (cook yield and possible injection), and overall acceptability were useful in defining the second PC, while the third PC was characterized by metallic taste, gray color, brown color, and physicochemical attributes (moisture and protein content). The correlation loading plot showed that the distribution of the samples on the axes of the first two PCs allowed for differentiation of samples injected to 30% injection level which were placed on the upper side of the biplot from those injected to 35% which were placed on the lower side. Similarly, beef samples extended with gum arabic and those containing SPC were also visible when scores for the first and third PCs were plotted. Thus, PCA was efficient in analyzing the quality characteristics of beef rounds extended with gum arabic.
Q-mode versus R-mode principal component analysis for linear discriminant analysis (LDA)
NASA Astrophysics Data System (ADS)
Lee, Loong Chuen; Liong, Choong-Yeun; Jemain, Abdul Aziz
2017-05-01
Many literature apply Principal Component Analysis (PCA) as either preliminary visualization or variable con-struction methods or both. Focus of PCA can be on the samples (R-mode PCA) or variables (Q-mode PCA). Traditionally, R-mode PCA has been the usual approach to reduce high-dimensionality data before the application of Linear Discriminant Analysis (LDA), to solve classification problems. Output from PCA composed of two new matrices known as loadings and scores matrices. Each matrix can then be used to produce a plot, i.e. loadings plot aids identification of important variables whereas scores plot presents spatial distribution of samples on new axes that are also known as Principal Components (PCs). Fundamentally, the scores matrix always be the input variables for building classification model. A recent paper uses Q-mode PCA but the focus of analysis was not on the variables but instead on the samples. As a result, the authors have exchanged the use of both loadings and scores plots in which clustering of samples was studied using loadings plot whereas scores plot has been used to identify important manifest variables. Therefore, the aim of this study is to statistically validate the proposed practice. Evaluation is based on performance of external error obtained from LDA models according to number of PCs. On top of that, bootstrapping was also conducted to evaluate the external error of each of the LDA models. Results show that LDA models produced by PCs from R-mode PCA give logical performance and the matched external error are also unbiased whereas the ones produced with Q-mode PCA show the opposites. With that, we concluded that PCs produced from Q-mode is not statistically stable and thus should not be applied to problems of classifying samples, but variables. We hope this paper will provide some insights on the disputable issues.
Fernández-Arjona, María del Mar; Grondona, Jesús M.; Granados-Durán, Pablo; Fernández-Llebrez, Pedro; López-Ávalos, María D.
2017-01-01
It is known that microglia morphology and function are closely related, but only few studies have objectively described different morphological subtypes. To address this issue, morphological parameters of microglial cells were analyzed in a rat model of aseptic neuroinflammation. After the injection of a single dose of the enzyme neuraminidase (NA) within the lateral ventricle (LV) an acute inflammatory process occurs. Sections from NA-injected animals and sham controls were immunolabeled with the microglial marker IBA1, which highlights ramifications and features of the cell shape. Using images obtained by section scanning, individual microglial cells were sampled from various regions (septofimbrial nucleus, hippocampus and hypothalamus) at different times post-injection (2, 4 and 12 h). Each cell yielded a set of 15 morphological parameters by means of image analysis software. Five initial parameters (including fractal measures) were statistically different in cells from NA-injected rats (most of them IL-1β positive, i.e., M1-state) compared to those from control animals (none of them IL-1β positive, i.e., surveillant state). However, additional multimodal parameters were revealed more suitable for hierarchical cluster analysis (HCA). This method pointed out the classification of microglia population in four clusters. Furthermore, a linear discriminant analysis (LDA) suggested three specific parameters to objectively classify any microglia by a decision tree. In addition, a principal components analysis (PCA) revealed two extra valuable variables that allowed to further classifying microglia in a total of eight sub-clusters or types. The spatio-temporal distribution of these different morphotypes in our rat inflammation model allowed to relate specific morphotypes with microglial activation status and brain location. An objective method for microglia classification based on morphological parameters is proposed. Main points Microglia undergo a quantifiable morphological change upon neuraminidase induced inflammation.Hierarchical cluster and principal components analysis allow morphological classification of microglia.Brain location of microglia is a relevant factor. PMID:28848398
Khamis, Fathiya M.; Masiga, Daniel K.; Mohamed, Samira A.; Salifu, Daisy; de Meyer, Marc; Ekesi, Sunday
2012-01-01
In 2003, a new fruit fly pest species was recorded for the first time in Kenya and has subsequently been found in 28 countries across tropical Africa. The insect was described as Bactrocera invadens, due to its rapid invasion of the African continent. In this study, the morphometry and DNA Barcoding of different populations of B. invadens distributed across the species range of tropical Africa and a sample from the pest's putative aboriginal home of Sri Lanka was investigated. Morphometry using wing veins and tibia length was used to separate B. invadens populations from other closely related Bactrocera species. The Principal component analysis yielded 15 components which correspond to the 15 morphometric measurements. The first two principal axes contributed to 90.7% of the total variance and showed partial separation of these populations. Canonical discriminant analysis indicated that only the first five canonical variates were statistically significant. The first two canonical variates contributed a total of 80.9% of the total variance clustering B. invadens with other members of the B. dorsalis complex while distinctly separating B. correcta, B. cucurbitae, B. oleae and B. zonata. The largest Mahalanobis squared distance (D2 = 122.9) was found to be between B. cucurbitae and B. zonata, while the lowest was observed between B. invadens populations against B. kandiensis (8.1) and against B. dorsalis s.s (11.4). Evolutionary history inferred by the Neighbor-Joining method clustered the Bactrocera species populations into four clusters. First cluster consisted of the B. dorsalis complex (B. invadens, B. kandiensis and B. dorsalis s. s.), branching from the same node while the second group was paraphyletic clades of B. correcta and B. zonata. The last two are monophyletic clades, consisting of B. cucurbitae and B. oleae, respectively. Principal component analysis using the genetic distances confirmed the clustering inferred by the NJ tree. PMID:23028649
Feizbakhsh, Masood; Kadkhodaei, Mahmoud; Zandian, Dana; Hosseinpour, Zahra
2017-01-01
Background: One of the most effective ways for distal movement of molars to treat Class II malocclusion is using extraoral force through a headgear device. The purpose of this study was the comparison of stress distribution in maxillary first molar periodontium using straight pull headgear in vertical and horizontal tubes through finite element method. Materials and Methods: Based on the real geometry model, a basic model of the first molar and maxillary bone was obtained using three-dimensional imaging of the skull. After the geometric modeling of periodontium components through CATIA software and the definition of mechanical properties and element classification, a force of 150 g for each headgear was defined in ABAQUS software. Consequently, Von Mises and Principal stresses were evaluated. The statistical analysis was performed using T-paired and Wilcoxon nonparametric tests. Results: Extension of areas with Von Mises and Principal stresses utilizing straight pull headgear with a vertical tube was not different from that of using a horizontal tube, but the numerical value of the Von Mises stress in the vertical tube was significantly reduced (P < 0/05). On the other hand, the difference of the principal stress between both tubes was not significant (P > 0/05). Conclusion: Based on the results, when force applied to the straight pull headgear with a vertical tube, Von Mises stress was reduced significantly in comparison with the horizontal tube. Therefore, to correct the mesiolingual movement of the maxillary first molar, vertical headgear tube is recommended. PMID:28584535
Asteroid age distributions determined by space weathering and collisional evolution models
NASA Astrophysics Data System (ADS)
Willman, Mark; Jedicke, Robert
2011-01-01
We provide evidence of consistency between the dynamical evolution of main belt asteroids and their color evolution due to space weathering. The dynamical age of an asteroid's surface (Bottke, W.F., Durda, D.D., Nesvorný, D., Jedicke, R., Morbidelli, A., Vokrouhlický, D., Levison, H. [2005]. Icarus 175 (1), 111-140; Nesvorný, D., Jedicke, R., Whiteley, R.J., Ivezić, Ž. [2005]. Icarus 173, 132-152) is the time since its last catastrophic disruption event which is a function of the object's diameter. The age of an S-complex asteroid's surface may also be determined from its color using a space weathering model (e.g. Willman, M., Jedicke, R., Moskovitz, N., Nesvorný, D., Vokrouhlický, D., Mothé-Diniz, T. [2010]. Icarus 208, 758-772; Jedicke, R., Nesvorný, D., Whiteley, R.J., Ivezić, Ž., Jurić, M. [2004]. Nature 429, 275-277; Willman, M., Jedicke, R., Nesvorny, D., Moskovitz, N., Ivezić, Ž., Fevig, R. [2008]. Icarus 195, 663-673. We used a sample of 95 S-complex asteroids from SMASS and obtained their absolute magnitudes and u, g, r, i, z filter magnitudes from SDSS. The absolute magnitudes yield a size-derived age distribution. The u, g, r, i, z filter magnitudes lead to the principal component color which yields a color-derived age distribution by inverting our color-age relationship, an enhanced version of the 'dual τ' space weathering model of Willman et al. (2010). We fit the size-age distribution to the enhanced dual τ model and found characteristic weathering and gardening times of τw = 2050 ± 80 Myr and τg=4400-500+700Myr respectively. The fit also suggests an initial principal component color of -0.05 ± 0.01 for fresh asteroid surface with a maximum possible change of the probable color due to weathering of Δ PC = 1.34 ± 0.04. Our predicted color of fresh asteroid surface matches the color of fresh ordinary chondritic surface of PC1 = 0.17 ± 0.39.
Pintus, M A; Gaspa, G; Nicolazzi, E L; Vicario, D; Rossoni, A; Ajmone-Marsan, P; Nardone, A; Dimauro, C; Macciotta, N P P
2012-06-01
The large number of markers available compared with phenotypes represents one of the main issues in genomic selection. In this work, principal component analysis was used to reduce the number of predictors for calculating genomic breeding values (GEBV). Bulls of 2 cattle breeds farmed in Italy (634 Brown and 469 Simmental) were genotyped with the 54K Illumina beadchip (Illumina Inc., San Diego, CA). After data editing, 37,254 and 40,179 single nucleotide polymorphisms (SNP) were retained for Brown and Simmental, respectively. Principal component analysis carried out on the SNP genotype matrix extracted 2,257 and 3,596 new variables in the 2 breeds, respectively. Bulls were sorted by birth year to create reference and prediction populations. The effect of principal components on deregressed proofs in reference animals was estimated with a BLUP model. Results were compared with those obtained by using SNP genotypes as predictors with either the BLUP or Bayes_A method. Traits considered were milk, fat, and protein yields, fat and protein percentages, and somatic cell score. The GEBV were obtained for prediction population by blending direct genomic prediction and pedigree indexes. No substantial differences were observed in squared correlations between GEBV and EBV in prediction animals between the 3 methods in the 2 breeds. The principal component analysis method allowed for a reduction of about 90% in the number of independent variables when predicting direct genomic values, with a substantial decrease in calculation time and without loss of accuracy. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Karpuzcu, M Ekrem; Fairbairn, David; Arnold, William A; Barber, Brian L; Kaufenberg, Elizabeth; Koskinen, William C; Novak, Paige J; Rice, Pamela J; Swackhamer, Deborah L
2014-01-01
Principal components analysis (PCA) was used to identify sources of emerging organic contaminants in the Zumbro River watershed in Southeastern Minnesota. Two main principal components (PCs) were identified, which together explained more than 50% of the variance in the data. Principal Component 1 (PC1) was attributed to urban wastewater-derived sources, including municipal wastewater and residential septic tank effluents, while Principal Component 2 (PC2) was attributed to agricultural sources. The variances of the concentrations of cotinine, DEET and the prescription drugs carbamazepine, erythromycin and sulfamethoxazole were best explained by PC1, while the variances of the concentrations of the agricultural pesticides atrazine, metolachlor and acetochlor were best explained by PC2. Mixed use compounds carbaryl, iprodione and daidzein did not specifically group with either PC1 or PC2. Furthermore, despite the fact that caffeine and acetaminophen have been historically associated with human use, they could not be attributed to a single dominant land use category (e.g., urban/residential or agricultural). Contributions from septic systems did not clarify the source for these two compounds, suggesting that additional sources, such as runoff from biosolid-amended soils, may exist. Based on these results, PCA may be a useful way to broadly categorize the sources of new and previously uncharacterized emerging contaminants or may help to clarify transport pathways in a given area. Acetaminophen and caffeine were not ideal markers for urban/residential contamination sources in the study area and may need to be reconsidered as such in other areas as well.
Distributed Leadership and Teachers' Affective Commitment
ERIC Educational Resources Information Center
Ross, Lisa; Lutfi, Ghazwan A.; Hope, Warren C.
2016-01-01
Principals' responsibilities have escalated in quantity and complexity. Mandates to increase student achievement and improve school grades overwhelm one person. Hence, principals are obliged to enlist teachers to serve in leadership roles. This research sought to determine whether there is a relationship between distributed leadership and teacher…
Hua, Yang; Liu, Zhanqiang
2018-05-24
Residual stresses of turned Inconel 718 surface along its axial and circumferential directions affect the fatigue performance of machined components. However, it has not been clear that the axial and circumferential directions are the principle residual stress direction. The direction of the maximum principal residual stress is crucial for the machined component service life. The present work aims to focuses on determining the direction and magnitude of principal residual stress and investigating its influence on fatigue performance of turned Inconel 718. The turning experimental results show that the principal residual stress magnitude is much higher than surface residual stress. In addition, both the principal residual stress and surface residual stress increase significantly as the feed rate increases. The fatigue test results show that the direction of the maximum principal residual stress increased by 7.4%, while the fatigue life decreased by 39.4%. The maximum principal residual stress magnitude diminished by 17.9%, whereas the fatigue life increased by 83.6%. The maximum principal residual stress has a preponderant influence on fatigue performance as compared to the surface residual stress. The maximum principal residual stress can be considered as a prime indicator for evaluation of the residual stress influence on fatigue performance of turned Inconel 718.
Principal component analysis for designed experiments.
Konishi, Tomokazu
2015-01-01
Principal component analysis is used to summarize matrix data, such as found in transcriptome, proteome or metabolome and medical examinations, into fewer dimensions by fitting the matrix to orthogonal axes. Although this methodology is frequently used in multivariate analyses, it has disadvantages when applied to experimental data. First, the identified principal components have poor generality; since the size and directions of the components are dependent on the particular data set, the components are valid only within the data set. Second, the method is sensitive to experimental noise and bias between sample groups. It cannot reflect the experimental design that is planned to manage the noise and bias; rather, it estimates the same weight and independence to all the samples in the matrix. Third, the resulting components are often difficult to interpret. To address these issues, several options were introduced to the methodology. First, the principal axes were identified using training data sets and shared across experiments. These training data reflect the design of experiments, and their preparation allows noise to be reduced and group bias to be removed. Second, the center of the rotation was determined in accordance with the experimental design. Third, the resulting components were scaled to unify their size unit. The effects of these options were observed in microarray experiments, and showed an improvement in the separation of groups and robustness to noise. The range of scaled scores was unaffected by the number of items. Additionally, unknown samples were appropriately classified using pre-arranged axes. Furthermore, these axes well reflected the characteristics of groups in the experiments. As was observed, the scaling of the components and sharing of axes enabled comparisons of the components beyond experiments. The use of training data reduced the effects of noise and bias in the data, facilitating the physical interpretation of the principal axes. Together, these introduced options result in improved generality and objectivity of the analytical results. The methodology has thus become more like a set of multiple regression analyses that find independent models that specify each of the axes.
B. Desta Fekedulegn; J.J. Colbert; R.R., Jr. Hicks; Michael E. Schuckers
2002-01-01
The theory and application of principal components regression, a method for coping with multicollinearity among independent variables in analyzing ecological data, is exhibited in detail. A concrete example of the complex procedures that must be carried out in developing a diagnostic growth-climate model is provided. We use tree radial increment data taken from breast...
ERIC Educational Resources Information Center
Rahayu, Sri; Sugiarto, Teguh; Madu, Ludiro; Holiawati; Subagyo, Ahmad
2017-01-01
This study aims to apply the model principal component analysis to reduce multicollinearity on variable currency exchange rate in eight countries in Asia against US Dollar including the Yen (Japan), Won (South Korea), Dollar (Hong Kong), Yuan (China), Bath (Thailand), Rupiah (Indonesia), Ringgit (Malaysia), Dollar (Singapore). It looks at yield…
Radiative Transfer Modeling and Retrievals for Advanced Hyperspectral Sensors
NASA Technical Reports Server (NTRS)
Liu, Xu; Zhou, Daniel K.; Larar, Allen M.; Smith, William L., Sr.; Mango, Stephen A.
2009-01-01
A novel radiative transfer model and a physical inversion algorithm based on principal component analysis will be presented. Instead of dealing with channel radiances, the new approach fits principal component scores of these quantities. Compared to channel-based radiative transfer models, the new approach compresses radiances into a much smaller dimension making both forward modeling and inversion algorithm more efficient.
Taking a Distributed Perspective to the School Principal's Workday
ERIC Educational Resources Information Center
Spillane, James P.; Camburn, Eric M.; Pareja, Amber Stitziel
2007-01-01
Focusing on the school principal's day-to-day work, we examine who leads curriculum and instruction- and administration-related activities when the school principal is not leading but participating in the activity. We also explore the prevalence of coperformance of management and leadership activities in the school principal's workday. Looking…
Principal component analysis of Raman spectra for TiO2 nanoparticle characterization
NASA Astrophysics Data System (ADS)
Ilie, Alina Georgiana; Scarisoareanu, Monica; Morjan, Ion; Dutu, Elena; Badiceanu, Maria; Mihailescu, Ion
2017-09-01
The Raman spectra of anatase/rutile mixed phases of Sn doped TiO2 nanoparticles and undoped TiO2 nanoparticles, synthesised by laser pyrolysis, with nanocrystallite dimensions varying from 8 to 28 nm, was simultaneously processed with a self-written software that applies Principal Component Analysis (PCA) on the measured spectrum to verify the possibility of objective auto-characterization of nanoparticles from their vibrational modes. The photo-excited process of Raman scattering is very sensible to the material characteristics, especially in the case of nanomaterials, where more properties become relevant for the vibrational behaviour. We used PCA, a statistical procedure that performs eigenvalue decomposition of descriptive data covariance, to automatically analyse the sample's measured Raman spectrum, and to interfere the correlation between nanoparticle dimensions, tin and carbon concentration, and their Principal Component values (PCs). This type of application can allow an approximation of the crystallite size, or tin concentration, only by measuring the Raman spectrum of the sample. The study of loadings of the principal components provides information of the way the vibrational modes are affected by the nanoparticle features and the spectral area relevant for the classification.
Sebro, Ronnie; Hoffman, Thomas J.; Lange, Christoph; Rogus, John J.; Risch, Neil J.
2013-01-01
Population stratification leads to a predictable phenomenon—a reduction in the number of heterozygotes compared to that calculated assuming Hardy-Weinberg Equilibrium (HWE). We show that population stratification results in another phenomenon—an excess in the proportion of spouse-pairs with the same genotypes at all ancestrally informative markers, resulting in ancestrally related positive assortative mating. We use principal components analysis to show that there is evidence of population stratification within the Framingham Heart Study, and show that the first principal component correlates with a North-South European cline. We then show that the first principal component is highly correlated between spouses (r=0.58, p=0.0013), demonstrating that there is ancestrally related positive assortative mating among the Framingham Caucasian population. We also show that the single nucleotide polymorphisms loading most heavily on the first principal component show an excess of homozygotes within the spouses, consistent with similar ancestry-related assortative mating in the previous generation. This nonrandom mating likely affects genetic structure seen more generally in the North American population of European descent today, and decreases the rate of decay of linkage disequilibrium for ancestrally informative markers. PMID:20842694
Puri, Ritika; Khamrui, Kaushik; Khetra, Yogesh; Malhotra, Ravinder; Devraja, H C
2016-02-01
Promising development and expansion in the market of cham-cham, a traditional Indian dairy product is expected in the coming future with the organized production of this milk product by some large dairies. The objective of this study was to document the extent of variation in sensory properties of market samples of cham-cham collected from four different locations known for their excellence in cham-cham production and to find out the attributes that govern much of variation in sensory scores of this product using quantitative descriptive analysis (QDA) and principal component analysis (PCA). QDA revealed significant (p < 0.05) difference in sensory attributes of cham-cham among the market samples. PCA identified four significant principal components that accounted for 72.4 % of the variation in the sensory data. Factor scores of each of the four principal components which primarily correspond to sweetness/shape/dryness of interior, surface appearance/surface dryness, rancid and firmness attributes specify the location of each market sample along each of the axes in 3-D graphs. These findings demonstrate the utility of quantitative descriptive analysis for identifying and measuring attributes of cham-cham that contribute most to its sensory acceptability.
Matsen IV, Frederick A.; Evans, Steven N.
2013-01-01
Principal components analysis (PCA) and hierarchical clustering are two of the most heavily used techniques for analyzing the differences between nucleic acid sequence samples taken from a given environment. They have led to many insights regarding the structure of microbial communities. We have developed two new complementary methods that leverage how this microbial community data sits on a phylogenetic tree. Edge principal components analysis enables the detection of important differences between samples that contain closely related taxa. Each principal component axis is a collection of signed weights on the edges of the phylogenetic tree, and these weights are easily visualized by a suitable thickening and coloring of the edges. Squash clustering outputs a (rooted) clustering tree in which each internal node corresponds to an appropriate “average” of the original samples at the leaves below the node. Moreover, the length of an edge is a suitably defined distance between the averaged samples associated with the two incident nodes, rather than the less interpretable average of distances produced by UPGMA, the most widely used hierarchical clustering method in this context. We present these methods and illustrate their use with data from the human microbiome. PMID:23505415
Time Management Ideas for Assistant Principals.
ERIC Educational Resources Information Center
Cronk, Jerry
1987-01-01
Prioritizing the use of time, effective communication, delegating authority, having detailed job descriptions, and good secretarial assistance are important components of time management for assistant principals. (MD)
YORP torque as the function of shape harmonics
NASA Astrophysics Data System (ADS)
Breiter, Sławomir; Michalska, Hanna
2008-08-01
The second-order analytical approximation of the mean Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) torque components is given as an explicit function of the shape spherical harmonics coefficients for a sufficiently regular minor body. The results are based upon a new expression for the insolation function, significantly simpler than in previous works. Linearized plane-parallel model of the temperature distribution derived from the insolation function allows us to take into account a non-zero conductivity. Final expressions for the three average components of the YORP torque related with rotation period, obliquity and precession are given in a form of the Legendre series of the cosine of obliquity. The series have good numerical properties and can be easily truncated according to the degree of the Legendre polynomials or associated functions, with first two terms playing the principal role.
McSherry, Wilfred
2006-07-01
The aim of this study was to generate a deeper understanding of the factors and forces that may inhibit or advance the concepts of spirituality and spiritual care within both nursing and health care. This manuscript presents a model that emerged from a qualitative study using grounded theory. Implementation and use of this model may assist all health care practitioners and organizations to advance the concepts of spirituality and spiritual care within their own sphere of practice. The model has been termed the principal components model because participants identified six components as being crucial to the advancement of spiritual health care. Grounded theory was used meaning that there was concurrent data collection and analysis. Theoretical sampling was used to develop the emerging theory. These processes, along with data analysis, open, axial and theoretical coding led to the identification of a core category and the construction of the principal components model. Fifty-three participants (24 men and 29 women) were recruited and all consented to be interviewed. The sample included nurses (n=24), chaplains (n=7), a social worker (n=1), an occupational therapist (n=1), physiotherapists (n=2), patients (n=14) and the public (n=4). The investigation was conducted in three phases to substantiate the emerging theory and the development of the model. The principal components model contained six components: individuality, inclusivity, integrated, inter/intra-disciplinary, innate and institution. A great deal has been written on the concepts of spirituality and spiritual care. However, rhetoric alone will not remove some of the intrinsic and extrinsic barriers that are inhibiting the advancement of the spiritual dimension in terms of theory and practice. An awareness of and adherence to the principal components model may assist nurses and health care professionals to engage with and overcome some of the structural, organizational, political and social variables that are impacting upon spiritual care.
Vibration detection of component health and operability
NASA Technical Reports Server (NTRS)
Baird, B. C.
1975-01-01
In order to prevent catastrophic failure and eliminate unnecessary periodic maintenance in the shuttle orbiter program environmental control system components, some means of detecting incipient failure in these components is required. The utilization was investigated of vibrational/acoustic phenomena as one of the principal physical parameters on which to base the design of this instrumentation. Baseline vibration/acoustic data was collected from three aircraft type fans and two aircraft type pumps over a frequency range from a few hertz to greater than 3000 kHz. The baseline data included spectrum analysis of the baseband vibration signal, spectrum analysis of the detected high frequency bandpass acoustic signal, and amplitude distribution of the high frequency bandpass acoustic signal. A total of eight bearing defects and two unbalancings was introduced into the five test items. All defects were detected by at least one of a set of vibration/acoustic parameters with a margin of at least 2:1 over the worst case baseline. The design of a portable instrument using this set of vibration/acoustic parameters for detecting incipient failures in environmental control system components is described.
Principal component analysis of the nonlinear coupling of harmonic modes in heavy-ion collisions
NASA Astrophysics Data System (ADS)
BoŻek, Piotr
2018-03-01
The principal component analysis of flow correlations in heavy-ion collisions is studied. The correlation matrix of harmonic flow is generalized to correlations involving several different flow vectors. The method can be applied to study the nonlinear coupling between different harmonic modes in a double differential way in transverse momentum or pseudorapidity. The procedure is illustrated with results from the hydrodynamic model applied to Pb + Pb collisions at √{sN N}=2760 GeV. Three examples of generalized correlations matrices in transverse momentum are constructed corresponding to the coupling of v22 and v4, of v2v3 and v5, or of v23,v33 , and v6. The principal component decomposition is applied to the correlation matrices and the dominant modes are calculated.
Analysis and improvement measures of flight delay in China
NASA Astrophysics Data System (ADS)
Zang, Yuhang
2017-03-01
Firstly, this paper establishes the principal component regression model to analyze the data quantitatively, based on principal component analysis to get the three principal component factors of flight delays. Then the least square method is used to analyze the factors and obtained the regression equation expression by substitution, and then found that the main reason for flight delays is airlines, followed by weather and traffic. Aiming at the above problems, this paper improves the controllable aspects of traffic flow control. For reasons of traffic flow control, an adaptive genetic queuing model is established for the runway terminal area. This paper, establish optimization method that fifteen planes landed simultaneously on the three runway based on Beijing capital international airport, comparing the results with the existing FCFS algorithm, the superiority of the model is proved.
An efficient classification method based on principal component and sparse representation.
Zhai, Lin; Fu, Shujun; Zhang, Caiming; Liu, Yunxian; Wang, Lu; Liu, Guohua; Yang, Mingqiang
2016-01-01
As an important application in optical imaging, palmprint recognition is interfered by many unfavorable factors. An effective fusion of blockwise bi-directional two-dimensional principal component analysis and grouping sparse classification is presented. The dimension reduction and normalizing are implemented by the blockwise bi-directional two-dimensional principal component analysis for palmprint images to extract feature matrixes, which are assembled into an overcomplete dictionary in sparse classification. A subspace orthogonal matching pursuit algorithm is designed to solve the grouping sparse representation. Finally, the classification result is gained by comparing the residual between testing and reconstructed images. Experiments are carried out on a palmprint database, and the results show that this method has better robustness against position and illumination changes of palmprint images, and can get higher rate of palmprint recognition.
Online signature recognition using principal component analysis and artificial neural network
NASA Astrophysics Data System (ADS)
Hwang, Seung-Jun; Park, Seung-Je; Baek, Joong-Hwan
2016-12-01
In this paper, we propose an algorithm for on-line signature recognition using fingertip point in the air from the depth image acquired by Kinect. We extract 10 statistical features from X, Y, Z axis, which are invariant to changes in shifting and scaling of the signature trajectories in three-dimensional space. Artificial neural network is adopted to solve the complex signature classification problem. 30 dimensional features are converted into 10 principal components using principal component analysis, which is 99.02% of total variances. We implement the proposed algorithm and test to actual on-line signatures. In experiment, we verify the proposed method is successful to classify 15 different on-line signatures. Experimental result shows 98.47% of recognition rate when using only 10 feature vectors.
Gaygisiz, Esma
2010-06-01
The correlations among indicators of objective well-being, cultural dimensions, and subjective well-being were investigated using Organisation for Economic Co-operation and Development (OECD) data from 35 countries. The subjective well-being measures included life satisfaction as well as six positive and six negative indexes of experience. Positive and negative experience scores were subjected to principal component analysis, and two positive experience components (labeled as "positive experiences" and "time management") and two negative experience components (labeled as "pain, worry, and sadness" and "anger and boredom") were extracted. Objective well-being included economic indicators, education, and health. The cultural variables included Hofstede's and Schwartz's cultural dimensions, national Big Five personality scores, and national IQs. High life satisfaction was positively related to Gross Domestic Product, life expectancy, education, individualism, affective and intellectual autonomy, egalitarianism, and conscientiousness, whereas low life satisfaction was related to unemployment, unequal income distribution, power distance, masculinity uncertainty avoidance, embeddedness, hierarchy, and neuroticism.
Imaging of polysaccharides in the tomato cell wall with Raman microspectroscopy
2014-01-01
Background The primary cell wall of fruits and vegetables is a structure mainly composed of polysaccharides (pectins, hemicelluloses, cellulose). Polysaccharides are assembled into a network and linked together. It is thought that the percentage of components and of plant cell wall has an important influence on mechanical properties of fruits and vegetables. Results In this study the Raman microspectroscopy technique was introduced to the visualization of the distribution of polysaccharides in cell wall of fruit. The methodology of the sample preparation, the measurement using Raman microscope and multivariate image analysis are discussed. Single band imaging (for preliminary analysis) and multivariate image analysis methods (principal component analysis and multivariate curve resolution) were used for the identification and localization of the components in the primary cell wall. Conclusions Raman microspectroscopy supported by multivariate image analysis methods is useful in distinguishing cellulose and pectins in the cell wall in tomatoes. It presents how the localization of biopolymers was possible with minimally prepared samples. PMID:24917885
NASA Astrophysics Data System (ADS)
Crivori, Patrizia; Zamora, Ismael; Speed, Bill; Orrenius, Christian; Poggesi, Italo
2004-03-01
A number of computational approaches are being proposed for an early optimization of ADME (absorption, distribution, metabolism and excretion) properties to increase the success rate in drug discovery. The present study describes the development of an in silico model able to estimate, from the three-dimensional structure of a molecule, the stability of a compound with respect to the human cytochrome P450 (CYP) 3A4 enzyme activity. Stability data were obtained by measuring the amount of unchanged compound remaining after a standardized incubation with human cDNA-expressed CYP3A4. The computational method transforms the three-dimensional molecular interaction fields (MIFs) generated from the molecular structure into descriptors (VolSurf and Almond procedures). The descriptors were correlated to the experimental metabolic stability classes by a partial least squares discriminant procedure. The model was trained using a set of 1800 compounds from the Pharmacia collection and was validated using two test sets: the first one including 825 compounds from the Pharmacia collection and the second one consisting of 20 known drugs. This model correctly predicted 75% of the first and 85% of the second test set and showed a precision above 86% to correctly select metabolically stable compounds. The model appears a valuable tool in the design of virtual libraries to bias the selection toward more stable compounds. Abbreviations: ADME - absorption, distribution, metabolism and excretion; CYP - cytochrome P450; MIFs - molecular interaction fields; HTS - high throughput screening; DDI - drug-drug interactions; 3D - three-dimensional; PCA - principal components analysis; CPCA - consensus principal components analysis; PLS - partial least squares; PLSD - partial least squares discriminant; GRIND - grid independent descriptors; GRID - software originally created and developed by Professor Peter Goodford.
A method to estimate the effect of deformable image registration uncertainties on daily dose mapping
Murphy, Martin J.; Salguero, Francisco J.; Siebers, Jeffrey V.; Staub, David; Vaman, Constantin
2012-01-01
Purpose: To develop a statistical sampling procedure for spatially-correlated uncertainties in deformable image registration and then use it to demonstrate their effect on daily dose mapping. Methods: Sequential daily CT studies are acquired to map anatomical variations prior to fractionated external beam radiotherapy. The CTs are deformably registered to the planning CT to obtain displacement vector fields (DVFs). The DVFs are used to accumulate the dose delivered each day onto the planning CT. Each DVF has spatially-correlated uncertainties associated with it. Principal components analysis (PCA) is applied to measured DVF error maps to produce decorrelated principal component modes of the errors. The modes are sampled independently and reconstructed to produce synthetic registration error maps. The synthetic error maps are convolved with dose mapped via deformable registration to model the resulting uncertainty in the dose mapping. The results are compared to the dose mapping uncertainty that would result from uncorrelated DVF errors that vary randomly from voxel to voxel. Results: The error sampling method is shown to produce synthetic DVF error maps that are statistically indistinguishable from the observed error maps. Spatially-correlated DVF uncertainties modeled by our procedure produce patterns of dose mapping error that are different from that due to randomly distributed uncertainties. Conclusions: Deformable image registration uncertainties have complex spatial distributions. The authors have developed and tested a method to decorrelate the spatial uncertainties and make statistical samples of highly correlated error maps. The sample error maps can be used to investigate the effect of DVF uncertainties on daily dose mapping via deformable image registration. An initial demonstration of this methodology shows that dose mapping uncertainties can be sensitive to spatial patterns in the DVF uncertainties. PMID:22320766
The reliability and validity of the SF-8 with a conflict-affected population in northern Uganda.
Roberts, Bayard; Browne, John; Ocaka, Kaducu Felix; Oyok, Thomas; Sondorp, Egbert
2008-12-02
The SF-8 is a health-related quality of life instrument that could provide a useful means of assessing general physical and mental health amongst populations affected by conflict. The purpose of this study was to test the validity and reliability of the SF-8 with a conflict-affected population in northern Uganda. A cross-sectional multi-staged, random cluster survey was conducted with 1206 adults in camps for internally displaced persons in Gulu and Amuru districts of northern Uganda. Data quality was assessed by analysing the number of incomplete responses to SF-8 items. Response distribution was analysed using aggregate endorsement frequency. Test-retest reliability was assessed in a separate smaller survey using the intraclass correlation test. Construct validity was measured using principal component analysis, and the Pearson Correlation test for item-summary score correlation and inter-instrument correlations. Known groups validity was assessed using a two sample t-test to evaluates the ability of the SF-8 to discriminate between groups known to have, and not have, physical and mental health problems. The SF-8 showed excellent data quality. It showed acceptable item response distribution based upon analysis of aggregate endorsement frequencies. Test-retest showed a good intraclass correlation of 0.61 for PCS and 0.68 for MCS. The principal component analysis indicated strong construct validity and concurred with the results of the validity tests by the SF-8 developers. The SF-8 also showed strong construct validity between the 8 items and PCS and MCS summary score, moderate inter-instrument validity, and strong known groups validity. This study provides evidence on the reliability and validity of the SF-8 amongst IDPs in northern Uganda.
The reliability and validity of the SF-8 with a conflict-affected population in northern Uganda
Roberts, Bayard; Browne, John; Ocaka, Kaducu Felix; Oyok, Thomas; Sondorp, Egbert
2008-01-01
Background The SF-8 is a health-related quality of life instrument that could provide a useful means of assessing general physical and mental health amongst populations affected by conflict. The purpose of this study was to test the validity and reliability of the SF-8 with a conflict-affected population in northern Uganda. Methods A cross-sectional multi-staged, random cluster survey was conducted with 1206 adults in camps for internally displaced persons in Gulu and Amuru districts of northern Uganda. Data quality was assessed by analysing the number of incomplete responses to SF-8 items. Response distribution was analysed using aggregate endorsement frequency. Test-retest reliability was assessed in a separate smaller survey using the intraclass correlation test. Construct validity was measured using principal component analysis, and the Pearson Correlation test for item-summary score correlation and inter-instrument correlations. Known groups validity was assessed using a two sample t-test to evaluates the ability of the SF-8 to discriminate between groups known to have, and not have, physical and mental health problems. Results The SF-8 showed excellent data quality. It showed acceptable item response distribution based upon analysis of aggregate endorsement frequencies. Test-retest showed a good intraclass correlation of 0.61 for PCS and 0.68 for MCS. The principal component analysis indicated strong construct validity and concurred with the results of the validity tests by the SF-8 developers. The SF-8 also showed strong construct validity between the 8 items and PCS and MCS summary score, moderate inter-instrument validity, and strong known groups validity. Conclusion This study provides evidence on the reliability and validity of the SF-8 amongst IDPs in northern Uganda. PMID:19055716
NASA Astrophysics Data System (ADS)
Eilers, Anna-Christina; Hennawi, Joseph F.; Lee, Khee-Gan
2017-08-01
We present a new Bayesian algorithm making use of Markov Chain Monte Carlo sampling that allows us to simultaneously estimate the unknown continuum level of each quasar in an ensemble of high-resolution spectra, as well as their common probability distribution function (PDF) for the transmitted Lyα forest flux. This fully automated PDF regulated continuum fitting method models the unknown quasar continuum with a linear principal component analysis (PCA) basis, with the PCA coefficients treated as nuisance parameters. The method allows one to estimate parameters governing the thermal state of the intergalactic medium (IGM), such as the slope of the temperature-density relation γ -1, while marginalizing out continuum uncertainties in a fully Bayesian way. Using realistic mock quasar spectra created from a simplified semi-numerical model of the IGM, we show that this method recovers the underlying quasar continua to a precision of ≃ 7 % and ≃ 10 % at z = 3 and z = 5, respectively. Given the number of principal component spectra, this is comparable to the underlying accuracy of the PCA model itself. Most importantly, we show that we can achieve a nearly unbiased estimate of the slope γ -1 of the IGM temperature-density relation with a precision of +/- 8.6 % at z = 3 and +/- 6.1 % at z = 5, for an ensemble of ten mock high-resolution quasar spectra. Applying this method to real quasar spectra and comparing to a more realistic IGM model from hydrodynamical simulations would enable precise measurements of the thermal and cosmological parameters governing the IGM, albeit with somewhat larger uncertainties, given the increased flexibility of the model.
Srisuka, Wichai; Takaoka, Hiroyuki; Otsuka, Yasushi; Fukuda, Masako; Thongsahuan, Sorawat; Taai, Kritsana; Choochote, Wej; Saeung, Atiporn
2015-09-01
This is the first study on the seasonal biodiversity of black flies and evaluation of ecological factors influencing their distribution at Doi Pha Hom Pok National Park, northern Thailand. Larvae were collected from six fixed-stream sites in relation to altitude gradients from May 2011 to April 2013. The water temperature, water pH, conductivity, total dissolved solids (TDS), salt, water velocity, stream width and depth, streambed particle sizes, riparian vegetation, and canopy cover were recorded from each site. Monthly collections from the six sites yielded 5475 last-instar larvae, belonging to 29 black fly species. The most frequently found species from all sites were Simulium asakoae (100%) followed by Simulium yuphae (83.3%), and Simulium chiangdaoense, Simulium gombakense, Simulium phahompokense, Simulium fruticosum, Simulium maeaiense and Simulium fenestratum (66.6%). Of the 5475 last-instar larvae, S. maeaiense (19.3%), S. chiangdaoense (15.8%) and S. asakoae (14.8%), were the three most abundant species. The Shannon diversity index (H) at the six sites with different altitudes of 2100m, 2000m, 1500m, 1400m, 700m, and 500m above mean sea level, were 2.042, 1.832, 2.158, 2.123, 1.821 and 1.822, respectively. The Shannon index and number of taxa in the cold season were higher than those in the rainy and hot seasons. Principal component analysis (PCA) indicated that at least three principal components have eigen values >1.0 and accounted for 93.5% of the total variability of ecological factors among sampling sites. The Canonical correspondence analyses (CCA) showed that most species had a trend towards altitude, canopy cover, riparian vegetation and water velocity. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Phytogeographical Analysis of Seed Plant Genera in China
QIAN, HONG; WANG, SILONG; HE, JIN-SHENG; ZHANG, JUNLI; WANG, LISONG; WANG, XIANLI; GUO, KE
2006-01-01
• Background and Aims A central goal of biogeography and ecology is to uncover and understand distributional patterns of organisms. China has long been a focus of attention because of its rich biota, especially with respect to plants. Using 290 floras from across China, this paper quantitatively characterizes the composition of floristic elements at multiple scales (i.e. national, provincial and local), and explores the extent to which climatic and geographical factors associated with each flora can jointly and independently explain the variation in floristic elements in local floras. • Methods A study was made of 261 local floras, 28 province-level floras and one national-level flora across China. Genera of seed plants in each flora were assigned to 14 floristic elements according to their worldwide geographical distributions. The composition of floristic elements was related to climatic and geographical factors. • Key Results and Conclusions Variations in percentages of cosmopolitan, tropical and temperate genera among local floras tend to be greater at higher latitudes than at lower latitudes. Latitude is strongly correlated with the proportions of 13 of the 14 floristic elements. Correlations of the proportions of floristic elements with longitude are much weaker than those with latitude. Climate represented by the first principal component of a principal component analysis was strongly correlated with the proportions of floristic elements in local floras (|r| = 0·75 ± 0·18). Geographical coordinates independently explained about four times as much variation in floristic elements as did climate. Further research is necessary to examine the roles of water–energy dynamics, geology, soils, biotic interactions, and historical factors such as land connections between continents in the past and at present in creating observed floristic patterns. PMID:16945946
Aghakhanyan, Gayane; Bonanni, Paolo; Randazzo, Giovanna; Nappi, Sara; Tessarotto, Federica; De Martin, Lara; Frijia, Francesca; De Marchi, Daniele; De Masi, Francesco; Kuppers, Beate; Lombardo, Francesco; Caramella, Davide; Montanaro, Domenico
2016-01-01
Angelman syndrome (AS) is a rare neurogenetic disorder due to loss of expression of maternal ubiquitin-protein ligase E3A (UBE3A) gene. It is characterized by severe developmental delay, speech impairment, movement or balance disorder and typical behavioral uniqueness. Affected individuals show normal magnetic resonance imaging (MRI) findings, although mild dysmyelination may be observed. In this study, we adopted a quantitative MRI analysis with voxel-based morphometry (FSL-VBM) method to investigate disease-related changes in the cortical/subcortical grey matter (GM) structures. Since 2006 to 2013 twenty-six AS patients were assessed by our multidisciplinary team. From those, sixteen AS children with confirmed maternal 15q11-q13 deletions (mean age 7.7 ± 3.6 years) and twenty-one age-matched controls were recruited. The developmental delay and motor dysfunction were assessed using Bayley III and Gross Motor Function Measure (GMFM). Principal component analysis (PCA) was applied to the clinical and neuropsychological datasets. High-resolution T1-weighted images were acquired and FSL-VBM approach was applied to investigate differences in the local GM volume and to correlate clinical and neuropsychological changes in the regional distribution of GM. We found bilateral GM volume loss in AS compared to control children in the striatum, limbic structures, insular and orbitofrontal cortices. Voxel-wise correlation analysis with the principal components of the PCA output revealed a strong relationship with GM volume in the superior parietal lobule and precuneus on the left hemisphere. The anatomical distribution of cortical/subcortical GM changes plausibly related to several clinical features of the disease and may provide an important morphological underpinning for clinical and neurobehavioral symptoms in children with AS. PMID:27626634
Cole, Jacqueline M; Cheng, Xie; Payne, Michael C
2016-11-07
The use of principal component analysis (PCA) to statistically infer features of local structure from experimental pair distribution function (PDF) data is assessed on a case study of rare-earth phosphate glasses (REPGs). Such glasses, codoped with two rare-earth ions (R and R') of different sizes and optical properties, are of interest to the laser industry. The determination of structure-property relationships in these materials is an important aspect of their technological development. Yet, realizing the local structure of codoped REPGs presents significant challenges relative to their singly doped counterparts; specifically, R and R' are difficult to distinguish in terms of establishing relative material compositions, identifying atomic pairwise correlation profiles in a PDF that are associated with each ion, and resolving peak overlap of such profiles in PDFs. This study demonstrates that PCA can be employed to help overcome these structural complications, by statistically inferring trends in PDFs that exist for a restricted set of experimental data on REPGs, and using these as training data to predict material compositions and PDF profiles in unknown codoped REPGs. The application of these PCA methods to resolve individual atomic pairwise correlations in t(r) signatures is also presented. The training methods developed for these structural predictions are prevalidated by testing their ability to reproduce known physical phenomena, such as the lanthanide contraction, on PDF signatures of the structurally simpler singly doped REPGs. The intrinsic limitations of applying PCA to analyze PDFs relative to the quality control of source data, data processing, and sample definition, are also considered. While this case study is limited to lanthanide-doped REPGs, this type of statistical inference may easily be extended to other inorganic solid-state materials and be exploited in large-scale data-mining efforts that probe many t(r) functions.
Inoue, Shinji; Akagi, Masao; Asada, Shigeki; Mori, Shigeshi; Zaima, Hironori; Hashida, Masahiko
2016-09-01
Medial tibial condylar fractures (MTCFs) are a rare but serious complication after unicompartmental knee arthroplasty. Although some surgical pitfalls have been reported for MTCFs, it is not clear whether the varus/valgus tibial inclination contributes to the risk of MTCFs. We constructed a 3-dimensional finite elemental method model of the tibia with a medial component and assessed stress concentrations by changing the inclination from 6° varus to 6° valgus. Subsequently, we repeated the same procedure adding extended sagittal bone cuts of 2° and 10° in the posterior tibial cortex. Furthermore, we calculated the bone volume that supported the tibial component, which is considered to affect stress distribution in the medial tibial condyle. Stress concentrations were observed on the medial tibial metaphyseal cortices and on the anterior and posterior tibial cortices in the corner of cut surfaces in all models; moreover, the maximum principal stresses on the posterior cortex were larger than those on the anterior cortex. The extended sagittal bone cuts in the posterior tibial cortex increased the stresses further at these 3 sites. In the models with a 10° extended sagittal bone cut, the maximum principal stress on the posterior cortex increased as the tibial inclination changed from 6° varus to 6° valgus. The bone volume decreased as the inclination changed from varus to valgus. In this finite element method, the risk of MTCFs increases with increasing valgus inclination of the tibial component and with increased extension of the sagittal cut in the posterior tibial cortex. Copyright © 2016 Elsevier Inc. All rights reserved.
Topographical characteristics and principal component structure of the hypnagogic EEG.
Tanaka, H; Hayashi, M; Hori, T
1997-07-01
The purpose of the present study was to identify the dominant topographic components of electroencephalographs (EEG) and their behavior during the waking-sleeping transition period. Somnography of nocturnal sleep was recorded on 10 male subjects. Each recording, from "lights-off" to 5 minutes after the appearance of the first sleep spindle, was analyzed. The typical EEG patterns during hypnagogic period were classified into nine EEG stages. Topographic maps demonstrated that the dominant areas of alpha-band activity moved from the posterior areas to anterior areas along the midline of the scalp. In delta-, theta-, and sigma-band activities, the differences of EEG amplitude between the focus areas (the dominant areas) and the surrounding areas increased as a function of EEG stage. To identify the dominant topographic components, a principal component analysis was carried out on a 12-channel EEG data set for each of six frequency bands. The dominant areas of alpha 2- (9.6-11.4 Hz) and alpha 3- (11.6-13.4 Hz) band activities moved from the posterior to anterior areas, respectively. The distribution of alpha 2-band activity on the scalp clearly changed just after EEG stage 3 (alpha intermittent, < 50%). On the other hand, alpha 3-band activity became dominant in anterior areas after the appearance of vertex sharp-wave bursts (EEG stage 7). For the sigma band, the amplitude of extensive areas from the frontal pole to the parietal showed a rapid rise after the onset of stage 7 (the appearance of vertex sharp-wave bursts). Based on the results, sleep onset process probably started before the onset of sleep stage 1 in standard criteria. On the other hand, the basic sleep process may start before the onset of sleep stage 2 or the manually scored spindles.
Zhang, Yufeng; Wang, Xiaoan; Wo, Siukwan; Ho, Hingman; Han, Quanbin; Fan, Xiaohui; Zuo, Zhong
2015-01-01
Resolving components and determining their pseudo-molecular ions (PMIs) are crucial steps in identifying complex herbal mixtures by liquid chromatography-mass spectrometry. To tackle such labor-intensive steps, we present here a novel algorithm for simultaneous detection of components and their PMIs. Our method consists of three steps: (1) obtaining a simplified dataset containing only mono-isotopic masses by removal of background noise and isotopic cluster ions based on the isotopic distribution model derived from all the reported natural compounds in dictionary of natural products; (2) stepwise resolving and removing all features of the highest abundant component from current simplified dataset and calculating PMI of each component according to an adduct-ion model, in which all non-fragment ions in a mass spectrum are considered as PMI plus one or several neutral species; (3) visual classification of detected components by principal component analysis (PCA) to exclude possible non-natural compounds (such as pharmaceutical excipients). This algorithm has been successfully applied to a standard mixture and three herbal extract/preparations. It indicated that our algorithm could detect components' features as a whole and report their PMI with an accuracy of more than 98%. Furthermore, components originated from excipients/contaminants could be easily separated from those natural components in the bi-plots of PCA. Copyright © 2014 Elsevier B.V. All rights reserved.
Jesse, Stephen; Kalinin, Sergei V
2009-02-25
An approach for the analysis of multi-dimensional, spectroscopic-imaging data based on principal component analysis (PCA) is explored. PCA selects and ranks relevant response components based on variance within the data. It is shown that for examples with small relative variations between spectra, the first few PCA components closely coincide with results obtained using model fitting, and this is achieved at rates approximately four orders of magnitude faster. For cases with strong response variations, PCA allows an effective approach to rapidly process, de-noise, and compress data. The prospects for PCA combined with correlation function analysis of component maps as a universal tool for data analysis and representation in microscopy are discussed.
The Artistic Nature of the High School Principal.
ERIC Educational Resources Information Center
Ritschel, Robert E.
The role of high school principals can be compared to that of composers of music. For instance, composers put musical components together into a coherent whole; similarly, principals organize high schools by establishing class schedules, assigning roles to subordinates, and maintaining a safe and orderly learning environment. Second, composers…
ERIC Educational Resources Information Center
Odegard-Koester, Melissa A.; Watkins, Paul
2016-01-01
The working relationship between principals and school counselors have received some attention in the literature, however, little empirical research exists that examines specifically the components that facilitate a collaborative working relationship between the principal and school counselor. This qualitative case study examined the unique…
The Retention and Attrition of Catholic School Principals
ERIC Educational Resources Information Center
Durow, W. Patrick; Brock, Barbara L.
2004-01-01
This article reports the results of a study of the retention of principals in Catholic elementary and secondary schools in one Midwestern diocese. Findings revealed that personal needs, career advancement, support from employer, and clearly defined role expectations were key factors in principals' retention decisions. A profile of components of…
Rogula-Kozłowska, Wioletta; Majewski, Grzegorz; Czechowski, Piotr Oskar
2015-05-01
Ambient particulate matter (PM) was sampled in Zabrze (southern Poland) in the heating period of 2009. It was investigated for distribution of its mass and of the masses of its 18 component elements (S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Ge, As, Br, Sr, Cd, Sb, Ba, and Pb) among 13 PM size fractions. In the paper, the distribution modality of and the correlations between the ambient concentrations of these elements are discussed and interpreted in terms of the source apportionment of PM emissions. By weight, S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Ge, As, Br, Sr, Cd, Sb, Ba, and Pb were 10% of coarse and 9% of ultrafine particles. The collective mass of these elements was no more than 3.5 % of the mass of the particles with the aerodynamic diameter D p between 0.4 and 1.0 μm (PM₀.₄₋₁), whose ambient mass concentration was the highest. The PM mass size distribution for the sampling period is bimodal; it has the accumulation and coarse modes. The coarse particles were probably of the mineral/soil origin (characteristic elements: Ca, Fe, Sr, and Ba), being re-suspended polluted soil or road dust (characteristic elements: Ca, Fe, Sr, Ba, S, K, Cr, Cu, Zn, Br, Sb, Pb). The maxima of the density functions (modes) of the concentration distributions with respect to particle size of PM-bound S, Cl, K, Cu, Zn, Ge, Br, Cd, Sb, and Pb within the D p interval from 0.108 to 1.6 μm (accumulation PM particles) indicate the emissions from furnaces and road traffic. The distributions of PM-bound As, Mn, Ba, and Sr concentrations have their modes within D p ≤ 0.108 μm (nucleation PM particles), indicating the emissions from high-temperature processes (industrial sources or car engines). In this work, principal component analysis (PCA) is applied separately to each of the 13 fraction-related sets of the concentrations of the 18 PM-bound elements, and further, the fractions are grouped by their origin using cluster analysis (CA) applied to the 13 fraction-related first principal components (PC1). Four distinct groups of the PM fractions are identified: (PM₁.₆₋₂.₅, PM₂.₅₋₄.₄,), (PM₀.₀₃₋₀.₀₆, PM₀.₁₀₈₋₀.₁₇), (PM₀.₀₆₋₀.₁₀₈, PM₀.₁₇₋₀.₂₆, PM₀.₂₆₋₀.₄, PM₀.₄₋₀.₆₅, PM₀.₆₅₋₁, PM₁₋₁.₆), and (PM₄.₄₋₆.₈, PM₆.₈₋₁₀, PM>₁₀). The PM sources attributed to these groups by using PCA followed by CA are roughly the same as the sources from the apportionment done by analyzing the modality of the mass size distributions.
Multivariate frequency domain analysis of protein dynamics
NASA Astrophysics Data System (ADS)
Matsunaga, Yasuhiro; Fuchigami, Sotaro; Kidera, Akinori
2009-03-01
Multivariate frequency domain analysis (MFDA) is proposed to characterize collective vibrational dynamics of protein obtained by a molecular dynamics (MD) simulation. MFDA performs principal component analysis (PCA) for a bandpass filtered multivariate time series using the multitaper method of spectral estimation. By applying MFDA to MD trajectories of bovine pancreatic trypsin inhibitor, we determined the collective vibrational modes in the frequency domain, which were identified by their vibrational frequencies and eigenvectors. At near zero temperature, the vibrational modes determined by MFDA agreed well with those calculated by normal mode analysis. At 300 K, the vibrational modes exhibited characteristic features that were considerably different from the principal modes of the static distribution given by the standard PCA. The influences of aqueous environments were discussed based on two different sets of vibrational modes, one derived from a MD simulation in water and the other from a simulation in vacuum. Using the varimax rotation, an algorithm of the multivariate statistical analysis, the representative orthogonal set of eigenmodes was determined at each vibrational frequency.
Teachers' Organizational Commitment: Examining the Mediating Effects of Distributed Leadership
ERIC Educational Resources Information Center
Devos, Geert; Tuytens, Melissa; Hulpia, Hester
2014-01-01
This study examines the relation between principals' leadership and teachers' organizational commitment, mediated by distributed leadership. Data were collected from 1,495 teachers in 46 secondary schools. Structural equation modeling indicated that the effect of principals' leadership on teachers' organizational commitment is…
The Effect of Instructional Supervision on Principal Trust
ERIC Educational Resources Information Center
Wahnee, Robbie L.
2010-01-01
Within-school climates and culture are predicated on organizational structures, distributions of power, and roles that are highly interactive. Hierarchical structures and uneven power distributions, primarily those of teacher-principal, have been found to challenge levels of trust. School interaction patterns form the basis of much of the school…
Factoring handedness data: II. Geschwind's multidimensional hypothesis.
Messinger, H B; Messinger, M I
1996-06-01
The challenge in this journal by Peters and Murphy to the validity of two published factor analyses of handedness data because of bimodality was dealt with in Part I by identifying measures to normalize the handedness item distributions. A new survey using Oldfield's questionnaire format had 38 bell-shaped (unimodal) handedness-item distributions and 11 that were only marginally bimodal out of the 55 items used in Geschwind's 1986 study. Yet they were still non-normal and the factor analysis was unsatisfactory; bimodality is not the only problem. By choosing a transformation for each item that was optimal as assessed by D'Agostino's K2 statistic, all but two items could be normalized. Seven factors were derived that showed high congruence between maximum likelihood and principal components extractions before and after varimax rotation. Geschwind's assertion that handedness is not unidimensional is therefore supported.
Portraits of Principal Practice: Time Allocation and School Principal Work
ERIC Educational Resources Information Center
Sebastian, James; Camburn, Eric M.; Spillane, James P.
2018-01-01
Purpose: The purpose of this study was to examine how school principals in urban settings distributed their time working on critical school functions. We also examined who principals worked with and how their time allocation patterns varied by school contextual characteristics. Research Method/Approach: The study was conducted in an urban school…
ERIC Educational Resources Information Center
Lawson, J. S.; Inglis, James
1984-01-01
A learning disability index (LDI) for the assessment of intellectual deficits on the Wechsler Intelligence Scale for Children-Revised (WISC-R) is described. The Factor II score coefficients derived from an unrotated principal components analysis of the WISC-R normative data, in combination with the individual's scaled scores, are used for this…
Perturbation analyses of intermolecular interactions
NASA Astrophysics Data System (ADS)
Koyama, Yohei M.; Kobayashi, Tetsuya J.; Ueda, Hiroki R.
2011-08-01
Conformational fluctuations of a protein molecule are important to its function, and it is known that environmental molecules, such as water molecules, ions, and ligand molecules, significantly affect the function by changing the conformational fluctuations. However, it is difficult to systematically understand the role of environmental molecules because intermolecular interactions related to the conformational fluctuations are complicated. To identify important intermolecular interactions with regard to the conformational fluctuations, we develop herein (i) distance-independent and (ii) distance-dependent perturbation analyses of the intermolecular interactions. We show that these perturbation analyses can be realized by performing (i) a principal component analysis using conditional expectations of truncated and shifted intermolecular potential energy terms and (ii) a functional principal component analysis using products of intermolecular forces and conditional cumulative densities. We refer to these analyses as intermolecular perturbation analysis (IPA) and distance-dependent intermolecular perturbation analysis (DIPA), respectively. For comparison of the IPA and the DIPA, we apply them to the alanine dipeptide isomerization in explicit water. Although the first IPA principal components discriminate two states (the α state and PPII (polyproline II) + β states) for larger cutoff length, the separation between the PPII state and the β state is unclear in the second IPA principal components. On the other hand, in the large cutoff value, DIPA eigenvalues converge faster than that for IPA and the top two DIPA principal components clearly identify the three states. By using the DIPA biplot, the contributions of the dipeptide-water interactions to each state are analyzed systematically. Since the DIPA improves the state identification and the convergence rate with retaining distance information, we conclude that the DIPA is a more practical method compared with the IPA. To test the feasibility of the DIPA for larger molecules, we apply the DIPA to the ten-residue chignolin folding in explicit water. The top three principal components identify the four states (native state, two misfolded states, and unfolded state) and their corresponding eigenfunctions identify important chignolin-water interactions to each state. Thus, the DIPA provides the practical method to identify conformational states and their corresponding important intermolecular interactions with distance information.
Perturbation analyses of intermolecular interactions.
Koyama, Yohei M; Kobayashi, Tetsuya J; Ueda, Hiroki R
2011-08-01
Conformational fluctuations of a protein molecule are important to its function, and it is known that environmental molecules, such as water molecules, ions, and ligand molecules, significantly affect the function by changing the conformational fluctuations. However, it is difficult to systematically understand the role of environmental molecules because intermolecular interactions related to the conformational fluctuations are complicated. To identify important intermolecular interactions with regard to the conformational fluctuations, we develop herein (i) distance-independent and (ii) distance-dependent perturbation analyses of the intermolecular interactions. We show that these perturbation analyses can be realized by performing (i) a principal component analysis using conditional expectations of truncated and shifted intermolecular potential energy terms and (ii) a functional principal component analysis using products of intermolecular forces and conditional cumulative densities. We refer to these analyses as intermolecular perturbation analysis (IPA) and distance-dependent intermolecular perturbation analysis (DIPA), respectively. For comparison of the IPA and the DIPA, we apply them to the alanine dipeptide isomerization in explicit water. Although the first IPA principal components discriminate two states (the α state and PPII (polyproline II) + β states) for larger cutoff length, the separation between the PPII state and the β state is unclear in the second IPA principal components. On the other hand, in the large cutoff value, DIPA eigenvalues converge faster than that for IPA and the top two DIPA principal components clearly identify the three states. By using the DIPA biplot, the contributions of the dipeptide-water interactions to each state are analyzed systematically. Since the DIPA improves the state identification and the convergence rate with retaining distance information, we conclude that the DIPA is a more practical method compared with the IPA. To test the feasibility of the DIPA for larger molecules, we apply the DIPA to the ten-residue chignolin folding in explicit water. The top three principal components identify the four states (native state, two misfolded states, and unfolded state) and their corresponding eigenfunctions identify important chignolin-water interactions to each state. Thus, the DIPA provides the practical method to identify conformational states and their corresponding important intermolecular interactions with distance information.
Modelling Ecuador's rainfall distribution according to geographical characteristics.
NASA Astrophysics Data System (ADS)
Tobar, Vladimiro; Wyseure, Guido
2017-04-01
It is known that rainfall is affected by terrain characteristics and some studies had focussed on its distribution over complex terrain. Ecuador's temporal and spatial rainfall distribution is affected by its location on the ITCZ, the marine currents in the Pacific, the Amazon rainforest, and the Andes mountain range. Although all these factors are important, we think that the latter one may hold a key for modelling spatial and temporal distribution of rainfall. The study considered 30 years of monthly data from 319 rainfall stations having at least 10 years of data available. The relatively low density of stations and their location in accessible sites near to main roads or rivers, leave large and important areas ungauged, making it not appropriate to rely on traditional interpolation techniques to estimate regional rainfall for water balance. The aim of this research was to come up with a useful model for seasonal rainfall distribution in Ecuador based on geographical characteristics to allow its spatial generalization. The target for modelling was the seasonal rainfall, characterized by nine percentiles for each one of the 12 months of the year that results in 108 response variables, later on reduced to four principal components comprising 94% of the total variability. Predictor variables for the model were: geographic coordinates, elevation, main wind effects from the Amazon and Coast, Valley and Hill indexes, and average and maximum elevation above the selected rainfall station to the east and to the west, for each one of 18 directions (50-135°, by 5°) adding up to 79 predictors. A multiple linear regression model by the Elastic-net algorithm with cross-validation was applied for each one of the PC as response to select the most important ones from the 79 predictor variables. The Elastic-net algorithm deals well with collinearity problems, while allowing variable selection in a blended approach between the Ridge and Lasso regression. The model fitting produced explained variances of 59%, 81%, 49% and 17% for PC1, PC2, PC3 and PC4, respectively, backing up the hypothesis of good correlation between geographical characteristics and seasonal rainfall patterns (comprised in the four principal components). With the obtained coefficients from the regression, the 108 rainfall percentiles for each station were back estimated giving very good results when compared with the original ones, with an overall 60% explained variance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
H.Zhang, P. Titus, P. Rogoff, A.Zolfaghari, D. Mangra, M. Smith
The National Spherical Torus Experiment (NSTX) is a low aspect ratio, spherical torus (ST) configuration device which is located at Princeton Plasma Physics Laboratory (PPPL) This device is presently being updated to enhance its physics by doubling the TF field to 1 Tesla and increasing the plasma current to 2 Mega-amperes. The upgrades include a replacement of the centerstack and addition of a second neutral beam. The upgrade analyses have two missions. The first is to support design of new components, principally the centerstack, the second is to qualify existing NSTX components for higher loads, which will increase by amore » factor of four. Cost efficiency was a design goal for new equipment qualification, and reanalysis of the existing components. Showing that older components can sustain the increased loads has been a challenging effort in which designs had to be developed that would limit loading on weaker components, and would minimize the extent of modifications needed. Two areas representing this effort have been chosen to describe in more details: analysis of the current distribution in the new TF inner legs, and, second, analysis of the out-of-plane support of the existing TF outer legs.« less
Inayama, T; Kashiwazaki, H; Sakamoto, M
1998-12-01
We tried to analyze synthetically teachers' view points associated with health education and roles of school lunch in primary education. For this purpose, a survey using an open-ended questionnaire consisting of eight items relating to health education in the school curriculum was carried out in 100 teachers of ten public primary schools. Subjects were asked to describe their view regarding the following eight items: 1) health and physical guidance education, 2) school lunch guidance education, 3) pupils' attitude toward their own health and nutrition, 4) health education, 5) role of school lunch in education, 6) future subjects of health education, 7) class room lesson related to school lunch, 8) guidance in case of pupil with unbalanced dieting and food avoidance. Subjects described their own opinions on an open-ended questionnaire response sheet. Keywords in individual descriptions were selected, rearranged and classified into categories according to their own meanings, and each of the selected keywords were used as the dummy variable. To assess individual opinions synthetically, a principal component analysis was then applied to the variables collected through the teachers' descriptions, and four factors were extracted. The results were as follows. 1) Four factors obtained from the repeated principal component analysis were summarized as; roles of health education and school lunch program (the first principal component), cooperation with nurse-teachers and those in charge of lunch service (the second principal component), time allocation for health education in home-room activity and lunch time (the third principal component) and contents of health education and school lunch guidance and their future plan (the fourth principal component). 2) Teachers regarded the role of school lunch in primary education as providing daily supply of nutrients, teaching of table manners and building up friendships with classmates, health education and food and nutrition education, and developing food preferences through eating lunch together with classmates. 3) Significant positive correlation was observed between "the teachers' opinion about the role of school lunch of providing opportunity to learn good behavior for food preferences through eating lunch together with classmates" and the first principal component "roles of health education and school lunch program" (r = 0.39, p < 0.01). The variable "the role of school lunch is health education and food and nutrition education" showed positive correlation with the principle component "cooperation with nurse-teachers and those in charge of lunch service" (r = 0.27, p < 0.01). Interesting relationships obtained were that teachers with longer educational experience tended to place importance in health education and food and nutrition education as the role of school lunch, and that male teachers regarded the roles of school lunch more importantly for future education in primary education than female teachers did.
Phenomenology of mixed states: a principal component analysis study.
Bertschy, G; Gervasoni, N; Favre, S; Liberek, C; Ragama-Pardos, E; Aubry, J-M; Gex-Fabry, M; Dayer, A
2007-12-01
To contribute to the definition of external and internal limits of mixed states and study the place of dysphoric symptoms in the psychopathology of mixed states. One hundred and sixty-five inpatients with major mood episodes were diagnosed as presenting with either pure depression, mixed depression (depression plus at least three manic symptoms), full mixed state (full depression and full mania), mixed mania (mania plus at least three depressive symptoms) or pure mania, using an adapted version of the Mini International Neuropsychiatric Interview (DSM-IV version). They were evaluated using a 33-item inventory of depressive, manic and mixed affective signs and symptoms. Principal component analysis without rotation yielded three components that together explained 43.6% of the variance. The first component (24.3% of the variance) contrasted typical depressive symptoms with typical euphoric, manic symptoms. The second component, labeled 'dysphoria', (13.8%) had strong positive loadings for irritability, distressing sensitivity to light and noise, impulsivity and inner tension. The third component (5.5%) included symptoms of insomnia. Median scores for the first component significantly decreased from the pure depression group to the pure mania group. For the dysphoria component, scores were highest among patients with full mixed states and decreased towards both patients with pure depression and those with pure mania. Principal component analysis revealed that dysphoria represents an important dimension of mixed states.
A Principle Component Analysis of Galaxy Properties from a Large, Gas-Selected Sample
Chang, Yu-Yen; Chao, Rikon; Wang, Wei-Hao; ...
2012-01-01
Disney emore » t al. (2008) have found a striking correlation among global parameters of H i -selected galaxies and concluded that this is in conflict with the CDM model. Considering the importance of the issue, we reinvestigate the problem using the principal component analysis on a fivefold larger sample and additional near-infrared data. We use databases from the Arecibo Legacy Fast Arecibo L -band Feed Array Survey for the gas properties, the Sloan Digital Sky Survey for the optical properties, and the Two Micron All Sky Survey for the near-infrared properties. We confirm that the parameters are indeed correlated where a single physical parameter can explain 83% of the variations. When color ( g - i ) is included, the first component still dominates but it develops a second principal component. In addition, the near-infrared color ( i - J ) shows an obvious second principal component that might provide evidence of the complex old star formation. Based on our data, we suggest that it is premature to pronounce the failure of the CDM model and it motivates more theoretical work.« less
Principal component analysis of dynamic fluorescence images for diagnosis of diabetic vasculopathy
NASA Astrophysics Data System (ADS)
Seo, Jihye; An, Yuri; Lee, Jungsul; Ku, Taeyun; Kang, Yujung; Ahn, Chulwoo; Choi, Chulhee
2016-04-01
Indocyanine green (ICG) fluorescence imaging has been clinically used for noninvasive visualizations of vascular structures. We have previously developed a diagnostic system based on dynamic ICG fluorescence imaging for sensitive detection of vascular disorders. However, because high-dimensional raw data were used, the analysis of the ICG dynamics proved difficult. We used principal component analysis (PCA) in this study to extract important elements without significant loss of information. We examined ICG spatiotemporal profiles and identified critical features related to vascular disorders. PCA time courses of the first three components showed a distinct pattern in diabetic patients. Among the major components, the second principal component (PC2) represented arterial-like features. The explained variance of PC2 in diabetic patients was significantly lower than in normal controls. To visualize the spatial pattern of PCs, pixels were mapped with red, green, and blue channels. The PC2 score showed an inverse pattern between normal controls and diabetic patients. We propose that PC2 can be used as a representative bioimaging marker for the screening of vascular diseases. It may also be useful in simple extractions of arterial-like features.
Zuendorf, Gerhard; Kerrouche, Nacer; Herholz, Karl; Baron, Jean-Claude
2003-01-01
Principal component analysis (PCA) is a well-known technique for reduction of dimensionality of functional imaging data. PCA can be looked at as the projection of the original images onto a new orthogonal coordinate system with lower dimensions. The new axes explain the variance in the images in decreasing order of importance, showing correlations between brain regions. We used an efficient, stable and analytical method to work out the PCA of Positron Emission Tomography (PET) images of 74 normal subjects using [(18)F]fluoro-2-deoxy-D-glucose (FDG) as a tracer. Principal components (PCs) and their relation to age effects were investigated. Correlations between the projections of the images on the new axes and the age of the subjects were carried out. The first two PCs could be identified as being the only PCs significantly correlated to age. The first principal component, which explained 10% of the data set variance, was reduced only in subjects of age 55 or older and was related to loss of signal in and adjacent to ventricles and basal cisterns, reflecting expected age-related brain atrophy with enlarging CSF spaces. The second principal component, which accounted for 8% of the total variance, had high loadings from prefrontal, posterior parietal and posterior cingulate cortices and showed the strongest correlation with age (r = -0.56), entirely consistent with previously documented age-related declines in brain glucose utilization. Thus, our method showed that the effect of aging on brain metabolism has at least two independent dimensions. This method should have widespread applications in multivariate analysis of brain functional images. Copyright 2002 Wiley-Liss, Inc.
HT-FRTC: a fast radiative transfer code using kernel regression
NASA Astrophysics Data System (ADS)
Thelen, Jean-Claude; Havemann, Stephan; Lewis, Warren
2016-09-01
The HT-FRTC is a principal component based fast radiative transfer code that can be used across the electromagnetic spectrum from the microwave through to the ultraviolet to calculate transmittance, radiance and flux spectra. The principal components cover the spectrum at a very high spectral resolution, which allows very fast line-by-line, hyperspectral and broadband simulations for satellite-based, airborne and ground-based sensors. The principal components are derived during a code training phase from line-by-line simulations for a diverse set of atmosphere and surface conditions. The derived principal components are sensor independent, i.e. no extra training is required to include additional sensors. During the training phase we also derive the predictors which are required by the fast radiative transfer code to determine the principal component scores from the monochromatic radiances (or fluxes, transmittances). These predictors are calculated for each training profile at a small number of frequencies, which are selected by a k-means cluster algorithm during the training phase. Until recently the predictors were calculated using a linear regression. However, during a recent rewrite of the code the linear regression was replaced by a Gaussian Process (GP) regression which resulted in a significant increase in accuracy when compared to the linear regression. The HT-FRTC has been trained with a large variety of gases, surface properties and scatterers. Rayleigh scattering as well as scattering by frozen/liquid clouds, hydrometeors and aerosols have all been included. The scattering phase function can be fully accounted for by an integrated line-by-line version of the Edwards-Slingo spherical harmonics radiation code or approximately by a modification to the extinction (Chou scaling).
Wang, Xu; Li, Meiyan; Liu, Junxin; Qu, Jiuhui
2016-07-01
Millions of tons of waste activated sludge (WAS) produced from biological wastewater treatment processes cause severe adverse environmental consequences. A better understanding of WAS composition is thus very critical for sustainable sludge management. In this work, the occurrence and distribution of several fundamental sludge constituents were explored in WAS samples from nine full-scale wastewater treatment plants (WWTPs) of Beijing, China. Among all the components investigated, active heterotrophic biomass was dominant in the samples (up to 9478mg/L), followed by endogenous residues (6736mg/L), extracellular polymeric substances (2088mg/L), and intracellular storage products (464mg/L) among others. Moreover, significant differences (p<0.05) were observed in composition profiles of sludge samples among the studied WWTPs. To identify the potential parameters affecting the variable fractions of sludge components, wastewater source as well as design and operational parameters of WWTPs were studied using statistical methods. The findings indicated that the component fraction of sewage sludge depends more on wastewater treatment alternatives than on wastewater characteristics among other parameters. A principal component analysis was conducted, which further indicated that there was a greater proportion of residual inert biomass in the sludge produced by the combined system of the conventional anaerobic/anoxic/oxic process and a membrane bioreactor. Additionally, a much longer solids retention time was also found to influence the sludge composition and induce an increase in both endogenous inert residues and extracellular polymeric substances in the sludge. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Seo, Jihye; An, Yuri; Lee, Jungsul; Choi, Chulhee
2015-03-01
Indocyanine green (ICG), a near-infrared fluorophore, has been used in visualization of vascular structure and non-invasive diagnosis of vascular disease. Although many imaging techniques have been developed, there are still limitations in diagnosis of vascular diseases. We have recently developed a minimally invasive diagnostics system based on ICG fluorescence imaging for sensitive detection of vascular insufficiency. In this study, we used principal component analysis (PCA) to examine ICG spatiotemporal profile and to obtain pathophysiological information from ICG dynamics. Here we demonstrated that principal components of ICG dynamics in both feet showed significant differences between normal control and diabetic patients with vascula complications. We extracted the PCA time courses of the first three components and found distinct pattern in diabetic patient. We propose that PCA of ICG dynamics reveal better classification performance compared to fluorescence intensity analysis. We anticipate that specific feature of spatiotemporal ICG dynamics can be useful in diagnosis of various vascular diseases.
Leadership Coaching: A Multiple-Case Study of Urban Public Charter School Principals' Experiences
ERIC Educational Resources Information Center
Lackritz, Anne D.
2017-01-01
This multi-case study seeks to understand the experiences of New York City and Washington, DC public charter school principals who have experienced leadership coaching, a component of leadership development, beyond their novice years. The research questions framing this study address how experienced public charter school principals describe the…
The View from the Principal's Office: An Observation Protocol Boosts Literacy :eadership
ERIC Educational Resources Information Center
Novak, Sandi; Houck, Bonnie
2016-01-01
The Minnesota Elementary School Principals' Association offered Minnesota principals professional learning that placed a high priority on literacy instruction and developing a collegial culture. A key component is the literacy classroom visit, an observation protocol used to gather data to determine the status of literacy teaching and student…
ERIC Educational Resources Information Center
Agnew, David W.
2011-01-01
Public school principals must meet many challenges and make decisions concerning financial obligations while providing the best learning environment for students. A major challenge to principals is implementing technological components successfully while providing teachers the 21st century instructional skills needed to enhance students'…
Differential principal component analysis of ChIP-seq.
Ji, Hongkai; Li, Xia; Wang, Qian-fei; Ning, Yang
2013-04-23
We propose differential principal component analysis (dPCA) for analyzing multiple ChIP-sequencing datasets to identify differential protein-DNA interactions between two biological conditions. dPCA integrates unsupervised pattern discovery, dimension reduction, and statistical inference into a single framework. It uses a small number of principal components to summarize concisely the major multiprotein synergistic differential patterns between the two conditions. For each pattern, it detects and prioritizes differential genomic loci by comparing the between-condition differences with the within-condition variation among replicate samples. dPCA provides a unique tool for efficiently analyzing large amounts of ChIP-sequencing data to study dynamic changes of gene regulation across different biological conditions. We demonstrate this approach through analyses of differential chromatin patterns at transcription factor binding sites and promoters as well as allele-specific protein-DNA interactions.
Three dimensional empirical mode decomposition analysis apparatus, method and article manufacture
NASA Technical Reports Server (NTRS)
Gloersen, Per (Inventor)
2004-01-01
An apparatus and method of analysis for three-dimensional (3D) physical phenomena. The physical phenomena may include any varying 3D phenomena such as time varying polar ice flows. A repesentation of the 3D phenomena is passed through a Hilbert transform to convert the data into complex form. A spatial variable is separated from the complex representation by producing a time based covariance matrix. The temporal parts of the principal components are produced by applying Singular Value Decomposition (SVD). Based on the rapidity with which the eigenvalues decay, the first 3-10 complex principal components (CPC) are selected for Empirical Mode Decomposition into intrinsic modes. The intrinsic modes produced are filtered in order to reconstruct the spatial part of the CPC. Finally, a filtered time series may be reconstructed from the first 3-10 filtered complex principal components.
Liang, Xuedong; Liu, Canmian; Li, Zhi
2017-01-01
In connection with the sustainable development of scenic spots, this paper, with consideration of resource conditions, economic benefits, auxiliary industry scale and ecological environment, establishes a comprehensive measurement model of the sustainable capacity of scenic spots; optimizes the index system by principal components analysis to extract principal components; assigns the weight of principal components by entropy method; analyzes the sustainable capacity of scenic spots in each province of China comprehensively in combination with TOPSIS method and finally puts forward suggestions aid decision-making. According to the study, this method provides an effective reference for the study of the sustainable development of scenic spots and is very significant for considering the sustainable development of scenic spots and auxiliary industries to establish specific and scientific countermeasures for improvement. PMID:29271947
The variance needed to accurately describe jump height from vertical ground reaction force data.
Richter, Chris; McGuinness, Kevin; O'Connor, Noel E; Moran, Kieran
2014-12-01
In functional principal component analysis (fPCA) a threshold is chosen to define the number of retained principal components, which corresponds to the amount of preserved information. A variety of thresholds have been used in previous studies and the chosen threshold is often not evaluated. The aim of this study is to identify the optimal threshold that preserves the information needed to describe a jump height accurately utilizing vertical ground reaction force (vGRF) curves. To find an optimal threshold, a neural network was used to predict jump height from vGRF curve measures generated using different fPCA thresholds. The findings indicate that a threshold from 99% to 99.9% (6-11 principal components) is optimal for describing jump height, as these thresholds generated significantly lower jump height prediction errors than other thresholds.
Liang, Xuedong; Liu, Canmian; Li, Zhi
2017-12-22
In connection with the sustainable development of scenic spots, this paper, with consideration of resource conditions, economic benefits, auxiliary industry scale and ecological environment, establishes a comprehensive measurement model of the sustainable capacity of scenic spots; optimizes the index system by principal components analysis to extract principal components; assigns the weight of principal components by entropy method; analyzes the sustainable capacity of scenic spots in each province of China comprehensively in combination with TOPSIS method and finally puts forward suggestions aid decision-making. According to the study, this method provides an effective reference for the study of the sustainable development of scenic spots and is very significant for considering the sustainable development of scenic spots and auxiliary industries to establish specific and scientific countermeasures for improvement.
Zhu, Zongmin; Xue, Junhui; Deng, Yuzhen; Chen, Lin; Liu, Jiangfeng
2016-04-15
Based on geochemical and magnetic approaches, the distribution, sources, and health risk of trace metals in surface sediments from a seashore tourist city were investigated. A significant correlation was found between magnetic susceptibility (χ) and trace metals, which suggested that levels of trace metals in the sediments can be effectively depicted by the magnetic approach. The spatial distribution of χ and trace metals matched well with the city layout with relatively higher values being found in the port and busy tourist areas. This result, together with enrichment factors (EFs) and Tomlinson pollution load index (PLI) of metals, suggested that the influence of human activities on the coastal environment was noticeable. Principal component analysis (PCA) indicated that trace metals in the sediments were derived from both anthropogenic and natural sources. Noncarcinogenic risk assessment showed that there was no potential health risk of exposure to metals by means of ingestion or inhalation. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Allouache, Hadj; Zegaoui, Abdallah; Boutoubat, Mohamed; Bokhtache, Aicha Aissa; Kessaissia, Fatma Zohra; Charles, Jean-Pierre; Aillerie, Michel
2018-05-01
This paper focuses on a photovoltaic generator feeding a load via a boost converter in a distributed PV architecture. The principal target is the evaluation of the efficiency of a distributed photovoltaic architecture powering a direct current (DC) PV bus. This task is achieved by outlining an original way for tracking the Maximum Power Point (MPP) taking into account load variations and duty cycle on the electrical quantities of the boost converter and on the PV generator output apparent impedance. Thereafter, in a given sized PV system, we analyze the influence of the load variations on the behavior of the boost converter and we deduce the limits imposed by the load on the DC PV bus. The simultaneous influences of 1- the variation of the duty cycle of the boost converter and 2- the load power on the parameters of the various components of the photovoltaic chain and on the boost performances are clearly presented as deduced by simulation.
Chen, Meihong; Liu, Yanhua; Guo, Ruixin; Xu, Huaizhou; Song, Ninghui; Han, Zhihua; Chen, Nannan; Zhang, Shenghu; Chen, Jianqiu
2018-05-01
The occurrence and spatiotemporal distribution of 12 organophosphate esters (OPEs) were investigated in the sediments collected from Taihu Lake. Compared to the same lake in 2012 (3.4-14 ng/g dw), the concentrations of ∑12 OPEs in sediments ranged from 10.76 to 335.37 ng/g dw and from 8.06 to 425.39 ng/g dw in 2015 and in 2016, respectively, indicating that the OPEs levels in Taihu Lake have aggravated, recently. TEHP was the most abundant compound of the OPEs, which suggested that TEHP was the most widely used around Taihu Lake recently. The positive correlations between some of individual OPEs and the principal components analysis suggested the same potential sources for them. The strong positive correlation between ∑BPs and TOC content indicated that TOC content was one of the factors affected the distribution of ∑OPEs in the sediment. Risk quotient (RQ) for OPEs showed no high eco-toxicity risk in sediment for aquatic organisms.
Rosales-Hoz, L; Carranza-Edwards, A; Sanvicente-Añorve, L; Alatorre-Mendieta, M A; Rivera-Ramirez, F
2009-11-01
A reef system in the southwestern Gulf of Mexico is affected by anthropogenic activities, sourced by urban, fluvial, and sewage waters. Dissolved metals have higher concentrations during the rainy season. V and Pb, were derived from an industrial source and transported to the study area by rain water. On the other hand, Jamapa River is the main source for Cu and Ni, which carries dissolved elements from adjacent volcanic rocks. Principal Component Analysis shows a common source for dissolved nitrogen, phosphates, TOC, and suspended matters probably derived from a sewage treatment plant, which is situated near to the study area.
NASA Astrophysics Data System (ADS)
Somogyi, Andrea; Medjoubi, Kadda; Sancho-Tomas, Maria; Visscher, P. T.; Baranton, Gil; Philippot, Pascal
2017-09-01
The understanding of real complex geological, environmental and geo-biological processes depends increasingly on in-depth non-invasive study of chemical composition and morphology. In this paper we used scanning hard X-ray nanoprobe techniques in order to study the elemental composition, morphology and As speciation in complex highly heterogeneous geological samples. Multivariate statistical analytical techniques, such as principal component analysis and clustering were used for data interpretation. These measurements revealed the quantitative and valance state inhomogeneity of As and its relation to the total compositional and morphological variation of the sample at sub-μm scales.
Ferrero, Alejandro; Rabal, Ana; Campos, Joaquín; Martínez-Verdú, Francisco; Chorro, Elísabet; Perales, Esther; Pons, Alicia; Hernanz, María Luisa
2013-02-01
A reduced set of measurement geometries allows the spectral reflectance of special effect coatings to be predicted for any other geometry. A physical model based on flake-related parameters has been used to determine nonredundant measurement geometries for the complete description of the spectral bidirectional reflectance distribution function (BRDF). The analysis of experimental spectral BRDF was carried out by means of principal component analysis. From this analysis, a set of nine measurement geometries was proposed to characterize special effect coatings. It was shown that, for two different special effect coatings, these geometries provide a good prediction of their complete color shift.
Distribution of polycyclic aromatic hydrocarbons in urban stormwater in Queensland, Australia.
Herngren, Lars; Goonetilleke, Ashantha; Ayoko, Godwin A; Mostert, Maria M M
2010-09-01
This paper reports the distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in wash-off in urban stormwater in Gold Coast, Australia. Runoff samples collected from residential, industrial and commercial sites were separated into a dissolved fraction (<0.45 microm), and three particulate fractions (0.45-75 microm, 75-150 microm and >150 microm). Patterns in the distribution of PAHs in the fractions were investigated using Principal Component Analysis. Regardless of the land use and particle size fraction characteristics, the presence of organic carbon plays a dominant role in the distribution of PAHs. The PAHs concentrations were also found to decrease with rainfall duration. Generally, the 1- and 2-year average recurrence interval rainfall events were associated with the majority of the PAHs and the wash-off was a source limiting process. In the context of stormwater quality mitigation, targeting the initial part of the rainfall event is the most effective treatment strategy. The implications of the study results for urban stormwater quality management are also discussed. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Richard Tran Mills; Jitendra Kumar; Forrest M. Hoffman; William W. Hargrove; Joseph P. Spruce; Steven P. Norman
2013-01-01
We investigated the use of principal components analysis (PCA) to visualize dominant patterns and identify anomalies in a multi-year land surface phenology data set (231 m à 231 m normalized difference vegetation index (NDVI) values derived from the Moderate Resolution Imaging Spectroradiometer (MODIS)) used for detecting threats to forest health in the conterminous...
Multivariate analysis of light scattering spectra of liquid dairy products
NASA Astrophysics Data System (ADS)
Khodasevich, M. A.
2010-05-01
Visible light scattering spectra from the surface layer of samples of commercial liquid dairy products are recorded with a colorimeter. The principal component method is used to analyze these spectra. Vectors representing the samples of dairy products in a multidimensional space of spectral counts are projected onto a three-dimensional subspace of principal components. The magnitudes of these projections are found to depend on the type of dairy product.
James R. Wallis
1965-01-01
Written in Fortran IV and MAP, this computer program can handle up to 120 variables, and retain 40 principal components. It can perform simultaneous regression of up to 40 criterion variables upon the varimax rotated factor weight matrix. The columns and rows of all output matrices are labeled by six-character alphanumeric names. Data input can be from punch cards or...
The rate of change in declining steroid hormones: a new parameter of healthy aging in men?
Walther, Andreas; Philipp, Michel; Lozza, Niclà; Ehlert, Ulrike
2016-09-20
Research on healthy aging in men has increasingly focused on age-related hormonal changes. Testosterone (T) decline is primarily investigated, while age-related changes in other sex steroids (dehydroepiandrosterone [DHEA], estradiol [E2], progesterone [P]) are mostly neglected. An integrated hormone parameter reflecting aging processes in men has yet to be identified. 271 self-reporting healthy men between 40 and 75 provided both psychometric data and saliva samples for hormone analysis. Correlation analysis between age and sex steroids revealed negative associations for the four sex steroids (T, DHEA, E2, and P). Principal component analysis including ten salivary analytes identified a principal component mainly unifying the variance of the four sex steroid hormones. Subsequent principal component analysis including the four sex steroids extracted the principal component of declining steroid hormones (DSH). Moderation analysis of the association between age and DSH revealed significant moderation effects for psychosocial factors such as depression, chronic stress and perceived general health. In conclusion, these results provide further evidence that sex steroids decline in aging men and that the integrated hormone parameter DSH and its rate of change can be used as biomarkers for healthy aging in men. Furthermore, the negative association of age and DSH is moderated by psychosocial factors.
The rate of change in declining steroid hormones: a new parameter of healthy aging in men?
Walther, Andreas; Philipp, Michel; Lozza, Niclà; Ehlert, Ulrike
2016-01-01
Research on healthy aging in men has increasingly focused on age-related hormonal changes. Testosterone (T) decline is primarily investigated, while age-related changes in other sex steroids (dehydroepiandrosterone [DHEA], estradiol [E2], progesterone [P]) are mostly neglected. An integrated hormone parameter reflecting aging processes in men has yet to be identified. 271 self-reporting healthy men between 40 and 75 provided both psychometric data and saliva samples for hormone analysis. Correlation analysis between age and sex steroids revealed negative associations for the four sex steroids (T, DHEA, E2, and P). Principal component analysis including ten salivary analytes identified a principal component mainly unifying the variance of the four sex steroid hormones. Subsequent principal component analysis including the four sex steroids extracted the principal component of declining steroid hormones (DSH). Moderation analysis of the association between age and DSH revealed significant moderation effects for psychosocial factors such as depression, chronic stress and perceived general health. In conclusion, these results provide further evidence that sex steroids decline in aging men and that the integrated hormone parameter DSH and its rate of change can be used as biomarkers for healthy aging in men. Furthermore, the negative association of age and DSH is moderated by psychosocial factors. PMID:27589836
Fleming, Brandon J.; LaMotte, Andrew E.; Sekellick, Andrew J.
2013-01-01
Hydrogeologic regions in the fractured rock area of Maryland were classified using geographic information system tools with principal components and cluster analyses. A study area consisting of the 8-digit Hydrologic Unit Code (HUC) watersheds with rivers that flow through the fractured rock area of Maryland and bounded by the Fall Line was further subdivided into 21,431 catchments from the National Hydrography Dataset Plus. The catchments were then used as a common hydrologic unit to compile relevant climatic, topographic, and geologic variables. A principal components analysis was performed on 10 input variables, and 4 principal components that accounted for 83 percent of the variability in the original data were identified. A subsequent cluster analysis grouped the catchments based on four principal component scores into six hydrogeologic regions. Two crystalline rock hydrogeologic regions, including large parts of the Washington, D.C. and Baltimore metropolitan regions that represent over 50 percent of the fractured rock area of Maryland, are distinguished by differences in recharge, Precipitation minus Potential Evapotranspiration, sand content in soils, and groundwater contributions to streams. This classification system will provide a georeferenced digital hydrogeologic framework for future investigations of groundwater availability in the fractured rock area of Maryland.
NASA Technical Reports Server (NTRS)
Liu, Xu; Smith, William L.; Zhou, Daniel K.; Larar, Allen
2005-01-01
Modern infrared satellite sensors such as Atmospheric Infrared Sounder (AIRS), Cosmic Ray Isotope Spectrometer (CrIS), Thermal Emission Spectrometer (TES), Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) and Infrared Atmospheric Sounding Interferometer (IASI) are capable of providing high spatial and spectral resolution infrared spectra. To fully exploit the vast amount of spectral information from these instruments, super fast radiative transfer models are needed. This paper presents a novel radiative transfer model based on principal component analysis. Instead of predicting channel radiance or transmittance spectra directly, the Principal Component-based Radiative Transfer Model (PCRTM) predicts the Principal Component (PC) scores of these quantities. This prediction ability leads to significant savings in computational time. The parameterization of the PCRTM model is derived from properties of PC scores and instrument line shape functions. The PCRTM is very accurate and flexible. Due to its high speed and compressed spectral information format, it has great potential for super fast one-dimensional physical retrievals and for Numerical Weather Prediction (NWP) large volume radiance data assimilation applications. The model has been successfully developed for the National Polar-orbiting Operational Environmental Satellite System Airborne Sounder Testbed - Interferometer (NAST-I) and AIRS instruments. The PCRTM model performs monochromatic radiative transfer calculations and is able to include multiple scattering calculations to account for clouds and aerosols.
Relationship between regional population and healthcare delivery in Japan.
Niga, Takeo; Mori, Maiko; Kawahara, Kazuo
2016-01-01
In order to address regional inequality in healthcare delivery in Japan, healthcare districts were established in 1985. However, regional healthcare delivery has now become a national issue because of population migration and the aging population. In this study, the state of healthcare delivery at the district level is examined by analyzing population, the number of physicians, and the number of hospital beds. The results indicate a continuing disparity in healthcare delivery among districts. We find that the rate of change in population has a strong positive correlation with that in the number of physicians and a weak positive correlation with that in the number of hospital beds. In addition, principal component analysis is performed on three variables: the rate of change in population, the number of physicians per capita, and the number of hospital beds per capita. This analysis suggests that the two principal components contribute 90.1% of the information. The first principal component is thought to show the effect of the regulations on hospital beds. The second principal component is thought to show the capacity to recruit physicians. This study indicates that an adjustment to the regulations on hospital beds as well as physician allocation by public funds may be key to resolving the impending issue of regionally disproportionate healthcare delivery.
Performance evaluation of PCA-based spike sorting algorithms.
Adamos, Dimitrios A; Kosmidis, Efstratios K; Theophilidis, George
2008-09-01
Deciphering the electrical activity of individual neurons from multi-unit noisy recordings is critical for understanding complex neural systems. A widely used spike sorting algorithm is being evaluated for single-electrode nerve trunk recordings. The algorithm is based on principal component analysis (PCA) for spike feature extraction. In the neuroscience literature it is generally assumed that the use of the first two or most commonly three principal components is sufficient. We estimate the optimum PCA-based feature space by evaluating the algorithm's performance on simulated series of action potentials. A number of modifications are made to the open source nev2lkit software to enable systematic investigation of the parameter space. We introduce a new metric to define clustering error considering over-clustering more favorable than under-clustering as proposed by experimentalists for our data. Both the program patch and the metric are available online. Correlated and white Gaussian noise processes are superimposed to account for biological and artificial jitter in the recordings. We report that the employment of more than three principal components is in general beneficial for all noise cases considered. Finally, we apply our results to experimental data and verify that the sorting process with four principal components is in agreement with a panel of electrophysiology experts.
Fluorescence fingerprint as an instrumental assessment of the sensory quality of tomato juices.
Trivittayasil, Vipavee; Tsuta, Mizuki; Imamura, Yoshinori; Sato, Tsuneo; Otagiri, Yuji; Obata, Akio; Otomo, Hiroe; Kokawa, Mito; Sugiyama, Junichi; Fujita, Kaori; Yoshimura, Masatoshi
2016-03-15
Sensory analysis is an important standard for evaluating food products. However, as trained panelists and time are required for the process, the potential of using fluorescence fingerprint as a rapid instrumental method to approximate sensory characteristics was explored in this study. Thirty-five out of 44 descriptive sensory attributes were found to show a significant difference between samples (analysis of variance test). Principal component analysis revealed that principal component 1 could capture 73.84 and 75.28% variance for aroma category and combined flavor and taste category respectively. Fluorescence fingerprints of tomato juices consisted of two visible peaks at excitation/emission wavelengths of 290/350 and 315/425 nm and a long narrow emission peak at 680 nm. The 680 nm peak was only clearly observed in juices obtained from tomatoes cultivated to be eaten raw. The ability to predict overall sensory profiles was investigated by using principal component 1 as a regression target. Fluorescence fingerprint could predict principal component 1 of both aroma and combined flavor and taste with a coefficient of determination above 0.8. The results obtained in this study indicate the potential of using fluorescence fingerprint as an instrumental method for assessing sensory characteristics of tomato juices. © 2015 Society of Chemical Industry.
Zhang, Xiaolei; Liu, Fei; He, Yong; Li, Xiaoli
2012-01-01
Hyperspectral imaging in the visible and near infrared (VIS-NIR) region was used to develop a novel method for discriminating different varieties of commodity maize seeds. Firstly, hyperspectral images of 330 samples of six varieties of maize seeds were acquired using a hyperspectral imaging system in the 380–1,030 nm wavelength range. Secondly, principal component analysis (PCA) and kernel principal component analysis (KPCA) were used to explore the internal structure of the spectral data. Thirdly, three optimal wavelengths (523, 579 and 863 nm) were selected by implementing PCA directly on each image. Then four textural variables including contrast, homogeneity, energy and correlation were extracted from gray level co-occurrence matrix (GLCM) of each monochromatic image based on the optimal wavelengths. Finally, several models for maize seeds identification were established by least squares-support vector machine (LS-SVM) and back propagation neural network (BPNN) using four different combinations of principal components (PCs), kernel principal components (KPCs) and textural features as input variables, respectively. The recognition accuracy achieved in the PCA-GLCM-LS-SVM model (98.89%) was the most satisfactory one. We conclude that hyperspectral imaging combined with texture analysis can be implemented for fast classification of different varieties of maize seeds. PMID:23235456
NASA Technical Reports Server (NTRS)
Wong, S.; Colarco, P. R.; Dessler, A.
2006-01-01
The onset and evolution of Saharan Air Layer (SAL) episodes during June-September 2002 are diagnosed by applying principal component analysis to the NCEP reanalysis temperature anomalies at 850 hPa, where the largest SAL-induced temperature anomalies are located. The first principal component (PC) represents the onset of SAL episodes, which are associated with large warm anomalies located at the west coast of Africa. The second PC represents two opposite phases of the evolution of the SAL. The positive phase of the second PC corresponds to the southwestward extension of the warm anomalies into the tropical-subtropical North Atlantic Ocean, and the negative phase corresponds to the northwestward extension into the subtropical to mid-latitude North Atlantic Ocean and the southwest Europe. A dust transport model (CARMA) and the MODIS retrievals are used to study the associated effects on dust distribution and deposition. The positive (negative) phase of the second PC corresponds to a strengthening (weakening) of the offshore flows in the lower troposphere around 10deg - 20degN, causing more (less) dust being transported along the tropical to subtropical North Atlantic Ocean. The variation of the offshore flow indicates that the subseasonal variation of African Easterly Jet is associated with the evolution of the SAL. Significant correlation is found between the second PC time series and the daily West African monsoon index, implying a dynamical linkage between West African monsoon and the evolution of the SAL and Saharan dust transport.
Murray, Tanda; Beaty, Terri H.; Mathias, Rasika A.; Rafaels, Nicholas; Grant, Audrey Virginia; Faruque, Mezbah U.; Watson, Harold R.; Ruczinski, Ingo; Dunston, Georgia M.; Barnes, Kathleen C.
2013-01-01
Admixture is a potential source of confounding in genetic association studies, so it becomes important to detect and estimate admixture in a sample of unrelated individuals. Populations of African descent in the US and the Caribbean share similar historical backgrounds but the distributions of African admixture may differ. We selected 416 ancestry informative markers (AIMs) to estimate and compare admixture proportions using STRUCTURE in 906 unrelated African Americans (AAs) and 294 Barbadians (ACs) from a study of asthma. This analysis showed AAs on average were 72.5% African, 19.6% European and 8% Asian, while ACs were 77.4% African, 15.9% European, and 6.7% Asian which were significantly different. A principal components analysis based on these AIMs yielded one primary eigenvector that explained 54.04% of the variation and captured a gradient from West African to European admixture. This principal component was highly correlated with African vs. European ancestry as estimated by STRUCTURE (r2 = 0.992, r2 = 0.912, respectively). To investigate other African contributions to African American and Barbadian admixture, we performed PCA on ~14,000 (14k) genome-wide SNPs in AAs, ACs, Yorubans, Luhya and Maasai African groups, and estimated genetic distances (FST). We found AAs and ACs were closest genetically (FST = 0.008), and both were closer to the Yorubans than the other East African populations. In our sample of individuals of African descent, ~400 well-defined AIMs were just as good for detecting substructure as ~14,000 random SNPs drawn from a genome-wide panel of markers. PMID:20717976
Essential oils and chemical diversity of southeast European populations of Salvia officinalis L.
Cvetkovikj, Ivana; Stefkov, Gjoshe; Karapandzova, Marija; Kulevanova, Svetlana; Satović, Zlatko
2015-07-01
The essential oils of 25 populations of Dalmatian sage (Salvia officinalis L.) from nine Balkan countries, including 17 indigenous populations (representing almost the entire native distribution area) and eight non-indigenous (cultivated or naturalized) populations were analyzed. Their essential-oil yield ranged from 0.25 to 3.48%. Within the total of 80 detected compounds, ten (β-pinene, 1,8-cineole, cis-thujone, trans-thujone, camphor, borneol, trans-caryophyllene, α-humulene, viridiflorol, and manool) represented 42.60 to 85.70% of the components in the analyzed essential oils. Strong positive correlations were observed between the contents of trans-caryophyllene and α-humulene, α-humulene and viridiflorol, and viridiflorol and manool. Principal component analysis (PCA) on the basis of the contents of the ten main compounds showed that four principal components had an eigenvalue greater than 1 and explained 79.87% of the total variation. Performing cluster analysis (CA), the sage populations could be grouped into four distinct chemotypes (A-D). The essential oils of 14 out of the 25 populations of Dalmatian sage belonged to Chemotype A and were rich in cis-thujone and camphor, with low contents of trans-thujone. The correlation between the essential-oil composition and geographic variables of the indigenous populations was not significant; hence, the similarities in the essential-oil profile among populations could not be explained by the physical proximity of the populations. Additionally, the southeastern populations tended to have higher EO yields than the northwestern ones. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.
Direct process estimation from tomographic data using artificial neural systems
NASA Astrophysics Data System (ADS)
Mohamad-Saleh, Junita; Hoyle, Brian S.; Podd, Frank J.; Spink, D. M.
2001-07-01
The paper deals with the goal of component fraction estimation in multicomponent flows, a critical measurement in many processes. Electrical capacitance tomography (ECT) is a well-researched sensing technique for this task, due to its low-cost, non-intrusion, and fast response. However, typical systems, which include practicable real-time reconstruction algorithms, give inaccurate results, and existing approaches to direct component fraction measurement are flow-regime dependent. In the investigation described, an artificial neural network approach is used to directly estimate the component fractions in gas-oil, gas-water, and gas-oil-water flows from ECT measurements. A 2D finite- element electric field model of a 12-electrode ECT sensor is used to simulate ECT measurements of various flow conditions. The raw measurements are reduced to a mutually independent set using principal components analysis and used with their corresponding component fractions to train multilayer feed-forward neural networks (MLFFNNs). The trained MLFFNNs are tested with patterns consisting of unlearned ECT simulated and plant measurements. Results included in the paper have a mean absolute error of less than 1% for the estimation of various multicomponent fractions of the permittivity distribution. They are also shown to give improved component fraction estimation compared to a well known direct ECT method.
Multivariate Statistical Analysis of MSL APXS Bulk Geochemical Data
NASA Astrophysics Data System (ADS)
Hamilton, V. E.; Edwards, C. S.; Thompson, L. M.; Schmidt, M. E.
2014-12-01
We apply cluster and factor analyses to bulk chemical data of 130 soil and rock samples measured by the Alpha Particle X-ray Spectrometer (APXS) on the Mars Science Laboratory (MSL) rover Curiosity through sol 650. Multivariate approaches such as principal components analysis (PCA), cluster analysis, and factor analysis compliment more traditional approaches (e.g., Harker diagrams), with the advantage of simultaneously examining the relationships between multiple variables for large numbers of samples. Principal components analysis has been applied with success to APXS, Pancam, and Mössbauer data from the Mars Exploration Rovers. Factor analysis and cluster analysis have been applied with success to thermal infrared (TIR) spectral data of Mars. Cluster analyses group the input data by similarity, where there are a number of different methods for defining similarity (hierarchical, density, distribution, etc.). For example, without any assumptions about the chemical contributions of surface dust, preliminary hierarchical and K-means cluster analyses clearly distinguish the physically adjacent rock targets Windjana and Stephen as being distinctly different than lithologies observed prior to Curiosity's arrival at The Kimberley. In addition, they are separated from each other, consistent with chemical trends observed in variation diagrams but without requiring assumptions about chemical relationships. We will discuss the variation in cluster analysis results as a function of clustering method and pre-processing (e.g., log transformation, correction for dust cover) and implications for interpreting chemical data. Factor analysis shares some similarities with PCA, and examines the variability among observed components of a dataset so as to reveal variations attributable to unobserved components. Factor analysis has been used to extract the TIR spectra of components that are typically observed in mixtures and only rarely in isolation; there is the potential for similar results with data from APXS. These techniques offer new ways to understand the chemical relationships between the materials interrogated by Curiosity, and potentially their relation to materials observed by APXS instruments on other landed missions.
Identification of different bacterial species in biofilms using confocal Raman microscopy
NASA Astrophysics Data System (ADS)
Beier, Brooke D.; Quivey, Robert G.; Berger, Andrew J.
2010-11-01
Confocal Raman microspectroscopy is used to discriminate between different species of bacteria grown in biofilms. Tests are performed using two bacterial species, Streptococcus sanguinis and Streptococcus mutans, which are major components of oral plaque and of particular interest due to their association with healthy and cariogenic plaque, respectively. Dehydrated biofilms of these species are studied as a simplified model of dental plaque. A prediction model based on principal component analysis and logistic regression is calibrated using pure biofilms of each species and validated on pure biofilms grown months later, achieving 96% accuracy in prospective classification. When biofilms of the two species are partially mixed together, Raman-based identifications are achieved within ~2 μm of the boundaries between species with 97% accuracy. This combination of spatial resolution and predication accuracy should be suitable for forming images of species distributions within intact two-species biofilms.
The Statistics and Mathematics of High Dimension Low Sample Size Asymptotics.
Shen, Dan; Shen, Haipeng; Zhu, Hongtu; Marron, J S
2016-10-01
The aim of this paper is to establish several deep theoretical properties of principal component analysis for multiple-component spike covariance models. Our new results reveal an asymptotic conical structure in critical sample eigendirections under the spike models with distinguishable (or indistinguishable) eigenvalues, when the sample size and/or the number of variables (or dimension) tend to infinity. The consistency of the sample eigenvectors relative to their population counterparts is determined by the ratio between the dimension and the product of the sample size with the spike size. When this ratio converges to a nonzero constant, the sample eigenvector converges to a cone, with a certain angle to its corresponding population eigenvector. In the High Dimension, Low Sample Size case, the angle between the sample eigenvector and its population counterpart converges to a limiting distribution. Several generalizations of the multi-spike covariance models are also explored, and additional theoretical results are presented.
Color characterization of coatings with diffraction pigments.
Ferrero, A; Bernad, B; Campos, J; Perales, E; Velázquez, J L; Martínez-Verdú, F M
2016-10-01
Coatings with diffraction pigments present high iridescence, which needs to be characterized in order to describe their appearance. The spectral bidirectional reflectance distribution functions (BRDFs) of six coatings with SpectraFlair diffraction pigments were measured using the robot-arm-based goniospectrophotometer GEFE, designed and developed at CSIC. Principal component analysis has been applied to study the coatings of BRDF data. From data evaluation and based on theoretical considerations, we propose a relevant geometric factor to study the spectral reflectance and color gamut variation of coatings with diffraction pigments. At fixed values of this geometric factor, the spectral BRDF component due to diffraction is almost constant. Commercially available portable goniospectrophotometers, extensively used in several industries (automotive and others), should be provided with more aspecular measurement angles to characterize the complex reflectance of goniochromatic coatings based on diffraction pigments, but they would not require either more than one irradiation angle or additional out-of-plane geometries.
Kazmiruk, T N; Kazmiruk, V D; Bendell, L I
2018-01-01
The abundance and distribution of microplastics within 5 sediment size classes (>5000 μm, 1000-5000 μm, 250-1000 μm, 250-0.63 μm and < 0.63 μm) were determined for 16 sites within Lambert Channel and Baynes Sound, British Columbia, Canada. This region is Canada's premier growing area for the Pacific oyster (Crassostrea gigas). Microplastics were found at all sampling locations indicating widespread contamination of this region with these particles. Three types of microplastics were recovered: microbeads, which occurred in the greatest number (up to 25000/kg dry sediment) and microfibers and microfragments, which were much less in number compared with microbeads and occurred in similar amounts (100-300/kg dry sediment). Microbeads were recovered primarily in the < 0.63 μm and 250-0.63 μm sediment size class, whereas microfragments and microfibers were generally identified in all 5 sediment size classes. Abundance and distribution of the three types of microplastics were spatially dependent with principal component analysis (PCA) indicating that 84 percent of the variation in abundance and distribution was due to the presence of high numbers of microbeads at three locations within the study region. At these sites, microbeads expressed as a percent component of the sediment by weight was similar to key geochemical components that govern trace metal behavior and availability to benthic organisms. Microbeads have been shown to accumulate metals from the aquatic environment, hence in addition to the traditional geochemical components such as silt and organic matter, microplastics also need to be considered as a sediment component that can influence trace metal geochemistry. Our findings have shown that BC's premier oyster growing region is highly contaminated with microplastics, notably microbeads. It would be prudent to assess the degree to which oysters from this region are ingesting microplastics. If so, it would have direct implications for Canada's oyster farming industry with respect to the health of the oyster and the quality of product that is being farmed and sets an example for other shellfish growing regions of the world.
Kazmiruk, T. N.; Kazmiruk, V. D.
2018-01-01
The abundance and distribution of microplastics within 5 sediment size classes (>5000 μm, 1000–5000 μm, 250–1000 μm, 250–0.63 μm and < 0.63 μm) were determined for 16 sites within Lambert Channel and Baynes Sound, British Columbia, Canada. This region is Canada’s premier growing area for the Pacific oyster (Crassostrea gigas). Microplastics were found at all sampling locations indicating widespread contamination of this region with these particles. Three types of microplastics were recovered: microbeads, which occurred in the greatest number (up to 25000/kg dry sediment) and microfibers and microfragments, which were much less in number compared with microbeads and occurred in similar amounts (100–300/kg dry sediment). Microbeads were recovered primarily in the < 0.63 μm and 250–0.63 μm sediment size class, whereas microfragments and microfibers were generally identified in all 5 sediment size classes. Abundance and distribution of the three types of microplastics were spatially dependent with principal component analysis (PCA) indicating that 84 percent of the variation in abundance and distribution was due to the presence of high numbers of microbeads at three locations within the study region. At these sites, microbeads expressed as a percent component of the sediment by weight was similar to key geochemical components that govern trace metal behavior and availability to benthic organisms. Microbeads have been shown to accumulate metals from the aquatic environment, hence in addition to the traditional geochemical components such as silt and organic matter, microplastics also need to be considered as a sediment component that can influence trace metal geochemistry. Our findings have shown that BC’s premier oyster growing region is highly contaminated with microplastics, notably microbeads. It would be prudent to assess the degree to which oysters from this region are ingesting microplastics. If so, it would have direct implications for Canada’s oyster farming industry with respect to the health of the oyster and the quality of product that is being farmed and sets an example for other shellfish growing regions of the world. PMID:29791448
ERIC Educational Resources Information Center
Watson, Pat; And Others
Survey responses from over half of Oklahoma City's 2,500 teachers indicated their views of the effectiveness and leadership of the city's 94 school principals. The survey's 82 items were selected from ideas suggested in the principal effectiveness literature and from the leadership component of Oklahoma City's prinipal evaluation forms. The…
ERIC Educational Resources Information Center
Klinker, JoAnn Franklin; Hackmann, Donald G.
High school principals confront ethical dilemmas daily. This report describes a study that examined how MetLife/NASSP secondary principals of the year made ethical decisions conforming to three dispositions from Standard 5 of the ISLLC standards and whether they could identify processes used to reach those decisions through Rest's Four Component…
The Middle Management Paradox of the Urban High School Assistant Principal: Making It Happen
ERIC Educational Resources Information Center
Jubilee, Sabriya Kaleen
2013-01-01
Scholars of transformational leadership literature assert that school-based management teams are a vital component in transforming schools. Many of these works focus heavily on the roles of principals and teachers, ignoring the contribution of Assistant Principals (APs). More attention is now being given to the unique role that Assistant…
E-Mentoring for New Principals: A Case Study of a Mentoring Program
ERIC Educational Resources Information Center
Russo, Erin D.
2013-01-01
This descriptive case study includes both new principals and their mentor principals engaged in e-mentoring activities. This study examines the components of a school district's mentoring program in order to make sense of e-mentoring technology. The literature review highlights mentoring practices in education, and also draws upon e-mentoring…
Salvatore, Stefania; Røislien, Jo; Baz-Lomba, Jose A; Bramness, Jørgen G
2017-03-01
Wastewater-based epidemiology is an alternative method for estimating the collective drug use in a community. We applied functional data analysis, a statistical framework developed for analysing curve data, to investigate weekly temporal patterns in wastewater measurements of three prescription drugs with known abuse potential: methadone, oxazepam and methylphenidate, comparing them to positive and negative control drugs. Sewage samples were collected in February 2014 from a wastewater treatment plant in Oslo, Norway. The weekly pattern of each drug was extracted by fitting of generalized additive models, using trigonometric functions to model the cyclic behaviour. From the weekly component, the main temporal features were then extracted using functional principal component analysis. Results are presented through the functional principal components (FPCs) and corresponding FPC scores. Clinically, the most important weekly feature of the wastewater-based epidemiology data was the second FPC, representing the difference between average midweek level and a peak during the weekend, representing possible recreational use of a drug in the weekend. Estimated scores on this FPC indicated recreational use of methylphenidate, with a high weekend peak, but not for methadone and oxazepam. The functional principal component analysis uncovered clinically important temporal features of the weekly patterns of the use of prescription drugs detected from wastewater analysis. This may be used as a post-marketing surveillance method to monitor prescription drugs with abuse potential. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Espeland, Mark A; Bray, George A; Neiberg, Rebecca; Rejeski, W Jack; Knowler, William C; Lang, Wei; Cheskin, Lawrence J; Williamson, Don; Lewis, C Beth; Wing, Rena
2009-10-01
To demonstrate how principal components analysis can be used to describe patterns of weight changes in response to an intensive lifestyle intervention. Principal components analysis was applied to monthly percent weight changes measured on 2,485 individuals enrolled in the lifestyle arm of the Action for Health in Diabetes (Look AHEAD) clinical trial. These individuals were 45 to 75 years of age, with type 2 diabetes and body mass indices greater than 25 kg/m(2). Associations between baseline characteristics and weight loss patterns were described using analyses of variance. Three components collectively accounted for 97.0% of total intrasubject variance: a gradually decelerating weight loss (88.8%), early versus late weight loss (6.6%), and a mid-year trough (1.6%). In agreement with previous reports, each of the baseline characteristics we examined had statistically significant relationships with weight loss patterns. As examples, males tended to have a steeper trajectory of percent weight loss and to lose weight more quickly than women. Individuals with higher hemoglobin A(1c) (glycosylated hemoglobin; HbA(1c)) tended to have a flatter trajectory of percent weight loss and to have mid-year troughs in weight loss compared to those with lower HbA(1c). Principal components analysis provided a coherent description of characteristic patterns of weight changes and is a useful vehicle for identifying their correlates and potentially for predicting weight control outcomes.
ERIC Educational Resources Information Center
Akdemir, Öznur Atas; Ayik, Ahmet
2017-01-01
This study aims to investigate the effect of school principals' distributed leadership behaviors on teachers' organizational commitment. For this purpose, correlational survey model has been used in this study. The study group consists of 772 teachers working at secondary schools of Erzurum. The data of the study has been collected by using…
Leadership as a Distributed Phenomenon: A Study of Shared Roles and 3rd Grade Student Achievement
ERIC Educational Resources Information Center
Rivers, Shevawn D.
2010-01-01
In today's educational realm principals face high demands to increase student achievement and the mandates of the No Child Left Behind Act (NCLB) has intensified this challenging job with its requirements to adequate yearly progress (AYP). Such mandates have caused many elementary school principals to consider distributed leadership as a catalyst…
ERIC Educational Resources Information Center
Bellibas, Mehmet Sukru; Liu, Yan
2018-01-01
The purpose of this study was to investigate the extent to which leadership styles predict school climate, in order to identify whether a relationship exists between principals' perceived practices of instructional and distributed leadership and their perceptions of school climate (mutual respect and school delinquency), controlling for a net of…
Sullivan, Karen A; Lurie, Janine K
2017-01-01
The study examined the component structure of the Neurobehavioral Symptom Inventory (NSI) under five different models. The evaluated models comprised the full NSI (NSI-22) and the NSI-20 (NSI minus two orphan items). A civilian nonclinical sample was used. The 575 volunteers were predominantly university students who screened negative for mild TBI. The study design was cross-sectional, with questionnaires administered online. The main measure was the Neurobehavioral Symptom Inventory. Subscale, total and embedded validity scores were derived (the Validity-10, the LOW6, and the NIM5). In both models, the principal components analysis yielded two intercorrelated components (psychological and somatic/sensory) with acceptable internal consistency (alphas > 0.80). In this civilian nonclinical sample, the NSI had two underlying components. These components represent psychological and somatic/sensory neurobehavioral symptoms.
Visual Exploration of Semantic Relationships in Neural Word Embeddings
Liu, Shusen; Bremer, Peer-Timo; Thiagarajan, Jayaraman J.; ...
2017-08-29
Constructing distributed representations for words through neural language models and using the resulting vector spaces for analysis has become a crucial component of natural language processing (NLP). But, despite their widespread application, little is known about the structure and properties of these spaces. To gain insights into the relationship between words, the NLP community has begun to adapt high-dimensional visualization techniques. Particularly, researchers commonly use t-distributed stochastic neighbor embeddings (t-SNE) and principal component analysis (PCA) to create two-dimensional embeddings for assessing the overall structure and exploring linear relationships (e.g., word analogies), respectively. Unfortunately, these techniques often produce mediocre or evenmore » misleading results and cannot address domain-specific visualization challenges that are crucial for understanding semantic relationships in word embeddings. We introduce new embedding techniques for visualizing semantic and syntactic analogies, and the corresponding tests to determine whether the resulting views capture salient structures. Additionally, we introduce two novel views for a comprehensive study of analogy relationships. Finally, we augment t-SNE embeddings to convey uncertainty information in order to allow a reliable interpretation. Combined, the different views address a number of domain-specific tasks difficult to solve with existing tools.« less
Alberti, Giancarla; Biesuz, Raffaela; Pesavento, Maria
2008-12-01
Different natural water samples were investigated to determine the total concentration and the distribution of species for Cu(II), Pb(II), Al(III) and U(VI). The proposed method, named resin titration (RT), was developed in our laboratory to investigate the distribution of species for metal ions in complex matrices. It is a competition method, in which a complexing resin competes with natural ligands present in the sample to combine with the metal ions. In the present paper, river, estuarine and seawater samples, collected during a cruise in Adriatic Sea, were investigated. For each sample, two RTs were performed, using different complexing resins: the iminodiacetic Chelex 100 and the carboxylic Amberlite CG50. In this way, it was possible to detect different class of ligands. Satisfactory results have been obtained and are commented on critically. They were summarized by principal component analysis (PCA) and the correlations with physicochemical parameters allowed one to follow the evolution of the metals along the considered transect. It should be pointed out that, according to our findings, the ligands responsible for metal ions complexation are not the major components of the water system, since they form considerably weaker complexes.
Visual Exploration of Semantic Relationships in Neural Word Embeddings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shusen; Bremer, Peer-Timo; Thiagarajan, Jayaraman J.
Constructing distributed representations for words through neural language models and using the resulting vector spaces for analysis has become a crucial component of natural language processing (NLP). But, despite their widespread application, little is known about the structure and properties of these spaces. To gain insights into the relationship between words, the NLP community has begun to adapt high-dimensional visualization techniques. Particularly, researchers commonly use t-distributed stochastic neighbor embeddings (t-SNE) and principal component analysis (PCA) to create two-dimensional embeddings for assessing the overall structure and exploring linear relationships (e.g., word analogies), respectively. Unfortunately, these techniques often produce mediocre or evenmore » misleading results and cannot address domain-specific visualization challenges that are crucial for understanding semantic relationships in word embeddings. We introduce new embedding techniques for visualizing semantic and syntactic analogies, and the corresponding tests to determine whether the resulting views capture salient structures. Additionally, we introduce two novel views for a comprehensive study of analogy relationships. Finally, we augment t-SNE embeddings to convey uncertainty information in order to allow a reliable interpretation. Combined, the different views address a number of domain-specific tasks difficult to solve with existing tools.« less
The b Quark Fragmentation Function, From LEP to TeVatron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben-haim, Eli
2004-12-01
The b quark fragmentation distribution has been measured, using data registered by the DELPHI experiment at the Z pole, in the years 1994-1995. The measurement made use of 176000 inclusively reconstructed B meson candidates. The errors of this measurement are dominated by systematic effects, the principal ones being related to the energy calibration. The distribution has been established in a nine bin histogram. Its mean value has been found to be
NASA Astrophysics Data System (ADS)
Ovreas, L.; Quince, C.; Sloan, W.; Lanzen, A.; Davenport, R.; Green, J.; Coulson, S.; Curtis, T.
2012-12-01
Arctic microbial soil communities are intrinsically interesting and poorly characterised. We have inferred the diversity and species abundance distribution of 6 Arctic soils: new and mature soil at the foot of a receding glacier, Arctic Semi Desert, the foot of bird cliffs and soil underlying Arctic Tundra Heath: all near Ny-Ålesund, Spitsbergen. Diversity, distribution and sample sizes were estimated using the rational method of Quince et al., (Isme Journal 2 2008:997-1006) to determine the most plausible underlying species abundance distribution. A log-normal species abundance curve was found to give a slightly better fit than an inverse Gaussian curve if, and only if, sequencing error was removed. The median estimates of diversity of operational taxonomic units (at the 3% level) were 3600-5600 (lognormal assumed) and 2825-4100 (inverse Gaussian assumed). The nature and origins of species abundance distributions are poorly understood but may yet be grasped by observing and analysing such distributions in the microbial world. The sample size required to observe the distribution (by sequencing 90% of the taxa) varied between ~ 106 and ~105 for the lognormal and inverse Gaussian respectively. We infer that between 5 and 50 GB of sequencing would be required to capture 90% or the metagenome. Though a principle components analysis clearly divided the sites into three groups there was a high (20-45%) degree of overlap in between locations irrespective of geographical proximity. Interestingly, the nearest relatives of the most abundant taxa at a number of most sites were of alpine or polar origin. Samples plotted on first two principal components together with arbitrary discriminatory OTUs
NASA Astrophysics Data System (ADS)
Kim, Young-Pil; Hong, Mi-Young; Shon, Hyun Kyong; Chegal, Won; Cho, Hyun Mo; Moon, Dae Won; Kim, Hak-Sung; Lee, Tae Geol
2008-12-01
Interaction between streptavidin and biotin on poly(amidoamine) (PAMAM) dendrimer-activated surfaces and on self-assembled monolayers (SAMs) was quantitatively studied by using time-of-flight secondary ion mass spectrometry (ToF-SIMS). The surface protein density was systematically varied as a function of protein concentration and independently quantified using the ellipsometry technique. Principal component analysis (PCA) and principal component regression (PCR) were used to identify a correlation between the intensities of the secondary ion peaks and the surface protein densities. From the ToF-SIMS and ellipsometry results, a good linear correlation of protein density was found. Our study shows that surface protein densities are higher on dendrimer-activated surfaces than on SAMs surfaces due to the spherical property of the dendrimer, and that these surface protein densities can be easily quantified with high sensitivity in a label-free manner by ToF-SIMS.
Exploring patterns enriched in a dataset with contrastive principal component analysis.
Abid, Abubakar; Zhang, Martin J; Bagaria, Vivek K; Zou, James
2018-05-30
Visualization and exploration of high-dimensional data is a ubiquitous challenge across disciplines. Widely used techniques such as principal component analysis (PCA) aim to identify dominant trends in one dataset. However, in many settings we have datasets collected under different conditions, e.g., a treatment and a control experiment, and we are interested in visualizing and exploring patterns that are specific to one dataset. This paper proposes a method, contrastive principal component analysis (cPCA), which identifies low-dimensional structures that are enriched in a dataset relative to comparison data. In a wide variety of experiments, we demonstrate that cPCA with a background dataset enables us to visualize dataset-specific patterns missed by PCA and other standard methods. We further provide a geometric interpretation of cPCA and strong mathematical guarantees. An implementation of cPCA is publicly available, and can be used for exploratory data analysis in many applications where PCA is currently used.
Variability search in M 31 using principal component analysis and the Hubble Source Catalogue
NASA Astrophysics Data System (ADS)
Moretti, M. I.; Hatzidimitriou, D.; Karampelas, A.; Sokolovsky, K. V.; Bonanos, A. Z.; Gavras, P.; Yang, M.
2018-06-01
Principal component analysis (PCA) is being extensively used in Astronomy but not yet exhaustively exploited for variability search. The aim of this work is to investigate the effectiveness of using the PCA as a method to search for variable stars in large photometric data sets. We apply PCA to variability indices computed for light curves of 18 152 stars in three fields in M 31 extracted from the Hubble Source Catalogue. The projection of the data into the principal components is used as a stellar variability detection and classification tool, capable of distinguishing between RR Lyrae stars, long-period variables (LPVs) and non-variables. This projection recovered more than 90 per cent of the known variables and revealed 38 previously unknown variable stars (about 30 per cent more), all LPVs except for one object of uncertain variability type. We conclude that this methodology can indeed successfully identify candidate variable stars.
Spatial and temporal variability of hyperspectral signatures of terrain
NASA Astrophysics Data System (ADS)
Jones, K. F.; Perovich, D. K.; Koenig, G. G.
2008-04-01
Electromagnetic signatures of terrain exhibit significant spatial heterogeneity on a range of scales as well as considerable temporal variability. A statistical characterization of the spatial heterogeneity and spatial scaling algorithms of terrain electromagnetic signatures are required to extrapolate measurements to larger scales. Basic terrain elements including bare soil, grass, deciduous, and coniferous trees were studied in a quasi-laboratory setting using instrumented test sites in Hanover, NH and Yuma, AZ. Observations were made using a visible and near infrared spectroradiometer (350 - 2500 nm) and hyperspectral camera (400 - 1100 nm). Results are reported illustrating: i) several difference scenes; ii) a terrain scene time series sampled over an annual cycle; and iii) the detection of artifacts in scenes. A principal component analysis indicated that the first three principal components typically explained between 90 and 99% of the variance of the 30 to 40-channel hyperspectral images. Higher order principal components of hyperspectral images are useful for detecting artifacts in scenes.
Singh, Surya Pratap; Gupta, Dwijendra K
2015-04-21
Wnt signaling pathway regulates several developmental processes in human; however recently this pathway has been associated with development of different types of cancers. Casein kinase-1 (CK1) constitutes a family of serine-threonine protein kinase; various members of this family participate in Wnt signal transduction pathway and serve as molecular switch to this pathway. Among the known six isoforms of CK1, in human, at least three isoforms (viz. alpha, delta and epsilon) have been reported as oncogenic. The development of common therapeutics against these kinases is an arduous task; unless we have the detailed information of their tertiary structures and conformational properties. In the present work, the dynamical and conformational properties for each of three isoforms of CK1 are explored through molecular dynamics (MD) simulations. The conformational space distribution of backbone atoms is evaluated using principal component analysis of MD data, which are further validated on the basis of potential energy surface. Based on these analytics, it is suggested that conformational subspace shifts upon binding to ligands and guides the kinase action of CK1 isoforms. Further, this paper as a first effort to concurrently study all the three isoforms of CK1 provides structural basis for development of common anticancer therapeutics against three isoforms of CK1. Copyright © 2015 Elsevier Ltd. All rights reserved.
Universal FFM Hydrogen Spectral Line Shapes Applied to Ions and Electrons
NASA Astrophysics Data System (ADS)
Mossé, C.; Calisti, A.; Ferri, S.; Talin, B.; Bureyeva, L. A.; Lisitsa, V. S.
2008-10-01
We present a method for the calculation of hydrogen spectral line shapes based on two combined approaches: Universal Model and FFM procedure. We start with the analytical functions for the intensities of the Stark components of radiative transitions between highly excited atomic states with large values of principal quantum numbers n,n'γ1, with Δn = n-n'≪n for the specific cases of Hn-α line (Δn = 1) and Hn-β line (Δn = 2). The FFM line shape is obtained by averaging on the electric field of the Hooper's field distribution for ion and electron perturber dynamics and by mixing the Stark components with a jumping frequency rate ve (vi) where v = N1/3u (N is electron density and u is the ion or electron thermal velocity). Finally, the total line shape is given by convolution of ion and electron line shapes. Hydrogen line shape calculations for Balmer Hα and Hβ lines are compared to experimental results in low density plasma (Ne˜1016-1017cm-3) and low electron temperature in order of 10 000K. This method relying on analytic expressions permits fast calculation of Hn-α and Hn-β lines of hydrogen and could be used in the study of the Stark broadening of radio recombination lines for high principal quantum number.
Plant Invasions in China – Challenges and Chances
Axmacher, Jan C.; Sang, Weiguo
2013-01-01
Invasive species cause serious environmental and economic harm and threaten global biodiversity. We set out to investigate how quickly invasive plant species are currently spreading in China and how their resulting distribution patterns are linked to socio-economic and environmental conditions. A comparison of the invasive plant species density (log species/log area) reported in 2008 with current data shows that invasive species were originally highly concentrated in the wealthy, southeastern coastal provinces of China, but they are currently rapidly spreading inland. Linear regression models based on the species density and turnover of invasive plants as dependent parameters and principal components representing key socio-economic and environmental parameters as predictors indicate strong positive links between invasive plant density and the overall phytodiversity and associated climatic parameters. Principal components representing socio-economic factors and endemic plant density also show significant positive links with invasive plant density. Urgent control and eradication measures are needed in China's coastal provinces to counteract the rapid inland spread of invasive plants. Strict controls of imports through seaports need to be accompanied by similarly strict controls of the developing horticultural trade and underpinned by awareness campaigns for China's increasingly affluent population to limit the arrival of new invaders. Furthermore, China needs to fully utilize its substantial native phytodiversity, rather than relying on exotics, in current large-scale afforestation projects and in the creation of urban green spaces. PMID:23691164
Three-dimensional geometry of coronal loops inferred by the Principal Component Analysis
NASA Astrophysics Data System (ADS)
Nisticò, Giuseppe; Nakariakov, Valery
We propose a new method for the determination of the three dimensional (3D) shape of coronal loops from stereoscopy. The common approach requires to find a 1D geometric curve, as circumference or ellipse, that best-fits the 3D tie-points which sample the loop shape in a given coordinate system. This can be easily achieved by the Principal Component (PC) analysis. It mainly consists in calculating the eigenvalues and eigenvectors of the covariance matrix of the 3D tie-points: the eigenvalues give a measure of the variability of the distribution of the tie-points, and the corresponding eigenvectors define a new cartesian reference frame directly related to the loop. The eigenvector associated with the smallest eigenvalues defines the normal to the loop plane, while the other two determine the directions of the loop axes: the major axis is related to the largest eigenvalue, and the minor axis with the second one. The magnitude of the axes is directly proportional to the square roots of these eigenvalues. The technique is fast and easily implemented in some examples, returning best-fitting estimations of the loop parameters and 3D reconstruction with a reasonable small number of tie-points. The method is suitable for serial reconstruction of coronal loops in active regions, providing a useful tool for comparison between observations and theoretical magnetic field extrapolations from potential or force-free fields.
TensorCalculator: exploring the evolution of mechanical stress in the CCMV capsid
NASA Astrophysics Data System (ADS)
Kononova, Olga; Maksudov, Farkhad; Marx, Kenneth A.; Barsegov, Valeri
2018-01-01
A new computational methodology for the accurate numerical calculation of the Cauchy stress tensor, stress invariants, principal stress components, von Mises and Tresca tensors is developed. The methodology is based on the atomic stress approach which permits the calculation of stress tensors, widely used in continuum mechanics modeling of materials properties, using the output from the MD simulations of discrete atomic and C_α -based coarse-grained structural models of biological particles. The methodology mapped into the software package TensorCalculator was successfully applied to the empty cowpea chlorotic mottle virus (CCMV) shell to explore the evolution of mechanical stress in this mechanically-tested specific example of a soft virus capsid. We found an inhomogeneous stress distribution in various portions of the CCMV structure and stress transfer from one portion of the virus structure to another, which also points to the importance of entropic effects, often ignored in finite element analysis and elastic network modeling. We formulate a criterion for elastic deformation using the first principal stress components. Furthermore, we show that von Mises and Tresca stress tensors can be used to predict the onset of a viral capsid’s mechanical failure, which leads to total structural collapse. TensorCalculator can be used to study stress evolution and dynamics of defects in viral capsids and other large-size protein assemblies.
Reduced order model based on principal component analysis for process simulation and optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lang, Y.; Malacina, A.; Biegler, L.
2009-01-01
It is well-known that distributed parameter computational fluid dynamics (CFD) models provide more accurate results than conventional, lumped-parameter unit operation models used in process simulation. Consequently, the use of CFD models in process/equipment co-simulation offers the potential to optimize overall plant performance with respect to complex thermal and fluid flow phenomena. Because solving CFD models is time-consuming compared to the overall process simulation, we consider the development of fast reduced order models (ROMs) based on CFD results to closely approximate the high-fidelity equipment models in the co-simulation. By considering process equipment items with complicated geometries and detailed thermodynamic property models,more » this study proposes a strategy to develop ROMs based on principal component analysis (PCA). Taking advantage of commercial process simulation and CFD software (for example, Aspen Plus and FLUENT), we are able to develop systematic CFD-based ROMs for equipment models in an efficient manner. In particular, we show that the validity of the ROM is more robust within well-sampled input domain and the CPU time is significantly reduced. Typically, it takes at most several CPU seconds to evaluate the ROM compared to several CPU hours or more to solve the CFD model. Two case studies, involving two power plant equipment examples, are described and demonstrate the benefits of using our proposed ROM methodology for process simulation and optimization.« less
Wanda, Elijah M M; Nyoni, Hlengilizwe; Mamba, Bhekie B; Msagati, Titus A M
2017-01-13
The ubiquitous occurrence of emerging micropollutants (EMPs) in water is an issue of growing environmental-health concern worldwide. However, there remains a paucity of data regarding their levels and occurrence in water. This study determined the occurrence of EMPs namely: carbamazepine (CBZ), galaxolide (HHCB), caffeine (CAF), tonalide (AHTN), 4-nonylphenol (NP), and bisphenol A (BPA) in water from Gauteng, Mpumalanga, and North West provinces, South Africa using comprehensive two-dimensional gas chromatography coupled to high resolution time-of-flight mass spectrometry (GCxGC-HRTOFMS). Kruskal-Wallis test and ANOVA were performed to determine temporal variations in occurrence of the EMPs. Principal component analysis (PCA) and Surfer Golden Graphics software for surface mapping were used to determine spatial variations in levels and occurrence of the EMPs. The mean levels ranged from 11.22 ± 18.8 ng/L for CAF to 158.49 ± 662 ng/L for HHCB. There was no evidence of statistically significant temporal variations in occurrence of EMPs in water. Nevertheless, their levels and occurrence vary spatially and are a function of two principal components (PCs, PC1 and PC2) which controlled 89.99% of the variance. BPA was the most widely distributed EMP, which was present in 62% of the water samples. The detected EMPs pose ecotoxicological risks in water samples, especially those from Mpumalanga province.
Wanda, Elijah M. M.; Nyoni, Hlengilizwe; Mamba, Bhekie B.; Msagati, Titus A. M.
2017-01-01
The ubiquitous occurrence of emerging micropollutants (EMPs) in water is an issue of growing environmental-health concern worldwide. However, there remains a paucity of data regarding their levels and occurrence in water. This study determined the occurrence of EMPs namely: carbamazepine (CBZ), galaxolide (HHCB), caffeine (CAF), tonalide (AHTN), 4-nonylphenol (NP), and bisphenol A (BPA) in water from Gauteng, Mpumalanga, and North West provinces, South Africa using comprehensive two-dimensional gas chromatography coupled to high resolution time-of-flight mass spectrometry (GCxGC-HRTOFMS). Kruskal-Wallis test and ANOVA were performed to determine temporal variations in occurrence of the EMPs. Principal component analysis (PCA) and Surfer Golden Graphics software for surface mapping were used to determine spatial variations in levels and occurrence of the EMPs. The mean levels ranged from 11.22 ± 18.8 ng/L for CAF to 158.49 ± 662 ng/L for HHCB. There was no evidence of statistically significant temporal variations in occurrence of EMPs in water. Nevertheless, their levels and occurrence vary spatially and are a function of two principal components (PCs, PC1 and PC2) which controlled 89.99% of the variance. BPA was the most widely distributed EMP, which was present in 62% of the water samples. The detected EMPs pose ecotoxicological risks in water samples, especially those from Mpumalanga province. PMID:28098799
NASA Astrophysics Data System (ADS)
Lu, Mingyu; Qu, Yongwei; Lu, Ye; Ye, Lin; Zhou, Limin; Su, Zhongqing
2012-04-01
An experimental study is reported in this paper demonstrating monitoring of surface-fatigue crack propagation in a welded steel angle structure using Lamb waves generated by an active piezoceramic transducer (PZT) network which was freely surface-mounted for each PZT transducer to serve as either actuator or sensor. The fatigue crack was initiated and propagated in welding zone of a steel angle structure by three-point bending fatigue tests. Instead of directly comparing changes between a series of specific signal segments such as S0 and A0 wave modes scattered from fatigue crack tips, a variety of signal statistical parameters representing five different structural status obtained from marginal spectrum in Hilbert-huang transform (HHT), indicating energy progressive distribution along time period in the frequency domain including all wave modes of one wave signal were employed to classify and distinguish different structural conditions due to fatigue crack initiation and propagation with the combination of using principal component analysis (PCA). Results show that PCA based on marginal spectrum is effective and sensitive for monitoring the growth of fatigue crack although the received signals are extremely complicated due to wave scattered from weld, multi-boundaries, notch and fatigue crack. More importantly, this method indicates good potential for identification of integrity status of complicated structures which cause uncertain wave patterns and ambiguous sensor network arrangement.
Fast Principal-Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia
Galinsky, Kevin J.; Bhatia, Gaurav; Loh, Po-Ru; Georgiev, Stoyan; Mukherjee, Sayan; Patterson, Nick J.; Price, Alkes L.
2016-01-01
Searching for genetic variants with unusual differentiation between subpopulations is an established approach for identifying signals of natural selection. However, existing methods generally require discrete subpopulations. We introduce a method that infers selection using principal components (PCs) by identifying variants whose differentiation along top PCs is significantly greater than the null distribution of genetic drift. To enable the application of this method to large datasets, we developed the FastPCA software, which employs recent advances in random matrix theory to accurately approximate top PCs while reducing time and memory cost from quadratic to linear in the number of individuals, a computational improvement of many orders of magnitude. We apply FastPCA to a cohort of 54,734 European Americans, identifying 5 distinct subpopulations spanning the top 4 PCs. Using the PC-based test for natural selection, we replicate previously known selected loci and identify three new genome-wide significant signals of selection, including selection in Europeans at ADH1B. The coding variant rs1229984∗T has previously been associated to a decreased risk of alcoholism and shown to be under selection in East Asians; we show that it is a rare example of independent evolution on two continents. We also detect selection signals at IGFBP3 and IGH, which have also previously been associated to human disease. PMID:26924531
NASA Astrophysics Data System (ADS)
Ye, M.; Pacheco Castro, R. B.; Pacheco Avila, J.; Cabrera Sansores, A.
2014-12-01
The karstic aquifer of Yucatan is a vulnerable and complex system. The first fifteen meters of this aquifer have been polluted, due to this the protection of this resource is important because is the only source of potable water of the entire State. Through the assessment of groundwater quality we can gain some knowledge about the main processes governing water chemistry as well as spatial patterns which are important to establish protection zones. In this work multivariate statistical techniques are used to assess the groundwater quality of the supply wells (30 to 40 meters deep) in the hidrogeologic region of the Ring of Cenotes, located in Yucatan, Mexico. Cluster analysis and principal component analysis are applied in groundwater chemistry data of the study area. Results of principal component analysis show that the main sources of variation in the data are due sea water intrusion and the interaction of the water with the carbonate rocks of the system and some pollution processes. The cluster analysis shows that the data can be divided in four clusters. The spatial distribution of the clusters seems to be random, but is consistent with sea water intrusion and pollution with nitrates. The overall results show that multivariate statistical analysis can be successfully applied in the groundwater quality assessment of this karstic aquifer.
Non-destructive testing of satellite nozzles made of carbon fibre ceramic matrix composite, C/SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebelo Kornmeier, J.; Hofmann, M.; Schmidt, S.
Carbon fibre ceramic matrix composite materials, C/SiC, are excellent candidates as lightweight structural materials for high performance hot structures such as in aerospace applications. Satellite nozzles are manufactured from C/SiC, using, for instance, the Liquid Polymer Infiltration (LPI) process. In this article the applicability of different non-destructive analysis methods for the characterisation of C/SiC components will be discussed. By using synchrotron and neutron tomography it is possible to characterise the C/SiC material in each desired location or orientation. Synchrotron radiation using tomography on small samples with a resolution of 1.4 {mu}m, i.e. the fibre scale, was used to characterise threemore » dimensionally fibre orientation and integrity, matrix homogeneity and dimensions and distributions of micro pores. Neutron radiation tomography with a resolution of about 300 {mu}m was used to analyse the over-all C/SiC satellite nozzle component with respect to the fibre content. The special solder connection of a C/SiC satellite nozzle to a metallic ring was also successfully analysed by neutron tomography. In addition, the residual stress state of a temperature tested satellite nozzle was analysed non-destructively in depth by neutron diffraction. The results revealed almost zero stress for the principal directions, radial, axial and tangential, which can be considered to be the principal directions.« less
HPLC-DAD-ESI-MS Analysis of Flavonoids from Leaves of Different Cultivars of Sweet Osmanthus.
Wang, Yiguang; Fu, Jianxin; Zhang, Chao; Zhao, Hongbo
2016-09-14
Osmanthus fragrans Lour. has traditionally been a popular ornamental plant in China. In this study, ethanol extracts of the leaves of four cultivar groups of O. fragrans were analyzed by high-performance liquid chromatography coupled with diode array detection (HPLC-DAD) and high-performance liquid chromatography with electrospray ionization and mass spectrometry (HPLC-ESI-MS). The results suggest that variation in flavonoids among O. fragrans cultivars is quantitative, rather than qualitative. Fifteen components were detected and separated, among which, the structures of 11 flavonoids and two coumarins were identified or tentatively identified. According to principal component analysis (PCA) and hierarchical cluster analysis (HCA) based on the abundance of these components (expressed as rutin equivalents), 22 selected cultivars were classified into four clusters. The seven cultivars from Cluster III ('Xiaoye Sugui', 'Boye Jingui', 'Wuyi Dangui', 'Yingye Dangui', 'Danzhuang', 'Foding Zhu', and 'Tianxiang Taige'), which are enriched in rutin and total flavonoids, and 'Sijigui' from Cluster II which contained the highest amounts of kaempferol glycosides and apigenin 7-O-glucoside, could be selected as potential pharmaceutical resources. However, the chemotaxonomy in this paper does not correlate with the distribution of the existing cultivar groups, demonstrating that the distribution of flavonoids in O. fragrans leaves does not provide an effective means of classification for O. fragrans cultivars based on flower color.
Optimal weighted combinatorial forecasting model of QT dispersion of ECGs in Chinese adults.
Wen, Zhang; Miao, Ge; Xinlei, Liu; Minyi, Cen
2016-07-01
This study aims to provide a scientific basis for unifying the reference value standard of QT dispersion of ECGs in Chinese adults. Three predictive models including regression model, principal component model, and artificial neural network model are combined to establish the optimal weighted combination model. The optimal weighted combination model and single model are verified and compared. Optimal weighted combinatorial model can reduce predicting risk of single model and improve the predicting precision. The reference value of geographical distribution of Chinese adults' QT dispersion was precisely made by using kriging methods. When geographical factors of a particular area are obtained, the reference value of QT dispersion of Chinese adults in this area can be estimated by using optimal weighted combinatorial model and reference value of the QT dispersion of Chinese adults anywhere in China can be obtained by using geographical distribution figure as well.
The impact of public expenditure on undernourishment distribution in Mexico.
Moreno-Macías, Lidia; Palma-Solís, Marco; Zapata-Vázquez, Rita E
2013-09-01
The status of undernourishment in children under the age of five in Mexico is open to debate. Linked to poverty, underweight and stunting, the rates of undernourishment are reported to be diminishing, although poverty remains an incessant problem. This study was done to determine whether there is an association between public expenditure and underweight and stunting distribution in Mexico based on data from the 2006 health and population census and from macroeconomic, social, and demographic variables. We used principal component analysis to reduce the number of variables and analyze their behavior. Multiple regressions showed that underweight and stunting are significantly associated with the marginalization index, support from the Sistema Nacional para el Desarrollo Integral de la Familia (DIF) supplies and breakfast program, the gross domestic product per capita, and expenditure from the Opportunities program. Further, public expenditure aimed to combat undernourishment is inadequately oriented to address the needs of the poor.
Radiative transfer models for retrieval of cloud parameters from EPIC/DSCOVR measurements
NASA Astrophysics Data System (ADS)
Molina García, Víctor; Sasi, Sruthy; Efremenko, Dmitry S.; Doicu, Adrian; Loyola, Diego
2018-07-01
In this paper we analyze the accuracy and efficiency of several radiative transfer models for inferring cloud parameters from radiances measured by the Earth Polychromatic Imaging Camera (EPIC) on board the Deep Space Climate Observatory (DSCOVR). The radiative transfer models are the exact discrete ordinate and matrix operator methods with matrix exponential, and the approximate asymptotic and equivalent Lambertian cloud models. To deal with the computationally expensive radiative transfer calculations, several acceleration techniques such as, for example, the telescoping technique, the method of false discrete ordinate, the correlated k-distribution method and the principal component analysis (PCA) are used. We found that, for the EPIC oxygen A-band absorption channel at 764 nm, the exact models using the correlated k-distribution in conjunction with PCA yield an accuracy better than 1.5% and a computation time of 18 s for radiance calculations at 5 viewing zenith angles.
Zhang, Ridong; Tao, Jili; Lu, Renquan; Jin, Qibing
2018-02-01
Modeling of distributed parameter systems is difficult because of their nonlinearity and infinite-dimensional characteristics. Based on principal component analysis (PCA), a hybrid modeling strategy that consists of a decoupled linear autoregressive exogenous (ARX) model and a nonlinear radial basis function (RBF) neural network model are proposed. The spatial-temporal output is first divided into a few dominant spatial basis functions and finite-dimensional temporal series by PCA. Then, a decoupled ARX model is designed to model the linear dynamics of the dominant modes of the time series. The nonlinear residual part is subsequently parameterized by RBFs, where genetic algorithm is utilized to optimize their hidden layer structure and the parameters. Finally, the nonlinear spatial-temporal dynamic system is obtained after the time/space reconstruction. Simulation results of a catalytic rod and a heat conduction equation demonstrate the effectiveness of the proposed strategy compared to several other methods.
Araujo, Pedro; Tilahun, Ephrem; Zeng, Yingxu
2018-05-15
A novel strategy for discriminating genuine and adulterated marine oils is proposed. The strategy consists of i) determining the stereospecific distribution (sn-1, sn-2 and sn-3) of omega 3 polyunsaturated fatty acids (ω-3 PUFA) on the backbone of triacylglycerols by using liquid chromatography tandem mass spectrometry; ii) transforming the qualitative stereospecific information into quantitative data by means of a novel strategy; iii) analyzing the transformed data by principal component analysis. The proposed strategy was tested on pure oils (seal, salmon, cod liver, sandeel, blue whiting, herring), a mixture of blue whiting, herring, sandeel and Norway pout and some intentionally adulterated oils. In addition, some published krill oil data were analyzed to confirm the reliability of the new approach. Copyright © 2018 Elsevier B.V. All rights reserved.
Principals' Opinions of Organisational Justice in Elementary Schools in Turkey
ERIC Educational Resources Information Center
Aydin, Inayet; Karaman-Kepenekci, Yasemin
2008-01-01
Purpose--This study aims to present the opinions of public elementary school principals in Turkey about the current organisational justice practices among teachers from the distributive, procedural, interactional, and rectificatory dimensions. Design/methodology/approach--The opinions of 11 public elementary school principals in Ankara about…
A multifactor approach to forecasting Romanian gross domestic product (GDP) in the short run.
Armeanu, Daniel; Andrei, Jean Vasile; Lache, Leonard; Panait, Mirela
2017-01-01
The purpose of this paper is to investigate the application of a generalized dynamic factor model (GDFM) based on dynamic principal components analysis to forecasting short-term economic growth in Romania. We have used a generalized principal components approach to estimate a dynamic model based on a dataset comprising 86 economic and non-economic variables that are linked to economic output. The model exploits the dynamic correlations between these variables and uses three common components that account for roughly 72% of the information contained in the original space. We show that it is possible to generate reliable forecasts of quarterly real gross domestic product (GDP) using just the common components while also assessing the contribution of the individual variables to the dynamics of real GDP. In order to assess the relative performance of the GDFM to standard models based on principal components analysis, we have also estimated two Stock-Watson (SW) models that were used to perform the same out-of-sample forecasts as the GDFM. The results indicate significantly better performance of the GDFM compared with the competing SW models, which empirically confirms our expectations that the GDFM produces more accurate forecasts when dealing with large datasets.
A multifactor approach to forecasting Romanian gross domestic product (GDP) in the short run
Armeanu, Daniel; Lache, Leonard; Panait, Mirela
2017-01-01
The purpose of this paper is to investigate the application of a generalized dynamic factor model (GDFM) based on dynamic principal components analysis to forecasting short-term economic growth in Romania. We have used a generalized principal components approach to estimate a dynamic model based on a dataset comprising 86 economic and non-economic variables that are linked to economic output. The model exploits the dynamic correlations between these variables and uses three common components that account for roughly 72% of the information contained in the original space. We show that it is possible to generate reliable forecasts of quarterly real gross domestic product (GDP) using just the common components while also assessing the contribution of the individual variables to the dynamics of real GDP. In order to assess the relative performance of the GDFM to standard models based on principal components analysis, we have also estimated two Stock-Watson (SW) models that were used to perform the same out-of-sample forecasts as the GDFM. The results indicate significantly better performance of the GDFM compared with the competing SW models, which empirically confirms our expectations that the GDFM produces more accurate forecasts when dealing with large datasets. PMID:28742100